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Preface 
Peristalsis is well-known mechanism for fluid transport in physiology. In this mechanism 

sinusoidal waves travel along the walls of tube like organs of human beings propelling the fluid 

contained within the tube in the direction of their propagation. In physiology the principle of 

peristalsis is seen in the transport of food through oesophagus, movement of chyme in intestines, 

urine transport from kidneys to bladder, bile transport in bile duct, transport of spermatozoa, 

vasomotion of blood vessels and many others. Peristalsis has proven very useful in fluid 

transport over short distance preventing the fluid from being contaminated. Subject to its utility, 

such mechanism has been adopted by the engineers in designing several industrial appliances 

including roller and fingers pumps and peristaltic pumps in heart lung and dialysis machines. 

Latest hose pumps of several kinds operate through the principle of peristalsis. Peristaltic type 

flow is readily being used in the nuclear industry for the transport of corrosive fluids. Latham [1] 

initially presented the study of peristaltic flow of a viscous fluid. Jaffrin and Shapiro [2] have 

provided survey of early literature on the peristaltic transport of fluids. Some other fundamental 

studies, on peristalsis include Fung and Yih [3] and Srivastava [4]. Subject to such wide 

occurrence of peristalsis in physiology and industry, many theoretical investigations have been 

carried out in different flow configuration [5,6].   

Heat transfer plays a key role in countless industrial and engineering processes as energy input in 

several complex systems or in a form of energy output produced by the system itself which needs 

to be removed by cooling systems. Usually the heat transfer takes place through flow of 

appropriate heat transfer fluids i.e. air, water, mineral oil, etc. Low thermal conductivity of such 

fluids proved to be one major constraint in their use as heat transfer fluids. It is well established 

now that the addition of nanometer sized particles enhances the thermal conductivity of 

conventional fluids. The mixture obtained by adding nanoparticles to the base fluids is known as 

nanofluid, a term introduced by Choi [7]. Commonly used nanoparticles are metallic oxides 

(CuO,Ti ,A ,ZnO), metals (Cu,Ag and Au), nitride/carbide ceramics (AIN,SiN,SiC,Ti), 

single/multi-walled CNTs and composite materials such as alloyed nanoparticles A OC  [8-

10]. Water, ethylene glycol and oil are generally used as base fluids. Nanofluids find extensive 

applications in modern heating and cooling systems, in solar collector, biomedical engineering, 

detection of radiation, modern drug delivery system etc. The wide utility of nanofluids is the 



reason for growing interest in nanofluid mechanics by the researchers of modern era. 

Expressions for the effective density and viscosity of the nanofluids were computed by Xuan and 

Li [11]. Brinkman [12] model for the effective viscosity of the two phase flow was found to be in 

good agreement with the experimental results of Xuan and Li.[11]. Some studies using the two 

phase flow model of nanofluids can be seen through refs. [13-17]. 

It is now well admitted fact that all the tubular organs facilitating fluid flow in the human body 

are internally lubricated with mucus and secretion layers. These layers in turn prevent the fluid 

from sticking to the walls. In such cases the no-slip condition between the fluid and solid 

boundary is not valid. With such motivation some authors investigated the peristaltic transport of 

ordinary fluids with slip effects [18-19]. Mixed convective flows have received numerous 

attention from the researchers the word over due to their wide industrial and engineering 

applications. Convection is seen in the ocean currents, sea-wind formation, formation of micro-

structures during the cooling of molten metals, solar ponds and in fluid flows around heat 

dissipation fins. Convection in channels plays a vital role in heat exchangers, removal of nuclear 

waste and in modern cooling/heating systems. Hayat et al. [20-21] have seen the influence of 

mixed convection on the peristaltic flow.   

First chapter is concerned with the basic definitions and equations which are relevant to the 

subsequent chapters. Chapter two describes the copper-water nanofluid to discuss the peristaltic 

flow in a symmetric channel with slip conditions. This study extends the two-phase flow model 

of peristaltic motion with temperature jump conditions in an inclined channel. 

Chapter three investigates the mixed convection peristalsis of the single wall carbon nanotubes 

(SWCNT) through an inclined channel. The velocity slip and temperature jump conditions are 

also taken into account. It is noted that none of the above mentioned studies investigated the 

peristalsis of the Single Walled Carbon Nanotubes (SWCNTs) yet. This study aims to fill this 

void. Three different thermal conductivity models, namely the Maxwell [22], the Hamilton-

Crosser [23] and the Xue [24] are used for the analysis. Series solutions for the resulting 

nonlinear system are obtained and analyzed. Comparison between the copper nanaoparticles and 

the SWCNT case is also provided. Influences of various parameters of interest are analyzed 

through graphical and tabular representations.  
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Chapter 1

Introduction

The basic objective of this chapter is to present some fundamental concepts and governing

equations that will facilitate the understanding of the subsequent chapters.

1.1 Basic definitions

1.1.1 Fluid

Fluid is described as a material deforming continuously under the action of applied shear stress

of any magnitude. Major difference between solids and fluids is that the solids do not deform

continuously whereas in the fluids the deformation continues indefinitely.

1.1.2 Fluid mechanics

It is a branch in which the fluids at rest or in motion can be described as follows:

Fluid dynamics

The branch of engineering that studies the behavior of fluids in motion is known as fluid

dynamics.

Fluid statics

It is the study of the behavior of fluids at rest.
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1.1.3 Density of a fluid

Density is the property of a material (fluid) that describes the mass of a unit volume of the

substance at a specific temperature and pressure. At a point the density can be expressed as

follows:

 = lim
−0

(



) (1.1)

In the above equation  denotes the mass element,  is the volume element enclosing the

point under consideration and  indicates the fluid density. The SI unit of density is 3

with dimension
£

3

¤
.

1.1.4 Viscosity of a fluid

Viscosity is defined as the property of fluid to resist the deformation. Physically it is described

as the ratio of shear stress and shear strain. The mathematical relationship for viscosity is

 () =
shear stress

rate of shear strain


Viscosity is significant in both experimental and theoretical analysis of fluid. It is further

categorized into absolute, kinematic or dynamic viscosity. The SI unit of viscosity is 

with dimensions
£



¤
.

1.1.5 Kinematics viscosity

The ratio of absolute viscosity (dynamic viscosity) of fluid to the fluid density. Mathematically

it is given as follows:

Kinematic viscosity () =





Its SI unit is 2 with dimensions is
h
2



i
.
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1.1.6 Pressure

The magnitude of force perpendicular to the surface area is called pressure. Mathematically it

is given through the following relation:

Pressure =
Magnitude of applied force

area
=






1.1.7 Flow

The fluid tends to deform under the action of applied stress. When such deformation continues

indefinitely then this phenomena is called flow.

Steady flow

If all the physical properties of a fluid are independent of time then such flow is named as

steady flow. If  is any fluid property then for a steady flow one must have




= 0 (1.2)

Unsteady flow

The flow in which the physical properties of the fluid vary with time is known as unsteady

flow.

