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Preface 

Cryptography is used for protection and transmitting information in such a way that only specified 

persons can read and process on it. The basic cryptographic techniques were used for thousands of years 

in different areas. In history, many governments or organized groups mostly used cryptography to conceal 

secret messages from enemies. About 100 BC Julius Caesar made use of certain encryptions so that he 

may sent secret messages to his army. This type of encryption is known as Caesar cipher, which is a type 

of substitution cipher (A cipher is an encryption or decryption algorithm and substitution means that each 

character of a message is replaced by another character to form the message unreadable). 

Even though over the last 40 years, Modern cryptography is considered as a mature branch of 

science but it is still relatively new field of study compared to other subjects and every new day brings so 

many developments. But now a days, millions of secure and encoded transmissions occur online every 

day. Cryptographic standards are used to protect data, banking data, images, videos, health information 

and much more. In all these, the online security threats evolve so quickly, so there is a need of network 

security, which is the study of methods for protecting data in communication systems and computers from 

unauthorized authorities. Network security or data security progressed rapidly since 1975. Modern 

cryptography and Network security techniques are mostly based on mathematical theory and computer 

science practices. 

 For few years, finite Galois rings have great importance in cryptography and coding theory. In 

1979, Priti Shankar established a relationship between BCH- codes over Galois ring 𝐺𝑅(𝑝𝑘, 𝑚) and Galois 

field 𝐺𝐹(𝑝𝑚) through a p-reduction map. In the construction of these BCH-codes, the maximal cyclic 

subgroup 𝐺𝑝𝑚−1 of group of units of Galois ring 𝐺𝑅(𝑝𝑘,𝑚) plays a pivotal role. The maximal cyclic 

subgroup 𝐺𝑝𝑚−1 is isomorphic to Galois group 𝐺𝐹(𝑝𝑘)∗ and this provides a way to use it in cryptography. 

The Galois rings were firstly used in cryptography by Shah et al. 

In cryptography, the substitution box (S-box) is the vital component of almost all symmetric 

cryptosystem. The process of encryption creates confusion and diffusion in data and the S-box plays a key 

role to make confusion in data because it is the only non-linear and invertible part in the encryption 

process. The strength of encryption technique depends on the ability of S-box in twisting the data hence, 

the process of finding new and powerful S-boxes are of great importance in the field of cryptography. 

Firstly, S-boxes are constructed only by using Galois fields. But Shah et al. gives method of construction 
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of S-boxes by using elements of Galois rings 𝐺𝑅(4,2) 𝑎𝑛𝑑 𝐺𝑅(4,4). Here Shah et al. used the maximal 

cyclic subgroup of the group of units of Galois ring 𝐺𝑅(4,4), which has 16 elements and so that 4 × 4 S-

box is formed. The maximal cyclic subgroup of group of units of commutative chain ring is also used to 

construct healthier S-box. 

The purpose of the research is to develop a good understanding of some basic concepts of 

cryptography but mainly focused on the construction of S-boxes on local rings ℤ𝑝𝑘 and on maximal cyclic 

subgroup 𝐺𝑠 of Galois rings. The newly constructed S-boxes are then analyzed by some algebraic analyses 

to determine the strength of the proposed S-boxes and by statistical analyses of their application in image 

encryption algorithms. 

The details of the dissertation are here under: 

 The first chapter consists of three section. In the first section, we discussed some basic algebraic 

concepts, which are necessary to understand cryptography. In the second section, we discussed 

some basic components of cryptography and lastly we discussed some examples of classical and 

modern cryptography. 

 In the second chapter, the concept of S-box is discussed. In addition, the construction techniques 

of S-box on maximal cyclic subgroup of group of Galois ring 𝐺𝑅(4,4). 

 In the third chapter, a novel technique to construct S-boxes on maximal cyclic subgroup of 

order 256 of group of units of Galois ring 𝐺𝑅(8,8) is discussed. Some algebraic analysis to 

determine the strength of these S-boxes are also given in this chapter. The statistical analysis of 

the plain image and encrypted image are also given in this chapter. The application of these S-

boxes in image encryption is also discussed. 

 In the fourth chapter, the construction method of S-box over finite local ring ℤ29 is given. Also 

this S-box is analyzed by algebraic and statistical analysis. 

  The last chapter consists the conclusion of these works. 
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Chapter 1 

Algebraic Preliminaries 

 

This chapter serves as a pillar in the base of modern cryptography. Before we begin our discussion, 

we review some basic concepts, which are required to understand the discussion in the upcoming chapters 

[8]. This chapter consists of three section. In the first section, we discussed some basic algebraic concepts 

that are essential to understand cryptography. In the second section, we discussed some basic components 

of cryptography and lastly we discussed some example of classical and modern cryptography. 

1.1.1. Binary Operation 
 Let 𝑀 be a non-void set, then the function ∗ : 𝑀 × 𝑀 → 𝑀 is said to be a binary operation 

on 𝑀. 

1.1.2. Groupoid 
Let 𝑀 be a non-void set and ∗∶ 𝑀 × 𝑀 → 𝑀 is a binary operation defined on 𝑀 then (𝑀,∗) 

is said to be a Groupoid, i.e. if ∀ 𝑥, 𝑦 ∈ 𝑀, ∗ (𝑥, 𝑦) = 𝑥 ∗ 𝑦 ∈ 𝑀.  

1.1.3. Semigroup 
 Let 𝑀 be a non-void set and ∗ be a binary operation, then (𝑀,∗) is said to be a semigroup 

if the following axioms holds: 

  (𝑖)  For every pair (𝑚1, 𝑚2) ∈ 𝑀 × 𝑀, ∗ (𝑚1, 𝑚2) ∈ 𝑀. 

(𝑖𝑖) Associative law holds in 𝑀 with respect to the binary operation ∗. i.e. 

∗ (𝑚1,∗ (𝑚1,𝑚2) = ∗ (∗ (𝑚1,𝑚2),𝑚3) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚1, 𝑚2, 𝑚3, ∈ 𝑀. 

1.1.4. Monoid 
A non-void set 𝑀 together with binary operation ∗ is said to be Monoid, if (𝑀,∗) is a 

semigroup and there is an identity element 𝑒 in 𝑀 such that 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ∈ 𝑀, ∗ (𝑒,𝑚) = 𝑒 = ∗ (𝑚, 𝑒). 
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1.1.5. Group 
 A monoid (𝑀,∗) is said to be form a group if for every element 𝑚 ∈ 𝑀, there exists a unique 

element n in 𝑀 such that ∗ (𝑚, 𝑛) = 𝑒 = ∗ (𝑛,𝑚) where 𝑒 is identity element in 𝑀. 

Example 1: The sets (ℤ,+), (𝑄,+), (𝑅,+), (𝑅\{0}, . ) 𝑎𝑛𝑑  (𝑄\{0}, . ) are all groups. The set of 

integers ℤ𝑛 = {0,1,2,… , 𝑛 − 1} and the operation is addition modulo 𝑛 form a group with the identity 

element 0. Every element 𝑥 has an inverse−𝑥 such that 𝑥 + (= 𝑥) ≡ 0 𝑚𝑜𝑑(𝑛). Note that this set does 

not form a group with the operation of multiplication modulo 𝑛 because most elements 𝑥 do not have an 

inverse 𝑦  such that 𝑥 ⊙ 𝑦 ≡ 1 𝑚𝑜𝑑(𝑛). 

Remark 1: The sets 𝑁 𝑎𝑛𝑑 ℤ w.r.t the binary operation . (i.e.w.r.t usual multiplication) are not groups but 

these sets are only monoid. Similarly the set (𝑁,+) is only semigroup, (ℤ, −) is only groupoid. Moreover, 

this is due to the fact that inverse of each elements w.r.t the usual multiplication in 𝑁 𝑎𝑛𝑑 ℤ does not exists 

i.e. for instance inverse of 2 is 
1

2
 , which doesn’t belong to 𝑁 𝑎𝑛𝑑 ℤ. Similarly, identity w.r.t binary 

operation + is 0 which doesn’t belong to 𝑁 and so that’s why we say that (𝑁,+) is only semigroup.  

Abelian group 

A group (𝑀,∘) is said to be abelian if  commutative law holds is 𝑀 with respect to the binary 

operation ∘ i.e. for every 𝑚1, 𝑚2 ∈ 𝑀, ∘ ( 𝑚1, 𝑚2) = ∘ (𝑚2, 𝑚1) 

Example 2: The sets (𝑍, +), (𝑅, +) 𝑎𝑛𝑑 (𝑅\{0}, . ) are all abelian groups. Also the set 𝑀 consisting of 

all 𝑛 × 𝑛 matrices is an Abelian group w.r.t binary operation of + (matrix addition), but the subset of the 

above set 𝑀 consisting of non-singular (invertible) matrices is non-abelian group with respect to binary 

operation of matrix multiplication. 

Remark 2: Abelian group is also called commutative group.  

Subgroup 

A non-void set 𝐻 of a group 𝑀 is said to be subgroup of a group 𝑀 if 𝐻 itself form a group with 

respect to the same binary operation defined on 𝑀. 

Example 3: Consider the binary operation of usual addition +, the set 𝔼 of even integers is subgroup of 

the group ℤ of integers. 
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1.1.6. Homomorphism 

Let (𝑀,∘) and (𝐻, ∗) be any two groups. A function 𝑓:𝑀 → 𝐻 is said to be a group homomorphism if 

 ∀ 𝑚1, 𝑚2 ∈ 𝑀, 𝑓(𝑚1 ∘ 𝑚2) = 𝑓(𝑚1) ∗ 𝑓(𝑚2) 

Endomorphism is a group homomorphism 𝑓:𝑀 → 𝐻 if 𝑀 = 𝐻, i.e. a homomorphism from a group to 

itself is called endomorphism. 

Epimorphism is a group homomorphism 𝑓:𝑀 → 𝐻 which is onto (surjective), i.e. if 𝑖𝑚𝑔(𝑓) = 𝐻. 

Monomorphism is a group homomorphism 𝑓:𝑀 → 𝐻, which is 1-1 (injective), i.e. if distinct elements 

have distinct images 𝑓(𝑚1) ≠ 𝑓(𝑚2) ⟹ 𝑚1 ≠ 𝑚2 𝑓𝑜𝑟 𝑚1, 𝑚2 ∈ 𝑀. 

Isomorphism is a group homomorphism 𝑓:𝑀 → 𝐻, which are both 1-1, and onto, i.e. a bijective group 

homomorphism is called a group isomorphism 

Remark: Two groups 𝑀 𝑎𝑛𝑑 𝐻 are said to be isomorphic if there is an isomorphism between 𝑀 𝑎𝑛𝑑 𝐻. 

1.1.7. Coset 
 Let (𝑀,∘) be a group and 𝐻 be the subgroup of 𝑀, then for any 𝑚 ∈ 𝑀, the set  

𝑚 ∘ 𝐻 = {𝑚 ∘ ℎ ∶ ℎ ∈ 𝐻} is said to be left coset of 𝐻 in 𝑀. Similarly, the right coset is defined to be the 

set 𝐻 ∘ 𝑚 = {ℎ ∘ 𝑚 ; ℎ ∈ 𝐻}. 

Example 4: Let 𝑀 = (ℤ8, +) and 𝐻 = {0,2,4,6}, then 𝐻 is a subgroup of 𝑀 and so the left coset of 𝐻 

in 𝑀 are given by: 

1 + 𝐻 = 3 + 𝐻 = 5 + 𝐻 = 7 + 𝐻 = {1,3,5,7}, 

2 + 𝐻 = 4 + 𝐻 = 6 + 𝐻 = 8 + 𝐻 = {0,2,4,6} 

Normal subgroup 

A subgroup 𝐻 of a group 𝑀 is said to be normal subgroup if 𝑚ℎ𝑚−1 ∈ 𝐻, ∀𝑚 ∈ 𝑀 𝑎𝑛𝑑 ℎ ∈ 𝐻. In 

other word, 𝐻 is said to be normal if ∀ 𝑚 ∈ 𝑀,𝑚𝐻 = 𝐻𝑚, i.e. if left and right cosets coincide. 

1.1.8. Quotient group 
Let (𝑀, +) be a group with normal subgroup 𝐻. Then the quotient group of 𝑀 𝑚𝑜𝑑𝑢𝑙𝑜 𝐻 is 

defined to be the group of all cosets of 𝐻 𝑖𝑛 𝑀 and is denoted as: 
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𝑀
𝐻⁄ = {𝑚 + 𝐻 ∶ 𝑚 ∈ 𝑀}  

The binary operation in 𝑀 𝐻⁄  is defined as: (𝑎 + 𝐻) + (𝑏 + 𝐻) = (𝑎 + 𝑏) + 𝐻, ∀ 𝑎, 𝑏 ∈ 𝑀 

Example 5: Consider the group 𝑀 = (ℤ,+). Then for any 𝑛 ∈ 𝑁,𝐻 = {0 ± 𝑛,±2𝑛,… } is a normal 

subgroup of 𝑀 and thus the set ℤ 𝑛ℤ⁄ = {𝑥 + 𝑛ℤ ∶ 𝑥 ∈ ℤ} is the quotient group having 𝑛 elements. 

Finite group 

A group 𝐺 is said to be finite if it has a finite number of elements. The number of elements in a 

group 𝐺 is denoted by |𝐺| and is called order of 𝐺. We some time say that a group is finite if |𝐺| < ∞. 

Remark 3: In a finite group 𝐺, for 𝑎 ∈ 𝐺 and for any 𝑛 ∈ 𝑁, 𝑎𝑛 ∈ 𝐺, due to closure property in 𝐺. 

Cyclic group 

A group 𝑀 is said to be cyclic if there is an element 𝑎 ∈ 𝑀 such that every element of 𝑀 can be 

written as some integer power of 𝑎, i.e if 𝑥 ∈ 𝑀, 𝑡ℎ𝑒𝑛 ∃ 𝑘 ∈ 𝑁 such that 𝑥 = 𝑎𝑘, where 𝑁 is the set of 

natural numbers. The element 𝑎 is then said to be generator of the group 𝑀 and we write as 𝑀 = 〈𝑎〉. 

Example 6: If 𝑀 = {1, 𝜔,𝜔2 ∶  𝜔3 = 1} then (𝑀, . ) is a cyclic group generated by 𝜔. Also (ℤ𝑚, +) is a 

cyclic group generated by 1 𝑎𝑛𝑑 − 1 

Remark: It is to be noted that a cyclic group have more than one generator and when binary operation is 

addition, then the term integer power of 𝑎 reduces to integral multiple of 𝑎. 

Group Action 

Let us consider that (𝑀,∘) be a group and H be a non-empty set. We say that 𝑀 acts on a set 𝐻 

(from left) if the mapping ∗ : 𝑀 × 𝐻 → 𝐻 satisfied the followings: 

    (𝑖)   ∗  (𝑒, ℎ) = 𝑒 ∗ ℎ = ℎ ∶  ∀ℎ ∈ 𝐻 𝑤ℎ𝑒𝑟𝑒 𝑒 ∈ 𝑀 is an identity. 

