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ABSTRACT

In this thesis we study scattering characteristics of a metasurface covered metamaterial
cylindrical object buried below a flat interface. Spectral plane wave representation of fields
has been used to study the interaction between metasurface covered cylinderical object
and flat interface. The influences of various lossless metasurface surface reactances upon
the normalized scattering width of a metasurface covered metamaterial cylinder have been
studied. The considered metamaterials are epsilon negative, mu negative, double negative,
epsilon near zero, mu near zero and double near zero.
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Chapter 1

Introduction

1.1 Literature Review

The detection of buried objects has been a problem under consideration mostly in geo-
physics, archeology, submarine, and mine detection fields. In the recent few decades,
researchers have paid huge attention towards the evolution of this important idea in the
scientific world, i.e. “buried object detection project”. The efforts resulting from this study
are useful in detection of hidden land mines, pipes, conduits and other buried intriguing
things. The detection process of underground buried objects is not easy as it involves many
complications such as clutter existence, less penetration of RF signal into moist soil etc.
The complications may also arise due to the nature of an object-surface interface as the
surface may be partially or fully rough besides the simplest case, i.e., flat surface interface.
Many different techniques have been used for the buried object’s detection purpose, de-
pending upon the type of object-surface interface, shape, size, geometry and orientation of
the object. Detection of circular cylinders is important as underground gas, water, sewage
pipes and electricity, telephone, internet cables are all circular cylinders of great lengths.
Wave scattering from the buried objects is one of the efficient methods used for this pur-
pose. Electromagnetic waves scattering from objects buried under a slightly rough surface
was studied by [1].

In the recent past, for the detection of buried objects, a remarkably efficient technique,
namely “acousto-electromagnetic”, was introduced by Lawrence and sarabandi [2]. It in-
volves electromagnetic as well as sound waves. The approach works by monitoring the scat-
tered electromagnetic Doppler spectrum obtained by the objects oscillating at resonance.
The incident and scattered sound waves not only account for the object oscillations but also

1



Chapter1 - Introduction 2

cause the disturbances in the earth layer above the buried object. In this work, Lawrence
and Sarabandi considered the problem of detection of a dielectric cylinder immersed in the
dielectric half-space with the existence of a slightly rough surface and obtained the solution
using a plane wave representation of the field (PWRF).

Another important detection technique was given by Scott and coworkers [3] where
Doppler radar is used along with elastic waves for detection of buried objects via distur-
bances occurring in surface oscillations [3]. A similar study of the scattering characteristics
of electromagnetic waves scattered by cylinders placed above the interface in the case of a
flat surface, was done by Borghi et al., [4]. D’Yakonov also gave an analytical proposal for
detection of cylinders buried under a flat surface [5]. Ogunade [6] and Budko et al. [7] also
worked on this concept and solved the problem by expansion of the eigen function of the
total fields. Butler et al. [8] and Xu et al. [9] also contributed to investigation of objects
buried under flat surfaces and proposed the numerical solution of a problem by using the
method of moment (MoM). Scattering of buried objects under rough surfaces has also been
studied using (MoM) by Zhang et al. [10] and Shenawee et al. [11].

Scattering from buried inhomogeneous dielectric objects in the presence of an air-earth
interface was studied by Ellis and Peden [12]. They solved the problem by employing a
two-dimensional method of moment approach using cylindrical pulse basis by functions and
point matching. Butler and Xu worked on scattering by buried dielectric cylinders using
integral equation methods [13]. Xu and Ao studied scattering by two-dimensional buried
lossy dielectric cylinder using the volume integral equation method [14].

Recently, there is a growing interest in the field of metamaterials. Metamaterials are
artificially designed composite materials that can be classified mainly into the six cate-
gories, i.e., DPS, DNG, DNZ, ENG, ENZ, MNZ, MNG [15–18]. The description of these
metamaterials used in our problem are elaborated below and they are assumed lossless.

1.1.1 Double negative (DNG) metamaterials

Double negative metamaterials have negative permittivity and permiability. Such materials
are referred to in the literature as double negative (DNG) media, left-handed media and
backward wave media. In this thesis, both the permittivity and the permeability are
simultaneously negative and called DNG.

2



Chapter1 - Introduction 3

1.1.2 Epsilon negative (ENG) metamaterials

Epsilon negative metamaterials have negative permittivity and positive permeabillity and
these types of metamaterials exhibit these characteristics in many plasmas. For example,
gold or silver are ENG materials in the infrared and visible spectrum.

1.1.3 Mu negative (MNG) metamaterials

Mu negative metamaterials have positive permittivity and negative permeability. Gy-
rotropic or gyromagnetic materials are a few examples.

