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Abstract

This work is mainly based on the study of quantum entanglement (QE) and multi-

partite quantum correlation (MPQC) in many two-level atomic systems (TLS). QE and

MPQC play a pivotal role in quantum computing and quantum information processing.

We have computed the global quantum discord (GQD) and von Neumann entropy (VNE)

of a multipartite system consisting of a TLS that interact with a field prepared in a single

mode. We use the extended Tavis-Cumming model. The effects of intrinsic decoherence

(ID) on the dynamics of the GQD and VNE are also investigated. We have extended the

results for a large photon number n in the system. We have studied the effect of change

in the size of the system on the maximum value of GQD and VNE and we have also esti-

mated the scaling coefficients for this behavior. Moreover, the influence of the non-linear

Kerr medium (NLKM) on the MPQC and entanglement in two, three and four TLS is

also explored. The NLKM has a profound effect on both quantifiers, the GQD and VNE.

For the higher values of the Kerr parameter, it is observed that the GQD and VNE show

rather periodic behavior. We also consider the case of moving atoms. Both the quanti-

fiers, the GQD and the VNE show periodic behavior, and the results are consistent with

previous studies. The effect of the NLKM is also studied on the dynamics of the system

in the presence of a single-mode coherent field. The collapses and revivals of the GQD

and VNE are observed for various values of the Kerr parameter. Moreover, it is found

that by increasing the values of Kerr medium parameter, the magnitude of the revivals

of QE is suppressed. It is also noted that for mixed states the GQD shows comparatively

damped oscillations as compared to the pure states. It is important to point out that by

increasing the average number of photons in the multipartite quantum system, the GQD

and VNE exhibit damping behavior. Furthermore, the revival time of both the GQD and

VNE increases with the increase of NLKM parameter, for the systems with a relatively

large number of atoms. Finally, we investigated the influence of Stark shift on the system

consisting of two, three and four TLS interacting with a single-mode Fock and coherent

field in the cavity. The dynamics of the GQD and VNE in the presence of Stark effect

indicates that the MPQC decrease with the increase of the Stark parameter for both the

Fock and coherent field. In a nutshell, our work gives a comparison between MPQC and



entanglement for a many TLS interacting with single mode field under the influence of

different environments.
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Chapter 1

Introduction

Quantum computing and quantum information processing (QIP) require quantum sys-

tems consisting of many two-level subsystems (TLS) [1]. The success of quantum compu-

tation and QIP depends on the controlled evolution and precise measurements of these

quantum systems. Various phenomena in QIP and computation such as entanglement

and the MPQC using a TLS and spin models are explored and understood [2–6]. However,

quantifying entanglement and the MPQC for the multipartite systems remains a theoret-

ical challenging task. Quantum correlations are more meaningful to study in many-body

quantum systems as compared to bipartite entanglement [7].

The Jaynes-Cummings model [8] is a precisely solvable model that describes the interac-

tion between a TLS and a single-mode quantized radiation field under the rotating-wave

approximation. Much attention has been paid to generalizing the Jaynes-Cummings

model [9–13]. Various attempts have been made to explore analytical solutions of multi-

atoms interacting with the cavity field. The dynamical behavior of two TLS interacting

with a single-mode field is a preliminary example [14–19]. Numerous investigations have

been done on atom-atom and atoms-field QE in such systems [20, 21].

QE is a vital resource in the field of QIP and quantum computing [22]. Bipartite entangle-

ment is well studied in various respects [23–30]. As for the multipartite systems, tripartite

entanglement has triggered considerable interest in the study to increase the security in

quantum cryptography [31] and in the efficiency of quantum cloning [32, 33]. Tripartite

entanglement [34–37], processing of quantum information [38] and entropy [39, 40] have

been studied extensively. Relative entropy of the system has been proposed as a measure

of entanglement and effectively used for the mixed states [41, 42].
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It has been identified that entanglement is not the only parameter to measure the quan-

tumness of a system [43] by introducing a suitable tool to measure quantum correlations,

known as quantum discord, presented by Ollivier and Zurek [44]. Quantum discord and

its dynamics have been extensively explored in atomic systems, spin models and cavity

quantum electrodynamics [45–55]. Quantum correlations have also been thought of as

a useful measurement in quantum evolution under decoherence [56, 57] and a resource

for quantum computation [58] have the property that almost all types of quantum states

have non-vanishing quantum discord [59–61]. A multipartite version of quantum discord,

called the global quantum discord (GQD) has been studied and derived by Rulli and

Sarandy [7]. The non-classical states in multipartite systems are studied by Saguia et.

al. [62] which provides a sufficient condition for the non-classicality of the system.

In practical scenarios, it cannot be assumed that the atom is static during its interaction:

therefore, it is reasonable to take the effect of atomic motion into account. Besides the

experimental drive, there also exists a theoretical motivation to include the atomic mo-

tion effect in the Jaynes-Cummings model because its dynamics become more interesting.

Several authors have treated the Jaynes-Cummings model in the presence of atomic mo-

tion by the use of analytic approximations [63–65] and numerical calculations [66].

In a more realistic situation, in atom-field interaction, the cavity is filled with a nonlinear

Kerr medium (NLKM). In the field of quantum optics, the Kerr effect is a non-linear phe-

nomenon, consisting of a change in the refractive index of the material which is directly

proportional to the square of the electric field [67–70]. Under this process, the intensity-

dependent phase shift appears in the field. Thus, the intensity of the field is proportional

to the refractive index of the Kerr medium. The entropy of a TLS, non-linear atomic

system has been studied in the atomic motion case in the presence of the NLKM [44].

A moving rubidium atom, in the presence of the NLKM, interacting with a single-mode

cavity field is studied in Ref. [71]. The quantum Fisher information of the atomic system

interacting with a single cavity mode in the presence of NLKM has been investigated in

Ref. [72]. The effect of the detuning parameter and the NLKM on the dynamics of a

moving four-level N-type atom interacting with the coherent field has been discussed in

Ref. [45]. The influence of atomic motion on the atomic population inversion has been

described in Ref. [73] by considering the field-mode structure parameter. Moreover, a

moving atomic system that interacts with a two-mode coherent field undergoing a two-
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photon transition has been studied in Ref. [74].

The Stark shift effect is another well-studied aspect in the field of light-matter interaction[75].

In the field of quantum optics, the Stark effect is extensively studied [75]. In the field of

cavity quantum electrodynamics, recent studies [75] have made it experimentally possi-

ble to witness the ultra-strong and strong light-matter-interaction effects. Schemes have

been suggested for applying the perturbation and dynamical Stark shifts on quantum

logic gates and algorithms [75, 76], and to improve the photon sources for the interferom-

eter [77]. It may be interesting to investigate the influence of Stark shift on atom-atom,

and atom-field MPQC and QE. It may be worth doing to explore, how Stark shift can

be utilized to enhance atom-atom entanglement, as well. Quantum Fisher Information

of a moving TLS under the influence of the thermal field, ID, Stark effect, and Kerr-like

medium is studied in Ref. [78]. Recently, the Kerr effect and Stark effect on the dynam-

ics of QE of a system consisting of two three-level moving atoms is studied [79]. In this

context we explored the influence of Stark shift on the MPQC and QE for the case of

two, three and four TLS.

We have used a scheme that allows us to compute how information is processed in the

different number of a TLS via the analysis of the multipartite correlations, more specifi-

cally by measuring the GQD and VNE. A quantum system composed of various numbers

of identical TLS which interacts with a single-mode field in the Fock state basis is the one

case that we have investigated. The quantum system is prepared initially in a mixed state

and different parameters are added to see how they affect the information processing in

the system. The dynamical character of the GQD and VNE show an interplay between

classical and non-classical correlations. Photons in this model play an important role to

assist the GQD and VNE and we observed that the effects of the field on the GQD and

VNE reside in the system dynamics that indicate that both atom and field states have

become mixed. The GQD evolves in a non-linear fashion with the number of photons in

the system. The GQD and VNE show linear behavior with each other in the dynamics

of the system. The effects of ID on the dynamics of the GQD and VNE are also studied.

We find the behavior of quantifiers for higher number N atomic systems and estimated

the scaling coefficients.

Moreover, we study the dynamical character of the quantifiers for an N TLS (two, three,

and four TLS) in the presence of Kerr Medium, and the system interacts with the single-
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mode Fock field. The results are quite interesting and promising. We have observed that

by increasing the Kerr parameter values, the GQD and VNE show periodic behavior,

which indicates the collapses and revivals of the QE. It is observed that mixed states

have comparatively suppressed oscillations of the GQD. The VNE has non-zero values

throughout the dynamics of the system for initial mixed states. It is also observed that

the multipartite systems show sustained response to QE during the evolution of time.

The Kerr Medium has prominent effects on the GQD and VNE for all the Kerr param-

eter values. The effect of the increase in the number of photons in the cavity is also

significant. Moreover, in the case of moving atoms, the periodic behavior of the GQD

and VNE is rather similar for the initial pure and mixed atomic states.

Furthermore, we study the dynamical evolution of the GQD and VNE of the different

number of a moving TLS. The system interacts with a single-mode coherent field. We

also assume that the system is under the influence of the NLKM. We aim to make a

comprehensive study of N TLS interacting with different types of fields and use various

quantifiers to estimate the MPQC and QE.

The layout of this thesis is given as follows; in chapter two, we discuss some basic concepts

of quantum optics that are required for this research work. In chapter three, we study

the behavior of open quantum system and discuss some properties of the open quantum

systems. In chapter four, we introduce some tools to investigate the MPQC and QE in a

quantum system. In chapter five, we study the GQD and VNE in two, three, four, and

five TLS coupled with the single-mode field in a Fock state. In chapter six, we investigate

the entanglement dynamics in the presence of the NLKM of moving two, three, and four

TLS which interact with a coherent field. In chapter seven, we focus on the influence of

Non-Linear Kerr Medium, on the dynamics of moving two, three, and four TLS which

interact with a single-mode Fock field. In chapter eight, we investigate the entanglement

and quantum discord dynamics of two, three, and four TLS under the influence of the

Stark effect. The system is interacting with the Fock and coherent field. Finally, in

chapter nine, we summarize and conclude our work.
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Chapter 2

Some Basic Concepts in Quantum

Optics

2.1 Introduction

Some basic concepts of quantum mechanics and quantum optics related to this work

are briefly described in this chapter. Quantum states, quantization of electromagnetic

field, Jaynes-Cummings model, and Tavis-Cumming model are briefly presented. We

present the quantum mechanical formalism of atom-field interaction where both atom

and field are treated as quantized. In the quantum mechanical treatment, light is treated

as photons to explain the interaction of the field with atoms.

2.2 Quantum States

We use a ket vector, denoted by |ψ〉, to represent the state of a quantum mechanical

system. It has a unit length. It resides in an N -dimensional Hilbert space H. “Hilbert

space” H is spanned by a complete set of orthonormal basis vectors {|an〉} and in the

basis vectors, ket vector |ψ〉 is given as

|ψ〉 =
∑
n

αn |an〉 , (2.1)

where αn are complex numbers, such that

∑
n

|αn|2 = 1. (2.2)
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2.3 Two-level atomic system

A TLS is a simple quantum system. A typical type of atomic system generally has many

different energy levels. In many experiments, however, only two energy levels usually a

ground state and one excited state are considered.

Figure 2.1: Figure shows a simple TLS with an energy difference of h̄ωo.

Let Ea and Eb describe the ground and an excited state of a quantum system composed

of TLS, as shown in Fig. (2.1). The energy difference between the two levels is h̄ωo. These

states correspond to a quantum state of an atom, denoted by a ket |a〉 is the ground state

and ket |b〉 is the excited state. Furthermore, the energy level states are orthonormal, i.e.

〈a|a〉 = 〈b|b〉 = 1

〈a|b〉 = 〈b|a〉 = 0

The superposition principle allows us that there are other possible states of the system

as well. These states are formed by the linear complex combination of the basis states

|a〉 and |b〉. In general, the atom is in a superposition state

|ψ〉 = α |a〉+ β |b〉 (2.3)

The probability amplitudes are α = 〈a|ψ〉 and β = 〈b|ψ〉. For an atom in the given state

|ψ〉 as shown in Eq. (2.3), its energy measurements E will provide Ea with the probability

|α|2 and Eb with the probability |β|2.
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2.4 Qubit

A quantum system with two-level is called a quantum bit or a qubit in quantum infor-

mation theory (QIT). In QIT and quantum computation, a qubit describes a basic unit

in the field. It is a quantum analog of the classical bit. The state vectors |a〉 and |b〉 (also

defined as |0〉 and |1〉) are the basis vectors in a two-dimensional Hilbert space H. It can

be described by the standard matrix notation as

|a〉 = |0〉 =

 1

0

 , |b〉 = |1〉 =

 0

1

 . (2.4)

We can write a qubit in standard basis as,

|ψ〉 = α |0〉+ β |1〉 , (2.5)

where the complex numbers α and β satisfies

|α|2 + |β|2 = 1. (2.6)

2.5 Pauli Spin Matrices

The Pauli spin matrices are generally denoted by the symbol Ŝ. Pauli spin matrices are

angular momentum operators that correspond to the spin of a spin 1
2

particle, in each of

the three spatial dimensions. Pauli spin operators are three 2× 2 Hermitian and unitary

matrices satisfy the commutation relation[
Ŝx, Ŝy

]
= ih̄Ŝz, (2.7)[

Ŝy, Ŝz

]
= ih̄Ŝx, (2.8)[

Ŝz, Ŝx

]
= ih̄Ŝy. (2.9)

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z (2.10)

We define the ladder operators for a spin,

Ŝ± = Ŝx ± iŜy, (2.11)

The eigenvalues of Ŝ2 and Ŝz are

Ŝ2 |↑〉 =
3

4
h̄2 |↑〉 (2.12)
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Ŝ2 |↓〉 =
3

4
h̄2 |↓〉 (2.13)

Ŝz |↑〉 =
h̄

2
|↑〉 (2.14)

Ŝz |↓〉 = − h̄
2
|↓〉 (2.15)

It follows that

Ŝ+ |↓〉 = h̄ |↑〉 , Ŝ+ |↑〉 = 0 (2.16)

Ŝ− |↓〉 = 0, Ŝ− |↑〉 = h̄ |↓〉 (2.17)

We can construct the matrix elements of Ŝx, Ŝy, and Ŝz for a two-level spin system in

|↑〉, |↓〉 basis. Using the Eqs. (2.16) and (2.17) can be written as,

(Ŝx + iŜy) |↑〉 = h̄ |↓〉 (2.18)

(Ŝx − iŜy) |↑〉 = 0 (2.19)

Adding and subtracting these two equations, respectively, gives

Ŝx |↑〉 =
h̄

2
|↓〉 (2.20)

Ŝy |↑〉 =
i

2
h̄ |↓〉 (2.21)

Similarly, we can show that

Ŝx| ↓〉 =
h̄

2
| ↑〉, (2.22)

Ŝy| ↓〉 = − i
2
h̄| ↑〉, (2.23)

Eqs. (2.14) and (2.15) with Eqs. (2.20), (2.23) are used to calculate the matrix elements

of Ŝx, Ŝy and Ŝz. We find that,

Ŝx =

〈↑ |Ŝx| ↑〉 〈↑ |Ŝx| ↓〉
〈↓ |Ŝx| ↑〉 〈↓ |Ŝx| ↓〉

 =
h̄

2

0 1

1 0

 , (2.24)

Similarly

Ŝy =
h̄

2

0 −i

i 0

 , (2.25)

and

Ŝz =
h̄

2

1 0

0 −1

 . (2.26)
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We define the Pauli spin operator as

σ̂ ≡ 2

h̄
Ŝ, (2.27)

and thus Pauli spin operators in σ̂2, σ̂z representation are

σ̂x =

0 1

1 0

 , σ̂y =

0 −i

i 0

 , σ̂z =

1 0

0 −1

 . (2.28)

2.6 Quantization of single-mode electromagnetic field

Let us assume a single-mode electromagnetic field in the one-dimensional cavity of length

L along the z-axis. In free space, Maxwell’s equations can be written as,

∇ · E = 0 (2.29)

∇ ·B = 0 (2.30)

∇× E =
∂B

∂t
(2.31)

∇×B = µoεo
∂E

∂t
(2.32)

The permittivity and permeability of free space are given by εo and µo, respectively.

These are coupled differential equations. In order to solve for the E and B, we take ∇×

of Eqs. (2.31) and (2.32) and by using Eqs. (2.29) and (2.30), we get,

∇2E = −µoεo
∂2E

∂2t
(2.33)

and

∇2B = −µoεo
∂2B

∂2t
(2.34)

These equations can be easily solved by the separation of variables method. A solution

for the single mode field that satisfy Maxwell’s equations and the boundary conditions is

Ex(z, t) =

(
2ω2

V εo

)1/2

q(t) sin(kz) (2.35)

where ω denotes the frequency of the field, k being the wave number, so that k = ω/c.

V is the effective volume of the cavity. q(t) is a time-dependent factor with the dimen-

sion of length. The expression of the magnetic field, from Eqs. (2.32) and (2.35) is given as
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By(z, t) =

(
µoεo
k

)(
2ω2

V εo

)1/2

q̇(t) cos(kz) (2.36)

The corresponding Hamiltonian H is

H =
1

2

∫
dV

[
εoE

2
x(z, t) +

1

µo
B2
y(z, t)

]
(2.37)

By using Eqs. (2.35) and (2.36), Eq. (2.37) reduces to

H =
1

2

(
p2 + ω2q2

)
(2.38)

where p(t) = q̇(t) = ∂q
∂t

. Eq. (2.38) represents the field which is equivalent to a unit mass

harmonic oscillator. With different scaling factors than the harmonic oscillator, electric

and magnetic fields for the single mode field, in Eq. (2.38), indicate the role of canonical

position and momentum. In quantum mechanics, electric and magnetic field (Eqs. (2.35)

and (2.36)) can be expressed in terms of canonical operators of p̂ and q̂,

Êx(z, t) =

(
2ω2

V εo

)1/2

q̂(t) sin(kz) (2.39)

and

B̂y(z, t) =

(
µoεo
k

)(
2ω2

V εo

)1/2

p̂(t) cos(kz) (2.40)

The Hamiltonian becomes,

Ĥ =
1

2

(
p̂2 + ω2q̂2

)
(2.41)

where
[
p̂, q̂
]

= ih̄. In Eq. (2.41), the operators, p̂ and q̂ belong to the observable quanti-

ties. We define,

â =
1√
2h̄ω

(ωq̂ + ip̂) (2.42)

â† =
1√
2h̄ω

(ωq̂ − ip̂) (2.43)

where

[
â, â†

]
= 1 (2.44)
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By substituting Eqs. (2.42) and (2.43) in Eq. (2.41), we get

Ĥ = h̄ω(â†â+
1

2
) (2.45)

The field operators becomes,

Êx(z, t) =

(
h̄ω

V εo

)1/2

(â+ â†) sin(kz) (2.46)

B̂y(z, t) =
(µo
k

)(εoh̄ω3

V

)1/2
1

i
(â− â†) cos(kz) (2.47)

Eqs. (2.46) and (2.47) describe the quantized form of the electric and magnetic field of a

single mode cavity field, respectively.