Compressible flow

If the density of fluid varies then it is called compressible flow. In generally flow of gases

are considered as compressible flows.

Incompressible flow

The flow in which density of the fluid remains constant is called incompressible flow. Gen-

erally flow of liquid are characterized as incompressible flows.

1.1.8 Stream function

It is a function, which illustrates the flow pattern of fluid that represents discharge per unit

thickness. It characterizes the flow field in terms of mass flow rate for compressible fluid and

volume flow rate for an incompressible fluid. For steady two dimensional flow it can be defined

6



as

 = ∇×ψ (1.3)

here  = (  0) so according to above equation ψ = (0 0 ). The stream function helps

us to study the flow behavior graphically by drawing the streamlines ( =constant). Velocity

components in terms of stream function are defined as

 =



  = −


 (1.4)

1.1.9 Ideal and real fluids

Fluid which have negligible viscosity are called ideal fluids. Ideal fluids do not exist in nature,

but in many applications gases are treated as ideal fluids. Further the fluids with non-zero

viscosity are called real fluids. All existing fluids are real fluid. Real fluids are further classified

into Newtonian and Non-Newtonian fluids.

1.1.10 Newtonian fluids

If the shear stress is directly and linearly proportional to the rate of strain then such fluids are

called the Newtonian fluids. Mathematically for Newtonian fluids:

 ∝




or

 = 



 (1.5)

In the above expression  denotes shear stress,  dynamic viscosity and  the rate of

strain for one-dimensional flow. In this case, viscosity depends on pressure and temperature.

For constant viscosity and incompressible flow shear stress can be generalized in Cartesian

coordinate system as follows:

  = (



+




) (1.6)

In above expression

  is the shear stress on the 
 face of a fluid element in the  direction
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 is the velocity in the 
 direction

 is the 
 direction coordinates

Common examples of Newtonian fluids are water and gasoline. In this dissertation, the

considered flows will be analyzed for the viscous fluid situation.

1.1.11 Types of forces

Surface forces

Any particular force that acts through direct contact with the fluid’s surface is called surface

force. For example, pressure and stresses.

Body forces

If the force does not have physical contact with the object surface, but acts throughout the

volume of the fluid then such force is named as body force. Magnetic force and force of gravity

are the examples of body forces.

1.1.12 Volume flow rate

It is the volume of fluid which passes through a section of a pipe or channel in unit time. It

is usually represented by the symbol . If ‘’ is the given area and  is the fluid’s velocity,

making an angle  with the perpendicular to , then the volume flow rate is given as:

 =  

If the flow is perpendicular to the area  then  = 0 and thus the volume flow rate is

 = 

1.1.13 No-slip condition

During the fluid flow molecules tend to stick with the solid boundary and move with the velocity

of the wall. This mechanism is known as no-slip condition.
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1.1.14 Slip condition

In many engineering applications and biological phenomena the no-slip condition is not applica-

ble, so Navier proposed the relative velocity between the fluid and wall which is known as slip

condition. Relative velocity between the fluid and solid boundary is directly proportional to

the shear stress at the boundary. Mathematically we have

 −  ∝ 

or

 −  = ±


 (1.7)

Here  denotes the velocity of fluid,  the velocity of wall,  the slip parameter, + and −
signs show the condition at upper and lower walls respectively. Note that the no-slip condition

can be retained by substituting  = 0.

1.2 Peristalsis

The word peristalsis is derived from a Greek word “Peristaltikos” which means pumping and

clasping. It is the mechanism of mixing and transporting the fluid by the contraction or

expansion of channel wall through the progressive waves. Transport mechanism taking use

of peristalsis is named as peristaltic transport.

1.2.1 Occurrence of peristalsis in physiology

Peristalsis being a major mechanism of fluid transport holds much significance in physiology.

Transport of food bolus through bile duct, sperm/ egg movement through male/ female repro-

ductive tract, urine transport from kidneys to the bladder is carried out using the mechanism of

peristalsis. In this mechanism waves of area contraction and relaxation travel along the channel

walls. These waves in turn propel the fluid contained within the channel.
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1.2.2 Pumping

A pump transfers liquid from one location to another under the certain conditions and this

mechanical mechanism is called pumping. It is further classified as below:

Positive and negative pumping

The positive and negative pumping is based on the dimensional mean flow rate . If  is

positive then pumping is also positive or vice versa.

Peristaltic pumping

Peristaltic pumping behavior appears for the positive flow rate and adverse pressure gradi-

ent, i.e. ∆  0 and   0.

Free pumping

In this case, flow rate is positive and pressure gradient is neither positive nor negative. In

this momentous point ∆ = 0.

Co-pumping or augmented pumping

In this case pumping is positive and pressure gradient is favorable i.e. ∆  0 and   0.

1.2.3 Bolus

During the fluid flow some volume of the fluid bounded by closed streamlines in the wave frame

which is called bolus.

1.2.4 Trapping

In the fluid flow streamlines trap some volume of fluid and the peristaltic wave move the trapped

volume of fluid with the wave speed that is known as trapping phenomena.

1.3 Nanomaterials and Nanofluids

1.3.1 Nanomaterial

Natural or manufactured materials which have size upto 1 − 100 nanometer with at least
one-dimension are called nanomaterials. They have unique physical, electrical and mechan-

ical properties. Nanomaterials occur naturally in the different forms like viruses, foraminifera

(mainly chalk), natural colloids (milk, blood), horny materials (skin, claws, horns, hair), paper,
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cotton and clay e.t.c. There are different synthesized nanomaterials such as metallic oxides

(, 2, 23, ), metals (,  and ), nitride/Carbide ceramics ( ,  ,

, ), Single/multi-walled Carbon nanotubes and composite materials such as alloyed

nanoparticles 73.

1.3.2 Nanofluid

The mixture of nanometer-sized particles suspended in the base fluid is called nanofluid.

Nanoparticle are colloidally suspended in the base fluid. Nanofluids enhance the thermo-

physical properties and heat transfer performance in many biological and industrial applica-

tions. Nanofluids are widely used in cooling of electronics, cooling of heat exchanging devices

and improve their efficiency, automobile industry, in the solar collectors, in nuclear reactors and

modern drug delivery systems. Different types of fluids are as base fluids e.g. water, ethylene

glycol, oil e.t.c.

1.3.3 Thermal conductivity models of nanofluids

The suspension of solid nanoparticles enhances the thermal conductivity of liquid fluid. Some

of the available models that predict the thermal conductivity of a two phase flow (i.e fluid-solid

phases) are given below:

Maxwell’s model

Maxewell predicted the effective thermal conductivity ( ) model [22] for spherical solid

materials suspended in fluid and is given as follows:





=
 + 2 − 2( −)

 + 2 + ( −)
 (1.8)

In the above equations  denotes the thermal conductivity of the base fluid,  the thermal

conductivity of nanomaterials and  the volume fraction for the nanomaterial.

