
i 

“SEISMIC ANALYSIS AND RESERVOIR ASSESSMENT 

FOR CARBON STORAGE USING MACHINE 

LEARNING APPROACHES IN QADIRPUR GAS FIELD, 

CENTRAL INDUS BASIN, PAKISTAN.” 

 

 

By 
MISHAL RAZAQ 

M.Phil. Geophysics (2021 - 2023) 
 

 

Department of Earth Sciences 

Quaid-i-Azam University Islamabad, Pakistan 

  



ii 

 

"In the name of Allah, the Most Gracious, the Most Merciful" 

                “O my Lord, advance me in knowledge” (20:114). 

 

 

“PAY THANKS TO ALLAH EVERY MOMENT AND GO TO 
EXPLORE THE HIDDEN TREASURES, ITS ALL FOR 

YOUR BENEFIT” (AL-QURAN). 

 

WHICH IS IT, OF THE FAVORS OF YOUR LORD, THAT YE 

DENY? (AR- REHMAN) 

 

 

  



iii 

                                             

It is certified that Mishal Razaq d/o Abdul Razaq Raja carried out the work contained in this 

dissertation under my supervision and accepted in its present form by Department of Earth 

Sciences, Quaid-i-Azam University Islamabad, Pakistan as satisfying the requirements for 

M.Phil. degree in Geophysics.  

 

RECOMMENDED BY:   

Prof. Dr. Aamir Ali     ________________________ 

Supervisor  

Department of Earth Sciences   

QAU, Islamabad. 

 

Prof. Dr.  Mumtaz Muhammad Shah   ________________________ 

Chairman 

Department of Earth Sciences  

QAU, Islamabad. 

 

External Examiner ________________________ 

  

    
    
    
    
    

         CERTIFICATE     



iv 

                                          

 

 

                                           

Dedication 

To the journey of providing the best education for their daughters, I dedicate this thesis to my 

father (late) and my mother, who both played a significant role in inspiring me to pursue their 

dream. My father passed away during the first semester of my MPhil degree, and my mother was 

diagnosed with colon cancer during my last semester. Despite facing challenging circumstances 

that could have made giving up an easy choice, I found the strength and determination to carry 

on this journey with the hope instilled in me by my faith in Allah. 

And to the people who stood by my side, provided guidance, assistance, nurtured me, cherished 

me, comprehended my thoughts, showed concern, expressed affection, and showed me respect 

throughout this journey. 

  



v 

Acknowledgement 
Praise be to Allah Almighty and may peace and blessings be upon the Holy Prophet Muhammad 

and his descendants. Indeed, All the knowledge and the power belong to the one who created the 

mankind. It is only His favors, the knowledge He gave to his mankind and the ability to do 

anything. By His will, we can observe His nature in a scientific way as he described in Al-Quran 

that he had made things with precision. I am grateful to Allah, for His wisdom behind every bit 

of his plan that continuously helps me to increase me in my knowledge and abilities that not 

only leads me to complete this thesis but makes me closer to Him in a way I could never 

imagine. 

I am thankful to my supervisor Prof. Dr. Aamir Ali who took me under his supervision and put 

his trust in me. He made me realize my shortcomings and invigorated me every time I felt down 

and propelled me to strive for excellence. 

Assisting someone when you’re free is simple, but extending help when you’re swamped with 

pending tasks, demonstrating empathy, and aiding them selflessly is a significant challenge. Not 

everyone possesses the bravery to do this. I am genuinely thankful to you Yawar Amin. 

I express my gratitude to Noor ul Huda for assisting me in learning about machine learning, and 

I appreciate LMKR for assigning tasks that have allowed me to expand my expertise and 

abilities. 

I am thankful to my parents, sisters, friends, khalas and my mamo for their prayers for me. 

  



vi 

Abstract 

The research addresses critical global issues such as climate change, energy transition, and 

environmental protection. By evaluating the Qadirpur Gas Field for carbon storage potential and 

employing cutting-edge machine learning techniques, this study offers practical solutions and 

insights that can shape both policy decisions and industry practices while promoting a more 

sustainable and responsible approach to energy and resource management. The key goals 

involve evaluating the Qadirpur gas field's potential for carbon dioxide (CO2) storage through 

well log and seismic data.  

The evaluation involved petrophysical analysis, forecasting lithofacies, estimating shear logs, 

petro-elastic analysis, delineating horizons, and identifying faults using seismic data. The 

reservoir assessment included analyzing the spatial distribution of impedance and porosity, 

conducting thermodynamic analysis, and estimating the capacity for secure containment of CO2. 

Petrophysical analysis reveals that CO2 can be securely stored within a 30-meter reservoir zone 

(depth range of 1336 to 1366 meters) in the Sui Main Limestone (SML) Formation. Porosity 

values within this zone are favorable, with average values for total porosity of 21.09% and 

effective porosity of 18.86%.  

Lithofacies predictions through Self Organize Maps (SOM) successfully distinguished various 

lithologies and confirmed that the identified zone is hydrocarbon-bearing limestone. Moreover, 

a machine learning algorithm namely, Multi-linear Regression was used to predict the shear log, 

enabling the calculation of petro-elastic properties which are in turn used in the stress state 

within the reservoir and caprock. Caprock integrity was validated through assessments of 

permeability and effective porosity variations with lithology, as obtained through the SOM. 

Seismic analysis revealed that the study area lying in the Middle Indus Basin is relatively stable 

in terms of tectonic activity.  

Spatial distribution analysis of reservoir properties, including impedance and porosity, 

highlights a promising reservoir with low impedance values and high porosity values, 

demonstrating its suitability for CO2 storage. Furthermore, initial temperature and pressure 

conditions within the SML Formation indicate the feasibility of storing CO2 in a supercritical 

state. The developmental history of the field is marked by sequential capacity enhancements, 
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resulting in continuously diminishing production. This makes the field suitable for Enhanced Oil 

Recovery, subsequent CO2 storage and its significance in promoting sustainable energy 

practices. 
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1.1 Introduction 

The global challenge of climate change has driven the urgent need for innovative strategies to 

mitigate greenhouse gas emissions (Meadowcroft and Langhelle, 2009). Carbon capture and 

storage (CCS) has emerged as a promising solution to reduce anthropogenic carbon dioxide 

(CO2) emissions and combat climate change effectively (Anwar et al., 2018). Carbon storage 

involves capturing CO2 emissions from industrial processes and power generation and injecting 

them deep underground into geological formations (Gibbins and Chalmers, 2008). To ensure 

effective and long-term storage, it is crucial to identify formations that possess the necessary 

characteristics for secure containment and minimize the risk of CO2 leakage (Tomic et al., 2018). 

Several CCS demonstration projects have been finished over the past two decades in countries 

including US, Canada, Norway, Australia, and Japan. Some of these projects were successful in 

demonstrating the practicability of CO2 storage in depleted oil and gas reservoirs, unmined coal 

beds, and saline aquifers (Furre et al., 2017; Gupta et al., 2020; Hovorka et al., 2013).     

Pakistan, like many other countries, is facing the impacts of climate change, including extreme 

weather events, changing precipitation patterns, and rising temperatures. Pakistan is a signatory 

to international agreements such as the Paris Agreement, which aims to limit global warming to 2 

degrees Celsius well below the pre-industrial levels. To meet such commitments, Pakistan needs 

to take proactive measures to reduce its carbon emissions for which carbon storage can be an 

effective strategy (Hussain et al., 2019). Carbon storage can play a crucial role in reducing 

greenhouse gas emissions, which are the primary drivers of climate change, therefore mitigating 

the climate change. Pakistan has a history of oil and gas extraction, resulting in depleted 

reservoirs and possesses substantial potential for storing CO2 within its oil, gas, and coal fields, 

as well as in saline aquifers. Additionally, the country holds notable reserves of magnesium and 

calcium silicates that are well-suited for use as raw materials in the process of carbon 

mineralization. These reservoirs can potentially serve as suitable sites for CO2 storage due to 

their geological characteristics (Rashid et al., 2020). A further advantage of repurposing these 

sites for carbon storage is the capitalization on the existing infrastructure, making the process 

more economical. Another advantage of executing CSS projects is that they can stimulate the 

growth of a knowledge-based economy, create jobs, and foster collaboration between academia, 

industry, and government institutions. 
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By 1997, Pakistan had conducted approximately 431 exploratory drilling activities, leading to the 

identification of 115 discoveries, consisting of 51 oil and 64 gas/condensate findings. Notably, 

the oil fields' production levels are relatively modest, varying from under 50 to around 18,000 

barrels per day. Among the notable discoveries are four significant gas fields, namely Sui, Mari, 

Uch, and Qadipur, alongside two substantial sites namely, Pir Koh and Khairpur (IEAGHG, 

2008). In the Central Indus Basin, the Qadirpur gas field has the potential to act as a favorable 

option for CCS projects. The geological features of this location suggest the possibility of 

effectively storing CO2 emissions underground in a secure manner. The depleted hydrocarbon 

reservoirs found within the Qadirpur gas field possess the essential geological attributes required 

for containment purposes. 

Seismic analysis and reservoir assessment are crucial factors in determining the viability and 

achievement of CCS endeavors. These methodologies offer vital insight into the geological and 

geophysical attributes of potential storage locations, assistance in the selection of sites, 

evaluation of potential risks, and ongoing storage monitoring over extended periods (Gilmore et 

al., 2016). Seismic data interpretation involves the process of analyzing the Earth's subsurface 

through seismic and well log data. This technique serves various purposes: assessing the 

feasibility of hydrocarbon drilling, acquiring a comprehensive understanding of a specific 

research area, and potentially expanding an already identified field (Coffeen, 1986). Upon the 

completion of seismic data interpretation, all available information within seismic data is 

transformed into structural and stratigraphic models of the Earth, resulting in a seismic section 

that provides a holistic representation of the geological features. The seismic reflectors depicted 

on these sections uncover the geological characteristics in the region of interest, subsequently 

marked for interpretative use (Sheriff, 1999). Reservoir assessment provides insights into the 

volume of CO2 that a reservoir can accommodate based on its porosity and permeability. The 

accurate characterization and assessment of reservoir properties are essential for ensuring the 

safe and efficient storage of CO2 in subsurface formations (Kou, 2022). Petrophysical analysis 

forms the foundation of reservoir assessment by providing insights into the physical and fluid 

properties of subsurface formations. It involves the study of rock properties, such as porosity, 

permeability, saturation, and fluid flow behavior (Fischetti and Andrade, 2002). These properties 

determine the storage capacity, integrity, and containment capability of the reservoir. Reservoir 
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assessment goes beyond petrophysical analysis and encompasses a comprehensive evaluation of 

various factors that impact the suitability of a geological formation for carbon storage (Jaiswal, 

2022). Important aspects of reservoir assessment include the presence of suitable sealing layers 

or cap rocks that can prevent the upward migration of CO2. Identification and characterization of 

potential leakage pathways or faults are essential for cap rock integrity (Menhali et al., 2014). 

Machine Learning aids researchers and geoscientists to extract valuable insights from seismic 

data, facilitating a deeper understanding of the geological complexities in the region. Through 

machine learning, patterns and anomalies in seismic data can be detected with precision, 

enhancing reservoir characterization and predictive modeling for carbon storage feasibility. 

