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Abstract

In wireless sensor networks (WSNs), node deployment is one of
the most crucial issues as it impacts the cost of network deploy-
ment, capability of the network to achieve coverage objectives as
well as the life time of WSN. In this thesis, problem of minimum-
cost and connectivity guaranteed grid coverage (MCGC) is consid-
ered for WSN deployment. Ant colony optimization is an applica-
ble approach for the combinatorial optimization problem of MCGC.
A novel ACO based algorithm, ACO-Discreet is proposed in this
thesis to obtain solutions for the problem of MCGC. ACO-Discreet
works in two phases. In Phase-I, solution building process is car-
ried out like ordinary ACO-based algorithms. Phase-II effectively
removes the redundant sensors that are present in the solution ob-
tained from Phase-I and hence considerably reduces the coverage
cost. Simulation results have been presented to show the effective-

ness of the proposed algorithm.



Contents

Contents

1

2

Introduction

Literature Review

Ant Colony Optimization (ACO)
3.1 AntColony Optimization: . . .. ... ... ............

3.1.1
3.1.2

Stigmergy in Ants: . . . .
ACO Algorithm: . .. ..

ACO algorithms for WSN deployment

411
41.2
4.1.3
4.1.4
4.1.5

Pheromone Update: . . .
Pheromone Constraining:

42 ACO-TCAT: . ...........

421

43 ACO-Greedy: . ..........

43.1

ACO-Greedy Algorithm:

ACO-Discreet algorithm

Results and discussion
6.1 Experimental Setup: .. ... ..



NOMENCLATURE

7 Conclusions 46

Bibliography 48

vi



Chapter 1

Introduction

Wireless sensor networks have acquired considerable attention recently, es-
pecially after advancements in Micro-Electro-Mechanical Systems (MEMS) as
well as wireless communications. A WSN is made up of a large number of
sensor nodes. These sensor nodes can sense the events they are designed for,
process the sensed data and send it to sink via single or multiple hops. Appli-
cations of WSNs range from military to civilian, examples include surveillance
of hostile territory, agriculture, environmental monitoring etc. Designing a
WSN is a difficult task as it affects functioning of the network, cost of its de-
ployment, its capability to sense important events efficiently and its lifetime.
It is for this reason that, WSN deployment has become a hot topic for research.
Sensor nodes have limited energy as once they are deployed in the field, it is
difficult most of the times to replace the battaries when they are depleted. It
is, therefore, important to make sure that the network is deployed in such a

way that network life time is maximized. In general, the prime objective of
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WSN deployment is to achieve coverage and also maintain connectivity of the
network. WSN deployment can be divided into two types, i.e deployment
based on continued points and discrete grid points. Due to a great deal of
advantages, deployment based on discrete grid points has gained attention of
researchers recently. In general, a sensor node could be the data originator or
serve as relay node to forward another sensor node’s data to the sink. Trans-
mission of sensed data to sink usually takes a many-to-one form. As a conse-
quence of this phenomenon, nodes that are located in close vicinity of the sink
have a lot of relay data to forward to the sink and they end up utilizing their
battries very quickly. As a result energy hole is created and data can no longer
be transmitted to the sink [1]. The problem of energy hole should be con-
sidered while designing a WSN. In this thesis the problem of minimum-cost
and connectivity guaranteed grid coverage (MCGC) is considered for WSN
deployment. The main goal of this problem is to devise an efficient algorithm
which can cover all the desired points of interest (Pols). Deployment cost of
WSN deployment is defined in terms of number of sensor nodes placed in the
field. Our objective is to minimize the deployment cost in such a way that the
functioning of the network is not interrupted and connectivity of the network
remains intact. In this thesis a novel ACO based algorithm ACO-Discreet is
proposed to solve the problem of MCGC. Care has been taken to maximize the

network life time. ACO is an optimization approach in which a complex be-
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havior arises from the interaction of ants. ACO falls in the category of swarm
intelligence algorithms and very efficiently provides solutions for combinato-
rial optimization problems that are NP-hard e.g traveling salesman problem
(TSP)[2]. ACO is also suitable for the problem of MCGC. Our main contribu-

tions are :

e The heuristic value used ordinarily in ACO algorithms has been mod-
ified to place adjacent sensor nodes at larger distances while ensuring

connectivity between them.

e The operation of ACO-Discreet is divided into two phases unlike or-
dinary ACO algorithms which stop after returning a solution. ACO-
Discreet continues its operation even after a solution has been built and

seeks to reduce the solution further in the Phase-II of the algorithm.

Rest of the thesis is organized as follows. In Ch 2 literature review is pre-
sented. In Ch 3 the ACO algorithm has been explained briefly. In Ch 4 three
ACO based algorithms Easidesign, ACO-TCAT and ACO-Greedy employed
for WSN deployment are discussed. In Ch 5 ACO-Discreet has been proposed.
In Ch 6 results and discussion have been presented. In Ch 7 conclusions are

given.



