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ABSTRACT 
Conventional geophysical techniques applied to vintage seismic and wireline log data have been 

successful in hydrocarbon exploration. However, the use of machine learning techniques has 

become increasingly important in overcoming the acquisition based data limitations and 

subsequently improving the efficiency and accuracy of hydrocarbon exploration. This thesis 

presents the characterization of the Lower Goru Formation in the Sawan Area of the Lower Indus 

Basin through the integration of supervised machine learning techniques into geophysical analysis. 

The primary objectives of this research encompass the precise demarcation of the reservoir of 

interest, the identification of significant subsurface structures, and an in-depth examination of the 

tectonic regime in the region. These objectives serve as a foundation for reservoir characterization 

and hydrocarbon exploration. 

The methodology employed involves precise tying of horizons to seismic sections, the creation of 

synthetic seismograms using well data and a process of horizon demarcation on seismic sections. 

This approach facilitates the generation of spatial time maps for key horizons (D-, C-, and B-

sands), providing valuable insights into structural variations. 

Moreover, the petrophysical analysis of well Sawan-01 reveals key reservoir parameters, including 

volume of shale (20%), porosity (17.3%), effective porosity (11.4%), water saturation (34%), and 

hydrocarbon content (66%). A comparative analysis with well Sawan-07 highlights the reservoir 

heterogeneity within the study area. 

The core of this research lies in the prediction of the DT4S log in well Sawan-01 through a 

supervised machine learning technique. Gradient Boost Regressor gives 94% accurate prediction 

for data trained and tested on Wells Sawan-07 and Sawan-08. The model was applied to well 

Sawan-01, demonstrating its efficacy in estimating critical subsurface properties. 

Notably, this research concludes with the successful demarcation of hydrocarbon zones through 

cross-plot analysis utilizing the predicted shear wave data in conjunction with other elastic 

parameters. The use of predicted log for such analysis is effective for reservoir evaluation, 

particularly in scenarios where shear wave velocity data is historically lacking in older wells. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 
One of the most crucial aspects of the economy of any nation is the exploration of hydrocarbons 

(Morea., 2023). As the need for energy increases, the research community focuses on previously 

unexplored areas in search of fresh energy sources. Geophysical techniques and tools are used to 

examine the ground, and these include taking measurements and calculating physical 

characteristics to look for differences both laterally and vertically ( Arshad et al., 2013).  

For oil and gas field development in the future and prospect assessment, accurate characterization 

of reservoir parameters is essential (Ashraf et al., 2020) In terms of accuracy, resolution, cost, and 

deep penetration, seismic methods have emerged as the most significant geophysical method. 

Seismic interpretations can be used to choose the locations of exploratory wells. Estimating 

fundamental reservoir characteristics like porosity, permeability, volume, type of subsurface 

fluids, and the lateral and vertical extent of a reservoir with its boundaries represents reservoir 

characterization. (Wu et al., 2021b, Huang et al., 2021, Iltaf et al., 2021, Toqeer et al., 2021). Most 

often, well-logs and seismic data are used to evaluate the reservoir characteristics at various levels 

(Chopra and Marfurt, 2007). 

The 3D seismic approach is now commonly used in the petroleum sectors to explore hydrocarbons 

because it provides a thorough picture of subsurface information not just in the vertical direction 

but also for the total volume of the studied area (Manzi et al., 2020). Geoscientists can now 

interpret and extract useful data relating to the identification of anomalous zones as well as for 

mapping reservoir quality due to the seismic signal's use to alter by interacting with hydrocarbon 

bearing zones and other potential traps and reflect back to surface (Bacon et al., 2007). 

Petrophysical studies were always utilized to distinguish between reservoir and non-reservoir 

zones (Amigun et al.,2012). It provides a brief explanation of the interactions between the rocks 

and fluids present there, or between the hydrocarbons and associated reservoir (Ahammod et al., 

2014). The depositional setting of the reservoir can be determined from petrophysical 

characteristics like as porosity, fluid saturation, and shale volume. The connected pores play an 
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important part in the transportation and storage of hydrocarbons (Donaldson and Tiab, 2004). A 

reservoir's permeability is its primary source of efficiency. Effective use of these techniques makes 

it easy to identify hydrocarbon leads. For identifying lithologies with distinct variations on larger 

sizes, well log cross plots are important. 

Machine learning has helped greatly in geophysical research and analysis like predicting shear 

wave, reservoir characterization, soil modeling etc. in recent years (Dimililer et al., 2021). Machine 

learning can be greatly help in this regard as it uses algorithms for well log predictions. Several 

applications of machine learning in geophysics have transformed how data is analyzed, interpreted, 

and used in different geophysics subfields (Dramsch, 2020). As in old wells, due to expense and 

lack of techniques, has missing well logs especially Shear wave (DT4S) (Pham et al., 2020). 

Cross-plotting parameters against one another is a useful graphical analysis for finding data 

clusters in targeted zones. Based on their responses, these data sets can be divided into different 

lithologies/facies and hydrocarbon zone (Veeken & Rauch-Davies, 2006). Elastic properties 

(VpVs ratio) enable the differentiation between different types of lithology and hydrocarbon 

bearing zone in the targeted area. Using P-impedance and the VpVs ratio together, lithology and 

fluid content can be predicted with high accuracy (Azeem et al., 2017). 

1.2 Main Aims and Objectives of Dissertation 
General aims of the current research work are as follows 

 Demarcation of the reservoir of interest and identification of significant structures along with 

the tectonic regime in the area.  

 Petrophysical analysis using wireline logs of wells Sawan-01 and Sawan-07 in order to 

identify the reservoir of interest. 

 Prediction of DT4S log in well Sawan-01 using machine learning technique trained on wells 

Sawan-07 and Sawan-08.  

 Reservoir characterization based on the cross plots analysis of the elastic parameters 

including the predicted DT4S log estimated in well Sawan-01. 
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1.3 Study Area: 

1.3.1 Introduction: 
The Sawan gas field, which contains about 2 Tcf, is the area of study. It is located in Sindh's 

Khairpur district. In addition, it is located in the southern portion of the Lower Indus basin and is 

bordered on the north by Jacobabad High, the east by the Indian Shield Suleiman thrust fold belt, 

and the south by the Karachi Embayment Zone (Figure 1.1) (Afzal et al., 2009), (Kadri, 1995). 

 

Figure 1. 1 : The research area placed on a map of Pakistan's tectonic framework and basin categorization 

(Gul et al., 2023). 

OMV Pakistan discovered Sawan area in 1998, and production there began in 2003 (Berger et al., 

2009). This field, which was the result of a collaboration between OMV Pakistan, ENI Pakistan, 
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PPL, and Government Holding Private Limited (GHPL), is likewise regarded as a major gas-

producing field. The Sawan field is currently in the producing phase, with 14 of the 15 producing 

wells (Ahmed et al., 2010) providing the majority of the gas to SNGPL and SSGPL. In terms of 

the region, Sawan Field is situated in an extensional regime that primarily consists of normal faults. 

abruptly up-dip stratigraphic traps with structural characteristics make up the trapping system. The 

small four-way dip closure and amplitude anomaly are the main targets of the exploratory well 

Sawan-01 (Afzal et al., 2005). The primary reservoir in the studied region is C Interval sand, which 

is limited to northeast-southwest directed fairways and is deposited in shallow marine 

environments. Major source rock found is Sembar formation deposited in shelf marine 

environment and in whole region it is proven as organic rich rock most suitable source rock along 

with Lower Goru member (Ahmad et al., 2004). 

1.3.2 Previous Exploration Work: 
Early-late Cretaceous Lower Goru sands have been the primary source of production in Pakistan 

for the past 20 years (Ahmad et al., 2004). The primary areas of production in the entire basin are 

Miano, Sawan, Badin, and Kadanwari. Most frequently, firms like OGDCL and OMV explored 

the Lower Goru sediments throughout a wider area. In 2003, Oolithica Geoscience Ltd. developed 

a proper comprehensive model of the reservoir based on well logs from 7 wells and 12 inlines and 

crosslines passing through the wells, as well as the various study models developed by the OMV 

for the Sawan C sand. The main result of this work was the identification of a depositional model 

in which the entire Sawan field was divided into three prograding major clinoforms (Afzal et al., 

2005). 

Sawan block is divided into three compartments in general by two strike slip faults in the south, 

center, and north compartments (Rehman and Ibrahim, 2009). In this study a seismic 3D cube (10 

x 10 km) in the southern region has been used. The Sawan field's central area is known as the 

primary tank of gas since it has the most wells that have been drilled are in the whole Sawan block. 

Study area in Lower Indus basin having following geographical coordinates ranging from: 

1.3.3 Data Source: 
To continue research in Sawan block, data was provided by Directorate General of Petroleum 

Concessions (DGPC). Details of data used for the study are as under: 
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 Formation tops 

 Seismic Header files 

 3D Seismic Cube 

 Navigation files 

 Well Logs (Las Files) 

1.4 Data Set: 

1.4.1 Seismic Data: 

The seismic dataset used in the study is given in (Table 1.1). 3D seismic cube of (10x10 km2) is 

used in this research work. 