Hamilton-Crosser’s model

Hamilton-Crosser’s (H-C) generalized the Maxwell’s model for the non-spherical particles.
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The H-C’s model [23] of thermal conductivity of nanofluids is





=
 + (− 1) − (− 1)( −)

 + (− 1) + ( −)
 (1.9)

Here “” represents the structure formate of nanoparticles given by 3Ψ and Ψ is the sphericity

of the nanomaterial that depends on their shape. Here Ψ = 1 or  = 3 for the spherical

nanomaterial and the H-C’s model is reduced into Maxewell’s model. Further Ψ = 12 or

 = 6 is for the cylindrical nanomaterial. For SWCNTs we use  = 6 in the H-C’s model.

Xue’s model

Xue proposed a new model [24] to calculate the thermal conductivity of nanotubes. Xue’s

model is given as:





=
1− + 2 

 -
[ln

+

2
]

1− + 2


 -
[ln

+

2
]
 (1.10)

here  represents the thermal conductivity of carbon nanotubes.

1.4 Basics of heat transfer

1.4.1 Heat

Heat is the summation of kinetic energy of the system. This form of energy plays a significant

role in the transfer of energy from one place to another due to the change in temperature.

1.4.2 Heat transfer

Heat transfer is the phenomena by which heat flows within the system due to the variation

in temperature. Heat transfers from a hot to cold region. Heat transfer rate depends on the

temperature gradient, and it continuously flows until temperature gradient approaches zero.

1.4.3 Modes of heat transfer

There are three mechanisms through which heat is transferred from one place to another namely

conduction, convection and radiation.
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1.4.4 Specific heat

The amount of heat energy required to enhance the temperature by one degree of one kg

substance is known as the specific heat of that substance.

1.4.5 Thermal conductivity

The property of a material to transmit or to conduct heat energy is known as thermal conduc-

tivity. It is denoted by . A substance that has high thermal conductivity is a good conductor

and is used in heat sink applications and lower thermal conductivity materials are used as heat

insulators. The thermal conductivity of substance may depend on the temperature. The unit

of thermal conductivity is 3 with dimension
£

 3

¤
.

1.4.6 Viscous dissipation

When the viscous fluid flows kinetic energy of the fluid transforms into internal energy due to

the viscous effects. This phenomena is named as viscous dissipation.

1.5 Dimensionless numbers

Sometimes equations are complicated in the fluid mechanics so we use dimensionless numbers

and parameters to simplify the given flow problem. The dimensionless number used in this

dissertation are defined below:

1.5.1 Reynolds number

It is the ratio of inertial forces to the viscous forces of fluid. Mathematically

 =





here  is the density,  the flow velocity of object,  the characteristic length and  the

dynamic viscosity of fluid. When Reynold’s number is high viscous effects are dominant and

fluid is turbulent and for laminar flow Reynolds number is small.
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1.5.2 Wave number

The ratio of the channel width to the wavelength is known as wave number. Mathematically it

is represented as

 =





here  is the half channel width and  is the wavelength.

1.5.3 Prandtl number

It describes the ratio of momentum diffusivity (kinetic energy) to the thermal diffusivity. Math-

ematically it is expressed as:

 =





here  denotes specific heat and  the thermal conductivity of fluid.

1.5.4 Eckert number

The ratio of kinetic energy and enthalpy is known as Eckert number. This parameter enters in

flow modality due to viscous effects. It is defined as

 =
2

∆


here ∆ the temperature difference between fluid and boundary.

1.5.5 Brinkman number

It is the ratio of viscous dissipation to the heat transfer rate. It can be described by the product

of Prandtl number and Eckert numbers as:

 = 

1.5.6 Grashoff number

The ratio of buoyancy forces to the viscous forces that are acting on fluid volume is named as

Grashoff number. It is defined as
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 =
∆3

2


here  the thermal expansion coefficient,  the acceleration due to gravity and  the kinematic

viscosity of fluid.

1.6 Basic governing equations

1.6.1 Continuity equation

The conservation law of mass leads to the fact that mass of a closed system remains constant,

regardless of the processes acting inside the system. This principle can be applied to a moving

fluid and its mathematical formulation yields the continuity equation. With no source or sink

in the control volume, the continuity equation is given as




+

()


+

()


+

()


= 0 (1.11)

where u,v and w designate the velocity components in x,y and z directions respectively. Eq.

(111) can be presented as follows




+∇ = 0 (1.12)

For incompressible fluid, the continuity equation takes the following form

∇ = 0

or

div  = 0 (1.13)

1.6.2 Equation of motion

The vectorial form of equation of motion is given as:





= div  +  (1.14)
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where T is the Cauchy stress tensor,  is the body force and  is the material derivative

given as




=




+ 




+ 




+ 






or




=




+ ∇ (1.15)

The Cauchy stress tensor T is given as:

T =

⎡⎢⎢⎢⎣
  

  

    

⎤⎥⎥⎥⎦ (1.16)

in which   and  denote the normal stresses and   ( 6= 0) are the shear stresses.

1.6.3 Energy equation

The conservation law of the energy describes that the increase in the internal energy of a

thermodynamic system is equal to the amount of energy gained (lost) by the system. The

general form of energy equation is





= T̄(∇ ) +∇(∇ ) (1.17)

In which  is a specific heat at constant volume and  is the thermal conductivity of fluid.
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Chapter 2

Mixed convective peristalsis of

nanofluid in presence of partial slip

2.1 Introduction

The objective of this chapter is to explore the features of peristalsis of nanofluid in an inclined

channel. Effects of slip conditions due to velocity and temperature are addressed. Lubrication

approach has been employed for the present analysis. Series solutions are obtained by using

perturbation technique. These series solutions are used to sketch the graphs of velocity, stream-

lines, pressure gradient, pressure rise per wavelength, temperature and heat transfer rate at the

boundary. Further, these plots are also physically analyzed.

2.2 Definition of the problem

We investigate the two-dimensional flow of nanomaterials in an inclined channel of uniform

width 2. An incompressible nanofluid is composed of nanomaterial and water. Both of these

materials are in thermal equilibrium. We select  −  is parallel to the channel wall and

̄ −  is transverse direction to the  − . The peristalsis here is in view of propagating

wave along the channel walls. The waves have amplitude 1 wavelength  and constant speed

17



. The wall shape for the peristaltic phenomena is represented as:

+(̄ ̄) = ++ 1(
2


(̄ − ̄))

−(̄ ̄) = −− 1(
2


(̄ − ̄))

(2.1)

Here  is the time and + and − signs indicate the upper and lower walls of the channel.

2.3 Problem formulation

The velocity field for the present flow configuration in the laboratory frame isV = [̄(̄ ̄  ̄) ̄ ( ̄  ̄) 0].