Chapter 2

Literature Review

In wireless sensor networks, node deployment is an important issue. It is
a fundamental requirement that the sensor network be fully connected with
minimum deployment cost. Lot of recent research has focused on designing
efficient algorithms which can generate solutions that result in low WSN de-
ployment cost. Reduction in deployment cost is sought by minimizing the
number of deployed sensors. Grid based node deployment is presented in [3].
Coverage of k-cover points with minimum number of sensors is NP-complete.
In [4] a resource-bounded model is introduced for the optimization of grid
coverage problem. In [5] an approach similar to [4] is used and the two pro-
posed algorithms give average coverage as well as coverage to the grid points
that are least covered. Simulated annealing is used in [6] to solve the grid

based WSN node deployment problem but the effects of position of sink and
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the connectivity of the network is not considered. In [7] and [8] grid-based
placement of sensors is achieved with genetic algorithm, however communi-
cation between nodes is not considered. In [9] ant colony optimization is used
for WSN deployment but inadequacy of ant transitions leads to substandard
solutions. In [10] ACO-TCAT, an ant colony optimization approach with three
classes of ant transitions is proposed which results in better solutions com-
pared to [9]. In [11] ACO-Greedy is proposed which uses a greedy migration
approach for ants which results in further improvement compared to [10]. In
addition non-uniform coverage radii are used in ACO-Greedy to create more
node density in areas close to the sink and resolve the problem of energy hole
which arises due to more relay burden on nodes that are close to the sink.
There are similarities between [9], [10] and [11] but all of them neglect a large
number of redundant sensors that are present in the solutions they return. In
[12] redundancy check is used but no proper mechanism has been included in
the algorithm to remove the redundant sensors. Also the removal of all the
redundant sensors could lead to disconnection in the network. ACO-Discreet
proposed in this thesis works in two phases. In phase-I a modified heuristic is
used to decrease the density of nodes. In phase-II the built solution is further
investigated to look for redundant sensors. Thus the unneeded sensors are re-
moved from the solution in such a way that the operation of network is not

affected and the coverage cost is considerably reduced.



Chapter 3

Ant Colony Optimization (ACO)

In this chapter ant colony optimization (ACO) is described before we move
on to application of ACO algorithm to node deployment in wireless sensor

networks.

3.1 Ant Colony Optimization:

Ant Colony Optimization (ACO) comprises artificial systems that take inspi-
ration from foraging behavior of natural ants, that can be used to obtain so-
lutions for discrete optimization problems. Ant colony optimization falls in
the category of swarm intelligence algorithms which are inspired by biologi-
cal systems. The basic theme of swarm intelligence algorithms is that a group

of agents or boids interact with each other and with the surrounding environ-
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Figure 3.1: Ants Swarm (Image taken from en.wikipedia.org)

ment. The agents abide by a set of rules which ensure interaction among them-
selves and as a result a global intelligent behavior emerges although there is no
central authority to guide them towards that kind of behavior. Besides ACO,
other examples of swarm intelligence algorithms include Particle Swarm Op-
timization (PSO), Artificial Bee Colony Algorithm (ABC), Artificial Immune
Systems (AIS), The Grey Wolf Optimizer (GWO) , Stochastic Diffusion Search

(SDS) etc.

3.1.1 Stigmergy in Ants:

Stigmergy is the coordination among agents [13]. The effects of an action on
the environment provokes future actions and have an impact on them. Hence,
consequent actions are based on the previous actions and as a result an ordered

and systematic activity takes place.
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Stigmergy produces complex and intelligent systems, without any prior
plan of action, or central-control [13]. Ants have a very well developed and
sophisticated stigmergy.

Natural ants drift in search of food in a random manner, and when they
find a food source they return to their colony laying down a chemical called
pheromone on the path they traversed. When the other ants come across that
path, they are prone to follow the pheromone trail instead of moving around
in a random way, and lay down more pheromone on the paths they take while
they return from the food source. With the passage of time pheromone laid
down on different paths starts to evaporate, and hence its intensity scales
down. The longer the path, the longer an ant takes to traverse it. Hence
pheromone dimisihes quickly on the longer paths. On the other hand, if a
path is short, more ants walk through it and hence more supply of pheromone
is laid down before its gets to vaporize and as such large amount of pheromone
exists on such paths.

In absence of evaporation the paths that ants chose initially would turn
out to be overly appealing to the ants that tread such paths at later stages. This
would result in search for the solution being constrained. Thus, the exploration
of a short path attracts other ants to that path, and feedback finally steers all
the ants to one path. ACO algorithm imitates the behavior of natural ants

and constitutes “simulated ants” that roam around the graph in search of a
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solution to the problem. Example in Figure 3.2 elaborates foraging behaviour

of the ants.