Table1. 1: Details of inline and crossline of 3D Seismic Data 

Lines Start End Total No of Lines 

In Line 718 864 146 

Cross Line 874 1005 131 

1.4.2 Well Data: 
To accurately interpret seismic data, precise horizon positions, and other in-situ conditions from 

well logs, a total of three wells were used in this dissertation which are Sawan-01, Sawan-07 and 

Sawan-08. Due to its location in the center of a 3D cube and the other two wells, the Sawan-07 

well was the most appropriate for achieving research objectives. Sawan-07 well has been used to 

construct the synthetic seismogram for the accurate identification of horizons by seismic to well 

tie, Upper Goru and C-Interval are successfully identified. The reservoir rock is analyzed using 

petrophysical analysis of the three wells Sawan-01, 07, and 08. Each well's coordinates, depth, and 

formation TLG are all specified (Table 1.2). 
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Table1. 2: Showing well coordinates, well depths and formation TLG of wells Sawan-01, Sawan-07 
and Sawan-08 

Well Name Latitude_N Longitude_E Well depth (m) Formations (m) 

TLG 

Sawan_01 26.991830 68.906994 3583 2692 

Sawan_07 26.999291 68.923403 3398 2688 

Sawan_08 27.009162 68.933396 3429 2695 

Detail of formation tops are given in (Table 1.3) 

Table1. 3: Formation tops of wells Sawan-01, Sawan-0  and Sawan-08 

Formations  Sawan-01 Sawan-07 Sawan-08 

Habib Rahi 274 284 283 

Ghazij 301 303 304 

Sui Main limestone 1118 1117 1120 

Ranikot 1262 1260 1259 

Upper Goru 2449 2443 2433 

Lower Goru 2697 2690 2715 

D Interval 3181 - 3195 

C Interval 3247 3242 3240 

B Interval 3459 - - 

1.5 Methodology 
In this research, a comprehensive methodology aimed at improving reservoir characterization has 

been used. The approach began with a thorough examination that incorporated multiple potential 

scenarios and an extensive review of existing literature to mark the specific horizons of interest. 

These horizons were accurately delineated on in-line seismic sections, with careful consideration 

of prior information and the consistent patterns of reflection. Moreover, creation of a Synthetic 

Seismogram has been done by using density and sonic logs extracted from well Sawan-01. Spatial 

time maps for the D-, C-, and B-Sands horizons has been generated for identification of structures. 



7 
 

Additionally, conducting of in-depth petrophysical analysis of wells Sawan-01 and Sawan-07 has 

been done for demarcation of hydrocarbon bearing zone by using well log data  

The DT4S log in well Sawan-01 has been successfully predicted using a machine learning 

technique. well log Data taken from the wells Sawan-07 and Sawan-08 were used to train this 

method. 

Reservoir characterization relies on cross-plot analysis of elastic parameters, incorporating the 

predicted DT4S log from well Sawan-01. This approach provides a comprehensive understanding 

of the reservoir's properties, facilitating informed decisions in the field of reservoir 

characterization. 

Flowchart of methodology is given in (Figure 1.2). 

 

Figure 1. 2: Flowchart of methodology used in this research 
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CHAPTER 2 

REGIONAL GEOLOGY AND TECTONICS 

2.1 Introduction 
Geological information on any area is essential since it provides the most details about that area's 

geological features, which may be used to identify depositional sequences, structural types, modes 

of deformation, and different types of rocks etc. According to the study zone's location, it is in 

Pakistan's Lower Indus Basin's Khairpur district. In the area of Sukkur and Khairpur, there are 

some Eocene carbonates and deserts of sand on the eastern edge of the Khairpur zone (Afzal et al., 

2005). In general, the Jacobabad High in the north, the India Shield in the east, the Suleiman Thrust 

and Fold Belt in the west, and the Karachi Embayment in the south of Sawan Area are the 

boundaries of the study area (Kadri, 1995). 

2.2 Petroleum Play 
In Lower Goru C interval is producing reservoir which contains sands and in fairway it is trending 

in northeast-southwest (Afzal et al., 2005). The most recent inversion process occurred in the 

Eocene, and the trapping mechanism is directly related to generation, migration, and then 

prevention (Ahmed et al., 2004). Lower Cretaceous shale from a shelf marine deposit serves as the 

source rock for the Sembar formation. In source rock, which is type-III kerogen, there is nearly 

0.5-1.7% total organic content that is present during the gas generation window in the late 

Cretaceous to early Tertiary (Wandrey et al., 2004). 

2.3 Tectonic Settings 
Most reservoir zones in the Lower and Central Indus basins are situated on multiple structural 

highs, including the Mari and Jacobabad highs etc. For a significant accumulation of hydrocarbons 

during migration, these structures are substantially more important (Kazmi and Jan, 1997). The 

base unconformity known as the First Tertiary Unconformity was formed during the Cretaceous 

to Tertiary (K-T) uplift, and nearly all faults end here. The majority of the faults in the Cretaceous 

strata are NW-SE orientated and range in number from a single Chiltan to many in the Lower and 

Upper Goru levels. All of these characteristics are the result of the first unconformity generation, 

which occurred when the Indian and Eurasian plates interacted transtensionally and the Indian 

plate rotated counterclockwise. Second uplift happened in Late Eocene Oligocene in Central and 
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Lower Indus basins. Regular episodes of disturbance at the structural highs may have been caused 

by the subsequent phases of thrust loading in the west and northwest. The potential for secondary 

migration and reservoir charge, as well as the ultimate advancements trap shapes were most likely 

occurred at this time (Kazmi & Abbasi, 2008) 

Cretaceous times because of extensional regime development of titled fault is evident at large scale 

in eastern parts of Lower Indus sub-basin. Cretaceous and older strata were destroyed by these 

tilted fault systems with normal dip according to analysis of seismic reflectors in the area of 

interest. whereas these faults from Cretaceous eras have strike from N 30° W to N 50° W 

The system of tilted fault traps existed at the time of generation of hydrocarbons. The trapping 

mechanism for hydrocarbons close to the Miano block is also governed by traps created by faults 

in Lower Goru sandstones (Kemal, 1991). 

2.4 Stratigraphic Elements 
The generalized regional stratigraphy of the Lower Indus basin and demonstrates that the rocks' 

ages range between the Jurassic to the Tertiary (Figure 2.1). In Sawan, the Jurassic limestone of 

Chiltan is overlain by the Triassic rock sequence, and the Chiltan limestone is overlain by thick 

strata of Sember formation shales (Zaigham and Mallick, 2000). Just above the Sembar formation, 

which serves as the primary source strata in the area, is the Lower Goru Formation. The Sembar 

formation is overlain by Basal sands, Basal sands are overlain by Lower shales, Lower shales are 

overlain by Middle sand, and the fifth unit of Lower Goru is present between Upper and Middle 

sand as shown in (Figure 2.2). Lower Goru is further divided into five divisions. In the case of the 

upper sands, the deposition environment was shallow to deltaic marine conditions. As a result, in 

the lower part of the Indus basin. It is regarded as an excellent reservoir (Alam et al. 2002).  
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                     Figure 2. 1: Stratigraphic Column of Sawan area, (Gul et al., 2023) 

The main documented source strata of petroleum found in the southern part of the Indus basin are 

interbedded Lower Goru and Sembar formation shales from the early Cretaceous. In contrast, 

transgressive marine shales from the Upper Paleocene that are buried make up the secondary 

source strata in the western region of the Southern Indus Basin (Zaigham and Mallick, 2000). 
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The Lower Goru Formation is the source of the basal sands in the study area's target formation. 

Notably, the area has large, varied-thickness sand deposits that act as a significant reservoir and 

are currently being exploited. Although this theory has not yet been confirmed, it is conceivable 

that the reservoir rock may have covered the basal sands, a portion of the Lower Goru Formation 

(Kadri, 1995). 

The Cretaceous Sembar Formation, which is made up of transgressive shales, is the main 

component of the seal rocks in the southern part of the Lower Indus Basin. There are also 

formations from the Tertiary era, including Kirthar, Laki-Gazij, and Bara-lakhira (Zaigham and 

Mallick, 2000). The layers of Lower Goru shales function both as horizontal and vertical seals. 

These shales effectively create a seal even across faults, though it's evident that faults sometimes 

also contribute to sealing. The Talhar shales, along with the shales from the Upper and Lower 

Goru, play a crucial role as the primary seal rocks for the reservoir sands of the Lower Goru (Kadri, 

1995). 

2.5 Hydrocarbon Play Area 
Total petroleum play includes three important Formations as follow: 

 Sembar Formation 

 Goru Formation 

 Chiltan Formation 

2.5.1 Source Rock 
In this region and various other sections of the Indus Basin, the key hydrocarbon generating source 

rock is the Cretaceous age Sembar Formation. This formation consists of organic rich shales that 

were deposited in a shelf marine environment (Ashraf et al., 2020). 

2.5.2 Reservoir Rock 
The Sawan Gas Field contains reservoirs made up of Upper Cretaceous Lower Goru C sands. The 

structural configuration of the Sawan area, interpreted through seismic analysis, indicates a low 

stand wedge formation. This wedge is the outcome of a decline in relative sea level or a forced 

regression phenomenon (Ahmad et al., 2004). This distinctive low stand wedge is readily 

recognizable in seismic data. Identifying the point where the reservoir sands blend with the more 

typical shelf facies of the C interval presents more challenges. 
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In the Sawan region, the reservoir strata consist of Basal Sand, which is a sub-unit of the Lower 

Goru formation. These layers of sand within the Basal Sand sub-unit exhibit varying thicknesses 

and are responsible for hydrocarbon production. While the possibility of an overlying reservoir on 

the Basal sands in the Lower Goru cannot be dismissed, confirming the presence of this reservoir 

is still a topic requiring further validation (Kadri, 1995). 

The main focus for hydrocarbon production reservoirs lies in the Lower Goru sandstones. These 

sandstones originated from rifting events towards the end of the early Cretaceous period. They 

formed due to the erosion of the Indian shield and the subsequent depositions of sediments via 

sequences of barrier bars and deltaic sands across different regions of the middle and lower Indus 

Basin, extending down-dip to the West (Hussain et al., 1991). 