Additionally, machine learning aids in risk assessment, optimizing injection processes, and 

expediting data integration, ultimately contributing to more informed decisions, cost-effective 

operations, and the responsible management of carbon emissions in this critical geological 

environment. Machine learning is an innovative tool that contributes significantly to analyze vast 

volumes of complex data, identify geological formations, predicting reservoir properties, storage 

capacity estimation, real-time anomaly detection, and optimization of injection strategies 

(Karpatne et al., 2019).  

By integrating and interpreting multidisciplinary data, machine learning assists in informed 

decision-making, ensuring the safety, efficiency, and effectiveness of CCS projects. 

1.2 Objectives 

The primary objectives include assessing the suitability of the Qadirpur gas field for storing 

carbon dioxide (CO2). The assessment encompasses: 

1. Petrophysical analysis, lithofacies prediction, shear log prediction, and petro-elastic 

estimation using well log data of Well Qadirpur-16 to identify the reservoir and analyze 

the suitability, feasibility, and safety of geological formations for CCS initiatives. 

2. Seismic data analysis to characterize the subsurface geological structures and 

identification of potential pathways and risks for secure CO2 storage. 

3. Demarcation of the potential reservoir zone on the seismic data initially identified using 

the well log data. 
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4. Reservoir assessment based on spatial distribution of impedance and porosity, 

thermodynamic analysis, and storage capacity of the reservoir for secure CO2 

containment. 

1.3 Study Area  

The chosen site of this dissertation is the Qadirpur region, situated within specific geological 

coordinates ranging from 27° 55' to 28° 09' N latitude and 69° 11' to 69° 31' E longitude, 

covering an approximate area of 820 square kilometers (Ali et al., 2005). Qadirpur is positioned 

in the southern segment of the Central Indus Basin, within the Sindh Province, approximately 8 

kilometers from Ghotki. The geological context of this area is shaped by an extensional regime 

attributed to tectonic activity that commenced during the Cretaceous era (Figure 1.1). This 

tectonic influence played a pivotal role in shaping the structural elements conducive to 

petroleum-related activities (Ali et al., 2018; Milan and Rogers, 1993). 

Qadirpur stands as Pakistan's third-largest gas field following Sui, boasting an original 

recoverable reserve of approximately 6 trillion cubic feet. Development of the field unfolded 

through three distinct phases, progressively elevating its capacity from the initial 235 million 

standard cubic feet per day (MMscfd) to 500 MMscfd. Subsequently, in 2008, a further 

augmentation brought its capacity to 600 MMscfd. To ensure the sustained provision of gas over 

the long term, a compression project was successfully commissioned in 2010.The field's purified 

gas is channeled to Sui Northern Gas Pipelines Limited, while the raw gas and condensate find 

buyers in Liberty Power and Pakistan Refinery Limited, respectively. Additionally, permeate gas 

has been supplied to Engro Power Limited since March 2010. 
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Figure 1.1: Tectonic maps of Pakistan depicting the basins and major faults (Rashid et al., 

2022). The Qadirpur Gas Field is in the Middle Indus Basin marked by a blue circle. 
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1.4 Available Data Set 

Seismic data, digital well logs, navigation files, and formation tops files, among other types of 

data, are employed for the purpose of conducting research. The Directorate General of Petroleum 

Concessions in Islamabad, Pakistan, has provided a comprehensive set of data files, including 

SEGY, LAS, and navigation files, among others. The 3D seismic cube was used for seismic 

analysis and reservoir assessment. Detailed information of well data for this study is presented in 

the provided Table 1.1. It comprises details of wells, including their precise geographical 

coordinates, depths, and kb values. 

Table 1.1: Information about all wells used for this dissertation. 

 

Qadirpur production data is of paramount importance as it offers historical insights, facilitates 

benchmarking, and supports informed decision-making in the context of the Qadirpur gas field's 

production and its role in the energy industry. The graph illustrating in Figure 1.2 depicts 

Qadirpur complete production data was sourced from the Global Data Oil & Gas Intelligence 

Center's website. It portrays an assessment of the production pattern for Qadirpur, presented in 

terms of Barrel of Oil Equivalent per Day (BOE/D), covering the time frame from 1995 to 2050. 

It provides a historical perspective on the production trends of Qadirpur, allowing stakeholders to 

understand how production has evolved over the years. This data is crucial for making informed 

decisions related to energy resource management and allocation. Secondly, by projecting 

production data up to 2050, it offers insights into the future trajectory of Qadirpur's energy 

output, aiding in long-term planning and strategic decision-making. 
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Figure 1.2: Analysis of the production trend for Qadirpur, depicted in BOE/D, spanning the 

years 1995 to 2050 (Global Data Oil & Gas Intelligence Center). 

1.5 Methodology 

The main objective of the research was to evaluate Sui Main Limestone formation of Qadirpur, 

as a potential site for CO2 storage through well log and seismic data. The attributes examined in 

the assessment of formations for potential CO2 storage sites encompass basin type, petrophysical 

analysis, lithological composition, reservoir depth, thickness, structure analysis, fault presence, 

porosity, permeability, cap rock permeability and the stress conditions within the rock through 

elastic parameters (Figure 1.3). 

The research was initiated by extensively analyzing the geological and tectonic aspects of the 

region. A suitable zone for CO2 storage was located through well log analysis. Based on 

optimum reservoir parameters for CO2 storage such as depth, thickness, porosity, permeability, 

hydrocarbon saturation, a zone was demarcated. Lithofacies were predicted based on input log 

curves through unsupervised neural networking, Self-Organize Mapping. Petrophysical analysis 

and cluster analysis serve the basis for seismic analysis and reservoir characterization. Sonic log 
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was predicted through multi linear regression that was utilized for Petro-elastic properties 

calculation to validated caprock integrity. 

Synthetic seismogram, a technique involving one-dimensional forward modeling, was employed. 

This method utilizes seismic and well data to achieve maximum alignment between synthetic 

and seismic data at well sites, accurately pinpointing horizon positions. Additionally, two-

dimensional time and depth structure maps were generated to delineate and illustrate the 

subsurface geometry. 

For deciphering the spatial distribution of subsurface properties from seismic data, model-based 

inversion was performed. Model-based inversion offers the advantage of capturing intricate 

geological details, such as lithological variations, faulting, and fluid content, which impact 

seismic responses. Spatial distribution of porosity was calculated through Probabilistic Neural 

Networking (PNN) using well data, seismic data and impedance data obtained from model-based 

inversion. Through the integration of all the gathered information and production graph, storage 

capacity of CO2 was estimated. 

 

Figure 1.3: Workflow followed for Characterization of geological formation as a potential 

storage site for CO2. 
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2.1 General Introduction 

Geology and stratigraphy play a paramount role in the context of CCS initiatives due to their 

pivotal influence on the feasibility, safety, and long-term success of CO2 storage projects. A 

robust understanding of geology and stratigraphy of the area enables precise site characterization 

and sustainable CO2 storage. The study area, Qadirpur Block spans approximately 820 square 

kilometers and is positioned between 27° 55′ and 28° 09′ N latitude and 69° 11′ to 69° 31′ E 

longitude on a global map. Qadirpur field lies in the Central Indus Basin, Pakistan. Promising 

zones within the field consist of Eocene Limestones with fragmented carbonate reservoirs at 

shallow depths and clastic reservoirs at greater depths.  

2.2 Geodynamic setting of Pakistan 

Pakistan's tectonic configuration comprises two expansive land masses referred to as Tethyan 

and Gondwanian, which extend to the Indo-Pakistan crustal plate. The geological structure in 

Pakistan, particularly in its western region, is intricate due to its location within the Tethyan 

domain. The Gondwanian realm encompasses the Indus basin, as outlined by Kazmi and Jan in 

1997. During the Cretaceous period, a period of dynamic tectonism prevailed, characterized by a 

relatively high rate of landmass separation ranging from 20 to 30 cm annually over 80 to 50 

million years (Gnos et al., 1997). Subsequently, a convergence occurred through the collision of 

the Indian and Eurasian plates during the Tertiary era. This collision initiated a fracture between 

the Indian plate and the Afghan Craton, particularly in the northern region, as explained by 

Banks and Warburton in 1986. The convergent interactions between the Arabian Plate, Afghan 

Craton, and Indo-Pakistan plates brought about an oblique collision with the Eurasian plate. This 

collision resulted in the formation of left lateral strike-slip faulting oriented in a northwest to 

southeast direction within the basement rocks. Consequently, this geological phenomenon 

facilitated the separation of the Indo-Pakistan Plate (Asim et al., 2014). 

2.3 Sedimentary Basins of Pakistan 

Pakistan exhibits a remarkable geological diversity, spanning from glaciers to deserts, placing it 

among the select nations with a vast range of landscapes. This ecological variety corresponds to 
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a wide array of natural resources. Among these resources, Pakistan possesses an array of natural 

riches, including reservoirs of hydrocarbons. These hydrocarbon reservoirs have amassed within 

formations featuring favorable pressure-temperature conditions and are supported by an 

underlying petroleum source. 

Around the world, petroleum plays are situated within different basins. Pakistan encompasses 

two primary sedimentary basins: the Indus basin situated in the eastern region, and the 

Baluchistan basin situated in the western part. Alongside the onshore basins, Pakistan also boasts 

offshore basins known as the Indus offshore and Makran offshore basins, as outlined by Tufail in 

2016. The Indus basin is subdivided into three distinct subbasins, as documented by Kadri in 

1997: 

1. The Upper Indus Basin comprises the Potwar and Kohat basins. 

2. The Central Indus Basin encompasses gas fields situated in the Sulaiman fold and thrust 

belt. 

3. The Southern Indus Basin comprises the Kandhkot and Badin regions, along with the 

Karachi Embayment. 

2.4 Tectonics Settings and Structural Style of Central Indus Basin  

The Indus Basin is situated in a seismically active region, influenced by the collision of the 

Indian and Eurasian tectonic plates. During the Cretaceous period, various tectonic events played 

a crucial role in shaping the Central Indus basin, resulting in a wide range of structural 

formations. Initially, rifting processes occurred, which eventually led to the development of 

peripheral fracture architecture. The basin's evolution can be attributed to the Indo-Pakistan and 

Madagascar movement relative to the African plate. Consequently, the middle Indus basin 

underwent fragmentation, while the Indian plate began shifting northward in the Mid Cretaceous 

period. In the late Cretaceous, the Indian plate separated from Madagascar, transforming the 

Indus basin into a peripheral sag basin (Kazmi and Jan, 1997). Throughout the Cretaceous 

period, significant NW-SE-oriented strike-slip faults have developed due to the northward 

movement of the Indian plate toward the Eurasian plate. Tectonic processes have played a crucial 

role in shaping the structural configuration of the Middle Indus basin. The creation of basement 
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roots and right-lateral oriented wrench faults occurred during the second phase of uplifting. The 

rise of Jacobabad High from the late Tertiary period to the present has had a substantial impact 

on the studied region (Kazmi and Jan, 1997). 