    (𝑖𝑖)  ∗ (𝑚1,∗ (𝑚2, ℎ)) = ∗ (𝑚1 ∘ 𝑚2, ℎ) , ∀ 𝑚1, 𝑚2 ∈ 𝑀 𝑎𝑛𝑑 ℎ ∈ 𝐻. 

1.1.9. Ring 
A non-empty set 𝑅 together with two binary operations, +: 𝑅 × 𝑅 → 𝑅 𝑎𝑛𝑑 ∘ : 𝑅 × 𝑅 → 𝑅 is said to be 

ring if 

  (1) (𝑅,+) Form an abelian group. 
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(2) (𝑅,∘) Is a semigroup. 

(3) Left and Right distributive laws of ∘ over + holds in 𝑅 that is, for all 𝑟1, 𝑟2, 𝑟3 ∈ 𝑅 

𝑟1 ∘ (𝑟2 + 𝑟3)  = (𝑟1 ∘ 𝑟2) + (𝑟1 ∘ 𝑟3)𝑎𝑛𝑑 (𝑟1 + 𝑟2) ∘ 𝑟3  = (𝑟1 ∘ 𝑟2) + (𝑟2 ∘ 𝑟3) 

Commutative Ring 

A ring (𝑅, +,∘) is said to be commutative ring if in 𝑅, commutative law holds with respect to " ∘ " 

Example 7: The sets (ℤ, +, . ), (ℝ,+, . )and the set of integers modulo 𝑛, (ℤ𝑛,⊕,⊙) are examples of the 

commutative ring. 

Zero Divisor 

Let 𝑅 be a ring. An element 𝑎 ≠ 0 𝑖𝑛 (𝑅,+,∘) is said to be a zero divisor if there is an element 𝑏 

in 𝑅 such that 𝑎 ∘ 𝑏 =  0 implies 𝑏 ≠ 0, where “0” is an identity w.r.t + in 𝑅. 

Example 8: Let 𝑅 = ℤ8, then 2.4 = 8 = 0 𝑚𝑜𝑑(8), while 2 ≠ 0 𝑎𝑛𝑑 4 ≠ 0. So 2 and 4 are Zero divisor 

in  ℤ8. 

Ring with identity 

A ring (𝑅, +,∘) is said to be ring with identity if identity element 𝑒 w.r.t ∘ exists in 𝑅 i.e. for all 𝑟 ∈

𝑅, 𝑟 ∘  𝑒 =  𝑒 =  𝑒 ∘  𝑟. 

Unit element 

An element 𝑎 in 𝑅 is said to be unit element in 𝑅 if there is an element 𝑏 in 𝑅 such that 𝑎 ∘  𝑏 = 𝑒 

where 𝑒 is identity element w.r.t ∘ in 𝑅. 

1.1.10. Ideal of a Ring 
Let (𝑅, +, . ) be a ring. A non-empty subset 𝐼 of 𝑅 is said to be ideal of a ring 𝑅, if 𝐼 is an additive 

subgroup of 𝑅 and for every 𝑎 ∈ 𝑅, 𝑎𝐼 ⊆ 𝐼 𝑎𝑛𝑑 𝐼𝑎 ⊆ 𝐼 i.e. for every 𝑥, 𝑦 ∈ 𝐼 𝑎𝑛𝑑 𝑎 ∈ 𝑅, 𝑥 − 𝑦 ∈

𝐼 𝑎𝑛𝑑 𝑎𝑥, 𝑥𝑎 ∈ 𝐼. 

Prime ideal 

Let 𝐼 ≠ 𝑅 be an ideal of a commutative ring 𝑅. Then 𝐼 is said to be prime ideal if 𝑥𝑦 ∈ 𝐼 implies 

that either 𝑥 ∈ 𝐼 or 𝑦 ∈ 𝐼 for every 𝑥, 𝑦 ∈ 𝑅. 

 



6 
 

Maximal ideal 

An ideal 𝑀 of a ring 𝑅 is said to be Maximal ideal if 𝑀 ≠ 𝑅 and there is no other proper ideal 𝑃 

of 𝑅 which properly contains 𝑀. 

Principle Ideal 

An ideal I of a ring R is called a principal ideal if there exists an element 𝑎 ∈ 𝐼 such that 𝐼 =< 𝑎 > 

where < 𝑎 > = { 𝑎𝑟 ∶ 𝑟 ∈ 𝑅 }. The element 𝑎 is called the generator of  𝐼 and 𝐼 is said to be generated 

by 𝑎. 

Remark: A ring 𝑅 is called principal ideal ring if every ideal of 𝑅 is principal. 

Local Ring 

A ring (𝑅, +,∘) is said to be local ring if (𝑅\𝑅∗, +) form an abelian group, where 𝑅∗ is the set of 

all unit elements of 𝑅. A local ring have only one maximal ideal. 

Example 9: The integers modulo rings ℤ𝑝𝑘 where 𝑝 is prime and 𝑘 is any positive integer is an example 

of a local ring, i.e. ℤ8, ℤ9, ℤ16 are all local rings.   

Quotient ring 

Let (𝑅, +,∘) be a ring and 𝐼 be an ideal of 𝑅 then the quotient set 𝑅 𝐼⁄ = {𝑎 + 𝐼: 𝑎 ∈ 𝑅} form a ring 

w.r.t the binary operations, defined as:  

(𝑎 + 𝐼) + (𝑏 + 𝐼) = (𝑎 + 𝑏) + 𝐼 𝑎𝑛𝑑 (𝑎 + 𝐼). (𝑏 + 𝐼) = (𝑎. 𝑏) + 𝐼 

Polynomial Ring 

Let 𝑅 be a ring, then the set of all polynomials of degree 𝑛 whose coefficients are element of 𝑅 is 

denoted by 𝑅[𝑥] and form a ring with binary operations defined as: If 𝑝 = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 + ⋯+

𝑎𝑛−1𝑥 + 𝑎𝑛 and 𝑞 = 𝑏0𝑥
𝑛 + 𝑏1𝑥

𝑛−1 + ⋯+ 𝑏𝑛−1𝑥 + 𝑏𝑛 then 𝑝 + 𝑞 = 𝑐0𝑥
𝑛 + 𝑐1𝑥

𝑛−1 + ⋯+ 𝑐𝑛−1𝑥 +

𝑐𝑛 and 𝑝 ∙ 𝑞 = 𝑑0𝑥
𝑛 + 𝑑1𝑥

𝑛−1 + ⋯+ 𝑑𝑛−1𝑥 + 𝑑𝑛 where𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖 and 𝑑𝑖 = 𝑎0𝑏𝑖 + 𝑎1𝑏𝑖−1 + ⋯+

𝑎𝑖𝑏1 and the ring (𝑅[𝑥], +, . ) is so called polynomial ring.  

Reducible Polynomial 

A polynomial 𝑝 in 𝑅[𝑥] is said to be reducible if it can be written as a product of two non-invertible 

polynomials in 𝑅[𝑥] i.e. if there exists non-invertible polynomials 𝑞 and 𝑟 in the ring 𝑅[𝑥] such that 𝑝 =

𝑞 . 𝑟. 
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For example if 𝑓(𝑥) is from the polynomial ring of integers 𝑍[𝑥] such that 𝑝 =  𝑥² − 1 then there is 𝑞 =

𝑥 − 1 and 𝑟 =  𝑥 + 1 in 𝑍[𝑥] such that 𝑝 =  𝑞. 𝑟 

Irreducible Polynomial 

An element 𝑝(𝑥) in a polynomial ring 𝑅[𝑥] is said to be irreducible polynomial if 𝑝(𝑥) is non-

invertible and cannot be written as a product of two non-invertible elements in 𝑅[𝑥]. 

Monic Polynomial 

 A polynomial 𝑝(𝑥) = 𝑏0𝑥
𝑛 + 𝑏1𝑥

𝑛−1 + ⋯+ 𝑏𝑛−1𝑥 + 𝑏𝑛 is said to be monic if 𝑏0 = 1. 

Primitive Polynomial 

 A polynomial 𝑝(𝑥) = 𝑏0𝑥
𝑛 + 𝑏1𝑥

𝑛−1 + ⋯+ 𝑏𝑛−1𝑥 + 𝑏𝑛 is said to be primitive polynomial if the 

greatest common divisor of all the coefficients of 𝑝(𝑥) is 1. 

Remark: Every monic polynomial 𝑝(𝑥) is primitive. 

1.1.11. Field 
A field 𝔽 is the set of points together with two binary operations + 𝑎𝑛𝑑 ∘ which satisfies the 

following axioms: 

 Elements of 𝔽 form an abelian group with respect to operation + with neutral element 0. 

 Elements of 𝔽 form an abelian group with respect to operation ∘ with neutral element 1 

 When these two operations are mixed, the distributive law holds, i.e. ∀ 𝑥, 𝑦, 𝑧 ∈ 𝔽, 

𝑥 ∘ (𝑦 + 𝑧) = (𝑥 ∘ 𝑦) + (𝑥 ∘ 𝑧) 

Example 10: The set of real numbers ℝ together with binary operations of usual addition and 

multiplication is a field with additive neutral element 0 and multiplicative neutral element 1. The set of 

integers modulo 𝑛 is a field if 𝑛 is a prime, i.e. (ℤ𝑛,⊕,⊙) is a field if 𝑛 is a prime number. 

Remark: If 𝑅 is a field. Then ideal generated by an irreducible polynomial 𝑝(𝑥) is maximal ideal in the 

ring 𝑅[𝑥]. If (𝑅, +,∘) is a field, then the set 𝑅/{0} is a cyclic group with binary operation ∘, where 0 is the 

identity in 𝑅 with respect to +. 
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Galois Field 

The field whose order is a prime or power of some prime is known as Galois field. For every prime 

number 𝑝 and an integer 𝑛, there exists exactly one (up to an isomorphism) Galois field 𝐺𝐹(𝑝𝑛) of 

order 𝑝𝑛. 𝐺𝐹(𝑝) = {0,1,2, … , 𝑝 − 1} is the field of residue classes modulo 𝑝 which has 𝑝 elements. For 

any prime 𝑝 𝑎𝑛𝑑 𝑘 > 1, the set of equivalence classes of polynomials whose coefficients from 𝐺𝐹(𝑝) is 

a field of order 𝑝𝑘, isomorphic to 𝐺𝐹(𝑝𝑘) and 𝑘 is the degree of some irreducible polynomial over 𝐺𝐹(𝑝)’ 

i.e. if 𝑔(𝑥) is the irreducible polynomial of degree 𝑘, then 

𝐺𝐹(𝑝)[𝑥]

〈𝑔(𝑥)〉
= 𝐺𝐹(𝑝𝑘) = {𝑎1𝑥

𝑘−1 + 𝑎2𝑥
𝑘−2 + ⋯+ 𝑎𝑘−1𝑥 + 𝑎𝑘: 𝑎𝑖 ∈ 𝐺𝐹(𝑝) 

Example 11: If 𝑝 = 2, and the irreducible polynomial of degree 2 is 𝑔(𝑥) = 𝑥2 + 𝑥 + 1. Then elements 

of 𝐺𝐹(22) are equivalence classes which are obtained by constructing the quotient ring ℤ2[𝑥] 〈𝑔(𝑥)〉⁄ . So 

that the elements of 𝐺𝐹(22) are all polynomials whose coefficients belong to ℤ2 and degree less than 2, 

i.e. 𝐺𝐹(22) = {0,1, 𝑥, 𝑥 + 1}  

Galois Ring:  

If 𝑓(𝑥) is irreducible over  ℤ𝑞[𝑥] where 𝑞 is power of some prime 𝑝, then the quotient ring 
ℤ𝑞[𝑥]

〈𝑓(𝑥)〉
=

𝑅 is isomorphic to the Galois ring 𝐺𝑅(𝑞, 𝑚) of order 𝑞𝑚 where 𝑚 is the degree of the polynomial 𝑓(𝑥). 

Basic irreducible polynomial 

 Let 𝑅 be a local commutative ring with unity and 𝑀 be its only maximal ideal. An irreducible 

polynomial 𝑔(𝑥) in 𝑅[𝑥] over 𝑅 is said to be a basic irreducible polynomial if 𝑔(𝑥) is irreducible over the 

corresponding residue field 𝔽 = 𝑅
𝑀⁄ . 

Example 12: The polynomial 𝑔(𝑥) = 𝑥4 + 3𝑥 + 3 is basic irreducible over ℤ4 , because it is irreducible 

over  ℤ4 and 𝑔(𝑥) = 𝑥4 + 𝑥 + 1 is irreducible over the corresponding residue field  ℤ2.  

1.1.12. Boolean Algebras 

[17] Let B be a nonempty set and ˄, ˅ are binary operations on B, ~  is a unary operation on B. 

Then B is called Boolean algebra if the following condition satisfied: 

(B1) 𝑎 ˅ 𝑏 = 𝑏 ˅ 𝑎 𝑎𝑛𝑑 𝑎 ˄ 𝑏 =  𝑏 ˄ 𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝐵. 

(B2)  𝑎˅( 𝑏˄𝑐) = (𝑎˅𝑏)˄ (𝑎˅𝑐)𝑎𝑛𝑑 𝑎˄(𝑏˅𝑐) = (𝑎˄𝑏)˅(𝑎˄𝑐)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏, 𝑐 ∈ 𝐵 

(B3) There exist elements 0,1 ∈ 𝐵 𝑤𝑖𝑡ℎ 0 ≠ 1 such that 0˅𝑎 = 𝑎 𝑎𝑛𝑑 1˄𝑎 = 𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐵 

(B4) 𝑎˄(~𝑎) = 0 𝑎𝑛𝑑 𝑎˅(~𝑎) = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐵. 
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The binary operations ˄ 𝑎𝑛𝑑 ˅ are known as 𝐴𝑁𝐷 and 𝑂𝑅 respectively and the unary operation  ~ is 

called negation. 

Remark: 𝑎 ˅ 𝑏 𝑎𝑛𝑑  𝑎 ˄ 𝑏 are also written as 𝑎 + 𝑏 𝑎𝑛𝑑 𝑎. 𝑏 respectively. 

Example 13: Let 𝑋 be a non-empty set. Then the power set of 𝑋 is the set of all subsets of 𝑋 denoted 

by 𝑃(𝑋) is Boolean algebra with 0 = 𝜑 𝑎𝑛𝑑 1 = 𝑋. The binary operations are ∪ 𝑎𝑛𝑑 ∩  and the unary 

operation is complement of set 𝑖. 𝑒. 𝐴𝑐 = 𝑋 − 𝐴. 

Boolean Function 

Let 𝐵 be a Boolean algebra, then the function 𝑓: 𝐵𝑚 → 𝐵 is said to be Boolean function, where 𝑚 

is any positive integer. But the multi-valued Boolean functions from cryptographic point of view is a 

function from vector space 𝐹2
𝑘 of binary vector of length 𝑘 to vector space 𝐹2

𝑚 , where 𝑘 𝑎𝑛𝑑 𝑚 are any 

positive integers and 𝐹2 = {0,1} is a finite field. These functions becomes single valued when 𝑚 = 1. 