2.7 Fock or Number States

Consider a single mode field having frequency ω. The Hamiltonian Ĥ given in Eq. (2.45)

is the Hamiltonian of a simple quantum harmonic oscillator. The algebra of harmonic

oscillator is, therefore, applicable. The state |n〉 of harmonic oscillator becomes a number

state of the system of n photons, we write

Ĥ |n〉 = h̄ω
(
â†â+

1

2

)
|n〉 = En |n〉 (2.48)

where En = (n + 1
2
). By exploiting Eq. (2.44), it is easy to show that â† acts as a

generator of producing a higher energy state (also called creation operator) and â acts

as a generator of producing lower energy states (also called annihilation or destruction

operator). The normalized equations correspond to field operators are

â† |n〉 =
√
n+ 1 |n+ 1〉

â |n〉 =
√
n |n− 1〉 (2.49)

where n is the eigenvalue of N̂ = â†â such that N̂ |n〉 = n |n〉 and is called photon or

quanta number with energy En = h̄ω. The eigenstates |n〉 that satisfy the Eqs. (2.48)

and (2.49) are called Fock states or photon number states. These states form a complete

set of basis,

∞∑
n=0

|n〉 〈n| = 1 (2.50)
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We also put a lower bound on the Fock states such that there is no possible energy eigen-

value less than E0. This argument concludes

â |0〉 = 0 (2.51)

where |0〉 is called the vacuum state. From Eq. (2.48) we can easily check

E0 =
1

2
h̄ω (2.52)

is the ground energy of a harmonic oscillator. With a repeated operation of Eq. (2.49),

we can obtain any Fock state from the vacuum state, and a general generating function

is

(â†)n |0〉 =
√
n! |n〉 (2.53)

2.8 Coherent States

When we deal with the quantized electromagnetic field, we have to notice the nature of

the field. The term “nature” accounts for the amount of quantumness present in the

electromagnetic states. Some states are pure quantum mechanical states, for example,

the Fock states. While some other states have the least quantum mechanical feature, for

example, the coherent field and the squeezed states. We use the uncertainty relation to

measure the quantum behavior of a state under observation. The states which have max-

imum uncertainty in them have the maximum amount of quantumness while the states

which show the least i.e. minimum uncertainty in the uncertainty relation are the least

quantum mechanical states. Here, we briefly describe some properties of coherent field

and analyze their behavior. These states exhibit many interesting properties when they

are investigated with different quantum models and situations [80–88].

2.8.1 Coherent States in Fock State Representation

We define a normalized eigenstate of the annihilation operator â as the coherent field,

denoted by |α〉, such that
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â |α〉 = α |α〉 (2.54)

where α is the eigenvalue of the coherent field and can be expressed as α = |α| exp[iφ]

with φ as a general phase term. The coherent field can be expanded in the number state

basis as

|α〉 =
∞∑
n=0

cn |n〉 (2.55)

the coherent field forms a complete basis, this means 〈α|α〉 = 1. Since |n〉 basis are or-

thonormal, the product of number state 〈n| with Eq. (2.55) produces cn = 〈n|α〉. Using

this coefficient in Eq. (2.55) we have

|α〉 =
∞∑
n=0

|n〉 〈n|α〉 (2.56)

By exploiting the property of the creation operator Eq. (2.53), that is 〈n| = 1√
n!
〈0| (â)n

we have

|α〉 =
∞∑
n=0

1√
n!
|n〉 〈0| (â)n |α〉

or

|α〉 = Co

∞∑
n=0

αn√
n!
|n〉 (2.57)

Where Co = 〈0|α〉. By using the orthonormality condition, we can find the value of Co,

Co = exp[−1

2
|α|2]

By substituting the value of Co into Eq. (2.57), we have

|α〉 = exp[−1

2
|α|2]

∞∑
n=0

αn√
n!
|n〉 (2.58)

This equation represents the normalized coherent field. Another way to write Eq. (2.58) is

|α〉 = exp[−1

2
|α|2]

∞∑
n=0

αn√
n!

1√
n!

(â†)n |0〉 (2.59)

One can easily simplify the above equation by using the identity

exp[α(â)†] |0〉 =
∑
n

αn(â†)n

n!
|0〉 (2.60)
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This implies

|α〉 = exp[−1

2
|α|2] exp[α(â)†] |0〉 = exp[−1

2
|α|2 + α(â)†] |0〉 (2.61)

The above representation of a coherent field can be simplified by using Baker-Campbell-

Hausdorff (BCH) formula,

exp[X + Y ] = exp[−1

2
[X, Y ]] exp[X] exp[Y ] (2.62)

valid if [X, Y ] 6= 0. With the help of BCH formula, for X = α(â)† and Y = α∗â one can

check

exp[α(â)† − α∗â] = exp[α(â)†] exp[−α∗â] exp[−1

2
|α|2] (2.63)

Expanding exp[−α∗a], one can check,

exp[−α∗â] |0〉 = 0 (2.64)

Furthermore,

exp[α(â)†] |0〉 =
∞∑
n=0

αn√
n!
|n〉 (2.65)

By using Eqs. (2.63) to (2.65), Eq. (2.61) will be simplified as

|α〉 = D̂(α) |0〉 (2.66)

where,

D̂(α) = exp[α(â)† − α∗â] (2.67)

where D̂(α) is called the displacement operator. Eq. (2.66) states that the coherent field

are produced with the displacement operator D̂(α) which is applied to the ground state

of the harmonic oscillator.

Some Properties of Coherent States

(a) The average photons in the coherent field |α〉 are given by

〈α| â†â |α〉 = <n> = |α|2 (2.68)

(b) The probability of finding number of photons n, defined by p(n), is given by the

Poisson distribution (see Eq. (2.58)),

p(n) = |<n|α>|2 = exp[−|α|2n]
|α|2n

n!
(2.69)
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2.9 Interaction of Atom With Quantized Electromag-

netic Field

In general, the wavelength λ of a typical electromagnetic radiation inside the cavity

is much bigger than the size of an atomic system. A single electron atom, which is

considered as a dipole with magnitude of charge e and charge separation r, has dipole

moment d = er. In the dipole approximation k.r << 1, with k = 2π
λ

. The Hamiltonian

of a single electron atom with the radiation field E, in dipole approximation can be

described by the following equation [89],

Ĥ = ĤA + ĤF − er · E (2.70)

The atomic and field Hamiltonian are represented by ĤA and ĤF , respectively. We have

assumed the dipole approximation to obtain the interaction part in the Hamiltonian Eq.

(2.70) and the field is supposed to be uniform over the entire submerged atom.

The field Hamiltonian ĤF (Eq. (2.41)) is written as

ĤF = h̄ω
(
â†â+

1

2

)
(2.71)

We define atomic transition operators

σ̂ij = |i〉 〈j| (2.72)

and {|i〉} represents the set of atomic energy eigenstates, i.e. ĤA |i〉 = Ei |i〉 and this

set is complete i.e.
∑

i |i〉 〈i| = 1. In the terms of these basis {|i〉}, the atomic energy

Hamiltonian ĤA is given as

ĤA =
∑
i

Ei |i〉 〈i| = Eiσ̂
ii (2.73)

The term er can be expressed in terms of atomic transition operators

er =
∑
i,j

e |i〉 〈i| r |j〉 〈j| =
∑
i,j

℘ijσ̂ij (2.74)

where ℘ij = e 〈i| r |j〉 are the element of matrix corresponds to transition matrix. We

suppose a single-mode electromagnetic field with polarization vector ε in free space, the
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electric field E can be represented as

E = −ε
(
h̄ω

2ε0V

)1/2

(â+ â†) (2.75)

Now upon substituting Eqs. (2.71), (2.73), (2.74) into Eq. (2.70) we have

Ĥ = h̄ωâ†â+
∑
i

Eiσ
ii + h̄

∑
i,j

gijσij(â+ â†) (2.76)

where

gij = −ε · ℘
ij(h̄ω)1/2

(2ε0V )1/2h̄
(2.77)

We have omitted the zero point energy in the field in the first term in Eq. (2.76).

2.10 The Jaynes-Cummings Model

The Jaynes-Cummings model [8] is the quantum version of the Rabi model [90]. In this

model, we treat the field quantum mechanically (Eq. (2.75)). Physically, an atom can

interact with an infinite field modes, but it is assumed that it interacts only with a single-

mode field. The energy associated with the atom and field is given by Eqs. (2.73) and

(2.71) respectively. The interaction Hamiltonian is modified by using some approxima-

tions and a refined form of this Hamiltonian is obtained in this section. The resulting

total Hamiltonian is called the Jaynes-Cummings Hamiltonian or Rabi Hamiltonian un-

der some approximations.

We consider an atom, with two levels denoted by |0〉 and |1〉, which interacts with a single

mode electromagnetic field

E = ε

(
h̄ω

2ε0V

)1/2

(â+ â†) sin(kzz) (2.78)

ε is a polarization vector with arbitrary orientation. The interaction Hamiltonian is

Ĥ1 = −er · E = gd · (â+ â†) (2.79)

where g = −ε
(
h̄ωk
2ε0V

)1/2

sin(kzz) and d = er.
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Figure 2.2: Energy level scheme of a TLS where E = 0 is taken at the center of the two energy

states

We now define atomic transition operators. The operator σ̂+ raises the atom from

its ground state |0〉 to an excited state |1〉 is called the atomic raising operator and the

operator σ̂− performs the opposite is called atomic lowering operator. These operators

are defined as

σ̂+ = |1〉 〈0| , σ̂− = |0〉 〈1| (2.80)

The atomic inversion operator can be defined as

σ̂z = |0〉 〈0| − |1〉 〈1| (2.81)

The operators σ̂± and σ̂z obey the Pauli spin algebra

[σ̂+, σ̂−] = σ̂z, [σ̂z, σ̂±] = 2σ̂± (2.82)

To find another useful form of the interaction Hamiltonian, we use Eq. (2.74) to find the

elements of the dipole operator. For the sake of the parity conservation, the diagonal

electric dipole transition matrix elements are zero ℘ee = e 〈e| r |e〉 = 0 = ℘gg and the

off-diagonal elements are given by (Eq. (2.74))

d = er = ℘01 |0〉 〈1|+ ℘∗10 |1〉 〈0| (2.83)
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We assume that ℘ge = ℘∗eg = ℘, therefore, Eq. (2.83) will become

d = ℘(σ̂+ + σ̂−) (2.84)

By using Eq. (2.84) into Eq. (2.79), the interaction Hamiltonian will become

Ĥ1 = h̄λ(σ̂+ + σ̂−)(â+ â†) (2.85)

where we have defined λ = g℘
h̄

We use Fig. (2.2) to derive a convenient form of atomic Hamiltonian. We define a zero

energy level in the middle of the atomic energy levels |0〉 and |1〉. In this configuration,

atomic level |1〉 has energy E1 = 1
2
h̄ω0 and atomic level |0〉 has energy E0 = −1

2
h̄ω0 with

respect to the E = 0 energy level. The total energy (Eq. (2.73)) between the levels is,

therefore

ĤA = E1 |1〉 〈1|+ E0 |0〉 〈0| =
1

2
h̄ω0σ̂z (2.86)

Thus total Hamiltonian can be obtained by using Eqs. (2.85), (2.86) and (2.71) into Eq.

(2.70) and dropping zero point energy term, we get

Ĥ =
1

2
h̄ω0σ̂z + h̄ωâ†â+ h̄λ(σ̂+ + σ̂−)(â+ â†) (2.87)

This is the famous Rabi Hamiltonian or Jaynes-Cummings Hamiltonian without the ro-

tating wave approximation (RWA). This Hamiltonian can be simplified by using the

RWA. This approximation modifies the interaction part of the Rabi Hamiltonian. For

this purpose, we use the unitary evolution of the field and atomic operators. In the

free-field case, â†(t) = â†(0) exp[iωt] and â(t) = â(0) exp[−iωt] and free-atomic case

σ̂±(t) = σ̂±(0) exp[±iω0t] we expand and analyze the time-dependent interaction parts of

Eq. (2.87) as

σ̂+â ∼ exp[i(−ω + ω0)t]

σ̂−â
† ∼ exp[−i(−ω + ω0)t]

σ̂+â
† ∼ exp[i(ω + ω0)t]

σ̂−â ∼ exp[−i(ω + ω0)t] (2.88)
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In the case of ω0 ≈ ω the last two terms of Eq. (2.88) vary more rapidly as compared to

the other terms. These terms also violate energy conservation as compared to the first

terms. σ̂+â
† represents the excitation of an atom with the creation of a photon, which is

physically not possible, σ̂−â represents to de-excitation of an atom with the absorption

of a photon, which is also physically not possible. So we drop these terms and we get

Ĥ =
1

2
h̄ω0σ̂z + h̄ωâ†â+ h̄λ(σ̂+â+ σ̂−â

†) (2.89)

The interaction of the field with the atom, represented by the above Hamiltonian, is used

widely and is called the Jaynes-Cummings (JC) Hamiltonian.

2.11 The Tavis-Cummings Model

The JC model presents an atom coupled with a single mode quantized electromagnetic

field. This model is a bipartite system [91]. Whereas in the Tavis-Cummings model, two

identical TLS, let atom A and B, are coupled with a single mode quantized electromag-

netic field. This model is referred to as a multipartite system. The atomic Hamiltonians

of atom A and B can be calculated by using Eq. (2.86) and the total energy associated

with the atom A and B is, therefore,

ĤAB = ĤA + ĤB =
1

2
h̄ω0σ̂

A
z +

1

2
h̄ω0σ̂

B
z (2.90)

where ω0 is the transition frequency of both atoms. These atoms are coupled with the

single-mode quantized electromagnetic field of frequency ω. Again, by dropping the zero

point energy term, the energy of this field is given by

ĤF = ωâ†â (2.91)

This field interacts with both atoms with the same coupling strengths. By using the

RWA, the interaction Hamiltonian of the TC model can be written as

ĤI = h̄λ
∑
i=A,B

(σ̂i+â+ σ̂i−â
†) (2.92)
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where λ denoted the coupling strength of the field with atoms. We also assume that the

atoms resonantly interact with the single-mode field. This assumption is used to imple-

ment the RWA in the Tavis-Cummings model. The total Hamiltonian of this multipartite

system is therefore

Ĥ =
1

2
h̄ω0(σ̂Az + σ̂Bz ) + ωâ†â+ h̄λ

∑
i=A,B

(σ̂i+â+ σ̂i−â
†) (2.93)

The above equation represents the Tavis-Cummings model Hamiltonian and this Hamil-

tonian is vastly used to study the dynamics of multipartite systems.

2.12 Summary

We have reviewed some basic concepts of quantum optics. We have studied quantum

states, the quantum state of a qubit, and described Pauli spin matrices. Furthermore,

we have discussed the quantization of electromagnetic field and the interaction of the

quantized electromagnetic field with an atom. And finally, we reviewed the Jaynes-

Cummings and the Tavis-Cummings model.
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Chapter 3

Open Quantum System

3.1 Introduction

A closed quantum system is thought to be completely isolated from the surroundings and

there is no effect of the environment on the system [92]. Whereas, we can not describe

the dynamics of open quantum system by the unitary time evolution. In this chapter,

we will discuss density matrix formalism to describe a system. We will derive the master

equation. It is used to study the quantum dynamics of an open system. We will also

study the case of a moving atomic system inside the field modes.

3.2 Quantum States and the Density Operator

In quantum mechanics, we describe the state of a system entirely by a state vector |Ψ〉.

The state vector |Ψ〉 belongs to a Hilbert space H. In general, a Hilbert space can have

any number of dimensions. A pure state can be written by a state vector. However, for

physical systems, the quantum state is not fully known. Let |ψi〉 is the state vector of

the system, and pi is the probability of the state |ψi〉, the density operator ρ̂ describes

the state of the system is defined as

ρ̂ =
∑
i

pi |ψi〉 〈ψi| (3.1)

The state of the system described in equation (3.1) is called the mixed state. A mixed

state is a mixture of two or more states. The following properties are obeyed by a density
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operator:

• ρ̂ has a trace equal to 1:

Tr[ρ̂] = 1, (3.2)

• ρ̂ is a positive operator:

〈ψ| ρ̂ |ψ〉 ≥ 1 (3.3)

for any state vector |ψ〉.

• ρ̂ is a Hermitian:

ρ̂† = ρ̂ (3.4)

The density operator formalism provides a convenient route for describing a quantum

system whose state is not completely known. In this formalism, a quantum system is

formed by an ensemble of pure states with some finite probability. We can formulate all

the postulates of quantum mechanics by the density matrix formalism.

Mixed and Pure States

Consider a system is in a state |ψ〉. We suppose that this system could be expandable in

some orthonormal basis, such as |ai〉

|ψ〉 = α1 |a1〉+ α2 |a2〉+ · · ·+ αn |an〉 (3.5)

The |αi|2 is the probability of finding the system in state |ai〉. The system is said to be in

a pure state if it is present in a definite state as given in Eq. (3.5). The density operator

for this case is ρ̂ = |ψ〉 〈ψ|, then

ρ̂2 = (|ψ〉 〈ψ|)(|ψ〉 〈ψ|) = |ψ〉 〈ψ| = ρ̂ (3.6)

The first property of density operator as described in Eq. (3.2), we have generalized that

for the pure states only Tr[ρ̂2] = 1.

The density operator describes the way to deal with the states that appear in the statis-

tical mixture. The mixed states have no coherence. Therefore, the off-diagonal elements

of the density matrix are zero, i.e. ρ̂mn when m 6= n.
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Reduced Density Operator

Suppose a bipartite system which is composed of Alice (A) and Bob (B), the compos-

ite system has density operator ρ̂AB. If we are interested to study the behavior of one

subsystem of this composite system, we can comprehend this situation by reducing the

density matrix. If we want to analyze the subsystem A from this composite system, the

reduced density operator is described by,

ρ̂A = TrB[ρ̂AB] (3.7)

where TrB is referred to as the partial trace taken over the subsystem B. The partial

trace is defied by

TrB[|a1〉 〈a2| ⊗ |b1〉 〈b2|] = |a1〉 〈a2|Tr[|b1〉 〈b2|] (3.8)

The vectors |a1〉 and |a2〉 belong to the Hilbert space HA and vectors |b1〉 and |b2〉 belong

to the in Hilbert space HB. The trace of Eq. (3.8) is the trace on the subsystem B. The

partial trace is physically justified on the basis that by the implication of trace in this

way in Eq. (3.8) provides correct results of measurement made on system A. In addition,

Eq. (3.8) also requires that the partial trace has a linear implication. For example, for

any two operators MAB and NAB, the trace TrB[MAB +NAB] = TrB[MAB] + TrB[NAB].

3.3 The dynamics of a closed system

3.3.1 Liouville-von Neumann equation

The time evolution of a quantum state |ψ(t)〉 can be found by the Schrodinger equation,

i.e.

ih̄
d

dt
|ψ (t)〉 = Ĥ |ψ (t)〉 . (3.9)

Since Ĥ is a Hermitian operator, we can write

− ih̄ d
dt
〈ψ(t)| = 〈ψ(t)| Ĥ (3.10)

The dynamics of a closed system are described by Eq. (3.9) and the state of the system

is pure. For a pure state |ψ (t)〉, ρ̂ is

ρ̂(t) = |ψ(t)〉 〈ψ(t)| . (3.11)
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By taking the time derivative of the density operator, we have

dρ̂(t)

dt
=

d

dt
(|ψ(t)〉 〈ψ(t)|) (3.12)

By using the product rule and using Eqs. (3.9) and (3.10), we can write

dρ̂(t)

dt
= − i

h̄

[
Ĥ, ρ̂(t)

]
. (3.13)

This equation is called the Liouville-von Neumann equation and describes the time evo-

lution of ρ̂(t) for a closed system [94].

3.4 Dynamics of Open Quantum System

In this section we derive the Master equation. This equation can be derived from intuition

based on physical grounds. The derivation provides a clear idea of the physics behind

the master equation.

