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Abstract

In light of the fact that nanotechnology is unquestionably a fantastic
field of science. It has numerous uses in engineering, science, and
defence. It is necessary to gather data on solid surfaces for research
and technology in the fields of surface and material sciences. It
takes a microscope based on the laws of quantum mechanics to see
the nano structure on the surface of a solid.

A tool that can be used to examine solid surfaces is the recurrence
tracking microscope. An atomic cloud is bounced off on atomic
mirror that is created as a result of the interaction between the force
of gravity and optical force, revealing quantum recurrences of ma-
terial wave packets. A cantilever is attached to the opposite side of
this atomic mirror. The atom’s initial potential energy determines
how long recurrences last when they are bouncing off on atomic
mirror. As the structural change manifests itself beneath the can-
tilever on a solid’s surface, the original height of the atoms will
shift. When an atomic cloud in a recurrence tracking microscope
reaches the insulator’s surface, a Van der Waals force exerted on
the cloud can stop the phenomenon of quantum recurrences.

In this thesis, by introducing the van der waals force into the system
we are attempting to examine its effect on the recurrence tracking
microscope.
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Chapter 1

Introduction

It has become increasingly popular over the past ten years to examine the mat-
ter waves packet phenomena in quantum mechanical systems using theoret-
ical knowledge, numerical equations, and experimental verification[1]. The
interference between quantum states generates the quantum wave packets,
which evolve over time. The phenomena of time-dependent interference for
bound states with quantized energies is highly fascinating because it has impli-
cations for the development of quantum mechanical systems based on matter
wave packets, such as the recurrence tracking microscope (RTM).

Additionally, it also realize us about long term time evolution’s novel as-
pects, like quantum wave packet revivals. Researchers have shown a signif-
icant deal of interest in the solutions to bound states of quantum mechanical
issues in the time domain. By demonstrating wave packet solutions to numer-
ous issues, including the situations of the free particle and the forced particle,
the relationship between the quantum mechanical and classical explanations
of nature is made clear[1].

The development of the effective potential has enabled us theoretically to
create the apparatus of quantum wave packets. This effective potential con-
tains three potentials, gravitational potential, optical potential and van der
Waals potential. In this study our focus will be on the interaction of van der
waals potential in the atomic mirror. To see the the effect of the van der waals
force in atomic mirror we also introduce recurrence tracking microscope (RTM)
as it works on the phenomena of quantum wave packet revivals.
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INTRODUCTION

Thus, one can find the effect of van der waals force on wave packet dynam-
ics. In this research work, We will investigate the impact of the Van der Waals
force on material wave packets by taking recurrence tracking microscope as a
reference.

Chapter 1 contains introduction.
Chapter 2 begins with the description of de Broglie’s hypothesis, quantum

wave packets in triangular potential well, auto correlation function and the
phenomena of quantum revivals.

Chapter 3 is completely dedicated to recurrence tracking microscope and it
explain the experimental setup, working principle and two modes of operation
of recurrence tracking microscope.

Chapter 4 deals with the interaction of van der waals force, the incorpo-
ration of the van der waals potential to the effective potential for recurrence
tracking microscope, Taylor series of the effective potential. It also explain
the wave packets confine in a parabolic potential the tunneling of the material
wave packet through the parabolic barrier.

Chapter 5 is about the conclusion of this study.
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Chapter 2

General Analysis of Quantum Wave
Packets

The inability of classical physics to explain a number of microscopic phenom-
ena, including atomic stability, black body radiation, the photoelectric effect,
and atomic spectroscopy, opened the door to the search for novel theories out-
side of traditional domain.

The quantum of energy was initially conceptualised by Max Planck in 1900,
marking the first significant advancement to explain the black body radiation
phenomenon. He proposed that the energy exchange between the radiation
and its surroundings occurs in discrete or quantized amounts. He claimed
that an electromagnetic wave of frequency ω and the matter can only exchange
energy in integer multiples of h̄ω [2]. The quantization of the electromagnetic
field proved to be a thought that has broad ramifications.