1.1.4 Epsilon near zero and mu near zero (ENG and MNZ) meta-
materials

For Epsilon near zero (ENZ) and mu near zero (MNZ) metamaterials, we have near zero
electromagnetic parameters, i.e., ε ≈ 0 for an ENZ and µ ≈ 0 for an MNZ.

1.1.5 Double near zero (DNZ) metamaterials

These types of metamaterials have both permittivity and permeability approximately equal
to zero, i.e., ε ≈ 0 and µ ≈ 0

Electromagnetic metasurfaces (MSs) are thinner layers of metamaterial that consist of a
recurring lattice of sub-wavelength elements. Nowadays, they are highly recommended for
microwave and antenna applications [19, 20]. Recently, metasurfaces have been used for
the designing of leaky-wave antennas or to direct the propagation path of surface or guided
waves. Because of small electrical aspects of the unit cell, metasurfaces may be correctly
described in the form of surface impedance, which relates the tangential components of the
magnetic and electric fields. For an arbitrary frame unit cell, a precise investigation of the
metasurfaces could be done by using the spectral method of moments (MoM) technique
[21]. Some specific geometries of metasurfaces that consist of integral elements of squared
patches or inductive framework [22] and circular patch [23] have been studied. These
structures give absolute and balanced isotropic impedance in the specific limit of homoge-
nization and their applications are limited to specific problems. This limitation is solved by
using anisotropic impedance tensor, and it widens the applications of metasurfaces [24, 25],

3



Chapter1 - Introduction 4

specifically when interacting with surface wave-based optics of transformation [26, 27]. A
common anisotropic metasurface is attained by regularly printing tiny elliptical patches on
a buried dielectric slab. The ellipse rotations according to the direction of surface wave
traveling may give access to managing the field polarization in circular polarized leaky wave
antennas or in transmission optics surface wave-based devices. Mencagli et al. [28] have
presented a worthy approach for the specification of metasurfaces having elliptical patches
imprinted on a buried dielectric slab. It depends on an analytical modeling of the currents
streaming on the patches and gives a concise closed form solution of the surface impedance
of the metasurface. An expression of inductance and capacitance at the lower frequency has
been included along with the related range of applications. These expressions can also be
used for more general cases because they have developed from a broad relationship between
the metasurface equivalent network representation and the method of moment technique.

In this thesis, we study the scattering characteristics of a circular metamaterial cylinder
covered with metasurface (MS) buried under a flat surface under Transeverse Electric (TE)
and Transeverse Magnetic (TM) excitations. The effects of various parameters including
permittivity, permeability of metamaterial cylinder and surface reactances of metasurface
upon Scattering width (SW) have been studied. By using the tangential and double-
sided impedance boundary conditions, unknown scattering coefficients have been found.
Mathematical formulation for derivation of electric and magnetic fields in each region is
mainly dependent upon the Mie thoery. Finally, the scattering widths are calculated.

4



Chapter 2

Scattering characteristics of a
metasurface covered metamaterial
cylindrical object buried below a flat
interface

To formulate the problem, a cylinder covered with metasurface of fixed radius a and buried
below the flat interface with distance d is considered. The cylinder has electromagnetic
properties of ε2 = ε0εr2 and µ2 = µ0µr2 where ε0 and µ0 are permittivity and permeability
of the free space, respectively. The parameters εr2 and µr2 show the relative permittivity
and relative permeability of the cylinder material, respectively. The problem is divided
into three regions, namely, region 0, region 1, and region 2. Region 0 is the region that is
above the interface. Electromagnetic parameters for this region are ε0 and µ0. The electro-
magnetic characteristics of this region are k0 and η0 where k0 is the free space wave number
and η0 is the intrinsic impedance of the free space. Here k0 = ω

√
µ0ε0 and η0 =

√
µ0/ε0.

The region 1 is the medium below the interface with electromagnetic parameters of ε1 and
µ1. The electromagnetic characteristics of this region are described in terms of k1 and η1.
Here k1 = ω

√
µ1ε1 and η1 =

√
µ1/ε1. The region 2 is the region occupied by a material

cylinder. This cylinder of material is covered with a metasurface. This metasurface has
distributed surface impedance of ZTM and ZTE. The geometry of the problem is shown in
Fig. 1.

It is initially considered that there is no flat interface and a metasurface covered cylinder
is placed in a background medium with electromagnetic parameters of ε1 and µ1. This
cylinder is normally illuminated by a uniform plane wave which travels in the direction

5
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cylindrical object buried below a flat interface 6

Figure 2.1: The geometrical configuration of a metasurface covered metamaterial cylinder
which is buried below a flat interface.
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that makes an angle φo with +x–axis. In order to analyze the complete scattering char-
acteristics, both types of incident wave polarizations, i.e., Transverse Magnetic (TM) and
Transverse Electric (TE) are considered.