Figure 3.2: Shortest path selection by ants (Image taken from de.wikipedia.org)

o The first ant follows path (a) to get to the food source, and comes back to

the nest (N) through path (b) laying down pheromone.

e Initially ants arbitrarily walk through all four possible paths, but gradu-
ally the strength of pheromone becomes highest on the shortest path and

more ants tend to follow that path.

e Finally all ants converge to the shortest path and the pheromone on the

other paths vanishes.



ANT COLONY OPTIMIZATION (ACO)

3.1.2 ACO Algorithm:

ACO was proposed in 1991 by Marco Dorigo in his PhD thesis Optimization,
learning, and Natural Algorithms, in which he modeled the approach of ants
in real world to solve problems. Lot of research has focused on modifications
to the original algorithm in recent years.

Ant colony optimization works for a predefined number of iterations. At
each iteration, a group of artificial ants build solutions by visiting one vertex
after another on a graph. During the tour, they have to follow the condition of
picking a particular vertex once only. During the solution building process, at
every step, next vertex is selected by an ant with probabilistic decision mak-
ing. The ant is inclined in favour of a vertex with more pheromone. When an
iteration ends, the values of pheromone are modified in accordance with the
quality of solutions obtained so as to make the future ants more inclined in
favour of the best solutions [14, 15].

ACO can be used to obtain solutions for discrete optimization problems

with following characteristics [16].

o C={cy,cp, ...cN. } A finite set of components

o L = {lecl(cicj) € CHIL| < N? is a finite set of potential links among

elements of C.

® Joo; = ](lc,-c]- ; 1) is a cost function associated with each link lc,-cj € L

10
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,with possible dependence on time t.
e O = O(C;L;t) is a finite set of constraints on elements of sets C and L.

® 5 =5 < CjfClunures Chpyunnne > is a sequence over the elements of C or that of
L.
A sequence s is also called a state of the problem. If S is the set of all
possible sequences, the set S of all the (sub) sequences that are practicable
keeping in view the constraints Q(C;L;t), is a subset of S. The set S
defines the feasible states of an optimization problem. The number of

elements in a sequence, is denoted by |s|.

e VY is a solution if it is an element of S and fulfills all the requirements of
a given problem. A solution may be multi-dimensional in terms of more

than one distinct sequences over the elements of C.

e Jy(L,t) is a cost linked to each solution ¥. Jy(L, t) is a function of all the

costs that pertain to the connections belonging to the solution ¥.
Ants participating in the search for solution possess following properties [16]:
e Each ant searches for a solution with minimum cost J¢ = min] ¢(L, t).

e Each ant k has memory M that’s used to store information about the path

it has traveled along. Memory can be used for constructing solutions, to

11



ANT COLONY OPTIMIZATION (ACO)

assess the built solutions, and to follow the treaded path in backward

direction.

An ant k in state s, = < s,_1,i > can move to any node j in its feasible

neighborhood NF, defined as Nf = {j|(j € N;) ~ (< s,,j >€ S)}.

Ant k is given an initial state s* and one or more termination conditions

ex. Typically, the initial state is a sequence of unit length.

Ants begin from the initial state and keep moving to states in the feasible
neighborhood, constructing the solution step by step. The construction

of solution ends when at least one of the termination conditions e is

fulfilled.

k — th ant on node i can go to a node j selected from N¥. The transition is
made with a probabilistic decision rule given as.
(73 (£)]* [7)°

Pi(t) = € Nk @3.1)
i) Yrent T [ranlP J

T;j and 7;; show the pheromone value and heuristic desirability respec-
tively. Parameters « and p control the weightage of pheromone trail and

heuristic value.

After a solution is constructed, the ant can trace the path used in solution

12
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in backwards direction and update the pheromone values on the arcs that

have been traversed. Pheromone update is given as;

Tt 1) = (1— p)myi(8) + é A1) (32)

p € (0,1) is the pheromone decay coefficient which controles the evap-
oration of previous pheromone value on all edges [17]. New pheromone

deposited by ant k is give as;

ATF(E) = 1/L5 (1) (3.3)

Hence new deposited pheromone is the reciprocal of the ant’s tour length,
i.e, shorter tours receive more pheromone and vice versa. Similarly, it is
evident from equation 3.2 that the larger the number of ants pass through

a particular link, the more pheromone At¥(t) is deposited on it.

Hence pheremone value remians high on paths that are short and through

which more ants pass.