In 1905 Einstein realised that Planck’s theory of the quantization of electro-
magnetic waves must also apply to light in his quest to comprehend the pho-
toelectric effect. He adopted Planck’s method and proposed that light is con-
stituted of discrete energy units, or particles known as photons, each with an
energy of h̄ω, where ω is the frequency of the light. Another break through was
due to Neils Boher in which he introduced the model of Hydrogen atom. In
this work he explained that atoms can be found in discrete states of energy and
that the interaction of atom with electromagnetic field. These breakthroughs

3
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from Plank, Einstein, Boher and many others lay down the theoretical founda-
tions of experimental confirmation for the Particle aspect of waves.

In 1923, de Broglie introduced a powerful and new concept. He postu-
lated that not only electromagnetic fields exhibit particle like behaviour but
conversely, material particles shows wave like behaviour. In 1927 this con-
cepts was confirmed experimentally by Davisson and Germer. They obtained
interference patterns from the material particles like atoms and electrons.

2.1 The de Broglie Wave

The energy and momentum of a photon of frequency f is defined as

E = h f (2.1)

P =
h f
c

(2.2)

The relationship between λ and f for electromagnetic fields in free space

c = f λ (2.3)

ω = 2π f (2.4)

k =
2π

λ
(2.5)

h̄ =
h

2π
(2.6)

The equation (2.2) appears as

P = h̄k (2.7)

E = h̄ω (2.8)

4
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ω = ck (2.9)

The equation (2.8) is known as dispersion relation and it reveals that ω is
linearly dependant on k. Now a collection of waves of different wave lengths
are composed to construct a wave packet propagating with no distortion and
its all component waves are moving with same constant velocity c [3]. The
photon is characterized by two wave parameters k and ω, which in a sense a
particle according to equations (2.7) and (2.8).

A photon has zero rest mass and travel with the velocity of light. With finite
rest mass, more familiar particles also have wave properties. For a Particle
with mass M and kinetic energy E, the wave length λ of the corresponding
matter wave is defined as

λ =
h
P

(2.10)

The above relation is known as de Broglie wave length and it ascribes wave
property to a matter particle [3].

2.2 Introduction to Wave Packets

The term wave packet refer to a collection of waves of various wave lengths
that make up a localized wave function. Phases and amplitudes of these waves
are chosen in such a way that they interfere constructively in a small area of
space and destructively in other ares.The relationship between classical physics
and quantum mechanics may be understood in large part thanks to these wave
packets. In order to deal with and unify nature’s particle-like behaviour and
wave-like activity, the concept of a wave packets aids in the development of
mathematical tools [2]. In general, for the discrete case, quantum wave packet
in its initial sate is defined as

ψ(z, 0) = ∑
n

anϕn(z) (2.11)

where an represents the probability amplitudes and ϕn(z) represents the

5
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eigen functions of the wave packet. The probability amplitudes an can be ex-
pressed as

an = ⟨ϕn(z) | ψ(z, 0)⟩ (2.12)

For the time dependence of the initial wave packet ψ(z, 0)

ψ(z, t) = e−ι En
h̄ t ∑

n
anϕn(z) (2.13)

| ψ(z, t)⟩ = ∑
n

ãn(t)ϕn(z) (2.14)

Here ãn(t) represents the time dependent probability amplitudes.

2.3 Particle in a Triangular Potential Well

A triangular potential well is created by a linear potential V(z) such that V′(z)
is a constant value and V(z) is bounded by an infinite barrier at z = 0. The
potential is created by uniform gravitational field. Since F = −Mg where F is
the force, M is mass of the particle and g is gravitational acceleration. We also
know the work done W = Fz and to our situation we can say that V(z) = Fz.
Thus

V(z) = Mgz (2.15)

The graphical representation of this potential well is triangular in its nature
as shown in figure 2.1(a). The triangular potential well has a great importance
for the design of semiconductor devices. For example the high electron mobil-
ity transistor (HEMT) in which electrons are confined in a triangular potential
well produced when different semiconducting materials are used to form a
hetero junction. In order to solve the problems related to triangular potential
well it is vital to have the solution of the Airy differential equation.