Here ̄ and ̄ denote the velocities parallel to the ̄− and ̄ −. Cauchy stress tensor
for viscous incompressible fluid is

T̄ = −̄ Ī+ ̄Ā1 (2.2)

in which  represent the identity tensor, ̄ ( ) the pressure, ̄ the dynamic viscosity and

Rivlin Ericksen tensor Ā1 is

Ā1 = (∇ ) + (∇ ) (2.3)

∇ =

⎡⎢⎢⎢⎣
̄
̄

̄
̄

0

̄
̄

̄
̄

0

0 0 0

⎤⎥⎥⎥⎦ 

(∇ ) =

⎡⎢⎢⎢⎣
̄
̄

̄
̄

0

̄
̄

̄
̄

0

0 0 0

⎤⎥⎥⎥⎦ 
the superscript “” represents the transpose of the matrix and Ā1 is

Ā1 =

⎡⎢⎢⎢⎣
2 ̄
̄

̄
̄
+ ̄

̄
0

̄
̄
+ ̄

̄
2̄
̄

0

0 0 0

⎤⎥⎥⎥⎦ 

The relevant equations are

V̄ = 0 (2.4)
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
V̄


= div T̄+  (2.5)





= T̄(∇ ) +∇(∇ ) (2.6)

Here  is the fluid density,  the thermal conductivity and  the body force. The channel walls

have temperature 0. Analysis is carried out in the presence of heat source/ sink parameter Φ

and mixed convection. The equations of motion, momentum and energy are

̄

̄
+

̄

̄
= 0 (2.7)

 (


̄
+ ̄



̄
+ ̄



̄
)̄ = − ̄

̄
+  (

2̄

̄2
+

2̄

̄ 2
)

+() ( − 0) (2.8)

 (


̄
+ ̄



̄
+ ̄



̄
)̄ = −̄

̄
+  (

2̄

̄2
+

2̄

̄ 2
)

−() ( − 0) (2.9)

() (


̄
+ ̄



̄
+ ̄



̄
)̄ =  (

2̄

̄2
+

2̄

̄ 2
) + Φ

+ [2((
̄

̄
)2 + (

̄

̄
)2) + (

̄

̄
+

̄

̄
)2]

(2.10)

Two phase flow model’s of effective viscosity  , effective density  , effective thermal

conductivity , effective thermal expansion coefficient () and effective heat capacity

() of nanofluid are given as follows:

 =


(1− )25


 = (1− ) + 

() = (1− )() + ()

() = (1− ) + 





=
 + 2 − 2( −)

 + 2 + ( −)


(2.11)
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Here               and  represent the viscosity of fluid, density of wa-

ter, the density of nanomaterials, specific heat of water, specific heat of nanomaterials, thermal

expansion coefficient of water, thermal expansion coefficient of nanomaterials, thermal conduc-

tivity of water, thermal conductivity of nanomaterials and volume fraction of nanomaterials

respectively.

2.4 Governing equations in the wave frame

For the transformation of the system of equations from the laboratory frame of to wave frame

of reference the following relations are used:

̄ = ̄ − ̄ ̄ = ̄  ̄ = ̄ −  ̄ = ̄  ̄(̄ ̄) = ̄ (̄ ̄  ̄) (2.12)

In the above expression ̄(̄ ̄) is the pressure, ̄(̄ ̄) and ̄(̄ ̄) are the longitudinal and

transverse components of velocity in the wave frame respectively. Following Eq. (212) we

obtain:

̄

̄
+

̄

̄
= 0 (2.13)

((1− ) + )((̄+ )


̄
+ ̄



̄
)(̄+ ) = −̄

̄
+



(1− )25
(
2̄

̄2
+

2̄

̄2
)

+((1− ) + )( − 0)

(2.14)

((1− ) + )((̄+ )


̄
+ ̄



̄
)̄ = −̄

̄
+



(1− )25
(
2̄

̄2
+

2̄

̄2
)

+((1− ) + )( − 0)

(2.15)

((1− )() + ())((̄+ )


̄
+ ̄



̄
) =  (

2

̄2
+

2

̄2
)

+Φ+


(1− )25
[2((

̄

̄
)2 + (

̄

̄
)2) + (

̄

̄
+

̄

̄
)2]

(2.16)
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2.5 Non-dimensionalization of the problem

For the present flow phenomena the dimensionless quantities are as follows:

 =



  =




  =




  =




  =




  =




  =

1


  =

2




 =



  =

 


  =




 =

2

0
  =





  =
0

2




 =
 − 0

0
  =   =

2Φ

0

  =



  = −




(2.17)

Using above variables and long wavelength and low Reynold number consideration are obtains




=

1

(1− )25
3

3
+{1− + (

()

()
)} (2.18)

 = 0 (2.19)

[
 + 2 − 2( −)

 + 2 + ( −)
]
2

2
+



(1− )25
(
2

2
)2 +  = 0 (2.20)

where incompressibility condition is automatically satisfied. Cross differentiation of Eq. (218)

and Eq. (219) yields:

0 =
1

(1− )25
4

4
+{1− + (

()

()
)}




Here , , , , , , , , , ,  and  denote the wave number, inclination angle, pres-

sure, kinematic viscosity, Reynolds number, Eckert number, Prandtl number, Grashoff number,

dimensionless temperature, Brinkman number, dimensionless heat generation/ absorption pa-

rameter and stream function respectively.

2.6 Volume flow rate and boundary conditions

The dimensionless mean flow rate for symmetric channel in laboratory (=
̄


) and moving

frames  (=
̄


) are related by

 =  + 1 (2.21)
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in which

 =

Z 

0




 (2.22)

For the existing flow behavior the boundary conditions along with the velocity slip and tem-

perature jump conditions [19] are given as:

 = 0  = 0  = 0 at  = 0

 = 



+



(1− )25
2

2
= −1  + 




= 0 at  = 

(2.23)

where  = 1 +  (2) is the dimensionless wall shape. Pressure rise per wavelength (∆)

is defined as:

∆ =

Z 1

0

(



) (2.24)

2.7 Series solutions

We expand the flow quantities in the increasing powers of “”, to obtain the solutions of the

Eqs. (218)− (220), subjected to the boundary conditions (223) as follows:

 = 0 +1 +(2) + 

 = 0 +1 +(2) + 

 = 0 +1 +(2) + 

 = 0 +1 +(2) +  (2.25)

It is worth mentioning that in the above expressions   1 This consideration is wellmet

in physical systems for example, ordinary water has the dynamic viscosity  = 089 (centi

poise) and thermal conductivity 0613 (watt per meter Kelvin) at 250 (298 ≈
room temperature). If the characteristic speed of fluid is taken to be 1 (meter per second)

and wall temperature to be 310 (≈ equal to body temperature). The Brinkman number
comes out to be 12787× 10−4  1. In light of the expansions given through Eq. (225), the
zeroth and first order systems take the following form:
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Zeroth order system


20

2
+  = 0

0


= 0 at  = 0 and 0 + 

0


= 0 at  = 

(2.26)

0


=

1

(1− )25
30
3

+{1− + (
()
()

)}0

0 = 0
20
2

= 0 at  = 0 and 0 = 0
0


+


(1− )25
20
2

= −1 at  = 

(2.27)

First order system


21

2
+

1

(1− )25
(
20
2

)2 = 0

1


= 0 at  = 0 and 1 + 

1


= 0 at  = 

(2.28)

1


=

1

(1− )25
31
3

+{1− + (
()
()

)}1

1 = 0
21
2

= 0 at  = 0 and 1 = 1
1


+


(1− )25
21
2

= 0 at  = 

(2.29)

The graphical and physical analysis of the obtained series solutions is given in preceding

section.

