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Abstract

We demonstrate the occurrence of bistable behavior, both in terms
of optics and mirror movement, within an externally modulated
nano-transducer system. This setup comprises a Fabry-Perot cav-
ity driven by a powerful laser and a weaker probe, generating opto-
mechanical coupling. An electro-mechanical system introduces Coulomb
coupling, introducing non-linearity that induces optical bistability
in the average intracavity photon count, as well as mirror bistability
in the steady mechanical motion of the mirrors.
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Chapter 1

Introduction

The study scientific knowledge light, has been a cornerstone of physics since
its inception. Light recognized as made of photons. It exhibits both classi-
cal and quantum phenomena. The interactions between light and matter at
the smallest scale. [1–3] is topic interest. The momentum carried by elec-
tromagnetic field applies a force through radiation pressure, inducing move-
ment in the cofining mirror of the cavity. This radiation pressure force leads
to changes in the position of the movable mirror. Consequently, the optical
path experiences a displacement, ultimately introducing non-linear character-
istics to the system. This non-linear phenomenon gives rise to different non-
classical aspects like optical bistability, resembling the non-linearity found in
Kerr-medium situations[4–7].

The pressure force from the light affects both the optical and mechani-
cal parts of a cavity resonator [8–10]. Such as transparency created by op-
tomechanical effects and the process of Four-Wave Mixing. Researchers have
formed hybrid quantum systems [11–13], by combining optomechanical res-
onators with different elements such as mechanical membranes [14–18], Bose-
Einstein condensates or Fermions individual atoms with multiple energy lev-
els, and combining opto-mechanical systems and electro-mechanical systems
[19–21]. In these hybrid system, the special quantum traits of both mechanical
and electronic parts become important. Wineland [22, 23] and his team were
the first to notice these system, and then Zoller, Tian, Milburn, and colleagues
developed the study terminology.
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INTRODUCTION

The optical cavity field acts in a non-linear way, creating optical bistabil-
ity in the system. This results in a specific occurrence called hysteresis [24].
Researchers have studied the optical bistability that comes from the Kerr ef-
fect. They looked at this in a simple optomechanical system and also in mixed
optomechanical systems containing trapped cold atoms [25–28] and two-level
atoms[28]. Additionally, researchers have looked into this phenomenon in a
mixed electro-optomechanical system where nanomechanical resonators[29]
are connected.

Optical bistability could be useful in nonlinear quantum optics tasks like
handling optical signals [30], creating optical switches [31], and making de-
vices for optical communication[32][17, 33–37]. Combine an optomechanical
system and an electromechanical system to create a small device that converts
electrical and optical signals. The new nano system called nano-electro-opto-
mechanical system (NEOMS) is created using two charged mechanical res-
onators named MR1 and MR2. The field of light inside the optical cavity is
connected to MR1 by using a link that combines optics and mechanics.We ap-
ply two outside voltages, +V1 and -V2, to the mechanical resonators MR1 and
MR2. This makes the resonators interact with each other through Coulomb
coupling.We make the light inside the probe switch between two states and
control the mirror’s back-and-forth movement in the nano mirrors MR1 and
MR2. We do this by changing the strength of signals that we apply only to the
mechanical resonators.

Scientists have created a system where light and mechanics work together
using things like two small spinning disks, a nano crystal beam, or a mi-
crowave with two small moving beams [38, 39]. We have used powerful me-
chanical forces to create devices that mix quantum spins photon devices [40]
and vibrations, as well as to achieve very strong connections between exciton
photon coupling [41] and vibrations. Scientists have studied a situation called
optical bi-stability in different opto mechanical systems [26, 42–48] where light
and mechanics interact. This happens because of a push from the light’s pres-
sure inside an optical cavity. We also introduce a controllable switch that works
by controlling the two-state behavior under different test conditions.

We figure out the rules that control how the system works, including the
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INTRODUCTION

total Hamiltonian and Heisenberg Langevin equations that explain how things
move, and then we find solutions where everything stays stable and consistent.
We study how the number of photons inside the system’s Intra cavity photon
number between two states, with the help of two outside forces applied to the
nano mechanical mirrors MR1 and MR2.we look at how the positions where
the nano mechanical mirrors MR1 and MR2 can switch between two states
when we use outside signals to change them.
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Chapter 2

Nano-Opto-Electro-Mechanical
Systems

The NOEMS main objective is to create innovative systems and devices with
special characteristics and events that occur at the nanoscale. NOEMS has
the potential to enable a wide range of applications like imaging, communi-
cation, sensing and computation, among others, by merging optical, electri-
cal, and mechanical functions. Controlling the propagation of light is one of
the most significant issues in optics and photonics, optical communications
like modulation, optical switching, device and network reconfigurability in
addition to imaging and sensing (such as beam steering). Nano-opto-electro-
mechanical systems (NOEMS), In the field of nanophotonics considered one
of the new platforms for researching mechanical and electrical freedoms, over
the last few years, has seen rapid growth. Using the optical, mechanical and
electronic degree of freedom in NOEMS offers exciting opportunities to han-
dle information carriers, Here, it investigates the motion of light, flow of elec-
trons, and mechanical vibration modes we see in both classical and quantum
worlds.NOEMS concepts and technologies, high speed and low-power con-
sumption switches, high-efficiency microwave-optical conversion devices, and
multiple quantum information processing functions can be applied to its on-
chip integration. The principles of NOEMS will introduce, the most recent
advancements, important achievements[49, 50].
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2.1 The Physical System