3.4.1 The Master Equation

An open quantum system is the one that interacts with another external quantum system

which is generally known as the environment. To study the dynamics, it is assumed that

the system and environment belong to a bigger closed system [95]. We consider a situation

that is described by a Hamiltonian Ĥ of the form

Ĥ = ĤS + ĤE + ĤI (3.14)

where the constituent Hamiltonians ĤS, ĤE and ĤI describe the system, the environment

and the interaction, respectively. The density operator of the system and environment,

given by ρ̂tot(t), in the Schrodinger picture, satisfies,

dρ̂tot
dt

= − i
h̄

[
ĤS + ĤE + ĤI , ρ̂tot

]
(3.15)

The part of the system density operator is,

ρ̂(t) = TrE{ρ̂tot(t)} (3.16)
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Transformation to the Interaction Picture

It is convenient to transform the equation of motion into the interaction picture, we can

write

ρ̂I(t) = exp

(
i(ĤS+ĤE)t

h̄

)
ρ̂tot(t) exp

(
−
i(ĤS+ĤE)t

h̄

)
(3.17)

The density operator ρ̂I(t) obeys the equation of motion,

dρ̂I
dt

= − i
h̄

[
ĤI , ρ̂I(t)

]
(3.18)

where

ĤI(t) = exp

(
i(ĤS+ĤE)t

h̄

)
ĤI exp

(
−
i(ĤS+ĤE)t

h̄

)
, (3.19)

On the same arguments of Eq. (3.16), we can write,

ρ̂(t) = TrE

{
exp

(
−
i(ĤS+ĤE)t

h̄

)
ρ̂I(t) exp

(
i(ĤS+ĤE)t

h̄

)}
(3.20)

Since ĤE is a function of only the environment variable, we can use the cyclic property

of the trace of Eq. (3.20), to cancel out the factors that involve ĤE, we get

ρ̂(t) = exp

(
−
iĤSt

h̄

)
ρ̂(t) exp

(
iĤSt

h̄

)
(3.21)

where

ρ̂(t) ≡ TrE{ρ̂I(t)} (3.22)

is the reduced density operator in the interaction picture.

Initial Conditions

We assume that the system and the environment are initially independent of each other.

In this assumption, the total density operator can be written in a direct product,

ρ̂tot(t) = ρ̂(0)⊗ ρ̂E (3.23)

In addition, we assume that the environment is so large that the weak coupling of the

system and the environment does not affect the statistical properties of the environment.
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Integration of the Equation of Motion

We integrate Eq. (3.18) from time 0 to t and using the initial condition given in Eq.

(3.23), after two iteration we have

ρ̂I(t) = ρ̂I(0)− i

h̄

∫ t

0

[
ĤI(t

′), ρ̂I(0)
]
dt′ − 1

h̄2

∫ t

0

∫ t′

0

[
ĤI(t

′),
[
ĤI(t

′′), ρ̂I(t
′′)
]]
dt′dt′′

(3.24)

If we differentiate Eq. (3.24) with respect to t we get

ρ̇I(t) = − i
h̄

[
ĤI(t), ρ̂I(0)

]
− 1

h̄2

∫ t

0

[
ĤI(t),

[
ĤI(t

′), ρ̂I(t
′)
]]
dt′ (3.25)

Trace Over the Environment Variables

If we take trace both sides of Eq. (3.25) over the environment variables and use Eq.

(3.22), we obtain

ρ̇I(t) = − 1

h̄2

∫ t

0

[
ĤI(t),

[
ĤI(t

′), ρ̂I(t
′)
]]
dt′ (3.26)

where we have used

TrE
{
ĤI(t)ρ̂I(0)

}
= 0 (3.27)

and

ρ̂I(0) = ρ̂tot(0) = ρ̂(0)⊗ ρ̂E (3.28)

as given in Eq. (3.23). This implies that we assume the interaction has no diagonal

elements in the representation in which ĤE is diagonal.

Weak Coupling Assumption

We assume that ĤI is very less than either ĤS or ĤE. And we assume that the en-

vironment density operator ρ̂B is not significantly affected by the interaction. In these

assumptions, we can replace ρ̂I(t
′) in Eq. (3.26) by a factorized approximation

ρ̂I(t
′) ' ρ̂(t′)⊗ ρ̂E (3.29)

In the above equation, we have made the following assumptions;

i) The environment density operator is not significantly affected by the interaction.

ii) The system density operator is allowed to change significantly. This assumption is

made because the system is much smaller than the environment.
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iii) We assume the density operator may be written approximately as a direct product.

The approximations like,

TrE
{

[AE(t), [AE(t′), ρ̂I(t
′)]]
}
' ρ̂(t′)⊗ TrE

{
[AE(t), [AE(t′), ρ̂E]]

}
(3.30)

are valid approximations. This means that the environment correlation functions are not

significantly affected by the interactions.

Markov Approximation

By using the weak coupling assumption, we can write Eq. (3.26) as

ρ̇I(t) = − 1

h̄2

∫ t

0

[
ĤI(t),

[
ĤI(t

′), ρ̂(t′)⊗ ρ̂E
]]
dt′ (3.31)

The interaction is assumed weak, therefore, the rate of change of the system density

operator in the interaction picture is quite slow compared to that of the environment

operator. The environment correlation functions are generally determined by a thermal

choice of ρE, which is much shorter than the time constant expected for ρ̂(t). Within

these limits, the factor ρ̂(t′) changes significantly over the time that is taken for the

correlation function in Eq. (3.31) to vanish. In this case, we can take

i) ρ̂(t′) → ρ̂(t)

ii) For t � τT called thermal correlation time, which is defined by τT = h̄
2πkT

(k is

Boltzmann constant and T is temperature), we can take the the lower limit of the integral

of Eq. (3.31) go to −∞

In this case, we write the master equation,

ρ̇I(t) = − 1

h̄2

∫ ∞
0

[
ĤI(t),

[
ĤI(t− τ), ρ̂(t)⊗ ρ̂E

]]
dt (3.32)

This is called the master equation. The approximation, ρ̂(t′) → ρ̂(t) is known as the

Markov approximation.

3.5 Intrinsic Decoherence

In time interval (t+ τ), the dynamics of a system can be written as

ρ̂ (t+ τ) = exp

[
−iĤτ

h̄

]
ρ̂(t) exp

[
iĤτ

h̄

]
. (3.33)
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This relation is true for any size of time interval τ in standard quantum mechanics. If the

time scale τ is sufficiently small, Milburn [96] postulated that the change in the phase of

the state of the system is uncertain. The following properties hold for small τ : (i) p(τ) is

the probability of the change of state of the system, (ii) the change in the state is given

by

ρ̂ (t+ τ) = exp

[
−iε (τ) Ĥ

h̄

]
ρ̂(t) exp

[
iε (τ) Ĥ

h̄

]
. (3.34)

ρ̂ (t+ τ) ≡ F (τ)ρ̂(t) (3.35)

(iii) even if the interval τ → 0, some minimum unitary phase change exists, mathemati-

cally

lim
τ−→0

ε (τ) = ε0, (3.36)

For a sufficiently large time interval τ , in standard quantum mechanics p(τ) −→ 1 and

ε (τ) −→ τ . Thus one possible choice for ε (τ)

ε (τ) =
τ

p(τ)
. (3.37)

We divide the interval (0, t) into N intervals of size τ. Hence t = Nτ . We have

ρ̂(t) =
N∑
n=0

(
N

N

)
p(τ)n [1− p(τ)]N−n F (τ)nρ̂(0)

= [1 + p(τ)S(τ)]N ρ̂(0), (3.38)

where F (τ) and S(τ) related through

S(τ) = F (τ)− 1. (3.39)

A similar equation has been used to describe the sub-Poissonian pumped laser[97]. The

rate of change of Eq. (3.38) is,

dρ̂(t)

dt
=

1

ε(τ)p(τ)
ln [1 + p(τ)S(τ)] ρ̂(t). (3.40)

For τ −→ 0, Eq. (3.40) reduces to

dρ̂(t)

dt
=

1

ε0p0

ln [1 + p0S0] ρ̂(t). (3.41)

For stochastic time steps, a Poisson model can be defined by putting p0 −→ 0 and γ = 1
ε0
,

we can write
dρ̂(t)

dt
= γ exp

[
−i
h̄γ
Ĥ

]
ρ̂ exp

[
i

h̄γ
Ĥ

]
− γρ̂. (3.42)
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For a sufficiently short time interval, we can show that the probability of the evolution of

the state of the system is given by γτ . We expand Eq. (3.41) and neglect the higher-order

terms [98], we have
dρ̂(t)

dt
=
−i
h̄

[
Ĥ, ρ̂

]
− 1

2h̄2γ

[
Ĥ,
[
Ĥ, ρ̂

]]
. (3.43)

For γ −→∞, we get back the Schrodinger equation. In the energy eigenbasis Eq. (3.42),

we can write

∂

∂t
〈E ′| ˆρ(t) |E〉 = −−i

h̄
〈E ′|

[
Ĥ, ρ̂

]
|E〉 − 1

2h̄2γ
〈E ′|

[
Ĥ,
[
Ĥ, ρ̂

]]
|E〉

= −−i
h̄

(E ′ − E) 〈E ′| ρ̂ |E〉 − 1

2h̄2γ
(E ′ − E)

2 〈E ′| ρ̂ |E〉 .

Eq. (3.43) shows that the rate of decoherence between the states of the system depends on

the square of energy separations between the superposed states. Therefore, the first-order

correction in Eq. (3.43) leads to the decoherence in the energy eigenstates.

3.6 Kerr Effect

The relationship between polarization vector P and the applied electric field E is given

as,

P = χε0E (3.44)

where the factor χ is called susceptibility of the medium. When the electric field E is

increased significantly, nonlinear effects appear within the medium. For this case, we

generalize Eq. (3.44) as follows

P = ε0(χ(1)E + χ(2)E2 + χ(3)E3 + . . . ) (3.45)

where χ(1) is known as the linear susceptibility, and χ(2) and χ(3) are referred to as the

second-and third-order non-linear optical susceptibilities. The even-order terms of Eq.

(3.45) drop out due to the inversion symmetry of the Kerr medium. Kerr effect is a

change in the refractive index of a medium in response to an applied electric field and it

is a non-linear phenomenon [68–70]. The polarizability of a Kerr medium is related to

third-order polarizability χ(3). An intensity-dependent phase shift appears in the field in

this process. The the intensity of the field is proportional to the refractive index of the

Kerr medium. In the optical Kerr effect,

E = Eω cos(ωt) (3.46)
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where ω is the frequency of the light waves. By using this equation in Eq. (3.45), and

dropping out square terms, we have

P ≈ εo(χ
(1) +

3

4
χ(3)|Eω|2)Eω cos(ωt) = εoχEω cos(ωt) (3.47)

The factor 3
4

is due to non-zero coefficients in χ(3)[99], where

χ = (χ(1) +
3

4
χ(3)|Eω|2) (3.48)

and since the refractive n index is defined as

n = (1 + χ)1/2 (3.49)

we can write

n ≈ no +
3

8no
χ(3)|Eω|2 = n0 + n2I

2 (3.50)

where no = (1 + χ(1))1/2, n2 = 3
8no
χ(3) and I = Eω. In quantum mechanics, we can

model the Kerr-like medium as an anharmonic oscillator[100]. The effective Hamiltonian

describes the Kerr effect is given by,

ĤKerr =
h̄χ

2
(â†â)2 (3.51)

where â and â† are the field operators, and the parameter χ corresponds to the third-order

non-linear susceptibility of the medium.

3.7 Stark Effect

In the presence of the external electric field E, the energy levels of atoms and molecules

split. We assume that pel is the permanent dipole moment of the atomic energy levels.

Let J represent the total angular momentum of the energy level. When the electric field

is present, the energy levels split into 2J + 1 lines. The effect of splitting of energy

levels in the presence of the electric field is called the Stark effect[101]. In the absence

of the external electric field, J has constant magnitude and direction. If the direction of

the electric dipole moment pel and the orientation of J are different, the time average

component of pel

〈pel〉 = |pel | ·
K√
J2 + J

. (3.52)
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K defines the projection of J in the pel direction. In the presence E, the pel precesses

around the field direction. The total angular momentum J precesses with constant pro-

jection M with the field orientation. We can compute the energy shift of an energy level

using the relation

∆E = −〈pel 〉 · E = |pel | · E ·
K ·M
J (J + 1)

. (3.53)

In this case, the splitting ∆E is proportional to E, therefore it is called the linear Stark

effect [102]. Even without a permanent electric dipole moment, the electric field can

polarize the charge distribution in the molecule when it is placed in the electric field,

which may cause an induced electric dipole moment

pindel = ᾱ · E, (3.54)

where ᾱ is a polarizability tensor of the molecule. ᾱ is the function of the charge dis-

placement from the equilibrium position. The energy shift due to induced dipole is

∆E = pindel · E = (ᾱ · E) · E =
∑
i,j

ᾱijEiEj. (3.55)

Eq. (3.55) shows that the Stark shift caused by an induced dipole is proportional to

the square of the electric field. This is called a non-linear Stark effect or a quadratic

Stark-effect.

The influence of the Stark shift on a TLS is also an important topic of study[103]. The

Stark shift caused by an electric field is proportional to the photon numbers â†â inside

the cavity. Furthermore, the Stark shift is also proportional to the polarizabilities of

the two resonant states of a TLS. Therefore, we incorporate such shifts as intensity-

dependent corrections h̄βj â
†â to the energy of the system, with βj, is the Stark parameter

corresponding to the state |j〉 of a TLS. The Stark Hamiltonian is, therefore, given as

ĤStark = h̄
∑
j=0,1

βj â
†âR̂jj (3.56)

where the atomic operator R̂jj is defined as∑
j=0,1

R̂jj = |j〉 〈j| (3.57)

3.8 Atomic Motion inside the cavity

We consider a moving case of the atomic system. We consider that the atomic system is

moving in one dimension inside the cavity. The atomic system is moving with constant
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velocity v. We assume a beam of atoms is passing through the axis of a closed rectangular

or a cylindrical cavity of length L. We also assume that the passage time of the beam

through the finite cavity and the interaction time of the beam and field, is comparable.

Experiments are performed to investigate the interaction of atoms with different shape

functions of cavity field eigenmodes [104, 105]. A moving atom experiences a sinusoidal

field mode and it enters at a node of the field mode, follows the spatial variation of the

field mode inside the cavity, and leaves again at a node of the field mode. Therefore, a

moving atom experiences (η+ 1) nodes, where η denotes the number of half wavelengths

of the field modes.

The JC model describes the interaction of the field with an atom at rest. If an atom is

moving inside the cavity field, the JC Hamiltonian as in Eq. (2.89) is given as [106],

Ĥ =
1

2
h̄ω0σ̂z + h̄ωâ†â+ h̄f(z)(σ̂+â+ σ̂−â

†) (3.58)

where f(z) is the shape function of the field mode. The coupling constant λ is hidden in

f(z). We only consider the atomic motion along the z-axis. This helps us to restrict our

discussion to the z-axis dependent on the field mode shape function. The atomic motion

can be incorporated as,

f(z)→ f(vt) (3.59)

where v stands for the atomic velocity. To study the dynamical aspects of the moving

atomic system, we focus on a cavity field mode shape function,

f(vt) = λ sin

(
ηπvt

L

)
(3.60)

where L is the length of the cavity along the z-axis direction.

If an atom enters inside the cavity at z1 = 0 in time t1 = 0 and leaves it at z2 = L in

time t2 = t, the atom experiences the field mode during this time t is given as,

f1(vt) =

∫ t

0

f(vt)dt (3.61)

which simplifies to,

f1(vt) = λ
L

ηπv

(
1− cos

(ηπvt
L

))
(3.62)

If we take the constant velocity as v = λL
π

, under the assumption that the passage of an

atom through a cavity is comparable with the interaction of it with an electromagnetic

pulse. This leads us to,

f1(vt) =
1

η

(
1− cos

(ηπvt
L

))
(3.63)
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Eq. (3.63) enables us to study the dynamics of a moving atomic system inside a cavity.

We summarize the cases of static and moving atoms as,

f1(vt) =
1

η

(
1− cos

(ηπvt
L

))
for η 6= 0, (3.64)

= λt for η = 0. (3.65)

3.9 Summary

We have studied the dynamics of open and closed system. We have briefly described

some basic approximations, namely the Markov approximation, that is used to study the

dynamics of an open system. We have also derived the Master equation and discussed

the ID of an open system. We have briefly discussed the Kerr and Stark effect in this

chapter. We have also studied the behavior of moving atomic system inside a cavity.

40



Chapter 4

Quantum Entanglement and

Quantum Correlations

4.1 Introduction

In QIT, QE is considered to be a resource for information. In this chapter, we describe

QE, the MPQC, and some different methods to compute the non-classical correlations of

a system. We briefly describe VNE, quantum discord, and GQD.

4.2 Measurement and Operations in Quantum Me-

chanics

Measurements bear a main concept in the field of quantum mechanics and QIT. One

of the established aspects of quantum measurement is the projective measurements that

can be easily understood by the following example. For a spin-
1

2
particle, let the particle

reside in a superposition state

|ψ〉 = α |0〉+ β |1〉 (4.1)

where the vectors |0〉 and |1〉 are the spin-up and spin-down states of a particle, respec-

tively. The symbols α and β are the probability amplitudes related to the spin state.

The probability of measuring the |0〉 state is p(0) = |α|2 and the probability of measuring

the |1〉 state is p(1) = |β|2 = 1 − p(0). When the measurements are performed on this
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spin system, the postulates of quantum mechanics are used to find the results. The state

of the system collapses into either |0〉 or |1〉, which depends on the measurement results.

We assign a classical register to store this information.

A collection of operators {Êi}, described as the measurement operators are used as a

general quantum measurement tool. These measurement operators must satisfy the com-

pleteness relation as given below

∑
i

Ê†i Êi = Î (4.2)

where Î is the identity operator. Suppose a system is in state |ψ〉 and the density operator

of this system is given by Eq. (3.1). Now the probability of finding the system in the ith

outcome, with the application of the set of measurement operators {Êi} is

pi = Tr[Ê†i Êiρ̂] (4.3)

After this measurement which results in the ith outcome, the system’s state can be found

by the density operator

ρ̂i =
1

pi
(Êiρ̂Ê

†
i ) (4.4)

The set of operators in Eq. (4.2)

M̂i = Ê†i Êi (4.5)

are also known as the positive operator-valued measure (POVM). Eq. (4.2) describes that

the sum of each POVM operator M̂i is equal to the identity operator, that is
∑

i M̂i = Î.

Moreover, it is seen that according to Eq. (4.3), we can find the the probabilities pi by

using the set of operator elements of the POVM M̂i: pi = Tr[M̂iρ̂]. The second prop-

erty of the density operator, given by Eq. (3.3), suggests the positivity of the density

operator ρ̂ and this property implies that all the probabilities of events in the system are

non-negative pi ≥ 0. If the Eq. (4.2) is used together with the Eq. (3.2), it is straight

forward to find
∑

i pi = 1.

The projective measurement operators, the operators Êi are orthogonal projectors, that

is ÊiÊj = δijÊi. There are some special types of projective measurement operators,

called von Neumann measurement Êi which are orthogonal projectors and have a rank

of one. For a system described in Eq. (4.1) the projective measurement operators are
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Ê0 = |0〉 〈0| and Ê1 = |1〉 〈1|. For a general system, these measurement operators do not

have to be orthogonal but for these operators, the completeness relation must be satisfied

(Eq. (4.2)).

For a composite bipartite system, with subsystem Alice and Bob, we develop the local

measurement operators for the subsystems of Alice and Bob. If we performed the local

measurement on her subsystem of Alice, the subsystem belonging to Bob will be unaf-

fected by this measurement. In this case, if the measurements are performed on Alice,

the measurement operators can be described by the form Êi = ÊA
i ⊗ Î

B
, where Î

B
is the

identity operator that acts on the Hilbert space of the Bob. In the same manner, if the

measurements are made on the Bob subsystem, the measurement operator has then the

form Êi = Î
A
⊗ ÊB

i and here the Alice subsystem remains unchanged.

