EXPLORING THE APPLICATION OF VERTICAL
FEDERATED LEARNING FOR CLASSIFICATION
PROBLEMS

by

Sehrish Asghar

In the partial fulfillment of the requirements

for the degree
Master of Philosophy

Department of Electronics

Quaid-I-Azam University Islamabad
Pakistan.

2021-2023

Certificate

It is certified that the work presented in this dissertation is accomplished by Sehrish Asghar
under my supervision at Quaid-i-Azam University, Islamabad, Pakistan.

Supervisor:

Dr. Musarat Abbas

Associate Professor

Department of Electronics

Quaid-i-Azam University, Islamabad, Pakistan.

Submitted through:

Prof. Dr. Qaisar Abbas Naqvi

Chairman

Department of Electronics

Quaid-i-Azam University, Islamabad, Pakistan.

Acknowledgements

I sincerely thank Almighty Allah, the Most Gracious and the Most Merciful, Who has re-
warded me in ways far beyond anything I could have imagined. I praise Prophet Muhammad
(S.A.W.W), whose life inspires all humans.

I would like to extend my profound appreciation to my supervisor, Dr. Musarat Abbas, for
his assistance, inspiration, and direction during the entirety of my M.Phil. studies. His exper-
tise and experience have enhanced my knowledge and research-related abilities. This research
would not have been possible without his gracious guidance and supportive suggestions. His
guidance and belief in me have been instrumental in my academic growth and success.

I would like to express my appreciation to Prof. Dr. Antonio Coronato for his contribu-
tion to the successful completion of this research work. Sincere thanks also go to Dr. Giovanni
Paragliola for his continuous support, advice, encouragement, and valuable suggestions during
the entire period of my research work. Moreover, his timely assistance in providing necessary
resources for research played a key role in the completion of this research work. I also appre-
ciate Dr. Muddasar Naeem for his positive attitude and enthusiasm that kept me motivated
throughout the research.

I offer my deepest gratitude to Prof. Dr. Qaisar Abbas Naqvi and all the teachers at the
Department of Electronics who encouraged and taught me in my M.Phil coursework.

I want to express my sincere gratitude to my parents, and my entire family for their unwa-
vering love and assistance during my education.

Sehrish Asghar

Dedicated To my beloved Parents

Abstract

The primary goal of occupancy detection is to determine whether the room or any specific place
is currently in use by some individual or specific item. This capability holds immense potential
for managing efficient electricity, heat, and ventilation in large buildings like hospitals, hotels, or
industries. The main objective of this research work is to employ a machine learning technique
called vertical federated learning for occupancy detection. In this research occupancy detection
dataset from the UCI Machine Learning Repository is used. For occupancy detection, six
classifiers are used for the prediction of the highest accuracy and deep learning model. The
algorithm of vertical federated learning with categorical cross-entropy loss (vFedCCE) is used
to deploy the gradient-based optimizer on the clients, instead of the centralized server using
the occupancy detection dataset UCI. The proposed model consists of two clients: clientl and
client2, both having the same samples with distinct sets of features. In the initial stage, client1
will develop its model by considering its distinctive features and sharing this model with client2.
Client2 will utilize both its model and the model received from clientl to make predictions.
After independently calculating its gradient values, client2 will then update its model weights
accordingly. This collaborative effort aims to improve the overall model performance, as the
client2 will incorporate the gradients obtained from the clientl into its model weights and
subsequently return these updated weights to clientl. After this clientl updates its model
weights based on the received gradients from client2. This process continues until the desired
results are achieved. It has been observed that the vFedCCE model exhibits low accuracy

as compared to the centralized model while preserving computational cost, privacy, and data
bandwidth.

Contents

Certificate
Acknowledgements L
Abstract
List of figures
List of tables
List of acronym
List of Acronyms

1 Introduction

1.1 Artificial Intelligence
1.1.1 Working of AT
1.1.2 Ways of implementing AT
1.2 Learning Paradigms L
1.2.1 Supervised Learning
1.2.2 Unsupervised Learning
1.2.3 Semi-supervised Learning
1.2.4 Reinforcement Learning L.
1.3 Artificial Neural Network
1.3.1 Sigmoid
1.3.2 Hyperbolic Tangent (Tanh)
1.3.3 Softmax
1.3.4 Rectified Linear Unit(ReLU)
1.4 Limitations of AI, ML, and DL
1.5 Motivation
1.6 Objective o
1.7 Thesis Structure
1.8 Summary

2 Preliminary Studies

2.1 Federated Learningo
2.2 Applications of Federated Learning
2.2.1 Healthcare
2.2.2 Natural Language Processing
2.2.3 Computer Visiono
2.2.4 Autonomous Vehicles

Tt W N

225 ToT . o o

2.3 Categorization of Federated Learning
2.3.1 Distribution of Data o
2.3.2 Learning Modelso
2.3.3 Architecture

2.4 Vertical Federated Learning 00
2.4.1 VFL Architecture With A Third-party
2.4.2 VFL Architecture Without A Third-party
2.4.3 Application of Vertical Federated Learning
2.4.4 Challenges of Vertical Federated Learning

2.5 Challenges of Federated Learning
2.5.1 Expensive Communication
2.5.2 System Heterogeneity
2.5.3 Statistical Heterogeneity Lo
254 Privacy Risk oo

2.6 SUMMATY

Experimental and Methods

3.1 Imtroduction
3.2 Dataset
3.3 Methodology
3.3.1 Implementing Occupancy Detection Data Analysis on Google Colab . . .
3.3.2 Import Librarieso
3.3.3 Data Analysis
3.3.4 Data Preprocessing o
3.3.5 Splitting the Dataset into Training and Testing Sets
3.3.6 Classifiers
3.3.7 Deep Learning Model Using Neural Network
3.3.8 Performance Metrics
3.4 State of the Art Comparison
3.5 Summary ...

vFedCCE Algorithm

4.1 Code Implementation
4.1.1 Import Libraries
4.1.2 Data Analysis
4.1.3 Data Shuffling and UUID Matching for Dataset Synchronization
4.1.4 Train and Test Datasets Information
4.1.5 Initialization of Training Components
4.1.6 Function Descriptions for Plotting
4.1.7 Collaborative Model Training Framework for Client Collaboration
4.1.8 Instantiation of Client Objects

4.2 SUMMATY

36
36
37
38
38
38
39
41
42
43
44
46
48
49

5 Conclusion and Future Work
5.1 Conclusion
5.2 Future Work

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6

History of AT 12
Artificial Neural Network oL 14
Sigmoid 15
Tanh(xX) oo 16
Relu e 17
Process of Federated Learning 20
Categorization of Federated Learning 23
Horizontal Federated Learning 24
Vertical Federated Learning 25
Transfer Federated Learning 26
Vertical federated learning with coordinator 28
Vertical federated learning without coordinator 29
Attributes statistics L 41
Count of each value 41
Scaled dataset 43
Plot of Training and Validation loss 45
Plot of Training and Validation accuracy 46
Classification report of RF 47

List of Tables

3.1 Performance Metrics of Classifiers
3.2 A Comprehensive Overview of Occupancy Detection

List of Acronyms

Acronym
Al

ANN

ML

FL

HFL
VFL

FTL
PCA

RF

LR

GNB
LDA
SVM
KNN

DL

NLP

[oT
vFedCCE

Description

Artificial Intelligence
Artificial neural network
Machine learning

Federated learning
Horizontal Federated Learning
Vertical Federated Learning
Federated Transfer Learning
Principal component analysis
Random Forest

Logistic Regression

Gaussian Naive Bayes

Linear Discriminant Analysis
Support vector machine
K-nearest neighbor

Deep learning

Natural language processing
Internet Of Things

Vertical Federated Categorical Cross Entropy

10

Chapter 1

Introduction

1.1 Artificial Intelligence

In the present era, people experience a life marked by enhanced progress and convenient utiliza-
tion of advanced technologies. AI pioneer John McCarthy coined the term as the discipline of
engineering and scientific endeavors entailing the construction of intelligent devices, with a par-
ticular emphasis on computer programs. Artificial Intelligence involves the process of enabling
computers, computer-controlled robots, or software to exhibit intelligent thinking akin to the
human mind. This is achieved through a comprehensive study of human brain patterns and the
analysis of cognitive processes. The knowledge gained from these studies is utilized to create
intelligent software and systems. There has been an increase in artificial intelligence-related
software in recent years. Figure 1.1 shows the brief history of Al

1.1.1 Working of Al

In basic terms, Al systems operate by integrating extensive datasets with intelligent and iterative
processing algorithms. This amalgamation enables Al to acquire knowledge from patterns and
characteristics found in the analyzed data. With each iteration of data processing, an Al
system evaluates its performance, measures the outcomes, and utilizes the results to enhance
its expertise further.

1.1.2 Ways of implementing Al

There are several ways to implement AI, depending on the specific problem and the available
resources.

1.1.2.1 Machine Learning

Machine Learning is described as a branch of AI that utilizes statistical techniques to empower
computer systems in acquiring knowledge from data, ultimately working towards achieving
specific objectives. The concept was originally coined by Arthur Samuel in 1959.

11

George Devol

A test for machine developed Shakey was the
intelligence was Unimate into the first general
made public by first industrial purpose mobile
Alan Turing robot robot
1950 1961 1969
1942 1955 1964
Utilizing Al, the . A
- - The word "Al Joseph
.elmgr[r;a m:CS'ne is first used by Wiezenbaum
was decoe John McArthy created the first
chatbot named
Eliza
2011 2002 1997
The Q/A 2008 The vacuum 1998 DeepBlue 1935
cc?mputer Voice - cleaning robot The creation of beats chess The ChatbotALI_CE
system called recognition called Roomba] legend introduced by Richard
» Kismet, a robot ¥ Richar
IBM Watson feature on the was created " A W
wae i with emotions fallace
was introduced iPhone and
birth of Siri
2016 2020
2014 2017 2022
) The first robot A revolutionary
The pioneer of citizen called The first Al tool for automated Al has also
Amazon devices Sophia was music composer conversations - merged an
called Alexa was introduced called Amper GPT-3 was alliance with
introduced was created introduced Cyber Security

Figure 1.1: History of Al

1.1.2.2 Deep Learning

Deep learning is a subset of machine learning that enables Al to replicate the intricate neural
network of the human brain. This sophisticated technique equips Al systems with the capacity
to comprehend intricate patterns, identify relevant information amidst the noise, and effectively
handle sources of ambiguity within the provided data. It is composed of artificial neurons or
interconnected nodes, that transmit and process information to deal with challenging problems.
It uses vast amounts of data to train these networks, allowing them to learn how to perform
tasks such as autonomous decision-making, and speech and image recognition.

1.2 Learning Paradigms

The supervised learning, unsupervised learning, semi-supervised learning, and reinforcement
learning are the learning paradigms of ML.

1.2.1 Supervised Learning

Supervised learning is a type of ML that involves training an algorithm with a labeled dataset
whose outcomes have already been determined. For example, an image serves as the input, and
the result is the image’s class or category, such as cat, dog, or vehicle. Because the photographs

12

are manually classified by humans, the outcome is already known. This labeled dataset trains
the system on how to classify new, unseen images. Tasks including scene segmentation, object
detection, and image recognition benefit from this methodology. The two dataset components
that are split into two categories for supervised learning are the test and the training set. The
algorithm uses the training set to figure out how the inputs and outputs are connected. The
test set is then used to evaluate the algorithm’s predictions’ accuracy. Algorithms for super-
vised learning often fall into one of two categories: classification or regression. Classification
and regression are the two basic subtypes of supervised learning algorithms. Classification algo-
rithms are used to predict categorical outcomes, such as whether or not an email is spam, while
regression algorithms are used to forecast continuous outcomes, such as the price of a stock.

1.2.2 Unsupervised Learning

Unsupervised learning is a kind of ML. where the algorithm tries to find patterns or structures
in the data without the help of labeled outputs. For example, in marketing, clustering can be
used to segment customers based on their purchasing behavior, without having prior knowledge
of which customers belong to which group. The algorithm explores the data to uncover hidden
structures and relationships between variables. It is also used to reduce the dimensionality of the
data. For example in dimensionality reduction, the algorithm reduces the number of features
in high-dimensional data to make it easier to visualize and analyze. This can be beneficial
in situations where high dimensional data is difficult to display and interpret, such as face
recognition. Some algorithms used in unsupervised learning are PCA, Autoencoder, and many
more depending upon requirements.

1.2.3 Semi-supervised Learning

Semi-supervised learning is a category of machine learning that falls somewhere between su-
pervised learning and unsupervised learning. In semi-supervised learning, the training dataset
consists of both labeled and unlabeled examples, allowing the model to learn from both sources
of information. For example, Imagine you are working for a company that develops a spam
email classifier. You have a limited budget to hire human experts to label emails as either
“spam” or ‘not spam” for training. However, you have a much larger set of unlabeled emails
available. In a typical supervised learning scenario, you would only use the labeled emails to
train a model. However, in a semi-supervised learning approach, you can take advantage of the
large pool of unlabeled emails to improve the model’s performance.