In 2015, Markus Aspelmeyer et al. Although optomechanical system exist in
real world application. By using a simple one oscillator mirror in the Fabry-
Perot cavity, it is most fundamental model connected two harmonic oscilla-
tors. In this section introduce its primary components the optical and me-
chanical resonator. The physical back ground of the optical and mechanical
interaction[51].

Figure 2.1: The optomechanical cavity length L is modulated by optical field,
that causes a modulation of amplitude Xm. we express the incident optical
field as ϵp, the output field ϵout and the length of the cavity as L.

2.2 The Mechanical Ocillator

It has been experimentally demonstrated that mechanical oscillators generally
possess a large number of mechanical eigenmodes due to the high number of
degrees of freedom and their size, whose geometry, material characteristics,
and the coupling to its support are responsible for its spectral features. In
general, a displacement field can be used to define the form of the spatial me-
chanical mode u(r, t)[52]. The u(r, t) can be expanded interms of the oscillators
eigen modes un(r) and its related time-dependent amplitudes Xn(t).

5
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u(r, t) = ∑
n

Xn(t)un(r), (2.1)

Although the response of mechanical oscillators to applied forces is not
linear but linearity offers a decent approximation for the tiny displacements
and is often achievable in normal operation. The amplitude Xn(t) is modeled
with damped harmonic oscillation.

The damping component simultaneously serves as a temperature of the
environment known as a ”heat bath” and a source of noise for the mechanical
oscillator, illustrates the coupling of the mechanical oscillator to its support.

Figure 2.2: The schematics of an electromechanical setup. The capacitance
C(Xm) of the LC resonator is modulated by the mechanical motion.

The impact of the heat bath is modeled as a many harmonic oscillators in
the group of infinitely in a thermal state at a temperature T. A Bose-Einstein
distribution is followed by the mean bath occupation number and we have

6
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nB(ω) = [eh̄ω/KBT − 1]−1, (2.2)

Here h̄ and KB represent the reduced Plank’s constant and Boltzmann’s
constant respectively.

The mean bath occupancy at the mechanical frequency is

n̄ = nB(ωm), (2.3)

We can approximate nB(ωm) in the high-temperature limit with the help of
the following relation

nB(ω) ≈ KBT
h̄ωm

, (2.4)

The mechanical quality factor is defined as

Qm =
ωm

γm
, (2.5)

The quality factor and thermal decoherence rate are related as

n̄γm ≈ KBT
h̄Qm

, (2.6)

To get minimal thermal decoherence, we require a high-Q mechanical oscil-
lator and a low-temperature bath, which can be produced through cryogenic
cooling of the experimental equipment.

For the quantum treatment of the mechanical oscillator we introduce po-
sition and momentum operators Xm, Pm, which fulfill canonical commutation
relations [Xm, Pm] = ιh̄. We also introduce the dimensionless quadrature, as is
typical in quantum optics [xm, pm] = i. They can also be defined in terms of
creation and annihilation operators c†

m, cm

[cm, c†
m] = 1, (2.7)

xm =
cm + c†

m√
2

, (2.8)

7
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pm =
cm − c†

m√
2ι

, (2.9)

By re-scaling with the ground state x0 of the oscillator

Xm =
√

2x0xm, (2.10)

Pm =
√

2me f f ωmx0pm, (2.11)

x0 =

√
h̄

2me f f ωm
. (2.12)

2.3 The Optical Resonator

The second essential element in a cavity-optomechanical system is the optical
cavity. This cavity acts as a container (Resonator) for photons that resonate
within it. An example of such a cavity is the straightforward Fabry–Pérot cav-
ity, which consists of two mirrors with high reflectivity placed L units apart.
This arrangement results in a series of evenly spaced modes with distinct reso-
nance frequencies, and the intervals between these frequencies are referred to
as the free spectral range. The value of the free spectral range is defined by the
length of the cavity no presence of an optical medium.

νn = n∆ν, ∆ν =
c

2L
, (2.13)

In which a mechanical oscillator interact with a single cavity mode pos-
sessing a specific angular frequency denoted as ωc = 2πνc. This particular
configuration can be readily established through experimentation in setups in-
volving nanoscale and microscale optomechanics. Consequently, interactions
between distinct cavity modes are absent, as they do not couple with the mir-
ror. However, it’s worth noting that in certain systems, intentional or pertur-
bative coupling can indeed take place between various optical modes.