2.8 Results and discussion

The objective of this section is to study the effects of velocity, streamlines, pressure gradient,

pressure rise per wavelength, temperature and heat transfer rate for the peristaltic flow of

copper-water nanofluid through their respective plots. Figures 21 − 24 study the pressure
gradient for variations in sundry parameters. It is perceived that pressure gradient is maximum

in the wider part of the channel and minimum in the occluded region. It is also noted that

pressure gradient decreases when nanoparticles volume fraction, Grashoff number and channel

inclination angle are increased. Further pressure gradient increases due to large value of velocity

slip parameter.

Figures 25 − 28 analyze the effects of nanoparticles volume fraction, inclination of angle,
Grashoff number and velocity slip parameter on the pressure rise per wavelength. It is also
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examined that there are three different pumping regions such as retrograde, peristaltic and

augmented pumping region.

Effects of different parameters on the axial velocity are analyzed in the Figures 29− 212.
Figures 29 and 212 depict that the increasing value of the nanoparticles volume fraction and

velocity slip parameter decrease the velocity at the center of the channel. However reverse

behavior is examined near the channel walls. Increase in the Grashoff number and channel

inclination angle enhances the velocity at the central part.

Streamline illustrations are given through Figures 213 − 215. Size of the trapped bolus
decreases when copper nanoparticles volume fraction and velocity slip parameter are increased.

Figures 216 − 220 are plotted to analyze the temperature for various values of  
  and . Temperature profiles have parabolic trajectory. Temperature is maximum at

the channel center and decreases near the channel walls. Inclusion of nanoparticles rapidly

decrease the temperature near the channel center. These parameters effect temperature near

center of the channel. However, increasing value of temperature jump parameter enhances the

temperature throughout the channel.

Comparison of the heat transfer rate at the boundary for ordinary water and nanofluid is

given through Figures (221 − 224). It is noted through these Figs. that in the presence of
nanoparticles the heat transfer rate at the boundary increase for larger values of    and

.
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Property Basefluid(water) Nanomaterials(copper)

Density (kg/m3) 9971 8933

Thermal conductivity (W/mk) 0613 400

Specific heat (j/kgK) 4179 385

Thermal expansion coefficient (1/k)10−6 210 1665

Table 2.1: Statistical data of the thermo-physical properties [19].

f = 0.07, 0.14, 0.21
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Figure 21. Pressure gradient for different  when  = 
4
,  = 06,  = 095  = 03,  = 50,

 = 01,  = 03 and  = 10
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Figure 22. Pressure gradient for various  when  = 06,  = 095  = 50,  = 01,  = 03,

 = 01,  = 03 and  = 10

Gr = 6, 4, 2
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Figure 23. Pressure gradient for change in  when  = 
4
,  = 06,  = 095  = 01,

 = 03,  = 01,  = 03 and  = 10
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b = 0.1, 0.05, 0.0
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Figure 24. Pressure gradient for different values of  when  = 
4
,  = 06,  = 095  = 50,

 = 01,  = 03,  = 01 and  = 10

f = 0.07, 0.14, 0.21
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Figure 25. ∆ for various values of  when  = 
4
,  = 01,  = 50,  = 03,  = 01,

 = 03 and  = 10
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Figure 26. ∆ for various values of  when  = 01,  = 50,  = 01,  = 03,  = 01,

 = 03 and  = 10

Gr = 2, 4, 6
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Figure 27. ∆ for various values of  when  = 
4
,  = 01,  = 01,  = 03,  = 01,

 = 03 and  = 10
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b = 0.0, 0.1, 0.2
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Figure 28. ∆ for various values of  when  = 
4
,  = 01,  = 50,  = 01,  = 03,

 = 01 and  = 10
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Figure 29. Effect of  on axial velocity when  = 
4
,  = 06,  = 12  = 50,  = 10,

 = 03,  = 01,  = 01 and  = 10
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Figure 210. Effects of  on axial velocity when  = 
4
,  = 06,  = 12  = 0,  = 01,

 = 03,  = 01,  = 03 and  = 10
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Figure 211. Effects of  on axial velocity when  = 06,  = 12  = 10,  = 50,  = 01,

 = 03,  = 01,  = 01 and  = 10
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Figure 212. Effects of  on axial velocity when  = 
4
,  = 06,  = 12  = 10,  = 50,

 = 01,  = 03,  = 01 and  = 10

Figure 213. Illustrations of streamlines when  = 
4
,  = 07,  = 095  = 50,  = 03,

 = 01,  = 03 and  = 10
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Figure 214. Illustrations of streamlines when  = 
4
,  = 07,  = 095  = 01,  = 50,

 = 03,  = 01,  = 03 and  = 10

Figure 215. Illustration of streamlines when  = 
4
,  = 07,  = 12  = 01,  = 50,

 = 03,  = 01 and  = 10
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Figure 216. Effects of  on  when  = 
4
,  = 06,  = 12,  = 10  = 50,  = 03,

 = 01,  = 01 and  = 20
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Figure 217. Effects of  on  when  = 
4
,  = 06,  = 12  = 10,  = 01,  = 03,

 = 01,  = 01 and  = 20
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Figure 218. Effects of  on  when  = 06,  = 12  = 10,  = 01,  = 50,  = 03,

 = 01,  = 01 and  = 20
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Figure 219. Effects of  on  when  = 
4
,  = 06,  = 12  = 10,  = 50,  = 01,

 = 03,  = 01 and  = 20
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g = 0.1, 0.05, 0.0
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Figure 220. Effects of  on  when  = 
4
,  = 06,  = 12  = 10,  = 50,  = 01,

 = 03  = 01 and  = 20
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Figure 221. Effects of  on heat transfer rate when  = 
4
,  = 06,  = 12  = 10,  = 50,

 = 03,  = 01,  = 01 and  = 10
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Figure 222. Effects of  on heat transfer rate when  = 
4
,  = 06,  = 12  = 10,  = 50,

 = 03,  = 01, and  = 03
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Figure 223. Effects of  on heat transfer rate when  = 
4
,  = 06,  = 12  = 10,

 = 03,  = 01,  = 01 and  = 10
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Figure 224. Effects of  on heat transfer rate when  = 
4
,  = 06,  = 12  = 10,

 = 50,  = 01,  = 01 and  = 01
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Chapter 3

Peristalsis of single walled carbon

nanotubes with different thermal

conductivity models

3.1 Introduction

Analysis here studies the influences for single walled carbon nanotubes (SWCNTs) on the peri-

staltic motion. Mixed convective flow in symmetric channel is taken. Heat source/sink is also

present. Further velocity slip and temperature jump conditions. Maxewell’s [22], the Hamilton-

Crosser’s [23] and the Xue’s [24] models for the thermal conductivity of the nanomaterials are

used here.