2.1 Transverse Magnetic polarization

For the TM polarization, the z–component of incident electric field Ei
z in region 1 can be

written in terms of cylindrical coordinates (ρ,φ,z) as below,

Ei
z = Eoe

−jk1ρ cos(φ−φo) = Eo

n=+∞∑
n=−∞

j−nJn(k1ρ)e−jn(φ−φo) (2.1.1)

where Eo is a constant magnitude of electric field and k1 =ω
√
ε1µ1 is a wave number of

region 1. The function Jn(·) represents an nth order Bessel function of first kind. Likewise,
the φ–component of the incident magnetic field can be found from the Maxwell’s equations
as follows,

H i
φ = −jEo

η1

n=+∞∑
n=−∞

j−nJ
′

n(k1ρ)e−jn(φ−φo) (2.1.2)

where the prime ′ shows the derivative with respect to the argument. The factor η1 =√
µ1/ε1 represents the intrinsic impedance of region 1. The z–component of the scattered

electric field and the φ–component of the magnetic field in region 1 can be expressed as,

Es
z = Eo

n=+∞∑
n=−∞

j−nCTM
n H(2)

n (k1ρ)e−jn(φ−φo) (2.1.3)

Hs
φ = −jEo

η1

n=+∞∑
n=−∞

j−nCTM
n H(2)′

n (k1ρ)e−jn(φ−φo) (2.1.4)

where CTM
n is the unknown scattering coefficient and needed to be determined. H

(2)
n (·) is

the nth order Hankel function of second kind and represents an outward traveling wave
solution. It is well known that the electric field inside the cylinder at ρ = 0 must be finite,
thus the electric field inside the cylinder can be expressed in terms of only nth order Bessel
function of first kind. The electric filed E2

z and magnetic field H2
φ in the region 2 can be

written as,

E2
z = Eo

n=+∞∑
n=−∞

j−nAnJn(k2ρ)e−jn(φ−φo) (2.1.5)

7
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H2
φ = −jEo

η2

n=+∞∑
n=−∞

j−nAnJ
′

n(k2ρ)e−jn(φ−φo) (2.1.6)

where k2 = ω
√
ε2µ2 is the wave number of region 2 and η2 =

√
µ2/ε2 is the intrinsic

impedance of the material of the cylinder. The unknown coefficients An and CTM
n can

be found by applying the tangential boundary conditions which states that the tangential
electric and magnetic fields must be continuous at ρ = a. These boundary conditions can
be written as follows,

E2
z = Ei

z + Es
z (2.1.7)

E2
z = ZTM [H1

φ +Hs
φ −H1

φ] (2.1.8)

By substituting the respective fields in the above two boundary conditions, we obtain two
equations as below,

Jn(k1a) = AnJn(k2a) + CTM
n H(2)

n (k1a) (2.1.9)

Jn(k1a) = ZTM [AnJ
′
n(k2a) + CTM

n H ′(2)n (k1a)− J ′n(k1a)] (2.1.10)

The unknown coefficients CTM
n and An can be found by solving Eqs. (2.1.9)–(2.1.10).

Thus, unknown coefficient CTM
n which is of an interest for the scattered electric field can

be written as,

CTM
n =

jJn(x1)Jn(x2) + ZTM [( 1
η2

)Jn(x1)J
′
n(x2)− ( 1

η1
)Jn(x2)J

′
n(x1)]

−jJn(x2)H
(2)
n (x1) + ZTM [( 1

η1
)Jn(x2)H

(2)
n (x1)− ( 1

η2
)J ′n(x2)H2

n(x1)]
(2.1.11)

where x1 = k1a and x2 = k2a. It can be shown that if ZTM=0 and k2 = k1 then this
cylinder corresponds to a PEC cylinder and CTM

n becomes same as that of PEC cylinder
which is given as,

CTM
n =

−Jn(k1a)

H
(2)
n (k1a)

(2.1.12)

2.2 Transverse Electric polarization

In case of Transverse Electric (TE) polarization, the incident electric field Ei
φ and incident

magnetic field H i
z are given as,

Ei
φ = η1Ho

n=+∞∑
n=−∞

j−n−1J
′

n(k1ρ)e−jn(φ−φo) (2.2.1)

8
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H i
z = Ho

n=+∞∑
n=−∞

j−nJn(k1ρ)e−jn(φ−φo) (2.2.2)

where Ho is a constant magnitude of magnetic field. The z–component of the scattered
magnetic field and the φ–component of the scattered electric field can be written as,

Hs
z = Ho

n=+∞∑
n=−∞

j−nCTE
n H(2)

n (k1ρ)e−jn(φ−φo) (2.2.3)

Es
φ = η1Ho

n=+∞∑
n=−∞

j−n−1CTE
n H(2)′

n (k1ρ)e−jn(φ−φo) (2.2.4)

where CTE
n is the unknown scattering coefficient and needed to be determined. Likewise,

the magnetic filed H2
z and electric field E2

φ in the region 2 can be written as,

H1
z = Ho

n=+∞∑
n=−∞

j−nBnJn(k2ρ)e−jn(φ−φo) (2.2.5)