13



Chapter 4

ACO algorithms for WSN

deployment

In this chapter, three ACO algorithms Easidesign [9], ATO-TCAT [10], and
ACO-Greedy [11] have been discussed for node deployment in wireless sensor
networks. Coverage requirements of wireless sensor network are formulated
as minimum-cost and connectivity guaranteed grid coverage (MCGC) prob-
lem. In (MCGC) problem sensors have to be deployed in field composed of
discrete grid points. The purpose of sensor deployment is to cover points of
interest (Pols) also called critical points. Our goal is to meet the coverage ob-
jectives in such a way that each sensor is connected to the sink and minimum

number of sensors are deployed.

14
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Sensor and its
coverage radius

¥ Sink

®  (Critical point

Figure 4.1: MCGC Problem (a) Before sensor deployment (b) After sensor de-

ployment

4.1 EasiDesign:

Easidesign algorithm [9] is described in detail in this section.

41.1 Problem Formulation:

The sensing field is composed of discrete points. Sensors are to be deployed on
these points. The sensing field is specified as a connected graph G =< V,E >.
The set V contains the candidate points for sensor nodes deployment. Set E

comprises links (u,v), where u,v € V. Communication radius of sensor nodes

15



ACO ALGORITHMS FOR WSN DEPLOYMENT

is denoted by r.. The set of critical points which have to be covered by sensors
is denoted by C, where C is a subset of V. Binary sensor model has been used
in which an event can be detected within the sensing radius r;. For a point v set
R, contains the candidate points which lie in its sensing region. The Boolean
variable, i, = 1 if c € R, and 0 otherwise.

Our goal is to find the smallest set P composed of candidate points where
placement of sensors ensures coverage of all critical points. Each pointv € P

of the solution should be connected to the sink via a simple path Py ;.

4.1.2 Easidesign Algorithm:

In EasiDesign algorithm [9] ants locomote and deposit sensors on the grid
points that they travel along in the sensing field. The goal is to cover all the
critical points. Points of solution are chosen probabilistically at each step con-
sidering the pheromone strength on the links between the ant’s current loca-
tion and the next possible points. When all ants finish building a solution, the
solution with smallest number of sensor nodes is cached. This process is re-
peated till a predetermined number of maximum iterations is completed and
in the end the best solution is selected. The input parameters in the pseudo-

code include:

e k, the least covered times of a critical point.

16
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e C,ut , total number of ants in one iteration.

® i, , maximum number of iterations.

e 1., period of pheromone constraining (explained in Section 3.1.5).

EasiDesign Algorithm:

1. EasiDesign(k ,cant, imax, He )

2. Initial point for each ant is selected randomly;

3. i =0; // ishows the iteration number;

4. WHILE(i < iyysy) DO

6. SelectNextPoint(j);
7. // Next point is selected probabilistically;
8. END FOR

9. Select the solution with minimum cost and enter it in the set P;

10.  GlobalPheromoneUpdate();

17
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11.  IF(i%n, == 0) THEN

12. PheromoneConstraining();
13. ENDIF
14. i++;

15. END WHILE

16. Select the best solution in set P;

17. RETURN the best solution;

In EasiDesign [9] there are three major components:

e Function SelectNextPoint() to select the next point in a probabilistic way.

e Function GlobalPheromoneUpdate() to modify pheromone values after each

iteration.

e Function PheromoneConstraining() to make adjustments in pheromone val-

ues to avert premature convergence.

4.1.3 Next Point Selection:

For next point selection, first off an ant finds out the possible candidate points,

then the ant applies a stochastic decision rule to choose one of the candidate

18
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points. All points that lie with in communication radius of current point are
next possible points. The points on which sensor placement can cover the un-
covered critical points are considered first by the ants. The strategy is formu-

lated as follows:

N, N°, # @
Nip = R 4.1)

N})ull’ foft =0

Set N7 holds the next possible points for ant i on point v. Set N}’ ; contains

ul
all those points which lie with in the communication radius of the sensor on
point v. Nevf fi which is a subset of set N})ull includes those points on which,
placement of a sensor can cover at least one such critical point that has not
been covered before. For an ant i on v, selection probability of a next possible

point u is:

pio— [To,ul” [%,u]ﬁ
ou & [471
Z [Tv,m] [Uv,m ] ’B

meN?

,u € N/ 4.2)

Where 1, gives the pheromone value for link (v,u), parameter a controls
the impact of 7, ,, parameter B controls the impact of 7} .. 7!, , represents the

heuristic desirability of link(v, u).

e =1Y vl +1 (4.3)

meCy

Set C,, contains the critical points which fall within coverage radius of sen-

19
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sors on point u. !, shows how many times a critical point m is “uncovered”.
175,,“ shows how many criticle points a sensor could cover when placed on point
u. In Figure 4.2, ant i is on point v and u is a candidate point for next point se-
lection. Placement of a sensor on point u will cover critical points c¢; and c;.
For 2-coverage deployment, c¢; should be covered by one more sensor hence
’yél = 1. ¢y, on the other hand, has not been covered by any sensor so far,
’cherefore,’yé2 = 2. Consequently, the over all desirability of point u is 4. The

constant 1 is added to avoid division by zero.