4.3 Classical Information and Shannon Entropy

The fundamental entity to measure the information classically, is the “bit”. A bit can

have a value 0 or 1 and similar to an electronic switch. A combination of bits is used to

transfer a message. Suppose that an event {xi} occurs in the random variables X with

the probability {pi}. The information content associated with this event is computed by

the Shannon entropy given by,

H(X) = −
∑
i

pi log2 pi (4.6)

Eq. (4.6) shows a measure of the uncertainty present in this event. The Shannon entropy

satisfies basic axioms:

• H(X) is a function of probability p: H(X) = H(pi);

• H(X) is a smooth function of p;

• For two independent variables, suppose for variables X and Y , the information content

present in the sum of the events is equal to the information content gained separately by

these two events: H(X, Y ) = H(X) +H(Y ).
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Joint Entropy

We define the joint entropy H(X, Y ) associated with the joint distribution p(x, y),

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y)log2p(x, y) (4.7)

Relative Entropy

For two probability distributions pi and qi, relative entropy (RE) H(pi||qj) is defined as,

H(pi||qj) =
∑

pi log2

pi
qj

(4.8)

We expand the Eq. (4.8) by using the logarithm property we have

H(pi||qj) = −H(X)−
∑

pi log2 qj (4.9)

We extract two important properties of the RE, that is H(pi||qj) ≥ 0 and H(pi||qj) = 0

if and only if pi = qj.

Conditional Probability

Conditional probability P (X|Y ) for two events X and Y is defined as

P (X|Y ) =
P (X, Y )

P (Y )
(4.10)

where P (X, Y ) is the overlap or joint probability (or distribution) of two events X and Y .

Conditional Entropy

The conditional entropy between two random variables X and Y is denoted by H(X|Y )

and defined as

H(X|Y ) = −
∑
x,y

p(x, y) log2

p(x, y)

p(x)
(4.11)

where the elements x ∈ X and y ∈ Y , and p(x, y) is the joint probability of elements x

and y and p(x) is the probability of element x. Now if we use Eq. (4.10) into Eq. (4.11)
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we have,

H(X|Y ) = −
∑
x,y

p(x, y) log2 p(y|x) (4.12)

by taking into account

p(x, y) = p(y|x)p(x) (4.13)

we have

H(X|Y ) = −
∑
x,y

p(y|x)p(x) log2 p(y|x) (4.14)

If we separate the summation accordingly we have

H(X|Y ) = −
∑
x

p(x)
∑
y

p(y|x) log2 p(y|x) (4.15)

and we have conditional entropy at X = x (conditional entropy y given x) that is

H(Y |X) = −
∑
y

p(y|x) log2 p(y|x) (4.16)

Finally, we have

H(X|Y ) =
∑
x

p(x)H(Y |X = x) (4.17)

Joint and conditional entropy are related by

H(X|Y ) = H(X, Y )−H(Y ) (4.18)

and likewise,

H(Y |X) = H(X, Y )−H(X) (4.19)

Bayes’ Theorem

For two events X and Y , the Bayes’ theorem is defined as

P (X, Y ) = P (X|Y )P (Y ) = P (Y |X)P (X) (4.20)

Mutual Information

Let random variables X and Y take the values {xi} and {yi} with the probabilities {pi}

and {qi}, respectively. Let these variables are correlated. The mutual information (MI)

I(X : Y ), that is the information shared between these two random variables given by X
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and Y , can be defined as

I(X : Y ) = H(X) +H(Y )−H(X, Y ) (4.21)

If we recall the third axiom of the Shannon entropy, for any two independent variables

we have,

I(X : Y ) = 0. (4.22)

By using the definitions of conditional entropy, given in Eqs. (4.18) and (4.19), and using

in Eq. (4.21) we get an alternate form of the MI,

J(X : Y ) = H(X)−H(X|Y ) (4.23)

and likewise,

J(Y : X) = H(Y )−H(Y |X) (4.24)

4.4 Quantum Information and von Neumann Entropy

In QIT, we store the information in the states of quantum mechanical system. The

variables to store the information in QIT are replaced by the observables. The values

that are assigned to these observables are replaced by the eigenvalues of these observables.

For example, we can designate a quantum system |ψ〉 with the values in the orthogonal

quantum states |0〉, |1〉 and as quantum mechanics allows us that the quantum system

|ψ〉 can also be in a coherent superposition of these orthogonal quantum states.

In QIT, the Shannon entropy is replaced by the VNE S.

von Neumann Entropy

The expression of VNE of a quantum mechanical state |ψ〉 can be defined with the help

of ρ̂. The VNE is defined as

S(ρ̂) = −Tr[ρ̂ log2 ρ̂] (4.25)

The Eq. (4.25) shows the base-two logarithm of ρ̂. This logarithm can be computed

on the eigenvalues λi of the density operator, which can be obtained by diagonalizing

the density operator ρ̂ into its eigenstates |i〉. On the diagonalized density operator, the

base-two logarithm can be computed by log2 ρ̂ =
∑

i log2 λi |i〉 〈i|. With the help of a
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simplified definition, we can write the VNE of the system as

S(ρ̂) = −
∑
i

λi log2 λi (4.26)

So far we have two types of entropies that measure the information contained in two

different regimes. One is the Shannon entropy (Eq. (4.6)) which takes into account how

much uncertainty is present in a classical random event. In quantum mechanics, the

lack of certainty of a quantum mechanical state is measured by the VNE (Eq. (4.26)).

For a pure quantum state, the full knowledge about the state is given, so the content of

information and therefore the VNE yields nothing.

On the other hand, for a quantum system with a d -dimensional Hilbert space, the max-

imum uncertainty of the system is given by a completely mixed state and corresponding

ρ with the VNE of the order of log2 d. The VNE (Eq. (4.25)) is a suitable parameter

that quantifies the mixedness of a state.

Quantum Joint Entropy

Consider two subsystems A and B and the density operators of the composite system and

its subsystems be given by ρ̂AB, ρ̂A, and ρ̂B, respectively. The related entropies S(ρ̂A),

S(ρ̂B), and S(ρ̂AB) are then related by subadditivity inequality,

S(ρ̂AB) ≤ S(ρ̂A) + S(ρ̂B) (4.27)

The equality holds for ρ̂AB = ρ̂A ⊗ ρ̂B, which corresponds to uncorrelated subsystems.

Quantum joint entropy is the entropy of the composite system ρ̂AB. It is equal to or less

than the subsystem entropies.

Quantum Conditional Entropy

For given subsystems A, B and its composite system AB, quantum conditional entropy

S(ρ̂A|ρ̂B) is

S(ρ̂A|ρ̂B) = S(ρ̂AB)− S(ρ̂B) (4.28)

and likewise,

S(ρ̂B|ρ̂A) = S(ρ̂AB)− S(ρ̂A) (4.29)
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Quantum Mutual Information

For a system A and B, the VNE of the system can be used to define a quantum analog

of the MI between the two parties. Let quantum joint entropy is given by ρ̂AB and the

reduced density operators ρ̂A and ρ̂B of the system A and B, respectively. The quantum

analog of classical MI (Eq. (4.21)) is defined as

I(ρ̂AB) = S(ρ̂A) + S(ρ̂B)− S(ρ̂AB) (4.30)

For completely uncorrelated quantum states A and B the MI is zero. For completely

uncorrelated quantum states, the density state for a composite system has the form as

ρ̂AB = ρ̂A
⊗

ρ̂B. If we cannot write the state of the composite system this way, the MI

is greater than zero. Generally, Eq. (4.30) finds the content of quantum correlations

between two systems A and B.

If we use the definitions of quantum RE, given in Eqs. (4.28) and (4.29), quantum MI

can be written as,

J(ρ̂AB) = S(ρ̂A)− S(ρ̂A|ρ̂B) (4.31)

and likewise,

J(ρ̂AB) = S(ρ̂B)− S(ρ̂B|ρ̂A) (4.32)

Quantum Relative Entropy

The idea of quantum RE is related closely to the VNE. For two different quantum systems

with density matrices, ρ̂ and σ̂, the quantum RE for these two systems is defined as,

S(ρ̂||σ̂) = Tr[ρ̂ log2 ρ̂]− Tr[ρ̂ log2 σ̂] (4.33)

The quantum RE is non-negative. It is zero if and only if σ̂ = ρ̂. One can easily check

that Eq. (4.30) can be modified as the quantum RE between the composite system ρ̂AB

and ρ̂A ⊗ ρ̂B [107].

I(ρ̂AB) = S(ρ̂AB||ρ̂A ⊗ ρ̂B) (4.34)
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4.5 Quantum Entanglement

For a system with two subsystems A and B, we can write the total state as

|Ψ〉 = |a〉 ⊗ |b〉 (4.35)

The vectors |a〉 and |b〉 belong to HA and HB respectively. That kind of states, given

by this form same as in Eq. (4.35) are not the entangled states, and these states are

called the separable states. However, in quantum mechanics, all quantum states are not

separable states. The superposition principle in quantum mechanics permits the quantum

states to superimpose, and these superimposed states are not always product state

|Φ〉 =
1

N

(
|a1〉 |b1〉+ |a2〉 |b2〉

)
(4.36)

where N is the normalization constant such that 〈Φ| |Φ〉 = 1. If we cannot write |Φ〉 in

the product form, i.e., |Φ〉 6= |a〉 ⊗ |b〉, we call the state an entangled state. The state

|Φ〉 =
1√
2

(
|01〉 − |10〉

)
is an entangled states because it cannot be written in the form

as a product (4.35).

Another form of a quantum state is mixed states. A mixed state is a separable state if it

is possible to write it as a combination of pure product states [108].

ρ̂separ =
∑
i

pi |ai〉 〈ai| ⊗ |bi〉 〈bi| (4.37)

where the pure state vectors |ai〉 and |bi〉 belongs to the Hilbert spaces HA and HB. Here

pi ≥ 0, and
∑

i pi = 1. If we cannot write a state as Eq. (4.37), it is called entangled state.

Bell’s State

An example of maximally entangled states is Bell’s states. Bell’s states are given below

as

|χ00〉 =
1√
2

(|00〉+ |11〉), (4.38)

|χ01〉 =
1√
2

(|01〉 − |10〉), (4.39)

|χ10〉 =
1√
2

(|00〉 − |11〉), (4.40)
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|χ11〉 =
1√
2

(|01〉+ |10〉). (4.41)

In a compact form, these four states can be written as

|χxy〉 =
1√
2

(|0y〉+ (−1)x |1y〉), (4.42)

where x = 0, 1 and y = 0, 1 and if y = 0, ȳ = 1 and vice versa.

4.6 Quantum Correlations

Suppose a bipartite system composed of Alice and Bob sharing a mixed state between

them. We assume the orthogonal basis states belonging to Alice’s subsystem HA are

{|i〉A}. Also {|j〉B} represents the orthogonal basis states that belong to Bob’s subsystem

Hilbert space HB. The mixed state is said to be classically correlated if the system can

be expressed in the following way [109]

ρ̂cc =
∑
i,j

pi,j |i〉 〈i|A ⊗ |j〉 〈j|B , (4.43)

where pij is the probability of the mixed state such that
∑

i,j pij = 1. If the state cannot

be expressed as shown in Eq. (4.43), then the state is said to be quantum mechanically

correlated. It is important to mention that every state that is correlated classically is

also separable. On the other hand, the contrary statement is not necessarily true. That

is, a separable state in the form ρ̂s =
∑

i pi |ai〉 〈ai| ⊗ |bi〉 〈bi|, it is not necessary for this

state to be classically correlated because the states that belongs to Alice and Bob, that

is {|i〉A} and {|i〉B} respectively, are not necessarily orthogonal. Moreover, a pure state

has a different nature. Besides the mixed states, for a pure quantum state, entanglement

provides the correlations nature in the state. A pure quantum state is an entangled state

if and only if this pure state is quantum mechanically correlated. This means that the

entanglement in pure states is equal to the non-locality and it carries the perception

of quantumness of the system. The situation gets different for the mixed states. Thus

non-local states must be entangled and the sets of these states are smaller than the set of

entangled states, hence non-local states are a subset of entangled states. So for this reason

the properties of the mixed states correlations are studied in the following passages.

We now discuss that mixed states, even mixed separable states show the MPQC and

these states present no entanglement. The MPQC gives a more precise picture of the
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system than the entanglement. By definition, the MPQC is the difference between the

total correlation in the system and the classical correlation in the system.

So what are the classical correlations (CC)? Suppose some states are classically correlated.

If we apply some quantum mechanical disturbance or operations to these CC states, these

states do not show any reaction to this disturbance because of the nature of the states.

So we assign a general intuition to the CC states that these states are not affected by

certain quantum operations, that is the von Neumann measurement, on each party (Alice

and Bob) subspaces. For the bipartite system that shares a mixed state, we can write the

quantum measurement operators by Ei
A = |i〉 〈i|A and Ej

B = |j〉 〈j|B. These von Neumann

measurement operators do not disturb a mixed separable state. The corresponding set

of quantum mixed states ρcq can also be defined which is not affected by the given

von Neumann operations on any party subspace (for example Alice). For this case, the

resulting stats are given by

ρ̂cq =
∑
i

pi |i〉 〈i|A ⊗ ρ
i
B (4.44)

where ρiB corresponds to the states of Bob’s Hilbert space HB, also with pi ≥ 0 and∑
i pi = 1. The form of the states, that is represented in Eq. (4.44) are called classical-

quantum states [110, 111]. For a mixed state, represented in Eq. (4.44), we can generate

measurement operators for the state. The relevant von Neumann operator for measure-

ment on Alice’s subsystem is given by Êi
A = |i〉 〈i|A. We can check that this operator

does not disturb the state:

Êi
Aρ̂cq = |i〉 〈i|A

∑
i

pi |i〉 〈i|A ⊗ ρ̂
i
B =

∑
i

pi |i〉 〈i|A |i〉 〈i|A ⊗ ρ̂
i
B = ρ̂cq

We checked that the state is not disturbed by the action of the measurement operator.

This state is a classical-quantum state for the local measurement operator Êi
A. Similarly,

for Bob’s subsystem, the classical-quantum state has the form ρ̂cq =
∑

i piρ̂
i
A⊗|i〉 〈i|B and

the von Neumann operator for the measurement on the Bob’s subsystem is Êi
B = |i〉 〈i|B.

Hence, it is concluded that the disturbance-induced measurements of any state provide

a good tool to sense the quantumness of the state.
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4.7 Measures of Quantum Correlations

Several studies have been put forward to analyze the MPQC. Recently, many quantifier

used to quantitatively and qualitatively evaluate the MPQC have been introduced in the

literature [43, 44, 109, 112–121]. All the measures of the MPQC are grouped into two

main classes:

1. Entropic Quantities Based Measurement

2. Geometric Measures of the Correlations

An entropic measurement-based way to find the correlations, which is the original quan-

tum discord (QD), was used by Zurek [44], we use Shannon relation of entropy (Eq.

(4.6)). In this measure, we require basic tools of information theory or simply a ther-

modynamic interpretation but it is very difficult to find a result explicitly by this way

of measurement [122, 123]. On the other hand, a geometric measure of MPQC provides

a different approach to finding the correlations. This measure is a comparison between

two states. One state is the state in which we are interested to find the MPQC and the

other state is a classical-quantum state which has zero MPQC. We measure some relative

quantity (generally RE) between these two states and compute the MPQC of the given

state. For example, it has been studied that the RE (Eq. (4.33)) of a state ρ [118], which

is under observations are used to define the correlation as QA(B)(ρ̂) = min
ρ̂CQ

S(ρ̂||ρ̂CQ). This

expression of correlations represents the distance between two states in terms of the RE

of the state under observation. This is closest to classical-quantum state.

4.8 Quantum Discord (QD)

The foundations of QIT and quantum computation rely on the core quantum mechan-

ical effect known as entanglement. The entanglement measures the correlations that

are present between the parts of quantum systems. These correlations are a quantum

mechanical effect and cannot be explained by classical laws. It is considered that the

entanglement or non-locality is similar to the MPQC. This consideration is true for a

pure quantum state, that is, if we are dealing with a pure quantum state, the entangle-

ment and non-locality of the term are treated as a synonym. But for the mixed quantum
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mechanical states, entanglement is no more similar to the MPQC and the situation be-

comes more complex as two core concepts in quantum theory separate their ways. In this

regard, a new and more general tool to measure the MPQC in the mixed quantum states

was presented [44] and named these correlations as QD. QD is defined as the difference

between total correlations and CC in the system.

QD is historically the first the measurement of MPQC beyond entanglement [43, 44, 124].

Our point of interest is to analyze the MPQC between two-party systems. For this pur-

pose quantum mechanical description of the MI is required. As measuring a quantum

state, collapse the state, the results of I and J differ as we use the von Neumann definition

of entropy (Eq. (4.25)) instead of Shannon entropy (Eq. (4.6)). It was shown by Zurek

[44], under quantum operations and measurements Eq. (4.30) and Eq. (4.32) are no

longer equal. This difference that occurs between two classically the same quantities has

laid foundations of a quantity which is defined as QD. We use the disturbance-induced

measurements approach to calculate an improved version of Eq. (4.32) and then find the

QD.

4.9 Measurement-Induced Based Approach For Bi-

partite system

Suppose a bipartite system, constituting of A and B subsystems. Composite system den-

sity operator is ρ̂AB and ρ̂A and ρ̂B for the subsystems A and B. The total correlation

between subsystem A and B can be computed by the MI given in Eq. (4.32)

J(ρ̂AB) = S(ρ̂A)− S(ρ̂A|ρ̂B)

Now we introduce a measurement-based approach to solve the quantum conditional en-

tropy. Now by using the measurement-based approach, we can derive another definition of

quantum conditional entropy S(ρ̂A|ρ̂B). We define local projectors {Π̂j
B} = {|bj〉 〈bj|} on

subsystem B. The post-measurement conditional operator after applying {Π̂j
B} results in

ρ̂AB|j =
1

pj

(
1̂A ⊗ Π̂j

B

)
ρAB

(
1̂A ⊗ Π̂j

B

)
(4.45)
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where the probability of having the jth outcome after measurement is pJ = Tr
[
(1̂A ⊗

Π̂j
B)ρ̂AB

]
, 1̂A represents the identity operator acting on the system A. We write the

measurement-based quantum conditional entropy as,

S(ρ̂AB|Π̂j
B) =

∑
j

pjS(ρ̂AB|j) (4.46)

That allows us to find the classical information [43]

J(ρ̂AB) = S(ρ̂A)− S(ρ̂AB|Π̂j
B) (4.47)

The difference between quantum MI I(ρ̂AB) and CC J(ρ̂AB), minimized over the whole

set of measurements Π̂j
B performed on B, defines QD D(ρ̂AB) given as

D(ρ̂AB) = min
{Π̂j

B}
[I(ρ̂AB)− J(ρ̂AB)] (4.48)

By using the definition of quantum RE given in Eq. (4.33) and the MI in terms of the

RE given in Eq. (4.34), Zurek [44] proposed the definition of QD, given as,

DAB(ρ̂AB) = min
{Π̂j

A⊗Π̂k
B}

[S(ρ̂AB||Π̂ρ̂AB)−
∑
j=A,B

S(ρ̂j||Π̂j ρ̂j)] (4.49)

with Π̂(ρ̂AB) =
∑

j,k(Π̂
j
A ⊗ Π̂k

B)ρ̂AB(Π̂j
A ⊗ Π̂k

B).

General Measures of Quantum Discord

There are some general postulates regarding the measurement of QD. These postulates

have been proposed by K. Modi and his co-authors in the paper with the title “Criteria

for the measure of Quantum correlations”[125]. The authors point out that every QD

measure must satisfy these three necessary conditions. These conditions are:

i. QD is non-negative,

ii. Under the local unitary operations, QD is invariant

iii. QD is zero for classically correlated system states.