E1
φ = η2Ho

n=+∞∑
n=−∞

j−n−1BnJ
′

n(k2ρ)e−jn(φ−φo) (2.2.6)

The unknown coefficients Bn and CTE
n can be found by applying the following boundary

conditions,
E2
φ = Ei

φ + Es
φ (2.2.7)

E2
φ = −ZTE[H i

z +Hs
z −H1

z ] (2.2.8)

By substituting the required electric and magnetic field components in the above two
boundary conditions, we obtain two equations as below,

J ′n(k1a) = BnJn(k2a) + CTM
n H ′n(k1a) (2.2.9)

J ′n(k1a) = −ZTMBnJn(k2a)− ZTMCTM
n Hn(k1a) + ZTMJn(k1a) (2.2.10)

By solving Eqs. (2.2.9)–(2.2.10) simultaneously, the unknown scattering coefficient CTE
n

can be found and is given below.

CTE
n =

jJ ′n(x1)J
′
n(x2) + ZTE[( 1

η1
)Jn(x1)J

′
n(x2)− ( 1

η2
)Jn(x2)J

′
n(x1)]

−jJ ′n(x2)H
′(2)
n (x1) + ZTE[( 1

η2
)Jn(x2)H

′(2)
n (x1)− ( 1

η1
)J ′n(x2)H2

n(x1)]
(2.2.11)

9



Chapter2 - Scattering characteristics of a metasurface covered metamaterial
cylindrical object buried below a flat interface 10

In case of PEC cylinder, we have ZTE=0 and k2 = k1, thus the scattering coefficient CTE
n

becomes as,

CTE
n =

−J ′n(k1a)

η0H ′n(k1a)
(2.2.12)

which is expected.

2.3 Scattering properties of a metasurface covered cylin-

der placed below a flat interface

In this case, the geometry given in Figure 1 is considered. The spectral representation of
the fields will be employed in this part to solve the scattered field in Region 1. The solution
will be produced by summing the successive scattered fields from the flat surface and the
cylinder. Analytical solutions for the scattering of a plane wave from a flat interface and
the scattering of a plane wave from a cylinder are known. By using general formulations
for the reflected, transmitted, and scattered fields, both TE and TM polarization will be
treated simultaneously.

It is possible to obtain the reflected and transmitted fields due to an interface when a
metasurface coated cylinder is present. For this case, the incident field is expressed as,

ψi0 = e−j(γ
i
xx−γi0yy) (2.3.1)

where ψi0=E
i
z or H i

z and γi0y=
√
γ20 − (γix)

2. The first order reflected field from the boundary
can be written as,

ψr0 = R01(γ
i
x)e

j2γi0yde−j(γ
i
xx+γ

i
0yy) (2.3.2)

where R01(γ
i
x) is the reflection coefficient and given by,

R01(γ
i
x) =

γi0y − γi1y
γi0y + γi1y

(2.3.3)

γi1y =
√
γ21 − (γix)

2 (2.3.4)

The field transmitted into Region 1 can be written as,

ψt0 = T01(γ
i
x)e

j(γi0y−γi1y)de−j(γ
i
xx−γi1yy) (2.3.5)

10
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where T01(γ
i
x) is the transmission coefficient and given by,

T01(γ
i
x) =

2γi0y
γi0y + γi1y

(2.3.6)

The initial scattered field from the metasurface covered cylinder is given as,

ψ1 =
∞∑

n=−∞

j−nCTM
n H(2)

n (γ1ρ)ejn(φ−φi) (2.3.7)

The scattered field from the buried cylinder can be written as,

ψ1
1 =

∞∑
n=−∞

j−nCTM
n H(2)

n (γ1ρ)ejnφC(1)
n (2.3.8)

C(1)
n = T01(γ

i
x)e

j(γi0y−γi1y)de−jn tan−1(−γi1y/γix) (2.3.9)

The Eq. (2.3.8) is the scattered field due to the first interaction of buried cylinder. Using

the integral representation of H
(2)
n (γ1ρ) expjnφ in Eq. (2.3.8), the initial scattered field can

be written as,

ψ
(1)
1 =

1

π

∫ ∞
−∞

e−j(γxx+γ1yy)

γ1y

∞∑
n=−∞

CTM
n [C(1)

n ]ejn tan−1(γ1y/γx )dγx (2.3.10)

This field is seen to be the linear combination of plane waves propagating in the +y di-
rection. Based upon this field, the downward reflected field from the flat interface can be
written as,