2.5 Stratigraphy of Study Area 

Stratigraphy offers critical insights into the geological architecture and layering of potential 

storage sites. By delineating distinct formations, it enables the identification of suitable reservoir 

rocks and impermeable caprocks crucial for secure CO2 containment. The stratigraphy of the 

Qadirpur area, situated within the Central Indus Basin, encompasses a range of sedimentary 

formations that offer crucial insights into the region's geological history (Figure 2.1). One of the 

significant formations in this stratigraphic sequence is the Sui Main Limestone Formation, which 

holds importance in understanding the geological evolution of the area (Siddiqui, 2004). 

The Sui Main Limestone Formation is a distinctive unit within the Qadirpur area's stratigraphy, 

composed primarily of limestone that points to its deposition in a marine setting. This formation 

is characterized by alternating layers of limestone and shale, with the limestone beds often 

containing abundant fossil content, indicative of past marine life. As a marker unit, the Sui Main 

Limestone Formation aids in correlating and interpreting the broader stratigraphic context. As a 

reservoir, the Sui Main Limestone Formation possesses the potential to host injected CO2 within 

its porous structure (Ali et al., 2005). 

In contrast, the Ghazij Shale Formation, acting as a cap rock, consists of shale beds with low 

permeability. This impermeable nature renders the Ghazij Shale Formation well-suited to act as a 

barrier, preventing the upward migration of stored CO2 and ensuring its containment within the 

underlying reservoir. 
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Figure 2.1: General stratigraphy of the rocks within the Central Indus Basin (Qadirpur locality) 

(Alam et al., 2002). 
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3.1 Introduction 

Carbon storage involves capturing CO2 emissions from industrial processes and power 

generation and injecting them deep underground into geological formations, particularly depleted 

oil and gas reservoirs, unmined coal seams or deep saline aquifers. (Gibbins and Chalmers., 

2008). Figure 3.1 shows the source of CO2 capturing, means of transportation, and geological 

storage sites for CO2. 

 

Figure 3.1: Workflow for CCS methodology from the source of CO2 capture, means of CO2 

transportation, and locations designated for geological CO2 storage. 

Considering the varieties of criteria from technical, safety, ecological, and economic 

perspectives, is essential when contemplating the most suitable CO2 geological storage option. 

This comprehensive analysis includes geological, physical, thermodynamic, and hydrodynamic, 

Techno-economic considerations, plays a crucial role in determining the success of the 

implementation process (Tomić et al., 2018). After the CO2 is deposited into the designated 
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storage location, proper sealing of the wells will be essential to maintain the CO2 securely in 

place (Czernichowski et al., 2009). 

3.2 Geological formations for CO2 storage 

Globally, CO2 is stored into the geological formations that provides the optimal solution for safe 

CO2 preservation. Geological formations that ensure the long-term storage of CO2 includes 

depleting oil and gas reservoirs, saline formations, and unmined coal beds. Other potential sites 

include oil and gas shales, salt caverns and basalt formations. For EOR (Enhanced Oil 

Recovery), certain amounts of CO2 can also be stored during injecting them into well (Tomić et 

al., 2018). 

 

Figure 3.2: A sketch of geological formations suitable for CO2 storage depicting the depleted oil 

and gas reservoirs, deep saline aquifer and unmineable coal seams which can be potential CO2 

storage sites(Ali et al., 2022). 
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3.2.1 Depleting oil and gas reservoirs 

Most suitable option for safe storage of CO2 is depleting oil and gas reservoirs. The main cause 

of low risk for potential CO2 leakage is due to reservoir exploration, long term production, which 

leads to the collection of a significant amount of reservoir data, and the accessibility of 

production history that enables precise storage capacity estimation. The existence of essential 

infrastructure, such as injection wells and surface facilities, plays a crucial role in substantially 

cutting down storage expenses. Various pre-existing wells could potentially serve as potential 

pathways for CO2 migration to the surface in this type of storage setup (Tomić et al., 2018). 

According to the Global CCS Institute (2014), the projected storage capacity ranges between 675 

and 900 Gt CO2. 

3.2.2 Saline Aquifers 

Saline aquifers are of paramount importance due to their immense storage potential, surpassing 

other geological formations. However, their significance remains untapped as they lack thorough 

exploration and essential infrastructure like injection wells and pipelines. Properly utilizing these 

formations for storage necessitates substantial investments to mitigate the potential risks of CO2 

leakage. Various trapping mechanisms, such as structural trapping, residual trapping, solubility, 

and mineral trapping, operate over different time frames, thereby enhancing the safety of storage 

(Aminu et al., 2017). According to Cook (2012), the estimated storage capacity of these aquifers 

ranges from 1,000 to 10,000 Gt CO2. 

3.2.3 Unmined Coal beds 

The concept of storing CO2 in unmined coal relies on CO2 adhering to the coal surface and 

within fractures. In this process, methane is extracted because CO2 exhibits a higher adsorption 

capacity than methane (IEAGHG, 2007). This approach serves a dual purpose, functioning as 

both CO2 storage and enhanced coalbed methane recovery (ECBM). According to Cook (2012), 

the estimated storage capacity for this method ranges from 3 to 200 Gt CO2. 
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3.3 Geological considerations for CO2 storage 

Geological characteristics of formation evaluated for CO2 storage site are type of basin, 

lithology, reservoir depth, thickness, porosity, hydrocarbon saturation, permeability, permeability 

of cap rock, presence of faults and stress state of rock (Aminu et al., 2017).  

When considering CO2 storage in depleted oil or gas reservoirs, or during the EOR-CO2 process, 

various factors are considered. These include the values of original oil in place or gas in place 

(OOIP or OGIP), the amount of recoverable oil or gas reserves, reservoir pressure and 

temperature, reservoir rock volume, porosity, water saturation, potential water inflow, phase 

behavior of CO2, CO2 solubility in water, and the possibility of a spill point (Tomic et al., 2018). 

Tables 3.1 and 3.2 provide the ideal reservoir and fluid parameter values for conducting initial 

assessments of potential CO2 storage during the EOR-CO2 process and in aquifers. 

Table 3.1: Optimal reservoir and fluid parameters for EOR -CO2 (Terry, 2001). 

 

Table 3.2: Optimum reservoir and water parameters (Chadwick et al., 2008). 
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Considering the criterion given in the Tables 3.1 and3.2, it becomes evident that the most 

favorable option is to store CO2 in mature basins with well-established resource potential 

(estimated hydrocarbon potential - OOIP, OGIP, and recoverable reserves). This choice indicates 

the availability of abundant data for conducting feasibility studies and guarantees enhanced 

storage safety (Tomić et al., 2018). Complementary quantitative parameters based on numerical 

simulation findings (Pratama et al., 2017) are presented in Table 3.3. 

Table 3.3: Optimum reservoir parameters (Pratama et al., 2017). 

 

3.4 Thermodynamic and hydrodynamic criteria for CO2 Storage 

Thermodynamic considerations involve two main factors: temperature gradient and pressure 

gradient. CO2 is introduced into the reservoir in a supercritical state, achieved by compressing 

and heating it above its critical point, where the pressure of the reservoir exceeds 7.38 MPa and 

the temperature surpasses 31.1 °C. Under these conditions, CO2 exhibits properties of both gas 

and liquid, displaying characteristics such as liquid-like density and gas-like viscosity. 

The minimum depth required for CO2 injection in a supercritical state is approximately 800 

meters, considering the hydrostatic gradient in the formation and the Earth's geothermal gradient 

(25-30 °C per kilometer). As the depth increases beyond this point, the volume of injected CO2 

decreases significantly (Aminu et al., 2017). 

A phase diagram of CO2 for CCS shown in Figure 3.3 illustrates how carbon dioxide (CO2) 

transitions between its different physical states (phases) under varying combinations of pressure 

and temperature conditions. In the diagram low pressure and high temperature conditions 

represent CO2 in its gaseous state. The middle region of the diagram, at elevated pressures and 
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temperatures, CO2 exists in a state known as "supercritical." In this phase, CO2 exhibits 

properties of both a gas and a liquid.  

 

 

Figure 3.3: Phase diagram of CO2 depicting CO2 transitions between its different physical states 

(phases) under varying combinations of pressure and temperature conditions (Raza et al., 2019). 

3.5 Seismic analysis and reservoir assessment in CCS projects 

Seismic analysis and reservoir assessment are critical components of CCS projects, offering 

indispensable insights into the geological and geophysical aspects of potential storage sites. 
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These techniques are pivotal for ensuring the feasibility, safety, and long-term success of CCS 

initiatives. 

3.5.1 Seismic Analysis 

Seismic analysis involves the interpretation of seismic data, acquired through techniques like 

reflection seismology and seismic surveys. Seismic data assist in identifying geological 

formations, subsurface structures, and potential storage reservoirs. They contribute to site 

selection and validation, ensuring geologically suitable locations for CO2 storage. Seismic data 

allow for the identification and characterization of faults and fractures, which can influence the 

migration of CO2 and its containment within the storage formation (Barlass and Head, 2022). 

3.5.2 Reservoir Assessment 

Reservoir assessment entails comprehensive evaluation of subsurface formations intended for 

CO2 storage. Assessing properties like lithology, porosity, and permeability is crucial for 

estimating storage capacity. Reservoir assessment involves evaluating the integrity of cap rocks, 

such as shale formations, to ensure their sealing properties and prevent CO2 leakage (Chadwick 

et al., 2005). Combining seismic data and reservoir assessment helps identify potential risks, 

such as fault activation or cap rock failure, contributing to risk management strategies. 

3.5.3 Machine Learning Approaches 

Machine learning (ML), a rapidly advancing domain in modern times, stands as a significant 

avenue for predicting future demand through the amalgamation of computer science and data 

statistics. This endeavor offers an all-encompassing examination of ML's role within CCS, 

encompassing both classical ML methodologies and prevailing research trajectories in the CCS 

realm. The investigation reveals the prominent deployment of ML algorithms like artificial 

neural networks (ANN), PNN, Multi-linear Regression (MLR) and convolutional neural 

networks (CNN), predominantly in forecasting physical attributes, assessing mechanical 

robustness, and surveilling the movement and potential escape of CO2 plumes during storage 

(Yao, et al., 2023).  
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4.1 Introduction 

A continuous depth related record of geophysical parameters along the well bore, depicting the 

chemical and physical properties of subsurface geological formations is known as well log 

analysis. In this research, the analysis of well logs assesses the petrophysical characteristics of 

typical geological formations, identifies rock types, and examines the Petro elastic properties 

(Figure 4.1). This evaluation is conducted within the framework of CO2 storage and caprock 

integrity, aiming to ensure the efficient utilization and secure long-term storage of CO2. 

Petrophysical analysis is the quantitative assessment of well log data to characterize the rock 

through its physical and chemical properties. In situ reservoir properties such as volume of shale, 

porosity, permeability, water saturation, hydrocarbon saturation, fluid phase identification and 

distribution, elastic rock properties are determined through log data. Petrophysics of the most 

important and useful tools for reservoir characterization (Macini and Mesini, 2006).  

 

Figure 4.1: Well log analysis workflow to identify the suitable zone of interest in the subsurface 

for CO2 storage. 