For 2-coverage T?f.,,, =4
point covered I‘Cf
& 1 1
& 0 2
For 3-coverage 7]:._“ =6
point covered r'cf
& 1 2
& 0 3

Figure 4.2: Example of the uncovered times 7%, and the heuristic desirability

nt, , for link(v, u).

20
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4.14 Pheromone Update:

When solutions are constructed by all ants, the pheromone values are updated
depending on quality of the solutions that are built [18].

The pheromone for a link is updated as follows:

Tou = (1= ) Tou + ATSS! (4.4)

p is the pheromone evaporation coefficient. After all ants build their so-
lutions existing pheromone on all links evaporates by a factor (1 — p). New

pheromone that’s deposited is given by A'Czl,’ﬁft = 1/ (Lpest Hy,,, ) if best solution

est

includes the point u in current iteration otherwise At?%!

= 0. Lpes; is the num-
ber of sensors employed in the best solution achieved. The term H},, prevents
solutions with high routing cost. In Figure 4.3 a, sensor on point v has an un-

reasonable route to the sink. As could be seen in Figure 4.3 b, inclusion of Hy,;

in pheromone update process resolves the problem.

21



ACO ALGORITHMS FOR WSN DEPLOYMENT

0} | N i

¢ G—e—e—e—g—o

) ¢ ¥Sink

P99 osensor ¢

- - ") T P W S

0 i ¢  —Route &

¢ $ :
o—b—o0—o6-09 $ o—6—0 e
. &

Figure 4.3: Example of route optimization.

4.1.5 Pheromone Constraining:

Pheromone Constraining prevents the value of pheromone from increasing or

decreasing beyond given limits, 7., < To,u < Tax- Tmax 1S given as under,

Timax = 1/ PLpest (4.5)

The process of pheromone constraining dosen’t occur after every iteration
rather its repeated periodically after a given number of iterations. Variable 7,

controles the frequency of occurrence of pheromone constraining process.

22
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4.2 ACO-TCAT:

In ACO-TCAT [10] three classes of ant transitions have been proposed for next

point selection. Increase in ant transitions results in better solutions.

421 ClassI of Ant Transition:

ECPs (Effective candidate points):

ECPs are those candidate points on which sensor placement could cover
atleast one uncovered critical point.

According to first ant transition, the set of candidate points for next point

selection for an ant on point i is;

Z. Secri), 1 Secpiy # ¢
candidate(I) = (4.6)

¢ otherwise.

The set Sgcp(;) contains the ECPs that lie with in the communication radius

of the sensor on point i.

4.2.2 Class II of Ant Transition:

If there are no ECPs with in the communication radius of point i, Class II of

ant transition is employed.

23
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¥ Sink

. Critical Point

Sensor and its
coverage radius

Figure 4.4: Example of ESPs.

ESPs (Effective selected points):

ESPs are those points of solution inside whose communication radius there
is atleast one ECP.

According to second ant transition, the set of candidate points for next

point selection for an ant on point i is;

1. Sesp(iy,  if Sesp(iy 7 @
cundidate(H) = 4.7)

¢ otherwise.

Sesp(i) contains all the ESPs inside the network. The second ant transition
is illustrated in the Figure 4.4. Using the first ant transition, the ant keeps
moving from point m; to my. As it reaches the point my, it looks for those
points of solution where sensors have already been deployed and ECPs exist

with in their communication radii. Point of solution m, contains ECPs within

24
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its communication radius. Consequently, the ant moves to the point m3 so that
it may move to an ECP in next step to cover uncovered critical points. If at
some stage during the search for solution, more than one ESPs exist, either of

them could be selected randomly.

4.2.3 Class III of Ant Transition:

Incase S’ ... (I) = ¢and S (II) = ¢, third class of ant transition is

candidate

employed.

¥ Sink

s  Critical Point

Sensor and its
1:]::{ coverage radius

Figure 4.5: Example of RCPs.

RCPs (Residual candidate points):

RCPs are those candidate points on which sensor placement does not cover
any critical point.

According to third ant transition, the set of candidate points for next point

selection for an ant on point i is;

25
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1. Srcp(iy, i Srepi) 7 ¢
Candidate(III) = (4.8)

¢ otherwise.

Srcp(i) is the set of RCPs within the communication radius of point i. The
third ant transition is illustrated in Figure 4.5. The ant keeps moving from
point m; to point ms using the first ant transition, but it runs out of ECPs on
point ms. Third ant transition is then employed and the ant moves from point
ms to the RCP mg. ECPs are located within the communication radius of sensor

on mg and the ant can move to any of them using the first ant transition.

ACO-TCAT Algorithm:

1. Initialize all parameters.

2. Each ant moves to a new location by employing one of the three classes

of ant transitions.