ψ̂
(1)
1 =

1

π

∫
γx

1

γ1y

∞∑
n=−∞

CTM
n [C(1)

n ]ejn tan−1(γ1y/γx )R10(γx)e
−2jγ1yde−j(γxx−γ1yy)dγx (2.3.11)

This downward reflected field interacts with the metasurface covered cylinder and causes
scattering. Using the similar steps as previously, the second order scattered field is given
by,

ψ
(2)
1 =

∞∑
n=−∞

j−nCTM
n H(2)

n (γ1ρ)ejnφ
1

π

∞∑
m=−∞

(C(1)
m )(Ium,n) (2.3.12)

where

Ium,n =

∫
γx

1

γ1y

R10(γx)e
−2jγ1ydejm tan−1(γ1y/γx)e−jn tan−1(−γ1y/γx)dγx (2.3.13)

11
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These above Eqs. (2.3.12)–(2.3.13) can be further written in the simplest form as below,

ψ
(2)
1 =

∞∑
n=−∞

j−nCTM
n H(2)

n (γ1ρ)ejnφC(2)
n (2.3.14)

C(2)
n =

1

π

∞∑
m=−∞

CTM
m C(1)

m Ium,n (2.3.15)

Likewise, extending this approach, we can find the qth order scattered field in region 1.
This field is given below,

ψ
(q)
1 =

∞∑
n=−∞

j−nCTM
n H(2)

n (γ1ρ)ejnφC(q)
n (2.3.16)

C(q)
n =

1

π

∞∑
m=−∞

CTM
m C(q−1)

m Ium,n (2.3.17)

Finally, the total scattered field in region 1 will be calculated by adding contributions of
all the scattered fields and are given as,

ψ1 =
∞∑
q=1

ψ
(q)
1 (2.3.18)

ψ1 =
∞∑
q=1

∞∑
n=−∞

j−nCTM
n H(2)

n (γ1ρ)ejnφC(q)
n (2.3.19)

ψ1 =
∞∑

n=−∞

j−nCTM
n H(2)

n (γ1ρ)ejnφCn (2.3.20)

Cn =
∞∑
q=1

C(q)
n (2.3.21)

where Cn defines all the multiple interactions between the metasurface cylinder and flat
interface.

Cn = C(1)
n +

∞∑
q=1

C(q+1)
n (2.3.22)

Cn = C(1)
n +

∞∑
q=1

1

π

∞∑
m=−∞

CTM
m C(q)

m Ium,n (2.3.23)

12
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Cn = C(1)
n +

1

π

∞∑
m=−∞

CTM
m CmI

u
m,n (2.3.24)

At this stage, it is desired to find the scattered field in region 0. For this, the scattered
field in region 1 is first expanded into spectral form and using the integral expansion of
H

(2)
n (γ1ρ) expjnφ, the scattered field becomes,

ψ1 =
1

π

∫
γx

1

γ1y
e−j(γxx+γ1yy)

∞∑
n=−∞

CTM
n Cne

jn tan− 1(γ1y/γx)dγx (2.3.25)

Thus, the scattered field in region 0 becomes,

ψs0 =
1

π

∞∑
n=−∞

CTM
n Cn(I tun ) (2.3.26)

where

I tun =

∫
γx

1

γ1y

T10(γx)e
jn tan−1(γ1y/γx )ej(γ0y−γ1y )de−j(γxx+γ0yy)dγx (2.3.27)

The total scattered field in the region 0 can be made known provided that if the integral
I tun is known. This integral I tun can be solved using the saddle point integration method.
After applying saddle point integration method to the integral I tun , the total scattered field
can be written as,

ψs0 =
1

π

∞∑
−∞

CTM
n CnI

tu
n (2.3.28)

I tun ∼

√
2π

γ0ρ
e−jγ0ρ−j

π
n2e

jn tan−1

(√
γ2
1
−γ2

0
cos2 φ

γ0 cosφ

)
ej(γ0 sinφ−

√
γ21−γ20 cos2 φ )d√

γ2
1
− γ2

0
cos2 φ+ γ0 sinφ

(−γ0 sinφ)

(2.3.29)
We are interested in the far zone region and want to find the scattering width of a cylinder
covered with a metasurface. The scattering width SW is defined as given below,

σ = lim
ρ→∞

2πρ
| ψs0 |2

| ψi0 |2
(2.3.30)

Now by substituting Eq. (2.3.1) and Eqs. (2.3.28)–(2.3.29) in Eq. (2.3.30), we obtain,

σ =
4

k0

∣∣∣ ∞∑
n=−∞

CTM
n CnF (φ)

∣∣∣2 (2.3.31)

13
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Often, it is desired to express SW in unitless manner, therefore, we define normalized SW
as σn = σ/λ0 which is given below

σ

λ0
=

2

π

∣∣∣ ∞∑
n=−∞

CTM
n CnF (φ)

∣∣∣2 (2.3.32)

F (φ) =
−2e

jn tan−1

(√
γ21−γ

2
0 cos2 φ

γ0 cosφ

)
√
γ21 − γ20 cos2 φ+ γ0 sinφ

(γ0 sinφ)e
j

(
γ0 sinφ−

√
γ21−γ20 cos2 φ

)
d

(2.3.33)

Likewise, using the similar steps, the normalized SW for TE mode can be found. It should
be noted that for numerical results, we have used normalized SW, i.e., σn= σ

λ0
.