1.2.4 Reinforcement Learning

Reinforcement learning is a machine learning approach wherein an agent acquires the skill of
decision-making through a sequence of actions within an environment, aiming to optimize its
performance based on a reward signal. The aim is to learn the best sequence of actions to take
in order to maximize a reward signal. This occurs through a trial-and-error process in which
the agent engages with its surroundings, receives feedback in the form of rewards or penalties,
and adapts its approach accordingly. Over time, the agent’s policy improves, leading to a more

13

optimal approach to the task at hand. This method can be applied to real-world problems,
like robotics, recommendation systems, and autonomous decision-making. A simple case of
reinforcement learning can be seen in a robot attempting to navigate a maze. The robot is
positioned in the maze and gets a reward for reaching the end and a penalty for hitting a wall.
Through repeated trial and error, the robot gradually learns the best way to get to the end
while avoiding the walls. The robot updates its strategy after each attempt by analyzing the
rewards received, determining which actions lead to the highest rewards. Over time, the robot’s
approach to the maze becomes more refined, converging toward the optimal solution. This
scenario showcases how reinforcement learning can be utilized to tackle problems that involve
making sequential decisions and maximizing rewards.

1.3 Artificial Neural Network

The design of an ANN, including the number of nodes in each layer, the number of layers, and
the connections between the nodes, is referred to as its architecture. The network’s design has a
critical role in how well it can identify the underlying patterns in the data. A standard artificial
neural network comprises an input layer, one or more hidden layers, and an output layer.

e The input layer accepts input data in a variety of forms that the user provides.

e The hidden layers process the information and transmit it to the output layer from the
input layer.

e The network’s predictions are produced by the output layer.

Figure 1.2: Artificial Neural Network

Each node in the network represents an artificial neuron, which performs a simple compu-
tation on the data it receives from input layers and transmits the result to the next layers. The
connections linking the nodes are characterized by weights that undergo adjustments throughout

14

the training process. These adjustments aim to minimize the disparity between the network’s
predictions and the real output. Weights determine the strength of the connection between two
nodes, with larger weights indicating a stronger connection. Biases also play a crucial role in
determining the network’s predictions. This can help to ensure that the network is not stuck in
a local minimum during the training process and can also help to improve the network’s accu-
racy. Both weights and biases are updated during the training process, using algorithms such
as backpropagation. The objective is to identify the values that minimize the error between the
actual output and the network’s predictions. The design of the architecture is often informed
by the nature of the problem being solved and the available data. After receiving input signals
and weights, the neuron performs a dot product and passes the result through the activation
function. It maps the dot product to a new output value, which can be used by other neurons
in the network. There are several popular activation functions used in ANNs, each with its own
strengths and limitations. Some are

1.3.1 Sigmoid

The sigmoid function is widely used in the output layer of a binary classification problem, as it
maps inputs to outputs in the range of 0 to 1, representing the probability of the positive class.

1
f = 1.1
@)= 1o (L)
W0 U
—_ /
05 | A
/f/
00 |
-8 2z 0 2 H

Figure 1.3: Sigmoid

The limitations of the sigmoid activation function include the saturation issue where it
becomes difficult for the network to learn for large positive or negative inputs, as the derivative
approaches zero. Additionally, the calculation of the sigmoid function can be slow, affecting the
speed of network convergence during training.

15

1.3.2 Hyperbolic Tangent (Tanh)

In a neural network, the tanh function is commonly used as an activation function. It maps any
input value to a value between -1 and 1 and is centered around zero, making it a good choice
for hidden layers in the network.

et —e "t

tanh(z) = —— 1.2
()= (12)

L

— "'f—r(’- 1
= oo —
T
8 2 0 2 2

Figure 1.4: Tanh(x)

However, it also has some limitations. One of the major limitations is saturation, where the
function reaches large positive or negative values and the gradient becomes close to zero, slowing
down training. Since the range of tanh is not (0,1), it’s not suitable for binary classification
tasks where the output should be between 0 and 1. These limitations should be considered
when using the tanh function in a neural network.

1.3.3 Softmax

In a neural network’s output layer, the Softmax function is a mathematical function that is
frequently used as an activation function. This function’s objective is to predict the class that
has the highest probability out of all the classes in multiclass classification issues. The Softmax
function maps a set of real-valued inputs to a probability distribution across the classes.

eri
n .
Zj:l e*s

The limitation of the Softmax function is that it assigns non-zero probabilities to all classes,
even when some of the classes are not relevant. This can result in poor performance in certain
classification problems, such as multi-label classification, where it is important to differentiate
between relevant and irrelevant classes.

f(z); = (1.3)

16

1.3.4 Rectified Linear Unit(ReLU)

Deep neural networks or multi-layer neural networks both employ the non-linear activation
function known as ReLu. It maps negative input values to zero and positive values remain
unchanged, resulting in a piecewise linear function. The ReLLU activation is simple and com-
putationally efficient, making it a popular choice in deep networks. This helps improve the
network’s training speed and prevent the vanishing gradient problem. The mathematical ex-
pression is

f(z) = max(0, x) (1.4)
If the input is negative, ReLU units can become inactive (output 0), which results in dead
neurons that no longer contribute to the network’s prediction.

10

f(x) = max(0, x)

-10 -5 0 5 10

Figure 1.5: Relu

1.4 Limitations of AI, ML, and DL

Although AI, ML, and DL are transformative technologies that are reshaping numerous in-
dustries, they are not without limitations. They are found in many applications ranging from
medicine, and engineering, to the Internet of Things (IoT), marketing, and business analytics
tools. While the advancements in technology bring numerous benefits, it is important to note
that these algorithms heavily rely on substantial volumes of data for the training and testing of
their models. While data acquisition may be relatively straightforward in certain scenarios, there
is a significant privacy concern when models require training on user data. This arises due to
the sensitive nature of personal information and the need to protect individuals’ privacy rights.
To safeguard user privacy, several regulations and legal policies have been introduced, such as
the General Data Protection Regulation (GDPR) and the Health Insurance Portability and Ac-
countability Act (HIPAA). These measures aim to establish guidelines and requirements for the

17

protection and secure handling of user data. The current ML model training process encounters
several challenges. Firstly, gathering data and centralizing it in a single source can be costly and
resource-intensive, making it a barrier to acquiring large and diverse datasets. Secondly, there
is a concern regarding the security and privacy of sensitive data when it is concentrated in a
single location. This concentration increases the risk of data breaches and unauthorized access,
potentially compromising the confidentiality and integrity of the data. Additionally, ML model
training demands extensive computing and power resources. The computational requirements
can be significant, especially for deep learning models that involve complex neural networks.
This places a burden on organizations to invest in a high-performance computing infrastructure
to meet the computational demands of the training process. As users become more aware of
privacy concerns and the regulations surrounding data protection, they exhibit a reluctance to
share their data due to security and privacy apprehensions. Consequently, this lack of data avail-
ability negatively impacts the accuracy of ML models. Furthermore, the centralized training
of ML and Deep Learning (DL) models necessitates substantial amounts of data and powerful
computational resources. Acquiring the necessary energy and power to support the training
and testing of these models becomes an additional challenge in their deployment. Moreover,
the data collected from diverse sources often exist in different formats, requiring extensive pre-
processing and cleaning efforts before they can be effectively utilized for model training. The
classic method of training ML models, centralized training, is collecting and combining data
from diverse sources into a single location where a global model is developed. This strategy has
various disadvantages, including worries about privacy because it needs data exchange, which
may expose sensitive information to unauthorized users. Decentralized training, on the other
hand, is a method of training models locally on dispersed data without sharing the data itself.
This technique resulted in the creation of FL, which enables collaborative training of machine
learning models while ensuring data privacy.

1.5 Motivation

Recognizing the challenges of centralized learning and embracing the concept of vertical feder-
ated learning (VFL) applied to occupancy detection datasets, the motivation driving this thesis
is to enhance the efficiency and precision of machine learning models tailored to this specific
context. The fundamental goal remains rooted in safeguarding data security and privacy within
vertical data sharing frameworks by using the vFedCCE algorithm. VFL emerges as a promis-
ing avenue, introducing decentralized learning that encourages seamless collaboration and data
exchange among vertically segregated sources. This approach holds the realm of occupancy
detection while upholding the confidentiality of sensitive occupancy-related data.

1.6 Objective

e The goal is to produce a model to classify and predict the occupancy detection dataset
by using machine learning techniques.

18

e Improve the accuracy and efficiency of machine learning models used for occupancy de-
tection.

e In the FL process, address the difficulties of centralized and decentralized learning.

e Once high accuracy is reached, implement VFL using the vFedCCE algorithm, enabling
diverse participants to collaborate. It employs client-side gradient-based optimization
with categorical cross-entropy, ensuring privacy in shared ID space and data alignment
without disclosing sensitive information.

1.7 Thesis Structure

1.8 Summary

This chapter covers key aspects of Al, including various learning paradigms such as supervised,
unsupervised, semi-supervised, and reinforcement learning. It introduces the concept of artificial
neural networks as fundamental tools for learning complex patterns. Additionally, the content
highlights the limitations of AI, ML, and DL. At the end, the chapter shows the research
motivation, objectives, and thesis structure.

19

Chapter 2

Preliminary Studies

2.1 Federated Learning

In 2016, Google introduced Federated Learning (FL), and in 2017, they integrated it into Gboard
for Android [35]. FL is a decentralized machine learning technique that protects user privacy
and enables several parties to train a shared model without disclosing their data. The research
on FL can be broadly categorized into three main aspects. Firstly, improving the efficiency
and effectiveness of FL. Secondly, the security of FL is a significant concern. Finally, improving
privacy preservation. FL is appropriate for applications where data confidentiality is important.
The process of FL is as in figure 2.1. This approach is called federated averaging which is the
baseline of FL in many researches. The process is explained in the following steps.

Figure 2.1: Process of Federated Learning

20

1. The server initializes the global model weights and hyperparameters. The hyperparame-
ters include the number of FL rounds, the total number of participating clients, and the
number of clients that will be selected during each training round. These hyperparameters
are important as they govern the overall training process and can affect the performance
and efficiency of the FL. model. Once the global model weights and hyperparameters are
initialized, the server activates the participating clients and broadcast the initialized global
model to them. The server then selects a certain number of clients to participate in each
training round based on certain criteria, such as device availability, device performance,
and data quality. After the clients are selected, The server shares global information such
as weights or gradients with the selected clients.

2. The selected clients then use their local datasets to train their local models and send their
local information, such as weights or gradients, back to the server.

3. After receiving the local information from the selected clients, the server aggregates this
information and update the global model. This updated information is then used by the
clients for the next round of training.

4. The global server then sends the updated parameters of the global model to each client.

5. This process is repeated until the desired results are achieved.

2.2 Applications of Federated Learning

FL can be used in various applications. An overview of some of the applications is explained
below.

2.2.1 Healthcare

FL has many potential applications in the healthcare industry due to the need to protect sensi-
tive patient data while leveraging the benefits of machine learning. While medical institutions
may have a considerable amount of patient data, this data alone may be insufficient for training
their own prediction model. FL can be used to build predictive models to identify and prevent
adverse health outcomes. With FL, healthcare organizations can collaborate and share data
without compromising patient privacy. For example, multiple hospitals could contribute their
EHR data to train a model for predicting sepsis risk, but each hospital would only send en-
crypted data to a central server for model aggregation. [5] proposed the framework “FedHealth”
utilizes federated transfer learning to train a model for personalized prediction based on data
gathered from wearable healthcare devices and it is tested for Parkinson’s disease. The project
“Federated Mortality Prediction” by organizations such as AI Sweden utilizes federated learning
to predict the survival rate of emergency care patients. [17] utilized federated learning to per-
form brain tumor segmentation using the BraT§S dataset and they also incorporated differential
privacy techniques to ensure that data privacy regulations were being followed.

21

2.2.2 Natural Language Processing

Natural language processing is one of the most common applications which uses machine learning
models. It eliminates language complexity by enabling machines to communicate with it and
comprehend human language in both written and spoken form. Training accurate language
models for NLP requires a large amount of data, which be easily collected from mobile devices.
However, centralized models that collect and store text data from individual devices may face
privacy concerns as the data often contain user information. By leveraging FL, it is possible
to build accurate NLP models without compromising the privacy and security of the training
data as shown in [8]. Google’s GBoard is a popular application that utilized FL to enhance
query suggestions on Android phones keyboard [35]. Another application is predicting the next
word [10]. In [25] FL utilized for the prediction of emojis.

2.2.3 Computer Vision

Computer vision is an important application area of federated learning that involves training
models on visual data. For example, FL can be used in object recognition tasks, where the
model is trained to identify specific objects within an image or video and FL can also be
applied to facial recognition, where the model is trained to identify individuals in images or
videos. Additionally, FL. can be used in traffic sign recognition, where the model is trained to
recognize different types of traffic signs, such as speed limit signs or stop signs. [27] introduced a
method for detecting face presentation attacks using FL. [20] proposed a platform “FedVision”
to develop computer vision-based safety monitoring solutions in smart city applications.

2.2.4 Autonomous Vehicles

Federated learning can provide two key benefits for self-driving cars. Firstly, it can ensure data
privacy by using precise data rather than sharing and analyzing the complete user information
on a central server. Secondly, it can reduce latency, allowing self-driving cars to respond quickly
during safety incidents when there are many such cars on the roads. Conventional cloud-based
machine learning requires transferring large amounts of data to a central server for training,
which can be slow and inefficient for autonomous vehicles that require immediate decision-
making. On the other hand, FL can allow vehicles to learn from decentralized data sources
without transferring the raw data to a central location. This can result in faster learning and
better performance, which is crucial for ensuring the safety of autonomous vehicles. FL can
enable vehicles to respond more quickly and accurately to changing environments, reducing the
risk of accidents and improving overall safety. In [23] the authors conducted a user study to
evaluate the effectiveness of personalized federated learning for trajectory models in autonomous
vehicles.