1.1.13. Some Logic Operations 

 AND Operation 

Let 𝐵 = {0,1}, then AND operation on 𝐵 gets two inputs 𝑠, 𝑡 ∈ 𝐵 and their output denoted by 𝑠˄𝑡 

and will be equal to 1 whenever both inputs are 1, otherwise equal to 0. The truth table of AND operation 

is given as follows: 

 

 OR Operation 

The OR operation on 𝐵 also gets two inputs 𝑠, 𝑡 ∈ 𝐵 and their output denoted by 𝑠˅𝑡 and equal to 

0 whenever both inputs are 0 otherwise equal to 1. The truth table of OR operation is as follows:  
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 XOR Operation 

The XOR operation on 𝐵 also gets two inputs 𝑠, 𝑡 ∈ 𝐵 and their output denoted by 𝑠 ⊕ 𝑡 and equal to 

0 whenever both inputs are same otherwise equal to 1. The truth table of XOR operation is given as 

follows:  

 

Remark: In XOR operation, the input may be more than two and their output will be 1 when the number 

of 1’s is odd and will be 0 when the number of 1 is even. 

1.2. Basic Terminologies of Cryptography 

[17, 18, 24]In this section, some basic notions of cryptography are discussed. 

Plain Text 

The readable form of a data or message is called Plain text. It may be English alphabets, characters, 

etc. 
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Cipher Text 

The text or message, which is transformed by some algorithm, is called Cipher text. It may be 

English alphabet, characters etc. 

Encryption algorithm 

The process of conversion of plain text to cipher text along with secret key is called Encryption 

algorithm. The encryption algorithm shall be decided before the interaction between the sender and 

receiver. The key is kept secret, even an attacker may know the algorithm. 

Decryption algorithm 

The reverse process of encryption algorithm is called decryption algorithm, i.e. in decryption 

algorithm, we recover the plain text from cipher text by using secret decryption key. 

Interceptor 

The person or party who try to decrypt the plaintext other than the sender and receiver is called an 

interceptor or an attacker. 

 

Plaintext Alphabet  

Plaintext alphabet is the set of letters or characters, which are used in writing the plaintext. 

These plaintext alphabets are generally consist of the letters of English alphabet, or it may possibly include 

some other characters, for example punctuation marks, numerals etc. 

Cipher text Alphabet 

Cipher text alphabet is the set of letters or characters, which are used for the cipher text. The 

plaintext alphabet and cipher text alphabet may be the same or might be different. For example plaintext 

alphabet may be consist of capital letters {𝐴, 𝐵, 𝐶 , … , 𝑍} but the cipher alphabet might be the set of 

numbers {0,1, 2, … , 25}. 

Key Size 

Key size is the size of the key which is using in encryption and decryption process. Obviously, the 

key size depends on the algorithm uses in encryption and decryption process. For instance, Advanced 

Encryption Standard (AES) has key sizes 128, 192 and 256 bits and Data Encryption Standard (DES) has 

its key size 64 bits. 

Cryptanalysis 

In cryptanalysis, the interceptor try to find out the algorithm used in the encryption process and with the 

help of algorithm the interceptor decrypt the message. 
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Brute force attack 

It is also known as exhaustive key search. In this method, the interceptor try to find the secret key by 

checking all possible keys in key space. 

 

Classification of Cryptography 

Cryptography is divided into two main types with respect to the key operation used, 

o Symmetric Key Cryptography 

o Asymmetric Key Cryptography 

1.2.1. Symmetric Key Cryptosystem 
The cryptosystems in which the key used in the encryption and decryption algorithm are same are 

known as symmetric key cryptosystem. In this type of cryptography, the key is kept secret between the 

receiver and the sender of a message. This type of cryptosystem are also known as single key or private 

key cryptosystems. The main symmetric key cryptosystems are DES, Triple DES, AES, RC4, Two fish 

etc. 

The symmetric key cryptography is further divided into two main types, 

o Stream Cipher  

o Block Cipher 

Stream Cipher 

A stream cipher is a cipher that encrypt a digital data stream one bit at a time. Examples of classical 

stream ciphers are the auto keyed Vigenere cipher and in modern cryptography RC4, Fish and ChaCha 

are examples of stream cipher. If the cryptographic keystream is random, then this cipher is unbreakable 

by any means other than finding the keystream. However, the keystream must be provided to both sender 

and receiver in advance via some independent and secure channel. Stream cipher are simple and 

comparatively faster in programming. This introduces impossible logistical problems if the intended data 

traffic is very large. For practical reasons, the bit-stream generator must be implemented as an algorithmic 

procedure, so that the cryptographic bit stream can be produced by both sender and receiver. In this 

approach, the bit-stream generator is a key-controlled algorithm and must produce a bit stream that is 

cryptographically strong. Now, both the users need only to share the generating key, and each can produce 

the keystream. 

 



13 
 

Block Cipher 

A block cipher is a cipher that process a block of plaintext as a whole and used to produce a block 

of cipher text of same length. Typically, a block size of 64 or 128 bits is used. Block cipher are 

comparatively slower and complex in their program. In general, they seem applicable to a broader range 

of applications than stream ciphers. The most commonly used Block ciphers are DES, Triple DES, and 

AES. 

1.2.2. Asymmetric Key Cryptosystem 

Asymmetric key cryptosystem also known as public key cryptosystem is a form of cryptosystem 

in which encryption and decryption are done by using different keys, one key is made public, so that 

anyone who interest in it can have access to it and the other key is kept secret, so that only authorized 

person can have access to it. Asymmetric key cryptosystem can be used for confidentiality, authentication, 

or both. The most widely used public-key cryptosystem is RSA. 

Figure 1.1.Classification of Cryptology 
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1.3. Some Classical and Modern Ciphers 

1.3.1. Classic Ciphers 

Caesar Cipher 

[17, 18, 24] The earliest known, and the simplest, use of a substitution cipher was by Julius Caesar. 

The Caesar cipher replaced each letter of the alphabet with the letter standing three places further down 

the alphabet. For example, 

Plain text:    meet us after the juice party 

Cipher text: PHHW XV DIWHU WKH MXLFH SDUWB 

Note that the alphabet is enfolded around, so that the alphabet X is replaced by A. 

We can substitute each characters by shifting three places as follows: 

Plain characters:    a b c d e f g h i j k l m n o p q r s t u v w x y z 

Cipher characters: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

Now let us assign a numerical value to each letter, then the Caesar algorithm is expressed as follows: 

 

 

If C is cipher value and p is plain text value, then the enciphering algorithm is described as: 

𝐶 =  𝐸(𝑝, 3) = (𝑝 + 3)𝑚𝑜𝑑26 

A shift may be any value from 1 to 25 so the general Caesar algorithm is of the form: 

 𝐶 = 𝐸(𝑝, ℎ) = (𝑝 + ℎ)𝑚𝑜𝑑26 

The deciphering algorithm is simply defined as: 

 𝑝 = 𝐷(ℎ, 𝐶) = (𝐶 − ℎ)𝑚𝑜𝑑26 

 

Example 14: when 𝑘 = 5 then the term “PARTY” becomes ‘UFWYD”. 
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Affine Cipher 

Affine cipher is the general form of a Caesar cipher in which the bijective function 𝑓: ℤ𝑚 → ℤ𝑚 is 

defined as, 𝑓(𝑟) = (𝑎𝑟 + 𝑏) 𝑚𝑜𝑑 𝑚 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏 ∈ ℤ𝑚 𝑎𝑛𝑑 𝑎 is invertible in 𝑍𝑚. 

Remark: The reason for 𝑎 to be invertible is that it make the function 𝑓 to be invertible. In order to 

maximize the possible values of 𝑎, 𝑚 is used such that ℤ𝑚 is a field. 

Example 15: Consider the finite field ℤ29 for the plaintext "𝑃𝐴𝑅𝑇𝑌 𝑇𝐼𝑀𝐸", where the space is 

represented by 0, and comma, full stop are represented by 27 and 28 respectively. Now define 𝑓: ℤ29 →

ℤ29 𝑏𝑦 𝑓(𝑥) = (5𝑥 + 12)𝑚𝑜𝑑 29 

 

𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 𝑃 𝐴 𝑅 𝑇 𝑌  𝑇 𝐼 𝑀 𝐸 

𝑥 16 1 18 20 25 0 20 9 13 5 

5𝑥 + 12 92 17 102 112 137 12 112 57 77 37 

(5𝑥 + 12)𝑚𝑜𝑑 29 5 17 15 25 21 12 25 28 19 8 

𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 𝐸 𝑄 𝑂 𝑌 𝑈 𝐿 𝑌 . 𝑆 𝐻 

  

So that the ciphertext becomes "𝐸𝑄𝑂𝑌𝑈𝐿𝑌. 𝑆𝐻". The decryption process is similar to by taking only the 

inverse of  𝑓. In this case inverse function of 𝑓 is defined by 𝑓−1(𝑥) = (6𝑥 −

12)𝑚𝑜𝑑 29 𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦 𝑓−1(𝑥) = (6𝑥 + 17)𝑚𝑜𝑑 29. 

Hill Cipher 

The generalization of the affine cipher is known as the Hill cipher. Let 𝐴 denotes the set of 

plaintext, ℤ𝑚 be integers modulo ring and 𝑘 be a positive integer greater than 1. The mapping 𝑓: 𝐴 →

ℤ𝑚 can be extended to 𝑓: 𝐴𝑘 → (ℤ𝑚)𝑘 by defining 𝑓(𝑎1, 𝑎2, … , 𝑎𝑘) = (𝑓(𝑎1), 𝑓(𝑎2),… , 𝑓(𝑎𝑘)). 

Now  

ℤ𝑚
𝑟 = {[

𝑏1

𝑏2

⋮
𝑏𝑘

] ∶ 𝑏𝑖 ∈ ℤ𝑚} 
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And 

ℤ𝑚
𝑟×𝑟 = {[

𝑏11 𝑏12 ⋯ 𝑏1𝑘

𝑏21

⋮
𝑏22 ⋯

⋮ ⋮
𝑏2𝑘

⋮
𝑏𝑘1 𝑏𝑘2 … 𝑏𝑘𝑘

] ∶  𝑏𝑖𝑗 ∈ ℤ𝑚} 

Now if 𝑈 ∈ ℤ𝑚
𝑟×𝑟 is such that 𝑈 is invertible, then det (𝑈) is invertible in ℤ𝑚 and the function 𝑓: ℤ𝑚

𝑟 → ℤ𝑚
𝑟  

defined by 𝑓(𝐵) = 𝑈𝐵 + 𝑉 where 𝑉 ∈ ℤ𝑚
𝑟 . Now by defining this type of function in encryption system is 

so called Hill cipher. The decryption algorithm is done by defining the inverse function of 𝑓. 

Example 16: Consider the plaintext “𝑆𝐶𝑂𝑅𝑃𝐼𝑂𝑁” and the Hill cipher 𝑓: ℤ26
2 → ℤ26

2  𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝑓(𝑋) =

(𝑈𝑋 + 𝑉) 𝑚𝑜𝑑26 where 𝑈 = [
5 3
5 4

]  𝑎𝑛𝑑 𝑉 = [
9
7
] . 𝑁𝑜𝑤 det(𝑈) = 5 𝑎𝑛𝑑 (5,26) = 1, 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑈 is 

invertible and the plaintext is encrypted as: 

𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡

[
𝑥1

𝑥2
]

𝑓 ([
𝑥1

𝑥2
])

𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡

𝑆𝐶

[
19
3

]

[
9
10

]

𝐼𝐽

𝑂𝑅

[
15
18

]

[
8
24

]

𝐻𝑋

𝑃𝐼

[
16
9

]

[
12
19

]

𝐿𝑆

𝑂𝑁

[
15
14

]

[
22
8

]

𝑉𝐻

 

So that the ciphertext becomes “IJHXLSVH”. The decryption algorithm is processed by 

defining 𝑓−1: ℤ26
2 → ℤ26

2  𝑎𝑠  𝑓−1(𝑋) = [
6 15
25 1

]𝑋 + [
23
28

].  

1.3.2. Modern Cryptosystems 

[4,17,18,24 ] The most widely used encryption scheme is based on the Data Encryption Standard 

(DES) was adopted in January, 1977 by the National Bureau of Standards (NBS), now a days which is 

known for the National Institute of Standards and Technology (NIST). The algorithm itself is referred to 

as the Data Encryption Algorithm (DEA) and soon it became the most broadly used cryptosystem in the 

world.  For DES, data are encrypted in 64-bits blocks using a key of 56-bits. The algorithm transforms 

64-bit input in a series of steps into a 64-bits output. The same steps, with the same key, are used to reverse 

the encryption. The size of key space in DES is 256 (approximately 7.2 × 1016). The “DES Cracker” 

machine was built in 1998 by Electronic Frontier Foundation that could search 88 billion DES keys in one 

second. So that the DES secret key could be find in 56 hours. In 1999, working in conjunction with a 

worldwide network of one lac computers, the DES Cracker could search 245 billion keys per second and 
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so succeeded in finding a DES secret key in approximately 22 hours. Thus it was clear that DES was no 

long secure cryptosystem. So it was essential to adopt a new cryptosystem instead of DES. 

By now, the choice of algorithm for many applications has become the Advanced Encryption 

Standard (AES). For several decades, AES is with its three key lengths of 128, 192 and 256 bit secure 

against brute-force attacks and there are no analytical attacks with any reasonable chance of success 

known. 

As a result of an open competition, AES was selected in the last phase of the selection process in 

four other finalist algorithms. The other are the block ciphers, 𝑅𝐶6, 𝑆𝑒𝑟𝑝𝑒𝑛𝑡, 𝑇𝑤𝑜𝑓𝑖𝑠ℎ 𝑎𝑛𝑑 𝑀𝑎𝑟𝑠. All 

of these algorithm are cryptographically strong and quite fast, particularly in software. They can all be 

recommended on the basis of today’s knowledge. Mars, Serpent and Twofish can be used royalty-free. 

Now a day, the Advanced Encryption Standards (AES) is the most broadly used symmetric key 

cryptosystem. Even though the term “Standard” is only refers to US government applications, the AES 

block cipher is also compulsory in several industry standards and is used in many commercial systems. 

Among the commercial standards that include AES are the Internet security standard IPsec, TLS, the 

secure shell network protocol SSH (Secure Shell), the Wi-Fi encryption standard IEEE 802.11i, the 

Internet phone Skype and many others security products throughout the world. 

In 1999 the US National Institute of Standards and Technology (NIST) specified that DES should 

only be used for legacy systems and instead of DES, triple DES (3DES) should be used. But there are 

several problems with 3𝐷𝐸𝑆, even though it resists brute-force attacks. First is that it is not very effective 

in software implementations. DES is also not particularly well suitable for software and 3DES is more 

than three times slower than DES. Another drawback is the relatively short block size of 64 bits, which is 

a weakness in many applications. Finally, if one is troubled about attacks with quantum computers, which 

might become reality in few decades, key lengths on the order of 256 bits are required. All these thought 

led NIST to the decision that a new block cipher was needed as a replacement for DES. 