26 

4.2 Petrophysical Analysis 

Fostering the reservoir model suitable for CO2 storage requires a detailed log analysis. 

Comprehensive knowledge about the lithologies found in the subsurface of a prospective storage 

site is essential. This understanding forms the foundation for creating a dependable reservoir 

model. Evaluating the rock parameters, crucial for understanding the geological criteria for 

potential CO2 storage as discussed in chapter 3, petrophysical investigation was carried out on 

Qadirpur-16 well, in this study.  

Petrophysical analysis evaluates attributes of the reservoir like shale volume, porosity, effective 

porosity, water saturation, and hydrocarbon saturation. This is accomplished using standard log 

data and a variety of established empirical relationships (Akhter et al., 2015; Ali et al., 2015). For 

example, Archie (1942) formulated a mathematical equation for determining water saturation in 

sedimentary reservoir rocks. Wyllie (1958) introduced a relationship (known as the Time-average 

equation) for calculating porosity based on P-wave velocity. Additionally, Castagna (1985) 

provided empirical correlations for computing elastic properties in sedimentary rocks. In our 

study of the Qadirpur area, we followed the methodology outlined by (Akhter et al., 2015; Ali et 

al., 2015) to calculate reservoir properties at secondary potential reservoir levels. 

4.2.1 Qadirpur-16 petrophysical analysis 

Log curves in figure 4.2 were loaded into the software and displayed on separate tracks. The first 

track presents the caliper (CALI), self-potential (SP), and gamma ray (GR) curves. The second 

track displays the resistivity curves (laterolog deep (LLD) and laterolog shallow (LLS)), while 

the third track shows the sonic (DT), bulk density (RHOB), and neutron (NPHI) curves. The 

fourth track contains the estimated shale volume, with a cutoff value of 40% utilized to 

distinguish between limestone and shale. This cutoff value determines the presence of limestone 

if the shale volume is below 40%, as illustrated in Figures 4.2 Proceeding on to the subsequent 

tracks, the fifth track shows total porosity, and effective porosity. In the last track, water 

saturation calculations were performed and reported, which were then used to determine the 

average hydrocarbon saturation value.  
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Figure 4.2: Petrophysical Evaluation of SML of Qadirpur-16 well, Indicating Potential 

Reservoir Area for CO2 Sequestration. Tracks 1, 2, and 3 depict lithology, resistivity, and 

porosity logs. The remaining tracks display inferred properties derived from these logs, 

facilitating the identification of suitable CO2 storage sites. 

The main potential zone within the Sui Main Limestone (SML) spans a total width of 30 meters 

and is situated between depths of 1336 and 1366 meters as depicted in Table 4.1. In this interval, 

the volume of shale curve displays a significantly distinct behavior with a negative trend. The 

upper layers of the SML consist of inter-bedded clays and muds, indicating a reservoir of low 

quality. 

Various log curves, including density, sonic, total, and effective porosities, exhibit a positive 

trend, suggesting the possibility of a hydrocarbon-rich zone. Notably, the effective porosity 

reaches its highest value within the 1336 to 1366 meters range, with an average of 18.62 percent. 

Additionally, the hydrocarbon saturation is relatively high at 80.72 percent, while the water 

saturation measures 19.27 percent in this section. 
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Table 4.1: provides the petrophysical characteristics for the SML Formation. 

 

4.3 Lithofacies Analysis 

Identifying lithofacies is a crucial aspect of reservoir characterization. However, traditional 

methods that rely on core data can be expensive and challenging to apply to wells without core 

samples. To address this, we introduce an affordable and automated approach that utilizes 

Kohonen self-organizing maps (SOM), to identify lithofacies systematically and objectively from 

well log data. SOMs are unsupervised artificial neural networks that organize the input data into 

clusters based on well log patterns, revealing trends within the data (Chang et al., 2002). 

The process of effectively classifying lithologic units through the application of advanced 

machine learning techniques, our objective is to leverage data-driven approaches to enhance the 

accuracy and reliability of lithologic classification, contributing to a deeper understanding of 

subsurface geology.  

4.3.1 Artificial Neural Networks (ANN) 

Neural networks, a class of machine learning algorithms, draw inspiration from the intricate 

interconnectedness of neurons in the human brain. They consist of interconnected nodes, or 

"neurons," organized in layers. Each neuron processes input data and passes the result to other 
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neurons. Neural networks are used in machine learning to learn patterns, make predictions, and 

perform tasks such as image recognition and natural language processing. Central to neural 

networks are interconnected nodes referred to as "neurons," systematically arranged into layers. 

These neurons engage in processing and altering input data, progressively extracting more 

complex features and representations. Leveraging advances in hardware capabilities and 

inventive algorithms, neural networks have yielded groundbreaking achievements across diverse 

fields (Krogh, 2008). 

The origins of neural networks trace back to the 1940s, marked by the foundational contributions 

of McCulloch and Pitts regarding artificial neurons. However, their full potential emerged in the 

1980s with the introduction of the backpropagation algorithm, enabling efficient training of 

multi-layer neural networks. Subsequently, an array of variations and architectures has surfaced, 

encompassing CNNs tailored for image analysis and recurrent neural networks (RNNs) designed 

for sequence data. Computational techniques for acquiring and structuring novel knowledge 

leading to the acquisition of fresh skills. Before the network can demonstrate usefulness, it must 

assimilate information currently available. Following training, it can then serve practical 

purposes. Broadly, there exist two categories of learning approaches (Mahesh, 2020): 

4.3.1.1 Supervised Learning 

 In this approach, the network is provided with known correct answers that aid in training for a 

specific problem. Both input and output vectors are utilized. Input vectors furnish initial data, 

and output vectors enable comparison with inputs to ascertain discrepancies. Reinforcement 

learning, a specialized form of supervised learning, informs the network only of output 

correctness. Back-propagation algorithms align with this style. 

4.3.1.2 Unsupervised Learning 

 The network autonomously endeavors to uncover patterns in the input data. Solely input vectors 

are employed, and generated output vectors aren't employed for learning. Notably, human 

interaction becomes pivotal for unsupervised learning. This facet proves particularly significant, 

especially when dealing with expansive or intricate datasets that could be arduous or time-

consuming for human computation. SOMs operate within this learning paradigm. 
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4.3.2 Self-Organizing Maps (SOM) 

Kohonen SOMs, introduced by Kohonen in 1982, are unsupervised artificial neural networks 

designed to create organized feature maps of input data through clustering. These maps preserve 

the topological relationships among the clusters, resulting in similar high-dimensional input data 

being mapped close to each other. SOMs function as two-layer, fully connected networks with a 

weight matrix and are often referred to as "topology-preserving maps" due to their ability to 

maintain the topological structure among the cluster units (Guthikonda, 2005).  

4.3.2.1 Structure of SOM 

Structure of SOM’s describes its training mechanisms which enable it to capture connections 

within input data and underlying patterns, creating a compressed illustration in the form of 

clusters. Figure represents the basic structure of SOM’s structure. 

 

Figure 4.3:  4x4 SOM network is depicted, featuring 4 nodes arranged vertically and 4 nodes 

horizontally (Guthikonda, 2005). 
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While this configuration might seem uncomplicated, it holds noteworthy aspects. Initially, each 

map node establishes connections with every input node. For this compact 4x4 node network, 

this amounts to a total of 48 connections (4x4x3). Additionally, it's important to observe that map 

nodes remain unlinked to each other. This organization, resembling a 2D grid, simplifies result 

visualization and aligns effectively with the utilization of the SOM algorithm. Such a layout 

assigns a unique (i,j) coordinate to each map node, simplifying node referencing and distance 

computation. Despite exclusively being linked to input nodes, map nodes remain unaware of 

their neighboring nodes' values. The update of a map node's weights is solely influenced by the 

input vector's information. 

4.3.3 Algorithm of SOM 

Following steps explains the SOM algorithm (Guthikonda, 2005): 

1. Initializing each weigh node. 

2. Random vector is chosen from training data set and presented to the network. 

3. Best Matching Unit (BMU) is determined, which is weights of node that are most like the 

input vector. Euclidean distance is the one of the methods to find BMU through formula: 

        𝐵2 = ∑ (𝐼𝑖 − 𝑊𝑖
𝑖=𝑛
𝑖=0 )2,        (4.1) 

where, B represents BMU, I denote current input vector, W is node’s weight vector and N is 

the number of weights. 

4. The size of the neighborhood around the BMU is determined by calculating its radius. 

Initially, this radius is relatively large, often set to match the radius of the network, and it 

decreases with each time-step. The radius of the neighborhood is calculated through the 

formula: 

        𝜎(𝑡) = 𝜎°𝑒
−𝑡

𝜆⁄ ,         (4.2) 

        𝜆 = 𝑛𝑢𝑚𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/𝑚𝑎𝑝𝑅𝑎𝑑𝑖𝑢𝑠, 
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where, t represents the current iteration, λ is the time constant and 𝜎° is the radius of the    

map. 

5. Any nodes located within the radius of the BMU undergo adjustments aimed at aligning them 

more closely with the input vector. The extent of weight alteration is influenced by proximity 

to the BMU, with nodes in closer vicinity experiencing greater changes in their weights. 

They are computed as follow: 

New weight of the node: 

𝑊(𝑡 + 1) = 𝑊(𝑡) + 𝛩(𝑡)𝐿(𝑡)(𝐼(𝑡) − 𝑊(𝑡))     (4.3) 

Learning rate: 

𝐿(𝑡) = 𝐿°𝑒
(−𝑡

𝜆)⁄          (4.4) 

      Distance From BMU: 

𝛩(𝑡) = 𝑒(𝐷2 2𝜎2(𝑡⁄ ))        (4.5)  

6. For N number of iterations repeat from step 2. 

Considerable variation is observed in the equations employed within the SOM algorithm (Figure 

4.4). Likewise, ongoing research aims to determine the optimal parameters. Notably contentious 

aspects encompass the count of iterations, the learning rate, and the neighborhood radius. 

Kohonen himself has proposed a two-phase training approach. Phase 1 involves reducing the 

learning coefficient from 0.9 to 0.1 and the neighborhood radius from half the lattice's diameter 

to immediately adjacent nodes. In Phase 2, the learning rate decreases from 0.1 to 0.0, while the 

number of iterations in Phase 1 is at least doubled. During Phase 2, the neighborhood radius 

remains fixed at 1, solely encompassing the BMU. Analyzing these parameters, Phase 1 

expedites the network's coverage of space, while Phase 2 fine-tunes the network to achieve a 

more precise representation. 



33 

 

Figure 4.4: Flowchart depicting sequential steps followed in the application of SOM algorithm. 

Figure 4.5 represents the methodology adopted for implementation of unsupervised machine 

learning SOM techniques on Qadirpur-16 well through python and R programming language for 

lithofacies prediction: 
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Figure 4.5:  Methodology for unsupervised machine learning SOM approach to predict 

lithofacies. 

4.3.4 Data loading into python 

Importing data involves using specific Python libraries to read and process it. These libraries 

include pandas, NumPy, SciPy, lasio, segyio, matplotlib, seaborn etc. Choose the curve to use 

(correlation, discard curve with low correlation). Identify missing values in the training and 

testing data and remove the NaN values. Merge data into a single data-frame for further 

processing. 