2.2.5 IoT

The Internet of Things (IoT) is a rapidly growing network of devices, vehicles, buildings, and
other physical objects that are embedded with sensors, software, and network connectivity,

22

enabling them to collect and exchange data. These devices are capable of sensing and computing,
which allows them to monitor their environment, communicate with other devices, and make
decisions based on the data they collect. The Internet of Things (IoT) has become increasingly
prevalent in our daily lives as intelligent services and applications powered by Al have grown in
popularity. Al techniques have been traditionally dependent on centralized data collection and
processing, which could pose significant challenges in real-world IoT applications. Federated
learning has emerged as a promising solution for IoT applications, where data privacy is of
utmost importance. loT-based federated learning has numerous application areas, including
smart healthcare, smart transportation, smart city, and smart banking.

2.3 Categorization of Federated Learning

Federated learning is categorized based on the following factors: the distribution of data, models

learning, and architecture [16].
Cross device
.| Distribution of
data Cross silos
Horizontal Federated Learning

Categorization of

Federated Leaming » Learning models » Vertical Federated Learning

Federated Transfer Learning

» » Centralized

Architecture —{

Figure 2.2: Categorization of Federated Learning

* Peer-to-peer

* Decentralized ‘

Blockchain

2.3.1 Distribution of Data

When training the models using federated learning, it is important to consider the distribution
of data across the data sources. There are two main types of data distribution: cross-device
and cross-silos.

In cross-device, the model is distributed among edge devices, such as smartphones or IoT
devices, and is trained locally on each device using the data available on that device. The local
models are then aggregated into a global model that represents the knowledge learned across all
devices. This approach allows for privacy-preserving machine learning, as the data never leaves
the device and is only used to update the local model. It is particularly useful in scenarios
where data is generated at the edge, such as in healthcare or IoT applications.

On the other hand, cross-silos involve training a local model at data centers or silos and then
aggregating those models into a global model at a centralized point. It is useful in scenarios
where the data is soiled, and it is not possible to train the model on all the data sources due to

23

regulatory or privacy concerns. It allows for collaboration across multiple organizations or data
silos, while still maintaining the privacy and security of the data.

2.3.2 Learning Models

Another way to categorize federated learning is based on the learning model used. There are
several types of FL learning models, including Horizontal Federated Learning, Vertical Federated
Learning, and Federated Transfer Learning.

2.3.2.1 Horizontal Federated Learning

Horizontal federated learning is a type where an ML model is trained using data from multiple
organizations or entities. In this category, the dataset shares the same features with different
instances.

Client A

Client B

Different sample space
sjaqen

Horlzontal Federated Learning

Same feature space

Figure 2.3: Horizontal Federated Learning

This scenario usually occurs in the same fields. Google’s federated model solution for Android
mobile phone is a kind of horizontal federated learning since the data used in this scenario has the
same feature dimension [22]. For example, a healthcare organization intends to use a federated
learning model to predict heart disease. To achieve this goal, the organization could collect data
from multiple hospitals, each with patient data related to heart disease diagnosis. This data is
considered a horizontal subset as it belongs to the same class (heart disease) but comes from
different sources (hospitals). By pooling this data together, the organization can leverage the
diversity of the dataset to train a more robust machine learning model. Another example of HFL
would be two regional banks operating in different areas with different customer bases. The user
group of these banks are largely unique to their respective areas, and the overlap between their
customer is very minimal. However, despite catering to different customer segments, their core
business functions and operations are quite similar. This means that the features and attributes
used to describe and analyze their customers are essentially the same.

24

2.3.2.2 Vertical Federated Learning

Vertical federated learning is a type where different organizations or entities can collaborate to
train a machine learning model while keeping their data private and secure. In this category,
each party has a different feature space but the same sample space.

Client A
i

Vertical Federated Learning

Same sample space

=
i =
Client B g
7]

Different feature space

Figure 2.4: Vertical Federated Learning

This scenario usually occurs in different fields. The FATE (Federated Al Technology Enabler)
project is an example of vertical federated learning. For example, let’s imagine two distinct
companies operating in the same city, a bank, and an e-commerce company. Given their presence
in the area, it is highly probable that their user bases encompass a significant portion of the
local residents. However, the types of data they collect from their users differ substantially. The
bank primarily focuses on capturing information related to user financial activities, including
revenue, expenditure behavior, and credit ratings. On the other hand, the e-commerce company
primarily retains data associated with user browsing habits, purchase histories, and preferences.
In the case of airlines and hotels, they possess distinct data belonging to the same customer
such as flight details and lodging records. Hence, for vertical federated learning, it is crucial
to synchronize the data samples and encrypt the model. Vertical federated learning during
the training process ensures that the other participants are unaware of each other’s data and
attributes. This approach enables the global model to data insights from all the participants,
eliminating the risk of model loss.

2.3.2.3 Federated Transfer Learning

Federated transfer learning is an example of federated learning which is applicable in a scenario
where the dataset varies not only in feature space but also in sample space. For example, consider
two institutions, a bank located in China and an e-commerce company based in the United
States. Due to geographical limitations, the user based of these companies has minimal overlap.
Additionally, their distinct business operations contribute to only a small portion of their feature
spaces being shared. In such a scenario, transfer learning techniques can be employed to address

25

the entire sample and feature space within a federated setting. These techniques involve learning
a shared representation that bridges the gap between the two feature spaces, utilizing the
limited set of common samples available. The objective is to establish a common understanding
and representation that can be applied to make predictions for samples that possess features
exclusively from one side of the institution. By learning a common representation, the shared
knowledge from the limited common sample sets can be effectively utilized to enhance the
predictive capabilities of both institutions. This approach allows for leveraging insights gained
from the shared feature space to make predictions and draw conclusions for samples that possess
features unique to one institution. FTL research is still in its early stages and has significant
room for growth, particularly in its ability to handle diverse data structures. However, FTL is
a successful method for removing data island boundaries while also securing user data security
and privacy.

bt Federated Transfer

a i

m Client A Learning

=2

o

E |

[+-] 1

o i

b]

e e i

z

] b
E Client B =
Q)

Different feature space

Figure 2.5: Transfer Federated Learning

2.3.3 Architecture

Federated learning allows the training of machine learning models across a distributed network
of devices while preserving user data privacy. FL models can be trained in different modes,
depending on the architectural design and interactions between the elements of the system. FL
can be implemented using either centralized or decentralized approaches to train a model.

In a centralized approach, a central server collects and stores all user data and coordinates
the training of the FL model. The central server is in charge of choosing the clients who
will participate in training the model, combining the local models into a global model, and
transmitting the global model to all the participating devices. For example, a centralized social
media platform where all user data, posts, and interactions are stored on a single central server.
Users log in to the platform through the server, and all communication between users, content
moderation, and data storage is handled by this central server. The platform controls the
algorithms that determine the content shown in users’ feeds, manages privacy settings, and

26

enforces community guidelines. Any updates, changes, or new features are implemented and
deployed from this central server to all users.

In a decentralized approach, there is no central server. Data is distributed among multiple
devices, and each device trains its own local model on its own local data. For model sharing
and aggregating the local updates, peer-to-peer or blockchain can be used. For a peer-to-peer
decentralized approach consider a P2P file sharing network. In this decentralized approach,
users directly connect to each other’s devices to share files. Each user has both the role of
a consumer and a contributor. When a user downloads a file, they also become a source for
others to download from. There is no central server; instead, the network relies on the collective
resources of all participants. Users can search for and download files from multiple sources
simultaneously, leading to efficient and distributed file sharing. For a blockchain decentralized
approach consider the use of a blockchain-based cryptocurrency like Bitcoin. In this decen-
tralized approach, transactions are verified and recorded in a distributed and immutable ledger
known as the blockchain. Multiple participants, called nodes, contribute computing power to
validate transactions using consensus mechanisms. Transactions do not rely on a central bank
or authority; instead, they are verified by the decentralized network. This approach ensures
transparency, security, and resistance to censorship or manipulation.

In this thesis, vertical federated learning is employed, and the following sections elaborate on its
precise definition, its architectural framework, applications across various domains, and chal-
lenges.

2.4 Vertical Federated Learning

Existing studies primarily concentrate on horizontal federated learning (HFL), where partici-
pants have the same attribute space but different sample spaces. One instance of HFL is when
a group of hospitals collaborates to develop an ML model that predicts health risks for their
patients. This is achieved by leveraging agreed-upon data and sharing knowledge across the
participating hospitals. However, HFL often faces limitations in practical scenarios, particularly
when it comes to fostering collaboration among organizations that have competing interests.
Business considerations make it highly unlikely for organizations to willingly cooperate with
their competitors [6]. In contrast, vertical federated learning (VFL) is well-suited for situations
in which organizations possess the same set of data samples but vary in terms of their feature
space. VFL facilitates collaboration among organizations that do not compete with each other
and possess vertically partitioned data. In such instances, it is common for one organization
to have access to the ground truth or labels associated with certain features of a set of sam-
ples. The remaining participants contribute to the federation by providing additional feature
information within the same sample space. However, they take measures to ensure that their
data is not directly disclosed to other participants. In exchange for their contributions, these
participants can receive compensation in the form of monetary or reputational rewards.

Let D = (I; X; Y) represent a comprehensive dataset comprising three components: I, X,
and Y, which respectively represent the sample ID space, the feature space, and the label space.
According to the definition provided in [33] VFL is performed on two distinct datasets: D1 =
(I1; X1; Y1) and D2 = (I2; X2; Y2). These datasets satisfy the conditions

27

X1 #X2, Y1 #Y2 and I1 = I2.
There exist two fundamental architectures for VFL: with a third party or without a third
party.

2.4.1 VFL Architecture With A Third-party

[11] [33] proposed a specific architecture consisting of a trusted third party called the coordinator

and two parties. The primary responsibilities of the coordinator were: computing the training
loss and generating key pairs for homomorphic encryption to ensure privacy. Suppose that
two clients, A and B, join forces to collaboratively train a machine learning model using their
respective local datasets. Client A possesses the label data required for training the global
model. However, since Client A and Client B are honest but curious about each other, ensuring
data privacy is essential. To address this concern, a trustworthy third-party coordinator, C, is
introduced into the process. This coordinator, such as governmental authorities, plays a pivotal
role in overseeing and managing the FL procedure to safeguard data privacy. The VFL system
can be broken down into five key steps:

1. The VFL system involves aligning the IDs between the datasets of Client A and Client B.
Since the datasets may have different IDs, privacy-preserving techniques based on encryp-
tion such as private set intersection (PSI) [21], are employed to ensure the confidentiality
of Client A and Client B’s data. These techniques allow the identification of shared data
instances between clients without compromising their private information, which is then
used for training the VFL model.

Encrypted Model Training

1. Send public keys Coordinator C

3. Compute encrypted gradient & loss

‘2. Share the intermediate results ‘

4. Update model

Z/ARNN

J—

ClientA ClientB

Figure 2.6: Vertical federated learning with coordinator

2. The Coordinator C creates an encryption key pair and shares the public key with Client
A and Client B.

28

3. Both clients, A and B, employ encryption to secure their intermediate results and then
proceed to exchange this encrypted information with one another.

4. Both clients, A and B individually compute encrypted gradients while incorporating a
mask, and A additionally calculates an encrypted loss. Subsequently, the encrypted re-
sults, including gradients and the loss, are sent by both clients, A and B to C.

5. C decrypts the results received from Client A and Client B, allowing access to the de-
crypted gradients and loss, which are then sent back to both clients, A and B. Following
this, Client A and Client B unmask the gradients and utilize them to update their respec-
tive model parameters.

2.4.2 VFL Architecture Without A Third-party

Involving the third party has significant drawbacks in terms of computational or communica-
tion burdens and potential data insecurity for the involved parties. Subsequent research studies,
such as those conducted by [34] [13] [29], introduced a two-party architecture that effectively
eliminated the requirement for a trusted coordinator. Suppose that two clients, A and B col-
laboratively train a machine learning model using their respective local datasets, and Client A
possesses label data required for training the global model. Both clients A and B are trustwor-
thy and are curious about each other’s data. To safeguard against privacy breaches, the VFL
system implements seven steps:

1. An ID alignment technique such as private set intersection (PSI) [21] is employed to verify
the shared IDs between Client A and Client B. Subsequently, the data instances that are
common to both datasets are utilized to train a VFL model. This approach ensures that
only overlapping data is used for model training, promoting effective collaboration and
privacy preservation.

Encrypted Model Training

|1. Sending public keys

|2. Computing partial linear predictor

|3. Sending encrypted residual

[X]

4. Computing encrypted gradients

ClientA Client B

‘ 1

|5. Sending decrypted gradients

6. Updating model parameters

@ |; | e |

Figure 2.7: Vertical federated learning without coordinator

2. Client A creates an encryption key pair and shares the public key with Client B.

3. Both clients, A and B set up their model weights.

29

4. Client A and Client B individually compute their partial linear predictors, and afterward,
Client B transmits its predictor’s outcome to Client A.

5. After calculating the model residual, Client A encrypts it and subsequently shares it with
Client B.

6. Upon computing the encrypted gradient, Client B forwards the masked gradient to Client
A.

7. Once Client A decrypts the masked gradient, it returns the decrypted gradient to Client
B. Subsequently, both Client A and Client B perform local model updates.

As a result, this architectural approach significantly reduced the system’s complexity.