4.10 Global Quantum Discord

Starting with the definition of GQ given in Eq. (4.49), the GQD can be written as

GD(ρ̂T ) = min
{Π̂k}

{
S(ρ̂T ||Π̂ρ̂T )−

N∑
j=1

S(ρ̂j||Π̂j ρ̂j)
}

(4.50)
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which measure the global content of the MPQC in the total state ρ̂T of a system with

N subsystems. And ρ̂j = Tr[ρ̂T ] is the reduced state of subsystem j. The trace is taken

over all the subsystems except subsystem j. The projectors in Eq. (4.50) are given as

follows,

Π̂j(ρ̂j) =
∑
l

Π̂l
j ρ̂jΠ̂

l
j (4.51)

and

Π̂(ρ̂T ) =
∑
k

Π̂kρ̂T Π̂k (4.52)

where Π̂k = ⊗kll=1Π̂kl
l . The minimization in Eq. (4.50) is computed on all possible multi-

local projectors Π̂k. By using the definition of quantum RE, we can expand Eq. (4.50)

as,

GD(ρ̂T ) = min
{Π̂k}

{
−Tr(ρ̂T log2Π̂(ρ̂T )) +

∑
j

Tr(ρ̂jlog2Π̂j(ρ̂j))
}
−S(ρ̂T ) +

N∑
j

S(ρ̂j) (4.53)

For the N-party system, the multi-local projectors can be written as

Π̂k = R̂ |k〉 〈k| R̂† (4.54)

where {|k〉} are the separable, multi-local eigenstates of the multipartite Pauli oper-

ator
⊗N

j=1 σ̂
z
j and multi-qubit rotation operator is R̂, operating on local jth subsys-

tem, expressed as R̂ =
⊗N

j=1 R̂j(θj, φj) with R̂j(θj, φj) = cos θj 1̂ + i sin θj cosφjσ̂y +

i sin θj sinφjσ̂x. With the help of the projector operators, we can expand a term in Eq.

(4.50) as,

Tr[ρ̂T log2Π̂(ρ̂T )] = Tr

[
ρ̂T log2

∑
k

R̂ |k〉 〈k| R̂†ρ̂T R̂ |k〉 〈k| R̂†
]

(4.55)

By using 〈k| R̂†ρ̂T R̂ |k〉 = ρ̃kkT we get,

Tr[ρ̂T log2Π̂(ρ̂T )] = Tr

[
ρ̂T log2

∑
k

R̂ |k〉 ρ̃kkT 〈k| R̂†
]

(4.56)

By using the property of trace and by opening the trace of the above equation, we get

Tr[ρ̂T log2Π̂(ρ̂T )] =
∑
k

ρ̃kkT log2ρ̃
kk
T (4.57)

Similarly, the other term in Eq. (4.50) can be solved, we have

Tr[ρ̂jlog2Π̂j(ρ̂j)] =
1∑
l=0

ρ̃llj log2ρ̃
ll
j (4.58)
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where ρ̃llj = 〈l| R̂†ρ̂jR̂ |l〉 and |l〉 being two eigenstate of of σzj . By using Eqs. (4.57) and

(4.58) into Eq. (4.53), we have

GD(ρ̂T ) = min
{Πk}

{ N∑
j=1

1∑
l=0

ρ̃llj log2 ρ̃
ll
j −

2N−1∑
k=0

ρ̃kkT log2 ρ̃
kk
T

}
− S(ρ̂T ) +

N∑
j=1

S(ρ̂j) (4.59)

The above equation decreases the computational power required to evaluate the GQD of

the N-party system.

4.11 Summary

In this chapter, we have reviewed some basic definitions for classical information and

QIT and discussed Shannon and VNE. We have also discussed QE and the MPQC for

multipartite systems. We have also reviewed the QD and GQD of a system.
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Chapter 5

Global quantum discord and von

Neuman entropy in multipartite

two-level atomic systems

5.1 Introduction

In this chapter, we present a study of the GQD and VNE in the N TLS coupled with the

single-mode field in a Fock field. We investigate the effect of different parameters that

are present in the model, such as ID, parameters in the initial state, and photon number

in the system, on the GQD and VNE.

This chapter is arranged as follows; In Sec. (5.2) we briefly describe the model and the

initial state of the system. In Sec. (5.3) we present MPQC and compute the GQD. In Sec.

(5.4), we study the behavior of the GQD and VNE. The behavior of both the quantifiers

is analyzed regarding the field and with various possible initial states. We also study the

effect of ID on the system. The results are extrapolated for both the quantifiers and also

studied for the higher TLS. In the last section, we conclude our findings.

5.2 The Model

We explore multipartite TLS interacing with the Fock field. The Hamiltonian of the

system we study, given in Eq. (2.93),
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Ĥ =
ω0

2

N∑
i=1

σ̂zi + ωâ†â+ λ
N∑
i=1

(âσ̂+
i + â†σ̂−i ) (5.1)

The system dynamics under the Markovian approximation is given by Eq. (3.43) [96],

i.e.

˙̂ρ(t) = −i[Ĥ, ρ̂(t)]− γ

2
[Ĥ, [Ĥ, ρ̂(t)]] (5.2)

where γ is the coefficient of ID. For γ → 0, Eq. (5.2) reduces to the Schrodinger equation.

The formal solution of Eq. (5.2) is given by,

ρ̂(t) =
∞∑
k=0

(γt)k

k!
M̂k(t)ρ̂(0)M̂k†(t), (5.3)

with

M̂k(t) = Ĥk exp(−iĤt) exp(−γtĤ2/2), (5.4)

where ρ̂(0) is the initial state of the system.

We assume atoms and field ae initially uncoupled, thus we prepare initial state of the

system ρ̂AF (0) as a product state

ρ̂AF (0) = [(1− p) |ψ〉 〈ψ|+ p |g1g2...gN〉 〈g1g2...gN |]⊗ |n〉 〈n| , (5.5)

where |ψ〉 = cos(α) |g1g2...gN〉+sin(α) |e1e2...eN〉, |gi〉 and |ei〉 are the ground and excited

states of the TLS respectively. p corresponds to statistical probability, 0 ≤ p ≤ 1, α is

associated with super position of two level system, 0 ≤ α ≤ π and |n〉 is the field state.

In our model, the combined system i.e. the atoms and field form the set of allowable

basis states {|ψi〉} of the system given as,

{|ψi〉} = |g1, g2, g3, ...gN , n+N〉 , |e1, g2, g3, ...gN , n+N − 1〉 , |e1, e2, g3, ...gN , n+N − 2〉 , . . .

|e1, e2, e3, ...eN , n〉

(5.6)

The ijth matrix element of the Hamiltonian in the allowed basis is 〈ξi| Ĥ |ξj〉 with |ξi〉 =⊗N
l=1 |s〉l where s represents the ground and excited state of the lth TLS, the basis are

|0〉 =

1

0

 and |1〉 =

0

1

. Now for the two TLS, the matrix elements of the Hamiltonian
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in the allowable basis are,
0 λ

√
n+ 1 λ

√
n+ 1 0

λ
√
n+ 1 0 0 λ

√
n+ 2

λ
√
n+ 1 0 0 λ

√
n+ 2

0 λ
√
n+ 2 λ

√
n+ 2 0

 . (5.7)

The matrix elements for the large-N systems, more specifically for three, four and five

TLS, are given as follows.

For three TLS, the matrix elements are (we take λ = 1)

a1,2 = a1,3 = a1,5 = a2,1 = a3,1 = a5,1 =
√

1 + n,

a4,2 = a2,4 = a3,4 = a4,3 = a2,6 = a6,2 = a3,7 = a7,3 = a5,6 = a6,5 = a5,7 = a7,5 =
√

2 + n

a4,8 = a8,4 = a6,8 = a8,6 = a7,8 = a8,7 =
√

3 + n

and the other elements are zero.

For four TLS, the matrix elements are

a1,2 = a1,3 = a1,5 = a2,1 = a3,1 = a5,1 = a1,9 = a9,1 ==
√

1 + n,

a4,2 = a2,4 = a3,4 = a4,3 = a2,6 = a6,2 = a3,7 = a7,3 = a5,6 = a6,5 = a5,7 = a7,5 =

a2,10 = a10,2 = a3,11 = a11,3 = a5,13 = a13,5 = a9,10 = a10,9 = a9,11 = a11,9 =
√

2 + n

a4,8 = a8,4 = a6,8 = a8,6 = a7,8 = a8,7 = a4,12 = a12,4 = a6,14 = a14,6 = a7,15 = a15,7 =

a12,10 = a10,12 = a12,11 = a11,12 = a14,10 = a10,14 = a15,11 = a11,15 = a14,13 =

a13,14 = a15,13 = a13,15 =
√

3 + n

a8,16 = a16,8 = a16,12 = a12,16 = a12,14 = a14,12 = a12,15 = a15,12 =
√

4 + n
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and the other elements are zero.

For five TLS, the matrix elements are

a1,2 = a1,3 = a1,5 = a2,1 = a3,1 = a5,1 = a1,9 = a9,1 = a17,1 = a1,17 =
√

1 + n,

a4,2 = a2,4 = a3,4 = a4,3 = a2,6 = a6,2 = a3,7 = a7,3 = a5,6 = a6,5 = a5,7 = a7,5 =

a2,10 = a10,2 = a3,11 = a11,3 = a5,13 = a13,5 = a9,10 = a10,9 = a9,11 = a11,9 = a18,2 =

a2,18 = a19,3 = a3,19 = a21,5 = a5,21 = a25,9 = a9,25 = a25,17 = a17,25 = a17,18 =

a18,17 = a17,19 = a19,17 = a21,17 = a17,21 =
√

2 + n

a4,8 = a8,4 = a6,8 = a8,6 = a7,8 = a8,7 = a4,12 = a12,4 = a6,14 = a14,6 = a7,15 = a15,7 =

a12,10 = a10,12 = a12,11 = a11,12 = a14,10 = a10,14 = a15,11 = a11,15 = a14,13 =

a13,14 = a15,13 = a13,15 = a4,20 = a20,4 = a6,22 = a22,6 = a7,23 = a23,7 =

a10,26 = a26,10 = a11,27 = a27,11 = a13,29 = a29,13 = a26,18 = a18,26 = a27,19 =

a19,27 = a29,12 = a12,29 = a20,18 = a18,20 = a20,19 = a19,20 = a22,18 = a18,22 = a23,19 =

a19,23 = a22,21 = a21,22 = a23,21 = a21,23 = a26,25 = a25,26 = a27,25 = a25,27 =

a29,25 = a25,29 =
√

3 + n

a8,16 = a16,8 = a16,12 = a12,16 = a12,14 = a14,12 = a12,15 = a15,12 = a24,8 = a8,24 = a28,12 =

a12,28 = a30,14 = a14,30 = a31,15 = a15,31 = a28,20 = a20,28 = a22,30 = a30,22 = a31,23 =

a23,31 = a24,20 = a20,24 = a24,22 = a22,24 = a24,23 = a23,24 = a28,26 = a26,28 = a28,27 =

a27,28 = a30,26 = a26,30 = a31,27 = a27,31 = a30,29 = a29,30 = a31,29 = a29,31 =
√

4 + n

a16,32 = a32,16 = a24,32 = a32,24 = a32,28 = a28,32 = a32,30 = a30,32 = a32,31 = a31,32 =
√

5 + n

and the other elements are zero.

Eq. (5.5) in the allowable basis {|ψi〉} is used to obtain the final state of the system at

time t,

ρ̂AF (t) =
N∑

i,j;i6=j

exp[−γt
2

(Ei − Ej)2 − i(Ei − Ej)t]× 〈ψi| ρ̂(0) |ψj〉 |ψi〉 〈ψj| (5.8)

where Ei, Ej are the eigenvalues of the Hamiltonian in the states {|ψi〉}. The final state of

the atomic system is obtained after taking the trace over the field i.e. ρ̂(t) = TrF
[
ρ̂AF (t)

]
.
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5.3 Multipartite Quantum Correlations

For a bipartite system with A and B subsystems QD DA→B, which is the difference

between quantum MI I(ρ) and CC J(ρ), minimized over the measurements Π̂ performed

on the subsystem B, is given by Eq. (4.48) [22],

DA→B(ρ̂AB) = min
{Π̂j

B}
[I(ρ̂AB)− J(ρ̂AB){Π̂j

B}
] (5.9)

where ρ̂AB is the density matrix of composite system, and I and J are the expression

of the MI given by Eqs. (4.30) and (4.32). Using the projective measurements on the

system, the GQD for N -party system can be written by Eq. (4.59)

GQD(ρ̂T ) = min
{Πk}

{ N∑
j=1

1∑
l=0

ρ̃llj log2 ρ̃
ll
j −

2N−1∑
k=0

ρ̃kkT log2 ρ̃
kk
T

}
+

N∑
j=1

S(ρj)− S(ρT ) (5.10)

where ρ̂T is the density matrix of total system and ρj is the density matrix of the

jth subsystem. As given in Sec. (4.10), we know ρ̃kkT = 〈k| R̂†ρT R̂ |k〉 and ρ̃llj =

〈l| R̂†ρjR̂ |l〉, and Π̂k = R̂ |k〉 〈k| R̂† are the multi-qubit projective operators. S(ρj) =

−Tr[ρj log2 ρj] and S(ρT ) = −Tr[ρT log2 ρT ] are the VNE of the subsystem j and the

total system respectively. Here {|k〉} are the eigenstates of
⊗N

j=1 σ̂
z
j and R̂ is a local

multi-qubit rotation operator acting on the jth qubit, expressed as R̂ =
⊗N

j=1 R̂j(θj, φj)

with R̂j(θj, φj) = cos θj 1̂ + i sin θj cosφjσ̂y + i sin θj sinφjσ̂x. Alongside the GQD, the

VNE (S(ρ) = −Tr[ρ log2 ρ]) is also computed and compared with GQD.

5.4 Result and discussion

In this section, we explore the dynamics of the GQD and VNE of the system with an

initially mixed state given by Eq. (5.5). The dynamical behavior of both quantifiers, the

GQD and VNE are numerically evaluated for the different number of photons n, γ, and

the mixing parameter α.

Fig. (5.1) shows the results for the time evolution of the GQD and VNE for the system

with two (N = 2) and five (N = 5) TLS. In these plots, we have assumed that there is

no ID. For N = 2 a periodicity in gradual increase and decrease of the GQD is seen in

the system. It shows an interplay between the classical and MPQC. There is no abrupt

vanishing of the MPQC in the system. Such behavior has also been seen by Fanchini
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et. al. and Werlang et. al. [126, 127] for a two-qubit system where the sudden death of

discord is not observed instead it remains periodic. Whereas, VNE attains three distinct

phases corresponding to disorder in atomic states i.e. maximum, intermediate minima,

and zero. The maximum value of VNE for N = 2 suggests a higher degree of accessi-

ble states in the system whereas zero value indicates that all the atoms are in only one

atomic state. As the system’s size increases with the addition of TLS in the system, the

magnitudes of both the GQD and VNE show an increasing behavior. Extrema of both

the GQD and VNE do not coincide especially for large-N systems where the atoms have

more accessible atomic states. The intermediate phase in the VNE dynamics for N = 2

corresponds to non-zero entropy that hints at a phase with less quantum interference

(Fig. (5.1)) and zero GQD. The dynamical behavior of these quantifiers suggests that

the information can retain in such systems that can be useful in quantum processing.

The behavior of the GQD and VNE for a non-zero n is also shown in Fig. (5.1). Rather

periodic behavior of both quantifiers is present and that has not been seen in the zero

photon case. This periodicity is due to the availability of the photons to cause atomic

transitions in the system. We observe the effects of the field on the quantifiers, which

is present even after tracing out the field from the final density matrix. Quantum sys-

tems are composed of TLS, and the environment with which they interact retains some

information about the environment [128]. Therefore the effect of field resides in the time

evolution of the density matrix that ensures both atom and field states have become a

mixed state. This periodic behavior in both quantifiers is seen for the large-N system as

well. The generalized dynamics of the system show long-lasting correlations because the

revivals of both quantifiers are approximately doubled as compared with no photon case.
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Figure 5.1: (color online) The GQD and VNE are plotted as a function of scaled time for N = 2

and N = 5 TLS. The plots in the upper panel are for n = 0 and in the lower panel are for

n = 10. All data is for γ = 0, p = 0 and α = 0.

The statistical mixture of the system as represented by ρ̂(t) can be quantified by mea-

suring the purity, which is defined as Trρ(t)2. For a pure quantum state, purity is 1 i.e.

Trρ(t)2 = 1 whereas for a mixed state Trρ(t)2 < 1. For an entangled state, the purity

level of the subsystems of the multipartite system is always less than the purity of the

full system represented in Eq. (5.8). The dynamical variation between quantum purity

and the quantifiers GQD and VNE for two and five TLS are shown in Fig. (5.2). The

variations are plotted for two types of initial states, one is for α = 0 and the other for

α = π/4. For α = 0 when the system is allowed to evolve, both the GQD and VNE are

non-zero for α = π/4 state and zero for α = 0 state. The purity satisfies 1
d
≤ Trρ2 ≤ 1,

where d is the dimension of Hilbert space of multi TLS given as 2d. For an initial state

at α = π/4, the GQD is zero while VNE is not.
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Figure 5.2: (color online) The variation in the correlations of the system is studied with respect

to the purity of the system with two different initial states. All data is set for γ = 0, and p = 0.

Fig. (5.3) shows the effect of mixing parameter α on the dynamics of the GQD and

VNE. It is observed that certain values of mixing parameters assist the dynamics of

GQD. For N = 2, the system shows the maximum value of GQD around α = π/4 that

corresponds to the initially mixed state. For the large-N systems, the maximum value

of GQD is observed at α = π/2 represents an initially mixed state prepared in an equal

statistical mixture of the ground states and excited states. This behavior points out that

the large-N system favors the initial state prepared in α = π/2. For the large-N systems,

almost all states show non-zero MPQC. On the other hand, the dynamical behavior of

VNE suggests that the initial state prepared in α = π/2 shows the least quantum inter-

ference in the dynamics in atomic states.
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Figure 5.3: (color online) The density plots of the quantifiers as a function of α and scaled time

t for N = 2 and N = 5 TLS. All data is set for γ = 0, n = 0 and p = 0.5.

Photons in the system play an important role to assist and boost the correlations. The

effect of increasing the photons in the system has two important consequences: Firstly,

increasing the photons support the MPQC in the system by reducing the revival time

of the correlations, and secondly, the photons do not raise the maximum value of the

MPQC in that system. Furthermore, the increase in the number of revivals in the unit

time t, defined by tR, as shown in Fig. (5.4) tends to increase non-linearly as the photons

n in the system are increased. The maximum magnitude of the GQD which is defined

by dmax, for a system is plotted against the photons n as shown in Fig. (5.5). The

maximum value of correlations in the system does not change as the number of photons

are increased in the system. It is also observed that the slope between the GQD and

VNE remains nearly the same as the photons are increased inside the system, as shown

in Fig. (5.6). Both the GQD and VNE are computed and plotted in Fig. (5.6). There

is a slight increase in the slope as the photons are increased in the system. The effect

of photon number n is nearly the same with a slight change in the slope. This behavior

also shows that quantum interference supports the MPQC in the system. Furthermore,

according to Fig. (5.1), the behavior of tR to the change of the photons in the system is
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not affected in the large-N systems and both the quantifies exhibits similar behavior.

Figure 5.4: (color online) The GQD assisting curve of a system composed of two TLS. The

number of revivals per unit time, tR, is plotted against the number of photons. tR increases in

a non-linear fashion and increases if photons n are increased. All data is for γ = 0, p = 0 and

α = 0.

Figure 5.5: (color online) The maximum of the GQD of the system composed of two and five

TLS is analyzed with the change in the photons n. There is no increase in the maximum value

of the MPQC in the system with n. All data is for γ = 0, p = 0 and α = 0.
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Figure 5.6: (color online) The slopes of the lines remain almost the same as the photons in the

system are increased. Both quantifiers change with the almost same magnitude as the photons

are changed in the system. All data is for N = 2, γ = 0, p = 0 and α = 0.

The effect of ID upon the evolution of the quantifiers two and five TLS is shown in Fig.