2.5.3 Seal Rock 
The Sawan gas accumulation is a trap that combines both structural and stratigraphic elements, 

identified at the top of the C interval. This trap exhibits a small four-way dip closure oriented 

northeast-southwest, and its seismic configuration gradually tapers towards the north, northwest, 

and southeast. Spanning a length of 17 kilometers, this feature is intersected by a minor fault in 

the southwest and occupies an approximate mapped area of 63 square kilometers. Stacked sand 

bodies within the Sawan C sand reservoir are composed of distributary channels, mouth bars, and 

upper shore face belts originating from a forced regressive deltaic setting. These sand bodies are 

characterized by their arrangement (Dar et al., 2021) 

Around the points where freshwater enters the vicinity, early diagenetic Fe-Chlorite coatings 

envelop coarse and medium sand grains, preserving porosity and permeability as burial deepens. 

The variation in Paleo-topography and accommodation space resulted in the deposition of a thicker 

sedimentary pile in the Sawan north area, in contrast to the thinner sand sheets in the south. While 

a considerable thickness of these stacked sand bodies survived erosion during regression and 

subsequent transgression in the Sawan north area, only a partial section has been preserved in the 

south. This discrepancy leads to significant uncertainty in predicting the presence of reservoir 

sands in the Sawan south region (Ahmad & Ghazi, 2022). 

Overlying the Sawan reservoir sands, there exists an extensive sequence of shales and marl that 

function as a regional top seal. Within the Lower Goru C interval, the shales also serve as bottom 

and lateral seals (Munir et al., 2011). 
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The major source of hydrocarbon production in the studied zone is attributed to structural traps. 

These traps, resulting from both the extensional regime due to rifting events and the geometry of 

horst and graben features, are formed by tilted faults (Khan et al., 2016). The timeline relationships 

between hydrocarbon generations, trap formation, exclusion, migration, and the entrapment of 

hydrocarbons are not uniform across the entire Indus Basin. Consequently, various trapping 

mechanisms coexist, including negative structures and slanted fault blocks. 

In the southern part of the Indus Basin, the seal rocks encompass the Kirthar, Laki-Ghazij, and 

Bara-Lakhra formations (Zaigham & Mallick, 2000). Effective primary vertical and horizontal 

sealing in both the Lower and Upper parts of the Indus Basin are provided by the inter-bedded 

Lower Goru Shales. The uppermost sands of the Lower Goru are capped by the sealing capacity 

of the Upper Goru formation (Kadri, 1995). 
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CHAPTER 3 

3D SEISMIC DATA INTERPRETATION 

3.1 Inroduction 
The process of converting seismic reflection data into a structural representation of the subsurface, 

or extracting valuable information and figures from processed data gathered after conducting and 

refining seismic surveys, is referred to as Seismic Data Interpretation. This practice holds a vital 

role in the exploration of hydrocarbons (Avseth et al., 2005), aiming to uncover subsurface details. 

The insights extracted from seismic data unveil horizon boundaries and the positioning of sub-

surface faults (Hilterman, 2001). 

Based on the interpreted seismic data, informative models are constructed to enhance the 

comprehension of the subsurface. This involves identifying and annotating consistent horizons, 

which aids in the cartography of geological structures and stratigraphy. This in turn contributes to 

grasping the manner in which reservoirs are formed, the accumulation of hydrocarbons, and the 

dimensions and volume of reserves (Stewart, 1984). The demarcation of horizons are pivotal tasks 

carried out during the interpretation of seismic data. 

Historically, all reflectors have been marked using shot points in conjunction with vertical seismic 

sections. The timing for these designated points is determined through the observation of various 

reflection times. Once these times are established, they are used to create a map that highlights 

local features with higher elevations or structures, such as local anticlinal features. These features 

hold the potential for substantial hydrocarbon reserves (Sheriff, 2002). 

3.2 Types of Seismic Data Interpretation 
Interpretation of processed seismic data extracted from the extensive processing of the acquired 

seismic data is carried out by two different methods 

3.2.1 Structural Interpretation 
The primary objective of structural interpretation is to chart structural traps within the seismic 

section, with the purpose of identifying formations that harbor hydrocarbons. Disrupted reflections 

distinctly reveal faults, while undulating patterns indicate folded beds. These subsurface 
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configurations serve as traps capable of containing hydrocarbons, representing a promising 

reservoir potential (Coffeen, 1986) 

3.2.2 Stratigraphic Interpretation 
During the process of stratigraphic interpretation of seismic data, seismic sequences are identified 

and mapped. This method facilitates the comprehension of the depositional setting of various 

lithological units through an in-depth examination of multiple attributes of seismic facies, which 

serve as reliable indicators of the depositional environment (Mitchum & Vail, 1997) 

Simultaneously, investigating variations in reflection patterns is employed to deduce shifts in both 

the depositional and stratigraphic context, all while considering the potential for hydrocarbon 

deposits. Seismic reflection amplitudes and velocities emerge as valuable tools for conducting 

thorough analyses (Cross & Lessenger, 1988). 

In the process of identifying unconformities, drainage patterns play an exceptionally crucial role. 

Once these unconformities are recognized, it becomes considerably easier to construct a 

comprehensive picture of the depositional environment within a specific area. Notably, 

unconformities stand out as significant stratigraphic traps (Telford et al., 1990). 

3.3 Seismic Interpretation Workflow 
Multiple steps were used in the interpretation of the available seismic data. There are several steps 

in each phase that were completed using software tools. (Figure 3.1) illustrates in detail how the 

seismic lines and SEG-Y navigation data were used for interpretation using HRS software. 

Horizons of interest were demarcated. Horizons were identified using synthetic seismogram 

derived from well data using careful examination of seismic sections and knowledge of the 

research area's geologic history. 
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Figure 3. 1: Workflow of Seismic Interpretation 

3.4 Base Map: 
The base map of the study area is shown (Figure 3.2), where the well locations and the orientation 

of the inlines and crosslines of the 3D seismic survey are indicated and used for research purposes 

in the Sawan area.  

 

Figure 3. 2: Base map depicting inlines, crosslines, and well locations of the study area 
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3.5 Synthetic Seismogram 
Seismic interpretation involves utilizing modeled traces from synthetic seismograms, which play 

an important role in establishing correlations between seismic reflections and subsurface 

stratigraphy encountered. While seismic data is presented in a time scale, well tops are specified 

in depth, making it challenging to mark horizons in time units. The purpose of generating synthetic 

seismograms is to establish a correspondence between two-way travel time and depth, enabling 

the marking of horizons. 

Typically, a synthetic seismogram is derived using a sonic log. Ideally, a density log is also 

recommended, though its availability can be an issue. Reflectivity series is generated using DT 

(sonic) and RHOB (density) logs. This series is then convolved with the source wavelet to create 

the synthetic seismogram. In the process of linking seismic sections with borehole geology, 

synthetic seismograms serve as valuable tools due to their capacity to directly connect patterns of 

seismic reflections with studied subsurface lithology (Handwerger et al., 2004). 

.  

Figure 3. 3: Synthetic seismogram for picking horizons on well Sawan-01 
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To pinpoint the exact positions of specific horizons in the Sawan area, a synthetic seismogram is 

generated using data from Sawan-01 located at Inline-721. This synthetic seismogram (Figure 3.3), 

is prepared along cross-line 960. The primary focus is on horizons identified in a seismic section. 

The horizon marked at the bottom of the (Figure 3.3) corresponds to a segment of the Lower Goru 

formation, outlining the positions of the D Interval, C Interval, and B Interval, with the C Interval 

serving as the main reservoir within these horizons 

3.6 Interpretation of Horizons 
The fundamental objective of interpretation involves recognizing different horizons that act as 

boundaries between geological formations (Wrona et al., 2018). A change in lithology results in 

an acoustic impedance contrast, which is responsible for the initiation of primary reflections. These 

reflections are designated on seismic sections to understand the connection between geology and 

the seismic data (Badly, 1985). The seismic data is further utilized to mark the reflectors 

corresponding to the D Interval, C-Interval, and B Interval after generating synthetic seismograms 

(Figure 3.4). 

 

Figure 3. 4: Seismic Section depicting the marked horizons after seismic to well tie with Sawan-01 

well. The horizons of interest are D-sand, C-sand and B-sand of the Lower Goru Formation. 
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3.7 Spatial Time Slices of 3D Seismic Data: 
Crucial insights, such as formation dip information, the nature of folding and faulting, structural 

relief of formations, and reliable data regarding formation slopes, can be extracted from these 

contour maps. The data used to create these time slices is obtained from the selected times of 

pertinent reflectors that exhibit potential for hydrocarbons on the seismic section. 

The 3D seismic cube (covering 10 square kilometers) provided by DGPC does not prominently 

exhibit faults or other significant structures. The upper portion of the Lower Goru formation 

comprises an abundance of shales, which function as a seal across the entire region. The lowermost 

layer of the Lower Goru formation contains inter-bedded sands and shales. Within the sands of the 

Lower Goru, various categories like B, C, and D sands are distinguished. The Sembar formation, 

positioned beneath the Lower Goru, serves as a source rock, while the Upper Goru Formation lies 

above the Lower Goru. 

3.7.1 Time Map of D-Sand 
The Lower Goru formation in the Sawan area contains reservoir rock that meets the criteria for 

being a high-quality reservoir sand in that region, confirming its potential. Additionally, the 

underlying Sembar Formation serves as the source rock for these sands. 