2.4.3 Application of Vertical Federated Learning

Vertical Federated Learning (VFL) has gained significant traction in both academia and indus-
try due to its ability to facilitate data collaboration across industries and institutions. This has
led to a surge in interest and exploration of VFL applications. Prominent examples of successful
implementations include Fedlearner in ByteDance, Angel PowerFL in Tencent, FATE in We-
bank, Fedlearn in JD, and Paddle in Baidu. These companies have leveraged VFL’s potential to
enable efficient and secure collaborative learning, opening up new avenues for cross-institutional
data analysis and knowledge sharing. In this section, an overview of some of the applications is
explained below.

2.4.3.1 Healthcare

VFL in healthcare has the potential to revolutionize patient care and advance medical research
significantly. For example, by securely combining and analyzing distributed healthcare data
from various sources, such as hospitals, research institutions, and wearable devices. VFL em-
powers healthcare providers to leverage diverse patient data while prioritizing stringent privacy
safeguards. [30] introduces vertical asynchronous federated learning (VAFL), a novel approach
that validates its efficiency using the publicly available healthcare dataset MIMIC-III. [26] uti-
lized VFL for cancer survival analysis, aiming to forecast the probability of patients surviving
a certain duration after being diagnosed. [28] utilized VFL to establish a collaborative model
between mobile network operators (MNOs) and healthcare providers (HP).

2.4.3.2 Finance

New approaches to VFL have seen significant development in finance, offering promising appli-
cations in this domain. For example, VFL in finance allows banks with different sets of customer
data to collaboratively train an ML model for fraud detection while ensuring data privacy. By
securely combining their unique features, the banks can improve the accuracy of the model
without sharing sensitive information. [38] introduces a method for training traditional score-
card models using a gradient-based approach. [4] developed a secure algorithm for large-scale
sparse logistic regression, which was then applied to enhance financial risk control. In [24], a

30

combination of homomorphic encryption and coordination framework was utilized to construct
a non-split vertical federated learning system that seamlessly integrates with other Bayesian
systems for risk management purposes. [14] proposed an innovative adversarial domain adapta-
tion algorithm explicitly designed for finance. The algorithm focuses on tackling the challenges
of limited labeled data, commonly known as label deficiency issues in financial applications.

2.4.3.3 Recommendation Systems

Recommendation systems are extensively utilized in various applications, including online shop-
ping and news reading, enhancing users’ daily experiences. Recommendation systems aim to
predict user interest in specific items by leveraging user and item-related data, as well as their
historical behaviors. Increasing the volume of training data can improve the performance of
these predictions. However, privacy concerns and data silo issues necessitate a viable solution,
and VFL emerges as a promising approach to address these challenges. As an example, an on-
line library service provider that possesses users’ reading history can collaborate with an online
movie streaming platform, which holds information about users’ viewing history. By combining
these datasets, valuable data features can be enriched, resulting in improved recommendation
accuracy [32]. [28] proposed an innovative solution that leverages SecureBoost to augment rec-
ommendation precision when working with data from mobile network operators and healthcare
providers. [3] developed a novel framework for social recommendations that utilize Multi-Party
Computation (MPC) and follow the vertical federated approach.

2.4.3.4 Computer Vision and Natural Language Processing

VFL is also being actively investigated in the fields of computer vision and natural language
processing. For example, in computer vision, organizations with diverse datasets can collabo-
rate using VFL to collectively improve object detection models by securely exchanging gradient
updates while preserving data privacy, enabling accurate detection of objects from various view-
points. In natural language processing, VFL allows organizations to collaboratively train lan-
guage models by leveraging the unique linguistic characteristics of separate datasets, enhancing
the models’ capabilities for tasks like sentiment analysis and language translation while main-
taining data privacy. [18] introduced a VFL CNN algorithm designed for image classification,
addressing the scenario where multiple parties possess incomplete portions of the same set of
images. The VFL method developed demonstrated accuracy comparable to that of a centralized
approach.

2.4.3.5 Telecommunication

In the field of telecommunication, traditional centralized learning methods necessitate the shar-
ing of data from various sources, posing risks of privacy breaches for each party involved. As
a result, VFL is being embraced to provide support for telecommunication in various domains,
addressing the need for enhanced data privacy and security. [12] introduced a VFL algorithm
specifically designed for collaborative model training in disaggregated networks. The algorithm
is applied to classify the quality of transmission, addressing the need for efficient and secure
data analysis in such networks. [37] proposed a low-latency VFL algorithm aimed at enhancing

31

the accuracy of spectrum sensing in the domain of wireless communication. The algorithm was
specifically designed to address the need for improved data analysis in this area while minimiz-
ing latency. [19] utilized VFL to effectively leverage multi-view observation data from distinct
wireless sensing devices in the domain of motion recognition. The application of VFL enabled
them to capitalize on diverse data sources and improve the accuracy of the motion recognition
task.

2.4.4 Challenges of Vertical Federated Learning

This section offers valuable insights into the current approaches employed to enhance various
aspects of VFL. It also identifies gaps in the existing literature, highlights unresolved challenges,
and discusses recent advancements in the field [15]. Let’s explore some of them.

2.4.4.1 Communication Efficiency

As the size of training data continues to grow across various platforms, the challenges posed by
VFL become more pronounced. The total communication and computation cost in VFL scales
proportionally with the data size, resulting in significant increases in local model computations,
updates, and communication overhead. However, researchers have been working on addressing
this issue by developing computation and communication efficient methods that aim to reduce
complexity. Despite these efforts, the ever-increasing volume of data poses a persistent challenge
for VFL, especially considering that the computing resources available to individual participants
do not grow at the same rate as the data. The goal of achieving low communication rounds
and minimizing computation costs remains an ongoing challenge in making VFL more efficient
in this data-explosive environment.

2.4.4.2 Privacy and Security

Privacy and security have always been major concerns in FL since ensuring the confidentiality
of raw data is crucial for data owners to participate in the collaborative model training pro-
cess. Researchers have made significant efforts to identify potential privacy vulnerabilities and
malicious attacks in FL setups. However, the focus on security aspects in VFL is relatively
limited compared to traditional FL. Many privacy-preserving protocols, such as homomorphic
encryption, secret sharing, and differential privacy, are commonly used in HFL scenarios. In
contrast, their application and effectiveness in VFL settings have not been thoroughly explored.
Additionally, there is a lack of research on defense mechanisms against poison attacks, where
adversaries introduce malicious data during the training phase, and backdoor attacks, which
involve inserting malicious functionality into targeted models through poisoned updates from
malicious clients. Given these challenges, there is still ample room for improvement in addressing
privacy and integrity leakage issues in VFL.

2.4.4.3 Feature Selection

For many decades, feature selection has been a subject of extensive research and application in
various fields, such as text mining, image recognition, fault diagnosis, and intrusion detection.

32

VFL holds great promise in numerous feature selection applications due to its ability to maintain
privacy while collaborating across different organizations. By combining feature selection with
VFL, businesses can jointly conduct feature selection tasks without the risk of exposing their
sensitive data. Although a few solutions for privacy-preserving feature selection in VFL have
been presented, but this area remains largely unexplored. Therefore, there is a compelling
opportunity for future research to focus on developing efficient and effective privacy-preserving
feature selection protocols specifically tailored for VFL scenarios. This would advance the field
and facilitate secure collaboration in feature selection across organizations.

2.4.4.4 Limited Training Data

As a critical preprocessing step in VFL, identifying overlapping samples among the clients is
essential. However, in many cases, the number of overlapping samples may be insufficient to
achieve optimal performance for VFL models. One possible solution is to expand the training
data, but this approach must carefully address privacy concerns since sharing local raw data is
not permissible. On the other hand, disregarding the non-overlapping samples among partici-
pants would mean wasting valuable data resources. Given the expensive and challenging nature
of data acquisition, there is a need for innovative approaches that can infer relevant informa-
tion from non-overlapping data as well. Such methods could help enhance the performance of
VFL models without compromising data privacy, making more effective use of available data
resources.

2.5 Challenges of Federated Learning

Since federated learning is a relatively new field, it faces several challenges that must be ad-
dressed. Let’s explore some of them.

2.5.1 Expensive Communication

One major challenge faced by federated learning is the difficulty of reducing communication
overhead during the process of training across multiple devices. To train a model on the data
produced by devices in a federated network, it is crucial to use communication-efficient tech-
niques that send messages or model updates during the training process instead of transmitting
the entire dataset over the network. This is because federated networks include a vast number
of devices and the communication within the network can be significantly lower than the local
computation due to limited resources like bandwidth, energy, and power [31]. To minimize
communication overhead in a federated network, the two aspects to consider are: reducing the
number of communication rounds and minimizing the size of the messages that are transmitted
during each round. By decreasing the number of communication rounds and sending smaller
messages, the overall communication rounds, the overall communication cost can be significantly
reduced, leading to more efficient federated learning.

33

2.5.2 System Heterogeneity

To effectively implement federated learning in networks with multiple devices, it is crucial to
consider the varying storage, computational, and communication capabilities of each device.
Such differences can arise due to hardware variations such as differences in CPU and memory,
network connectivity issues such as type of network, and power-related limitations such as
battery levels. To reduce the burden on federated networks, only a small proportion of devices
are usually active at any given time. This is due to limitations in network size and systems-
related constraints on each device, resulting in only a fraction of the devices being operational
at once. For instance, in a network with millions of devices, only a few hundred devices may
be active at any given time. In federated networks, active devices may drop out during an
iteration due to connectivity or energy constraints, which is not uncommon. Such system-
level characteristics can significantly worsen challenges such as fault tolerance and straggler
mitigation. This can make it difficult to standardize the training process and ensure that the
final model will work well across all participating devices.

2.5.3 Statistical Heterogeneity

In federated learning, each client device training is determined by its usage pattern. Therefore,
the local data set of a single client is not expected to be indicative of the total data distribution
across all clients. This means that the data distribution across the clients is likely to be highly
non-identical, which violates the assumption of independent and identically distributed (i.i.d.)
data in traditional machine learning settings. The non-i.i.d. data distribution in federated
learning poses a challenge to developing effective and accurate models. This is because the
models trained on one client data may not generalize well to other client data due to differences
in the local data sets.

2.5.4 Privacy Risk

Privacy is a crucial aspect of federated learning since it involves the sharing of model updates
rather than raw data. Although this method offers some level of data protection, privacy con-
cerns remain. Transmitting model updates during training can still reveal sensitive information
to the central server or a third party. New methods have been proposed to address this issue,
such as secure multiparty computation and differential privacy. These methods can improve
privacy but often come with a cost to model performance or system efficiency. Balancing these
tradeoffs is a significant challenge in creating an effective and private federated system.

2.6 Summary

This chapter explores Federated Learning, discussing its applications in healthcare, natural
language processing, computer vision, autonomous vehicles, and IoT. It categorizes Federated
Learning based on data distribution, learning models, and architecture. The concept of Verti-
cal Federated Learning is introduced, along with its architectures and applications, while also

34

addressing the challenges it presents. Challenges of Federated Learning in general, such as
communication costs, system and statistical heterogeneity, and privacy risks, are also discussed.

35

Chapter 3

Experimental and Methods

3.1 Introduction

Occupancy detection refers to the process of determining whether a particular room or building
is currently occupied by individuals or not. It is an important aspect of smart buildings, home
automation systems, energy management, and security applications. By accurately detecting
occupancy, various systems can be efficiently controlled and optimized based on real-time oc-
cupancy information.

There are several benefits to occupancy detection. Firstly, it enables energy conservation by
allowing automated systems to adjust heating, cooling, and lighting based on occupancy pat-
terns. For instance, if a room is unoccupied, the system can automatically turn off the lights
and adjust the temperature to save energy. This can significantly reduce electricity consump-
tion and lower utility costs. Secondly, occupancy detection is crucial for enhancing security. By
knowing whether a room or building is occupied, security systems can be activated or adjusted
accordingly. For example, in a smart home, if an unoccupied room is detected to be occupied,
the security system can send an alert to the homeowner, or cameras can be activated to monitor
the situation. Thirdly, occupancy detection enables organizations to optimize space utilization
by analyzing occupancy data. For instance, in a large office building, an occupancy detection
system tracks real-time occupancy in different areas. Through data analysis, the organization
discovers that certain meeting rooms are consistently underutilized while individual offices and
collaborative spaces are in high demand. Based on this information, they can convert underuti-
lized meeting rooms into flexible workspaces or implement shared desks, ensuring workstations
are occupied when needed. This results in cost savings, increased productivity, and a more
balanced work environment. Fourthly, occupancy detection systems play a vital role in ensur-
ing safety and effective emergency response within buildings. For example, in a commercial
high-rise building equipped with occupancy detection sensors, a fire alarm is triggered. The
occupancy detection system immediately identifies the areas where occupants are present based
on real-time data. This information is quickly relayed to emergency responders, enabling them
to prioritize their response and evacuate the affected areas efficiently. Additionally, the system
can provide accurate occupancy information to guide individuals to the nearest safe exit routes,
minimizing confusion and ensuring the safety of everyone inside the building. The timely and
precise data provided by occupancy detection systems enhances emergency preparedness, accel-

36

erates response times, and maximizes the chances of a successful evacuation in critical situations.
Lastly, occupancy detection systems offer significant cost-saving benefits across various areas of
operation. By optimizing energy consumption, these systems help reduce utility costs by auto-
matically adjusting lighting, heating, and cooling systems based on real-time occupancy data.
These savings can have a significant positive impact on operational budgets and financial sus-
tainability. By harnessing the power of occupancy detection, organizations can create smarter,
more efficient, and safer environments, benefiting both occupants and the environment.
Several types of sensors can be utilized for occupancy detection.