(5.7). For the zero photon case, the dynamics of the GQD and VNE have a maximum

value of around t ∼ 0.5. The maximum value of the GQD and VNE increases with the

increase in the number of TLS N . The fluctuations of the GQD about maximum value,

increase for larger N . The effects of the number of photons on the dynamics of the GQD

and VNE are shown in Fig. (5.7) lower panel. In the multiphoton case, the system gets

smoother dynamical behavior in both quantifiers, as compared to the zero photon case

and this seize of fluctuations in dynamics hinders the system to process information. Fig.

(5.8) shows the GQD and VNE dynamics in the system w.r.t. α. For N = 2, the MPQC

are robust and vanishing for α = π/4 and α = 3π/4, respectively. It is observed that

for a two TLS, the values of α have prominent effects on the dynamics of the GQD and

VNE, whereas, for higher values of N , the system dynamics show less dependence on the

mixing parameter α.
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Figure 5.7: (color online) The quantifiers are plotted for N = 2 and N = 5 TLS with non-zero

ID. The plots in the upper panel are for photon number n = 0 and in the lower panel are for

n = 10. All data is for γ = 0.05, α = π/4 and p = 0.

Figure 5.8: (color online) The density plots of the quantifiers as a function of α and scaled time

t for N = 2 and N = 5 TLS. All data is set for γ = 0.05, n = 10 and p = 0.

The general behavior of the quantifier for a large-N system is studied. From Fig. (5.1),
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it is seen that for the large-N system, the magnitude of the GQD and VNE is increased

and the first maximum of each system is shifted towards the zero of the time scale. Fig.

(5.9) shows the shift factor of revivals of the GQD, denoted by ∆t2 of three, four, and

five TLS with the reference to the two TLS. It is seen that with the addition of each TLS

in the system, the slope of the line is increased by 0.02 in a two TLS. The revival time of

the GQD for the large-N system will become more and more shifted towards the origin of

the time scale and the system has the MPQC early in the time evolution. The maximum

value of the GQD and VNE of the system achieved in the time evolution, denoted by dmax

and emax respectively, are plotted in Fig. (5.10). Both dmax and emax tend to increase

with different non-linear fashion upon the increase in N . From Fig. (5.10), the GQD

varies with the quadratic (a1 = 0.025) and linear (b1 = 0.331) coefficient both positive.

On the other hand the VNE, the coefficient with quadratic (a2 = −0.037) and linear

(b2 = 0.955) terms has opposite signs.

Figure 5.9: (color online) Shift in the compression time ∆t2 of the GQD is plotted for the

three, four, and five TLS with reference to the two TLS. There is an increase in the value of

the respective slope as the system gets more TLS. All data is for n = 10, γ = 0 and α = 0.
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Figure 5.10: (color online) The change in the maximum value of the GQD, denoted by dmax,

and VNE, denoted by emax, with the increase of each TLS in the system is plotted. The dmax

increases with the positive linear and quadratic curve fitting coefficients while emax increases

with negative quadratic and positive linear coefficients. All data is for γ = 0, n = 10 and p = 0.

5.5 Conclusions

In this paper we explored how GQD and VNE evolve with time for the multi TLS, that

interacts with the single mode Fock field. We computed the GQD and VNE for two,

three, four, and five TLS interacting with a single mode Fock field with and without ID.

We found that with increasing the size of the system (number of atoms), the GQD and

VNE are enhanced which can be regarded as a change in the content of information. The

photons assisted the MPQC by reducing the revival time of the quantifiers. The revivals

in unit time had a non-linear behavior with the number of photons in the system. It was

also observed that the maximum value of the MPQC in the system did not change with

the number of photons. The behavior of the quantifiers was also studied with different

values of mixing parameters α with and without ID. The effect of the purity was analyzed

and it showed an increase in the correlations that corresponded to less purity and a higher

degree of mixing in the system. The effect of large-N on the quantifiers indicates that

the GQD and VNE have different scaling behaviors.
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Chapter 6

Multipartite quantum correlations

and Entanglement in N two-level

atoms interacting with the coherent

field in the presence of the nonlinear

Kerr medium

6.1 Introduction

In this chapter, we investigate the dynamics of QE of N moving TLS interacting with a

coherent field in the presence of the non-linear Kerr medium (NLKM). The dynamics of

the GQD and VNE under the influence of NLKM are studied for two, three, and four

TLS. The NLKM has shown an important role in the evolution of the quantifiers of mov-

ing multi TLS.

This chapter is organized as follows. In Sec. (6.2), we present the model and the Hamil-

tonian of the system which interacts with the coherent field. The system is moving and

influenced by the NLKM. In Sec. (6.3) we describe the GQD and VNE. In Sec. (6.4), we

present the results and their discussion. In Sec. (6.5), we present a brief conclusion.
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6.2 Hamiltonian model

The total Tavis-Cummings Hamiltonian given in Eq. (2.93), of the system composed of

N TLS fixed system under the rotating wave approximation (RWA) and NLKM is,

ĤT =
ω0

2

N∑
i=1

σ̂zi + ωâ†â+ λ
N∑
i=1

(
âσ̂+

i + â†σ̂−i
)

+ χ
(
â†â
)2
, (6.1)

where χ is the Kerr parameter given by Eq. (3.51) and λ is atom-field coupling constant.

We are considering the more general case of moving atoms with velocity v in the cavity

of length L. We consider the one-dimensional case of the TLS moving along the cavity

axis. In this case Eq. (6.1) will become

ĤT =
ω0

2

N∑
i=1

σ̂zi + ωâ†â+ f(vt)
N∑
i=1

(
âσ̂+

i + â†σ̂−i
)

+ χ
(
â†â
)2
, (6.2)

where f(vt) is the shape function of the cavity field mode as given in Eq. (3.60). The

general cases of atomic motion with velocity v, are given in Eqs. (3.63) and (3.65), we

have

f(vt) = λ sin

(
ηπvt

L

)
and

f1(vt) =

∫ t

0

f(vt)dt = λ
L

ηπv

(
1− cos

(ηπvt
L

))
and we have,

f1(vt) =
1

η

(
1− cos

(ηπvt
L

))
for η 6= 0,

= λt for η = 0.

where η represents the number of half wavelengths in the cavity of length L. We consider

the total system prepared in the direct product of a mixed state of N TLS, that interacts

with the coherent field. We are interested in studying the effects of both pure and mixed

states of the atomic system on the quantifiers; hence, the initial state of the system can

be written as

ρ̂ (0) = [(1− p) |ψ〉〈ψ|+ p|g1g2.....gN〉〈g1g2.....gN |]⊗ ρ̂E, (6.3)

with |gj〉 and |ej〉 being the ground and excited states of the atomic system, respectively

and p is the statistical mixture parameter with 0 ≤ p ≤ 1. The ket vector is given as
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|ψ〉 = cos (θ) |g1g2.....gN〉 + sin (θ) |e1e2.....eN〉, where 0 ≤ θ ≤ π. The parameter θ in |ψ〉

allows us to study the effects of superposition of atomic states on the quantifiers. The

particular choice of the initial state of the atomic system is important in the sense that

for p = 0 and θ = π/4, it reduces to a Greenberger-Horne-Zeilinger (GHZ) state which is

maximally entangled. Moreover, it is mathematically convenient to handle such a state.

ρ̂E is the coherent field and it can be written as

ρ̂E =
∑
n

pn|n〉〈n| (6.4)

where the weight function pn is

pn =
|α|2n e−|α|2n

n!
(6.5)

and

〈n〉=|α|2 (6.6)

where n represents the photon number inside the cavity. The set of allowable basis states

{|ψi〉} can be written as

{|ψi〉} = |g1g2.....gN,n+N〉, |e1g2.....gN , n+N − 1〉, ...., |e1e2.....eN , n〉. (6.7)

At later time t, the final state is

ρ̂AF (t) =
N∑
i,j

|ψi〉〈ψi|ρ̂(t)|ψj〉〈ψj|, (6.8)

where ρ̂(t) in terms of eigenvalues of the initial states can be written as

ρ̂AF (t) =
N∑
i,j

exp (−i (Ei − Ej) t)× 〈ψi|ρ̂(0)|ψj〉|ψi〉〈ψj|, (6.9)

and Ei, Ej and |ψi〉, |ψj〉 are the eigenvalues and eigenvectors of ρ̂ (0). The final state of

TLS is obtained after taking the trace over the field i.e. ρ̂T (t) = TrF
[
ρ̂AF (t)

]
.

6.3 Multipartite Quantum Correlations and Entan-

glement

For a bipartite system, composed of two subsystems A and B, QD can be written [22],

mathematically, as from Eq. (4.48)

DA→B(ρ̂AB) = min
{Π̂j

B}
[I(ρ̂AB)− J(ρ̂AB){Π̂j

B}
] (6.10)

73



where ρ̂AB is the density operator of the composite system AB and I and J are the MI

given by Eqs. (4.30) and (4.32). In order to calculate the multipartite the MPQC, the

GQD given by Eq. (4.59),

GQD(ρT ) = min
{Πk}

{ N∑
j=1

1∑
l=0

ρ̃llj log2 ρ̃
ll
j −

2N−1∑
k=0

ρ̃kkT log2 ρ̃
kk
T

}
+

N∑
j=1

S(ρj)− S(ρT ) (6.11)

where ρ̂T defines the density matrix of total system and ρj is the density matrix of the

subsystem j. The other definitions, expressions of Eq. (6.11) can be found in Sec. (4.10).

For a density operator ρ̂T , the VNE is defined as

S(ρ̂T ) = −Tr(ρ̂T log2 ρ̂T ) = −
∑
i

ri ln ri, (6.12)

where ri are the eigenvalues ρ̂T .

6.4 Results and discussions

We study the dynamical behavior of the GQD and VNE for N moving TLS (two, three,

and four TLS). The system interacts with a single-mode coherent field in the NLKM. We

have carried out numerical calculations to find the dynamics of the GQD and VNE and

we have taken the time step-size of 0.1. The dynamical behavior of the GQD and VNE

without the atomic motion (η = 0) for two TLS (N = 2) under the NLKM is shown in

Fig. (6.1). The behavior is studied for initial pure (p = 0) and mixed (p = 0.5) atomic

states with mixing parameter θ = 3π/4. The GQD and VNE behavior is studied for

different values of χ and |α|2 = 36. For initial pure and mixed states, repeated collapses

and the revivals of the GQD and VNE are observed for different values of the NLKM

parameter. It is seen that the revival time of the GQD and VNE is decreased when χ

is increased. The GQD is found heavily suppressed at χ = 3 as compared to χ=0.3.

According to Fig. (6.1), the decrease in the revival time of the GQD and VNE with the

higher NLKM parameters values show that with the higher χ value, the MPQC arise in

the system early in the time evolution. The amplitude of the VNE decreases slowly as

compared to the amplitude of the GQD in the presence of the NLKM even at higher

values of χ. It is also observed that the initial pure state has a slightly higher magnitude

of GQD as compared to the mixed states with a small effect of the mixing parameter, p

on the dynamics of these quantifiers. Furthermore, it has been observed that the revival
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time of the quantifiers is almost the same for different initial states, and the NLKM

parameter, χ values.

Figs. (6.2) and (6.3) show the behavior of the quantifiers in the presence of the NLKM

for three (N = 3) and four (N = 4) TLS, respectively, with η = 0. It is observed that,

in the case of N = 3 and N = 4, the collapses and revivals occur repeatedly for both

VNE and GQD for different values of the NLKM parameter χ. In comparison with Fig.

(6.1), the amplitude of the revivals of the GQD is increased for N = 3 and N = 4 for

different χ. It is also observed that the time interval between two consecutive revivals is

almost the same for N = 3 and N = 4. However, the effect of the NLKM parameter χ on

the amplitude of the revivals has a promising effect for the N = 4 case. It is found that

the VNE for N = 3 and N = 4 is increased as compared to N = 2 for χ = 0.3, but no

significant increase is observed for χ = 1 and χ = 3. This shows that the systems with

large N values are more entangled at lower Kerr parameter values as compared to the

higher values. Moreover, the revival time of the quantifiers decreases with the increase

of χ for both the initial states in the case of the large N atomic systems.

Figure 6.1: (color online) The dynamical behavior of the GQD and VNE for N=2 with χ = 0.3, 1

and 3 at θ = 3π/4, |α|2 = 36, η = 0. The insets show the magnified view of the quantifiers for

χ = 3.
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Figure 6.2: (color online) The dynamical behavior of the GQD and VNE for N=3 with χ = 0.3, 1

and 3 at θ = 3π/4, |α|2 = 36, η = 0. The insets show the magnified view of the quantifiers for

χ = 3.

Figure 6.3: (color online) The dynamical behavior of the GQD and VNE for N=4 with χ = 0.3, 1

and 3 at θ = 3π/4, |α|2 = 36, η = 0. The insets show the magnified view of the quantifiers for

χ = 3.
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Figure 6.4: (color online) The dynamical behavior of the GQD and VNE for N=2,3 and 4 with

χ = 0.3, 1 and 3 at p = 0.5, θ = 3π/4, |α|2 = 36, η = 1. The insets show the magnified view of

the quantifiers for χ = 3.

Figure 6.5: (color online) The dynamical behavior of the GQD and VNE of the system N=2,3

and 4 with χ = 1 and |α|2 = 16 and 25. All data is for p = 0.5, θ = 3π/4 and η = 0.

In Fig. (6.4), the dynamical evolution of the GQD and VNE is shown for two (N = 2),

three (N = 3) and four (N = 4) moving TLS (η = 1) surrounded by the NLKM. As

compared to Figs. (6.1-6.3), Fig. (6.4) shows that the number of revivals is increased

for all the atomic systems which are almost doubled as compared to the atomic systems
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with η = 0, in the NLKM. However, the amplitude of the revivals does not increase with

the atomic motion. For η = 1, the amplitude of revivals only increases for higher N

atomic systems and decreases by increasing χ. It is seen that the atomic motion assists

the quantum system to sustain the revivals. Furthermore, the width of the revivals is

increased as compared to η = 0. For χ = 0.3 and χ = 1, the number of revivals of the

GQD and VNE is equal and the revivals occur at equal intervals of time. Comparing

with the η = 0 case, the number of revivals per unit scaled time is decreased at χ = 3

and by increasing the value of χ from 1 to 3, the dynamics of the GQD and VNE show

a decrease in the revivals. Hence, the collapses and revivals describe the periodic nature

of the GQD and VNE during the time evolution of the quantum system.

Fig. (6.5) shows the effect of the average number of photons on the dynamics of the GQD

and VNE for different values of |α|2. It is seen that the change in the average number of

photons in the system has a notable effect on the system dynamics. In the presence of

the NLKM, at χ = 1 and by increasing α, the GQD of the system is decreased. As we

have seen in Figs. (6.1-6.3), the number of revivals increases with χ whereas the number

of revivals remains the same with the increase of α and the dynamical behavior suggests

that in the presence of the NLKM there is no change in the revivals with the increase

of the number of average photons α. It is seen that under the influence of the NLKM

with |α|2 = 16, and |α|2 = 25 rapid oscillations are observed in the revival of the GQD

and VNE. However, the amplitude of the revival is decreased when the average number

of photons is increased. Furthermore, no change in the VNE of the quantum systems is

observed due to the variation of the average number of photons for the large N atomic

systems.

6.5 Conclusion

We studied the dynamics of GQD and VNE for a system composed of N moving TLS

that interact with a single-mode coherent field. The system is present in the NLKM. We

considered the Tavis-Cumming model extended for N atoms. We explored the GQD and

VNE under different scenarios, i.e. by changing the number of TLS in the system, the

average photons < n >, and the NLKM parameter χ. Studies were made for both pure

and mixed initial atomic states.
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We observe the collapses and revivals in the quantifiers for different χ values. It was found

that for higher Kerr parameter values, the magnitude of the revivals of QE is suppressed

for the quantum system. It was shown that the periodic response of QE was sustained

during the dynamics of a quantum system composed of relatively large N. It was also seen

that mixed states have comparatively depressed oscillations of the GQD as compared to

the pure states. However, the GQD and VNE were decreased by increasing the NLKM

parameter and < n >. Moreover, the revivals increased with the increase of the Kerr

parameter while remaining sustained when the average number of photons is increased.

Furthermore, no change in the VNE of the quantum systems was observed due to the

variation in the < n > for the system composed of relatively larger N. Furthermore,

the atomic systems with larger N were found more entangled at lower χ as compared to

the higher values. Moreover, the revival time of both GQD and von Neumann entropy

increased with the increase of χ for rather a large N in the system.
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Chapter 7

Multipartite quantum correlations

and entanglement in two, three and

four two-level moving atoms

interacting with Fock field in

presence of nonlinear Kerr medium

7.1 Introduction

This chapter is focused to study the dynamics of moving N TLS interacting with the

single-mode Fock field and are in the influence of the Non-Linear Kerr Medium (NLKM).

The dynamics of the GQD and VNE in the presence of the NLKM for two, three, and

four TLS are investigated.

This chapter is organized as follows; In Sec. (7.2), we present the model and the Hamil-

tonian. We also study the dynamics of the moving two, three, and four TLS. In Sec.

(7.3), we present the discussion on the results. In Sec. (7.4), the results are concluded.

7.2 The Model

We consider a similar approach as introduced in the simplest Tavis-Cummings (TC)

model [130]. We consider N moving TLS in the single mode Fock field. The cavity is
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filled with the NLKM. The total Hamiltonian of the system, ĤT under the RWA can be

written as, also given in Eq. (2.93)

ĤT =
ω0

2

N∑
i=1

σ̂zi + ωâ†â+ f(vt)
N∑
i=1

(
âσ̂+

i + â†σ̂−i
)

+ χ
(
â†â
)2
, (7.1)

where f(vt) is associated with the atomic motion and is defined in Eq. (3.60), and

its conditions are also defined in Eqs. (3.63) and (3.65). The χ represents the Kerr

nonlinearity as given by Eq. (3.51). The interaction part of the Hamiltonian is given by

ĤI = f(vt)
N∑
i=1

(
âσ̂+

i + â†σ̂−i
)

+ χ
(
â†â
)2

(7.2)

We take the initial state,

ρ̂AF (0) = [(1− p) |ψ〉〈ψ|+ p|g1g2.....gN〉〈g1g2.....gN |]⊗ |n〉 〈n| , (7.3)

where |n〉 represents the Fock field and n is the photons number inside the cavity. The

state vector |ψ〉 can be written as

|ψ〉 = cos (θ) |g1g2.....gN〉+ sin (θ) |e1e2.....eN〉, (7.4)

where p is the statistical mixture parameter that makes the initial atomic state pure or

mixed with limits as given below

0 ≤ p ≤ 1 and 0 ≤ θ ≤ π. (7.5)

The set of allowable basis states{|ψi〉} can be written as

{|ψi〉} = |g1g2.....gN , n+N〉, |e1g2.....gN , n+N − 1〉, ...., |e1e2.....eN , n〉. (7.6)

At later time t, the final state is

ρ̂AF (t) =
N∑
i,j

|Ψi〉〈Ψi|ρ̂(t)|Ψj〉〈Ψj|, (7.7)

and ρ̂(t) in terms of eigenvalues can be written as

ρ̂AF (t) =
N∑
i,j

exp (−i (Ei − Ej) t)× 〈Ψi|ρ̂(0)|Ψj〉|Ψi〉〈Ψj|, (7.8)

where Ei, Ej and |Ψi〉, |Ψj〉 are the eigenvalues and eigenvectors of the density matrix.

In order to calculate total correlations in multipartite system, we use Eq. (4.59), given

by

GQD(ρT ) = min
{Πk}


N∑
j=1

1∑
l=0

ρ̃llj log2 ρ̃
ll
j −

2N−1∑
k=0

ρ̃kkT log2 ρ̃
kk
T

+
N∑
j=1

S(ρj)− S(ρT ), (7.9)
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where ρ̂T defines the density matrix of total system and the density matrix of the sub-

system j is ρ̂j. All other definitions and expressions of this equation can be found in Sec.