The time slice of the D-Sand is presented. The color gradation from orange to cyan indicates 

shallower to deeper parts as shown. (Figure 3.5). Notably, the northern to northwest corner and 

the center of the map display shallower depths, while deeper portions are located in the 

northeastern and southern corners as shown from color code. This indicates that it is dipping 

towards south east. 
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Figure 3. 5: Time Slice of D-Interval Sand depicting dip towards SE 

3.7.2 Time Map of C-Sand 
The Lower Goru formation in the Sawan area functions as reservoir rock, satisfying the 

requirements for a reservoir sand with high-quality potential in that particular region, thereby 

confirming its suitability. Additionally, the underlying Sembar Formation serves as the source rock 

for these sands. 

The time slice of the C-Sand is presented. The color gradation from orange to cyan indicates 

shallower to deeper parts as shown. (Figure 3.6). Deeper portions are located in the northeastern 

and southern corners while northern to northwest corner and the center of the map display 

shallower depths as shown from color code. This indicates that it is dipping towards south east but 

more towards east. 
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Figure 3. 6: Time Slice of C-Interval Sand depicting dip towards SE 

3.7.3 Time Map for B-Sand 
In the Lower Goru formation, the B Interval functions as the reservoir stratum in the specified area 

of interest. The time slice of the B-Sand is presented (Figure 3.7). The color gradation from orange-

yellowish to cyan indicates shallower to deeper parts as shown. The northern to northwest corner 

and the center of the map display shallower depths, while deeper portions are located in the 

northeastern and southern corners as shown from color code. This indicates that it is dipping 

towards south east. 
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Figure 3. 7: Time Slice of B-Interval Sand depicting dip towards SE 
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CHAPTER 4 

PETROPHYSICAL ANALYSIS 

4.1 Introduction 
Petrophysical analysis provides a comprehensive understanding of fluids, their identification, and 

quantification within reservoir rocks (Ali et al., 2015). This analysis revolves around well logs, 

which are continuous records of various geophysical parameters plotted against depth within the 

wellbore. Essentially, well logs are employed to verify lithologies and the presence of fluids within 

rocks. The primary objective of petrophysical analysis is to measure distinct rock properties and 

their correlations with fluids (Donaldson and Tiab, 2004). By integrating petrophysical outcomes 

with rock physics, potential prospect zones and non-prospect areas are discerned, enabling 

geoscientists to derive essential insights. The characterization of reservoirs is founded upon 

petrophysical findings. 

A plethora of newly developed geophysical well logs now exists. Geophysical logs employing 

highly specialized tools are notably prominent due to their structure. These logs can be conducted 

prior to well casing, immediately following drilling, a technique termed Measurement While 

Drilling (MWD), and during the process of formation drilling, referred to as Logging While 

Drilling (LWD). Typically, MWD logs ascertain the deviation of directional wells, whereas LWD 

involves measurements such as resistivity and density. 

To accurately delineate the likely hydrocarbon zones, one needs to be aware of reservoir 

characteristics like shale volume, porosity, water saturation, and hydrocarbon. By combining 

petrophysics and rock physics, geologists and geophysicists can better understand the dangers and 

potential in the region. Petrophysics is a frequently used method for characterization of reservoirs 

due to the use of well measurements to enhance reservoir representation (Hussain et al., 1991). 

4.2 Objectives for Log Interpretation 

The quantitative examination of well logs can be used for estimation of reservoir parameters 

including:  
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 Porosity 

 Saturation of water 

 Fluid type (oil, gas, water) 

 Reservoir type (lithology) 

 Productivity (permeability) 

The major goals of logging are:  

 To acquire data for analyzing petroleum reservoirs. 

 To assist in well testing, completion, and rehabilitation. 

Following parameters has been followed to calculate the oil reserves in a reservoir: 

 The oil-bearing formation's thickness. 

 Formation porosity. 

 Saturation of oil. 

 The oil-bearing strata's lateral extension. 

4.3 Methodology 
Petrophysical studies have been conducted to characterize the reservoir properties in the study 

area. The well logs data from Sawan-07 well has been employed to analyze various formations. 

The following parameters have been determined using the log data: shale volume, density porosity, 

effective porosity, total porosity, water saturation, and hydrocarbon saturation. The wireline log 

data includes Gamma ray log (GR), Caliper log, Spontaneous log (SP), Laterolog deep (LLD), 

Laterolog Shallow (LLS), Micro spherically focused log (MFSL), Neutron log (NPHI), Density 

log (RHOB), and Sonic log (DT). These wireline logs have been categorized into three distinct 

tracks based on their approximation of reservoir properties and working principles (Figure 4.1). 

The first track is referred to as the lithology track, the second track is known as the resistivity track, 

and the third track is designated as the porosity track. 
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Figure 4. 1: Workflow of petrophysical analysis (Mughal & Akhter, 2021) 

The Petrophysical analysis has been carried out in order to measure the reservoir description of 

the Sawan area using the borehole data of Sawan-01 and Sawan-07 well. The logs defined above 

will be used in order to calculate the reservoir parameter such as: 

 Volume of shale (Vsh) 

 Porosities (PHID, PHIT, PHIE) 

 Water Saturation (Sw) 

 Hydrocarbon Saturation (H.C) 

 Net Pay or Net Reservoir 

4.4 Volume of Shale 

The GR log is used to calculate the volume of shale in petrophysical studies. The GR log is used 

to calculate the formation's radioactivity (Fanchi, 2005). This makes it very valuable for lithology 

identification because it provides the concentration of radioactive material that is present in the 
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formation. In carbonate and sandstone, the gamma ray has a low value, but in shale, it has a higher 

value. Shale has a higher concentration of radioactive material than sand and carbonates. As a 

result, it is possible to tell apart reservoir rocks from other types of rocks (Rider, 1990). 

The volume of the shale is calculated using the calculations below given by (Miller, 1986) 

Vsh =
GR log − GR min

GR max − GR min
            (4.1) 

Where, 

 Vsh = volume of shale 

 GRlog = GR values from log 

 GRmin = value of GR in clean zone 

 GRmax = value of GR in shaly zone. 

4.5 Porosity 
Porosity is the most important property to estimate for petrophysical analysis. Utilizing density, 

sonic, and neutron logs, porosity can be calculated. The nuclear measurements are the Neutron and 

Density logs, whereas the acoustic measurement is the Sonic log (Abdelwahhab & Raef, 2020). 

Following are the porosity parameters: 

 Density Porosity 

 Sonic Porosity 

 Total Porosity 

 Effective Porosity 

 Neutron Porosity (Given) 

4.6 Density Porosity 
The density log serves as a porosity log, measuring the electron density of the formation (Asquith 

et al., 2004). The electron density of the formation is interconnected with the bulk density of the 

formation. This value is derived from the combination of the fluid density, multiplied by its 

corresponding relative volume, and the matrix density, which is then multiplied by its relative 

volume. 
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By leveraging the density log, it becomes possible to determine the accurate porosity of the 

formation, provided that the matrix densities within the formation or the rock type are already 

known (Asquith et al., 2004). 

RHOB ɸ =
RHOBmat − RHOB log

RHOBmat − RHOBfluid
        (4.2) 

Where, 

RHOB ɸ = the density porosity, 

RHOBmat = density log, RHOB mat is value of matrix density, 

RHOBfluid = density of fluid 

The value of RHOBmat 2.65 g/cm3, which is for sandstone and RHOBfluid is 1 g/cm3 (Glover, 

2000). 

4.7 Sonic Porosity 
Sonic logs are employed to measure the interval transit time (Δ t) of compressional sound waves 

as they traverse through the formation. This interval transit time is closely linked to the porosity 

of the formation. The unit of measurement used is typically expressed in microseconds per foot or 

microseconds per meter (Asquith et al., 2004). The calculation of the porosity of the formation can 

be carried out using the subsequent formula given by (Asquith et al., 2004):  

ɸs =
ΔTlog − ΔTmatrix 

ΔTfluid − ΔTmatrix 
         (4.3) 

Where  

ɸs = the sonic porosity 

ΔTmatrix = interval transient time of the matrix 

ΔTlog = interval transient time of formation 

ΔTfluid = transient time of the fluid 

The interval transient time of the formation depends upon the matrix material, its shape and 

cementation (Wyllie et al., 1956). If fluid (hydrocarbon or water) is present in the formation, 
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transient interval time is increases and this behavior shows increase in porosity which can be 

calculated by using sonic log (Asquith et al., 2004).  

4.8 Average Porosity 
The average porosity is determined by summing up the porosities obtained from various logs and 

then dividing this sum by the number of logs from which porosity is calculated. In the context of 

the C-Interval reservoir, which is the focus of interest, all the available logs are interpreted to 

calculate the average porosity. The relationship for calculating the average porosity is as follows: 

ɸavg =
ɸn+ɸd+ɸs

3
           (4.4) 

Where,  

ɸ𝑎𝑣𝑔 = average porosity calculated from the available porosities 

ɸ𝑛 = neutron porosity  

ɸ𝑑 = density porosity 

ɸ𝑠 = sonic porosity.  

4.9 Effective Porosity 
Effective porosity is defined as the ratio of the volume of interconnected pore spaces within a rock 

unit to the total volume of the rock, while accounting for the exclusion of shale effects. In areas 

rich in shale, the effective porosity tends to be zero due to the low permeability of shale. Effective 

porosity is particularly useful for delineating saturated zones within a reservoir. The calculation of 

effective porosity follows the formula provided by (Asquith et al. 2004).  