4.3.5 Data Preparation and Processing 

4.2.5.1 Selection of logs through Heatmap analysis: 

Heatmap depicts the 2D visualization of correlation matrix between variables on each axis. The 

correlation value ranges from-1 to 1, indicating strongly negative correlation as -1 and strongly 

positive as 1. Zero value indicates no correlation between the variables. 
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Figure 4.6: Heatmap Analysis of log curves used as an input for lithofacies classification, 

depicting the correlation values between logs. 

Through Figure 4.6 heatmap analysis, we examine the correlations and relationships among GR, 

NPHI, LLD, LLS, DT and RHOB curves. This technique provides visual insights into the 

interdependencies between variables, depicting correlation value range between -0.67 to 0.98 

aiding in identifying significant patterns and potential features for classification. 

4.2.5.2 Boxplot and Histplot analysis for identifying outliers: 

Boxplot and Histplot analysis are powerful techniques used to identify outliers in a dataset. 

Outliers are data points that significantly deviate from the overall pattern of the data and can 

potentially impact the accuracy of classification models. 

Boxplots provide a visual representation of the distribution and spread of data. Outliers can be 

identified as points that lie outside the "whiskers" of the boxplot. The histogram plots assist in 
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visually identifying the presence and magnitude of outliers in the well data. Outliers often stand 

out as data points that fall far from the bulk of the distribution, and they can be detected through 

their placement in sparsely populated bins. Figure 4.7 shows the data distribution of each log 

curve as normal with only a few outliers, depicting the reliability of dataset used for prediction. 

 

Figure 4.7: Histogram and boxplot analysis of logs indicating the outliers present in each input 

log. These outliers are depicted as extreme values with low count in the histograms and as black 

circles lying outside the respective box of each log in the boxplots. 
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4.3.5.1 Outlier Removal: 

Outliers in a dataset can negatively impact the accuracy and performance of machine learning 

models. To mitigate this, we can use advanced techniques like One-Class Support Vector 

Machine (SVM) and Isolation Forest to identify and remove outliers (Figure 4.8). 

Data normalization is a crucial preprocessing step to ensure that features are on a similar scale, 

preventing certain features from dominating others in machine learning algorithms. 

MinMaxScaler was used for normalization that scales features to a specified range, usually 

between 0 and 1 (Figure 4.9).  

One-Class SVM is a machine learning algorithm that identifies anomalies or outliers based on 

the concept of margin maximization. It learns the distribution of the majority class and identifies 

instances that deviate significantly from it. It identifies 43 outliers from the total number of data 

set. Isolation Forest is an ensemble-based algorithm that creates a random forest of isolation 

trees. It isolates outliers by partitioning data points using random splitting rules and identifying 

instances that require fewer splits to be isolated. It identifies 44 outliers from the total number of 

data set. 

 

Figure 4.8: Identification of outliers and inliers through isolation forest and one class SVM 

algorithms. 
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Figure 4.9: Boxplot after normalization and removal of outliers from data. 

4.3.6 Model Training 

The training data after processing is first transformed into a matrix and then scaled. Afterward, 

the SOM grid is defined with specific dimensions and topology. Using this grid, a SOM model is 

constructed by incorporating the training data, the predefined grid structure, learning rate, and 

iteration count. Visualizations are generated to illustrate the model's progression, including plots 

showcasing changes during training, the count of units within each cluster, distances between 

neighboring units on the SOM grid, and codebook vectors of the trained SOM. Furthermore, the 

codebook matrix is extracted from the trained model, enabling the calculation of within-cluster 

sum of squares (WCSS) for varying cluster numbers. To facilitate interpretation, plot margins are 

adjusted, and a plot depicting WCSS values for different cluster counts is generated.  

4.3.6.1 Training process 

The training process of a SOM involves the gradual adjustment of neuron weights within the 

map based on input data. Neurons are nodes within the SOM grid, and their weights define the 

map's representation of data patterns. During training, the weights are iteratively updated to align 

with input data, leading to the map's ability to capture and organize complex relationships. 

Figure 4.10 represents 100 iterations with the mean distance to the closed unit. 
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Figure 4.10: Graphical representation of number of Iterations during training data and the 

mean distance to closest unit. 

4.3.6.2 WGSS Analysis 

The Within-Group Sum of Squares (WGSS) analysis is a method to determine the optimal 

number of clusters in a SOM or any clustering algorithm. WGSS measures the compactness of 

clusters by calculating the sum of squared distances between data points and their assigned 

cluster centroids. By plotting the WGSS values against different numbers of clusters, an "elbow 

point" can be identified. This point signifies a balance between cluster compactness and 

preventing overfitting. The optimal cluster count is often chosen at the elbow point, as it 

provides a suitable trade-off between data separation and cluster complexity. WGSS analysis 

(Figure 4.11) of the input dataset reveals four clusters based on the calculated sum of squared 

distances between data points. 
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Figure 4.11: WCSS representing Four clusters based on calculated sum of squared distance 

between input data points. 

4.3.6.3 Codes plot 

A codes plot is a visual representation of the codebook vectors associated with neurons in SOM. 

Codebook vectors are weight vectors that evolve during training to represent specific data 

patterns. In a codes plot, these vectors are visualized in a scatterplot-like format. The spatial 

arrangement of codebook vectors reflects the SOM's organization of data. By analyzing the 

codes plot, insights can be gained into how the SOM clusters similar data points, revealing the 

map's ability to capture data distribution, uncover clusters, and identify regions of interest. 

Figure 4.12 provides insight into how the SOM has organized and clustered your well log data 

based on the patterns present in RHOB, LLD, LLS, GR, DT, and NPHI logs. 
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Figure 4.12: Code plot of SOM cluster analysis based on the patterns present in RHOB, LLD, 

LLS, GR, DT, and NPHI logs. 

4.3.6.4 Cluster plots 

A cluster plot is a graphical display that showcases the results of clustering achieved by a trained 

SOM. Through its organization of data points based on similarity, the SOM assigns them to 

specific clusters. In a cluster plot, data points are differentiated using colors, each denoting 

membership in a distinct cluster. The cluster plot offers a visual avenue to comprehend how well 

the SOM groups alike data points and how effectively it captures intricate patterns or outliers 

within the dataset. By examining the cluster plot, patterns and trends in data become more 

discernible, aiding in insightful data analysis. 

Figure 4.13 describes a visual representation of data clustering, where data points are grouped 

into four clusters (pink, red, blue, and green) and the plot illustrates how the data points are 

arranged within each of these clusters. 
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Figure 4.13: Cluster plot representing four clusters of pink, red, blue, and green colors, and 

distribution of data points along them. 

4.3.7 Lithofacies prediction 

The outcomes of the SOM cluster analysis reveal compelling insights into lithofacies patterns 

within the well log data. Through the utilization of the SOM, distinct four clusters with green, 

red, blue and pink colors emerge, each representing a distinct lithofacies grouping based on 

shared characteristics Figure 4.14. These clusters delineate geological formations and lithological 

variations that might otherwise be challenging to discern. The visualization of the SOM cluster 

results provides a comprehensive spatial representation of lithofacies associations, enabling 

geoscientists to identify geological trends and transitions in depth. By mapping each cluster to 

specific lithofacies classes, the SOM facilitates the classification of subsurface geological units. 

This analytical approach not only enhances our understanding of lithofacies distributions but also 

assists in geological interpretation and subsurface modeling, ultimately contributing to informed 

decision-making in various geoscience applications. 
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Figure 4.14: Lithofacies prediction of Well Qadirpur-16 based on SOM. The predicted facies are 

in accordance with the known lithology of the respective formations with limestone depicted by 

red color, shale by green, limy-shale by blue, and the hydrocarbon-filled limestone by pink. 
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4.4 Sonic Log Prediction Through Multi-Linear Regression (MLR) 

The process of predicting sonic logs using Multi-Linear Regression MLR involves utilizing a 

statistical technique to establish a predictive relationship between sonic log measurements and 

other relevant attributes. Sonic logs, which provide information about subsurface rock properties, 

are valuable in various industries, including geophysics and oil exploration. 

4.4.1 Input data  

The process of predicting the DT4S values for Qadirpur well 16 involves using MLR based on 

various input logs. These logs include LLD, LLS, RHOB, GR, NPHI, and DT from the Qadirpur-

deep well 01 as shown in Figure 4.15. 

 

Figure 4.15: Logs of well Qadirpur deep-01 used as input for sonic log prediction through MLR 

algorithm. 
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4.4.2  Training through Multi linear regression 

The approach involves using MLR to predict DT4S values for Qadirpur well 16 based on a 

combination of attributes from Qadirpur-deep well 01 Figure 4.16. The equation offers a formula 

to estimate DT4S by considering the coefficients associated with each attribute. This predictive 

model can provide insights into subsurface properties and aid in various geophysics and reservoir 

analysis applications. 

 

Figure 4.16: Structure representing a relationship between the attributes (logs) of Well Qadirpur 

Deep-01 used to predict the shear log through MLR. 

The relationship between sonic log measurements and other relevant logs is described in 

equation: 

            𝑺𝒉𝒆𝒂𝒓 𝑺𝒍𝒐𝒘𝒏𝒆𝒔𝒔 =  + 𝟎. 𝟖𝟕𝟐𝟕𝟏𝟎𝟐 ∗  𝑩𝒖𝒍𝒌 𝑫𝒆𝒏𝒔𝒊𝒕𝒚(𝑹𝑯𝑶𝑩)  +  𝟏. 𝟔𝟖𝟏𝟓𝟐𝟖 ∗

 𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏𝒂𝒍 𝑺𝒍𝒐𝒘𝒏𝒆𝒔𝒔(𝑫𝑻)  −  𝟗. 𝟔𝟗𝟔𝟓𝟕𝟏 ∗  𝒍𝒐𝒈𝟏𝟎(𝑫𝒆𝒆𝒑 𝑹𝒆𝒔𝒊𝒔𝒕𝒊𝒗𝒊𝒕𝒚(𝑳𝑳𝑫))  +  𝟎. 𝟏𝟎𝟕𝟑𝟖𝟖𝟕 ∗

 𝑮𝒂𝒎𝒎𝒂 𝑹𝒂𝒚 (GR) +  𝟖. 𝟒𝟒𝟑𝟓𝟎𝟐 ∗  𝒍𝒐𝒈𝟏𝟎(𝑺𝒉𝒂𝒍𝒍𝒐𝒘 𝑹𝒆𝒔𝒊𝒔𝒕𝒊𝒗𝒊𝒕𝒚(𝑳𝑳𝑺))  +  𝟐𝟓. 𝟓𝟔𝟑𝟏𝟔 ∗

 𝑵𝒆𝒖𝒕𝒓𝒐𝒏 𝑷𝒐𝒓𝒐𝒔𝒊𝒕𝒚(𝑵𝑷𝑯𝑰)  −  𝟏𝟑. 𝟎𝟖𝟑𝟖𝟗                                                                                            (4.6) 
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The equation 4.6 represents the outcome of MLR, where the input attributes are combined with 

specific coefficients to estimate the DT4S values. Each coefficient signifies the strength and 

direction of the relationship between the corresponding attribute and the predicted DT4S value. 