1. Passive Infrared (PIP) Sensors: These sensors detect the presence of humans by measur-
ing the infrared radiation emitted by their bodies. PIR sensors are commonly used in
lighting control systems and security applications. They are cost-effective and work well
in detecting occupancy in a defined area.

2. Ultrasonic Sensors: Ultrasonic sensors emit high-frequency sound waves and measure the
time it takes for the sound waves to bounce back after hitting objects in a room. By
analyzing the reflected sound waves, occupancy can be determined. These sensors are
effective in detecting occupancy in large areas or rooms with obstacles.

3. Microwave Sensors: Microwave sensors emit low-power microwaves and detect changes in
the reflected waves caused by moving objects, including humans. They are capable of
detecting occupancy through walls and are often used in security systems.

4. Image-based Sensors: These sensors use cameras or image sensors to capture visual in-
formation and analyze it to detect human presence. By employing computer vision al-
gorithms, these sensors can identify human shapes or movement patterns. Image-based
sensors are commonly used in surveillance systems and advanced occupancy detection
applications.

5. Environmental Sensors: These sensors monitor various environmental factors such as tem-
perature, humidity, air quality, and light levels. By integrating environmental sensors with
occupancy detection systems, a more comprehensive understanding of the overall condi-
tions within a space can be obtained. This information can subsequently be harnessed to
enhance energy efficiency, enhance occupant comfort, and improve the overall performance
of the building.

3.2 Dataset

The Occupancy Detection dataset has been referred for analysis from the UCI Machine Learning
Repository [2]. The dataset consists of 20,560 instances and includes 7 attributes. The dataset
is divided into a training set with 8143 instances and two test sets with instances 2665 and
9752. The attributes are

1. Date

2. Temperature in Celsius

37

. Relative Humidity in

. Light in Lux

CO2 in ppm

. Humidity Ratio, Derived quantity from temperature and relative humidity, in kg water-

vapor per kg-air

Occupancy, 0 or 1, 0 for not occupied, 1 for occupied status

3.3 Methodology

3.3.1 Implementing Occupancy Detection Data Analysis on Google

Colab

Google Colab is a widely used cloud-based platform offered by Google. It empowers users to
create and run Python code within a Jupyter Notebook interface, while also granting compli-
mentary access to robust GPUs and TPUs, making it suitable for various machine learning and
data analysis tasks. Utilizing Google Colab offers several benefits to students engaged in data
science and machine learning projects:

1

A free Jupyter Notebook environment accessible for applications requiring data science
and ML.

. Utilization of a cloud-based platform reduces the necessity for students to possess extensive

computing resources.

. Data processing and analysis skills with user-friendly interface access to strong computa-

tional tools, such as GPUs, to facilitate intricate data analysis.

ML and data analysis integration with well-known Python libraries and tools.

. An notable capability of Google Colab is its seamless connection with Google Drive,

enabling direct access and effortless saving of Colab notebooks into your Google Drive
storage.

from google.colab import drive
drive.mount (‘/content/drive’)

3.3.2 Import Libraries

The libraries utilized in the code are extensively employed across data science and machine
learning domains to perform various tasks, including data manipulation, numerical computa-
tions, development and training of machine learning models, data visualization, and more.

38

. NumPy: NumPy is a highly efficient Python library designed for numerical computing.
It offers optimized data structures and a comprehensive set of mathematical functions
that enable seamless handling of large arrays and matrices.

. Pandas: Pandas is a versatile Python library specifically designed for data manipula-
tion and analysis. It offers convenient data structures, such as DataFrames, that are
particularly well-suited for efficiently working with structured data.

. Matplotlib: Matplotlib is a Python library primarily used for plotting and visualization
purposes. It offers an extensive collection of functions that enable the creation of diverse
visual representations, including line plots, bar plots, histograms, and many other types
of visualization.

. Seaborn: Seaborn, a data visualization library, extends the capabilities of Matplotlib
and provides a user-friendly interface for crafting visually engaging statistical graphics.

. TensorFlow: TensorFlow is a widely-used open-source framework for machine learning
that offers a versatile environment for constructing and deploying various types of machine
learning models, including those based on deep learning techniques.

. Keras: Keras, an API for neural networks, functions at an elevated level of abstraction
and is constructed upon the framework of TensorFlow. It delivers an intuitive interface
that streamlines the steps of constructing, training, and deploying deep learning models.

. Scikit-learn: Scikit-learn stands out as a widely used machine learning library, offering a
range of capabilities for tasks such as data preprocessing, model selection, and assessment.
In this library, the train test_split, found in the model selection module, is employed
to divide datasets into training and testing subsets. Additionally, for feature scaling, the
StandardScalar from the preprocessing module is utilized.

3.3.3 Data Analysis

The dataset contains one main folder which contains three txt files. The code starts by reading
three separate CSV files named datatest.txt, datatest2.txt, and datatraining.txt located
at the specified path. Each file’s data is read into separate DataFrames: datal, data2, data3.

#datal = pd.read csv(path+'/datatest.txt’)
#data2 = pd.read csv(path+'/datatest2.txt’)
#data3 = pd.read csv(path+'/datatraining.txt")

#data = pd.concat([datal, data?, data3])
#data.to csv(path+'/combined.csv’)

df = pd.read csv(path)

df.drop('no’, axis=1, inplace=True)
df.drop('Unnamed: @', axis=1, inplace=True)
df.drop('date’, axis=1, inplace=True)

df

39

Next, the code combines these three DatakFrames using the pd.concat() function, which
concatenates the DataFrames based on their row indices. The resulting merged DataFrame is
assigned to the variable df. This operation combines the data from the three DataFrames into
a single DatakFrame. Afterward, the merged DataFrame df is saved to a new CSV file named
combined.csv at the specified path using the to_csv() function. Following that, the code
reads the “combined.csv” file into a new DataFrame df using the pd.read csv function. The
data from the CSV file is loaded into the DataFrame, assuming the path variable contains the
correct path to the “combined.csv” file. Finally, the code proceeds to drop three columns from
the DataFrame df using the drop() function. The columns no, Unnamed: 0, and date are
removed from df by specifying their names and setting axis=1 to indicate that columns should
be dropped. The inplace=True parameter ensures that the changes are applied directly to the
DataFrame df, modifying it in place and then the final DataFrame is printed.

Temperature Humidity Light CO2 HumidityRatio Occupancy

0 237000 26.2720 585.200000 749.200000 0.004764 1

1 237180 26.2900 575.400000 760.400000 0.004773 1

2 237300 262300 572666667 769666667 0.004765 1

3 237225 26.1250 493.750000 774.750000 0.004744 1

4 237540 262000 488600000 779.000000 0.004767 1
20555 21.0500 36.0975 433.000000 787.250000 0.005579 1
20556 21.0500 359950 433.000000 789.500000 0.005563 1
20557 21.1000 36.0950 433.000000 798.500000 0.005596 1
20558 21.1000 36.2600 433.000000 820.333333 0.005621 1
20559 211000 36.2000 447.000000 821.000000 0.005612 1

20560 rows x 6 columns

3.3.3.1 df.describe()

Following that, the df .describe () function in pandas serves the purpose of generating compre-
hensive statistical insights regarding a DataFrame or Series. It furnishes a synopsis encompass-
ing fundamental statistical aspects such as the dataset’s centrality, dispersion, and distribution
shape for numerical data. The produced output comprises the count, indicating the quantity
of non-missing values; the mean, which signifies the data’s average; the standard deviation, a
metric for data dispersion; the minimum and maximum data values; and quartiles, which par-
tition the data into four equivalent segments. Additionally, it provides information about the
data distribution, such as the 25th, 50th, and 75th percentiles. The describe() function is a
useful tool to quickly assess the overall characteristics and basic statistics of a dataset, allowing
users to gain insights into the data’s range and distribution. Figure 3.1 shows the statistics of
the attributes.

40

Temperature Humidity Light CO2 HumidityRatio Occupancy

count 20560.000000 20560.000000 20560.000000 20560.000000 20560.000000 20560.000000

mean 20906212 27 655925 130.756622 690553276 0.004228 0.231031
std 1.055315 4982154 210.430875 311.201281 0.000768 0.421503
min 19.000000 16.745000 0.000000 412.750000 0.002674 0.000000
25% 20.200000 24500000 0.000000 460.000000 0.003719 0.000000
50% 20.700000 27.290000 0.000000 565.416667 0.004292 0.000000
75% 21.525000 31.290000 301.000000 804.666667 0.004832 0.000000
max 24408333 39.500000 1697.250000 2076.500000 0.006476 1.000000

Figure 3.1: Attributes statistics

3.3.3.2 Distribution of Target Variable

The Seaborn library to utilized to create a bar plot showing the count of each unique value in
the 'Occupancy' column of the DataFrame df with the y-axis representing the count and the
x-axis representing the unique values.

16000 1

14000

12000 4

10000 4

count

8000 -

6000

4000 A

2000 -

Occupancy

Figure 3.2: Count of each value

3.3.4 Data Preprocessing
3.3.4.1 Check Missing Values

The code checks for missing values in a Pandas DataFrame using the isna() and sum() func-
tions. The isna() function returns a DataFrame that marks missing values(NaN) as True and
non-missing values(NaN) as False. The sum() function then adds up the number of True values
in each column to give a total of the missing values. As you can see from the output below,
there are no missing values in the dataset.

41

Temperature
Humidity
Light

Co2
HumidityRatio
Occupancy
dtype: int64

s B I v I v I)

3.3.4.2 Check Data Type

The code checks the data type using the dtypes function in pandas and returns the data types
of each column in a DataFrame, providing information about the type of data stored in each
column.

Temperature floatea
Humidity floatea
Light floatea
co2 floatea
HumidityRatio floatea
Occupancy inte4

dtype: object

3.3.4.3 Split features and target

In this step, we're dividing the dataset into two separate parts: one containing the input vari-
ables (features) that serve as inputs to the model, and another containing the output variable
(target) that the model aims to predict based on those features. This division allows us to train
the model on the features and evaluate its performance in predicting the target variable.

3.3.4.4 Normalization

The code utilized the StandardScaler which is a preprocessing technique from scikit-learn
library that is being applied to the feature dataset. The StandardScaler is fitted on the data
and then transforms the values of the feature dataset such that they are standardized, i.e.,
rescaled to have zero mean and unit variance. This normalization process helps in improving
the performance and stability of certain machine learning algorithms that are sensitive to the
scale of the input features. Figure 3.3 shows the scaled dataset.

3.3.5 Splitting the Dataset into Training and Testing Sets

The train_test_split function is used to split the feature dataset and the target dataset into
separate training and testing sets. 20% of the data is allocated for testing, while the remaining

42

0 1 2 3 4

count 2.056000e+04 2.056000e+04 2.056000e+04 2.056000e+04 2.056000e+04
mean -1.481910e-15 2.211806e-17 1.050608e-16 -1.382379e-16 -5.308335e-16
std 1.000024e+00 1.000024e+00 1.000024e+00 1.000024e+00 1.000024e+00
min -1.806342e+00 -2.190055e+00 -6.213908e-01 -8.927021e-01 -2.024076e+00
25% -6.692123e-01 -6.334613e-01 -6.213908e-01 -7.408674e-01 -6.632705e-01
50% -1.954084e-01 -7.344800e-02 -6.213908e-01 -4.021181e-01 8.280323e-02
78% 5.863681e-01 7.2084363e-01 8.090425e-01 3.666957e-01 7.858972e-01
max 3.318637e+00 2.377358e+00 7.444399e+00 4453646e+00 2 927262e+00

Figure 3.3: Scaled dataset

80% 1is used for training. This division allows us to evaluate the performance of a machine
learning model on unseen data by training it on the training set (X_train and y_train) and
then assessing its predictions on the testing set (X_test and y_test).

3.3.6 Classifiers

This thesis examines six classifiers for the analysis.

3.3.6.1 K-Nearest Neighbours (KNN)

KNN is a supervised Machine Learning algorithm capable of tackling both classification and
regression problems. It operates on the principle that items sharing similarities tend to be
located near each other.

3.3.6.2 Random Forest (RF)

RF is an ensemble learning technique that falls under the category of machine learning algo-
rithms. It involves generating numerous decision trees during the training phase, incorporating
randomness in the construction process. The final output is determined by taking the average
prediction from all the individual trees or identifying the class that represents the mode. By
doing so, the algorithm prevents overfitting or simply memorizing the training data.

3.3.6.3 Gaussian Naive Bayes (GNB)

A probabilistic algorithm called GNB uses strict independence assumptions between features to
create classifications based on the Bayes theorem.

3.3.6.4 Support Vector Machines (SVM)

SVM, a classification algorithm, utilizes a hyperplane to create a separation between two classes
of data. Once trained, the SVM model can effectively classify unseen data.

43

3.3.6.5 Logistic Regression (LR)

LR is a classification method that represents the logit function as a linear combination of
features.

3.3.6.6 Linear Discriminant Analysis (LDA)

LDA is a linear algorithm that uses Bayes’ theorem and assumes normal distributions for the
classes and equal covariance for each class.

3.3.7 Deep Learning Model Using Neural Network
3.3.7.1 Model Definition

The code snippet defines a neural network model using the Keras library. The provided code
defines a basic neural network architecture with three layers using the keras Sequential class.

model = keras.Sequential([
keras.layers.Dense(32, input shape=(5,), activation='relu'),
keras.layers.Dense(26, activation='relu'),
keras.layers.Dense(1, activation='sigmoid")

D

1. The first layer is the input layer. The dense layer is a fully interconnected layer, wherein
each neuron establishes connections with all the neurons in the preceding layer. The layer
has 32 units/neurons, which means it will output a vector of length 32. The input_shape
parameter is set to (5,), which means the input to this layer should have 5 features. Within
this layer, the activation function employed is the rectified linear unit (ReLU), denoted
by activation='relu'. The ReLU function introduces non-linearity to the model by
converting negative values to zero while preserving positive values unchanged.