In 1997, NIST called for proposals for a new Advanced Encryption Standard (AES). Unlike the DES 

development, to choose the algorithm for AES was an open process administered by NIST. In three 

subsequent AES evaluation rounds, NIST and the international scientific community discussed the 

benefits and drawbacks with presence of cryptanalysis of the submitted ciphers and pointed down the 

number of potential candidates. In 2001, NIST confirmed the block cipher Rijndael as the new AES and 

published it as a final standard (FIPS PUB 197). Rijndael was designed by two young Belgian 



18 
 

cryptographers. Within the call for proposals, the following requirements for all AES candidate 

submissions were mandatory: 

 Block cipher with 128 bit block size 

 Three key lengths must be supported: 128, 192 and 256 bit 

 Security comparative to other submitted algorithms 

 Effectiveness in software and hardware 

 

The invitation to submit appropriate algorithms and the estimation of the replacement of DES was a 

public process. A solid chronology of the AES selection process is given as: 

NIST announced on January 2, 1997, the need of a new block cipher and on September 12, 1997, the 

formal call for AES was announced. And fifteen researcher’s submitted different algorithms from several 

countries on August 20, 1998, in which five algorithm were announced in final list. Following are the list 

of these five final algorithm for AES.  

 RC6 by RSA Laboratories. 

 Rijndael, by Joan Daemen and Vincent Rijmen. 

 Mars by IBM Corporation. 

 Twofish by Bruce Schneier, John Kelsey, Doug Whiting, DavidWagner, Chris 

Hall and Niels Ferguson 

 Serpent, by Ross Anderson, Eli Biham and Lars Knudsen 

And lastly on October 2, 2000, Rijndael had selected as the AES by NIST and AES was officially approved 

as a US standard on November 26, 2001. 

For different key length, AES have different number of rounds. For key length of 128 bits, number 

of rounds is 10, while for key length of 192 and 256 bits, the number of rounds are 12 and 14 respectively. 

AES consists of different layers. Each layer process on all 128 bits of the data. There are only three 

different types of layers. Each round, except first, consists of all three layers. Moreover, the last round 

does not make use of the Mix Column transformation, which helps the encryption and decryption scheme 

to be symmetric. If we denote the message space by 𝑀, the key space by 𝐾 and the cipher space by 𝐶, then 

we assume that 𝑀 = 𝐾 = 𝐶 = (ℤ2)
128, i.e. we take the case, where the block size and key size are both 

128 bits.   

A brief description of the layers is given below: 
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Key Addition: A 128-bits round key, or subkey, which has been derived from the main key in the key 

schedule, is XORed to the data. 

Byte Substitution (S-Box): With special mathematical properties, each element of the data is nonlinearly 

transformed to another element by use of lookup tables. This creates confusion to the data. 

Diffusion layer: It provides diffusion to over all data and it consists of two sublayers, both of which 

perform linear operations: 

 The Shift Row sublayer permutes the data on a byte level. 

 The Mix Column layer is a matrix operation which mixes blocks of four bytes. 

To explain these four operations, we write 𝑚 ∈ 𝑀 to denote the current state of data.   

Byte Substitution layer: 

In this layer, each state byte 𝑋𝑖 is replaced by another byte 𝑌𝑖, i.e. 

𝑆(𝑋𝑖) = 𝑌𝑖 

The S-Box is the only nonlinear part of AES, i.e., it holds that 𝑆(𝑋 + 𝑌) ≠ 𝑆(𝑋) + 𝑆(𝑌) for two 

states 𝑋 𝑎𝑛𝑑 𝑌. The S-Box substitution is a bijective mapping, i.e. each of the 28 = 256 possible input 

elements is one-to-one mapped to one output element. And due to bijective mapping, the inverse S-box 

can be determined, which is required for decryption. The substitution is performed only on 8-bit string by 

using a particular permutation 𝑓: (ℤ2)
8 → (ℤ2)

8. Now since 𝑚 ∈ 𝑀 consists of 128-bit string, so 𝑚 can 

be written as 16 bytes. Let 𝑚 = (𝑚1, 𝑚2, … ,𝑚16),𝑤ℎ𝑒𝑟𝑒 𝑚1, 𝑚2, …𝑚16 ∈ (ℤ2)
8, then  

𝑚 = (𝑚1,𝑚2, … ,𝑚16) → (𝑓(𝑚1), 𝑓(𝑚2), … , 𝑓(𝑚16)) 

The permutation 𝑓: (ℤ2)
8 → (ℤ2)

8 used in Rijndael algorithm is obtained by identifying each element 

of (ℤ2)
8 with corresponding element of the finite field 𝔽28 = 𝔽256. To obtain a representation of a finite 

field 𝔽256 , Rijndael uses the irreducible polynomial 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1, so that the field 𝔽256 is given 

by 

𝔽256 = {𝑎7𝑢
7 + 𝑎6𝑢

6 + ⋯+ 𝑎1𝑢 + 𝑎0 ∶  𝑤ℎ𝑒𝑟𝑒 𝑎0, 𝑎1, … , 𝑎7 ∈ ℤ2} 

Where 𝑢 satisfies the relation 𝑢8 + 𝑢4 + 𝑢3 + 𝑢 + 1 = 0. Also we have a 1-1 correspondence between 

the elements of (ℤ2)
8 𝑎𝑛𝑑 𝔽256 given by: 

𝑔(𝑎7, 𝑎6, … , 𝑎1, 𝑎0) = 𝑎7𝑢
7 + 𝑎6𝑢

6 + ⋯+ 𝑎1𝑢 + 𝑎0 

With this identification of elements of (ℤ2)
8 𝑤𝑖𝑡ℎ 𝔽256, the mapping 𝑓: 𝔽256 → 𝔽256 is defined to be a 

composite of two bijective mappings, ℎ 𝑎𝑛𝑑 𝜎, 𝑖. 𝑒. 𝑓 = ℎ ∘ 𝜎 where ℎ: 𝔽256 → 𝔽256 𝑎𝑛𝑑 𝜎: 𝔽256 → 𝔽256 

are defined as 
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ℎ(𝑡) = {
0   ∶      𝑖𝑓 𝑡 = 0

𝑡−1 ∶      𝑖𝑓 𝑡 ≠ 0   
} 

The second mapping is defined in a way that if 𝑡 = 𝑎7𝑢
7 + 𝑎6𝑢

6 + ⋯+ 𝑎1𝑢 + 𝑎0 =

∑ 𝑎𝑖𝑢
𝑖7

𝑖=0 , 𝑡ℎ𝑒𝑛 𝜎(𝑡) = ∑ 𝑏𝑖𝑢
𝑖7

𝑖=0  where 𝑏𝑖 is obtained as follows: 

[
 
 
 
 
 
 
 
𝑏0

𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6

𝑏7]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1
1
1
1
1
0
0
0

0
1
1
1
1
1
0
0

0
0
1
1
1
1
1
0

0
0
0
1
1
1
1
1

1
0
0
0
1
1
1
1

1
1
0
0
0
1
1
1

1
1
1
0
0
0
1
1

1
1
1
1
0
0
0
1]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑎0

𝑎1
𝑎2

𝑎3
𝑎4

𝑎5
𝑎6

𝑎7]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
1
1
0
0
0
1
1
0]
 
 
 
 
 
 
 

 

 

Diffusion layer: For the operations of Row shift and Mix column, we represents element of the message 

space 𝑀 by a 4 × 4 matrix. We write 𝑚 = (𝑚1,𝑚2, … ,𝑚16) as 

 

𝑚 = [

𝑚1 𝑚5 𝑚9 𝑚13

𝑚2 𝑚6 𝑚10 𝑚14

𝑚3 𝑚7 𝑚11 𝑚15

𝑚4 𝑚8 𝑚12 𝑚16

] 

This representation of 𝑚 is used in the Row shift and Mix column operations. 

Row shift: In this operation, the row 𝑖 (𝑖 = 0,1,2, ) in the matrix 𝑚 is shifted cycle wise to the left by 𝑖 

places. Thus the top row remains unchanged, the second row is shifted to the left one place, the third row 

is shifted to the left two places and last row is shifted three places to the left. The process of the operation 

is given below: 

𝑚 = [

𝑚1 𝑚5 𝑚9 𝑚13

𝑚2 𝑚6 𝑚10 𝑚14

𝑚3 𝑚7 𝑚11 𝑚15

𝑚4 𝑚8 𝑚12 𝑚16

] → [

𝑚1 𝑚5 𝑚9 𝑚13

𝑚6 𝑚10 𝑚14 𝑚2

𝑚11 𝑚15 𝑚3 𝑚7

𝑚16 𝑚4 𝑚8 𝑚12

] 

Mix column: In this operation, the linear transformation is used, which mixes each column of a state 

matrix 𝑚. The matrix of inputs 𝑚 is multiplied from the left by a fixed invertible matrix.  The main 

diffusion part of AES is he Mix Column operation. The combination of the operations, Row shift and Mix 

Column makes it possible that after only three rounds every byte of the matrix 𝑚 depends on all 16 

plaintext bytes. The process of this operation is given below: 
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𝑚 = [

𝑚1 𝑚5 𝑚9 𝑚13

𝑚2 𝑚6 𝑚10 𝑚14

𝑚3 𝑚7 𝑚11 𝑚15

𝑚4 𝑚8 𝑚12 𝑚16

] → [

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

] [

𝑚1 𝑚5 𝑚9 𝑚13

𝑚2 𝑚6 𝑚10 𝑚14

𝑚3 𝑚7 𝑚11 𝑚15

𝑚4 𝑚8 𝑚12 𝑚16

] 

We discuss now the details of the matrix multiplication which are include in the Mix Colum operations. 

We recall that each state byte 𝑚1 is an 8-bit value represented by an element from 𝐺𝐹(28). The addition 

and multiplication involving the coefficients is done in this Galois field 𝐺𝐹(28). For the constants used in 

the fixed matrix, a hexadecimal notation is used, i.e. "01" refers to the element of 𝐺𝐹(28), i.e. polynomial 

with the coefficients (00000001), (it is the identity element 1 of the Galois field 𝐺𝐹(28), “02” refers to 

the polynomial with the coefficients (00000010), i.e., refer to the polynomial x in 𝐺𝐹(28), and “03” refers 

to the polynomial with the bit vector (00000011), i.e. the polynomial 𝑥 + 1 in the Galois field 𝐺𝐹(28). 

The additions in the matrix multiplication are additions of the elements of 𝐺𝐹(28), that is simple 

bitwise 𝑋𝑂𝑅𝑠 of the respective bytes. For the multiplication of the constants, we have to realize 

multiplications with the constants 01, 02 and 03. These are quite simple, and in fact, the three constants 

were chosen such that software implementation is easy. Multiplication by 01 is multiplication by the 

identity and does not involve any other operation. Multiplication by 02 can be applied as a multiplication 

by "𝑥", which is a left shift by one bit, and a modular reduction with 𝑃(𝑥) =  𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1. 

Similarly, multiplication by 03, which represents the polynomial, "𝑥 + 1" can be performed by a left shift 

by one bit and addition of the original value followed by a modular reduction with 𝑃(𝑥). 

Example: We continue with assuming that the input state to the Mix Column layer is 𝐵 = (35,35, . . . ,35). 

In this special case, only two multiplications in 𝐺𝐹(28) have to be done. These are 

02 ·  35 𝑎𝑛𝑑 03 ·  35, which can be computed in polynomial notation as: 

 

02 ·  35 =  𝑥 ·  (𝑥5 + 𝑥 + 1) 

= 𝑥6 + 𝑥2 + 𝑥 

03 ·  35 =  (𝑥 + 1)  ·  (𝑥5 + 𝑥 + 1) 

= (𝑥6 + 𝑥2 + 𝑥) + (𝑥5 + 𝑥 + 1) 

= 𝑥6 + 𝑥5 + 𝑥2 + 1. 

Since both the value after multiplication have a degree smaller than 8, so no modular reduction with 𝑃(𝑥) 

is necessary. Now by adding 01  .  35, 01  .  35, 02  .  35 𝑎𝑛𝑑 03  .  35, we get 𝑥5 + 𝑥 + 1 = 35 as 

output, which yields that output after Mix column operation in this special case is 𝐶 = (35,35,… , 35). 
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Chapter 2 

Construction of S-box over Galois Ring 𝐺𝑅(4,4) 

 

2.1. Introduction 
 There are many algebraic notions, which if incorporated in Computer and Information 

technologies, can have remarkable impacts. For instance, Galois fields, Galois rings, and maximal cyclic 

subgroups of groups of units of Galois rings. In modern symmetric key cryptography, the S-boxes are 

usually constructed over finite Galois fields (𝐺𝐹(2𝑛) 𝑓𝑜𝑟 2 ≤ 𝑛 ≤ 8). For instance, AES S-box [4], Gray 

S-box [25], APA S-box [3], Residue Prime S-box [14], Skipjack S-box, S₈ AES S-box [15], and Xyi S-

box [27]. The strength of cryptographic algorithms is determined on the base of this nonlinear component 

of the algorithm. Therefore, the construction of cryptographically strong S-box is vital in the design of 

secure cryptosystems. For safe communication, diverse nature of S-box has been constructed, which is 

based on algebraic and practical structures. S-boxes constructed on algebraic structure have much more 

attraction due to their strong cryptographic characteristics [11–13]. 

The substitution box (S-box) is one of the most vital and indispensable source in the area of 

cryptography. The process of encryption creates confusion and diffusion in data, and the S-box plays a 

key role to make confusion in data because it is the only non-linear part in the encryption process. The 

strength of encryption technique depends on the ability of S-box in twisting the data hence, the process of 

finding new and powerful S-boxes is of great importance in the field of cryptography. 

A 𝑝 × 𝑞 S-box is a mapping ℎ: ℤ2
𝑝 → ℤ2

𝑞
 from 𝑝 input bits to 𝑞 output bits, whereas, there are 2𝑝 

and 2q number of inputs and outputs, respectively. Subsequently, an S-box is just a set of 𝑞 single output 

Boolean functions combined in a fixed order. The dimension of an S-box has an effect on the uniqueness 

of the output and the input, which might affect the properties of the S-box. If there is an S-box with 

dimension 𝑝 × 𝑞, where 𝑝 > 𝑞 such that the number of input bits is greater than output bits, then some 

entries in the S-box must be repeated, whereas, an 𝑝 × 𝑝 S-box might either contains different entries, 

where each input is mapped to different output, or repeat several entries of the S-box. The S-boxes which 

are both injective and surjective are called bijective S-boxes and they are reversible, i.e. the inverse S-box 

of these S-boxes exists. 
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The most widespread application of Galois fields, Galois rings, and maximal cyclic subgroups of 

groups of units of Galois rings can be seen in the coding theory. As an alternative of a cyclic Galois group, 

for the valued practice and a matchless role, maximal cyclic subgroup of the group of units of a Galois 

ring catches an abundant consideration in algebraic coding theory. In this covenant, mainly Shankar [24] 

introduced a construction procedure of a BCH code over a local commutative ring ℤ𝑝𝑘  with the use of 

maximal cyclic subgroup of the group of units of the Galois ring extension of the ring ℤ𝑝𝑘 . In [24], it is 

shown that the existence of this maximal cyclic subgroup is based on a modulo p reduction map from the 

integer modulo ring ℤ𝑝𝑘 to its residue field ℤ𝑝. Whereas, Shanbhag et al. [23] has given exponential sums 

and an upper bound for hybrid sum over the Galois rings by the usage of maximal cyclic subgroups of the 

groups of units of these Galois rings . In continuation, Andrade and Palazzo [1], with the help of maximal 

cyclic subgroup of a Galois ring, gives a construction technique of BCH codes based on locator vector 

having components from maximal cyclic group. Galois rings, and maximal cyclic subgroups of groups of 

units of Galois rings are used firstly by Shah at al [21] in the construction of different S-boxes. 