(4.10). And VNE is

S(ρ̂) = −Tr(ρ̂ log2 ρ) = −
∑
i

ri ln ri, (7.10)

where ri represents the eigenvalues belongs to the density matrix ρ̂, and also

S(ρ̂j) = −Tr[ρ̂j log2 ρ̂j], S(ρ̂T )=− Tr[ρ̂T log2 ρ̂T ], (7.11)

are the VNE of the subsystem j and the total system respectively.

7.3 Results and discussion

The dynamical evolution is studied of the GQD and VNE of moving N TLS (two, three,

and four TLS). The system interacts with a single-mode Fock field in the cavity filled

with the Non-Linear Kerr Medium. In Fig. (7.1) and Fig. (7.2), the dynamical behavior

of the quantifiers for the two TLS (i.e. N = 2), with the presence of a NLKM and with

η = 0, is presented. The other parameters in Fig. (7.1) are p = 0, the initial pure atomic

state is prepared with θ = 0 and θ = 3π/4 as the ground state and a superposition state,

respectively. The behavior of both quantifiers is analyzed for different Kerr factor values.

For an initial ground atomic state, the dynamics of the GQD under the Kerr Medium

exhibit periodic behavior. It is shown that the amplitude of the GQD is decreased if

the value of χ is increased. It is seen that the period of oscillations is reduced and its

amplitude is suppressed for χ = 3 as compared to χ = 0.3. The dynamical behavior

of the VNE for the initial ground state (θ = 0) also shows periodic oscillations. For

initial superposition state, the dynamics show the revivals in both quantifiers at χ = 1.

These revivals are more prominent at χ = 1 which means the system shares the MPQC

and entanglement between two TLS. For the initial superposition state, slow periodic

variations are seen in the GQD at χ = 3 and for χ = 0.3, the system shows varying

amplitude between the maximum and minimum MPQC among the TLS. Therefore, the

amplitude of periodic oscillations of the GQD is decreased for χ = 0.3 to χ = 3 in the

two TLS. This dynamical behavior is also observed in the case of the VNE. However,

the frequency of these oscillations shows different behavior in the system dynamics i.e.

the frequency of oscillations increases by increasing χ. In Fig. (7.2), the behavior of the
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GQD and VNE is plotted for the two different initial mixed states. Periodic oscillatory

behavior is seen. The oscillations are comparatively suppressed for the GQD in the case

of a mixed state.

Figure 7.1: (color online) The dynamics of the GQD and VNE for a two (N=2) TLS for p = 0,

n = 10 and η = 0. The insets show the magnified view of the quantifiers for χ = 3

Figure 7.2: (color online) The dynamics of the GQD and VNE for a two (N=2) TLS for p = 0.5,

n = 10 and η = 0. The insets show the magnified view of the quantifiers for χ = 3

Fig. (7.3) and Fig. (7.4) show the behavior of the GQD and VNE, for different Kerr

parameter values for the three TLS (i.e. N = 3) for different initial pure and mixed
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atomic states, respectively. We consider no atomic motion. The dynamics of the GQD

and VNE have constant and periodic varying amplitude for χ = 0.3 and θ = 0. Both the

GQD and VNE show constant oscillations at χ = 1. If we further increase the value of

the Non-Linear Kerr coefficient i.e. χ = 3, rapid oscillations are observed in the dynamics

of both quantifiers. For θ = 3π/4, the three TLS has revivals in the GQD and VNE for

the whole range of χ. The oscillations in these quantifiers reflect the sharing of quantum

correlations among the atomic systems throughout the dynamics. Non-zero value of the

VNE for this initial superposition of pure atomic states suggests that the atomic systems

have non-vanishing quantum interference in the system due to the availability of photons

and the accessible microstates of atomic states all the time. The dynamics are also

computed with two different initial mixed states and both the quantifiers have shown

periodic oscillations. The dynamics of VNE show non-vanishing quantum interference

in the atomic system for both mixed states. The dynamical behavior of the GQD and

VNE for N = 4 is shown in Fig. (7.5) and Fig. (7.6). No atomic motion is considered.

From Fig. (7.5), the rapid oscillations can be observed in the GQD and VNE as χ is

increased. However, the dynamics of the GQD and VNE are suppressed for higher values

of χ. Furthermore, the dynamical behavior of both the quantifier is found highly prone

to the NLKM.

Figure 7.3: (color online) The dynamics of the GQD and VNE for a three (N=3) TLS for p = 0,

n = 10 and η = 0. The insets show the magnified view of the quantifiers for χ = 3
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Figure 7.4: (color online) The dynamics of the GQD and VNE for a three (N=3) TLS for

p = 0.5, n = 10 and η = 0. The insets show the magnified view of the quantifiers for χ = 3

Figure 7.5: (color online) The dynamics of the GQD and VNE for a four (N=4) TLS for p = 0,

n = 10 and η = 0. The insets show the magnified view of the quantifiers for χ = 3
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Figure 7.6: (color online) The dynamics of the GQD and VNE for a four (N=4) TLS for p = 0.5,

n = 10 and η = 0. The insets show the magnified view of the quantifiers for χ = 3

In Fig. (7.7), the effects of the Kerr parameter with zero photons case, and without

the atomic motion, are studied in the dynamics of the GQD and VNE in the system for

an initially mixed state and the results are plotted by taking θ = 3π/4. When no photons

are available in the system, the two, three, and four TLS have periodic behavior in both

the quantifiers. Unlike the non-zero photon case, the GQD shows no rapid oscillations

for all the range of Kerr parameter χ. Furthermore, without the presence of the photons

in the system, the magnitude of the GQD and VNE in the dynamics is not suppressed

in the same fashion as with the case of the non-zero photon (see Figs. (7.1)-(7.6)).

The dynamics of the GQD suggest that for N = 2, the Kerr Medium does not have a

prominent effect on the magnitude and behavior of the GQD. For N = 3 and N = 4,

the Kerr parameter χ affects the dynamics of the GQD, and a prominent difference in

the magnitude and behavior is observed for different χ values. For the zero photon case,

the VNE dynamics show that the higher χ value decreases the VNE in the system. More

periodic behavior in the VNE is observed for χ = 3.
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Figure 7.7: (color online) The dynamics of the quantifiers for a two, three and four TLS for

p = 0.5, θ = 3π/4, n = 0 and η = 0.

In Figs. (7.8) and (7.9) we have plotted the dynamics of the quantifiers for moving

two, three, and four TLS in the presence of NLKM for an initial state corresponding to

p=0.5. In Fig. (7.8), we take χ = 0.3, θ = 0, and 3π/4, η = 1 and n = 10,. The dynamics

of both GQD and VNE show periodic oscillations. In Fig. (7.9), Kerr parameter is taken

as χ = 3. For χ = 3, a rapid oscillatory behavior of the GQD and VNE is observed.

In the case of moving atoms, and for θ = 0 and θ = 3π/4, the behavior of the VNE

shows the non-zero value for all the Kerr parameter values due to accessible states in the

system. It is investigated that in the case of the moving atomic systems, increasing the

Kerr parameter χ reduces the magnitude of the GQD and VNE causes rapid oscillations

in these quantifiers. For χ = 3, the GQD (see Fig. (7.9), three and four TLS have more

rapid oscillations than two TLS, and this increase in oscillations is not observed for the

case of χ = 0.3 (Fig. (7.8)). We can conclude that the systems with more than two

moving TLS are more prone to the Kerr parameter value χ. Therefore, the motion of

atoms is favorable to sustain the QE in the atomic systems in the NLKM.
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Figure 7.8: (color online) The dynamical behavior of the GQD and VNE of a moving two, three

and four TLS for χ = 0.3, p = 0.5, n = 10 and η = 1 at θ = 0 and θ = 3π/4.

Figure 7.9: (color online) The dynamical behavior of the GQD and VNE of a moving two, three

and four TLS for χ = 3, p = 0.5, n = 10 and η = 1 at θ = 0 and θ = 3π/4.

7.4 Conclusions

We study the dynamics of the GQD and VNE for N TLS (two, three, and four TLS).

The system is present in the Kerr medium and interacts with the single-mode Fock field.

We observe that for higher Kerr parameter values, the GQD and VNE show periodic
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behavior which leads to the collapses and revivals in the QE. The mixed states have

comparatively suppressed oscillations of the GQD and the VNE has non-zero values

of quantum interference throughout the dynamics for the mixed states which lead to

the sustained response to the QE during the dynamics. The dynamical character of

both quantifiers is found highly affected by the Kerr Medium. Moreover, the number

of photons in the cavity affects the quantifiers for the entire range of Kerr values and

photons are responsible for the rapid oscillations in the quantifiers. Furthermore, for

moving TLS, the periodic behavior of the GQD and VNE is almost the same for initial

pure and mixed atomic states. Hence the atomic motion is favorable to sustaining the

QE in the systems in a Non-Linear Kerr Medium.
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Chapter 8

Influence of the Stark shift on

multipartite quantum correlations

and entanglement of two, three and

four two-level atomic systems

8.1 Introduction

The main focus of this chapter is to investigate the GQD and VNE dynamics of moving

many TLS in the presence of Stark shift. We assume that the system is interacting with

the Fock field and coherent field.

The structure of this chapter is as follows: in Sec. (8.2), we describe the model Hamilto-

nian. Furthermore, we review the GQD and VNE and the dynamics of the system. The

findings and discussions are reported in Sec. (8.3). In Sec. (8.4), we conclude our results.

8.2 Hamiltonian model

The Tavis-Cummings model describing two identical TLS, A and B, coupled with the

single-mode field C, given by Eq. (2.93). The total Hamiltonian of the system composed

of N TLS ĤT under the RWA can be written as

ĤT =
ω0

2

N∑
i=1

σ̂zi + ωâ†â+ f(vt)
N∑
i=1

(
âσ̂+

i + â†σ̂−i
)

+
N∑
i=1

βâ†â|gi〉〈gi|, (8.1)
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The function f(vt) is the cavity shape function for moving atomic system as we have

described in Eq. (3.60). The conditions of moving and static atom cases are given in

Eqs. (3.63) and (3.65). The parameter β is the Stark parameter as given in Eq. (3.56).

Assuming that the atoms resonantly interact with the field, the interaction Hamiltonian

of the system is

ĤI = f(vt)
N∑
i=1

(
âσ̂+

i + â†σ̂−i
)

+
N∑
i=1

βâ†â|gi〉〈gi| (8.2)

We consider the total system prepared in the direct product of a mixed state of N atoms

with the field. The initial state of the atomic system and the field can be written as

ρ̂ (0) = [(1− p) |ψ〉〈ψ|+ p|g1g2.....gN〉〈g1g2.....gN |]⊗ ρ̂E, (8.3)

The ket vector is written as |ψ〉 = cos (θ) |g1g2.....gN〉+sin (θ) |e1e2.....eN〉 where 0≤ θ ≤ π.

p is the statistical mixture parameter with 0 ≤ p ≤ 1, and ρ̂E is the coherent field and it

can be written as

ρ̂E =
∑
n

pn|n〉〈n| (8.4)

where the weight function pn is

pn = 1 (8.5)

for the Fock field and

pn =
|α|2n e−|α|2n

n!

for the Coherent field and

〈n〉=|α|2 (8.6)

where n represents the number of photons inside the cavity.

The set of allowable basis states {|ψi〉} are

{|ψi〉} = |g1g2.....gN,n+N〉, |e1g2.....gN , n+N − 1〉, ...., |e1e2.....eN , n〉. (8.7)

where |ei〉 is the excited state of the ith atom. At later time t, the final state is

ρ̂AF (t) =
N∑
i,j

|ψi〉〈ψi|ρ̂(t)|ψj〉〈ψj|, (8.8)

and ρ̂(t) in terms of eigenvalues of the initial states can be written as

ρ̂AF (t) =
N∑
i,j

exp (−i (Ei − Ej) t)× 〈ψi|ρ̂(0)|ψj〉|ψi〉〈ψj|, (8.9)
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where Ei, Ej and |ψi〉, |ψj〉 are the eigenvalues and eigenvectors of the density matrix

ρ̂ (0). The final state of the atomic system is obtained after taking the trace over the field

i.e. ρ̂T (t) = TrF
[
ρ̂AF (t)

]
. To calculate the MPQC in our multipartite system we can use

Eq. (4.59) of the GQD [22] given below

GQD(ρT ) = min
{Πk}


N∑
j=1

1∑
l=0

ρ̃llj log2 ρ̃
ll
j −

2N−1∑
k=0

ρ̃kkT log2 ρ̃
kk
T

+
N∑
j=1

S(ρ̂j)− S(ρ̂T ), (8.10)

Furthermore,where ρ̂T defines the density matrix of total system and the density matrix

of the subsystem j is ρ̂j. All other definitions and expressions of Eq. (8.10) can be found

in Sec. (4.10). We define VNE as [132]

S(ρ̂) = −Tr(ρ̂ log2 ρ̂) = −
∑
i

ri ln ri, (8.11)

where ri are the eigenvalues ρT .

8.3 Results and discussions

Fig. (8.1) shows the effects of two different fields on the GQD and VNE for a two TLS

(N=2) without the atomic motion with different values of the Stark shift parameters. A

comparison is presented between the Fock field and coherent field with the same number

and an average number of photons. We have considered the initial mixed atomic state

with p = 0.5 and θ = 3π/4. In the case of the Fock field, the Stark shift parameter has

shown prominent and significant effects on the GQD and VNE. It is observed that by in-

creasing the Stark shift parameter β, both GQD and VNE decrease with time evolution.

Furthermore, the rapid oscillations of the GQD and VNE increase, and the time period

of oscillations decrease with the increasing value of β. In the case of the coherent field,

we have observed the collapses and revivals of GQD and VNE. The number of revivals

increases by increasing the value of β, and on the other hand, the amplitude of revival

and magnitude of the GQD and VNE decrease with β. When we compare both fields,

it is observed that fields have different effects on GQD and VNE. For the Fock field, we

observe that the maximum values of the magnitude of the GQD have decreased by an

order of magnitude for β = 3 as compared to β = 0.3 with time evolution. The same is

the case in the coherent field, the decrease of GQD is of the same order of magnitude.

There is a sharp decrease in the maximum value of the GQD, however, the dynamics of
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the VNE remain unchanged with the change of β. It is found that for the Fock field, the

maximum value of VNE decreases by a factor of 2 for β = 3 as compared to β = 0.3, and

for the coherent field, there is a slight decrease of VNE. This change in the magnitude of

the GQD and VNE in the presence of the Stark shift suggests that the MPQC decrease

with the increase of β for both Fock field and coherent field. The system loses quantum

correlations more rapidly in the presence of the coherent field as compared to the Fock

field with an increasing value of β. On the other hand, the QE remains almost the same

value in the coherent field when β is increased and drops by a factor of 2 for the case of

the Fock field. Hence, it is seen that due to the Stark effect, the GQD is decreased more

for the coherent field as compared to the Fock field, and the increase of the Stark shift

parameter β suppresses the GQD more in the presence of the coherent field as compared

to the Fock field, and we observed that the Fock field sustains the MPQC in the system.

The maximum value of the QE is decreased more rapidly for the Fock field with an in-

crease of β as compared to the coherent field.

In Figs. (8.2) and (8.3), the effect of β on the dynamical behavior of the GQD and VNE

is presented for the Fock field and coherent field for three (N=3) and four (N=4) TLS,

respectively. We have taken the initial mixed atomic state with p = 0.5 and θ = 3π/4.

We observe that the values of the quantifiers are increased as the system gets more TLS.

Furthermore, in the case of the Fock field, we have seen rapid oscillations for all the

values of β. The period of these rapid oscillations is also decreased for the large N atomic

system and the higher values of β. In the case of a coherent field, the GQD and VNE

increase for large N systems. However, in the case of the coherent field, the number of

revivals for N=3 and N=4 remain the same as for N=2. When we increase the value of

β from 0.3 to 3 under the influence of the Fock field for N = 3, we observed an order

of magnitude decrease in the value of GQD and the same is true for the coherent field.

On the other hand, for the Fock field, the magnitude of VNE is decreased by half and

for the coherent field, there is a slight decrease. When N = 4 and for the Fock field or

coherent field, the decrease in the maximum values of GQD at β = 0.3 to β = 3 is n

order of magnitude. The dynamics of VNE for N = 4 show that the maximum values

of VNE decrease by half for the case of the Fock field and no change for coherent field

with the increase in β from 0.3 to 3. For our system composed of N TLS, we have seen

that for the higher N systems, the GQD, and VNE are increased in the presence of the
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Stark shifted medium. Nonclassical fields have different trends in the quantifiers on the

increase of the GQD and VNE. In the case of the Fock field, the increase of GQD and

VNE is not linear, and the higher N systems have a non-linear increase of the GQD and

VNE for different β values. Moreover, the values of GQD and VNE decrease with the

increase of β for the system. For the coherent field, with the increase in N , the GQD

increases non-linearly for the different β values. For the coherent field, the VNE increases

linearly with the increase in N for β = 0.3 and remains the same with the increase in N

for β = 3. It is important to mention that varying the β affects the correlations of the N

TLS. The higher N systems are more prone to the increasing β and the magnitude of the

GQD is more suppressed as compared to the case of N = 2. In comparison, the system

has increased GQD for the Fock field as compared to the coherent field and the GQD is

slightly more suppressed with the increase of β for the coherent field as compared to the

Fock field. The dynamics of the VNE show that QE decreases with the increase of β and

QE and non-classical correlations are affected in a different way for the Fock field and

coherent field. The GQD increases with the N for both the Fock field and coherent field

while the VNE increases only for the Fock field. In the case of the coherent field, larger

β do not favor the system to enhance the QE with the N.

Fig. (8.4) shows the behavior of the quantifiers for a two TLS (N=2) with η = 1. The

dynamical behavior is studied with the different β values. In this case of a two TLS

(N=2), we have taken n = 49 for the Fock field and |α|2 = 49 for the coherent field. The

dynamical behavior is studied with the initial mixed atomic state for p = 0.5, θ = 3π/4

and taken η = 1. In the case of the Fock field, we observe periodic oscillations for the

GQD and VNE for all the values of β. The period of oscillations remains the same for all

the values of β but the oscillations get more rapid as β is increased. The magnitude of the

oscillation decreases with the increase of β. For the coherent field, the magnitude of the

GQD and VNE decrease with β. Furthermore, the collapses and revivals are observed for

each value of the β. The magnitude of the revivals decreases with the increase of β but

the number of main revivals per unit scaled time remains the same for the whole range

of β. For β = 1, the collapses are more sustained as compared to β = 0.3 and β = 3. For

β = 3, we observe further revivals along with the main revivals. These revivals occur in

the middle of the main revivals and have a smaller amplitude as compared to the main

revivals that correspond to β = 3. These results suggest that the QE is sustained and
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maintained for the system with the atomic motion, for both the Fock field and coherent

field in the Stark shift.

Figs. (8.5) and (8.6) shows the behavior of the quantifiers for three (N=3) and four (N=4)

TLS for the Fock field and coherent field with η = 1. For the case of the moving atomic

system, it is observed that both GQD and VNE show periodic oscillations for the Fock

field. In the case of the coherent field, both GQD and VNE show collapses and revivals

for all the values of the β. For N=3 and N=4, we observe the magnitude of the quantifiers

is suppressed by the increase of β and the rapid oscillations increase with its increase. For

the case of moving atoms, the number of periodic oscillations and revivals for the GQD

and VNE, per unit scaled time, remain the same for both Fock field and coherent field.