6
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Figure 2.1: (a) on left side: The gravitational triangular potential well for the
Rubidium atom .(b) on right side: The behaviour of Airy functions of first kind
Ai (z) and second kind Bi (z)

.

2.3.1 The Airy Differential Equation

The Airy function is named after the British astronomer George Biddell Airy.
The related functions Ai(z) and Bi(z) are linearly independent solutions to the
differential equation

d2y(z)
dz2 − zy(z) = 0 (2.16)

known as the Airy equation or the Stokes equation. It is the second order
linear differential equation with a point where the character of the solution
changes from oscillatory to exponential. The solution of the Airy differential
equation is written as

y = c1Ai(z) + c2Bi(z) (2.17)

Ai(z) ≈ 0.355
(

1 +
z3

6
+

z6

180
+ . . .

)
− 0.259

(
z +

z4

12
+

z7

504
+ . . .

)

7
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Bi(z) ≈ 0.615
(

1 +
z3

6
+

z6

180
+ . . .

)
+ 0.448

(
z +

z4

12
+

z7

504
+ . . .

)
The Airy functions Ai(z), Bi(z) are shown in figure 2.1(b).

2.3.2 Solution of Time Independent Schrodinger Equation

The time independent Schrodinger equation for one dimensional potential is

− h̄2

2M
d2ϕn(z)

dz2 + V(z)ϕn(z) = Enϕn(z) (2.18)

For the uniform gravitational potential well, if we replace V(z) with Mgz
the above equation will become

− h̄2

2M
d2ϕn(z)

dz2 + Mgzϕn(z) = Enϕn(z) (2.19)

We can manipulate the above equation to get its solution in the form of
airy functions and that’s why airy functions are critical for triangular potential
well.

ϕn(z) = An Ai(βz + γn) + BnBi(βz + γn) (2.20)

Where An and Bn are normalization constants. If we look back to the graph
of airy functions in Figure 2.1(b) we can observe the airy function of second
kind Bi(z) does not converge which means ϕn(z) can never be normalized.
Thus we can reject Bi(z) as a solution and it leaves only Ai(z) with exponen-
tially decaying behaviour at z > 0.

ϕn(z) = An Ai(βz + γn) (2.21)

Here β is a constant value and γn are the negative zeros of the airy func-
tions. We know that there is an infinite barrier at z = 0 which means

ϕn(0) = 0 (2.22)

8
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Figure 2.2: This figure shows the first five eigen functions with their classical
turning points and the eigen values of a gravitational triangular potential well
for Rubidium atom. Here V(z) represents triangular potential well, ϕ0 to ϕ4
represent the eigen functions and z0 to z4 points on z-axis represent their clas-
sical turning points.

Hence the equation for eigen energy values can be obtained as

En = −γnMg

(
h̄2

2M2g

)1/3

2.3.3 Gaussian Wave Packet in Triangular Potential Well

If we consider the shape of the initial wave packet is gaussian then its mathe-
matical expression can be written as

ψ(z, 0) =
1√

a
√

2π
e−

z2

4a2 (2.23)

The transformation of initial wave packet ψ(z, 0) into a non dimensional
space α will provide us

9
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Figure 2.3: (a) on left side: the time independent Gaussian wave packet ψ(z,0)
at n = 0 state, decaying along the z-axis. (b) on right side: the imaginary part
of the time dependant wave packet ψ(z,t) at n = 0 state. Here it can be observe
that wave packet is oscillating along the time axis for three cycles and decaying
along the z-axis.

ψ(α, 0) =
1√

a
√

2π
e
− (α−γn)2

4a2β2 (2.24)

Now we confine the gaussian wave packet at E0 energy level in the trian-
gular potential well as shown in figure 2.3(a). According to the equation (2.12),
the probability amplitudes an of the wave packet in α space is expressed as

an =

√
χAn

β
√

a
√

2π

∫ +∞

−∞
ϕ∗

n(α)e
− (α−γn)2

4a2β2 (2.25)

where χ is a normalization constant.

2.3.4 Solution of Time dependent Schrodinger Equation

The solution of time dependent Schrodinger equation helps us to see the time
evolution of the quantum wave packet as figure 2.3(b) shows the time evolu-
tion of the imaginary part of the time dependent wave packet.