14



Chapter 3

Numerical Results and Discussion

For the numerical results, it is assumed that metasurfce has surface impedance of ZTM =
jχm and ZTE = jχe. Here χm and χe represent the surface reactance of a metasurface
and they can have positive or negative values. For all the figures, λo = 0.1 m, depth of
cylinder is d = 1.5λo and radius of cylinder is a = 0.15λo. It is clear from figure 3.1 that for
TM polarization, the scattering width is relatively large for the PEC cylinder as compared
to dielectric and magnetic cylinders. Moreover, metasurface coating is not considered for
these figures. Similar behavior is noted for the TE polarization and shown in Fig 3.2.

In figures 3.3 to 3.6, the influence of surface impedance ZTM = jχm upon scattering
width of a metasurface covered ENG cylinder has been shown. In this case, both types of
incident polarizations have been considered. For completeness, these scattering widths are
also compared with the scattering width of an ENG cylinder without metasurface. In case
of TE polarization, it is sen from Fig. 3.4 that metasurfaces having χe = 0.1kΩ and 1kΩ
can be used to decrease the SW as compared respective SW of an ENG cylinder without
metasurface. For TM polarization, it is observed that metasurfaces having χm = -0.01kΩ,
-0.1kΩ and -1kΩ, the scattering width can be enhanced as compared to scattering width
of ENG cylinder without metasurface.

In figures 3.7 to 3.10, the effects of surface impedance ZTM = jχm upon scattering
width of a metasurface covered MNG cylinder has been shown. These scattering widths of
metasurafce covered MNG cylinder have also been compared with the scattering width of
an MNG cylinder without metasurface. In case of TM polarization for 45◦ ≤ φ ≤180◦, the
metasurfaces having χm = -0.01kΩ, -0.1kΩ and -1kΩ can be used to enhance the scattering
width as compared to scattering width of MNG cylinder without metasurface. Likewise,
for TE polarization, it is found that scattering widths of MS covered MNG cylinders and

15



Chapter3 - Numerical Results and Discussion 16

MNG cylinder without MS are almost same.

The figures 3.11–3.14 deal with the effects of surface impedance ZTM = jχm and ZTE =
jχe upon scattering width of a metasurface covered DNG cylinder have been shown for both
types of incident polarization. Also, these scattering widths have been compared with the
scattering width of a DNG cylinder without metasurface. For a DNG cylinder without
metasurface, the scattering width has maximum value around φ = 110o whereas for DNG
covered cylinders having considered values of χm, the scattering widths are relatively small
at φ = 110o. Similar behavior is also observed for the TE polarization in Fig. 3.12. In
figures 3.13–3.14, the effects of negative values of χm and χe upon the scattering widths
of MS covered DNG cylinder haven been shown. These SWs are also compared with the
SW of a DNG cylinder without MS. It is clear from Fig. 3.14 that the scattering width of
MS covered DNG cylinder increases for 90◦ ≤ φ ≤180◦ having χe = -1kΩ as compared to
respective SW of a DNG cylinder without MS.

In figures 3.15–3.18, the effects of metasurface reactance χe, χm upon the normalized
scattering width of a metasurface covered ENZ cylinder buried below a flat interface have
been shown. For completeness, these scattering widths are also compared with the SW of
an ENZ cylinder without metasurface. For these figures, both types of incident polarization
have been considered. It is observed that the behavior of scattering width is quite different
for the ENZ cylinders as compared to the cylinder. Similar trend in figure 3.16 is noted
when TE polarization incidence is considered. An important result is observed for a MS
covered ENZ cylinder having χm = -0.1kΩ which states that the scattering width become
maximum at φ = 30o and it decreases gradually and become minimum at φ = 100o. This
is clear from Fig. 3.17.

In figures 3.19–3.22, the influence of metasurface reactance χe, χm upon the normalized
scattering width of a metasurface covered MNZ cylinder buried below a flat interface have
been shown. For completeness, these scattering widths are also compared with buried
MNZ cylinder without metasurface. In this case, we have assumed χe, χm = ±0.01kΩ,
±0.1kΩ and ±1kΩ for both types of incident polarization. It is clear from Fig. 3.20 that
metasurfaces with χe = 0.01kΩ and 0.1kΩ, there exists a significant enhancement in SW
as compared to SW of an MNZ cylinder without MS for TE polarization.