The magnitude of the GQD and VNE increase with the increase in the dimension of the

system for the Fock field, while for the coherent field this increase is only prominent for

β = 0.3 and β = 1. It is observed that for the large N atomic systems, the atomic motion

does not affect the period of oscillations as the number of atoms N is increased. In the

case of the Fock field, the period of oscillation remains the same with the increase of the

β. Furthermore, for the Fock field, with the increase of β, rapid oscillations of the system

increase, and it remain the same for the different number of the atoms N. For the coherent

field, the atomic motion affects the system to have revivals that occur at the same scaled

time for all the values of β. The increase in the system size N increases the GQD and

VNE in the system. With the atomic motion, the coherent field has decreased GQD and

VNE as compared to the Fock field. In comparison for both cases of with and without

atomic motion, the nonclassical fields and Stark shift parameter β have some interesting

effects on the dynamical behavior of the GQD and VNE of the system. For the case of

the Fock field, atomic motion does not affect the magnitude of the GQD with β values

and different N. In this case, the atomic motion changes the shape of the oscillations of

the GQD and VNE and changes the period of these oscillations as compared to no atomic

motion. This change in the period of oscillations is different for the different values of β.

In the case of the coherent field, the atomic motion does not change the magnitude of

the GQD with β. It is seen that the number of revivals per unit scaled time of the GQD

and VNE change as compared to the case without the atomic motion and this change

is different for the different values of β. In the case of β = 0.3, the number of revivals

per unit scaled time increases as compared to the case when there is no atomic motion
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present. For the case of β = 1, the number of revivals per unit scaled time remains the

same and decreases for the case of β = 3. Therefore, the oscillations of the GQD and

VNE show the sustained behavior of the QE with atomic motion in the presence of the

Stark effect.

Figure 8.1: (color online) The dynamics of the GQD and VNE of a two TLS (N = 2) are plotted

with different β values for two different field states with n = 49 and |α|2 = 49. All data is for

p = 0.5, θ = 3π/4, η = 0. The insets show the magnified view of the quantifiers for β = 3.
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Figure 8.2: (color online) The dynamics of the GQD and VNE of a three TLS (N = 3) are

plotted with different β values for two different field states with n = 49 and |α|2 = 49. All data

is for p = 0.5, θ = 3π/4, η = 0. The insets show the magnified view of the quantifiers for β = 3.

Figure 8.3: (color online) The dynamics of the GQD and VNE of a four TLS (N = 4) are plotted

with different β values for two different field states with n = 49 and |α|2 = 49. All data is for

p = 0.5, θ = 3π/4, η = 0. The insets show the magnified view of the quantifiers for β = 3.
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Figure 8.4: (color online) The dynamics of the GQD and VNE of a two TLS (N = 2) are plotted

with different β values for two different field states with n = 49 and |α|2 = 49. All data is for

p = 0.5, θ = 3π/4, η = 1. The insets show the magnified view of the quantifiers for β = 3.

Figure 8.5: (color online) The dynamics of the GQD and VNE of a three TLS (N = 3) are

plotted with different β values for two different field states with n = 49 and |α|2 = 49. All data

is for p = 0.5, θ = 3π/4, η = 1. The insets show the magnified view of the quantifiers for β = 3.
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Figure 8.6: (color online) The dynamics of the GQD and VNE of a four TLS (N = 4) are plotted

with different β values for two different field states with n = 49 and |α|2 = 49. All data is for

p = 0.5, θ = 3π/4, η = 1. The insets show the magnified view of the quantifiers for β = 3.

Figure 8.7: (color online) The dynamics of the GQD and VNE of the system composed of N

TLS are plotted for the initial pure and mixed atomic state for the Fock field with n = 49,

β = 0.3, θ = 0, η = 0.
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Figure 8.8: (color online) The dynamics of the GQD and VNE of the system composed of N

TLS are plotted for the initial pure and mixed atomic state for the coherent field with |α|2 = 49,

β = 0.3, θ = 0, η = 0.

The effects of the initial atomic state on the dynamics of the GQD and VNE for the

Fock field and coherent field is shown in Figs. (8.7) and (8.8). The dynamics of GQD

and VNE are studied with the two different initial atomic states corresponding to pure

(p = 0) and mixed (p = 0.5) and with θ = 0. The Stark shift parameter is fixed at

β = 0.3 for both the Fock and Coherent field. In the case of the Fock field, as shown in

Fig. (7), it is seen that the pure state has slightly increased GQD as compared to the

mixed state. But for the higher N systems, this difference is reduced and both initial

pure and mixed states have almost equal GQD. Furthermore, for N=2, the GQD has an

almost equal number of periodic oscillations with the time evolution. For the higher N

values, it is observed that the mixed state shows more periodic oscillations as compared

to the pure state. On the other hand, the initially mixed state shows slightly more VNE

as compared to the pure state for all values of N (number of atoms). The initially mixed

state has a non-zero VNE value showing that the system has sustained the QE. Fig. (8)

represents the effect of initial atomic states on the GQD and VNE for the system in the

case of the coherent field. For initial mixed and pure states, collapses and revivals are

observed for QGD and VNE. The mixed state has slightly more GQD and VNE with

time evolution as compared to the initial pure state. Both states have non-zero VNE

values describing that the QE is present for all values of N (number of atoms) for both

100

x 10,3 N=2 
1.5 2 

x 10 ,3 N=3 
3 

x 10 .3 N=4 

1==:::,1 1.5 
C C C 2 
0 0 0 
Cl Cl Cl 

0.5 
0.5 

0 0 0 
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 

I I I 
N=2 N=3 N=4 

O.D22 O.D22 

0.02 

w w 0.02 w 0.02 
Z Z Z 
> 0.018 > > 

0.018 0.018 

0.016 0.016 0.016 
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 

I I I 



pure and mixed states.

8.4 Conclusions

We studied the dynamics of the GQD and VNE of moving two, three, and four TLS

interacting with the Fock field and coherent field in the presence of the Stark shift. The

dynamics of the GQD and VNE for two, three, and four TLS affected by the Stark effect

was examined. It was seen that the Stark effect has a prominent role on the GQD and

VNE during the dynamics of the systems. The change in the magnitude of the GQD and

VNE in the presence of the Stark shift suggested that the MPQC were decreased with

the increase of β for both Fock field and coherent field. The system lost the MPQC more

rapidly in the presence of the coherent field as compared to the Fock field with increasing

β values. It was found that in the presence of the Stark shift, the GQD was decreased

more for the coherent field as compared to the Fock field due to the increase of β values,

and we observed that the Fock field sustains the MPQC in the system. The maximum

value of the QE was decreased more rapidly for the Fock field with the increase of β as

compared to the coherent field. The GQD and VNE were increased in the presence of

the Stark shift for large N systems. It is important to mention that varying β affected

the MPQC of the N TLS. The higher N systems were more prone to increasing values

of β and the magnitude of the GQD was more suppressed as compared to the case of

N = 2. In comparison, the system had increased GQD for the Fock field as compared

to the coherent field and the GQD was rather more suppressed with the increase of β

for the coherent field as compared to the Fock field. The dynamics of the VNE show

that the QE decreased with the increase of β and the QE and non-classical correlations

were affected in a different way for the Fock and the Coherent field. The GQD increased

with the number of atoms N for both the Fock field and coherent field while the VNE

increased only for the Fock field. For the coherent field, larger values of β did not favor

the system to increase the QE with the number of atoms N. The QE was sustained and

maintained for the system for both the Fock field and coherent field in the presence of

the Stark shift. For the higher N atomic systems, the atomic motion did not affect the

period of oscillations of the system. The oscillations of the GQD and VNE showed the

sustained behavior of the QE with atomic motion in the presence of the Stark effect. For
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initial mixed and pure states, collapses and revivals were observed for the GQD and VNE

in the presence of the Stark shift for both the Fock field and coherent field. The mixed

state had slightly more GQD and VNE with time evolution as compared to the initial

pure state. Both states had non-zero VNE values describing that QE was present for all

values of N (number of atoms).
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Chapter 9

Summary and Conclusions

The MPQC and entanglement play a pivotal role in quantum computing and QIT. QE

is thought to be a resource of information. In recent years, researchers have given much

attention to exploring how MPQC and entanglement evolve with time in open quantum

systems interacting with different environments. Motivations to study the MPQC and

entanglement of many TLS comes from the possibility that quantum computers may be

built on using such TLS. In chapters, one to four, a brief review of quantum optics, open

quantum systems and the MPQC and QE is presented. Chapters five to eight are mainly

based on the computational work we have done and the results obtained are presented

and discussed.

In chapter five, we have investigated the GQD and VNE of multipartite TLS interacting

with the single mode Fock field. We used Tavis-Cummings model. We explored how the

MPQC and QE evolve with time. We computed the GQD and VNE for two, three, four,

and five TLS. The dynamical character of the GQD and VNE show an interplay between

the CC and MPQC. We found that with increasing the number of atoms in the system,

the numeric values of GQD and VNE are enhanced. The photons assisted the MPQC.

Number of revivals in unit time had a non-linear behavior with the number of photons

in the system. It was also observed that the maximum value of GQD in the system does

not change with the number of photons. The effect of an increasing number of TLS on

the quantifiers indicates that the GQD and VNE have different scaling behaviors.

In chapter six, we have studied the dynamics of GQD and VNE for quantum systems

composed of two, three and four TLS interacting with the single mode coherent field

under the influence of the NLKM. The collapses and revivals of the GQD and VNE are
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seen for different values of the NLKM parameter for both pure and mixed initial states.

It is observed that at higher values of the NLKM parameter, the magnitude of revivals

of the GQD and VNE is suppressed. It is also observed that for initial mixed states the

GQD shows comparatively damped oscillation as compared to initial pure states. The

interval between the revivals of both the GQD and VNE increases with the increase of

the NLKM parameter in systems with a relatively large number of atoms.

In chapter seven we explored the dynamics of two, three and four TLS interacting with

a single mode Fock field in presence of the NLKM. We computed the GQD and VNE

for initially mixed and pure states. The effect of the NLKM is pronounced on both the

entanglement and MPQC. It is seen that the mixed states have comparatively suppressed

oscillations in the case of the GQD. We also consider the case of moving atoms. For the

case of moving atoms, the periodic behavior of the GQD and VNE are rather similar for

the initially pure and mixed atomics states. It seems that the presence of atomic motion

in the cavity is favorable to sustaining the MPQC and entanglement in the many TLS in

presence of the NLKM.

Finally, in chapter eight we consider the influence of the Stark effect on two, three and

four TLS interacting with a single mode Fock field and coherent field. We investigated

the evolution of GQD and VNE, We consider both, the cases of stationary and moving

atoms initially in mixed or pure states. We observed that the MPQC and entanglement

decrease with the increase of Stark shift parameter. The MPQC and QE deplete more

rapidly in the case of the coherent field as compared to the Fock field with increasing

values of the Stark effect parameter. Moreover, we have seen that the magnitude of

GQD and VNE increases more rapidly with the increase in the number of photons in the

system. For both the initial pure and mixed states, rather periodic behavior is observed

for the GQD and VNE in the presence of the Stark shift for the Fock field and coherent

field.

Quantum entanglement has been experimentally realized in several experiments. It is

worth mentioning that Wang et al. have reported the experimental demonstration of

quantum entanglement among ten single photons that were spatially separated [133].

This work established a cutting-edge platform for conducting multiphoton experiments

and facilitated the development of advanced technologies for complex optical quantum

information tasks. Cervera-Lierta et al. experimentally demonstrated a certification of
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a high-dimensional multipartite entangled state using a superconducting quantum pro-

cessor [134]. By designing specific pulses for high-dimensional quantum operations, they

successfully created a three-qutrit Greenberger-Horne-Zeilinger state. Furthermore, Li

et al. reported the creation of multipartite entanglement involving billions of motional

atoms in a quantum memory at room temperature [135]. The researchers found a strong

correlation between the information contained in a single photon and the shared ex-

citation among the motional atoms, effectively driving the multipartite entanglement.

The experimental setup allowed for direct observation of the dynamic evolution of en-

tanglement depth and the effects of decoherence. These significant findings validate the

presence of genuine multipartite entanglement among billions of motional atoms under

ambient conditions, pushing the boundaries of accessible entanglement scales. Notably,

entanglement generation through optical channels between individually controlled qubits

has been demonstrated in various systems, such as trapped ions and atoms [136–138],

diamond nitrogen vacancy centers [139, 140], and quantum dots [141, 142]. Furthermore,

Pompili et al. have reported the successful realization of a three-node entanglement-based

quantum network [143].

Our work provides a comparison between the MPQC and QE for many TLS interacting

with a single mode Fock field and coherent field in presence of ID, nonlinear Kerr medium

and Stark shift.

105



Bibliography

[1] C. H. Bennett and D. P. DiVincenzo, Quantum information and computation, Na-

ture 404, 247 (2000).

[2] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement in many-body sys-

tems, Rev. Mod. Phys. 80, 517 (2008).

[3] T. J. Osborne and M. A. Nielsen, Entanglement in a simple quantum phase tran-

sition, Phys. Rev. A 66, 032110 (2002).

[4] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement in Quantum Critical

Phenomena, Phys. Rev. Lett. 90, 227902 (2003).

[5] A. Osterloh, L. Amico, G. Falci, and R. Fazio, Scaling of entanglement close to a

quantum phase transition, Nature 416, 608 (2002).

[6] Y. Yang, J. Jing, and Z. Zhao, Enhancing estimation precision of parameter for a

two-level atom with circular motion, Quantum Inf. Process. 18, 120 (2019).

[7] C. C. Rulli and M. S. Sarandy, Global quantum discord in multipartite systems,

Phys. Rev. A 84, 042109 (2011).

[8] E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical

radiation theories with application to the beam maser, Proc. IEEE 51, 89 (1963).

[9] A. M. Abdel-Hafez, Degenerate and nondegenerate two-mode normal squeezing in

a two-level atom and two-mode system, Phys. Rev. A 45, 6610 (1992).

[10] M. Abdel-Aty, General formalism of interaction of a two-level atom with cavity field

in arbitrary forms of nonlinearities, Phys. A Stat. Mech. Appl. 313, 471 (2002).

106



[11] M. Abdel-Aty, An investigation of entanglement and quasiprobability distribution

in a generalized Jaynes-Cummings model, J. Math. Phys. 44, 1457 (2003).

[12] T. M. El-Shahat, S. Abdel-Khalek, M. Abdel-Aty and A.-S. F. Obada, Aspects

on entropy squeezing of a two-level atom in a squeezed vacuum, Chaos Solitons

Fractals 18, 289 (2003).

[13] M. Abdel-Aty, M. S. Abdalla and A.-S. F. Obada, Entropy and phase properties

of isotropic coupled oscillators interacting with a single atom: one-and two-photon

processes, J. Opt. B, Quantum Semiclassical Opt. 4, S133 (2002).

[14] I. Jex, Emission spectra of a two-level atom under the presence of another two-level

atom, J. Mod. Opt 39, 835 (1991).

[15] S. Bougouffa, Entanglement dynamics of two-bipartite system under the influence

of dissipative environments, Opt. Commun. 283, 2989 (2010).

[16] M. M. Ashraf, Effects of a phase shift on two-photon process, Opt. Commun. 166,

49 (1999).

[17] H. Hekmatara and M. K. Tavassoly, Sub-Poissonian statistics, population inversion

and entropy squeezing of two two-level atoms interacting with a single-mode bino-

mial field: intensity-dependent coupling regime, Opt. Commun. 319, 121 (2014).

[18] G. M. Nikolopoulos and P. Lambropoulos, Collective behaviour in a system of two

two-level atoms at the edge of a photonic band-gap, J. Mod. Opt. 49, 6 (2002).

[19] N. H. Abdel-Wahab and M. F. Mourad, On the interaction between two two-level

atoms and a two mode cavity field in the presence of detuning and cross-Kerr

nonlinearity, Phys. Scr. 84, 015401 (2011).

[20] H. R. Baghshahi and M. K. Tavassoly, Dynamics of different entanglement measures

of two three-level atoms interacting nonlinearly with a single-mode field, Eur. Phys.

J. Plus, 130, 37 (2015).

[21] A. Nourmandipour and M. K. Tavassoly, A novel approach to entanglement dy-

namics of two two-level atoms interacting with dissipative cavities, Eur. Phys. J.

Plus, 130, 148 (2015).

107



[22] S. Campbell, L. Mazzola, G. D. Chiara, T. J. G. Apollaro, F. Plastina, T. Busch,

and M. Paternostro, Global quantum correlations in finite-size spin chains, New J.

Phys. 15, 043033 (2013).

[23] W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits,

Phys. Rev. Lett. 80, 2245 (1998).

[24] S. P. Walborn et al., Experimental determination of entanglement with a single

measurement, Nature 440, 1022 (2006).

[25] A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77, 1413

(1996).

[26] G. Vidal, R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65,

032314 (2002).

[27] P. S. Y. Poon, C. K. Law, Negativity of asymmetric two-mode Gaussian states:

An explicit analytic formula and physical interpretation, Phys. Rev. A 76, 054305

(2007).

[28] S. Ryu, W. Cai, A. Caro, Quantum entanglement of formation between qudits,

Phys. Rev. A 77, 052312 (2008).

[29] C. S. Yu, K. H. Ma, H. S. Song, Observable estimation of bipartite mixed-state

entanglement, Eur. Phys. J. D 56, 431 (2010).

[30] A. Miranowicz, S. Ishizaka, Closed formula for the relative entropy of entanglement,

Phys. Rev. A 78, 032310 (2008).

[31] M. Hayashi et al., Bounds on multipartite entangled orthogonal state discrimination

using local operations and classical communication, Phys. Rev. Lett. 96, 040501

(2006).

[32] C. W. Zhang, C. F. Li, Z. Y. Wang, G. C. Guo, Probabilistic quantum cloning via

Greenberger-Horne-Zeilinger states, Phys. Rev. A 62, 042302 (2000).

[33] S. Groblacher et al., Experimental quantum cryptography with qutrits, New J.

Phys. 8, 75 (2006).

108



[34] J. Leon, C. Sabin, Photon exchange and correlation transfer in atom-atom entan-

glement dynamics, Phys. Rev. A 79, 012301 (2009).

[35] F. Casagrande, A. Lulli, and M.G.A. Paris, Tripartite entanglement transfer from

flying modes to localized qubits, Phys. Rev. A 79, 022307 (2009).

[36] J. H. Huang, L. G. Wang, S. Y. Zhu, Disentanglement of three-qubit states in a

noisy environment, Phys. Rev. A 81, 064304 (2010).

[37] B. Militello, A. Messina, Genuine tripartite entanglement in a spin-star network at

thermal equilibrium, Phys. Rev. A 83, 042305 (2011).

[38] S. L. Braunstein and C. M. Caves, Information-Theoretic Bell inequalities, Phys.

Rev. Lett. 61, 662 (1988).

[39] C. H. Bennett, H. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial

entanglement by local operations, Phys. Rev. A 53, 2046 (1996).

[40] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K.

Wootters, Purification of Noisy Entanglement and Faithful Teleportation via Noisy

Channels, Phys. Rev. Lett. 76, 722 (1996).

[41] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Quantifying Entangle-

ment, Phys. Rev. Lett. 78, 2275 (1997).

[42] V. Vedral and M. B. Plenio, Entanglement measures and purification procedures,

Phys. Rev. A 57, 1619 (1998).

[43] L. Henderson and V. Vedral, Classical, quantum and total correlations, J. Phys. A,

Math. Gen. 34, 6899 (2001).

[44] H. Ollivier and W. H. Zurek, Quantum discord: A measure of the quantumness of

correlations, Phys. Rev. Lett. 88, 017901 (2001).

[45] R. Dillenschneider, Quantum discord and quantum phase transition in spin chains,

Phys. Rev. B 78, 224413 (2008).

[46] T. Werlang, C. Trippe, G. A. P. Ribeiro, and G. Rigolin, Quantum Correlations in

Spin Chains at Finite Temperatures and Quantum Phase Transitions, Phys. Rev.

Lett. 105, 095702 (2010).

109
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