ψ(z, t) = ψ(z, 0)e−ι En
h̄ t (2.26)

10
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Im[ψ(z, t)] = −ιψ(z, 0)sin(ωnt) (2.27)

2.4 The Auto Correlation Function

The one-dimensional temporal development of wave packet solutions, which
come from the Schrodinger equation, can be studied using the concept of over-
lap of the initial state with the time-dependent state. This overlap is referenced
as the auto correlation function and is defined as.

A(t) = ⟨ψ(z, 0) | ψ(z, t)⟩ (2.28)

For n = m

A(t) = ∑
m
|am|2e−ι Emt

h̄ (2.29)

and the probability density of the auto correlation function will be

|A(t)|2 = ∑
n
|an|4 + 2 ∑

nm
|an|2|am|2cos (En − Em)

t
h̄

(2.30)

The above expression is known as auto correlation function.

2.5 Quantum Wave Packet Revivals

The Taylor series expansion for Em around a mean value m = r provides us

Em = Er + (m − r)
∂Em

∂m

∣∣∣∣
m=r

+
1
2!
(m − r)2 ∂2Em

∂m2 +
1
3!
(m − r)3 ∂3Em

∂m3

∣∣∣∣
m=r

+ ...

(2.31)
In this series the first term represents the maximum probable energy, sec-

ond term represents the first order correction, third term represents the second
order correction and so on. Now putting this series in equation (2.29) and auto
correlation function will become

11
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A(t) = ∑
m
|am|2e

− ι
h̄ (Er+(m−r) ∂Em

∂m

∣∣∣∣
m=r

+(m−r)2 ∂2Em
∂m2/2!

∣∣∣∣
m=r

+(m−r)3 ∂3Em
∂m3/3!

∣∣∣∣
m=r

...)t
(2.32)

Since we know that ωr =
Er
h̄ thus

A(t) = ∑
m
|am|2e−ι(ωr+(m−r)ω(1)+(m−r)2ω(2)+(m−r)3ω(3)+...)t (2.33)

A(t) = e−ιωrt ∑
m
|am|2e

−ι((m−r) 2π

T(1)
+(m−r)2 2π

T(2)
+(m−r)3 2π

T(3)
+...)t

(2.34)

A(t) = e−ιωrt ∑
m
|am|2e

−(m−r) 2πιt
T(1)

−(m−r)2 2πιt
T(2)

−(m−r)3 2πιt
T(3)

+...
(2.35)

Since

T(i) =
2π

ω(i)
(2.36)

Here i = 1, 2, 3, ...............
Thus

T(1) =
2πh̄

| ∂Em
∂m

∣∣∣∣
m=r

|
(2.37)

T(2) =
2πh̄

| ∂2Em
∂m2

∣∣∣∣
m=r

|/2
(2.38)

T(3) =
2πh̄

| ∂3Em
∂m3

∣∣∣∣
m=r

|/6
(2.39)

Here T(1) represents classical period of motion in the bound state, T(2) rep-
resents the revival time scale and T(3) represents the super revival time. The
ratios of revival time T(2) to the classical period T(1) and super revival time

12
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T(3) to revival time T(2) are given as

T(2)

T(1)
= µ (2.40)

T(3)

T(2)
= ζ (2.41)

Here µ and ζ are the scaling constants of their corresponding ratios and
they can be effected by the system parameters like depth of the potential well,
mass of the particle and the initial state of the matter wave packets.

13



Chapter 3

Wave Packets on Atomic Mirror

Many of the earliest atom optics researches involved interferometry and there
purpose was to focus on phase shift measurements as well as the ability to
observe fringes. The results of these experiments provided insight into the
significance of enhancing optical components, especially atomic mirrors. The
mirror is a commonly used component in optics to avoid chromatic aberration
in telescope, Fabry Perot and Michelson interferometers, where performance
wise good mirrors are required for partial or total reflection and in the laser
cavities as well[7].

In 1982 a first purposed reflection of atoms on the bases of dipole force
exerted by an evanescent wave which was created by using laser[8]. In 1987
the first experiment was carried out for the reflection of atoms at grazing in-
cidence[9] and in 1990 for normal incidence[10]. Since then, various groups
have been studied evanescent wave atomic mirrors[4].