8
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Fcav =
2π∆ν

κ
=

πC
κL

, (2.14)

Here κ represents the energy decaying rate that gives the number of photons
in the cavity per unit time. Monitoring the output light of the cavity is a
must for nearly every experiment if we are to distinguish between pure photon
losses—absorption, scattering, and transmission into the external field—which
we can finally quantify. Therefore, the overall decay rate is given by

κ = κin + κ̃, (2.15)

where κin is the input-coupler of the cavity (i.e., the decay channel we can
measure), and κ̃ is a collection of all other loss mechanisms that we are unable
to detect. Assume a coherent laser field with a fixed center frequency of ω0 and
a complex amplitude ϵ that has been correctly re-scaled and is used to drive an
optical cavity. This amplitude and the input power Pin are connected by

|ϵ| =

√
Pin

h̄ω0
, (2.16)

Here square root term describes the driving laser photon flux is considered.
The equation of motion for the mean interactivity field αc followed.

α̇c = −(ιωc +
κ

2
)αc +

√
κinϵe−ιω0t, (2.17)

At optical frequencies, we can get rid of the trivial evolution by introducing

α̃c(t) = αc(t)eιω0t, (2.18)

α̃c will be assumed a constant steady state amplitude α̃ss
c after a transient

period.

α̃ss
c =

√
κinϵ

ι∆0 − κ
2

, (2.19)

with the de-tuning ∆0 of the laser with respect to the cavity resonance fre-
quency

9
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∆0 = ω0 − ωc, (2.20)

We can distinguish between the input coupling rate κin and the overall de-
cay rate κ, which causes a decrease in the interaction photon number with
rising losses κ̃. We can obtain the linear response function for the cavity’s
susceptibility χ(ω0) by taking the Fourier transform of equation (2.33). The
response of the system for a constant input at frequency ω0 can be obtained
with the value of χ(ω0) and is given by Lorentzian

χ(ω) =

√
κin

κ
2 − ι(ω − ωc)

, (2.21)

The amplitude and phase responses of the intracavity field are given by
its modulus and argument, respectively. The intracavity field in quantum me-
chanics can be expressed as a damped harmonic oscillator. To introduce the
related dimensionless quadrature operators, the creation and annihilation op-
erators c†

c , and cc, respectively[53].

xc =
cc + c†

c√
2

, (2.22)

pc =
cc − c†

c√
2ι

, (2.23)

xc is referred to as the amplitude quadrature, and pc is referred to as the
phase quadrature of the electromagnetic field. the interaction between the op-
tical and mechanical modes usually assumes the form of dispersive coupling.
This implies that changes in the mechanical oscillator’s position result in a shift
in the cavity’s resonance frequency. This interaction is physically mediated by
radiation pressure, involving either momentum transfer through reflection (as
seen in Fabry–Pérot setups and microtoroids) or gradient forces (as observed
in setups with a membrane placed in the middle).

10
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2.4 The Hamiltonian

A single mechanical mode interacts with a single optical mode. Expanding this
concept to encompass scenarios with multiple modes is quite straightforward.
The derivation of the Hamiltonian governing the interaction between a cavity
and mechanical motion. Our starting point is the Hamiltonian that describes
two harmonic oscillators operating independently without any coupling (un-
coupled) between them.

H0 = h̄ωmC†
mCm + h̄ωcCc

†Cc, (2.24)

The ωm represents the resonance frequency of the mechanical motion, and
ωc stands for the resonance frequency of the optical cavity (also known as the
nominal cavity frequency). We use [ci, cj†] to denote the commutation rela-
tion between operators ci and cj†. The optical resonance frequency ωc is de-
termined by the time taken for photons to complete a round trip within the
cavity. This, in turn, depends on the effective cavity length denoted as L. In
other words, ωc/2π = 2C/L , where c is the speed of light. When the mirror
undergoes displacement, it causes a shift in the resonance frequency. Conse-
quently, this alteration impacts the energy contained within the cavity mode.
Notably, for relatively small displacements Xm/L << 1, this effect becomes
significant.

ωc(Xm) = ωc +
∂ωc

∂Xm
Xm + O(Xm)

2, (2.25)

The Hamiltonian for the optomechanical system is considered. By tak-
ing into account first-order effects in Xm, the relationship XmX0(Cm + C†

m) =√
2X0Xm is utilized to derive the Hamiltonian that governs the optomechani-

cal system.

Hnl = h̄ωmC†
mCm + h̄ωcCc

†Cc + h̄g0xmC†Cc, (2.26)

The single-photon optomechanical coupling strength.

11
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g0 =
√

2x0
∂ωc

∂Xm
, (2.27)

The connection between the mechanical oscillator and a single photon within
the cavity is quantified by this equation. In the Fabry–Pérot scenario, g0 =√

2X0ωc/L, and the inverse of L are relevant. It’s noteworthy that, as per these
definitions, a positive value for the displacement Xm > 0 results in an aug-
mentation of cavity energy, signifying a reduction in the cavity length.