The figures 3.23–3.26 deal with the influence of metasurface reactance χe, χm upon the
normalized scattering width of a metasurface covered DNZ cylinder buried below a flat
interface for various values of χe and χm. For this, both types of incident polarizations have
been considered. These scattering widths are also compared with the DNZ cylinder without
metasurface. It is clear from Fig. 3.24 that for 90◦ ≤ φ ≤180◦, the scattering widths of
MS covered DNZ cylinder having χe = 0.01kΩ, 0.1kΩ and 1kΩ are almost same for TE
polarization. In case of TM polarization, it is observed from Fig. 3.25 that considered

16



Chapter3 - Numerical Results and Discussion 17

capacitive metasurfaces can be used to enhance the overall SWs as compared to SW of a
DNZ cylinder without MS.

17
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Figure 3.1: Normalized scattering widths of buried dielectric, magnetic and perfectly
electric conducting (PEC) cylinders under TM polarization. For dielectric cylinder,we
have εr = 2.25, µr = 1 and for magnetic cylinder εr = 1, µr = 2.25. Here these cylinders
are not covered with metasurface.
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Figure 3.2: Normalized scattering widths of buried dielectric, magnetic and perfectly
electric conducting (PEC) cylinders under TE polarization.
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Figure 3.3: Normalized scattering width of an ENG cylinder covered with and without
metasurface and buried below a flat interface. Here TM polarization is considered for an
ENG cylinder with εr = −2.25, µr = 1. Also we have assumed χm = 0.01kΩ, 0.1kΩ and
1kΩ.
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Figure 3.4: Normalized scattering width of an ENG cylinder covered with and without
metasurface and buried below a flat interface. Here TE polarization is considered for an
ENG cylinder having εr = −2.25, µr = 1 whereas we have assumed χe = 0.01kΩ, 0.1kΩ
and 1kΩ.
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Figure 3.5: Normalized scattering width of an ENG cylinder covered with and without
metasurface and buried below a flat interface. Here TM polarization is considered for an
ENG cylinder having εr = −2.25, µr = 1. Also it is assumed that χm = −0.01kΩ, −0.1kΩ
and −1kΩ.
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Figure 3.6: Normalized scattering width of an ENG cylinder covered with and without
metasurface and buried below a flat interface. Here TE polarization is considered for an
ENG cylinder with εr = −2.25 and µr = 1. It is also assumed that χe = −0.01kΩ, −0.1kΩ
and −1kΩ.
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Figure 3.7: Normalized scattering width of an MNG cylinder covered with and without
metasurface and buried below a flat interface. Here TM polarization is considered for an
MNG cylinder having εr = −1, µr = −2.25. Also it is assumed that χm = 0.01kΩ, 0.1kΩ
and 1kΩ.
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Figure 3.8: Normalized scattering width of an MNG cylinder covered with and without
metasurface and buried below a flat interface. Here TE polarization is considered for an
MNG cylinder with εr = −1, µr = 2.25. For this case, it is assumed that χe = 0.01kΩ,
0.1kΩ and 1kΩ.

25



Chapter3 - Numerical Results and Discussion 26

0 30 60 90 120 150 180

φ (Degrees)

-40

-30

-20

-10

0

10

20

σ
n
 (

d
B

)

TM polarization (MNG Cylinder)