3.2 Physical model

Consider an incompressible nanofluid (composed of water and the SWCNTs) in a symmetric

channel of width 2. Coordinate system is selected in such a manner that the −axis lies along
the length of channel and the − axis normal to the − axis. The channel is inclined at an
angle “” with the horizontal. Flow is created by sinusoidal travelling waves of wavelength

 and constant speed . Fig. 31 consists of physical model. The mathematical form of the

peristaltic walls is given by
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±(̄ ̄) = ±± 1(
2


(̄ − ̄)) (3.1)

Here 1 denotes the amplitude, ̄ the time, + and − signs indicate the values for the walls
in the positive and negative  -directions respectively.

Effective viscosity  , density of nanofluid  , effective thermal expansion coefficient 

and effective heat capacity () of the nanofluid [19] are given as follows:

 =


(1− )25
  = (1− ) + 

() = (1− )() + () () = (1− ) + 

(3.2)

In these equations  denotes the density,  the thermal expansion coefficient,  the viscosity

and  the specific heat. The subscripts “” and “” denote the nanotubes and water phase

respectively. The effective thermal conductivity ( ) is given as follows:





=
 + 2 − 2( −)

 + 2 + ( −)
for Maxewell’s model (Eq.18),





=
 + (− 1) − (− 1)( −)

 + (− 1) + ( −)
for H-C’s model (Eq. 19) and





=
1− + 2 

 -
[ln

+

2
]

1− + 2


 -
[ln

+

2
]
for Xue’s model (Eq. 110).

(3.3)

Numerical values of the thermophysical properties of water and nanomaterials can be seen

through Table 3.1.

3.3 Governing equations in the wave frame

Note that channel boundaries have temperature 0. For two dimensional flow, (  )

and  (  ) are the  and  components of velocity and  (  ) the pressure in the

laboratory frame. The variables and quantities in laboratory (  ) and wave frames ( )

for the present flow phenomena are

̄ = ̄ − ̄ ̄ = ̄  ̄ = ̄ −  ̄ = ̄  ̄(̄ ̄) = ̄ (̄ ̄  ̄) (3.4)
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where ̄ and ̄ depict the longitudinal and transverse components of the velocity and ̄(̄ ̄) is

the pressure in the wave frame. The relevant equations here are given by

̄

̄
+

̄

̄
= 0 (3.5)

((1− ) + )((̄+ )


̄
+ ̄



̄
)(̄+ ) = −̄

̄
+



(1− )25
(
2̄

̄2
+

2̄

̄2
)

+((1− ) + )( − 0)

(3.6)

((1− ) + )((̄+ )


̄
+ ̄



̄
)̄ = −̄

̄
+



(1− )25
(
2̄

̄2
+

2̄

̄2
)

+((1− ) + )( − 0)

(3.7)

((1− )() + ())((̄+ )


̄
+ ̄



̄
) =  (

2

̄2
+

2

̄2
)

+Φ+


(1− )25
[2((

̄

̄
)2 + (

̄

̄
)2) + (

̄

̄
+

̄

̄
)2]

(3.8)

Here  represents the acceleration due to gravity and  the nanofluid temperature.

3.4 Non-dimensionalization of the problem

Making use of the following dimensionless quantities

 =



  =




  =




  =




  =




  =




  =

1


  =

2




 =



  =

 


  =




 =

2

0
  =





 =
0

2




 =
 − 0

0
  =   =

2Φ

0

  =



  = −




(3.9)

and adopting large wavelength and small Reynolds number analysis we have




=

1

(1− )25
3

3
+{1− + (

()

()
)} (3.10)

 = 0 (3.11)


2

2
+



(1− )25
(
2

2
)2 +  = 0 (3.12)
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Here , , , , , , , , , ,  and  denote the wave number, inclination angle, pres-

sure, kinematic viscosity, Reynolds number, Eckert number, Prandtl number, Grashoff number,

dimensionless temperature, Brinkman number, dimensionless heat generation/ absorption pa-

rameter and stream function respectively. Further Eq. (311) indicates that pressure is not

a function of “” and the continuity equation (Eq. 35) is identically satisfied. Here “” is

defined as follows:

 =




(3.13)

Cross differentiation of (310) and (311) yields

0 =
1

(1− )25
4

4
+{1− + (

()

()
)}


 (3.14)

3.5 Volume flow rate and boundary conditions

Velocity slip condition

In the fixed frame of reference the slip conditions at the wall are defined as

̄(̄ ̄ ̄)− ̄ = ̃1̄  (3.15)

in which ̄(̄ ̄  ̄) is the longitudinal velocity in laboratory frame, ̄ the shear stress, 1

the dimensional velocity slip parameter, ̃ the unit normal on the wall and  velocity of the

walls. Transforming the above expressions in the wave frame through Eq. (34) we obtain

(̄ ̄)−  = ̃1̄ (3.16)

Here dimensionless boundary conditions in the wave frame are given as:

 = 0 
2
2

= 0 at  = 0

 =  

+ 

(1−)25
2
2

= −1 at  = 
(3.17)

in which (=
1

) is the dimensionless velocity slip parameter.

Temperature jump condition

In the laboratory frame of reference the temperature jump condition at the walls is defined
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as

̄ − ̄ = ̃1
̄

̄
(3.18)

̄ is the temperature of fluid,  the thermal slip parameter, ̃ the unit normal on the walls and

̄(= 0) is the temperature of the walls. The non-dimensional form for temperature are given

by



= 0 at  = 0

 +  

= 0 at  = 

(3.19)

Here (=
1

) is the dimensionless temperature jump parameter.