Hdrive = −ιh̄[E∗(t)eιω0tCc − E(t)e−ιω0tC†
c ], (2.28)

The radiation-pressure interaction displays nonlinearity with respect to the
amplitudes ci, ci†, and it varies according to the photon number inside the cav-
ity. However, due to the typically small value of g0 in many current optome-
chanical systems, observing pronounced nonlinear dynamics and optomechan-
ical effects at the single-photon level can be challenging. To amplify the influ-
ence of radiation pressure, one strategy involves employing a powerful laser
beam to drive the optomechanical cavity. This laser beam carries a substantial
coherent amplitude ϵ(t) that varies with time. Such a driving force, centered at
the frequency w0, can be incorporated through the addition of an extra driving
term.

Hnl =
1
2

h̄ωm(x2
m + p2

m)− h̄∆0C†
c Cc + h̄g0xmC†

c Cc − ιh̄[E∗(t)Cc − E(t)C†
c ],
(2.29)

For a strong laser drive the optomechanical Hamiltonian given in above
equation (2.31) can be approximation.

Hlin = h̄ωmC†
mCm − h̄∆cCc

†Cc + h̄
g0αc√

2
(Cm + C†)(Cc + C†), (2.30)

An effective detuning, ∆c, has been introduced, which undergoes a shift
from ∆0 owing to the altered equilibrium position of the mirror. The coupling
strength g = g0αc/

√
2 of the linear interaction is enhanced by the inclusion of

12
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the term αc. In the current context, αc denotes the square root of the photon
number within the cavity. When a high-finesse cavity or a robust laser drive
is dealt with, a considerable average photon count within the cavity can be
observed. Consequently, the strength of interaction can undergo a significant
increase by several orders of magnitude.

Hbs = h̄g(CmC†
c + CmCc), (2.31)

The detuning, ∆c, allows us to recognize various interaction modes aris-
ing from the linearized radiation pressure Hamiltonian. One such interaction
mode is referred to as the beam-splitter (BS) Hamiltonian.

Htms = h̄g(CmCc + C†
mC†

c ), (2.32)

The above equation becomes resonant when ∆c = −ωm is matched, The
coherent transfer of energy between the mechanical oscillator and the cavity
mode is observed. This aspect cooling down the mechanical motion using
sideband cooling techniques and can also be harnessed to achieve a state ex-
change between the two modes. This specific interaction is known as the two-
mode squeezing (TMS) interaction.

13
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2.5 Quantum Langevin Equations

1. Heisenberg Uncertainty Principle:1. Heisenberg Uncertainty Principle:1. Heisenberg Uncertainty Principle:
The Heisenberg uncertainty principle is a fundamental concept in quantum
mechanics that states that certain pairs of physical properties, such as position
and momentum, cannot be precisely measured simultaneously. The more ac-
curately you measure one property, the less accurately you can measure the
other. This intrinsic uncertainty is a fundamental aspect of quantum mechan-
ics.

2. Langevin Equation:2. Langevin Equation:2. Langevin Equation:
The Langevin equation is a stochastic differential equation commonly used to
describe the motion of particles in a fluctuating environment. It accounts for
both deterministic forces (such as applied forces) and random forces (repre-
senting the influence of the surrounding environment). The Langevin equation
is often used in classical mechanics to model the behavior of particles under-
going Brownian motion.

3. Heisenberg-Langevin Approach:3. Heisenberg-Langevin Approach:3. Heisenberg-Langevin Approach:
The Heisenberg-Langevin approach extends the ideas of the Langevin equa-
tion to the context of quantum mechanics. It considers the effects of noise and
fluctuations on quantum observables, similar to how the Langevin equation
describes the motion of classical particles in a noisy environment.

The Heisenberg-Langevin approach is particularly useful for understand-
ing how quantum systems respond to external influences and fluctuations. It
is often applied in fields such as quantum optics, quantum electronics, and
quantum information theory, where quantum systems are frequently subjected
to environmental noise that can affect their behavior.

2.6 Quantum Fluctuations and Noise in the Heisen-

berg Langevin Framework

The optical cavity experiences a strong laser field with frequency ωl and a
probe field with frequency ωp. Furthermore, the mechanical resonators MR1

14
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and MR2 are subjected to external driving fields with amplitudes and corre-
spondingly.
∆c :∆c :∆c : This term likely represents a frequency detuning of the system.
κ :κ :κ : This is a decay rate parameter that represents the rate at which the quan-
tum system loses energy or information.
G0 :G0 :G0 : This parameter might represent an optomechanical coupling constant
related to the interaction between different parts of the system. It can affect the
dynamics of the system.
b†

1 and b1 :b†
1 and b1 :b†
1 and b1 : These are likely operators related to the creation and annihilation

of particles in a quantum system, specifically the quantum field√
2κCin(t) :

√
2κCin(t) :

√
2κCin(t) : This term involves an input quantum field Cin(t) and accounts

for the interaction of the system with an external environment. The term
√

2κ

is likely relates to the strength of the interaction.