Once the S-box is formed, it is essential to analyze the properties exhibited by them. With the help 

of the results from algebraic and statistical analysis [14, 19-22], we can determine the encryption strength 

of this newly generated S-boxes and their ability of creating confusion in the encryption process. 

In this chapter, the construction technique of 4 × 4 S-boxes with the utility of maximal cyclic subgroups 

of groups of units of the Galois rings GR(22, 4) and 𝐺𝐹(22) are discussed [21]. 

2.2. Tools used in Modern Cryptography 
Cryptography was considered as an art before 1950, but modern cryptography is a science that 

needs support from other fields like mathematics, electronics and computer science. The importance of 

cryptography and its scientific research became an aim for military intelligence after World War II. It did 

not take long when in 1970’s the greatest breakthrough of the field was seen (invention of public key 

ciphers and DES; the first modern symmetric cryptosystem). This was the time when algorithms were 

developed for computers, by computers. It was realized that good ciphers were developed by combining 

small tools. Some of these tools were used as ciphers themselves but with the invention of computers, 

calculations have become much faster than the old days. 

2.2.1. Substitution 
As the term implies, a substitution can be defined as an operation, which replaced one thing, by 

the other. In cryptography, it represents a process in which one symbol (or group of symbols) is replaced 
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with another symbol (group of symbols). The example of substitution cipher in classical cryptography is 

Caesar Shift Chip. Here, each letter of the plaintext is replaced by the latter three places further down in 

the alphabet. 

2.2.2. Transposition 
When the places of two things are swapped with each other, they are said to be transposed. There 

is a condition that is applied to this process for which only the two things involved in the transposition are 

swapped and the rest remains the same. 

2.2.3. Permutation 
An arbitrary reordering or swapping of exactly two members of a set is known as permutation. 

While using the proper sequence of transposition, any permutation can be accomplished. 

2.2.4. Confusion and Diffusion 
In cryptography, we usually use substitutions and permutations, and combine them to create confusion 

and diffusion in the data. The confusion and diffusion creates distortions in the data and in the image, 

making it unreadable. 

 The purpose of confusion is to make the relation between the key and the ciphertext as complex 

as possible. 

 Diffusion is the process, which spread the influence of a single plaintext bit over many 

ciphertext bits. A scheme is diffusing if a change in the character of the plaintext (cipher text) 

produces changes in several characters of the cipher text (plaintext) respectively. In a block 

cipher, bit changes are propagated by the help of diffusion, from one part of the block to the 

other parts. 

To maintain a maximum level of confusion and diffusion, substitution-permutation ciphers are used. These 

are the symmetric encryption representing a combination of permutations and substitutions. Some of the 

most relevant symmetric encryption systems are DES and AES. 

2.2.5. Linear Fractional Transformation 
The linear fractional transformation (LFT) is a mapping of the form  𝑔(𝑚) = 𝑠𝑚 + 𝑡

𝑢𝑚 + 𝑣⁄  where, 

 𝑠, 𝑡, 𝑢, 𝑣 ∈ ℂ are such that 𝑠𝑣 − 𝑢𝑡 ≠ 0. In cryptography, LFT were used in the construction of S-boxes 

on Galois fields [9-14]. The process to obtain the image 𝑔(𝑚) of 𝑚, is different from the usual LFT. In 
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the construction of S-box, the LFT 𝑔: 𝐺𝐹(28) → 𝐺𝐹(28) is used. The process of obtaining image of 𝑚 ∈

𝐺𝐹(28) is such that we first select 𝑠, 𝑡, 𝑢, 𝑣 ∈ 𝐺𝐹(28) such that 𝑠𝑣 − 𝑢𝑡 ≠ 0. Then we convert the 

element 𝑚, 𝑠, 𝑡, 𝑢, 𝑣 to decimal representation and simplify 𝑠𝑚 + 𝑡 𝑎𝑛𝑑 𝑢𝑚 + 𝑣 and then write it as a 

power of the generator 𝛼 of the Galois cyclic group 𝐺𝐹(28)∗ = 𝐺𝐹(28) − {0}, i.e. for example if 𝑠𝑚 +

𝑡 = 𝛼𝑘 and 𝑢𝑚 + 𝑣 = 𝛼𝑛 then 𝑔(𝑚) = 𝛼𝑘

𝛼𝑛⁄ = 𝛼𝑘−𝑛 ∈ 𝐺𝐹(28).  

2.3. Maximal Cyclic Subgroups of Group of Units of Galois Rings 

Let 𝐾∗ and 𝑅∗ be the multiplicative group of units of field 𝐾 of order 𝑝𝑘 and ring 𝑅 respectively. 

Then 𝑅∗ is a multiplicative commutative group and can be written in the direct product of cyclic 

subgroups. By the following Theorems (1,2), between these cyclic subgroups, there is only one cyclic 

subgroup of order pk − 1. 

Theorem 1: The cyclic subgroup of R∗ of order ph − 1 has one and only one cyclic subgroup of order 

relatively prime to p. 

Theorem 2: suppose 𝑥 generates a cyclic subgroup of order 𝑠 = 𝑝𝑘 − 1  in 𝐾∗ = 𝐾\{0}, then 𝑥 

generates a cyclic subgroup of order 𝑠𝑑 𝑖𝑛 𝑅∗ 𝑤ℎ𝑒𝑟𝑒 𝑑 ≥ 1 and so 𝑥𝑑 generates the cyclic subgroup 𝐺𝑠 

of group of units of 𝑅∗, 𝑖. 𝑒. 𝐺𝑠 = {〈𝑥𝑑〉 ∶  𝑥𝑠𝑑 = 1}. 

This subgroup can be generated by the generator of the corresponding finite field. It is denoted by 𝐺𝑠, 

where 𝑠 = 𝑝ℎ − 1. Because of the fact that the orders of 𝐾∗ and 𝐺𝑛 are same, i.e., 𝑝ℎ − 1 and they both 

are cyclic. So, 𝐺𝑠 is isomorphic to 𝐾∗. 

With the utility of maximal cyclic subgroups of groups of units of the Galois rings, while, in this 

case the maximal cyclic subgroup of orders 15 are isomorphic to the cyclic Galois group 𝐺𝐹(24)∗. The 

association of maximal cyclic subgroups with admiring cyclic Galois group, which are produced by the 

mod-2 reduction maps from local commutative rings and to their common residue field, supports in 

construction of the S-boxes over maximal cyclic subgroups. Of course these newly designed S-box 

increasing complexity during encryption and decryption. 

2.3.1.  Algorithm for S-box Construction Based on Galois Rings 

Given below is the procedure, defining the S-box in 3 steps: 

1 Inversion function I: 𝐺𝑠U {0} → 𝐺𝑠U {0} by 𝐼(0) = 0 𝑎𝑛𝑑 𝐼(𝑥) = 𝑥−1 ∶ ∀ 𝑥 ∈ 𝐺𝑠 

2 Linear scalar multiple function 𝑓 ∶ 𝐺𝑠U{0} → 𝐺𝑠U{0} by 𝑓(𝑥) = 𝑐𝑥  
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3 Take composition of 𝐼𝑜𝑓 to get (𝑛 + 1) × (𝑛 + 1) S-box. 

The maps described above is nothing more than a substitution within the set 𝐺𝑛 ∪ {0}. An element of the 

set is substituted with the element next to its respective inverse. In other words, the scalar multiplied with 

the inverse. 

In the example below, we discuss and analyze this construction method for 4×4 S-box. 

Let us consider the local rings ℤ4 = {0,1,2,3}, whereas ℤ2 = {0,1}, is its residue field. The monic 

polynomial 𝑓(𝑥) = 𝑥4 + 𝑥 + 1 is basic irreducible over the local rings   such that �̅�(𝑥) = 𝑓(𝑥) mod 2 =

𝑥4 + 𝑥 + 1 is irreducible polynomial over ℤ2. 

S-box based on GF(24): 

Take the polynomial ring ℤ2[𝑥] = {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯+ 𝑎𝑛𝑥𝑛: 𝑎𝑖 ∈ ℤ2, 𝑛 ∈ ℤ+} in one 

indeterminate x over binary field ℤ2. Let < 𝑓(̅𝑥) >= {𝑎(𝑥). 𝑓(̅𝑥): 𝑎(𝑥) ∈ ℤ2[𝑥]} be the principal ideal 

in ℤ2[𝑥], generated by 𝑓(̅𝑥) where 𝑓(̅𝑥) = 𝑥4 + 𝑥 + 1. Then elements of Galois extension field 𝐾 =

𝑍2[𝑥]

<�̅�(𝑥)>
, of order 16 are given in Table 2.5. 

 

Table 2.5 

𝐸𝑥𝑝 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝐶𝑜𝑓𝑓 𝐸𝑥𝑝 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝐶𝑜𝑓𝑓 

−∞ 0 0000 7 𝑥3 + 𝑥2 + 1 1101 

0 1 0001 8 𝑥2 0100 

1 𝑥 + 1 0011 9 𝑥3 + 𝑥2 1100 

2 𝑥2 + 1 0101 10 𝑥2 + 𝑥 + 1 0111 

3 𝑥3 + 𝑥2 + 𝑥 + 1 1111 11 𝑥3 + 1 1001 

4 𝑥 0010 12 𝑥3 1000 

5 𝑥2 + 𝑥 0110 13 𝑥3 + 𝑥 + 1 1011 

6 𝑥3 + 𝑥 1010 14 𝑥3 + 𝑥2 + 𝑥 1110 

 

S-box based on Galois ring GR(22, 4): 

Take finite local ring ℤ2𝑘, with corresponding residue field ℤ2.  ℤ2𝑘[𝑥] = {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +

⋯+ 𝑎𝑛𝑥𝑛: 𝑎𝑖 ∈ ℤ2𝑘 , 𝑛 ∈ ℤ+} is the polynomial extension of ℤ2k in the variable x and ℤ2[𝑥] = {𝑎0 +

𝑎1𝑥 + 𝑎2𝑥
2 + ⋯+ 𝑎𝑛𝑥𝑛: 𝑎𝑖 ∈ ℤ2, 𝑛 ∈ ℤ+} is the polynomial extension of ℤ2 in the variable 𝑥. 
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Let 𝑓(𝑥) ∈ ℤ2𝑘[𝑥], 𝑓(𝑥) = 𝑥4 + 𝑥 + 1 be the basic irreducible polynomial of degree 4. Ideal generated 

by 𝑓(𝑥) is denoted as < 𝑓(𝑥) > and defined as < 𝑓(𝑥) >= {𝑎(𝑥). 𝑓(𝑥): 𝑎(𝑥) ∈ ℤ2𝑘[𝑥]}. Let 𝑹 =

ℤ
2𝑘[𝑥]

<𝑓(𝑥)>
= {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + ⋯𝑎ℎ−1𝑥
ℎ−1: 𝑎𝑖 ∈ ℤ2𝑘} represent the set of residue classes of polynomials 

in x over ℤ2𝑘  modulo the polynomial 𝑓(𝑥). This ring, denoted by 𝐺𝑅(2𝑘, ℎ) is a commutative ring with 

identity and is called the Galois extension of ℤ2𝑘 . where 𝑓̅ = 𝑟2(𝑓) = polynomial, 𝑓 which has coefficient 

modulo 2. 

𝐾∗(= 𝐾\{0} becomes the multiplicative group of units of the field 𝐾. Now, let 𝑅∗ be the multiplicative 

group of units of the Galois ring 𝑅. Then the maximal cyclic subgroup of 𝑅∗, isomorphic to the cyclic 

Galois group 𝐾∗, of order 15 is denoted by 𝐺15 and it is given in Table 2.6. 

Table 2.6 

𝐸𝑥𝑝 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝐶𝑜𝑓𝑓 𝐸𝑥𝑝 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝐶𝑜𝑓𝑓 

−∞ 0 0000 14 𝑥 + 3𝑥2 + 𝑥3 0131 

0 1 0001 16 3 + 3𝑥 3300 

2 1 + 2𝑥 + 𝑥2 1210 18 3 + 𝑥 + 𝑥2 + 3𝑥3 3113 

4 3𝑥 + 2𝑥2 0320 20 𝑥 + 3𝑥2 + 2𝑥3 0132 

6 2 + 𝑥 + 3𝑥3 2103 22 1 + 3𝑥2 + 𝑥3 1031 

8 𝑥2 0010 24 3𝑥2 + 3𝑥3 0033 

10 3 + 3𝑥 + 𝑥2 + 2𝑥3 3312 26 3 + 𝑥3 3001 

12 2 + 2𝑥 + 3𝑥3 2203 28 1 + 3𝑥 + 2𝑥2 + 𝑥3 1321 

 

 

Table 7.  S-Box on 𝐺𝑅(4,4) Table 8.  S-box over 𝐺𝐹(24) 

0 11 12 6 

3 8 4 2 

1 9 13 15 

14 7 10 5 

 

0 193 215 246 

100 15 240 4 

   64 77 29 147 

121 30 163 56 
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2.3.2. Majority Logic Criterion for the Analysis of Substitution Boxes 
In [10] a majority logic criterion (MLC) has given. The MLC is used to analyze the statistical 

strength of the S-box in image encryption application. The encryption process creates distortions in the 

image, and the type of these distortions determines the strength of the algorithm.   

The quantity of randomness in a system is estimated by entropy. In an image, the degree of entropy is 

linked to the arrangements of pieces, which aid the human to recognize the image. Contrast permits the 

viewer to recognize the objects in an image. Due to the method by which the image is encrypted, the 

magnitude of randomness increases results in the height of contrast level to a very high value. The higher 

level of contrast in the encrypted image displays strong encryption. Correlation is an inquiry, which 

measures the correlation of a pixel to its neighbor by possession into attention the texture of the entire 

image. The homogeneity analysis measures the closeness of the distribution of elements in the grey level 

co-occurrence matrix (GLCM) to GLCM diagonal. The GLCM displays the statistics of combinations of 

pixel brightness values or grey levels in tabular form. In the analysis of energy, we measure the energy of 

the encrypted images as preserved by various S-boxes. This amount deals the sum of square elements in 

GLCM. 

The results of MLC, arranged in Table 9, show that the proposed S-boxes satisfy all the criteria up to the 

standard and can be used for secure communication. 

 Table 9. 

Images Entropy Contrast Correlation Energy Homogeneity 

S-box over 𝐺𝐹(24) 5.9698 0.2491 0.9778 0.1689 0.9181 

S-box over 𝐺𝑅(4,4) 5.9437 0.2299 0.9789 0.1722 0.9256 
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Chapter 3 

 
 

A Novel Method to Construct S-boxes on Galois 

Ring 𝐺𝑅(8,8) 
 

3.1. Introduction 

 For secure communication, the most essential part of symmetric cryptography known as 

substitution box is improved in different ways. For these purposes, initially only Galois fields were used, 

but now Galois ring is also used to increase the algebraic complexity of the substitution box. In the 

construction of S-box on Galois ring 𝐺𝑅(4,4) in chapter 2, only two bijective maps are used but in this 

chapter, we proposed a new method to construct 16 × 16 S-boxes by using the elements of maximal cyclic 

subgroup of group of units of Galois ring 𝐺𝑅(8,8). We also used the elements of corresponding Galois 

field 𝐺𝐹(28) in the proposed method. 