ɸeff = ɸavg ∗ (1 − Vsh)         (4.5) 

Where ɸeff is effective porosity which is to be calculated, ɸavg represent the average porosity 

and Vsh represent volume of the shale. 

4.10 Neutron Porosity 
The neutron log is a measurement that is responsive to the presence of hydrogen atoms within a 

formation, aiding in the determination of formation porosity. In formations with high porosity, the 

count rate on the neutron log tends to be low, and conversely, in formations with low porosity, the 

count rate is higher. The neutron porosity measurement is included in the well log data and is 

calculated based on the depth of the well (Mills et al., 1988). 
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4.11 Water Saturation (Sw) 
Water saturation in a formation refers to the proportion of the pore volume that is occupied by 

water within that formation. Archie's equation is particularly accurate for clean sands, providing a 

reliable result (Figure 4.2). following equation for Sw is given by (Archie, 1952). 

𝑆𝑤 = {
𝑎∗𝑅𝑤

ɸ𝑚∗𝑅𝑡
}

(1/𝑛)

         (4.6) 

Where 

𝑆𝑤 = water saturation. 

𝑅𝑡= true resistivity of formation. 

ɸ𝑚 = effective porosity. 

𝑅𝑤 = water resistivity value. 

m = cementation factor. 

a = tortuosity factor. 

4.11.1 Resistivity of Water (Rw) 
Calculation of resistivity of water (Rw) is key for water saturation. Numerous parameters like 

bottom hole temperature (BHT), surface temperature, water salinity in ppm and SP (Static) are 

important for valuation of water resistivity (Rw) (Amigun et al., 2012).  

Two methods have been applied for resistivity of water: 

 SP Method 

 Pickett cross plot Method 

SP Method 

Formula for this method is as follows, 

𝑆𝑠𝑝 = −𝐾 ∗ 𝑙𝑜𝑔 (
𝑅𝑚𝑓

𝑅𝑤
)         (4.7) 

For K 

𝐾 = 65 + 0.24 ∗ 𝑇℃          (4.8) 
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Static spontaneous potential (ssp) can be calculated through the equation given by (Miller, 1986) 

using spontaneous potential log readings. So then saturation of water in the formation can be 

calculated by the Archie equation (Archie, 1952): 

𝑆𝑤 = √
a∗𝑅𝑤

ɸ𝑚∗𝑅𝑡

𝑛             (4.9) 

Where 

Rw = resistivity of water calculated from above equation 

Rt = true formation resistivity 

 n = saturation exponent 

 a = constant, in case of sand represents effective porosity 

 m = cementation factor 

4.12 Hydrocarbon Saturation 

Hydrocarbon saturation can be defined as “the pore in formation is filled with hydrocarbon”. It 

can be calculated by using the following mathematical relation given by (Kamel & Mabrouk, 

2002): 

𝑆𝐻 =  1 –  𝑆𝑊          (4.10) 

Where, 

SH = hydrocarbon saturation 

SW = Water saturation. 
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4.13 Well Logging Interpretation of Sawan-01 
The Lower Goru formation encountered in the Sawan-01 well has been identified as a highly 

productive sand layer for hydrocarbon exploration. A specific area of interest within this formation 

has been identified based on distinct characteristics. These characteristics include a clear 

separation between the Laterolog Deep (LLD) and Laterolog Shallow (LLS) measurements, a 

significant crossover point between neutron porosity and density readings, and a low volume of 

shale (Miller, 1986) (Figure 4.2) 

By considering these indicators, a zone of interest has been delineated, which is highlighted in the 

(Figure 4.2). The petrophysical analysis results obtained for this zone of interest have been 

compiled and presented in (Tables 4.1). These results reveal that the Lower Goru Formation 

primarily comprises clean sand with a notably high effective porosity ranging from 10% to 16%. 

Additionally, the water saturation levels are relatively low, falling within the range of 32% to 45%. 

 

Figure 4. 2: Petrophysical analysis of well Sawan-01 with marked zone of interest 
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The depth ranges of this particular zone, referred to as "Zone," ranges from 3252m to 3261m are 

taken (Figure 4.2). This zone holds significant promise for hydrocarbon exploration due to its 

favorable petrophysical characteristics, which include high porosity and low water saturation 

levels. 

Table 4. 1: Results of petrophysical analysis obtained from Zone of interest (Sawan-01) 

Serial Number Calculation Parameter Percentage 

1 Average Volume of Shale = Vsh 20% 

2 Average Porosity in(PHIT) Percentage =ɸ
𝒂𝒗𝒈

 17.3 % 

3 Average Effective Porosity in Percentage = ɸ
𝒆𝒂𝒗𝒈

 11.4% 

4 Average water Saturation in Percentage = 𝑺𝑾𝒂𝒗𝒈 34% 

5 Average Hydrocarbon in Percentage = 𝐒𝐇𝐚𝐯𝐠 66% 

4.14 Well Log Interpretation of Sawan-07 
Based on the log response analysis, the thickest zone within the Lower Goru formation of the 

Sawan-07 well has been identified. This zone extends from a depth of 3269 meters to 3306 meters, 

encompassing a substantial thickness of 37 meters. The log responses within this interval provide 

crucial information regarding the characteristics of the formation. 

The log responses reveal specific patterns that contribute to the identification of this thickest zone 

(Figure 4.3). Notably, the GR log response is observed to be low, indicating sandstone. 

Additionally, the Caliper log demonstrates a stable trend, without any significant variations that 

might indicate wash-outs. The separation between the LLS and LLD measurements, as well as the 

crossover between NPHI and RHOB is an indication of hydrocarbon zone (Miller, 1986). In the 

(Fig 4.3) it can be observed that there is crossover between NPHI and RHOB and separation 

between the LLS and LLD measurements, which further contributes to the interpretation that the 

zone contains a notable presence of hydrocarbons. 

The petrophysical analysis of this marked zone of interest reveals favorable attributes. The total 

and effective porosities within this zone are notably favorable, contributing to the potential for 
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hydrocarbon accumulation. Moreover, the water saturation levels exhibit a decrease within this 

marked zone of the Lower Goru formation, further enhancing the prospect of hydrocarbon 

presence. 

The combination of log response patterns, cross-over points, and petrophysical characteristics 

collectively supports the indication of a substantial hydrocarbon presence within this thickest zone 

of the Lower Goru formation in the Sawan-07 well (Figure 4.3) 

4.14.1 Reservoir Zone using Well Log Interpretation of Sawan-07 
The petrophysical analysis results obtained for this zone of interest have been compiled and 

presented in (Tables 4.2). Reservoir zone is marked which is about 37 m thick having clean sand. 

Water saturation is 48% and reservoir zone is shown in (Figure 4.3) 

 

Figure 4. 3: Petrophysical analysis of well Sawan-07 with marked zone of interest 
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Table 4. 2: Results of petrophysical analysis obtained from Zone of interest (Sawan-07) 

Serial Number Calculation Parameter Percentage 

1 Average Volume of Shale = Vsh  14.5% 

2 Average Porosity in (PHIT) Percentage =ɸ
𝒂𝒗𝒈

  16.6% 

3 Average Effective Porosity in Percentage = ɸ
𝒆𝒂𝒗𝒈

  12.5% 

4 Average water Saturation in Percentage = 𝑺𝑾𝒂𝒗𝒈 48% 

5 Average Hydrocarbon in Percentage = 𝐒𝐇𝐚𝐯𝐠 52% 
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CHAPTER 5 

ESTIMATION OF SHEAR WAVE(DT4S) USING MACHINE 

LEARNING TECHNIQUE 

5.1 Introduction 
For geoscientists, the fundamental complexity of petroleum reservoir systems remains a challenge. 

Insufficient comprehension of reservoir behavior and subpar estimations of reservoir potential 

arise from the absence of high-quality data. (Al-Anazi & Gates, 2010). Numerous geophysical and 

petrophysical studies use shear wave velocity, particularly when calculating geo-mechanical 

parameters (Khatibi and Aghajanpour, 2020). Shear waves, in contrast to compressional waves, 

cannot travel through liquids (Han et al., 2005) knowing the relationship between lithology, pore 

distribution, and shear wave velocity provides useful information about the reservoir (Anemangely 

et al., 2019). There are numerous applications of shear wave velocity including reservoir 

characterization, petrophysical analysis, geomechanical studies, rock engineering applications 

(Castagna et al., 1985). P-wave velocity and S-wave velocity used in combination can improve 

reservoir and fluid prediction accuracy while lowering seismic based uncertainty (Zhang et al., 

2021). However, shear wave logs are only available in a limited number of wells in an oil field 

due to the high cost of the log acquisition, thus acquiring shear wave data has become difficult and 

challenging (Akhundi et al., 2014).  

Numerous machine learning algorithms have proven effective at estimating shear wave velocities. 

Simple models that capture linear relationships are provided by regression techniques like linear, 

polynomial, and ridge regression. Artificial neural networks (ANNs), which are more sophisticated 

algorithms, use hidden layers to uncover complex nonlinear patterns in the data. Data is 

categorized into various velocity categories using support vector machines (SVMs), which are 

renowned for their robustness. (Xu & Payne, 2009; Russell et al., 2003; Wang et al., 2020; 

Ghorbani et al., 2012).  

Gradient Boosting Regressor (GBR) is a new technique in machine learning techniques. Due to its 

capability to manage complex relationships within data. GBR has become well-known as an 

advanced regression algorithm (Maddu et al., 2022). The ability of GBR to quantify the relative 

importance of input features is a key component of its usage. GBR assigns weights to the features 
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that have the greatest impact on reducing prediction errors through iterative optimization of loss 

functions (Khan et al., 2022). For the recent years GBR has been used by experts in various fields 

for predictions like Energy consumptions, hydrogeological studies, forecasting and in chemical 

engineering etc (Cai et al., 2020; Otchere et al., 2020; Singh et al., 2021; Nie et al., 2021). 