For instance, the coefficient of Bulk Density (RHOB) is 0.8727102, indicating that an increase in 

Bulk Density leads to a corresponding increase in the predicted DT4S value. Similarly, the 

coefficient of Compressional Slowness (DT) is 1.681528, suggesting that higher values of 

Compressional Slowness result in higher predicted DT4S values. The logarithmic terms, such as 

log10(LLD) and log10(LLS), imply that the relationship between these attributes and DT4S is 

logarithmic rather than linear. The success of this MLR model rests on the assumption that the 

chosen attributes exhibit linear or logarithmic relationships with the target DT4S value. The 

coefficients derived from the regression analysis reflect how each attribute contributes to the 

prediction of DT4S. 

4.4.3 Testing through cross plot of Actual vs Predicted log 

The cross plot in Figure 4.17 visually represents the relationship between predicted and actual 

DT4S values for well Qadirpur Deep-01. To assess the accuracy of the predictions, R-squared 

(R2) score was used (Figure 4.17). R-squared score provides insight into the goodness of fit of 

the model by measuring the proportion of variance explained by the attributes. The high R-

squared score of 0.9042 indicates that the predictive model is performing well. 

Once the model is trained, it can be applied to the attributes of Qadirpur well 16 to predict its 

sonic log values (Figure 4.18). The coefficients in equation 4.6 represent the contribution of each 

attribute to the predicted sonic log value. 

By applying this approach, we effectively estimate sonic log values for Qadirpur well 16 based 

on the attributes of Qadirpur-deep well 01. Ultimately, this methodology aids in enhancing the 

understanding of subsurface properties and contributes to decision-making processes related to 

reservoir analysis and hydrocarbon exploration. 

 



47 

 

Figure 4.17: The cross plot of DT4S predicted and Actual DT4S of well Qadirpur Deep-01 with 

0.9042 R2 score representing a higher R-squared score, which signifies a larger proportion of 

the variance is explained by the model. 

 

Figure 4.18: Predicted DT4S Values for Qadirpur Well 16 along with GR, NPHI, LLD, LLS, DT, 

RHOB logs Using MLR with Qadirpur-deep 01 Attributes. 
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4.5 Petro elastic Analysis 

Petroelastic properties are derived from the data collected through well log measurements. These 

properties play a pivotal role in advancing the evaluation of the formations within the well. 

Specifically, these petroelastic characteristics serve as key indicators for assessing the integrity 

of the caprock. 

In the case of the Qadirpur-16 well, petroelastic parameters are computed utilizing the 

compressional velocity (Vp) and the predicted shear velocity (Vs) logs. These parameters hold 

significance in characterizing the petroelastic behavior of the subsurface formations. By utilizing 

these calculated parameters, the analysis aims to provide insights into the stability of the caprock 

and the overall geological context within the well. In our study of the Qadirpur area, we followed 

the methodology outlined by (Mavko et al., 2020) to calculate Petro-elastic properties (Figure 

4.19). 

 

Figure 4.19: Petro-elastic properties for Qadirpur 16 well estimated using the DT4P, RHOB, 

and the predicted DT4S logs.  
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4.6 Caprock Integrity 

The variation of porosity and permeability with lithology as shown in figure 4.20, the analysis 

helps in identifying regions within the caprock that may pose a risk to caprock integrity. For 

effective CO2 storage, it's essential to ensure that the caprock has low permeability and acts as an 

impermeable seal to prevent CO2 leakage. Conversely, the reservoir should have sufficient 

porosity and permeability to accommodate the injected CO2. This integrated approach allows for 

a comprehensive assessment of caprock integrity, helping to mitigate risks associated with CO2 

storage and ensuring the long-term containment of CO2 within the geological formation. 

 

Figure 4.20: Permeability calculated from Wyllie–Rose approach, PHIE and lithofacies obtained 

from SOM, depicting the variation of porosity and permeability with lithology. 
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5.1 Introduction 

Seismic analysis is a fundamental component in the assessment and planning of carbon storage 

strategies, particularly in the context of CCS initiatives. It involves the comprehensive utilization 

of seismic data to evaluate the geological formations' suitability for secure and long-term CO2 

storage. Seismic interpretation is concerned with delineating horizons, identifying faults, and 

analyzing the subsurface structures prevalent within the region of interest. It involves creating 

maps that encompass stratigraphic details and structural insights, which collectively illuminate 

subsurface features, including hydrocarbon reservoirs (Coffeen, 1978). This seismic 

interpretation transformation results in a seismic section that serves as a comprehensive 

representation of the geological characteristics of the Earth. Within these seismic sections, the 

seismic reflectors play a crucial role by revealing insights into the potential presence of 

hydrocarbons and the geological composition of the area under investigation (Sheriff, 1999).  

5.2 Methodology 

Well log analysis forms the foundation for delineating potential seismic data horizons, 

establishing a connection between well and seismic data. Nevertheless, the well data exists in the 

depth domain while seismic data operates in the time domain. To bridge this gap, a time-depth 

chart specific to a particular well is necessary. This chart facilitates the creation of synthetic 

seismograms, effectively aligning the two datasets (Bacon et al., 2007). 

The focus of this dissertation is a zone in SML Formation which was marked by tying the 

seismic data to Qadirpur-16 well through synthetic seismogram. The upper and lower boundaries 

of this specific zone were delineated on the seismic profile. The procedural steps for this 

workflow are outlined in Figure 5.1. 

5.3 Base Map 

The primary data representation in the Base Map (Figure 5.2), incorporates the arrangement of 

wells in conjunction with the orientation of 3D lines and cross lines.  
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Figure 5.1: The workflow for seismic Interpretation carried out in this dissertation. 

 

Figure 5.2: Base Map illustrating the 3D Seismic Survey of the Study Area, depicting the 

orientation of in-lines, crosslines, and the placement of wells, along with their projected 

coordinates. 
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5.4 Seismic to Well Tie 

Synthetic seismogram generated through the DT and RHOB logs is helpful in demarcation of 

horizons. This process holds significant importance in seismic interpretation. The disparity in 

impedance between two layers serves as a metric for reflectivity, subsequently subjected to 

convolution using an extracted wavelet (Figure 5.3). To accurately establish horizons on the zone 

of interest, a correlation between seismic data (in the time domain) and well data (in the depth 

domain) is established.  

 

Figure 5.3: Extracted wavelet from seismic data near well Qadirpur-16, depicting frequency 

along with amplitude and phase spectrum. 
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Figure 5.4: Synthetic Seismogram illustrating the Seismic-to-Well Tie between Seismic traces 

along line 1471 and Qadirpur-16 Well with 83.38% correlation coefficient. 

5.5 Delineation of Target Horizon 

After establishing a seismic-to-well tie, the process of marking horizons on 3D seismic data 

gains significance. This tie involves correlating the seismic data with the well log data, aligning 

them in terms of time-depth relationship. Once this alignment is achieved, the positions of 

defined zone Within SML Formation through the well log analysis, was then be marked onto the 

seismic sections (Figure 5.5). The marked horizons provide a spatial context and interpret 

subsurface structures, stratigraphy, and potential reservoirs more effectively. 
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Figure 5.5: Marked seismic horizons on inline 1473, using synthetic seismogram developed for 

Well Qadirpur-16 and its surrounding traces. 

5.6 Time Contour Maps 

The culmination of interpreted seismic data is visualized through time structure maps. These 

maps, created through contour representations, convey crucial details about the formation's 

characteristics such as inclination, faulting, folding, and dip. The outcome of seismic 

interpretation is encapsulated in contour maps, which illustrate the subsurface variability of the 

structure. Contours, depicted as lines with consistent or similar values, can pertain to parameters 

like depth, elevation, time, or other variables. In this context, the contours represent lines of 

travel time, reflecting the journey around the given subsurface structure. Consequently, these 

contour maps serve as the primary information source for seismic exploration experts, and the 

overall success of the endeavor hinges upon this final visualization (Coffeen, 1986). Figure 5.6 

indicates that horizon for the top of the reservoir of interest is shallower towards center and 

deeper towards the north-west and south-east. Similarly, the horizon for the bottom of the 

reservoir indicates that the formation is deeper towards north-west and south-east (Figure 5.7). 
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Figure 5.6: Time contour map representing the top of the zone within SML Formation. The 

horizon is relatively deeper towards the north-west and shallower towards south-east. 

 

Figure 5.7: Time contour map representing the bottom of the zone within SML Formation 

depicting that the formation is deeper towards north-west and south while relatively shallower 

towards center. 
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6.1 Introduction 

Reservoir assessment plays a critical role in evaluating the suitability of geological formations 

for carbon storage, and model-based inversion coupled with porosity estimation emerges as a 

powerful methodology in this context. This approach involves leveraging advanced geophysical 

techniques to derive essential subsurface properties and characteristics, enabling a 

comprehensive understanding of the reservoir's potential for carbon storage. Porosity estimation, 

a key component of reservoir assessment, involves quantifying the volume of void space within 

the rock, which is crucial for understanding fluid storage and migration capabilities. By 

integrating porosity estimates derived through PNN, and the model-based inversion results, a 

comprehensive view of the reservoir's storage potential can be observed (Niu et al., 2013). 

6.2 Model-Based Inversion (MBI) 

MBI is a form of post-stack inversion designed to calculate acoustic impedance (AI) from 

seismic datasets. It is also referred to as blocky inversion. This technique is rooted in the 

convolutional theory, asserting that seismic traces can be generated by convolving wavelets with 

the reflectivity function (Russell and Hampson, 1991). Despite the presence of noise within 

seismic traces due to various factors, such as instrumentation, multiples, and cultural 

interference, the equation governing the seismic trace remains: 

𝑆𝑒𝑖𝑠𝑚𝑖𝑐 𝑡𝑟𝑎𝑐𝑒 =  𝑊𝑎𝑣𝑒𝑙𝑒𝑡 ∗  𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑁𝑜𝑖𝑠𝑒  (6.1) 

 In instances where the noise is independent of the seismic signal, it becomes feasible to deduce 

the Earth's Reflectivity function from the trace. To initiate the inversion process, it is crucial to 

have an initial low-frequency model based on well log data, which represents the AI. This model 

serves the dual purpose of supplying the missing low- and high-frequency components within the 

seismic datasets and aiding in mitigating the inherent lack of uniqueness in the solution. The 

procedural steps encompassed in the model-based inversion, as detailed in this study, are as 

follows (Maurya and Singh, 2015): 

1. AI at well locations is computed utilizing the available well log data. 
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2. Seismic horizons are chosen across the seismic section, offering control for interpolation 

and structural insight between well positions. 

3. Interpolation is executed along the designated seismic horizons and between well 

locations, leading to the formulation of an initial AI model. 

4. The initial impedance model is segmented into blocks of chosen dimensions. 

5. Statistical wavelet is extracted from the seismic section. 

6. The Earth Reflectivity is convolved with the wavelet to generate a synthetic seismic 

trace, distinct from the observed seismic trace. 