Flow rate

For laboratory frame the flow rate is

 =

Z ̄(̄)

0

̄(̄ ̄  ̄)̄  (3.20)

where ̄ is a function of ̄ and ̄. In wave frame the above expression is reduced to

 =

Z ̄(̄)

0

̄(̄ ̄)̄ (3.21)

where ̄ is a function of . Using Eqs.(39) and (321) we have

 =  + ̄() (3.22)

The time mean flow can be written as

̄ =
1



Z 

0

 (3.23)

in which  is the period. Putting Eq. (322) into the above expression and integrating we obtain

̄ =  +  (3.24)
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We define  and  as the dimensionless mean flows in the wave and laboratory frames by

 =
̄


  =

̄


 (3.25)

the two flow rates are related through the following relation:

 =  + 1 (3.26)

where

 =

Z 

0




 (3.27)

Boundary conditions in non-dimensional form

The boundary conditions for the existing flow configuration here are given as:

 = 0  = 0  = 0 at  = 0

 = 



+



(1− )25
2

2
= −1  + 




= 0 at  = 

(3.28)

where  = 1 +  (2) is the dimensionless wall shape,  is the dimensionless velocity slip

parameter and  the dimensionless temperature jump parameter. Pressure rise per wavelength

(∆) is

∆ =

Z 1

0

(



) (3.29)

3.6 Series solutions

We expand the flow quantities via “” as follows:

 = 0 +1 +(2) + 

 = 0 +1 +(2) + 

 = 0 +1 +(2) + 

 = 0 +1 +(2) + 
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Making use of the above mentioned expansions, the zeroth and the first order systems take the

following forms:

Zeroth order system


20

2
+  = 0

0


= 0 at  = 0 and 0 + 

0


= 0 at  = 

(3.30)

0


=

1

(1− )25
30
3

+{1− + (
()
()

)}0

0 = 0
20
2

= 0 at  = 0 and 0 = 0
0


+


(1− )25
20
2

= −1 at  = 

(3.31)

First order system


21

2
+

1

(1− )25
(
20
2

)2 = 0

1


= 0 at  = 0 and 1 + 

1


= 0 at  = 

(3.32)

1


=

1

(1− )25
31
3

+{1− + (
()
()

)}1

1 = 0
21
2

= 0 at  = 0 and 1 = 1
1


+


(1− )25
21
2

= 0 at  = 

(3.33)

Detailed analysis of the obtained series solutions is provided in the next section.

3.7 Discussion and comparison of the results

For the sake of simplicity the discussion of the results has been divided into subsections. Each

subsection consists of the analysis of one particular physical quantity.

3.7.1 Pressure gradient

Pressure gradient for variations in the values of different flow parameters is analyzed through

Figs. 32 − 35. These Figs. present that the pressure gradient has an oscillatory behavior
with maximum value near the wider part of the channel. Fig. 32 indicates that the pressure

gradient is decreasing function of SWCNTs volume fraction in all parts of channel. Larger

channel inclination angle correspond to much pressure gradient in the wider part of channel
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(see Fig. 33). Similarly for an increase in the Grashoff number, the pressure gradient increases

in the wider part of channel (see Fig. 34). However in the narrow part of the channel not

much influence of  and Gr on the pressure gradient is noted. Fig. 35 present the behavior

of pressure gradient for various values of velocity slip parameter. Enhancement in velocity slip

parameter results in the increase of pressure gradient in the wider part of channel only.

3.7.2 Pressure rise per wavelength

Figs. 36 − 39 show the features of pressure rise per wavelength versus flow rate for CNT’s

volume fraction, inclination angle, Grashoff number and velocity slip parameter. Through

these Figs. it is analyzed that when flow rate increases, then pressure rise per wavelength

decreases. Fig. 36 shows that higher values of the CNTs volume fraction result in enhancement

of pressure rise per wavelength in the retrograde pumping region. However the opposite behavior

is observed in the augmented pumping region for pressure rise per wavelength. Fig. 37 depicts

the variation of pressure rise per wavelength for various values of the inclination angle. It is

seen through this Fig. that higher values of the angle of inclination result in enhancement of

pressure rise per wavelength in the retrograde pumping region and opposite behavior is observed

in the augmented pumping region. Pressure rise per wavelength for variations in the Grashoff

number is examined through Fig. 38. This Fig. indicates that an increase in the Grashoff

number enhances the pressure rise per wavelength. Pressure rise per wavelength decreases with

an increase in the velocity slip parameter (see Fig. 39).

3.7.3 Axial velocity and streamlines

Figs. 310− 313 show behavior of axial velocity corresponding to change in the CNTs volume
fraction, Grashoff number, channel inclination angle and velocity slip parameter. It is noted

through these Figs. that the velocity has maximum value near the center of the channel. Fig.

310 shows the axial velocity for different values of the CNTs volume fraction. Higher values of

CNT’s results in the reduction of velocity field. In fact, higher values of CNTs provide more

resistance to the fluid motion, but near the wall the velocity decreases due to slip effects. Fig.

311 shows the characteristics of velocity field for different values of Grashoff number. Velocity

is increasing function of Grashoff number at the center but it decreases near the channel walls

45



for larger Grashoff number. When channel inclination is increased the velocity enhances near

the center of the channel, but reverse situation is observed near the wall (see Fig. 312). From

Fig. 313 it is noted that with an increase in the velocity slip parameter the velocity field

enhances near the channel wall and reverse situation is noted at the center of channel. It is

seen from Fig. 314 that increase in the CNTs volume fraction decreases the size of the trapped

bolus. The size of trapped bolus slightly reduces for larger inclination of channel (see Fig. 315).

When velocity slip parameter increases then the size of bolus enhances (see Fig. 316).

3.7.4 Heat transfer analysis

Figs. 317 − 321 show the impact of various parameters on temperature profile. It is noted
through these plots that temperature is maximum at the center and reverse is noted near the

channel walls. Fig. 317 indicates that increase in CNTs volume fraction results in an increase

of temperature of nanofluid. It is mainly due to the fact that for large CNTs volume fraction

the effective thermal conductivity of the nanofluid increases and it plays effective role in cooling

the nanofluid within the channel. Higher values of Grashoff number results in enhancement of

temperature (see Fig. 318). It is observed from Fig. 319 that temperature is an increasing

function of channel inclination. However the heat transfer rate decreases. Increase in velocity

slip parameter reduces temperature of nanofluid (see Fig. 320). Fig. 321 shows that larger

thermal slip parameter leads to an increase in temperature of nanofluid. Fig. 222 represent

the heat transfer rate for variation of CNTs volume fraction at the wall. It is noted that when

CNTs volume fraction is increasing then heat transfer rate enhances. In fact CNT’s is used as

an agent of rapid heat transfer.

3.7.5 Comparison

One of the prime goals of this analysis is to provide a comparison between the peristaltic flow

of the copper nanoparticles and the SWCNTs through Tables 3.2-3.4. Table 3.2 gives the

numerical values of the maximum velocity near the center of the channel. Such values are

obtained for both the copper nanoparticles and the SWCNTs. It is observed through this

table that the velocity near the center of channel for the copper nanoparticles is more when

compared to SWCNTs. Further the Maxwell’s model predicts larger values of the velocity near

46



the center of channel. Table 3.3 indicates the numerical values of temperature near the center

of channel. It is observed through this table that the nanofluid composed of the SWCNTs have

lower temperature in comparison to nanofluid composed of the copper nanoparticles. Also this

difference in maximum temperature decreases with an increase in the value of volume fraction

of SWCNTs/Cu nanoparticles. Numerical values of heat transfer rate at the wall for the copper

nanoparticles and the SWCNTs are given through table 3.4. This table shows that the heat

transfer rate at the boundary for the SWCNTs is less when compared with that of the Cu

nanoparticles.
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Figure 31. Geometry of the problem.