In this dissertation, GBR has been used to predict shear wave for Sawan area. Prior to GBR 

application, it’s very important to analyze the data for it to give best results. 

These are following steps in prediction of shear wave: 

 Input well log data 

 Generation of heat maps 

 Generation of Histplot and Boxplot 

 Splitting data for training and testing 

 Applying algorithm of interest 

 Feature importance 

 Model validation and testing on a blind well 

5.2 Data Set 
Only Sawan 7 and Sawan 8 have been used for training of Shear wave prediction among the 

numerous wells in the study area because both have the full set of necessary logs, including GR, 

NPHI, RHOB, LLD, LLS, DT4P, and particularly DT4S log as shown (Figure 5.1 and 5.2). 23 

logs have been run in both wells in total. 
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Figure 5. 1: Well logs of Well Sawan-07 initially selected for the prediction of DT4S 

 

Figure 5. 2: Well logs of Well Sawan-08 initially selected for the prediction of DT4S 
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5.3 Heat Map Generation 
Understanding the connections between various variables is crucial, particularly when predicting 

shear wave values from well log data. By determining which log have a high correlation with other 

and vice versa. Correlation analysis enables you to choose features, build models, and interpret 

data with confidence (Venieri et al., 2021). In this study, heat maps have been generated of Sawan 

7 and Sawan 8 to check correlation between wells (Figure 5.3).  

These heatmaps show that correlation of MSFL and CALI have bad correlation with all other logs 

so for data quality, these logs will not be taken for training purposes. 

 

Figure 5. 3: Heat map of Sawan-07 (left) and Sawan-08 (right) indicating correlation values. 

After removing bad correlation logs, concatenation of the data has been done from all wells, this 

means combining respective columns of each well to have one single data set. 

5.4 Generation of Histplot and Box plot 
Box plots and histograms are crucial tools for data analysis and visualization. They are essential 

for comprehending the distribution and properties of data, spotting outliers, and selecting models, 

feature engineering, and data preprocessing in an informed manner (Data et al., 2016). 

To detect bad data points i.e. outliers, histplots and boxplots have been generated. (Figure 5.4) 

shows that there are some outliers in the data. Outliers are bad data points which can be in the data 

due to noise or some errors in acquisition (Zhang et al., 2010). 
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Figure 5. 4: Histogram and box plots showing distribution of data depicting main data and outliers 

5.4.2 Removal of Outliers 
To increase data quality, maximum possible outliers are to be removed. Larger input values may 

have a significant impact on a model's outputs, as a result, the coefficients of the parameters may 

not be correctly determined, which could reduce a model's accuracy and generalizability. Data 

normalization is therefore required in order to carefully choose the best features. The data is 

normalized in between 0 and 1 by using Yeo-Johnson transformation (Yeo and Johnson, 2000). 
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One-Class Support Vector Machine (OC-SVM) has been implemented to remove bad data points. 

OC-SVM was first given by (Schölkopf et al., 2001). OC-SVM algorithm is used for both 

classification and regression tasks. It finds an optimal hyperplane to separate data points of 

different classes in a high-dimensional space. 

The mathematical representation of OC-SVM is given by (Schölkopf et al., 2001) as follows: 

𝑤^𝑇 ∗  𝑥 −  𝑏 =  𝜌          (5.1) 

where  

w = the weight vector of the hyperplane. 

x = the input data point. 

b = a bias term. 

𝜌 = a threshold. 

the optimization problem for OC-SVM given by (Schölkopf et al., 2001) is formulated as: 

1

2
|| ||

2
+ C ∑N

i=1  -          (5.2) 

Where: 

  = weight vector of the hyperplane 

C = parameter that controls the trade-off between maximizing the margin and minimizing the 

outlier errors. 

  = data points 

 = the number of data points 

 = slack variables that allow some points to be on the wrong side of the hyperplane. 

 = constant representing the threshold for considering a point as an outlier. 

Removing of outliers is done by using ‘nu’ = 0.06 and total of 304 outliers are removed. ‘nu’ is to 

specify the percentage of outliers. 
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After removing bad data points, De-normalization of data has been done. So every log is back to 

its original scales. Once again plotting of box and histplots has been done to check if outliers have 

been removed (Figure 5.5). 

 

Figure 5. 5: Histogram and box plots showing distribution of data depicting main data points after 

removal of  outliers 

It is shown from the figure that maximum possible outliers have been removed and data quality is 

improved. 
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5.4.3 Plotting Heat Map of Improved Data 
After improving data quality by several methods mentioned above, again heat map has been plotted 

to check improvement in correlation. As this data is used for training our algorithm for shear wave 

prediction.  

 

Figure 5. 6: Heat map of the improved data indicating a relatively higher correlation values 

5.5 Data Splitting and Algorithm Application 
For training and testing purposes, concatenated data has been split by train-test split function by 

sk-learn library in python. First separate the data into labels (y) and features (X). The data frame 

is split into the X_train, X_test, Y_train, and Y_test sections. The model is trained and fitted using 

the X_train and y_train sets. The model is tested to see if it correctly predicts the outputs and labels 

using the X_test and y_test sets (Buitinck et al., 2013; Pedregosa et al., 2011). Around 80% of the 

total data was used in training for a best prediction of shear wave, and the remaining 20% was 

used to test the newly predicted shear wave.  
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After splitting data for training and testing, GBR is applied on data and shear wave has been 

predicted. GBR is an iterative collection of sequentially arranged tree models where each 

successive model learns from the mistakes of the previous model. In order to create a more reliable 

model, this machine learning model makes predictions by "boosting" the ensemble of weak 

prediction models, frequently decision trees (Rao et al., 2019). The GBR model used in this study 

is from the Sk-learn library GBR method (Pedregosa et al., 2011). Following equation is given by 

(Rao et al., 2019) for GBR. 

𝑓𝑀(𝑥𝑗) =  ∑ ϒ𝑚
𝑀
𝑚 ℎ𝑚(𝑥𝑗)         (5.3) 

where  

ℎ𝑚 = a weak learner that performs poorly individually 

ϒ𝑚 = is a scaling factor adding the contribution of a tree to the model 

5.6 Feature Importance 
Understanding which features or attributes have the biggest effects on predicting a target variable 

is made possible by the fundamental machine learning concept of feature importance (Rajbahadur 

et al., 2021). 

The mathematical representation of feature importance is given by (Ronaghan, 2018) as follow: 

𝑛𝑖𝑗 = 𝑤𝑗𝑐𝑗 − 𝑤𝑙𝑒𝑓𝑡(𝑗)𝑐𝑙𝑒𝑓𝑡(𝑗) − 𝑤𝑟𝑖𝑔ℎ𝑡(𝑗)𝑐𝑟𝑖𝑔ℎ𝑡(𝑗)      (5.4) 

𝑛𝑖𝑗= node importance 

𝑤𝑗= weights of nodes 

𝑐𝑗= impurity 

Impurity is a measurement of the disorder or impurity of a collection of samples inside a decision 

tree node. To ascertain how well a specific attribute divides the data into homogeneous subsets, it 

is used in tree-based algorithms like Decision Trees, Random Forests, and GBR. It can be 

calculated as entropy. Equation is given by (Rajbahadur et al., 2021). 

𝐻 =  − ∑ 𝑝𝐾 log(𝑃𝐾)𝐾
𝐾=1          (5.5) 
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Where 

H = entropy 

K = number of classes 

𝑃𝐾 = proportion of samples that belong to class in node 

 

Figure 5. 7: Feature importance showing which log has greatest effect in predicting DT4S 

(Figure 5.7) shows that DT4P has greatest effect in predicting DT4S. The reason why it has most 

feature importance score is because of it has best correlation with all input logs as it is shown in 

(Figure 5.6). On contrast PEF has least score due to its bad correlation. 

5.7 Model Validation and Testing of Model on a Blind Well 
Model testing is done by using metrics like R-squared (𝑅2) and Root Mean Squared Error (RMSE). 

Especially in regression tasks, the RMSE is an important metric for assessing the precision of a 

predictive model. It gauges how closely the model's predictions match the data observed by 

calculating the average magnitude of the errors between predicted and actual values (Chai et al., 

2014).  
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Equation for RMSE is given by (Ćalasan et al., 2020) as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦^𝑖)2𝑛

𝑖=1         (5.6) 

Where 

n = number of data points 

𝑦𝑖 = the actual (observed) value of the target variable for the i-th data point. 

𝑦^𝑖 = the predicted value of the target variable for the i-th data point. 

∑ = summation over all n data points.  

The square of the differences between actual and predicted values is summed up, divided by n, 

and then the square root is taken to compute the RMSE. 

𝑅2 is correlation coefficient, a statistical measure used to evaluate the goodness of fit of a 

regression model. It displays the percentage of the variance in the target's dependent variable that 

can be accounted for by the model's independent variables (Weisstein, 2006). 

Equation for R2 is given by (Weisstein, 2006) as follows: 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
          (5.7) 

Where 

𝑆𝑆𝑟𝑒𝑠 = sum of squared residuals (also known as the sum of squared errors), which represents the 

variability that is not explained by the model. 

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = is the total sum of squares, which represents the total variability in the dependent variable. 

This gives 𝑅2 value between 0 and 1. The higher the value the better will be the model and vice 

versa. 
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Figure 5. 8: Correlation plot between predicted DT4S and Actual DT4S  showing 94% correlation 

through RMSE and 𝐑𝟐. 