7. A Least Squares optimization process is conducted, aiming to minimize the disparity 

between the real and modeled reflectivity sections. The approach involves assessing the 

discrepancy between synthetic and real traces and adjusting block size and amplitude to 

curtail errors. 

8. Iteration of step 7 is performed until the lowest misfit between the real seismic data and 

synthetic trace is attained. 

An optimum extracted wavelet is important for accurate inversion results. A proper seismic to 

well tie with a correlation coefficient of 86% was developed and a proper wavelet was extracted 

(Figure 6.1). This wavelet was then used to invert the seismic data into the impedance model. 

6.2.1 Low Frequency Model 

In the realm of model-based inversion, a "low-frequency model" is a simplified representation of 

subsurface properties that primarily focuses on the longer wavelengths and lower-frequency 

components of seismic data. Its primary purpose is to capture fundamental aspects of the 

subsurface, making it a practical and effective tool for understanding and characterizing 

significant subsurface properties. By emphasizing these lower-frequency components, the low-

frequency model facilitates a more efficient and insightful interpretation of seismic data. The low 

frequency model was generated using the impedance log of well Qadirpur-16 and the seismic 

data (Figure 6.2). 
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6.2.2 Output Wavelet 

 

Figure 6.1: Wavelet extracted from the correlation of synthetic seismogram of Well Qadirpur-16 

with seismic traces surrounding the well. The correlation coefficient for the seismic to well tie is 

86%. 

 

Figure 6.2: Initial impedance model or a low-frequency model utilized for applying model-based 

inversion in the conducted research. 
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6.2.3 Model Based Inversion Results 

The application of Model-Based Inversion yields valuable results related to AI. This technique, 

which involves the iterative adjustment of subsurface models to match observed seismic data, 

produces insights into the acoustic properties of the subsurface geological formations. Model-

Based Inversion, in conjunction with well and seismic data, serves as a powerful tool for 

enhancing our knowledge of the subsurface and supporting informed decisions in geological and 

geophysical applications. Furthermore, it demonstrates the ability to accurately capture lateral 

variations in lithology, highlighting the diverse geological composition across the formation of 

interest. The impedance values in the reservoir zone within the SML Formation indicate the 

presence of hydrocarbon (Figure 6.3, 6.4).  

 

Figure 6.3: The application of Model Based Inversion on inline 1473 in conjunction with the 

Qadirpur-16 well produces AI outcomes. Additionally, this inversion technique effectively 

records lateral changes in lithology. 
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Figure 6.4: Slice of AI obtained through MBI depicting the zone marked within Sui Main 

Limestone Formation along its values on color bar. 

6.3 Estimating Porosity from Seismic Attributes Through PNN 

The process of Emerge involves the integration of well log and seismic data. Its primary aim is to 

forecast a specific property like porosity from well logs using seismic data attributes. The 

seismic attributes might be internally computed or externally provided. The procedure unfolds in 

several phases: 

1. Investigating both well log and seismic data at well sites to identify the suitable attribute 

set. 

2. Developing a correlation using techniques like MLR or Probabilistic Neural Networks 

(PNN). 

3. Employing the established correlation on a 3D SEG-Y volume to generate a volumetric 

representation of the desired well log property. 
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6.3.1 Probabilistic Neural Networks (PNN) 

PNN is a type of ANN designed for pattern recognition and classification tasks. It is particularly 

useful for probabilistic modeling and classification problems where the outputs are associated 

with probability distributions. PNN employs a distance-based interpolation scheme and is trained 

to recognize patterns by utilizing known training examples. The network calculates probabilities 

for every class and subsequently assigns the input pattern to the class with the greatest 

likelihood. 

The foundation of the PNN approach is rooted in a mathematical interpolation scheme, which 

employs a neural network framework for its implementation. This technique is underpinned by 

the calculation of weights based on the distance in the attribute space between known and 

unknown points. PNN leverages measure or derived parameters as independent variables to 

predict a single dependent variable's value. The process of constructing a PNN model begins 

with partitioning a sample set derived from well logs into training, validation, and test subsets. 

The training phase continues until specific criteria are met, such as minimizing the mean square 

error objective or reaching a maximum iteration limit. The test subset is solely utilized to gauge 

the prediction capabilities of the PNN through a blind test and is not involved in the development 

of the neural network model (Leiphart and Hart, 2001; Mohamed et al., 2017). 

 

Figure 6.5: Architecture of PNN, showing the NN between input layer, hidden layer, summation 

layer and output layer (Ghahramani, 2015). 



64 

6.3.2 Data Preparation 

The data set used for estimating spatial distribution of porosity includes PHIE log of Qadirpur-

16, which is designated as the target variable, representing the porosity levels within the 

geological formation of interest, and harnessed as an integral part of the training dataset. 

Additionally, seismic data obtained from the Qadirpur area is integrated, providing valuable 

insights into the subsurface structures that may influence porosity. The inversion volume, derived 

through model-based inversion technique, was used as an external attribute along with the PHIE 

log (Figure 6.5) to initiate the PNN based training.  

 

Figure 6.6: The PHIE log is specified as target log from Qadirpur-16 well, seismic data of 

Qadirpur and inversion volume obtained through model-based inversion as an external attribute 

are used as training data sets. 
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6.3.3 Single-attribute transforms 

Twenty nonlinear transformations were used on both the target parameter (porosity) and the 

external attribute (Inversion Result) for the purpose of analysis along with the 3D seismic data. 

Initially, single-attribute transforms were applied to the data and a porosity log was synthesized 

(Figure 6.7). 

 

Figure 6.7:  A list displaying single attributes, showcasing non-linear transformations of the 

target and external attribute, accompanied by error and correlation outcomes indicating a strong 

average correlation of 80.16%. 
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6.3.3.1 Application of Single Attribute Regression 

The application of Single Attribute Regression reveals a significant correlation of 93.0897% 

between the dominant frequency attribute and the PHIE log of the Qadirpur-16 well (Figure 6.8). 

This correlation suggests a strong relationship between the dominant frequency of certain 

subsurface signals, likely obtained from seismic data, and the porosity levels represented by the 

PHIE log. The accompanying statistics provide further insight into the accuracy of this 

relationship, with an average error of only 0.02. The slope of 0.0106603 and the intercept of -

0.100157 in the regression equation contribute to a precise estimation of porosity based on 

dominant frequency attributes. 

 

Figure 6.8: Application of Single Attribute Regression depicting 93.0897% correlation of 

dominant frequency attribute with PHIE log of Qadirpur-16 with average error 0.02, slop 

0.0106603 and intercept -0.100157 
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6.3.4 Multi Attribute List 

The multi-attribute list, consisting of twenty carefully selected attributes, plays a pivotal role in 

the endeavor to target and accurately estimate porosity within the geological formation of 

interest. Through the process of targeted porosity estimation and training, the aim is to minimize 

error and enhance the precision of porosity predictions (Figure 6.9).  

 

Figure 6.9: Multi attribute list displaying twenty attributes used for targeted porosity and 

training error depicting the error is minimized. 
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6.3.4.1 Application of Multi Attribute regression 

The application of Multi Attribute Regression in this context showcases a remarkably strong 

correlation of 99.086% between a comprehensive set of twenty attributes and the PHIE log of the 

Qadirpur-16 well (Figure 6.10). 

 

Figure 6.10: Application of Multi Attribute Regression depicting 99.086% correlation of twenty 

attributes with PHIE log of Qadirpur-16 with average error 0.002. 

Multi Attribute list yokes the collective power of multiple attributes, resulting in more accurate, 

comprehensive, and reliable subsurface characterizations. 
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6.3.5 Training Neural Networks Through PNN 

The training conducted using a PNN has yielded remarkable results, showcasing 99.9357% 

correlation between a comprehensive set of twenty attributes and the PHIE (Porosity) log of the 

Qadirpur-16 well (Figure 6.11). This high correlation indicates a strong and reliable relationship 

between the selected attributes and the porosity levels within the subsurface formation. 

Additionally, the exceptionally low average error of merely 0.001 highlights the precision and 

accuracy of the PNN model in estimating porosity. This training outcome underscores the 

effectiveness of employing advanced machine learning techniques, like the PNN, to analyze 

complex geological and geophysical data. 

 

Figure 6.11: Application of PNN depicting 99.9357% correlation of twenty attributes with PHIE 

log of Qadirpur-16 with average error 0.001. 
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6.3.5.1 Cross plot of Actual Porosity and Predicated Porosity 

The PNN model demonstrates a remarkable 99.9357% correlation with an average error of 

0.001, the cross-plot analysis is expected to show a tight cluster of points near the diagonal line 

(Figure 6.12). This visual representation would further validate the model's effectiveness in 

estimating porosity levels within the Qadirpur-16 well's subsurface formation. It serves as a 

powerful illustration of the model's precision and its potential for reliable reservoir assessment 

and management in the Qadirpur area. 

 

Figure 6.12: Cross plot analysis representing actual porosity on x-axis and predicited porosity 

on y axis. 

6.3.6 Application of the Trained Neural Network (PNN) to the 3D volume 

The application of PPN generates porosity distribution maps. These maps provide a spatial 

representation of porosity values within the subsurface geological. The color bar accompanying 

the map serves as a visual indicator, with different colors corresponding to varying porosity 

values. This color-coded representation allows for a quick and intuitive interpretation of porosity 
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distribution patterns, aiding geoscientists, and reservoir engineers in understanding the 

subsurface characteristics and potential reservoir quality within the Qadirpur area. Such 

applications of ANN and data visualization tools play a crucial role in reservoir assessment and 

the efficient management of geological resources. Figure 6.13 indicates the spatial distribution of 

the PHIE values predicted through the PNN algorithm. High values of PHIE within the zone of 

interest suggests both the exploitation potential of the zone and the storage capacity (Figure 

6.13). The slice for the whole reservoir indicates that the PHIE values are high throughout the   

reservoir particularly around Well Qadirpur-16 (Figure 6.14). Furthermore, the slice taken for the 

lower portion of the zone of interest depicts that this zone is particularly favorable in terms of 

hydrocarbon potential and eventually in the storage of CO2 (Figure 6.15). 

 

Figure 6.13: The application of PPN on inline 1473 in conjunction with the Qadirpur-16 well 

generates porosity distribution with the color bar indicating its values. Porosity values are high 

throughout the reservoir zone. 
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Figure 6.14: Slice of effective porosity distribution of the zone marked within Sui Main 

Limestone Formation. The slice indicates high values of PHIE throughout the zone. 

 

Figure 6.15: Slice of effective porosity distribution in the lower portion of the zone marked 

within Sui Main Limestone Formation. The PHIE values are even higher in this portion 

compared to the upper portion. 
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6.4 Thermodynamic analysis for CO2 storage 

Thermodynamics helps describe how CO2 transitions between different phases (gas, liquid, or 

solid) under varying temperature and pressure conditions within the storage reservoir (Figure 

3.3). Phase diagrams and equations of state (EOS) are commonly used to predict phase behavior. 

Tables 6.1 and 6.2 represent the initial reservoir pressure and temperature of SML, used for 

prediction of CO2 phase behavior within SML (Figure 6.16).  