3. Set of points of solution is updated.

4. Candidate points for ant transition of Class I are updated for every ant.

5. Candidate points for ant transition of Class II are updated for every ant.

26
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6. Candidate points for ant transition of Class III are updated for every ant.

7. Solution built by each ant is checked, in case of incomplete solution, go

to step (2).
8. All the constructed solutions are assessed.
9. Pheromone values are updated.
10. If the iterations are not completed, go to step (2).

11. The best solution is selected.

In ACO-TCAT [10], an ant on point i uses the following decision rule to
select a particular candidate point, among the potential candidate points, for

next sensor deployment.

[ ()] * 1735 (1)]P

P;(t) = (4.9)
! R AOINUAGIE
Teslcandidate
The heuristic desirability 7; ;(t) is given as;
mj(t) =L+ ), I(m) (4.10)

mESECP<]‘)
I(m) is a constant 1. Hence 7;j(t) gives preference to points with more ECPs in

their vicinities. Constant L is added to avoid division by zero.
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The intensity of pehremone on each edge is updated as;

Ti]'(t + 1) = (1 — p)le(t) + ATi]'(f) (4.11)

Where,

At = C/total(t) (4.12)

total (t) shows the length of a solution. C is any constant value greater than
zero. In ACO-TCAT [10] pheromone constraining process similar to Easidesign

[9] is followed.

4.3 ACO-Greedy:

In ACO-Greedy algorithm [11], a greedy migration scheme is used for move-
ment of ants. Furthermore, non-uniform sensing/communication radii are
used to resolve energy hole problem which arises due to more relay traffic
burden on nodes close to the sink, as a result these nodes end up depleting
their batteries very quickly. In ACO-Greedy algorithm[11], the nodes close to
the sink are assigned small communication radii. The communication radii of
nodes keep on increasing as the distance from sink increases. Hence node den-

sity is greater near the sink, which helps controle energy hole problem. The
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communication radius for a node i is given as;

dmax - d(i, Sink)

R 4.13
H(dmax - dmin) ] e ( )

Amax and d,;;, show maximum and minimum distances between the sink
and sensor nodes. y controls minimum communication radius e.g setting y =
2, gives values of communication radii between Ry, /2 and Ry,x depending

on distance of sensor node from the sink.

4.3.1 ACO-Greedy Algorithm:

Definition 1. (ECP):

ECPs (Effective Candidate Points) are those candidate points on which sensor
placement could cover atleast one uncovered critical point.

Definition 2. (PoO):

PoO(Point of Origination) is defined as a point from which an ant moves
to another point after stochastic decision making.

e.g, If an ant moves from point i to point j, point i is a PoO.

Definition 3. (PoD):

PoD (Point of Destination) is defined as a point to which an ant comes from
another point after stochastic decision making.

e.g, if an ant moves from point i to point j, point j is a PoD. In the ACO
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algorithms, generally the latest PoD is the next PoO. This could result in in-
creased coverage cost if there are no ECPs within the coverage radius of the
latest PoD. Similarly, even the presence of one or more ECPs within the cov-
erage radius of latest PoD may not give best results if the said ECPs cover less
critical points compared to other ECPs present in the network. As a result,
many sensors present in the network cover less critical points. Ant’s greedy
migration addresses this problem by making prudent selection of next PoO.

Definition 4. (OPOs):

The points among the PoSs (Points of solution) that have one or more ECPs
within their coverage radius are called OPOs (Ordinary Points of Origination).

Definition 5. (SPO):

The point among the PoSs (Points of solution) with the largest number of
ECPs with in its coverage radius is called SPO (Superior Point of Origination).

In ACO-Greedy [11], instead of the latest PoD, the SPO is chosen as the next
PoO. If more than one SPOs exist, any of them can be chosen randomly as next
PoO. Since an SPO has more ECPs with in its coverage radius, migration to an
SPO ensures that more critical points are covered at each ant’s step and in this

way coverage cost is reduced.
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Sensor and its
coverage radius

Sink

Critical point

Figure 4.6: Sensor deployment with ordinary ACO.

In Figure 4.6, the solution obtained using ordinary ACO is
{sink, A,B,C,D,E,F,G,H,I,J}. 10 sensors fulfill coverage requirements in

this case.

Sensor and its
coverage radius

Figure 4.7: Sensor deployment with ACO-Greedy.

In ACO-Greedy [11] when the ant reaches point E (Figure 4.7), it dosen’t
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find a lot of ECPs there, as such point E is not considered as the next PoO.
Instead it migrates to point B which is an SPO. Hence point B is selected as the
next PoO. The ant moves from point B to point | and I. The solution obtained
is given as:

{sink, A, B,C,D,E, I, ]}. This time, the same coverage objectives have been

achieved with 7 sensors.