Property Basefluid(water) Nanomaterials(copper) CNT’s

Density (kg/m3) 9971 8933 2200

Thermal conductivity (W/mk) 0613 400 2000

Specific heat (j/kgK) 4179 385 709

Thermal expansion coefficient (1/k)10−6 210 1665 15

Table 3.1: Statistical data of the thermo-physical properties [25].
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f = 0.07, 0.14, 0.21
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Figure 32. Illustration of the  for different values of CNT’s when  = 
4
,  = 07,

 = 095  = 50,  = 03,  = 01,  = 03 and  = 10
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Figure 33. Illustration of  for different  when  = 01,  = 07,  = 095,  = 50,

 = 03,  = 01,  = 03 and  = 10
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 Gr = 6, 4, 2  
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Figure 34. Illustration of  for change in  when  = 
4
,  = 07,  = 095  = 01,

 = 03,  = 01,  = 03 and  = 10
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Figure 35. Illustration of  for different values of  when  = 
4
,  = 07,  = 095

 = 01,  = 03,  = 5,  = 01,  = 01 and  = 10
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f = 0.07, 0.14, 0.21
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Figure 36. Effect of CNT’s on ∆ when  =

4
,  = 07,  = 50,  = 03,  = 01,  = 03

and  = 10
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Figure 37. Effect of  on ∆ when  = 01,  = 07,  = 095,  = 50,  = 03,  = 01,

 = 03 and  = 10
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Gr = 0, 3, 6
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Figure 38. Effect of  on ∆ when  = 
4
,  = 07,  = 01,  = 03,  = 01,  = 03 and

 = 10
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Figure 39. Effect of  on ∆ when  = 
4
,  = 07,  = 01,  = 03,  = 01,  = 01 and

 = 10
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Figure 310. Variation in  for distinct values of CNT’s when  = 
4
,  = 07 ,  = 12  = 10

 = 50 ,  = 03,  = 01,  = 01 and  = 10

 Gr = 4, 3, 2,1  
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Figure 311. Effects of  on  when  = 
4
,  = 07,  = 12  = 01,  = 03,  = 01,

 = 01 and  = 10
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 a = p2 , p3 , p4 , 0  
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Figure 312. Effects of  on  when  = 01,  = 07,  = 12  = 10,  = 50,  = 03,

 = 01,  = 01 and  = 10

b = 0.0, 0.05, 0.1, 0.15 
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Figure 313. Variation in  for distinct values of  when  = 
4
,  = 07,  = 12  = 10,

 = 50  = 01,  = 03,  = 01,  = 01 and  = 10
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Figure 314. Illustration of stream lines when  = 
4
,  = 07,  = 12  = 50,  = 03,

 = 01,  = 03 and  = 10

Figure 315. Illustration of stream lines when  = 01,  = 07,  = 12,  = 50,  = 03,

 = 01,  = 03 and  = 10
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Figure 316. Illustration of stream lines when  = 
4
,  = 07 ,  = 12  = 50  = 01

 = 03,  = 01,  = 03 and  = 10

f = 0.12, 0.08, 0.04, 0.0
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Figure 317. Effect of CNT’s on  when  = 
4
,  = 07,  = 12  = 01  = 50 ,  = 03,

 = 01,  = 01 and  = 10
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Gr = 6, 4, 2, 0 
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Figure 318. Effect of  on  when  = 
4
,  = 07,  = 12  = 10  = 01,  = 03,

 = 01,  = 01 and  = 10
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Figure 319. Effect of  on  when  = 01,  = 07,  = 12,  = 10  = 50,  = 03,

 = 01,  = 01 and  = 10

57
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Figure 320. Effect of  on  when  = 
4
,  = 07,  = 12  = 01,  = 10  = 50

 = 03,  = 01 and  = 10
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Figure 321. Consequence of  on  when  = 
4
,  = 07,  = 12  = 10  = 50,  = 01,

 = 03,  = 01 and  = 10
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f=0.05
f=0.1
f=0.15
f=0.2

Figure 322. Heat transfer rate at the wall for different values of CNT’s when  = 
4
,  = 07 ,

 = 12  = 10  = 50,  = 03,  = 01,  = 01 and  = 10
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 Maxwell Model H-C Model Xue’s Model

002 0917841 0897584 0846393

004 0878064 0845563 0776018

006 0842368 0802800 0728278

008 0810117 0766884 0693330

01 0780784 0736145 0666257

012 0753928 0709386 0644321

014 0729177 0685725 0625872

016 0706213 0664495 0609852

018 0684763 0645181 0595546

02 066459 0627377 0582454

Table 3.2: Statistical data of the axial velocity at the center of channel for different values of

nanoparticle volume fraction.

 H-C Model Maxwells Model Xue’s Model

002 188122 200445 158737

004 167219 188041 125446

006 150084 176804 103207

008 135769 166566 0872766

010 123619 157193 0752911

012 113170 148570 0659386

014 104079 140604 0584319

016 096091 133213 0522694

018 089010 126332 0471161

020 082685 119900 0427397

Table 3.3: Statistical data of the temperature at the center of channel for distinct values of

nanoparticle volume fraction.
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 H-C Model Maxwells Model Xue’s Model

002 237715 236294 232826

004 237825 235544 230946

006 238242 235448 230579

008 238924 235837 231030

010 239833 236594 231977

012 240942 237638 233252

014 242223 238912 234759

016 243654 240371 236440

018 245214 241980 238254

020 246883 243712 240171

Table 3.4: Statistical data of the heat transfer rate at the wall for different values of nanopar-

ticle volume fraction.
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3.8 Concluding remarks

Peristalsis of the SWCNTs is studied here using the three prominent thermal conductivity

models. This study concludes that the pressure gradient decreases with an increase of SWCNTs

volume fraction while it enhances for larger channel inclination angle, the Grashoff number and

the velocity slip parameter. Increase in the values of SWCNTs volume fraction shows an

increase of the pressure rise per wavelength in retrograde pumping. It is noted that the axial

velocity is decreasing function of SWCNTs volume fraction and velocity slip parameter. The

size of trapped bolus decreases with an increase in the SWCNTs volume fraction. Maximum

velocity and the temperature channel center are smaller for the SWCNTs when compared with

the values obtained for the Cu nanoparticles. Further the heat transfer rate at the boundary

for the fluid composed of SWCNTs is small when compared with the fluid composed of Cu

nanoparticles.
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