ċ = −(ι∆c +
κ

2
)c + ιG0(b†

1 + b1)c + ϵl + ϵpe−ιδt +
√

2κcin(t), (2.33)

ω1 :ω1 :ω1 : This term likely represents the oscillation frequency of a MR1.
ω2 :ω2 :ω2 : This term likely represents the oscillation frequency of a MR2.
ϵ1 :ϵ1 :ϵ1 : The external modulating fields ϵ1 associated with MR1.
ϵ2 :ϵ2 :ϵ2 : The external modulating fields ϵ1 associated with MR2.
γ1 :γ1 :γ1 : This is a decay rate parameter that represents the rate at which energy or
information is lost from b1

γ2 :γ2 :γ2 : This is a decay rate parameter that represents the rate at which energy or
information is lost from b2√

2κζ1 :
√

2κζ1 :
√

2κζ1 : This term involves a stochastic process or the Brownain noise oper-
ators ζ1(t) with an external environment. The term

√
2κ is likely related to the

strength of the interaction.
√

2γ2ζ2 :
√

2γ2ζ2 :
√

2γ2ζ2 : This term involves a stochastic processor or Brownain noise opera-
tor ζ2(t) and accounts for the interaction of with an external environment. The
term

√
2γ2 likely relates to the strength of the interaction.

15
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ḃ1 = −(ιω1 +
γ1

2
)b1 + ιG0c†c − ιGcb2 + ϵ1e−ιδt−ιϕ1 +

√
2κξ1(t), (2.34)

ḃ2 = −(ιω2 +
γ2

2
)b2 − ιGcb1 + ϵ2e−ιδt−ιϕ2 +

√
2γ2ξ2(t), (2.35)

ĉin signifies the input vacuum noise linked to the cavity field, featuring a
zero mean value. Meanwhile, the expressions ζ1(t) and ζ2(t) stand for Brown-
ian noise operators related to the damping of MR1 and MR2 respectively. The
symbols κ and γi (i = 1, 2) represent decay terms connected to the cavity and
MRi (i = 1, 2) correspondingly. Employing the mean field approximation, the
noise term mean values are averaged to zero, considering dissipation and fluc-
tuation components. This process leads us to the equations.

8

⟨ċ⟩ = −(ι∆c +
κ

2
)⟨c⟩+ ιG0(⟨b†

1⟩+ ⟨b1⟩)⟨c⟩+ ϵl + ϵpe−ιδt +
√

2κcin(t), (2.36)

⟨ḃ1⟩ = −(ιω1 +
γ1

2
)⟨b1⟩+ ιG0⟨c†⟩⟨c⟩ − ιGc⟨b⟩2 + ϵ1e−ιδt−ιϕ1 +

√
2κξ1(t),

(2.37)

⟨ḃ2⟩ = −(ιω2 +
γ2

2
)⟨b2⟩ − ιGc⟨b1⟩+ ϵ2e−ιδt−ιϕ2 +

√
2γ2ξ2(t), (2.38)

With these three equations we obtain the steady-state solutions.we see the ef-
fective detuning is ∆ = ∆c − G0q1s, Also ℘p ≪℘l, , only consider strong laser
power

cs =
ϵl + ϵp

ι∆ + κ
2

, (2.39)

b1s =
ιG0|cs|2 − ιGcb2s + ϵ1e−ιϕ1

ιω1 +
γ1
2

, (2.40)
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b2s =
−ιGcb1s + ϵ2e−ιϕ2

ιω2 +
γ2
2

. (2.41)
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Chapter 3

The Model

We consider a high-Q Fabry-Perot cavity of length L. According to Figure 1, the
cavity is made up of a fixed mirror and a movable nano-mechanical resonator
MR1, with a driving field and a probe field, as shown in Fig. 4.1 The total
Hamiltonian of the given system is

The equation you’ve provided represents the total Hamiltonian Ĥ of a phys-
ical system as the sum of three distinct components: Ĥmc Ĥdr and Ĥint In quan-
tum mechanics, the Hamiltonian operator represents the total energy of a sys-
tem and governs its time evolution. Let’s see the equation and its components:

3.1 Total Hamiltonian of the System

We examine a high-Q Fabry-Perot cavity characterized by its length, denoted
as L. This cavity comprises a stationary mirror MR f ixed and a movable nano-
mechanical resonator MR1, subject to a driving field ϵl and a probe field ϵp.
External modulating fields drive mirrors MR1 and MR2 individually. Further-
more, MR1 is linked to the cavity field through the radiation pressure force,
and it connects to another movable mirror MR2 via an adjustable electrostatic
Coulomb coupling force. The oscillation frequency of MR1 is ω1, and that of
MR2 is ω2. The strength of Coulomb coupling is regulated through bias volt-
ages: +V1 for MR1 and −V2 for MR2. This implies that, alongside the opto-
mechanical coupling, the system includes a modifiable Coulomb coupling in-
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tensity.