2. The second layer is the hidden layer. It has 20 units/neurons and applies the ReLU
activation function. This layer accepts the output from the preceding layer as input and
generates a vector with a dimensionality of 20.

3. The third layer is the output layer. It has 1 unit/neuron, making it suitable for binary
classification problems. The activation function used in this layer is the sigmoid function,
specified by activation='sigmoid'. The sigmoid function squashes the output between
0 and 1, allowing the model to output probabilities for the positive class.

3.3.7.2 Model Compilation

Once the model is defined, the next step involves compiling it using the model.compile()
function. This step is crucial as it configures the model for the training phase, and it accepts
various arguments to define the optimizer, loss function, and metrics to be applied during
training.

44

model.compile(optimizer="adam"’,
loss="binary crossentropy’,
metrics=["acc'])

1. Optimizer: The optimizer determines how the model will update its parameters during
training to minimize the loss function. In this case, the Adam optimizer is used, which is
a popular and effective gradient-based optimization algorithm.

2. Loss: The loss function quantifies the disparity between the model’s predicted results
and the actual labels. In binary classification scenarios, it’s common to utilize binary
cross-entropy loss. It is suitable when the model is trying to estimate probabilities for two
mutually exclusive classes.

3. Metrics: The metrics argument is a list of evaluation metrics that you want to monitor
during training and evaluation. In the code, accuracy is used as the metric.
3.3.7.3 Model Training

The model.fit () function is used to train the model. The parameters passed to the fit method
include the training data (X_train, y_train, the number of epochs (10), batch_size (32),
validation split this parameter specifies the fraction of the training data to be used for
validation. In this case, 20% of the training data will be used for validation during training,
and validation data=(X_train, y_train) the same training data is used for validation.

3.3.7.4 Training and Validation Loss and Accuracy plots

Figure 3.4 shows the plot of training and validation loss and figure 3.5 shows the plot of training
and validation accuracy of the neural network.

Figure 3.4: Plot of Training and Validation loss

45

Figure 3.5: Plot of Training and Validation accuracy

3.3.8 Performance Metrics

To assess the effectiveness of different machine learning algorithms and neural network, four

performance metrics were employed. The metrics include

Table 3.1: Performance Metrics of Classifiers

Classifier Accuracy Precision Recall F1 Score
KNN 0.9917 0.9918 0.9917 0.9917
RF 0.9927 0.9927 0.9927 0.9927
GNB 0.9683 0.9721 0.9683 0.9690
SVM 0.9895 0.9898 0.9895 0.9896
LR 0.9902 0.9905 0.9902 0.9903
LDA 0.9868 0.9875 0.9868 0.9869

3.3.8.1 Accuracy

The accuracy metric signifies the fraction of accurate predictions relative to the overall number

of predictions conducted.

Accuracy =

Number of Correct Predictions

Total Number of Predictions

46

(3.1)

3.3.8.2 Precision

Precision is a measure that assesses the ratio of accurate positive predictions to the total number
of positive predictions generated by the model.

Precisi True Positives (3.2)
recision =)
True Positives + False Positives

3.3.8.3 F1 score

The F1 score represents the harmonic mean of a model’s precision and recall, measuring the
model’s accuracy on a specific dataset, specifically in the context of binary classification tasks.

Precision - Recall
F=2. .
! Precision + Recall (3.3)

3.3.8.4 Recall

Recall, which can also be referred to as sensitivity or the true positive rate, measures the fraction
of positive cases (Occupancy) that the model accurately detects.

Recall — True Positives

True Positives + False Negatives

The table shows that the RF model achieved the highest accuracy of 99.27 %. The classifi-
cation report of RF is obtained for further analysis.

Classification Report for Random Forest:

precision recall fil-score support

(] 1.00 0.99 1.00 3201

1 0.98 ©.99 8.98 911

accuracy 0.99 4112
macro avg 9.99 08.99 8.99 4112
weighted avg 9.99 ©.99 9.99 4112

Accuracy: 0.992764280155642

Figure 3.6: Classification report of RF

47

3.4 State of the Art Comparison

Table 3.2 shows the state-of-the-art comparison of occupancy detection compared to previous

studies that had been published.

Reference | Sensors Techniques Accuracy (%)

1] Temperature sen- | NN 94.6% and 91.5% for
sor; sound press ure the binary and multi-
sensing, light sensor; class problems
humidity, pressure,
temperature sensor; a
PaPIR motion sensor

9] CO2 sensors, PIR RH | Machine Learning/An | the ARHMM tech-
sensors, air speed sen- | Autoregressive Hid- | nique has an average
sors and globe ther- | den Markov Model | accuracy of Retracted
mometer (ARHMM) 80.78%.

7] unprecedented carbon | SVM, ANN, and | HMM showed the best
dioxide sensing system | HMM algorithms result providing an ac-

curacy of 73%.

36] BLEMS box - each | six machine-learning | Of the six, the
sensor box hosts a | techniques are evalu- | decision-tree tech-
number of sensors in- | ated in both single- | nique yielded the best
cluding a light sen- | occupancy and multi- | overall accuracy (i.e.
sor, a sound sensor, a | occupancy offices. 96.0% to 98.2%)
motion sensor, a CO2
sensor, a temperature
sensor, a relative hu-
midity sensor, an in-
frared sensor, and a
door switch sensor

This study | Temperature, Humid- | RF, NN, vFedCCE 99.27%, 98.5%, 7%
ity, Light, CO2, Hu-
midityRatio

Table 3.2: A Comprehensive Overview of Occupancy Detection

48

3.5 Summary

This chapter compares several categorization models on the occupancy detection dataset. The
dataset utilized in the study is described in the chapter. The section also describes the technique
used to compare the performance of various classifiers. The chapter finishes by giving the
comparative analysis results, including accuracy and precision metrics, as well as discussing the
state of art comparison with other papers.

49

Chapter 4

vFedCCE Algorithm

Traditional federated learning approaches typically involve sending data from clients to the
server for aggregation and model updates, which can pose privacy concerns. The vFedCCE
algorithm differs from traditional federated learning approaches, which is a vertical federated
learning algorithm designed for classification problems with gradient-based optimization. It uti-
lizes the categorical cross entropy (CCE) loss function to deploy the gradient-based optimizer
on the clients instead of the centralized server, which helps to preserve privacy while training
on a shared ID space. The algorithm involves clients performing local computations on their
own data using the CCE loss function and then sharing the model updates with other clients.
The use of a shared ID space allows for the alignment of datasets without revealing sensitive in-
formation. The vFedCCE algorithm reduces communication costs by minimizing the amount of
data transmitted and can incorporate differential privacy techniques to further enhance privacy
preservation during training. The algorithm vFedCCE is as follows:

50

Algorithm 1 :vFedCCE. m-class classification. Shared ID space I. Epoch number F. Batch size
N. Batch examples indexed as x},z%,y;, 1 € {1,...,N}. wy,w, are the client weight vectors.
Client 2 stores y; € R™ as one hot arrays of length m.

server executes:

for each epoch e =1,2,...,F do
B + divide I into batches of size N

for batch in B do

T
. day; .
client 1 sends a <+ wy] wlx% o wlx}v] and —ai)i to client 2

server logs L < client2.CalculateLossAndUpdate(a)
g clientQ.AssembleGradient(g%f)
client1l.UpdateWithGradient(g)

end

end

CalculateLossAndUpdate(a): // client 2 executes
T

b+« [wgaﬁ WeT3 ... wa?V}
shared model output p < (a + b)/2
N N m
L= _% Zi:l Yi log(pi) = _% Zi:l Zj:l Yij log(pij)

T
€< [91 Ya .- ?/N] @p
client2.UpdateWithGradient (8%2 (== (c, b)F))
return £

AssembleGradient(gaTif): // client 2 executes

1 N m 9aij
return —5 > 0 > " ¢y dwy

UpdateWithGradient(g): // client 1 or 2 executes
update client weights via a specified optimizer with gradient g

4.1 Code Implementation

Using Google Colab for coding and machine learning tasks can bring several challenges for
students. Limited resources like CPU and memory might hinder performance, while session
timeouts can lead to lost work. Reliable internet connectivity is crucial, as disruptions can affect
code execution and data access. Uploading and managing large datasets on Google Drive might
prove cumbersome, and installing dependencies could lead to compatibility issues. Security
concerns might arise when dealing with sensitive data, and the learning curve can be steep
for newcomers. Additionally, occasional service unavailability and downtime might disrupt
workflow. Google Colab initially served as the platform for the development and refinement
of the research code. However, the above mentioned challenges necessitated the exploration

51

of an alternative approach. Consequently, the codebase was migrated to a dedicated server,
leveraging a system distinguished by its robust specifications. The server, identified as Device
DTP-ELE-137, encompasses an Intel Xeon Gold 5220 CPU operating at a frequency of 2.20GHz
with dual processors, complemented by a total of 16.0 GB of installed RAM. Additionally, the
infrastructure is underpinned by a 64-bit operating system, housing an x64-based processor
architecture. This strategic transition effectively mitigated the issue of session timeouts, thereby
ensuring uninterrupted and extended periods of code execution. Importantly, this transition was
seamlessly facilitated by utilizing Jupyter Notebook within the Anaconda Navigator, thereby
augmenting operational efficiency and optimizing workflow management in alignment with the
overarching objectives of the thesis.

4.1.1 Import Libraries

The libraries utilized in the code are

1. Pandas: Supplies Python with tools for both data manipulation and analysis, frequently
employed when dealing with structured data like tabular datasets represented as DataFrames.

2. pd.set option(‘display.max_colwidth’, None): Sets a pandas option to display the
full contents of each column in a DataFrame, without truncating the data.

3. Numpy: It offers assistance for extensive, multi-dimensional arrays and matrices, in
addition to a range of mathematical functions designed for manipulating these arrays.

4. np.set_printoptions(precision=3, suppress=True): Sets the printing options for NumPy
arrays. It configures the precision to 3 decimal places and suppresses the printing of small
floating-point values in scientific notation.

5. Seaborn: Constructed atop matplotlib, it delivers a user-friendly interface for crafting
informative and visually appealing statistical graphics and visualizations.

6. sns.set(style=‘whitegrid’): Sets the default style for seaborn plots to ‘whitegrid’,
which displays a white background with gridlines.

7. Matplotlib: Offers a set of functions for crafting static, animated, and interactive visu-
alizations within the Python programming language.

8. Tensorflow: Imports the TensorFlow library, which is an open-source machine learning
framework created by Google. TensorFlow offers a range of tools for creating and training
diverse machine learning models.

9. Keras: This is an advanced deep learning API that offers a streamlined interface for
constructing and training neural networks.

10. from keras import layers: Contains a variety of pre-built layers that can be used to
construct neural networks.

52

11. from keras import regularizers: Provides functions for applying regularization tech-
niques to neural networks, such as L1 and L2 regularization.

12. from sklearn.model _selection import train_test_split: Imports the train test_
split function from the model _selection module in scikitlearn, a widely used Python
machine learning library. This function is employed to divide a dataset into training and
testing subsets.

13. from keras.layers import preprocessing: Provides functions for preprocessing input
data, such as scaling or normalizing features.

14. from keras.layers import Normalization: This can be used to normalize the input
data during training.

15. Math: Provides various mathematical operations and functions.

16. uuid: Provides functions for generating universally unique identifiers (UUIDs). UUIDs
are commonly used to identify objects uniquely and unambiguously.

17. Random: Provides functions for generating random numbers, shuffling sequences, and
making random choices.

4.1.2 Data Analysis

The dataset contains one main folder which contains three txt files. The code starts by reading
three separate CSV files named datatest.txt, datatest2.txt, and datatraining.txt located
at the specified path. Each file’s data is read into separate DatakFrames: datal, data2, data3.
Next, the code combines these three DataFrames using the pd.concat () function, which con-
catenates the DataFrames based on their row indices. The resulting merged DataFrame is
assigned to the variable df. This operation combines the data from the three DataFrames into
a single DatakFrame. Afterward, the merged DataFrame df is saved to a new CSV file named
combined.csv at the specified path using the to_csv() function. Following that, the code
reads the “combined.csv” file into a new DataFrame df using the pd.read csv function. The
data from the CSV file is loaded into the DataFrame, assuming the path variable contains the
correct path to the “combined.csv” file. Finally, the code proceeds to drop three columns from
the DataFrame df using the drop() function. The columns no, Unnamed: 0, and date are
removed from df by specifying their names and setting axis=1 to indicate that columns should
be dropped. When the inplace=True parameter is used, it guarantees that the alterations
are directly made to the DataFrame df, thereby modifying it on the spot, and the resulting
DataFrame is subsequently displayed.