ACO-Greedy Algorithm:

Initialize all parameters.
while(the iterations are not completed) do
for(each ant) do
while(all the points of interest are not covered) do
for(each PoS) do
Find out current SPOs;
end for
if(the current PoD is not an SPO) then
migrate to an SPO chosen randomly and make it PoO;
end if

calculate the transition probability of each candidate point;
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move to one of the next possible points following formula (4.9);
set comprising points of solution is updated;
set that holds Pols that haven’t been covered is updated;
set containing ECPs is updated;
end while

end for

assess each solution;

choose best solution;

update the pheromone values;

end while

return the best solution;

In ACO-Greedy [11], probability for selection of next point P;;(t), 7;;(t),
and pheromone update T(f + 1) are same as described in ACO-TCAT [10] in
Equations 4.9, 4.10 and 4.11 respectively. Pheromone constraining process sim-
ilar to ACO-TCAT [10] is also employed to make sure that values of pheromone

stay with in limits.
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Chapter 5

ACO-Discreet algorithm

In the previous chapter three algorithms were discussed for WSN deployment
to meet the requirements of MCGC problem. In this chapter a new algorithm
ACO-Discreet is proposed that overcomes deficiencies in the aforementioned
three algorithms to further reduce the coverage cost and achieve better solu-
tions for MCGC problem. In phase-I of ACO-Discreet, non-uniform cover-
age radii for sensor nodes and greedy migration scheme similar to [11] have
been used. Also ECPs are defined as those points on which sensor placement
can cover one or more uncovered points of interest (Pols) [11]. For a sensor
on point i feasible neighbourhood contains all those next possible grid points
where the next probable sensor’s sensing radius overlaps with that of the sen-
sor on point i. To increase the distance between two adjacent sensors, a mod-

ified heuristic value is used which is not only dependent on the number of
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ECPs with in the coverage radius of the sensor on point j but also the distance

of sensor on point j from the one on point i. The heuristic value is given as,

nij(t) =L+ Y I(m)+ Dist; (5.1)

mGSEcp(j>

When Phase-I of the algorithm returns a solution, Phase-II of the algorithm
starts its operation and seeks to remove all the sensors that are redundant in

nature. Phase-II comprises tours conducted by two ants only.

Figure 5.1: Solution obtained at the end of Phase-I of ACO-Discreet.

The 1st ant conducts its tour on the solution obtained from Phase-I and
builds a parallel solution of its own. It starts off from the last sensor in the
solution and moves in the backwards direction and checks for all those sensors

that have Pols in their coverage radii covered more than the desired number
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of times. If such a sensor is found whose removal doesn’t render any critical

point uncovered, it's removed from the solution.

Figure 5.2: Solution built by 1st ant in phase-II

At the end of the tour of 1st ant, a reduced solution is obtained with all
the unwanted sensors gone. But some times the connectivity of the network is
disrupted as could be observed from Fig 5.2. To resolve this problem a 2nd ant
conducts its tour on the solution of the first ant to look for a possible disconnec-
tion in the network and restore network connectivity. Unlike the 1st ant that
executed its operation considering the sensing radii, the 2nd ant is concerned
with the communication radii of sensor nodes. It starts off from the sink and
during the first step of the tour, looks for all those sensors in the solution of
first ant that are connected to the sink via single hop and adds those points to

its solution. At the second step of its tour, it looks for all those sensors in the
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solution of 1st ant that are connected to the solution it has built so far and so
on. The 2nd ant keeps on adding sensors from the solution of the first ant to its
own until it reaches a point where one or more sensors in the solution of the

first ant are not connected to the solution of its own.

Communication
Radius 6 grids

—fCommunication
‘JRadius 4 grids

Figure 5.3: Disconnection found.

Thus when the disconnection is identified it looks for all the senors in the
original solution obtained at the end of Phase-I, that are connected to the dis-
connected portion of the network in the 1st ants solution and saves them in
a temporary data structure. Then it looks for all those points in the original
solution that are connected to its own solution and saves them in another tem-
porary data structure.

The common sensors between the two temporary data structures are the
ones could be used to restore network connectivity. Hence, one of these com-
mon sensors is reinstated as shown in Fig. 5.4. At the end of Phase-II a large

number of the unwanted sensors are removed in such a way that the function-
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ing of the network remains unaffected.

Figure 5.4: Solution built by 2nd ant in phase-II

In ACO-Discreet probability for selection of next point P;;(¢) and pheromone
update 7(t + 1) are same as described in in Equations 4.9 and 4.11 respectively.
Pheromone constraining process similar to previously described algorithms
is also employed to make sure that values of pheromone stay with in limits.

Pseudocode is given as under.