Figure 3.1: The schematic of the Nano-Electro-Opto-Mechanical system.The
mechanical resonator MR1 is connected to the cavity field via optomechan-
ical coupling represented by g0, and the second mechanical resonator MR2
through the strength of Coulomb coupling, gc. An input laser field with am-
plitude ϵl and a probe field with amplitude ϵp are introduced into the cavity
through the fixed mirror. Furthermore, MR1 is influenced by the biased volt-
age +V1, while MR2 is influenced by the biased voltage −V2. In this context,
L signifies the cavity’s length, ϵ1 and ϵ2 refer to the external driving fields on
MR1 and MR2 respectively, ϵout pertains to the output probe field, and γ1 and
γ2 denote the mirror decay rates.

Ĥ = Ĥmc + Ĥdr + Ĥint. (3.1)

3.2 Mirror and Field Hamiltonian

In the uncoupled scenario, denoted by Hmc, within a rotating reference frame
at frequency, the mirror and field Hamiltonian is observed. The detuning of
the cavity field frequency is indicated by ∆c = ωc − ωl. The initial component
embodies the single-mode of the cavity field, characterized by frequency ωc

and the annihilation (or creation) operator ĉ(ĉ†). The following two terms cor-
respond to the independent Hamiltonian of the movable mirrors, MRi, each
having mass mi and oscillating at frequency ωi, where i = 1; 2. The operators,
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qi, and pi, symbolize position and momentum, respectively.

Ĥmc = h̄∆c ĉ† ĉ +

[
p̂2

1
2m1

+
1
2

m1ω2
1 q̂2

1

]
+

[
p̂2

2
2m2

+
1
2

m1ω2
2 q̂2

2

]
. (3.2)

3.3 Driving Field Hamiltonian

Ĥdr combine Hamiltonian of various components, including the strong laser
field with amplitude ϵl, the weak probe field with amplitude ϵp and the ex-
ternal driving fields ϵ1 and ϵ2. Here, δc = ωp − ωl symbolizes the detun-
ing frequency of the probe field from the laser frequency ωl. The initial two
terms represent the classical light fields (pump and probe) at frequencies ωl

and ωp respectively. The strong laser power ℘l and the probe field power ℘l

correspond to ωl and ωp through relations ϵl and ϵp, respectively. The ul-
timate term depicts the Hamiltonian of external modulation applied to MR1
and MR2, where ϵj (j = 1; 2) denotes amplitude and phase. The symbols bj

and bj† correspond to the phonon annihilation and creation operators of MR1
and MR2 respectively. Minor oscillations of the MRs from their mean positions
can be defined as qj =

√
h̄

2mjωj
(bj + bj†). Similarly, the oscillations in mirror

momenta can be described using the relation q̇j = pj/mj. The third Hamil-
tonian term, Hint, represents the coupling between the cavity field and MR1
through opto-mechanics, along with the Coulomb coupling linking MR1 and
MR2. This is expressed as:

Ĥdr = ιh̄ϵl(ĉ† − ĉ)+ ιh̄
(

ϵpe−ιδt ĉ† − ϵ∗peιδt ĉ
)
+ ιh̄

[
Σ2

j=1

(
ϵjq̂je−ιδt+ιΦj − ϵjq̂†

j e−ιδt−ιϕj
)]

.
(3.3)

3.4 Interaction Hamiltonian

The component signifies the interaction between MR1 and the cavity field due
to opto-mechanical coupling. The following element represents the Coulomb-
based coupling involving the moving mirrors. Specifically, the optomechanical
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coupling strength, denoted as g0 = (ωc
L

√
h̄

2m1ω1
), is calculated as g0 = wc, while

the Coulomb coupling strength is represented as gc = κcC1V1C2V2
h̄r3

0
. The stable

distance between the two resonators is denoted as r0. In terms of phonon
annihilation (or creation) operators, it can be expressed as bj(b†

j ).

Ĥmc = −h̄∆ĉ† ĉ + h̄ω1b†
1b1 + h̄ω2b†

2b2. (3.4)

Ĥint = −h̄g0ĉ† ĉq̂1 + h̄gcq̂1q̂2, (3.5)

The detuning frequency of the probe field from the laser frequency is de-
noted as δc = ωp − ωl. The initial two terms encompass the classical optical
fields (pump and probe) characterized by frequencies ω1 and ω2 respectively.
The relationship between the strong laser power ℘l and the probe field power
is expressed through the variables ϵl =

√
2κ℘l
h̄ωl

and ϵp =
√

2κ℘l
h̄ωp

respectively.