Without MS

χ
m

=-0.01kΩ

χ
m

=-0.1kΩ

χ
m

=-1kΩ

Figure 3.9: Normalized scattering width of an MNG cylinder covered with and without
metasurface and buried below a flat interface. Here TM polarization is considered for an
MNG cylinder having εr = −1, µr = 2.25. Also we have assumed χm = −0.01kΩ, −0.1kΩ
and −1kΩ.
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Figure 3.10: Normalized scattering width of an MNG cylinder covered with and without
metasurface and buried below a flat interface. Here TE polarization is considered for an
MNG cylinder with εr = −1, µr = 2.25. For this case, it is assumed χe = −0.01kΩ, −0.1kΩ
and −1kΩ.
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Figure 3.11: Normalized scattering width of an DNG cylinder covered with and without
metasurface and buried below a flat interface. Here TM polarization is considered for an
DNG cylinder having εr = −2.25 and µr = −1 whereas it is assumed that χm = 0.01kΩ,
0.1kΩ and 1kΩ.
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Figure 3.12: Normalized scattering width of an DNG cylinder covered with and without
metasurface and buried below a flat interface. Here TE polarization is considered for an
DNG cylinder with εr = −2.25, µr = −1. Also we have assumed χe = 0.01kΩ, 0.1kΩ and
1kΩ.
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Figure 3.13: Normalized scattering width of an DNG cylinder covered with and without
metasurface and buried below a flat interface. Here TM polarization is considered for an
DNG cylinder having εr = −2.25, µr = −1. For this case, it is assumed that χm = −0.01kΩ,
−0.1kΩ and −1kΩ.
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Figure 3.14: Normalized scattering width of an DNG cylinder covered with and without
metasurface and buried below a flat interface. Here TE polarization is considered for an
DNG cylinder with εr = −2.25, µr = −1. Also we have assumed χe = −0.01kΩ, −0.1kΩ
and −1kΩ.
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Figure 3.15: Normalized scattering width of an ENZ cylinder covered with and without
metasurface and buried below a flat interface. Here TM polarization is considered for an
ENZ cylinder having εr = 0.001, µr = 1. For this case, it is assumed that χm = 0.01kΩ,
0.1kΩ and 1kΩ.
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Figure 3.16: Normalized scattering width of an ENZ cylinder covered with and without
metasurface and buried below a flat interface. Here TE polarization is considered for an
ENZ cylinder with εr = 0.001, µr = 1. It is also assumed that χe = 0.01kΩ, 0.1kΩ and
1kΩ.
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Figure 3.17: Normalized scattering width of an ENZ cylinder covered with and without
metasurface and buried below a flat interface. Here TM polarization is considered for an
ENZ cylinder having εr = 0.001, µr = 1. Also we have assumed χm = −0.01kΩ, −0.1kΩ
and −1kΩ.
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Figure 3.18: Normalized scattering width of an ENZ cylinder covered with and without
metasurface and buried below a flat interface. Here TE polarization is considered for an
ENZ cylinder with εr = 0.001, µr = 1. For this case, it is assumed that χm = −0.01kΩ,
−0.1kΩ and −1kΩ.
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Figure 3.19: Normalized scattering width of an MNZ cylinder covered with and without
metasurface and buried below a flat interface. Here TM polarization is considered for an
MNZ cylinder having εr = 1, µr = 0.001. Also we have assumed χm = 0.01kΩ, 0.1kΩ and
1kΩ.
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Figure 3.20: Normalized scattering width of an MNZ cylinder covered with and without
metasurface and buried below a flat interface. Here TE polarization is considered for an
MNZ cylinder with εr = 1, µr = 0.001. For this case, it is assumed that χe = 0.01kΩ,
0.1kΩ and 1kΩ.
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Figure 3.21: Normalized scattering width of an MNZ cylinder covered with and without
metasurface and buried below a flat interface. Here TM polarization is considered for an
MNZ cylinder having εr = 1, µr = 0.001. Also we have assumed χm = −0.01kΩ, −0.1kΩ
and −1kΩ.
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Figure 3.22: Normalized scattering width of an MNZ cylinder covered with and without
metasurface and buried below a flat interface. Here TE polarization is considered for an
MNZ cylinder with εr = 1, µr = 0.001. It is also assumed that χe = −0.01kΩ, −0.1kΩ and
−1kΩ.
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Figure 3.23: Normalized scattering width of an DNZ cylinder covered with and without
metasurface and buried below a flat interface. Here TM polarization is considered for an
DNZ cylinder having εr = 0.001, µr = 0.001. Also we have assumed χm = 0.01kΩ, 0.1kΩ
and 1kΩ.
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Figure 3.24: Normalized scattering width of an DNZ cylinder covered with and without
metasurface and buried below a flat interface. Here TE polarization is considered for an
DNZ cylinder with εr = 0.001, µr = 0.001 whereas it is assumed that χe = 0.01kΩ, 0.1kΩ
and 1kΩ.
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Figure 3.25: Normalized scattering width of an DNZ cylinder covered with and without
metasurface and buried below a flat interface. Here TM polarization is considered for an
DNZ cylinder with εr = 0.001, µr = 0.001. Also we have assumed χm = −0.01kΩ, −0.1kΩ
and −1kΩ.
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Figure 3.26: Normalized scattering width of an DNZ cylinder covered with and without
metasurface and buried below a flat interface. Here TE polarization is considered for an
DNZ cylinder having εr = 0.001, µr = 0.001. For this case, it is assumed that χe =
−0.01kΩ, −0.1kΩ and −1kΩ.
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Chapter 4

Conclusions and future work

The scattering properties of a metasurface covered metamaterial cylinder buried below a
flat interface have been studied. The upper medium of a flat interface is taken to be the free
space whereas the lower medium is a dielectric medium. It has been investigated that by
varying the permittivity, permeability of the metamaterial cylinder and surface reactances
of the metasurface, the scattering width can be enhanced or diminished. This study is
helpful in detection of buried metamaterial cylinders with and without metasurface. In fu-
ture, it is desired to extend the proposed formulation to a metasurface covered multilayered
metamaterial cylinder which is buried below a flat interface. Furthermore, the influence of
random rough surface and sinusoidal rough surface upon the scattering characteristics of
the considered buried cylinders can be investigated.
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