4.1.2.1 df.describe()

The df.describe() function in pandas is employed to produce statistical summaries for a
DataFrame or Series. It offers an overview of the central characteristics, spread, and distri-
bution shape of numerical data. The output includes count, which represents the number of

53

Temperature Humidity Light CO2 HumidityRatio Occupancy
0 23.7000 26.272 585.200000 749.200000 0.004764 1
1 23.7180 26.290 578.400000 760.400000 0.004773 1
2 23.7300 26.230 5T72.666667 769.666667 0.004765 1
3 23.7225 26,125 493.750000 774.750000 0.004744 1
4 23.7540 26.200 488.600000 779.000000 0.004767 1

non-missing values; mean, the average value of the data; standard deviation, which measures
the spread of the data; minimum and maximum values; and quartiles, which divide the data
into four equal parts. Additionally, it provides information about the data distribution, such as
the 25th, 50th, and 75th percentiles. The describe () function is a useful tool to quickly assess
the overall characteristics and basic statistics of a dataset, allowing users to gain insights into
the data’s range and distribution.

count mean std min 25% 50% 75% max

Temperature 20560.0 20.906212 1.055315 19.000000 20.200000 20.700000 21.525000 24408333
Humidity 20560.0 27.655925 4982154 16.745000 24.500000 27.290000 31.290000 39.500000
Light 205600 130.756622 210430875 0.000000 0.000000 0.000000 301.000000 16397 250000

CO2 20560.0 690.553276 311.201281 412750000 460.000000 565.416667 804.666667 2076.500000
HumidityRatio 20560.0 0.004228 0.000768 0.002674 0.003719 0.004292 0.004832 0.006476
Occupancy 20560.0 0.231031 0.421503 0.000000 0.000000 0.000000 0.000000 1.000000

4.1.3 Data Shuffling and UUID Matching for Dataset Synchroniza-

tion

Assign a unique identifier (UUID) to each entry in the two datasets, and then randomize the
order of the entries. This way, it will be possible to later identify matching entries by referring
to their respective UUIDs.

To create unique identifiers for each entry in the dataset, a series of sequential numbers
ranging from 0 to 20559 is generated. Using the uuid.uuid4() function, each number is trans-
formed into a universally unique identifier (UUID) by converting it into a string format. The
original DataFrame, df, is duplicated into a new DataFrame called df _with_id. An additional
column named ‘id’ is added to df _with_id, containing the generated UUIDs. The ‘id’ column
is then set as the index of the DataFrame.

The original df is vertically partitioned and clientl data and client2 data, are created
from df with id. clientl data includes the features ‘Temperature’, ‘Humidity’, and ‘Light’,
while client2 data includes the features ‘CO2’, ‘HumidityRatio’, and a label ‘Occupancy’.
These datasets are extracted from df with_id based on the specified column names.

By associating the same UUIDs with corresponding entries in clientl_data and client2_data,
it becomes possible to establish connections or matches between the datasets using the unique
identifiers.

54

The first output, client1 data, represents a Datakrame with three columns: ‘Temperature’,
‘Humidity’, and ‘Light’. Each row in this DataFrame corresponds to a specific entry identified
by its ID (indexed by the ‘id’ column). The values in these columns indicate the respective
measurements of temperature, humidity, and light for each entry. For example, in the first row,
we have a temperature of 23.7, humidity of 26.272, and light level of 585.2.

Temperature Humidity Light
id
32ebacdf-8925-401e-bd3T-0Ta865b4123e 23.7000 26.2720 585.200000
d5079d97-ce97-4c27-a169-T879604e3865 23,7180 26.2900 578.400000
c4f98ea5-3476-4c16-9bb1-05423aebdeeo 22.7300 26.2300 572.666667
aPPe8740-21a2-41b1-a02t-eB3ecc9eab91 23.7225 26.1258 493.7560000
19da@599-0a95-4eee-826-3034e38ebfaf 23,7540 26.26000 A488.600000
tad5d89c-afa5-4ed0-b89b-873cd9va32ee 21.05600 36.0975 433.000000
Afbs7ac8-76dc-489c-al75-cafa7bg8a2c29 21.0560 35.995@ 433.000000
efd11f75-dec7-4713-83c2-d79a08c287¢9 21.1000 36.095@ 433.000000
ed99ds5b1-9aac-48ae-abg84a-8ecodefasssc 21.1060 36.2600 A433.000000
5b97730a-fe42-4f9c-9800-5eT249e9e370 21.1000 36.2000 447.000000

[2056@ rows x 3 columns]

The second output, client2_data, is also a DataFrame consisting of three columns: ‘CO2’,
‘HumidityRatio’, and ‘Occupancy’. Similar to clientl_data, each row in this DataFrame rep-
resents an entry identified by its ID. The columns contain measurements of CO2 levels, humidity
ratio, and occupancy status for each corresponding entry. For instance, in the first row, we have
a CO2 level of 749.2, humidity ratio of 0.004764, and an occupancy status of 1.

C02 HumidityRatio Occupancy

id

32ebacdf-8925-401e-bd3f-0Ta865b4123e 749.200000 0.004764 1
d5079d97-c097-4c27-al69-t879604e3865 760.408000 0.004773 1
cAf98ea5-3476-4c16-9bb1-05423aebdeee 769.666667 0.0e4765 1
20Pe8740-21a2-41b1-a@2f-e@3ecc9eas91 774.750000 6.004744 1
19da@599-0a95-4eee-8126-3034e38ebfat 779.000000 0.004767 1
ftAd5d89c-afa5-4ed@-b89b-873cd99a32ee 787.250000 0.0085579 1
Afb57ac8-76dc-489c-al75-caft47b8a2c29 789.5600000 ©.005563 1
efd11f75-dec7-4713-83c2-d79a@8c287c9 798.500000 0.085596 1
ed99ds5b1-9aac-48ae-abg84-8ec9defaps55c 820.333333 0.085621 1
5b97730a-fed2-419c-9800-5e1249e92370 821.000000 0.085612 1

[20560 rows x 3 columns]

Both clientl data and client2 data have the same number of rows (20560), and their
entries are aligned based on the shared ID values.

#non overlapping

common_test_true_index = np.random.choice(client2_data[client2_data['Occupancy’]==1.0].index, 50)
common_test false index = np.random.choice(client2 data[client2 data['Occupancy']==6.8].index, 50)
common_test_index = np.unionld(common_test_true_index, common_test_false index)

In the provided code, two sets of indices are randomly selected from the client2 data
DataFrame. The first set, common _test_true_index, consists of 50 indices corresponding to

%)

rows where the ‘Occupancy’ column has a value of 1.0 (indicating occupancy is true). The
second set, common _test_false_index, also contains 50 indices, but this time they correspond
to rows where the ‘Occupancy’ column has a value of 0.0 (indicating occupancy is false). The
common_test_index is then created by taking the union of these two sets of indices. This result-
ing index array, common_test_index, contains a mixture of indices representing both occupied
and unoccupied instances from client2_data.

clientl train, clientl test = train test split(clientl data.loc[~clientl data.index.isin
(common_test _index)],
test size=0.85, random state=42)
client2 train, client2 test = train_test split(client2 data.loc[~client2 data.index.isin
(common_test index)],
test size=06.85, random state=428)
client1l data.loc[np.unionld(common_test index, clientl test.index)]
client2 data.loc[np.unionld(common_test index, client2 test.index)]

client1 test
client2 test

In this code snippet, the dataset for each of the two clients (client1 and client2) is being split
into training and testing subsets. The training dataset is utilized to train the model, whereas
the testing dataset is set aside for assessing the model’s performance. The split is done using
the train test_split function, where a small portion (5%) of each client’s data is set aside
as the test set, ensuring randomness and reproducibility using specified random seeds (42 for
clientl and 420 for client2). To ensure consistency in testing, data points that are common to
both clients are identified using common_test_index. The testing subsets for both clients are
then updated to include these common data points along with their respective individual test
sets. This process ensures that both clients’ models are evaluated on a shared set of data points.

4.1.4 Train and Test Datasets Information

common_train index = clientl train.index.intersection(client2 train.index)
common_test index = clientl test.index.intersection(client2 test.index)

print(
‘There are {} common entries (out of {}) in client 1 and client 2\'s training datasets,
*\nand {} common entries (out of {}) in their test datasets’
.Tormat(
len(common_train_index),
len(client1l_train),
len(common_test_index),
len(clientl test)))

There are 18473 common entries (out of 19437) in client 1 and client 2's training datasets,
and 159 common entries (out of 1123) in their test datasets

The provided code calculates the common indices between the training and test datasets
of two clients, referred to as “client 17 and “client 2”. In the code, clientl train and
client2_ train represent the training datasets of client 1 and client 2, respectively. Similarly,
clientl_test and client2_test represent their respective test datasets. The intersection()
function is used to find the common indices between the two datasets. It returns a new index
that consists of only the shared entries between the two datasets. These common indices indicate
the entries that exist in both client 1 and client 2’s datasets. The code then prints the number
of common entries found in the training datasets (common_train index) and the number of
common entries found in the test datasets (common test_index). The lengths of these index

56

arrays represent the number of shared entries between the respective datasets. The purpose of
calculating these common indices is to determine the overlap between the data samples used for
training and testing in client 1 and client 2. Having common entries ensures that the evaluation
of models trained on these datasets can be compared and analyzed properly, as they are tested
on the same set of samples.

4.1.5 Initialization of Training Components

As the dataset is analyzed and vertically partitioned into client_1 and client_2, and a unique
ID is assigned, it’s now time to initialize the parameters for VFedCCE.

batch _size = 32
learning rate = 1e-3
epochs = 5@

Instantiate an optimizer.

optimizer = tf.keras.optimizers.legacy.Adam(learning_rate=learning_ rate)

Instantiate a loss function.

Not from logits because of the softmax Layer converting logits to probability.
loss_fn = keras.losses.SparseCategoricalCrossentropy(from logits=False)

Instantiate a metric function (accuracy)

train_acc_metric = tf.keras.metrics.SparseCategoricalAccuracy()

In the provided code, we see the initialization of various components necessary for train-
ing a model. The batch _size variable is set to 32, which determines the number of training
examples processed in a single iteration. The learning rate is set to le-3, determining the
step size for the optimizer’s updates during training. The epochs variable is set to 50, in-
dicating the number of complete passes through the entire training dataset. An instance of
the Adam optimizer is created with the specified learning rate. The role of the optimizer is to
adjust the model’s parameters by using the computed gradients, to enhance the model’s per-
formance. The loss_fn variable is initialized with the SparseCategoricalCrossentropy loss
function. This loss function computes the variance between the model’s predicted outcomes
and the actual labels. In this case, the model’s outputs are assumed to be probabilities after
passing through a softmax layer. Additionally, the train_acc metric variable is instantiated
as the SparseCategoricalAccuracy metric. This metric is used to evaluate the accuracy of
the model’s predictions by comparing them to the true labels.

4.1.6 Function Descriptions for Plotting

For plot, plot_loss(loss, accuracy) function takes two lists, loss, and accuracy, as input. It
uses Matplotlib to plot the loss and accuracy values over epochs. The loss values are plotted as a
line with the label “loss,” and the accuracy values are plotted as another line with the label “ac-
curacy.” The function also adds a legend and grid to the plot. plot_accuracy(predictions,
answers) function calculates various evaluation metrics based on the predictions and true an-
swers provided. It computes the true positives (tp), true negatives (tn), false positives (fp),
and false negatives (fn) by comparing the predictions to the answers. Then, it calculates met-
rics such as accuracy, precision, recall, specificity, and F-measure based on these counts. The

o7

function prints the values of these metrics. convert_to non_sparse(sparse) function takes a
sparse array as input and converts it to a non-sparse array. It creates a new array, vector_list,
with the same length as the input array. It iterates over each element in the input array and
converts it into a two-element array. The first element of the new array represents the comple-
ment of the corresponding element in the input array, and the second element represents the
value of the element in the input array. The function returns the vector_list.

4.1.7 Collaborative Model Training Framework for Client Collabo-
ration

In the given scenario, there are two clients, Client 1 and Client 2. Both clients possess a subset
of the features required for the task. Additionally, Client 2 has access to the corresponding
labels for the data points. The objective is to collaboratively update a model using information
from both clients. To achieve this, Client 1 can send its partial predictions and any other
intermediate data to Client 2. Client 2, with access to the labels, can calculate the total loss
by comparing the partial predictions with the true labels. This total loss represents the overall
performance of the model on the combined data from both clients. After computing the total
loss, Client 2 can update the global model using this information. The updated model is then
shared back with Client 1, enabling both clients to have access to the improved model.

In the code, a class named “Client” with various methods for training and updating a model
collaboratively is created. Here’s a summary of each method:

1. __init__(self, train_data, test_data, labelled): This is the constructor method
of the Client class. It initializes the client with training and testing data, and a boolean
flag indicating whether the data is labeled or not. It also creates a sequential model
using TensorFlow Keras, consisting of normalization layers, dense layers with activation
functions, dropout layers, and a softmax layer.

2. next_batch(self, index): This method prepares the next batch of training data for the
client based on the provided index. If the data is unlabelled, it calculates and returns the
gradients of the model’s output concerning the trainable weights for each example in the
batch. If the data is labeled, it computes the model’s output for the batch.

3. cal model(self): This method returns the model’s output for the current batch.

4. predict(self, test_index): This method predicts the output for the specified test data
index using the model.

5. test_answers(self, test_index): This method returns the true labels for the specified
test data index if the data is labeled.

6. batch_answers(self): This method returns the true labels for the current batch if the
data is labeled.

7. loss_and update(self, a): This method is only called by Client 2. It calculates the
updated probabilities by averaging the partial predictions with the existing model output.

58

It then computes the coefficient and updates the model based on the calculated probabil-
ities and the true labels of the batch. The method returns the updated probabilities and
the loss.

8. coefficient_and update(self): This method is only called by Client 2. It computes the
coefficient used to update the model based on the updated probabilities and true labels of
the batch. It calculates the gradients and applies them to the model’s trainable weights.

9. update with(self, grads): This method updates the model using the provided gradi-
ents for Client 1.