Ĥint = −h̄G0ĉ† ĉ(b1 + b†
1) + h̄Gc(b†

1b2 + b1b†
2). (3.6)

The G0 = g0

√
h̄

2m1ω1
and G0 = gc

√
1

2m1m2ω1ω2

21



Chapter 4

Optical Bi- Stability Results

The optical bistability has been observed experimentally in micro cavities[48].
In our work the bistability behaviour is the effect of non linearity that comes
from the strength of optomechanical coupling G0 and the strength of coulomb
coupling Gc. The solution of equation (3.6) provides us with steady state values
of cavity photon number and is given below

|ϵl + ϵp|2 = |cs|2
[

κ2

4
+ (∆c − G0(b∗1s + b1s))

2
]

. (4.1)

Here |cs|2 = csc∗s .The occurrence of bistable behavior in the system can be seen
through this equation. In equation (3.8), if we take G0 = 0 then the bistabillity
in photon number will vanishes. We can obtain a third order polynomial of
the steady state intracavity photon numbers by rearranging the equation (3.8)
as below

a1x3 + a2x2 + a3x + a4 = 0. (4.2)

Where

x = |cs|2. (4.3)

a1 = G2
0a2

1, (4.4)
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a2 = 2α1(Γ + ∆cG0), (4.5)

a3 =

(
κ2

4
+ ∆2

c + G0Γ(G0Γ + 2∆c)

)
, (4.6)

a4 = −|ϵl + ϵp|2, (4.7)

Here, α1 = β1 + β∗
1, Γ = α2ϵ2 + α3ϵ1, α2 = β2e−ιϕ2 + β∗

2eιϕ2 , α3 = β3eιϕ1 +

β∗
3eιϕ1 , β1 = ι(ιω2+γ2/2)G0

(ιω1+γ1/2)(ιω2/2)+G2
c
, β2 = −Gc

G0

β1
(ιω2+γ2/2) and β3 = −ιβ1

G0
.

This equation has three roots, two of which correspond to stable regimes of
the steady state photon number and the third to an unstable regime. with
inflection and critical points, i.e. yc = −b±

√
b2−3ac

3a and yin f = −b/3a. The
solutions of the cubic polynomial equation ay3 + by2 + cy+ d = 0 provides the
branches of the bi-stable curve. Using the solutions for yc and yin f , we can
write the critical and inflection points of the Equation (5.1) as,

xc± =
−a2/a1 ±

√
(a2/a1)2 − 3a3/a1

3
, xin f = −a2/3a1, (4.8)

where xc+ and xc− are critical points of upper and lower stable limbs of the
bistable curve respectively, while xin f is the inflection point of the curve. The
range of the bistability window is determined by these critical points and at
these points the driving laser field power ℘l, has a corresponding window
also. We think our new system works with small differences between vibra-
tion frequencies, and these small differences can change when the laser light
is stronger. So, when we make the laser light stronger, the number of photons
also goes up. So, when the laser is really strong within a specific range, the
number of photons stays in two different states. When we make the laser even
stronger, the light’s change in frequency comes close to a specific value, which
we call ”critical detuning.” At this critical point, the two states of photon num-
ber start to appear. This special frequency value decides when the two states
happen in the system.

∆c =
√

3κ (4.9)
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We want to explore how to control when light and mirrors switch between
two states in the new nanosystem we made (NEOMS). We use some numbers
from recent experiments [31, 32]. The cavity inside NEOMS has a length of L =

25 cm, and r0 = 2 mm. To keep things simple, we use two identical mechanical
mirrors (MRs) with masses m1 = m2 = 145 ng each. They vibrate at around
an oscillation frequency ω1 = ω2 = 2π × 947 kHz and decay rates γ1(γ2) =

140 kHz. The cavity where decay rates is κ = 2π × 215 kHz. We figure out
the light’s frequency using its speed and the wavelength of the light, which is
1064 nm. We pick some numbers for calculations, and the pump light’s power
is 9 mW. Since the mechanical part’s frequency is higher than the light’s fading
speed, everything happens in a certain way.

4.1 Intra-Cavity Photon Number

The particles of light, that are present within a confined space called a cav-
ity. This cavity is typically designed to trap and contain light. The concept is
important in various fields like quantum optics and laser physics. The pho-
ton number within the cavity can vary based on factors such as the input of
light, the characteristics of the cavity, and interactions with surrounding mate-
rials. Researchers often study the behavior of intra-cavity photon numbers to
understand how light behaves in confined environments and how it interacts
with matter. By controlling and manipulating the intra-cavity photon number,
scientists can achieve effects like optical amplification, lasing, and quantum
entanglement. This concept finds applications in technologies ranging from
lasers and optical communication systems to quantum computing and preci-
sion measurement devices.

We’re looking at how the number of steady photons changes when we
change the laser power ℘l,. There are specific points on the graph: critical
points are where the curve has lower and higher stable sections, and inflection
points P and Q show where the curve becomes unstable. When we start with
a weak laser and slowly make it stronger, the photon intensity first follows the
lower stable part S1 of the curve, and then suddenly jumps to the upper sta-
ble part S2 when the laser power reaches a certain value. if the driving laser

24



OPTICAL BI- STABILITY RESULTS

power are increase to 7.6mW. The upper stable part extends until a specific
point. There’s a dashed blue line that’s unstable and goes between points P
and Q. The unstable line slopes downward, but we can’t really see it in real ex-
periments. If we start with a strong laser and gradually weaken it, the photon
number first follows the upper stable part, then jumps to the lower stable part
at a different critical points xc+, xc−, and continues to decrease from there.