3.2. Algorithm for the Proposed S-boxes 

Consider the finite local ring ℤ8 = ℤ23 = {0,1,2, … ,7} together with its residue field ℤ2. The 

ring ℤ8[𝑥] = {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯+ 𝑎𝑛𝑥𝑛: 𝑎𝑖 ∈ ℤ8, 𝑛 ∈ ℤ+} is the polynomial extension ring of ℤ8 in 

one indeterminate 𝑥 and ℤ2[𝑥] = {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯+ 𝑎𝑛𝑥𝑛: 𝑎𝑖 ∈ ℤ2, 𝑛 ∈ ℤ+} is the polynomial 

extension ring of ℤ2 in one indeterminate 𝑥.  The polynomial P(x) =  𝑥8 + 3𝑥4 + 𝑥3 + 3x + 7 is basic 

irreducible polynomial over ℤ8. The ideal generated by 𝑃(𝑥) is denoted and defined as: 

〈𝑃(𝑥)〉 = {𝑎(𝑥). 𝑃(𝑥): 𝑎(𝑥) ∈ ℤ8[𝑥]} 

Let 𝑹 =
ℤ8[𝑥]

〈𝑃(𝑥)〉
= {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + ⋯𝑎ℎ−1𝑥
ℎ−1: 𝑎𝑖 ∈ ℤ8} represent the set of residue classes of 

polynomials in x over ℤ8 modulo the polynomial 𝑃(𝑥). This ring, denoted by 𝐺𝑅(23, 8) is a commutative 

ring with identity and is called the Galois extension of ℤ8 and 𝐺𝑅(𝑝, ℎ) =
ℤ2[𝑥]

𝑃(𝑥)
= 𝑲 is isomorphic to the 
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Galois field 𝐺𝐹(28), an extension of ℤ2 having 28 elements, where �̅�(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + x + 1  is 

irreducible polynomial over ℤ2. 

𝐾∗(= 𝐾\{0}) becomes the multiplicative cyclic group of units of the field 𝐾. Now, let 𝑅∗ be the 

multiplicative group of units of the Galois ring 𝑅, then the maximal cyclic subgroup of 𝑅∗, isomorphic to 

the cyclic Galois group 𝐾∗, of order 255 is denoted by 𝐺255. The elements of maximal cyclic 

subgroup 𝐺255 are obtained by considering 𝛽 as a root of �̅�(𝑥) in ℤ2. In this case, by calculating successive 

power of 𝛽 modulo 2 and modulo �̅�(𝑥), we get that 𝛽255 = 1. Hence, the maximal cyclic subgroup 

has 255 elements and to find these elements, we consider 𝛽 be the root of 𝑃(𝑥) 𝑖𝑛 ℤ8, and so by 

calculating the consecutive power of  𝛽, we get that 𝛽
1020

= 1. So that by theorem 2 (chapter 2), the 

elements of 𝐺255 are generated by 𝛼 = 𝛽
4
. These elements are listed in Table 3.1. The polynomials in 

Table 3.1 are given in decreasing power of 𝛼, i.e. the element 75023105 is represented by 7𝑥7 + 5𝑥6 +

2𝑥4 + 3𝑥3 + 𝑥2 + 5. 

Following steps are required for the construction of new S-box on 𝐺255 ∪ {0}: 

 Step 1: Firstly we define an inversion map 𝐼: 𝐺255 ∪ {0} → 𝐺255 ∪ {0} by 

𝐼(𝑛) = {
0   ∶    𝑖𝑓 𝑛 = 0

𝑛−1 ∶     𝑖𝑓 𝑛 ≠ 0
} 

 Step 2: Secondly we define scalar multiple map ℎ: 𝐺255 ∪ {0} → 𝐺255 ∪ {0} 𝑏𝑦 

ℎ(𝑛) = {
0   ∶    𝑖𝑓 𝑛 = 0
𝑐𝑛 ∶     𝑖𝑓 𝑛 ≠ 0

}, 

Where 𝑐 is any element of 𝐺255. 

 Step 3: After taking composition of 𝐼 𝑎𝑛𝑑 ℎ, we define a map 𝜑: 𝐺255 ∪ {0} → 𝐺𝐹(28) by 

𝜑(0) = 0 𝑎𝑛𝑑  

𝜑(𝛼𝑘) = 𝛽𝑘 ∶ 1 ≤ 𝑘 ≤ 255 

 Step 4: After applying map 𝜑, all the values convert to byte in 𝐺𝐹(28), where we define a couple of 

maps 𝑓 𝑎𝑛𝑑 𝑔 𝑓𝑟𝑜𝑚 𝐺𝐹 (28
) 𝑡𝑜 𝐺𝐹(28) 𝑏𝑦 

𝑓(𝑥) = {
0   ∶    𝑖𝑓 𝑥 = 0

𝑥−1 ∶     𝑖𝑓 𝑥 ≠ 0
} 𝑎𝑛𝑑 𝑔(𝑥) = 𝑦⨁𝐻 

Where 
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 𝑦 =

[
 
 
 
 
 
 
 
𝑦0

𝑦1
𝑦2

𝑦3
𝑦4

𝑦5
𝑦6

𝑦7]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1
1
1
1
1
0
0
0

0
1
1
1
1
1
0
0

0
0
1
1
1
1
1
0

0
0
0
1
1
1
1
1

1
0
0
0
1
1
1
1

1
1
0
0
0
1
1
1

1
1
1
0
0
0
1
1

1
1
1
1
0
0
0
1]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑥0

𝑥1
𝑥2

𝑥3
𝑥4

𝑥5
𝑥6

𝑥7]
 
 
 
 
 
 
 

𝑎𝑛𝑑 𝐻 =

[
 
 
 
 
 
 
 
1
1
0
0
0
1
1
0]
 
 
 
 
 
 
 

 

The proposed S-box given in Table 3.1 whose entries are bytes is then obtained by taking the composition 

of 𝑓 𝑎𝑛𝑑 𝑔, i.e. 𝑆 − 𝑏𝑜𝑥 = 𝑔 ∘ 𝑓(𝑥) = 𝑇𝑥−1⨁𝐻 

Where 

𝑇 =

[
 
 
 
 
 
 
 
1
1
1
1
1
0
0
0

0
1
1
1
1
1
0
0

0
0
1
1
1
1
1
0

0
0
0
1
1
1
1
1

1
0
0
0
1
1
1
1

1
1
0
0
0
1
1
1

1
1
1
0
0
0
1
1

1
1
1
1
0
0
0
1]
 
 
 
 
 
 
 

 𝑎𝑛𝑑 𝐻 =

[
 
 
 
 
 
 
 
1
1
0
0
0
1
1
0]
 
 
 
 
 
 
 

 

 Step 5: After construction of S-box whose entries from 𝐺𝐹(28), we also turn back to 𝐺255 ∪ {0} 

by applying the inverse map of 𝜑, 𝜑−1: 𝐺𝐹(28) → 𝐺255 ∪ {0} defined as: 

𝜑−1(0) = 0 𝑎𝑛𝑑 𝜑−1(𝛽𝑘) = 𝛼𝑘, 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑘 ≤ 255 

 

 Step 6: In this last step, we apply the functions 𝐼 𝑎𝑛𝑑 ℎ 𝑓𝑟𝑜𝑚 𝐺255 ∪ {0} 𝑡𝑜 𝐺255 ∪ {0}, used in 

step 1 and step 2 with different value of 𝑐 ∈ 𝐺255, i.e. 

𝐼(𝑛) = {
0   ∶    𝑖𝑓 𝑛 = 0

𝑛−1 ∶     𝑖𝑓 𝑛 ≠ 0
}  𝑎𝑛𝑑 ℎ(𝑛) = {

0   ∶    𝑖𝑓 𝑛 = 0
𝑘𝑛 ∶     𝑖𝑓 𝑛 ≠ 0

}  𝑤ℎ𝑒𝑟𝑒 𝑘 ≠ 𝑐 

So that the proposed S-box whose entries are from 𝐺255 ∪ {0} is formed and by applying 𝑚𝑜𝑑(88), each 

entry of the S-box becomes 24 bits, which are given in Table 3.7. 
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Table 3.1. Element representation of 𝐺255. 

 

 

Exp Poly Exp Poly Exp Poly Exp Poly Exp Poly 

0 00000001 51 75455303 102 76276614 153 45020540 204 60225230 

1 00010000 52 05216645 103 15032127 154 42332702 205 34306222 

2 00057501 53 67111221 104 71276403 155 65100133 206 53432430 

3 75023105 54 77602411 105 12412427 156 64133510 207 36526243 

4 63605702 55 50365760 106 75124741 157 13020313 208 55662052 

5 30134360 56 62636636 107 71732712 158 51347502 209 34735366 

6 30265713 57 42511163 108 55677073 159 05700534 210 44423373 

7 44277626 58 57154751 109 04114067 160 06163570 211 73356642 

8 36437727 59 55445015 110 44774111 161 33637416 212 16371435 

9 62704543 60 64165144 111 01410777 162 60366263 213 61131137 

10 21361270 61 37355216 112 04253641 163 44367636 214 70520013 

11 35703736 62 42075035 113 32245525 164 36255236 215 31506252 

12 25006570 63 16525507 114 44111624 165 45630725 216 54424150 

13 04412052 64 22020052 115 56740111 166 44777463 217 50627642 

14 21053141 65 20560402 116 12744274 167 34130777 218 01361262 

15 54575205 66 22335656 117 13530674 168 70715313 219 17421736 

16 61677757 67 76446133 118 54257253 169 04711571 220 61573142 

17 56015467 68 10417244 119 01462525 170 11632171 221 10250457 

18 65124301 69 41554541 120 22546746 171 75174063 222 53466125 

19 26631712 70 06020255 121 07577654 172 72165017 223 73463146 

20 33315563 71 00756002 122 71752257 173 03766016 224 61705146 

21 41141031 72 60346175 123 50265275 174 67145176 225 30167407 

22 51315514 73 43461434 124 65211626 175 36347314 226 61442616 

23 65033631 74 57052146 125 71527221 176 66136234 227 05236544 

24   11413403 75 37620005 126 20536352 177 42000513 228 66127423 

25 00014641 76 76470162 127 01040753 178 43354200 229 54721012 

26 46467501 77 22701464 128 04444504 179  05056435 230 27116672 

27 37212446 78 34175270 129 41000044 180 65673605 231 07716411 

28 14644421 79 43761717 130 41714100 181 11735067 232 67522471 

29 17103364 80 52521176 131 02636671 182 24541073 233 01715152 

30 02153613 81 26741355 132 60343163 183 32667054 234 56752671 

31 30450315 82 37401274 133 13341434 184 67063066 235 37513775 

32 70422145 83 02337740 134 62444734 185 15570506 236 27003451 

33 52331242 84 71164133 135 23366644 186 55153057 237 55042700 

34 27201133 85 77256416 136 03263136 187 44605615 238 36451101 

35 32044720 86 13704025 137 30214126 188 16732460 239 05002445 

36  36767604 87 16754370 138 36314521 189 71061573 240 25760500 

37 61410476 88 10107775 139 30211331 190 43161706 241 24007376 

38   63041641 89 46146010 140 00444521 191 52623116 242 15522400 

39 77742704 90 22415214 141 45610444 192 46641462 243 74160752 

40   53746374 91 72575741 142 41141261 193 56266264 244 34136216 

41 75004774 92 02611557 143 53615514 194 73361426 245 53105313 

42 71557500 93 17105761 144 67522061 195 44100136 246 65412310 

43 23313255 94 21136710 145 05615152 196 41011410 247 06621241 

44 57360031 95 02734013 146 52625261 197 55423601 248 10431062 

45 16476536 96 42250173 147 67371462 198 42007742 249 17752743 

46   32636147 97 47341325 148 71456237 199 35644200 250 71507075 

47 50726163 98 52617334 149 10116245 200 30075164 251 26250150 

48 74266272 99 00052761 150 31615511 201 46571307 252 25357725 

49 17023226 100 27623105 151 47550661 202 05736157 253 16644635 

50   04037102 101 52146462 152 45400055 203 62300473 254 1301326b4 
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Table 3.2. The Proposed S-box in 𝐺𝐹(28)  

63 7b 6b 76 82 c3 Fc 16 A2 31 40 90 31 41 7d 96 

CF f8 07 52 61 8f 2a 49 68 77 6f 6 72 93 33 ac 

d9 18 4a 69 9a CB e9 f7 02 AE 35 51 60 62 8E C7 

ED E6 F2 FE FA EB 1B 4B 84 3E 45 6C 66 9F 37 BD 

29 48 85 D3 E1 E2 E3 0E AA 24 A1 30 AD 34 BC C4 

EC 0B 56 70 7F 7A 86 D2 0C 46 6D 8B 3B B9 38 B8 

D5 1C 5B 99 CA 04 53 8C 2B A4 CC F9 EA F6 EF 0A 

BB D4 F1 FF 17 4F 95 CE 15 A3 DC E4 1E B7 D0 E0 

0F 47 80 2F B5 3C A9 25 4C 94 23 B1 2D 59 75 83 

2E 58 98 27 A0 DD 09 BA 39 55 71 92 DE 08 57 9D 

DB F4 03 43 91 DF E5 F3 13 5E 65 9E DA 19 A7 CD 

14 4E 78 6A 9B 26 4D 79 87 3F A8 C8 E8 1A A6 20 

B0 C0 FD FB 06 BF C5 01 AF D8 F5 EE E7 1F 5A 74 

6E 8A D6 1D B6 3D 44 81 C2 11 B2 2C B4 D1 0D AB 

C9 05 BE 28 A5 21 5D 64 73 7E 97 22 5C 89 D7 F0 

12 B3 C1 10 5F 88 3A 54 9C 36 50 8D C6 00 42 7C 

 

3.3. Algebraic Analyses 
 In this section, we discuss some valuable analyses of S-boxes based on residue of prime number to 

determine the strength of the proposed S-box [19, 20]. 

 

Nonlinearity 

The distance between the Boolean function 𝑓 and the set of all affine linear functions is said to be 

nonlinearity of 𝑓. In simple words, Nonlinearity of a Boolean function “𝑓” represents the number of bits 

which changed in the truth table of 𝑓 to reach the nearby affine function. The upper bound of nonlinearity 

of a function 𝑓 is 𝑁𝑓 = 2𝑛−1 − 2
𝑛

2
−1

 [7], so that for 𝑛 = 8, the maximum value of nonlinearity is 120.  
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Strict avalanche criteria 

The SAC was first introduced in 1895 by Webster and Tavares [26]. The SAC constructs on the 

notions of completeness and avalanche. It is satisfied if, whenever a single bit of input changed, each of 

the output bits changes with a 0.5 probability that is, when one bit of input is changed, half of its 

corresponding output bits will changes.  