20% data which was for testing is being used in this correlation. R2 correlates that data with actual 

values and the result shows 𝑅2 = 0.94, which means the correlation achieved is 94%. This validates 

the accuracy of the prediction. 

For a model testing a blind well data which wasn’t used in either training or testing, Sawan-01 

having logs GR, PEF, DT4P, RHOB, NPHI, LLD and LLS is being used.  
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Figure 5. 9: Predicted DT4S log in Sawan-01 

(Figure 5.9) shows DT4S log curve which is obtained by using model on a blind well (Sawan-01). 

To cross check its validation, all well logs are shown below (Figure 5.10). DT4P log and predicted 

DT4S log is showing almost same which further validates its accuracy and correlation. 
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Figure 5. 10: Well logs of Sawan-01 with predicted DT4S indicating its trend along with other logs 

used in this prediction. 
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CHAPTER 6 

RESERVOIR CHARACTERIZATION AND CROSS PLOT 

ANYLYSIS USING PREDICTED DT4S 

6.1 Introduction 
The process of comprehending and describing the heterogeneity of subsurface reservoirs is known 

as reservoir characterization. Heterogeneity describes the variation in a reservoir's rock properties, 

including porosity, permeability, lithology, and fluid saturation. The efficient and effective 

development of hydrocarbon resources, whether in the oil or natural gas industry, depends on 

accurately describing this heterogeneity (Dominguez, 1992). It is a diverse, integrated task that 

demands expertise in reservoir geology, well logging, geophysics, geostatistics, petrophysics, and 

reservoir engineering to produce precise 3D images of the petrophysical parameters necessary to 

predict reservoir performance (Grana et al., 2013). In particular, identifying hydrocarbon-bearing 

and non-hydrocarbon-bearing zones within a reservoir requires the use of petrophysical analysis, 

which is essential for reservoir characterization. To convert these data into key reservoir 

characteristics, petrophysicists use wireline log data and a variety of methodologies (Lucia et al., 

2003). In reservoir characterization, petrophysical analysis is particularly useful for distinguishing 

hydrocarbon and non-hydrocarbon bearing zones (Yuedong & Hongwei , 2007). In most cases, 

wireline log data are converted into reservoir parameters like shale volume, porosity, permeability, 

and water and hydrocarbon saturation using petrophysical analysis (Islam et al., 2021). 

Shear (Vs) and compressional (Vp) velocities have great significance in reservoir characterization. 

With help of machine learning these velocities can be predicted and used. Reservoir 

characterization relies significantly on shear and compressional velocities. These velocities could 

be predicted using a machine learning. The reservoir system is an illustration of a physical system 

that displays both deterministic and random behavior (Fallah-Mehdipour et al 2012). 

When combined and analyzed, velocity ratios (Vp/Vs) and density (ρ) are significant seismic 

attributes that can help estimate many important parameters essential for reservoir analysis and 

characterization (Wu et al., 2022). Some of these parameters are: 
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6.1.1 Porosity (φ) 
Porosity, which represents the void space within a rock and directly affects fluid storage, flow, and 

reservoir performance, is a crucial parameter in reservoir analysis. Estimates of porosity are crucial 

for comprehending reservoir capacity, fluid storage, and permeability (Gunter et al., 1997). 

Different petrophysical models can be used to calculate porosity by relating the compressional 

wave velocity (Vp), shear wave velocity (Vs), density (ρ), and porosity (φ) (Hamada, 2004). The 

Wyllie time-average equation is frequently employed models for determining porosity from 

seismic data (Helgerud et al., 1999). 

Wyllie time-average equation is given by (Wyllie et al., 1956): 

1

𝑣
=

∅

𝑣𝑓
+

1−∅

𝑣𝑚
           (6.1) 

Where: 

V =Velocity 

Vf =Velocity of the fluid 

Φ = Porosity 

Vm = Velocity of the matrix 

6.1.2 Lambda-Rho (λρ) 
Reservoir characterization both use the seismic attribute lambda-rho (λρ). It is the outcome of the 

first Lamé parameter (λ) and the density of subsurface rocks (ρ) (Kaczmarczyk-Kuszpit, 2021). In 

order to calculate λρ, both λ and ρ must be known, which can be calculated using density, 

compressional (P-wave) velocity (Vp), and shear (S-wave) velocity (Vs) (Obilo et al., 2007). 

Equation for lambda-rho (incompressibility factor) is given by (Goodway, 2001) as follows: 

𝜆𝜌 =  𝜆 ∗  𝜌 =  (𝑉𝑝 2 −  2 ∗  𝑉𝑠2)  ∗  𝜌       (6.2) 

Where: 

Vp = compressional velocity 

Vs = Shear velocity 
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𝜌 = density 

𝜆 = Lamé parameter 

6.1.3 Mu-Rho 
The shear modulus (μ) and density (ρ) product, commonly abbreviated as "μρ" or "MuRho," is a 

crucial parameter in reservoir characterization that aids in comprehending various aspects of 

subsurface rock properties. It has implications for reservoir engineering, rock mechanics, and 

seismic analysis (Guedez, 2019). 

Equation for Mu- Rho (μρ) is given by (Goodway, 1997) as follows: 

𝜇𝜌 =  𝜇 ∗  𝜌           (6.3) 

6.1.4 Poisson Ratio 
The Poisson's ratio (ν) reveals details about a rock's capacity to change shape under pressure. It is 

possible to evaluate the mechanical behavior of the rocks inside the reservoir during reservoir 

characterization, which is essential for comprehending rock deformation, wellbore stability, and 

hydraulic fracturing procedures. It has several implications in reservoir characterization like rock 

elasticity, seismic interpretation, fluid saturation, geomechanical modelling, reservoir compaction 

etc. (Maxwell et al., 2011). 

Equation for Poisson ratio is as follows (Sheriff, 2002): 

𝜎 =  
𝑉𝑝2−2𝑉𝑠2

2(𝑉𝑝2−2𝑉𝑠2)
          (6.4) 

Where: 

𝜎 = the dimensionless Poisson's ratio. 

Vp = compressional wave velocity 

Vs = Shear wave velocity 

6.1.5 VpVs Ratio 
The compressional wave velocity (Vp) to the shear wave velocity (Vs) in subsurface rocks is 

represented by the seismic attribute known as the VpVs ratio, also referred to as the P-wave to S-

wave velocity ratio. Due to the fact that it offers important details regarding the elastic 
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characteristics of the rocks and their response to seismic waves, this ratio is significant in 

geophysics and reservoir characterization (Hamada, 2004).  

VpVs ratio has implications in lithological determination, fluid identification, fracture detection, 

reservoir compaction and pressure prediction, hydrocarbon exploration etc. (Hamada, 2004; Wang 

et al., 2012; Julià & Mejía, 2004; Zimmer et al., 2002). 

Equation is given as follows: 

𝑉𝑝𝑉𝑠 𝑟𝑎𝑡𝑖𝑜 =  
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙 𝑊𝑎𝑣𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

𝑆ℎ𝑒𝑎𝑟 𝑊𝑎𝑣𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦
       (6.5) 

6.1.6 Impedance Log 
A vital tool in geophysics, petrophysics, and reservoir characterization is the impedance log, which 

provides details about acoustic impedance (Z) along a wellbore. Its significance comes from its 

capacity to offer insightful data on fluid content and subsurface rock properties, both of which are 

essential for assessing reservoirs for potential hydrocarbons. The density of the rock (ρ) and the 

seismic wave velocity (V) within it are what determine the acoustic impedance (Z) (Dubrule et al., 

1998). 

Equation for impedance log or acoustic impedance is given as follows: 

𝑍 =  𝜌 ∗  𝑉           (6.6) 

6.2 Cross Plot Analysis 
An effective graphical analysis for locating data clusters in targeted zones is cross-plotting 

parameters against one another. These data sets can be categorized into various lithologies/facies 

based on their response. The ability to distinguish between various types of lithology and payable 

sand in the targeted area is made possible by elastic properties (VpVs ratio). To accurately predict 

lithology and fluid content, P-impedance and the VpVs ratio are combined (Azeem et al., 2017). 

On the basis of predicted the Vs, Vp and Rhob in the subsurface different parameters which are 

fundamental to reservoir characterization and geophysical analysis can be estimated. The reservoir 

and its behavior can be understood by using these predicted values to estimate a variety of 

parameters and properties. These parameters provide important information that assists in finding 

and evaluating potential hydrocarbon reservoirs (Veeken & Rauch-Davies, 2006). 
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In this study, on the basis of cross plot analysis of these parameters which are calculated 

mathematically, hydrocarbon zone is successfully marked.  

6.2.1 Lambda-Rho vs VpVs Ratio 
The cross plot between Lambda-rho and VpVs ratio with Rhob on z-axis is shown in (Figure 6.1). 

From petrophysical analysis done previously, depth of zone was taken which ranges from 3252m 

to 3261m. Low values of lambda-rho indicate hydrocarbon zone which ranges from 10 – 34 

GPa*g/cc and VpVs ratio lies within 1.55 to 1.84. This cross plot shows low values for Rhob in 

the range of 2.2500 – 2.5000 g/cc (Figure 6.1). 

 

Figure 6. 1: Cross plot between Lambda-rho and VpVs ratio with Rhob on z-axis shows clear 

indication of hydrocarbon bearing zone. 