We present a comprehensive examination of controllable bistability, pre-
dominantly affected by factors like coupling frequencies and external modu-
lation field strength. The intracavity photon count vs. laser power shows an
S-shaped bistability curve at different levels of optomechanical coupling, with
overlapping bifurcation curves for various coupling frequencies. Increasing
optomechanical coupling strength G0 enhances mechanical back-action, aug-
menting radiation pressure force and leading to photon dispersion within the
cavity.

Figure 4.1: The average intracavity photon number |Cs|2, in relation to the
driving laser power, ℘l,. These results are obtained using specific system pa-
rameters for this scenario, including m1 = m2 = 145 ng and ω1 = ω2 = 947
kHz, ϵ = ϵ = 0, and G0 = 2π × 215 kHz.

The bifurcation curve initially traces the upper stable branch at a lower cou-
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pling regime, specifically at G0/2π = 6kHz (depicted by the solid black line).
As the optomechanical coupling frequency is further increased, the upper sta-
ble path follows the lower stable path. This transition occurs at G0/2π = 7kHz
(represented by the dashed black curve). Alongside the alteration in photon
counts, enhancing the optomechanical coupling frequency also narrows the
bistable curve. When G0, the optomechanical coupling strength G0, is raised,
the third lower stable path succeeds the second lower stable path, and vice
versa.

4.2 Effect of external mechanical driving fields on

optical bistability

The steady-state photon number’s bistable curve without any external me-
chanical driving forces is represented as ϵ1 and ϵ2. We introduce external me-
chanical pumps to activate micro-resonators MR1 and MR2, investigating the
sudden alterations in system bistability. Consequently, we apply mechanical
pumps (acoustic stimulants) ϵj = ϵje−iϕ1 (j = 1; 2) to the mechanical resonators
MRs, analyzing their impact on the intracavity photon count, denoted as |Cs|2.

Applying a mechanical pump field to MR1 results in intriguing phase-
sensitive optical phenomena in the NEOMS. By maintaining the constant am-
plitude ϵ and varying the phase angle ϕ, altering the angle from π/4 to π leads
to amplified steady-state intracavity photon intensity,

An intriguing observation appears in the bistability plot, where the curves
intersect at the same point and the upper stable branches follow one another,
as do the lower stable paths. Conversely, when driving the second mechanical
resonator MR2, maintaining the constant amplitude ϵ2 and altering the phase
angle brings forth slight modifications in the upper stable branch of the curve.
The transition between paths is evident as the blue solid, blue dashed, and
black long-dashed curves shift.

Interestingly, this transition doesn’t mirror in the lower stable paths, which
remain independent of the phase angle. This behavior is attributed to the fact
that the external modulating field only alters the effective Coulomb coupling

26



OPTICAL BI- STABILITY RESULTS

strength between the mirrors, without directly affecting the radiation pressure
force.

By selectively driving mechanical resonators MR1 and MR2 while main-
taining constant phase angles and varying amplitude, similar behaviors of the
bistable curve can be observed. This demonstrates the complex interplay be-
tween external modulation, phase angles, and amplitude in shaping the optical
responses of the system.
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Chapter 5

Conclusion

We introduce a robust method for practically realizing optical switches using
a nano-electro-opto-mechanical system (NEOMS). This complex setup com-
prises an optical resonator and two interconnected moving mirrors influenced
by the electrostatic Coulomb force. Our study reveals optical and mirror bista-
bility patterns, shaped by input laser power, coupling frequencies, and exter-
nal mechanical influences on the mirrors. We explore the system’s resilience
and dynamic control by manipulating the mirrors’ mechanical motion to in-
fluence the optical cavity field, and vice versa. By adjusting parameters like
amplitude and phase angle, we selectively drive the mechanical resonators.
We investigate optical bistability under varying conditions, including optome-
chanical and Coulomb coupling frequencies, and cavity detuning. Our find-
ings demonstrate the controllable manipulation of steady-state photon bista-
bility through input laser power adjustments. Furthermore, we report success-
ful control of optical bistability using external mechanical driving fields on the
mirrors. This control is achieved by selectively driving one of the mechan-
ical pumps, enhancing the steady-state photon count and improving mirror
motion. The amplitude and phase adjustments of external mechanical inputs
influence the phase-sensitive bistability of static photon counts. Our study
also uncovers mirror bistability influenced by optomechanical and Coulomb
coupling strengths. Stable branches of bistable curves overlap at different mir-
ror field coupling frequencies. The introduction of external mechanical driv-
ing fields results in the suppression and enhancement of mirror displacement
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bistability. The combination of coupling frequency, switchable mechanical
driving fields, cavity field detuning, and threshold laser power enables the
development of adjustable optical switches and all-optical transistors. This
work lays the foundation for potential extensions, including the achievement
of multistable behaviors in both static photon intensity and mirror displace-
ment.
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