 

Bit independent criterion 

The BIC was also first introduced by Webster and Tavares [5, 6], which is another required 

property for any cryptographic methods. A Boolean function 𝑔: 𝔽2
𝑘 → 𝔽2

𝑘 satisfies the BIC if for 

all 𝑝, 𝑞, 𝑟 ∈ {1,2, … , 𝑘} with 𝑞 ≠ 𝑟, change in bit 𝑝, causes change in the output bits 𝑞 𝑎𝑛𝑑 𝑟 

independently. 

 

Linear approximation probability 

The maximum value of the imbalance of an event is said to be the linear approximation probability. 

The parity of the input bits selected by the mask 𝐺𝑥 is equal to the parity of the output bits selected by the 

mask 𝐺𝑦. According to Matsui’s original definition [16], linear approximation probability of a given S-

box is defined as: 

𝐿𝑃 = max
𝐺𝑥,𝐺𝑦≠0

{𝑥 ∈ 𝑋 / 𝑥. 𝐺𝑥 = 𝑆(𝑥). 𝐺𝑦}

2𝑛
−

1

2
 

Where 𝐺𝑥 and 𝐺𝑦 are input and output masks, respectively, “𝑋” the set of all possible inputs and 2𝑛 is the 

number of elements of 𝑋.  

Differential Approximation Probability 

[2] The differential approximation probability (DP) of S-box is a measure for differential 

uniformity and is defined as: 

DP (p → q)  =
{p ∈  X/ S(p) ⊕ S(p ⊕ p) = q}

2𝑚
 

This means, an input differential 𝛥𝑝𝑖 should uniquely map to an output differential 𝑞𝑖, so that ensuring 

a uniform mapping probability for each 𝑖. 

 

 

 



35 
 

Table 3.3. Performance Indexes for S-box based on maximal cyclic subgroup 𝐺255 of Galois ring 𝐺𝑅(8,8)  

Analysis Max. Min. Average Square Deviation DP LP 

Nonlinearity 109 103 106.25    

SAC 0.554688 0.445313 0.492432 0.0153784   

BIC  102 105.5 1.97303   

BIC- SAC  0.484375 0.502302 0.0104275   

DP     0.0390625  

LP 157     0.117188 

 

Table 3.4. Comparison of Performance indexes of S-box based on maximal cyclic subgroup 𝐺255 of Galois 

ring 𝐺𝑅(8,8) and different S-boxes 

S-boxes Nonlinearity SAC BIC–SAC BIC DP LP 

AES S-box 112 0.5058 0.504 112.0 0.0156 0.062 

APA S-box 112 0.4987 0.499 112.0 0.0156 0.062 

Gray S-box 112 0.5058 0.502 112.0 0.0156 0.062 

Skipjack S-box 105.7 0.4980 0.499 104.1 0.0468 0.109 

Xyi S-box 105 0.5048 0.503 103.7 0.0468 0.156 

Residue Prime 99.5 0.5012 0.502 101.7 0.2810 0.132 

Proposed S-box 106.25 0.492432 0.502302 105.5 0.0390625 0.117188 

3.4. Image Encryption using 8 bits S-box 

In this section, we analyze the original and encrypted images by some statistical analysis methods. This 

analysis is done on the basis of energy, homogeneity, contrast, correlation and entropy. 

 

Energy 

The energy of encrypted image can be measure by energy analysis. For this purpose, the gray-level 

co-occurrence matrix (GLCM) is used. The sum of squared components in GLCM is said to be Energy. 

The mathematical formulation for this analysis is given by:  
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𝐸 = ∑∑𝑓2 (m, n)

𝑛𝑚

 

Here m and n are the pixels in the image and p (m, n) provides the number of gray-level co-occurrence 

matrices. Note that the value of energy is 1 for constant image. 

Entropy 

By entropy, we evaluate the quantity of randomness in a system. The high level of randomness make 

the image difficult to detect and by substituting non-linear components, the randomness of an image is 

increased in the system and its mathematical form is: 

𝐻 = ∑𝑓(𝑥𝑖)

𝑛

𝑖=0

log𝑏𝑓 𝑥𝑖 

Where 𝑥𝑖 represents the Histogram calculations.  

Contrast 

Contrast used by the viewer to recognize the objects in an image. Due to image encryption method, 

the randomness in the encrypted image increases results in the height of contrast level to a very high value. 

The higher level of contrast in the encrypted image offerings strong encryption. It is directly related to the 

confusion caused by S-box. For measuring contrast the mathematical formula is given by: 

𝐶 = ∑∑(𝑚 − 𝑛)2𝑓(𝑚, 𝑛)

𝑛𝑚

 

Homogeneity 

The contents of an image are naturally distributed. The analysis to measures the closeness of 

distributed elements of GLCM to GLCM diagonal is homogeneity analysis. It is also known as gray tone 

spatial dependency matrix. The GLCM shows the statistics of arrangement of pixel gray levels in tabular 

form. This analysis can be extended more by processing entries from GLCM table. The mathematical 

form of Homogeneity analyses is given by: 

𝐻∗ = ∑∑
𝑓(𝑚, 𝑛)

1 − |𝑚 − 𝑛|
𝑛𝑚

 

The value of contrast is zero for constant image. 

Correlation 

In Correlation analysis, we analyze the correlation of pixel to its neighbors by considering the texture 

of entire image. Correlation analysis is done in three ways, the horizontal, vertical, and diagonal formats 



37 
 

are selected for this purpose. For this purpose, the entire image is also analyzed along with partial regions. 

The correlation is calculated as: 

𝐾 =
(m − αm)(n − αn)f(m, n)

σ𝑚σ𝑛
 

The value of correlation is 1 or -1 for a perfectly positive or perfectly negative images respectively. 

And the correlation is 𝑁𝑎𝑁 for constant image which means that it is not a number, it is just a data type 

which represents the redefined value. 

The result of all these analyses are given in Table 3.5. The comparison of the analyses of the proposed S-

box with some well-known S-boxes is given in Table 3.6. 

Table 3.5: Second order texture analyses for proposed S-box with one round.  

 Plain 

image 

Plain color components of image Cipher 

image 

Cipher color components of image 

  Red Green  Blue  Red Green  Blue 

Contrast 0.360279 0.369317 0.384743 0.36129 4.78347 4.75432 4.88329 4.72728 

Homogeneity 0.880754 0.871235 0.871275 0.875008 0.489707 0.4898 0.487004 0.487588 

Entropy 7.77044 7.729631 7.58034 7.07804 7.75576 7.74498 7.77744 7.72567 

Correlation 0.92102 0.92441 0.930748 0.855138 0.0760063 0.183539 0.200078 0.156543 

Energy 0.122479 0.138046 0.099876 0.169255 0.0287946 0.026298 0.0246558 0.027055 

 

Figure 3.1(a) Plain image of Lena          Figure 3.1(b) Encrypted image using bytes 
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From figure 3.1(a) and figure 3.1(b), we see that plain image of Lena  (512 × 512) is successfully 

encrypted using the proposed S-box of 8 bits (in one round). After analyzing the results in Table 3.5, Table 

3.6 and figure 3(a), 3(b), we comprehended that the proposed algebraic substitution box have strong 

cryptographic properties and can be useful for encryption and decryption processes. 

3.5. Image Encryption Scheme over 24 bits S-box 

The entries of S-box in Table 3.7 are the decimal representation of elements of 𝐺255  and by converting 

these entries into binary form, we can obtain maximum 24 binary bits. The image encryption technique 

based on this S-box is given in the following steps: 

 Take an image and transformed the pixels of this image to 24 bits. 

 Divide the pixel into three bytes and split first byte into two parts, the left 4 and right 4 bits. 

  Convert these bits to decimals. 𝑝, 𝑎𝑛𝑑 𝑞 respectively 

 Pick 𝑆(𝑝, 𝑞), i.e. the element of S-box in 𝑝𝑡ℎ row and 𝑞𝑡ℎ column. 

 Convert this element from decimal to binary (24 bits). 

 Replace binaries of S-box with the pixel of the image and continue this process for whole image 

to get the encrypted image. 

By using this encryption scheme, the original image and encrypted image of Lena are given in Figure 

3.2(a) and Figure 3.2(b): 
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Table 3.7. Proposed S-box of entries 24 bits: 

38007

84 

36580

14 

50561

53 

10034

615 

10107

775 

42536

41 

52428

36 

10407

53 

45840

54 

11809

34 

80158

77 

16371

435 

39256

05 

15468

309 

12056

012 

27736

65 

39451

5 

70518

88 

68231

03 

79142

41 

22936

13 

11413

403 

56379

98 

27008

04 

84533

10 

10493

547 

60202

55 

96072

74 

15080

662 

12113

086 

94729

34 

26115

57 

34111

49 

34111

49 

15858

931 

10116

245 

82984 83464

39 

10011

515 

41360

7 

77164

11 

13341

434 

72301

60 

15267

504 

81596

68 

16731

418 

23377

40 

13274

054 

15032

127 

10868

941 

98544

96 

41319

7 

12744

274 

13612

62 

12304

988 

42435

57 

82293

54 

12709

993 

71574

08 

13488

497 

11110

968 

86957

41 

11241

494 

80651

99 

14644

421 

47110

52 

98386

6 

74569

78 

50024

45 

11219

679 

10633

840 

19995

94 

13390

191 

10723

194 

58178

4 

14768

485 

27600

89 

63542

82 

13704

025 

57005

34 

13436

910     

11845

623     

13530

674     

10799

489      

47115

71      

40552

69      

44486

36 

14879

978       

75179

0      

40371

02     

16710

843      

65360

39     

11051

183        

36312 28966

69  

50919

53 

43594

94      

28832

95      

41675

39         

2357 24601

0      

31007

82      

53304

04 

14641      75868

29      

17151

52     

13016

875     

13020

313     

10014

527        

57501 54668

77      

43893

64 

43473

73      

22914

68      

77638

57       

97552

7      

56838

19     

13297

948      

64210

23 

12076

293      

64084

63      

56161

52     

11632

171     

10250

457     

15795

775      

46433

93 

37660

16     

16732

460 

16644

635      

53454

25      

99641

39      

32631

36      

67635

70     

11968

825      

39527

09 

75600

2     

13087

030      

75865

99      

40655

73 

80001

09        

34112       64452

0 

13786

893     

15804

586 

66212

41      

59242

48       

57634

5     

14838

295      

74456

12      

42759

25      

89567

31 

27340

13     

11346

109      

43982

11      

65894

28     

13434

115     

16476

536     

11735

067 

10158

54     

16754

370 

10813

204      

51133

67            

1 93372

69      

78959

10     

10147

552     

11373

498 

10423

917     

15522

400      

14107

77      

67204

98      

27928

82      

22856

86      

32838

66 

16538

347      

59346

16 

98935

82      

44183

57      

97997

68      

40925

02      

21895

28       

29599

4      

48214

09 

70283

83       

44452

1     

10557

192      

34147

26     

10417

244      

93612

98     

10431

062 

15889

838      

26366

71 

52166

45     

12412

427     

12372

895      

44445

04     

10339

456        

52761      55584

40 

10000      99070

02     

10226

235      

29718

11       

32614

8      

14625

25     

16525

507 

21536

13      

18148

14 

10545

704     

14701

983       

26259

8     

13996

229     

10207

285      

41140

67      

57361

57 

36064

49      

75776

54      

85805

09      

62525

62      

91677

50     

13357

144      

20897

68 

14792

653      

62477

78 

46238

48     

13013

264     

14729

036      

50564

35     

13833

496      

85206

03      

57695

30 

32854

5      

39593

43     

12591

578      

21493

04      

52365

44      

31344

77      

38468

42 

15570

506     

11466

108 

33132

81     

11223

031       

62083

8 

13801

862      

89832

84      

84460

81      

37591

36 

37831

86     

10845

889     

13673

099      

87782

70     

12913

069      

32131

72         

     0 11078

828      

44120

52 

 



40 
 

Figure 3.2(a): Original image of Lena          Figure 3.2(b): encrypted image of Lena by 24-bits 

 

 

3.6. Analysis of S-box of 24 bits’ values: 

In this section, we analyze the original and encrypted images by some statistical analysis, included 

contrast, energy, homogeneity, correlation and entropy. The results of these analysis are given in the 

Tables 3.8, 3.9, 3.10 and 3.11. 

  

                        Table 3.8: Second order texture analyses for proposed S-box with one round.  

 Plain 

image 

Plain color components of image Cipher 

image 

Cipher color components of image 

  Red Green  Blue  Red Green  Blue 

Contrast 0.360279 0.369317 0.384743 0.36129 4.75492 4.58575 4.8981 4.6881 

Homogeneity 0.880754 0.871235 0.871275 0.875008 0.507578 0.503674 0.502144 0.501368 

Entropy 7.77044 7.729631 7.58034 7.07804 7.75779 7.713191 7.7901 7.69629 

Correlation 0.92102 0.92441 0.930748 0.855138 0.121812 0.233256 0.230363 0.161865 

Energy 0.122479 0.138046 0.099876 0.169255 0.0316347 0.0266638 0.0253099 0.0283091 
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                 Table 3.9: Second order texture analyses for proposed S-box with two rounds.  

 Plain 

image 

Plain color components of image Cipher 

image 

Cipher color components of image 

  Red Green  Blue  Red Green  Blue 

Contrast 0.360279 0.369317 0.384743 0.36129 5.571110 5.355740 5.71988 5.52646 

Homogeneity 0.880754 0.871235 0.871275 0.875008 0.460391 0.463644 0.457663 0.460043 

Entropy 7.77044 7.729631 7.58034 7.07804 7.752790 7.654860 7.77014 7.73147 

Correlation 0.92102 0.92441 0.930748 0.855138 -0.005837 0.0397641 0.0751045 0.0543705 

Energy 0.122479 0.138046 0.099876 0.169255 0.0278643 0.0269354 0.024186 0.0255029 

 

                            Table 3.10: Second order texture analyses for proposed S-box with three rounds.  

 Plain 

image 

Plain color components of image Cipher 

image 

Cipher color components of image 

  Red Green  Blue  Red Green  Blue 

Contrast 0.360279 0.369317 0.384743 0.36129 5.60313 5.36719 5.76397 5.53044 

Homogeneity 0.880754 0.871235 0.871275 0.875008 0.458551 0.461704 0.456284 0.458297 

Entropy 7.77044 7.729631 7.58034 7.07804 7.74951 7.63751 7.76913 7.72563 

Correlation 0.92102 0.92441 0.930748 0.855138 -0.0128951 0.026995 0.0662226 0.0433087 

Energy 0.122479 0.138046 0.099876 0.169255 0.0279192 0.0270493 0.0242703 0.025794 

3.7. Comparison of the proposed S-boxes   
Table 3.11 shows the comparison of statistical analysis between the two constructed S-boxes. Due to 

randomness, the values of contrast increases which makes the encrypted image difficult to detect. Also 

the value of contrast, after apply 8-bits S-box is greater than that of the other, so compare to contrast 8-

bits S-box is greater than 24-bits S-box. The homogeneity, correlation and energy values are also different 

in original and encrypted images. 