In order to understand the dynamics of the material wave packets on an
atomic mirror, we use an evanescent wave atomic mirror to reflect the matter
wave packets of the Rubidium atom.

3.1 The Evanescent Wave Atomic Mirror

In this mirror, the reflection of the matter wave packets is appeared on the
bases of dipole force which is generated by using laser beam and exerts on a

14
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neutral atom due to the variation of laser electric field E(r) in space[5].

F = −2(
h̄Ω2

R
∆

)u(r̂)∇u(r̂) (3.1)

The above equation provides an effective force F while ∇u represents a gra-
dient of u. It reveals us that electromagnetic field exerts a position dependent
gradient force on the atom while it interacts with the atom. This gradient force
is inversely proportional to the detuning factor ∆ and is directly proportional
to the square of the Rabi frequency ΩR.

Figure 3.1: (a) left side: the static atomic mirror for the Rubidium atom. (b)
right side: five cycles of modulated atomic mirror with modulation height d
=10 nm.

The direction of the exerted force on the atom whether it would be made
attractive or repulsive depends upon the sign of the detuning factor ∆ = ν− ν0.
If the field frequency ν is to be set less then the atomic transition frequency ν0

then detuning factor ∆ will be negative, that means force will be attractive and
vice versa. The amplitude of the force decreases exponentially with distance
from the dielectric surface[6] as shown in figure 3.1(a).

Fopt = −V0κe−κz (3.2)

15
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3.1.1 Spatial Modulation in Atomic Mirror

When the dielectric surface moves slightly up and down along the z axis, spa-
tial modulation of the atomic mirror can be observed. Hence the optical force
Fopt will become explicitly time dependent as shown in figure 3.1(b).

Fopt = V0κe−κ(z−dsinωt) (3.3)

3.2 Recurrence Tracking Microscope

This microscope working on the phenomena of quantum recurrence and it can
help us for the study of nano structures which appear on the solid surface
at the atomic scale resolution and therefore it is named as Recurrence Track-
ing Microscope (RTM). It can probe surfaces from insulators to conductors,
surfaces contain impurities and provides information about the surfaces with
periodic structures[7]. Its operation comprises of two modes the Static Mode
of operation and the Dynamical Mode of Operation, their details will be given
in next sections. The phenomena of quantum recurrence of a material wave
packet is already well understood and have been realized experimentally for
both oscillating and non oscillating surfaces.

3.2.1 The System

In the Recurrence Tracking Microscope, magneto-optically trapped cold atoms
are placed on an atomic mirror. For the matter wave packet, the mirror is
created when a monochromatic laser light is reflected from a dielectric film
under the condition of total internal reflection. From one end the cantilever is
physically attached to the dielectric film while the other end of the cantilever
is above the surface under investigation as shown in figure 3.2.

If the setup is in on state, then by switching off the magneto-optical trap,
the atoms are allowed to travel towards the atomic mirror under the effect of
gravitational force. Here we assume the frequency ν of the optical field that
causes the atomic mirror to be tuned such that it is far from the transition fre-
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WAVE PACKETS ON ATOMIC MIRROR

quency ν0 between any two levels of the atom. The probability of spontaneous
emission is [7]

Psp = η(
Ω2

max
4∆2 )τre f (3.4)

Where ∆ represents the magnitude of atom field detuning, τre f =
2

κvz
is the

characteristic time of the atom field interaction during the process of reflection
of the atomic mirror and η is the decay constant of the higher sate. The velocity
of the atom towards the gravitational field along the z direction is represented
by the term vz. Thus the probability of finding the atom in its excited state
becomes very minute at the cost of large detuning factor ∆. Due to this reason,
we can ignore spontaneous emission in experiments[7].

Figure 3.2: The experimental setup for the implementation of recurrence tack-
ing microscope (RTM).