10. assemble grad(self, partial_grads): This method isonly called by Client 2. It assem-
bles the gradients for Client 1 by multiplying each partial gradient with the corresponding
coefficient. It returns the assembled gradients. These methods enable the two clients to
collaborate by exchanging partial predictions, gradients, and model updates to collectively
train the model.

4.1.8 Instantiation of Client Objects

clientl
client2

Client(clientl train, clientl test, False)
Client(client2 train, client2 test, True)

The provided code creates two instances of a “Client” object, namely “client1” and “client2”.
Each instance is initialized with different sets of training and testing data. The “clientl”
object is instantiated with the training data from clientl train and the testing data from
clientl test. Additionally, the third argument passed to the “Client” constructor is set to
“False”, indicating that it does not require a specific setting. On the other hand, the “client2”
object is initialized with the training data from client2 train and the testing data from
client2 test. The third argument is set to “True”, suggesting that this client requires a spe-
cific configuration.

train_index batches = [common_train_index[i:i + batch size]
for i in range(®, len(common_train_index), batch size)]
common_train_index list = common_train_index.to list()

The first line uses list comprehension to create batches of data. It assumes that common_train_
index is a sequence-like object (such as a list, pandas DataFrame, or pandas Series) contain-
ing the training indices. The variable batch_size represents the desired size of each batch.
The code generates a sequence of indices using range and iterates over them. For each index
i, it slices common_train_index from i to i + batch_size to extract a batch of data. These
batches are stored in the train_index_batches list. The second line, common_train_index_list
= common_train_index.to_list (), converts the common_train_index object, assumed to be a
pandas DataFrame or Series, into a Python list using the to_1list () method. The resulting list
is assigned to the variable common train index list.

59

epoch_loss = []
epoch_acc = []

for epoch in range(epochs):
random.shuffle(common_train_index list)
train_index_batches = [common_train_index_list[i:i + batch_size]
for i in range(@, len(common_train_index_list), batch_size)]
total_loss = ©.0@
Iterate over the batches of the dataset.
for step, batch_index in enumerate(train_index_batches):

partial_grads = clientl.next_batch(batch_index)
client2.next_batch(batch_index)

prob, loss_walue = client2.loss_and_update(clientl.cal_model())
grad = client2.assemble_grad(partial_grads)
clientl.update_with(grad)

total_loss = loss_value + total_loss
train_acc_metric.update_state{client2.batch_answers(), prob)

train_acc = train_acc_metric.result()
train_acc_metric.reset_states()
epoch_loss.append({total_loss)/{step + 1))
epoch_acc.append(train_acc)

plot_loss(epoch_loss, epoch_acc)

The code implements a distributed learning approach, where two clients, client1 and client2,
collaborate to train a model on a common dataset. The code begins by initializing empty lists to
store the loss and accuracy values for each epoch. It then enters a loop over the specified number
of epochs. Within each epoch, the training data indices are shuffled to introduce randomness,
and the indices are divided into batches. The code then iterates over these batches, obtaining
partial gradients from client1 and providing the same batch of data to client2. The model’s
predicted probabilities and loss value are calculated using client2, and the gradients from both
clients are combined. Client1’s model is then updated using the combined gradients. The total
loss and training accuracy is tracked for each epoch, and these values are appended to their
respective lists. The vFedCCE algorithm achieves 77% accuracy.

4.2 Summary

The vFedCCE algorithm, discussed in this chapter, involves implementing a specific code. This
algorithm focuses on federated learning in a vertical setting. This approach enables collab-
orative model training across different entities while keeping their data decentralized. The
algorithm’s details and implementation are outlined, allowing entities to jointly train a model
while preserving data privacy and security.

60

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This comprehensive thesis thoroughly explores various machine learning (ML) techniques, in-
cluding Artificial Intelligence (AI), Deep Learning (DL), and Federated Learning (FL), shedding
light on their merits and limitations. The analysis is centered around the Occupancy Detection
dataset obtained from the UCI Machine Learning Repository. Six distinct machine learning
classifiers and deep learning model were employed for the study, with the Random Forest model
exhibiting the highest accuracy at 99.27%. Recognizing the constraints of traditional machine
learning models, the research employs the vFedCCE algorithm, illustrating the vertical divi-
sion of the dataset between two clients. This algorithm entails the partitioning of the dataset
with shared samples but distinct features, and the collaborative construction of a shared model,
resulting in an accuracy of 77%. Furthermore, it compares various categorization models on
the Occupancy Detection dataset, presenting comprehensive analysis results and engaging in
a discourse on the state-of-the-art comparisons with related research. This thesis stands as a
significant contribution to the advancement of ML and AI research, offering valuable insights
into cutting-edge techniques, emerging trends, and practical applications.

5.2 Future Work

VFL holds tremendous potential across diverse domains, but several challenges warrant atten-
tion for its successful deployment. In this thesis, the neural network is used in the vFedCCE
algorithm for training the model, in the future the effectiveness of the proposed approach on
other machine learning models, such as random forest or decision trees could be explored. Fu-
ture research work can also be extended by increasing the number of clients for the vFedCCE
algorithm.

61

Bibliography

1]

Ramoni Adeogun, Ignacio Rodriguez, Mohammad Razzaghpour, Gilberto Berardinelli,
Per Hartmann Christensen, and Preben Elgaard Mogensen. Indoor occupancy detection

and estimation using machine learning and measurements from an iot lora-based monitoring
system. In 2019 Global loT Summit (GIoTS), pages 1-5. IEEE, 2019.

Luis Candanedo. Occupancy Detection . UCI Machine Learning Repository, 2016. DOLI:
https://doi.org/10.24432/C5X01N.

Chaochao Chen, Liang Li, Bingzhe Wu, Cheng Hong, Li Wang, and Jun Zhou. Secure
social recommendation based on secret sharing. arXiv preprint arXiv:2002.02088, 2020.

Chaochao Chen, Jun Zhou, Li Wang, Xibin Wu, Wenjing Fang, Jin Tan, Lei Wang, Alex X
Liu, Hao Wang, and Cheng Hong. When homomorphic encryption marries secret sharing:
Secure large-scale sparse logistic regression and applications in risk control. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery € Data Mining, pages
2652-2662, 2021.

Yigiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. Fedhealth: A federated
transfer learning framework for wearable healthcare. IEEE Intelligent Systems, 35(4):83~
93, 2020.

Yong Cheng, Yang Liu, Tianjian Chen, and Qiang Yang. Federated learning for privacy-
preserving ai. Communications of the ACM, 63(12):33-36, 2020.

Bing Dong, Burton Andrews, Khee Poh Lam, Michael Hoynck, Rui Zhang, Yun-Shang
Chiou, and Diego Benitez. An information technology enabled sustainability test-bed (itest)
for occupancy detection through an environmental sensing network. Energy and Buildings,

42(7):1038-1046, 2010.

Daniel Garcia Bernal. Decentralizing large-scale natural language processing with federated
learning, 2020.

Zhenyu Han, Robert X Gao, and Zhaoyan Fan. Occupancy and indoor environment quality
sensing for smart buildings. In 2012 IEEFE international instrumentation and measurement
technology conference proceedings, pages 882-887. IEEE, 2012.

62

[10]

[18]

[19]

[20]

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Francoise Beaufays,
Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning
for mobile keyboard prediction. arXiv preprint arXiv:1811.05604, 2018.

Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guil-
laume Smith, and Brian Thorne. Private federated learning on vertically partitioned

data via entity resolution and additively homomorphic encryption. arXiw preprint
arXw:1711.10677, 2017.

Nazila Hashemi, Pooyan Safari, Behnam Shariati, and Johannes Karl Fischer. Vertical
federated learning for privacy-preserving ml model development in partially disaggregated
networks. In 2021 European Conference on Optical Communication (ECOC), pages 1-4.
IEEE, 2021.

Daojing He, Runmeng Du, Shanshan Zhu, Min Zhang, Kaitai Liang, and Sammy Chan. Se-
cure logistic regression for vertical federated learning. IEEE Internet Computing, 26(2):61—
68, 2021.

Yan Kang, Yuanqin He, Jiahuan Luo, Tao Fan, Yang Liu, and Qiang Yang. Privacy-
preserving federated adversarial domain adaptation over feature groups for interpretability.
IEEFE Transactions on Big Data, 2022.

Afsana Khan, Marijn ten Thij, and Anna Wilbik. Vertical federated learning: A structured
literature review. arXiv preprint arXiw:2212.00622, 2022.

Mashal Khan, Frank G Glavin, and Matthias Nickles. Federated learning as a privacy
solution-an overview. Procedia Computer Science, 217:316-325, 2023.

Wengqi Li, Fausto Milletarl, Daguang Xu, Nicola Rieke, Jonny Hancox, Wentao Zhu, Max-
imilian Baust, Yan Cheng, Sébastien Ourselin, M Jorge Cardoso, et al. Privacy-preserving
federated brain tumour segmentation. In Machine Learning in Medical Imaging: 10th In-
ternational Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen,
China, October 13, 2019, Proceedings 10, pages 133—141. Springer, 2019.

Yuanzhang Li, Tianchi Sha, Thar Baker, Xiao Yu, Zhiwei Shi, and Sikang Hu. Adaptive
vertical federated learning via feature map transferring in mobile edge computing. Com-
puting, pages 1-17, 2022.

Peixi Liu, Guangxu Zhu, Wei Jiang, Wu Luo, Jie Xu, and Shuguang Cui. Vertical federated
edge learning with distributed integrated sensing and communication. IEEE Communica-
tions Letters, 26(9):2091-2095, 2022.

Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen, Lican Feng,
Tianjian Chen, Han Yu, and Qiang Yang. Fedvision: An online visual object detection plat-
form powered by federated learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 13172-13179, 2020.

63

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[29]

[30]

[31]

[32]

Linpeng Lu and Ning Ding. Multi-party private set intersection in vertical federated learn-
ing. In 2020 IEEFE 19th International Conference on Trust, Security and Privacy in Com-
puting and Communications (TrustCom), pages 707-714. IEEE, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y
Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data.
In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning
Research, pages 1273-1282. PMLR, 2022 Apr 2017.

Manabu Nakanoya, Junha Im, Hang Qiu, Sachin Katti, Marco Pavone, and Sandeep Chin-
chali. Personalized federated learning of driver prediction models for autonomous driving.
arXiv preprint arXw:2112.00956, 2021.

Wei Ou, Jianhuan Zeng, Zijun Guo, Wangin Yan, Dingwan Liu, and Stelios Fuentes. A
homomorphic-encryption-based vertical federated learning scheme for rick management.
Computer Science and Information Systems, 17(3):819-834, 2020.

Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Francoise Beaufays. Federated
learning for emoji prediction in a mobile keyboard. arXiv preprint arXiv:1906.04329, 2019.

Thomas Rooijakkers. Convinced—enabling privacy-preserving survival analyses using
multi-party computation. 2020.

Rui Shao, Pramuditha Perera, Pong C Yuen, and Vishal M Patel. Federated face presen-
tation attack detection. arXiv preprint arXiw:2005.14638, 2020.

Yong Song, Yuchen Xie, Hongwei Zhang, Yuxin Liang, Xiaozhou Ye, Aidong Yang, and
Ye Ouyang. Federated learning application on telecommunication-joint healthcare recom-

mendation. In 2021 IEEE 21st International Conference on Communication Technology
(ICCT), pages 1443-1448. IEEE, 2021.

Huizhong Sun, Zhenya Wang, Yuejia Huang, and Junda Ye. Privacy-preserving vertical
federated logistic regression without trusted third-party coordinator. In Proceedings of
the 2022 6th International Conference on Machine Learning and Soft Computing, pages
132-138, 2022.

Chen Tianyi, Jin Xiao, Sun Yuejiao, and Yin Wotao. Vafl: a method of vertical asyn-
chronous federated learning. arXiv preprint arXiw:2007.06081, 2020.

CH Van Berkel. Multi-core for mobile phones. In 2009 Design, Automation € Test in
Furope Conference & FExhibition, pages 1260-1265. IEEE, 2009.

Liu Yang, Di Chai, Junxue Zhang, Yilun Jin, Leye Wang, Hao Liu, Han Tian, Qian Xu,
and Kai Chen. A survey on vertical federated learning: From a layered perspective. arXiv
preprint arXiw:2304.01829, 2023.

64

[33]

[34]

[36]

[37]

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learn-
ing: Concept and applications. ACM Transactions on Intelligent Systems and Technology
(TIST), 10(2):1-19, 2019.

Shengwen Yang, Bing Ren, Xuhui Zhou, and Liping Liu. Parallel distributed logistic
regression for vertical federated learning without third-party coordinator. arXiv preprint
arXiw:1911.09824, 2019.

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong,
Daniel Ramage, and Francoise Beaufays. Applied federated learning: Improving google
keyboard query suggestions. arXiv preprint arXiv:1812.02903, 2018.

Zheng Yang, Nan Li, Burcin Becerik-Gerber, and Michael Orosz. A systematic approach
to occupancy modeling in ambient sensor-rich buildings. Simulation, 90(8):960-977, 2014.

Zezhong Zhang, Guangxu Zhu, and Shuguang Cui. Low-latency cooperative spectrum
sensing via truncated vertical federated learning. In 2022 IEEE Globecom Workshops (GC
Wkshps), pages 1858-1863. IEEE, 2022.

Fanglan Zheng, Kun Li, Jiang Tian, Xiaojia Xiang, et al. A vertical federated learning
method for interpretable scorecard and its application in credit scoring. arXiv preprint
arXiw:2009.06218, 2020.

65