ACO-Discreet Algorithm:

Phase-I1

Initialize all parameters;
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WHILE(Maximum number of iterations Imax have not been reached)DO
Each ant builds its solution;
Cache the best solution for current iteration;
Update the pheromone values;
END WHILE
Select the minimum cost solution;
Phase-II
Execute backwards tour for 1st ant and build a new solution;
IF(A sensor is found with all Pols in its coverage radius covered more than
the required number of times)
Exclude this sensor from the new solution;
END IF
Execute tour for 2nd ant;
IF(Disconnection in network is detected)
Reinstate a sensor from the original solution obtained at the
end of Phase-I to restore network connectivity;
END IF

Save the solution;
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Chapter 6

Results and discussion

In this chapter, results and discussion a presented. In Chapter 4 three algo-
rithms EasiDesign [9], ACO-TCAT [10] and ACO-Greedy [11] were discussed.
In chapter 5 a novel algorithm ACO-Discreet was proposed. In this chapter

performance of all four algorithms is evaluated on different scales of network.

6.1 Experimental Setup:

The experiments to evaluate the performance of all four algorithms in terms of
node deployment cost and network lifetime are executed in Matlab. Network
with 9x9 grid points is used. Sensing radius for all nodes is equal to 2 grids
in EasiDesign [9] and ACO-TCAT [10] while in ACO-Greedy [11] and ACO-

Discreet, it keeps varying between 1 and 3 grids depending on distance of
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sensor from the sink node. « =1, § = 2 and T, = 10 have been used. T is the
pheromone constraining period. Total 100 iterations are executed and 10 ants

participate in the search for solution in each iteration.

6.2 Deployment Cost Comparision:

I C=siDesign
16 . . B - CO-TCAT
[ 1 ACO-Greedy
4L = I - CO-Discrest

) - -
8 12} .
(=]
- A — —
e
L 10F | — |
2
[o'R
3
5 8 1
T
]
o ;
e
=
g 4t -

2+ 2

| |

(0,0) (0,4) (4,4)
Fasition of the sinkixy)

Figure 6.1: 9x9 grid points 20 Pols.
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Figure 6.2: 9x9 grid points 40 Pols.

42



RESULTS AND DISCUSSION
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Figure 6.3: 9x9 grid points 40 Pols.

It could be observed from the simulation results of all four algorithms, that
EasiDesign [9] provides solutions with highest number of deployed nodes.
ACO-TCAT [10] reduces the deployment cost by utilizing more ant transi-
tions. ACO-Greedy [11] further reduces the deployment cost by employing
a greedy migration scheme for next point selection. Of all four algorithms,
the proposed algorithm ACO-Discreet provides solutions with minimum de-
ployment cost. This is due the modified heuristic employed for reducing node

density in Phase-I of the algorithm and in turn a drastic reduction in the num-
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ber of deployed nodes in the phase-II which has the potential to significantly

reduce the solutions constructed by ordinary ACO algorithms.

6.3 Network Lifetime Comparison:

I EasiDesign
1 ' ' — ' I ACO-TCAT
09t A [ 1 ACO-Greedy
- I /.CO-Discreet
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l
10 20 30 40 50
Round of data transmission

Figure 6.4: 9x9 grid points 20 Pols.

In the Figure 6.4 life times of networks obtained from different algorithms

have been compared. The energy model from [19] has been used. To transmit

an | — bit packet, the energy consumed is given as under,
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IEgpee + lepd?,  d < d,
Ere(l,d) = (6.1)

IEctee + leampd®, d > d,

Similarly to receive an l-bit packet, the energy consumed is given as,

ERx(l) - lEelec (6-2)

It can be observed that ACO-Greedy [11] performs better than EasiDesign [9]
and ACO-TCAT [10] by enhancing the network life time with non-uniform
sensor node coverage radii which results in larger node density in areas close
to the sink where relay burden is more compared to the areas farther away
from sink. In ACO-Discreet similar non-unifrom radii are used at different lo-
cations. ACO-Discreet performs slightly better than ACO-Greedy [11] because
with reduced number of sensor nodes, there is less relay traffic for nodes close

to the sink.
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Chapter 7

Conclusions

In this thesis a novel ACO based algorithm ACO-Discreet is proposed to solve
the problem of MCGC in Wireless Sensor Networks. The objective is to cover
all the points of interest with minimum possible number of sensors in such a
way that connectivity of the network is guaranteed. The proposed algorithm
works in two phases. Phase-I is similar to ordinary ACO based algrithms used
to find solution for the problem of MCGC. In Phase-I, however, a modified
heuristic is used to obtain solutions better than those of other ACO algorithms.
In Phase-II further reduction is carried out in the solution obtained from phase-
I and a large number of redundant sensors are removed. As a result a very
reduced final solution is obtained. The proposed algorithm yields solutions
with much less deployment cost compared to other algorithms.

Also network lifetime of solutions obtained from ACQO-Discreet is found to
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be longer than that of other ACO based algorithms.
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