The cross plot between Lamda-rho and VpVs ratio and color coded with Poisson is shown in 

(Figure 6.2). Low values of lambda-rho indicate hydrocarbon zone which ranges from 10 – 34 

GPa*g/cc and VpVs ratio lies within 1.55 to 1.84. This cross plot shows high values of Poisson 

ratio that ranges from 0.26 - 0.32 (Figure 6.2). 
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Figure 6. 2: Cross plot between Lambda-rho and VpVs ratio color coded with Poisson ratio shows 

clear indication of hydrocarbon bearing zone. 

The cross plot between Lamda-rho and VpVs ratio with Phie on z-axis shown in (Figure 6.3). Low 

values of lambda-rho indicate hydrocarbon zone which ranges from 10 – 34 GPa*g/cc and VpVs 

ratio lies within 1.55 to 1.84. This cross plot shows high values of Phie that ranges from 0.1080 – 

0.1660 (Figure 6.3). 
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Figure 6. 3: Cross plot between Lambda-rho and VpVs ratio with Phie on z-axis shows clear 

indication of hydrocarbon bearing zone. 

The cross plot between Lamda-rho and VpVs ratio with p-impedance on z-axis shown in (Figure 

6.4). Low values of lambda-rho indicate hydrocarbon zone which ranges from 10 – 34 GPa*g/cc 

and VpVs ratio lies within 1.55 to 1.84. 9000 range value for P-impedance is perfect for 

hydrocarbons. This cross plot shows high values of P-impedance that ranges from 7700-9500 

((m/s) * (g/cc)) (Figure 6.4). 
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Figure 6. 4: Cross plot between Lambda-rho and VpVs ratio with P-Imepdance on z-axis shows clear 

indication of hydrocarbon bearing zone 

6.2.2 Vp/Vs Ratio vs Impedance 
The cross plot VpVs ratio and Impedance color coded with PHIE in (Figure 6.5). Values of 

Impedance indicate hydrocarbon zone which ranges from 7200-10000 m/s *g/cc and VpVs ratio 

lies within 1.55 to 1.84. This cross plot shows high values of PHIE that ranges from 0.1080 – 

0.1660 (Figure 6.5) 



57 
 

 

Figure 6. 5: The cross plot VpVs ratio and P-Impedance color coded with Phie shows clear indication 

of hydrocarbon bearing zone. 

The cross plot VpVs ratio and Impedance color coded with Lambda-Rho shown in (Figure 6.6). 

Values of Impedance indicate hydrocarbon zone which ranges from 7200-10000 m/s *g/cc and 

VpVs ratio lies within 1.55 to 1.84. This cross plot shows Low values of lambda-rho indicate 

hydrocarbon zone which ranges from 10 – 34 GPa*g/cc (Figure 6.6). 
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Figure 6. 6: The cross plot VpVs ratio and Impedance color coded with Lambda-Rho shows clear 

indication of hydrocarbon bearing zone. 

The cross plot VpVs ratio and Impedance with Rhob on z-axis shows clear indication of 

hydrocarbon bearing zone. Values of Impedance indicate hydrocarbon zone which ranges from 

7200-10000 m/s *g/cc and VpVs ratio lies within 1.55 to 1.84. Values of Rhob ranges from 2.2500 

– 2.5000 g/cc indicates potential hydrocarbon zone, which is marked on cross plot (Figure 6.7). 
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Figure 6. 7: The cross plot VpVs ratio and Impedance with Rhob on z-axis shows clear indication of 

hydrocarbon bearing zone. 

The cross plot VpVs ratio and Impedance with Poisson ratio on z-axis shows clear indication of 

hydrocarbon bearing zone. Values of Impedance indicate hydrocarbon zone which ranges from 

7200-10000 m/s *g/cc and VpVs ratio lies within 1.55 to 1.84. Values of Poisson ratio ranges from 

0.26 - 0.32 marks the potential hydrocarbon zone (Figure 6.8). 
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Figure 6. 8: The cross plot VpVs ratio and Impedance with Poisson ratio on z-axis shows clear 

indication of hydrocarbon bearing zone. 

6.2.3: Lambda-Rho vs Mu-Rho 
The cross plot Lambda-Rho and Mu-Rho color coded with Poisson ratio on z-axis shows clear 

indication of hydrocarbon bearing zone. Mu-Rho ranges from 20-40 ((Gpa)*(g/cc)) and Lambda-

Rho lies within 10 – 34 ((GPa)*(g/cc)). Values of Poisson ratio ranges from 0.26 - 0.32 marks the 

potential hydrocarbon zone (Figure 6.9). 
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Figure 6. 9: The cross plot Lambda-Rho and Mu-Rho color coded with Poisson ratio shows clear 

indication of hydrocarbon bearing zone. 

The cross plot Lambda-Rho and Mu-Rho color coded with P-Impedance shows clear indication of 

hydrocarbon bearing zone. Mu-Rho ranges from 20-40 ((Gpa)*(g/cc)) and Lambda-Rho lies 

within 10 – 34 ((GPa)*(g/cc)). P-Impedance indicate hydrocarbon zone with values ranges from 

7200-10000 m/s *g/cc (Figure 6.10) 
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Figure 6. 10: The cross plot Lambda-Rho and Mu-Rho color coded with P-Impedance shows clear 

indication of hydrocarbon bearing zone. 

The cross plot Lambda-Rho and Mu-Rho color coded with Phie shows clear indication of 

hydrocarbon bearing zone. Mu-Rho ranges from 20-40 ((Gpa)*(g/cc)) and Lambda-Rho lies 

within 10 – 34 ((GPa)*(g/cc)). Phie marks hydrocarbon zone with values ranges from 0.1080 – 

0.1660 (Figure 6.11). 
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Figure 6. 11: The cross plot Lambda-Rho and Mu-Rho color coded with Phie shows clear indication 

of hydrocarbon bearing zone. 

The cross plot Lambda-Rho and Mu-Rho with Rhob on z-axis shows clear indication of 

hydrocarbon bearing zone. Mu-Rho ranges from 20-40 ((Gpa)*(g/cc)) and Lambda-Rho lies 

within 10 – 34 ((GPa)*(g/cc)). Phie marks hydrocarbon zone with values ranges from 2.2500 – 

2.5000 g/cc (Figure 6.12). 
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Figure 6. 12: The cross plot Lambda-Rho and Mu-Rho with Rhob on z-axis shows clear indication of 

hydrocarbon bearing zone. 
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CHAPTER 7 

DISCUSSION AND CONCLUSION 

7.1 Discussion 
The study marked horizons of D, C and B-sands in the Sawan Area and successfully delineated 

the reservoir of interest in the Lower Goru Formation (Figure 3.4). This was done by combining 

3D seismic data with well log data, allowing for a comprehensive understanding of the subsurface 

geology. The observed south-east dip of the scattered Sawan field provides important insights into 

the area's structural aspects (Figure 3.5, 3.6 and 3.7). The primary reservoir rock in the Sawan gas 

field was identified through a petrophysical analysis of the well logs from Sawan-01, Sawan-07, 

and Sawan-08. It is from the Upper Cretaceous Lower Goru C-sands (Figure 4.2 and 4.3). In 

addition to determining the thickness of the reservoir rock, this analysis also set the basis for further 

reservoir characterization. 

The DT4S log in well Sawan-01 was successfully predicted using a machine learning model 

trained on data from wells Sawan-07 and Sawan-08. The capability of the model to capture 

challenging relationships between input well log data and the target DT4S log is demonstrated by 

its ability to achieve more than 94% matching accuracy (Figure 5.8). Despite variations in 

geological and petrophysical characteristics, this indicates that the model has generalized well to 

predict shear wave velocities in multiple parts of the reservoir (Figure 5.10). The selection of 

informative features for the model's input is an important step in machine learning success. The 

specific well log data features selected for this model and their significance (Figure 5.7), accurately 

predicting DT4S need to be discussed in depth. This can aid present and future researchers and 

professionals in comprehending the crucial factors influencing the predictions. 

It's critical to emphasize the role of accurate DT4S prediction in overall reservoir characterization. 

Reservoir engineers can choose where to place wells, how to drill them, and how to optimize 

production with a precise estimation of this important parameter. This integration of reservoir 

characterization techniques and machine learning-based predictions emphasizes the study's 

practical value. Cross-plot analysis of elastic parameters was done after obtaining the predicted 

DT4S log for well Sawan-01 in order to identify the reservoir and non-reservoir zones. With the 



66 
 

help of this analysis, it is possible to distinguish between productive and non-productive 

zones within the Lower Goru Formation effectively (Figure 6.1 – 6.12). 

It's crucial to talk about the machine learning model's wider relevance because that goes beyond 

the limits of this study. This method may be used by researchers and professionals to predict shear 

wave velocities in additional Lower Goru Formation wells or to modify it for use in various 

geological settings. Additionally, recommendations for potential model enhancements and new 

directions for future research should be made. This might include investigating different machine 

learning techniques, adding more data sources, or optimizing hyper-parameters for even more 

accurate prediction. 

7.2 Conclusion 
Conclusions of the study are as follows: 

 Three dimensional seismic interpretations reveal that Study area is dipping towards south 

east. 

 Petrophysical analysis indicates a zone of interest in Lower Goru Formation with PHIE 

values 11.4% in well Sawan-01 and 12.5% in well Sawan-07 and hydrocarbon saturation in 

well Sawan-01 is 66% while in well Sawan-07 is 52%. 

 Gradient Boost Regressor gives 94% accurate prediction for data trained and tested on Wells 

Sawan-07 and Sawan-08. The model was applied to well Sawan-01 

 Cross plot analysis based on elastic parameters estimated using Vp Rho and predicted Vs 

clearly segregates the reservoir and non-reservoir zone. 
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