      Table 3.11. 
Images Entropy Contrast Correlation Energy Homogeneity 

Plain image 7.77044 0.360279 0.92102 0.122479 0.880754 

Encrypted image over 1 byte entries 7.75576 4.78347 0.0760063 0.0287946 0.489707 

Encrypted image over 3bytes entries 7.75779 4.75492 0.121812 0.0316347 0.507578 
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Chapter 4 

 

 

Construction of S-box on Maximal ideal of local 

ring ℤ512 

4.1. Introduction 

In this chapter, we present a technique to design a substitution box, which has a powerful algebraic 

complexity. We used elements of maximal ideal 𝑀 of the local ring ℤ512 to construct 8 × 8 S-box. We 

used the maximal ideal of a local ring for the very first time in S-box construction. For the construction 

of 8 × 8 S-box, we first define a couple of bijective mappings from 𝑀 to 𝑀 and then apply linear fractional 

transformation as: f(𝑚)  =  (𝑎𝑚 + 𝑏)/(𝑐𝑚 + 𝑑), where 𝑚 is any arbitrary element in 𝑀, and 𝑎, 𝑏, 𝑐, 𝑑 

are fixed elements from the Galois field 𝐺𝐹(28). The strength of the proposed S-box is analyzed by 

Nonlinearity test, Strict Avalanche Criterion (SAC), Linear Approximation Probability (LP), Bit 

Independent Criterion (BIC), and Differential Approximation Probability (DP). In addition, by the 

majority logic criterion (MLC), energy, entropy, homogeneity, contrast and correlation of a plain image 

and its encrypted image by newly proposed S-box are checked. Further, we compare the results of all these 

analyses with AES, APA, Prime, Gray, Xyi, Skipjack and 𝑆8 AES S-boxes to fix the rank of our proposed 

S-box. 

4.2. Algorithm for proposed S-box 

The designing procedure of the new S-box is based on the maximal ideal 𝑀 = {0, ,2,4, … ,510} of a local 

ring 𝑅 = ℤ512 and the projective linear group 𝑃𝐺𝐿(2, 𝐺𝐹(28)) applied to Galois field 𝐺𝐹(28). We first 

define inverse mappings 𝐼: 𝑀 → 𝑀 by 𝐼 (𝑚) =  −𝑚, where –𝑚 is additive inverse of 𝑚 in 𝑅. Then a 

mapping like affine transformation is defined as: 𝑓:𝑀 → 𝑀,  𝑓(𝑚)  =  𝑟 . 𝑚 +  𝑛, where 𝑟 and 𝑛 are fixed 

in 𝑈(𝑅) and 𝑀 respectively. Thus the composition of 𝐼 and 𝑓 will be defined as 𝐼𝑜𝑓(𝑚) = −𝑟𝑚 + 𝑛. 

As the elements of 𝑀 are 9 binary bits representation, so we define a bijection 𝑔: 𝑀 →   ℤ256 by 𝑔(2𝑚) =

 𝑚, where 0 ≤ 𝑚 ≤ 255. Also there is one-one correspondence between  ℤ256 and 𝐺𝐹(28). so, lastly the 
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linear fractional transformation used in the construction of S-boxes is given as; ℎ: 𝑃𝐺𝐿(2, 𝐺𝐹(28)) ×

𝐺𝐹(28) → 𝐺𝐹(28)  ℎ(𝑚) =
45𝑚+10

2𝑚+9
, where 45,10,2,9 ∈ 𝐺𝐹(28). Figure 4.1 shows the flow chart of the 

construction method. For the construction of the new S-box, the algorithm begin with the maximal ideal 

𝑀 of a local ring 𝑅 = ℤ512 and use of 𝐺𝐹(28). The function ℎ(𝑚) is formed with the action of 

𝑃𝐺𝐿 (2, 𝐺𝐹(28)) on 𝐺𝐹(28). The function 𝐼, 𝑓, 𝑔 𝑎𝑛𝑑 ℎ are used in the process to create the new designed 

S-box. Further details of last step of the algorithm is shown in Table 4.1. In Table 1, column 1 denotes the 

elements of 𝐺𝐹(28)  ranging from 0 to 255.  Column 2 represents the analytical details of the linear 

fractional transformation and the results from the evaluation of ℎ(𝑚) are listed. The numbers in ℎ(𝑚) are 

substituted with their binary value equivalent, represented as some power of 𝛼, where 𝛼 is defined as the 

root of the primitive irreducible polynomial 𝑃(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1. The resulting values from 

𝐺𝐹(28) are then converted to the eight-bit binary values to be used in S-box. The final column displays 

the elements of the proposed S-box. 

The new S-box, created through the proposed algorithm is shown in Table 2. This is a 16 × 16 look up 

table and can be used to process eight binary bits of data. 

Figure 1. Flow chart for proposed S-box 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  
 

 

 

 

 

 

 

 

 

Define 𝐼, 𝑓: 𝑀 → 𝑀 by 𝐼(𝑚) = −𝑚 
and 𝑓(𝑚) = 𝑟𝑚 + 𝑏  

where 𝑟 ∈ 𝑈(ℤ512) 𝑎𝑛𝑑 𝑚 ∈ 𝑀 

Define 𝑔: 𝑀 → 𝐺𝐹(28) by 𝑔(2𝑚) =  𝑚 
 

Action of 𝑃𝐺𝐿(2, 𝐺𝐹(28)) on 𝐺𝐹(28) 

gives 𝑓(𝑧)  =  ((45𝑧 + 10)/(2𝑧 + 9)) 

 

End 

𝑀 =  {0, 2, 4, … , 510} 
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Table 4.1. The Algorithm for LFT 
𝐺𝐹 (28) ℎ(𝑚) = (45𝑚 + 10)/(2𝑚 + 9) Proposed S-box 

elements 

0 
ℎ(0) =

45(0) + 10

2(0) + 9
=

10

9
 

221 

1 
ℎ(1) =

45(1) + 10

2(1) + 9
=

55

11
 

69 

. . . 

. . . 

. . . 

254 
ℎ(254) =

45(254) + 10

2(254) + 9
=

176

5
 

44 

255 
ℎ(255) =

45(255) + 10

2(255) + 9
=

221

7
 

239 

 

Table 4.2. The Proposed S-box 

69 44 87 140 249 211 61 166 247 59 17 210 169 88 83 144 

24 200 56 171 85 191 103 124 111 30 35 192 5 95 109 118 

2 245 94 133 91 163 113 114 66 184 107 120 86 180 14 213 

3 187 108 119 39 4 195 32 181 227 135 92 68 38 121 106 

126 31 145 82 127 131 178 49 204 129 76 151 84 117 73 154 

153 10 0 241 81 158 239 243 25 233 123 104 232 235 148 79 

18 58 12 215 99 203 51 176 8 142 201 26 37 116 150 77 

238 222 205 22 179 225 155 72 229 136 41 186 212 161 11 216 

134 141 29 198 165 224 71 156 102 188 9 218 55 46 53 174 

50 159 149 78 130 101 162 65 254 100 67 160 220 23 157 70 

236 143 231 251 54 74 45 182 242 146 6 221 183 202 234 248 

16 250 13 214 168 209 112 115 139 128 60 167 27 219 122 105 

36 190 57 170 197 244 185 42 132 48 207 20 237 253 230 252 

64 15 1 226 43 93 208 19 47 62 147 80 40 125 175 52 

223 172 89 138 255 177 90 137 189 97 33 194 196 228 152 75 

96 7 199 28 98 246 164 63 110 173 21 206 217 240 193 34 
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4.3. Algebraic Analysis 

It is also observed from Table 4.3, and figure 4.2 that average nonlinearity of proposed S-box is 

103 which is better than some well-known S-boxes like Xyi S-box, Prime S-box and Skipjack S-box. 

Table 4.3, also shows the results of BIC analysis of proposed S-box and in the sense of encryption strength, 

the BIC of the proposed S-box is acceptable. Table 4.4 shows that the rank of our proposed S-box is 

comparable with S-boxes from literature and we observed that the proposed S-box satisfied BIC close to 

the best possible value. We also see from Table 4.3 that the average value of linear approximation 

probability (LP) of the proposed S-box is 𝟎. 𝟏𝟒𝟖𝟒𝟑𝟖 which is appropriate against linear attacks. The 

average value of differential approximation probability for proposed S-box is 0.140625 (Table3) and 

Table 4.5 shows the comparison of differential approximation probability (DP) of proposed S-box with 

AES, APA, Gray, S8 AES, Skipjack, Xyi and residue prime S-boxes and we observed that the results of 

DP of proposed box are relatively better from S-box constructed on residue of prime numbers. 

 

Table 4.3: Performance Indexes for S-box based on Maximal ideal 𝑀 of ℤ512 

𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑀𝑎𝑥. 𝑀𝑖𝑛. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑞𝑢𝑎𝑟𝑒 𝐷𝑒𝑣 𝐷𝑃 𝐿𝑃 

𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 106 100 𝟏𝟎𝟑    

𝑆𝐴𝐶 0.71875 0.1875 𝟎. 𝟓𝟎𝟑𝟒𝟏𝟖 0.0395832   

𝐵𝐼𝐶 114.858 90 𝟏𝟎𝟐. 𝟒𝟐𝟗 4.35421   

𝐵𝐼𝐶 −  𝑆𝐴𝐶  0.470703 𝟎. 𝟓𝟎𝟐𝟎𝟗𝟑 0.0174062   

𝐷𝑃     𝟎. 𝟏𝟒𝟎𝟔𝟐𝟓  

𝐿𝑃      𝟎. 𝟏𝟒𝟖𝟒𝟑𝟖 
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Table 4.4: Comparison of Performance indexes of S-box based on Maximal ideal of  ℤ512 and different S-boxes 

S-boxes Nonlinearity SAC BIC–SAC BIC DP LP 

AES S-box 112 0.5058 0.504 112.0 0.0156 0.062 

APA S-box 112 0.4987 0.499 112.0 0.0156 0.062 

Gray S-box 112 0.5058 0.502 112.0 0.0156 0.062 

Skipjack S-box 105.7 0.4980 0.499 104.1 0.0468 0.109 

Xyi S-box 105 0.5048 0.503 103.7 0.0468 0.156 

Residue Prime 99.5 0.5012 0.502 101.7 0.2810 0.132 

Proposed S-box 103 0.503418 0.502093 102.429 0.140625 0.148438 

 

 

Figure 4.2. Comparison of Non-linearity of the proposed S-box with some different well-known S-boxes 

 

 

4.4. Encryption Using Proposed S-box 

From figure 4.3(a) and figure 4.3(b), we see that plain image of (512 × 512) is successfully 

encrypted using the proposed S-box (in one round). After analyzing the results in Table 4.5, Table 4.6 and 
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figure 4.3(a), 4.3(b), we comprehended that the proposed algebraic substitution box have strong standing 

cryptographic properties and can be useful for encryption and decryption processes. 

 

Figure 4.3 (a). Original image of Lena                      Figure 4.3 (b). Encrypted image of Lena 

                                           
 

 

Table 4.5. Contrast, Correlation, Energy, Homogeneity and entropy of plain image and cipher image of Lena 

(512𝑥512, png) 

Images Entropy Contrast Correlation Energy Homogeneity 

Plain image 7.4451 0.2100 0.9444 0.1455 0.9084 

Encrypted image 7.5841 9.4258 0.1013 0.0178 0.4659 

 

Table 4.6. Comparison of Contrast, Correlation, Energy, Homogeneity and entropy of plain image and cipher 

image of Lena (512𝑥512, png) of S-box based on Maximal ideal of ℤ 512 and different S-boxes 

Images Entropy Contrast Correlation Energy Homogeneity 

Plain image 7.4451 0.2100 0.9444 0.1455 0.9084 

Proposed S-box 7.5841 9.4258 0.1013 0.0178 0.4659 

AES 7.2531 7.5509 0.0554 0.0202 0.4662 

APA 7.2531 8.1195 0.1473 0.0183 0.4676 

Prime 7.2531 7.6236 0.0855 0.0202 0.4640 

S8_AES 7.2357     7.4852 0.1235 0.0208 0.4707 

Gray 7.2531 7.5283 0.0586 0.0203 0.4623 

Xyi 7.2531 8.3108 0.0417 0.0196 0.4533 

Skipjack 7.2531  7.7058 0.1025 0.0193 0.4689 
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Chapter 5 

Conclusion 

In the construction technique of S-box over maximal cyclic subgroup 𝐺𝑠 of group of units of Galois 

ring 𝐺𝑅(𝑝𝑘,𝑚) in the second chapter, we observed that if we take eight degree irreducible polynomial 

over ℤ𝑝𝑘 then there is 0% chance of obtaining S-box having entries one byte (8 bits). Whereas all the real 

applications are in eight bits, making this technique a very week one. But now we define a relation between 

the elements of 𝐺255 and 𝐺𝐹(28), from which we can construct S-boxes whose entries are eight bits and 

can be used in image encryption applications and other encryption schemes. This method of construction 

has great algebraic complexity. In this chapter, we constructed two different S-boxes on maximal cyclic 

subgroup 𝐺255 of group of units of Galois ring 𝐺𝑅(8,8) by selecting particular parameters 𝑐, 𝑘, 𝐻 𝑎𝑛𝑑 𝑇. 

Entries of one S-box is eight bits and of the other is twenty-four bits, which are used in different image 

encryption algorithms. By this method, we can construct many different S-boxes over 𝐺255 corresponding 

to different basic irreducible polynomials and by changing the value of parameters 𝑐, 𝑘, 𝐻 𝑎𝑛𝑑 𝑇. So that 

it is very difficult by exhaustive search method to break S-box, constructed in Galois rings. In addition, 

we observe that if we made only 8-bits S- box, then by changing irreducible polynomial, there is no change 

in this S-box because it depends on generators of 𝐺255 and of 𝐺𝐹(28)∗. On the other hand, if we return to 

the second S-box whose entries are 24-bits, then corresponding to different irreducible polynomials, we 

can obtain different S-boxes. Therefore, we conclude that the S-box of entries 24-bits has much more 

algebraic complexity than the S-box of entries 8-bits. We also find that the proposed S-boxes have 

applications in image encryption algorithms. Further, we can think about the relation between Galois ring 

and chaos theory, which creates more confusion, and diffusion. 

In the presented work in fourth chapter, a novel technique for the construction of 8 × 8 Substitution 

box over the elements of Maximal ideal of the integers modulo ring  ℤ512 was proposed. The maximal 

ideal of a local ring is not used in any other previous cryptosystem. We used it first time for the 

construction of S-box in this work and observed that the proposed S-box exhibit an enhanced level of 

security. A high level of randomness is achieved by this newly proposed S-box, which creates algebraic 

complexity due to the algorithm defined over Maximal ideal of the integers modulo ring ℤ512. We can 

construct 256 × 256 (65536) different S-boxes by changing value of r and n in 𝑈(𝑍512) and in maximal 
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ideal M of 𝑍512. Also for different value of a, b, c, and d such that 𝑎𝑑 ≠ 𝑏𝑐 used in linear fractional 

transformation, one can construct many different S-boxes. We can also think about 𝑼( ℤ512) which has 

cardinality 256 and can be used to increase algebraic complexity of the proposed S-box.
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