The evanescent wave field E(z) is responsible for the creation of atomic
mirror and it varies with position, as a result the Rabi frequency Ω = d.E(z)/h̄
also becomes position dependent. Thus Ωmax represents the maximum Rabi
frequency face by the atom at its turning points on the surface of the atomic
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mirror. Here the kinetic energy of the atom of mass M is equate as [8]

h̄Ω2
max

4∆
=

Mv2
z

2
(3.5)

The kinetic energy of the atom in the above equation is compensated by the
light shift due to the external field.

An exponentially increasing repulsive force, due to the optical potential, is
faced by the atoms near the dielectric surface and they are tuned to the blue,
which means ν > ν0 as defined through equation (3.2). On the other hand,
atom faces a constant gravitational force F = −Mg due to gravitational field
which push the atom towards the atomic mirror. Thus a bounded motion can
be observed from the atom in the presence of gravitational force and optical
force together as shown in figure(). We can define the effective Hamiltonian
for the bounded atomic dynamics in so generated atomic trampoline or gravi-
tational cavity.

H =
p2

2M
+ Mgz + V0e−κz (3.6)

Here g represents the constant gravitational acceleration, κ express the de-
cay length of the atomic mirror, M shows the mass of the atom and p represents
the center of mass momentum along the z axis.

3.2.2 Static Mode of Operation

A matter wave packet with finite energy passes through destructive and con-
structive interferences during its temporal evolution. The interference in quan-
tum mechanical evolution of the material wave packet performs an important
role and shows itself in the phenomena of quantum recurrences. For a short
duration of time the wave packet follows classical evolution and it reemerge
itself after a classical period. When few classical periods has passed, it occu-
pies all the available space which follows wave mechanics and collapses. It
rebuilds itself after certain time evolution due to its quantum mechanical dy-
namics. This phenomena of its reappearance is known as quantum revival
and the time which passes during its collapse and complete reappearance is
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WAVE PACKETS ON ATOMIC MIRROR

known as quantum revival time. We can also observe the partial appearance
of the initially propagated wave packet at the fractions of the quantum revival
time and these times are known as fractional revival times.

Figure 3.3: (a) on left side: the gravitational cavity when RTM working in
static mode. (b) on right side: the gravitational cavity when RTM is working
in dynamical mode for the Rubidium atom.

In RTM we approximate the total potential as a triangular well potential
and its energy and revival time are defined as

En =

(
Mh̄2g2

2

)
αn (3.7)

T(2)
0 =

16E(2)
0

Mπh̄g2 (3.8)

Here E0 represents the intial mean energy of the wave packet and αn are
the negative zeros of the airy function.

3.2.3 Dynamic Mode of Operation

The slight movement of the surface under investigation, the cantilever changes
its position following the surface structures. As a result the initial distance be-
tween the bouncing atom and the atomic mirror also change. Due to this rea-
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son the atom faces different initial energy E0 and different revival time T(2)
0 . If

the atomic mirror have spatial modulation as shown in figure(3.4) the bounc-
ing atom shows collapse and revival after a certain period of time. The time of
the quantum revival can be calculated as[7]

T(2)
ξ = T(2)

0

[
1 − 1

8

(
Mgd
E0

)2 3(1 − s)2 + d̃2

[(1 − s)2 − d̃2]3

]
(3.9)

Here

s =
(

En

E0

) 1
2

(3.10)

d̃ =
n2h̄ω

4E0
(3.11)

In dynamic mode of operation modulation depends on the frequency ω

and the height of the periodic structure d. The relation ship between the height
of the periodic structure and the quantum revival time is defined as

d =

(
8
3

) 1
2 E0

Mg
(1 − s)2

1 −
T(2)

ξ

T(2)
0

 (3.12)
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Chapter 4

Van der Waals Force Interaction

The spontaneously rising of transient electric and magnetic fields in vacuum or
in the material body is the origin of van der Wall’s interaction. Generally there
are two different ways to observe the fluctuation of charges. Besides the quan-
tum mechanical uncertainties in positions and momenta of the atoms there also
exists thermal agitation of the atoms. In the range of zero limit of temperature,
thermal agitation of the atoms can be neglected but the Heisenberg’s uncer-
tainty principle is unavoidable for the quantum mechanical objects. With the
passage of time, the concepts of Van der waals force gradually developed and
named after the name of Dutch scientist Van der Waal however other scientists
also contribute.