Table 6.1: The Initial Pressure Levels in Gas Fields Located in Pakistan (Siddiqui, 2004). 

 

Thermodynamic analysis for CO2 storage via phase behavior begins with initial temperature and 

pressure conditions (Figure 6.16) and applies EOS and phase equilibrium principles to predict 

and understand how CO2 will behave within the geological reservoir.   
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Table 6.1: Temperature of different formation within Qadirpur Area (Ali et al., 2022) 

 

This analysis supports the planning, execution, and monitoring of carbon capture and storage 

(CCS) projects, contributing to the responsible management of CO2 emissions and climate 

change mitigation efforts. 
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Figure 6.16: Initial temperature and pressure settings within the SML Formation indicate the 

potential phase behavior of CO2. These conditions suggest that, given other relevant parameters, 

it is feasible to store CO2 in the formation in a supercritical state. 

6.5 Storage Capacity Estimation 

The overall CO2 storage potential within Pakistan's oil and gas fields is evaluated at around 1.7 

Gt (gross tonnage) CO2. Nevertheless, none of the oil fields exhibit a storage capacity exceeding 

10 Mt, thereby lacking significant storage potential. In contrast, thirteen gas fields are projected 

to possess a storage capacity surpassing 10 Mt, accumulating to an estimated total of 1.6 Gt CO2. 

Notably, among these, the Sui, Mari, Qadirpur, and Uch gas fields stand out, holding the 

potential to store over 200 Mt CO2 each (IEAGHG, 2008). Table 6.3 represents original 

recoverable Reserves and approximate CO2 storage potential of Gas Fields in Pakistan (Naseem, 

2014) and Table 6.4 shows the calculated OGIP (Ali at al., 2005). According to these estimates 

the significant energy resources available in the country, highlighting the potential for both 

hydrocarbon production and carbon capture and storage (CCS) initiatives. The coexistence of 
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ample recoverable reserves and substantial OGIP opens opportunities for Pakistan to strategically 

address its energy needs while actively contributing to global efforts in reducing greenhouse gas 

emissions through CCS projects. 

Table 6.2: Original recoverable reserves and estimated CO2 storage capacity of gas field in Pakistan 
(IEAGHG, 2008) 

 

Table 6.4: Estimated Hydrocarbon potential (OGIP) of Qadirpur Area through Qadirpur-01 well and 
Qadirpur-05 well (Ali et al., 2005). 
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The Qadirpur gas field underwent development in three sequential phases, progressively raising 

its capacity from an initial 30,00 to 90,000-barrel oil per day (boed) (Figure 6.17). Subsequently, 

in 2008, the capacity attained the maximum production. To ensure a consistent supply of sales 

gas over the long term, a compression project was additionally initiated and became operational 

in 2010. Starting in 2020, there was a decline in production, and it transformed into a gas 

reservoir with diminishing reserves suitable for EOR Figure 6.17.  

 

Figure 6.17: Qadirpur total production data spanning from 1995 to 2040, depicting how the 

reservoir has behaved over this time frame, encompassing factors like gas production rates, 

pressure dynamics, and temperature variations. 

Typically, a reservoir with sufficient porosity should have the capacity to trap and retain injected 

CO2 over the long term. Porosity allows for the physical storage of the CO2 within the pore 

spaces of the rock formation. However, other factors like permeability (the ability of the rock to 

transmit fluids) and caprock integrity (the sealing properties of the rock above the reservoir) are 

equally critical in determining the suitability of a reservoir for CO2 storage. A detailed reservoir 

characterization and feasibility study as described in chapter 6, to assess specific reservoir meets 
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the necessary criteria for safe and effective CO2 storage. Figure 6.19 depicts the spatial 

distribution of porosity across the area. 

 

Figure 6.18: 3D visualization depicting the spatial distribution of porosity in the Qadirpur 

region, obtained using PNN, covering a range from 0.14 to 0.22. The color bar illustrates the 

corresponding values within the 3D section, including the presence of wells. 

 

The significance of higher values of spatial porosity distribution within the zone in SML 

Formation in Qadirpur area cannot be overstated when assessing the feasibility of carbon dioxide 

(CO2) storage. These elevated porosity levels (Figure 6.20) are paramount as they directly 
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correlate with increased storage capacity, enabling the safe containment of larger volumes of 

CO2 emissions. 

 

Figure 6.19: 3D visualization depicting the spatial distribution of higher values of porosity 

within the zone in SML Formation in the Qadirpur region, obtained using PNN, covering a 

range from 0.18 to 0.22. 
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7.1 Discussion 

The findings of this thesis offer a comprehensive and integrated analysis of the SML Formation 

within the Qadirpur Area of the Central Indus Basin, Pakistan, with a primary focus on its 

potential as a site for CO2 storage. The research objectives encompassed a wide range of 

geological and geophysical investigations to evaluate the suitability, feasibility, and safety of 

utilizing this geological formation for CCS initiatives. According to Tomic et al. 2018, 

sedimentary basins are considered the most suitable geological formations for the storage of 

CO2. In terms of safety, the geological storage of CO2 requires regions that are geologically 

stable in terms of tectonic activity (Tomic et al., 2018). Considering both these factors, the SML 

Formation of Qadirpur Area, lying in Central Indus Basin, seemed suitable for CO2 storage and 

therefore required an elaborate analysis. 

 Geological characteristics of formation evaluated for CO2 storage site are lithology, reservoir 

depth, thickness, porosity, permeability, permeability of cap rock, presence of faults and stress 

state of rock (Aminu et al., 2017). For this purpose, petrophysical analysis, lithofacies prediction, 

shear log prediction, and petro-elastic estimation was carried out using well log data from Well 

Qadirpur-16. This comprehensive well log analysis played a pivotal role in identifying potential 

reservoirs and assessing their properties (Figure 4.2). The well log analysis revealed a zone 

within the SML Formation, located at depths ranging from 1336 to 1366 meters and with a 

thickness of 30 meters (Figure 4.2). Furthermore, this zone exhibits favorable characteristics for 

secure CO2 storage including an average PHIT of 21.09%, PHIE of 18.86%, SW of 19.27%, and 

81.73% HS making it conducive to CO2 containment (Table 4.1). As outlined by Terry in 2001, 

the recommended depth for suitable reservoirs is deeper than 600 meters, accompanied by a net 

thickness within the range of 5 to 7 meters, and an oil saturation exceeding 30%. According to 

the findings of Chadwick and colleagues in 2008, the ideal depth falls within the range of 1000 

to 2500 meters, with a thickness exceeding 50 meters, and a porosity level greater than 20% to 

consider it viable for CO2 storage. This makes the reservoir zone within SML Formation 

conducive for CO2 storage.  

Moreover, the lithofacies prediction in Well Qadirpur-16 using SOM clusters provides a valuable 

insight into the geological composition of the area. It successfully distinguished four distinct 
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lithologies, including shale, limestone, shaley limestone, and hydrocarbon-bearing limestone 

(Figure 4.14). This analysis validates the presence of a hydrocarbon-bearing limestone zone 

within the identified depth range, reinforcing the potential for CO2 storage. The petro-elastic 

properties (Figure 4.19) derived through predicted DT4S plays a significant role in terms of CO2 

storage. Furthermore, the caprock integrity was validated through permeability and effective 

porosity variations with lithology (Figure 4.20). These analyses are pivotal for assessing the 

mechanical behavior of the reservoir and caprock, providing critical insights into the stress state 

within the geological formation.  

The study also ventured into seismic data analysis, allowing for a characterization of subsurface 

geological structures and the identification of potential pathways and risks for secure CO2 

storage. The resulting seismic assessments and reservoir characterizations revealed a relatively 

stable geological setting within the study area (Figure 5.4). This stability positions the region as a 

favorable candidate for CO2 storage (Tomic et al., 2018). While dealing with depleted oil and gas 

reservoirs or during EOR-CO2 process, analysis of certain parameters is required namely, OGIP, 

recoverable oil or gas reserves, reservoir pressure and temperature, reservoir rock volume, and 

porosity distribution (Hsu, 2012). Spatial distribution of reservoir properties, including 

impedance (Figures 6.3-6.4) and porosity (Figures 6.13, 6.14, 6.15, 6.18, and 6.19), further 

emphasized the area's potential for CO2 storage. The reservoir of interest within the SML 

Formation exhibited relatively low impedance values ranging from 7000 to 9000 (m/s).(g/cm3)  

(Figures 6.3-6.4) and high porosity values ranging from 0.12 to 0.24 v/v (Figures 6.13, 6.14, 

6.15, 6.18, and 6.19). This spatial variation in reservoir properties, coupled with lithology data, 

suggests the presence of an excellent reservoir suitable for secure CO2 containment. Additionally, 

the assessment of initial temperature and pressure settings within the SML Formation indicated 

the potential phase behavior of CO2 (Tables 6.1 and 6.2). These conditions suggested the 

feasibility of storing CO2 in a supercritical state, given other relevant parameters. 

This research further emphasized the significance of the Qadirpur gas field as a standout 

candidate for CO2 storage, with the potential to store over 200 million metric tons of CO2 (Table 

6.3). The field's developmental history, marked by sequential capacity enhancements and the 

implementation of a compression project in 2010, reflects a proactive approach to ensure a 

consistent supply of sales gas over the long term. However, it is crucial to note the transition of 
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the Qadirpur gas field into a gas reservoir suitable for EOR starting in 2020. This transformation 

indicates a shift in the field's utilization strategy, with a focus on maximizing gas recovery. 

7.2 Conclusion 

In conclusion, this thesis presents a comprehensive evaluation of the SML Formation within the 

Qadirpur Area, Central Indus Basin, Pakistan, as a promising site for CO2 storage. Through a 

multidisciplinary approach encompassing petrophysical analysis, lithofacies prediction, seismic 

assessments, and reservoir characterizations, the following key conclusions emerge: 

• The petrophysical analysis identifies a specific zone within the SML Formation with a % 

18.86 PHIE and 80.72 % HS, characterized by favorable properties for secure CO2 storage 

such as depth, tectonic stability, and seal integrity. 

• Lithofacies analysis validates the presence of a hydrocarbon-bearing limestone zone within 

the identified depth range, further reinforcing the reservoir's potential for CO2 containment. 

• Seismic assessments indicate a stable geological setting, making the study area a favorable 

candidate for CO2 storage. 

• Spatial distribution of reservoir properties showcases the area's excellent reservoir potential, 

with low impedance values and high porosity values contributing to its suitability for CO2 

containment. 

• The assessment of initial temperature and pressure settings suggests the feasibility of storing 

CO2 in a supercritical state within the SML Formation. 

• The Qadirpur gas field emerges as a significant CO2 storage asset, with substantial capacity 

and a history of proactive reservoir management. 

However, the transition of the Qadirpur gas field into a gas reservoir suitable for EOR signals a 

dynamic approach to resource utilization. In this evolving landscape, it is essential to adapt 

strategies for long-term reservoir management while considering the shifting demands and 

opportunities in the field. Overall, the research underscores the considerable potential of the 

Qadirpur Area for CO2 storage and the importance of informed decision-making in reservoir 

development and carbon capture initiatives. 
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