In 1870 Van der waals gave a revolutionary idea of non ideal gas equation
for the interaction of particles and Maxwell set the time dependent equations
for electric and magnetic fields. Hertz showed the creation and absorption of
electromagnetic field waves. By comparing to one atom, it tended to be gener-
alized on interactions between huge bodies when the Van der Waals interaction
between two particles were taken into account.

4.1 Van der Waals Force in Atomic Mirror

The potential energy will change from just exponential variation because of
the van der waals interaction. The mirror potential is shown in figure 4.1(a)
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after the addition of 1
z3 attractive potential.

VLJ
vw(z) ≡ − ϵ − 1

ϵ + 1
(

C(3)

z3 ) (4.1)

Here VLJ
vw(z) represents the van der waals potential calculated by Lennard-

Jones in the range of short distances, ϵ represents the dielectric constant and
C(3) represents the van der waals coefficient.

Now at smaller distances, new potential changes significantly from the
dipole potential alone. We can see the modification in the atomic mirror such
that the height of the total potential is reduced by a factor of 3. The reduction
in the height of the total potential can be detected by measuring the reflection
threshold as it becomes the function of the kinetic energy of the atom. The ex-
periments shows that it is easy to keep the kinetic energy of the atom constant
and change the magnitude of the total potential by changing the magnitude of
the dipole potential. This is carried out by varying the detuning or intensity of
the laser beam. Thus the attraction of the van der waals force can be balanced
by varying dipole force.

Figure 4.1: (a) on left side: Atomic mirror after the interaction of van der waals
force for Rubidium atom. It can be seen the mirror potential is reduced by
the factor of 3 after van der waals potential. (b) on right side: van der waals
interaction in gravitational cavity in static mode of operation.
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4.2 The Effective Potential in Static Mode

For RTM, The effective potential with out van der waals force is already seen
in the previous chapter. we can write the Taylor series expansion of the net
potential about the point z = a

Vnet(z) = Vnet(a) + (z − a)
∂Vnet(a)

∂z
+

1
2
(z − a)2 ∂2Vnet(a)

∂z2 + ...... (4.2)

In above equation the first term is a constant value that has no effect on the
particle, the second term which contains first derivative and it will disappear
at local minima of the net potential and the third term which is parabolic in
shape offers an effective potential as shown in figure 4.2(a). Therefore, Vnet(z)
can be approximately expressed as

V(z) =
1
2

∂2Vnet(a)
∂z2 (z − a)2 (4.3)

Figure 4.2: (a) on left side: the Taylor series expansion of the effective poten-
tial Vnet(z) about the point z = a. The teal colord dotted line represents the
effective potential Vnet(z), the yellow line shows the 2nd term of the series and
black parabola shows the 3rd term of the series. (b) on right side: shows the
parabolic potential with its first two eigen functions ϕ0 and ϕ1 for Rubidium
atom respectively.
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4.3 The Particle in a Parabolic Potential Well

According to quantum mechanics, when a harmonic oscillator is displaced z
distance from its mean position, it comes up against a restoring force F exerting
towards its mean position. This force is directly proportional to the displace-
ment z.

According to the Hook’s law this force F is expressed as

F = −Kz (4.4)

Here negative sign indicates that the displacement z and force F are in the
opposite directions while K is a proportionality constant. We can calculate the
work done by the harmonic oscillator under a constant force F

W = −1
2

Kz2 (4.5)

The negative work done W in above equation is corresponding to an in-
crease in the potential energy of the particle. Thus

V(z) =
1
2

Kz2 (4.6)

Therefore the potential will increase in a quadratic fashion on both sides of
a point z = a. The equation of motion for the harmonic oscillator is given as

M
d2z
dt2 = −Kz (4.7)

d2z
dt2 = −ω2z (4.8)

Here ω =
√

K
M

Now for our case, if a particle with mass M is oscillating with a frequency ω

in a parabolic potential V(z) as shown in figure (4.2 - (a)) then the mathematical
expressions for the parabolic potential V(z) and ω will be

V(z) =
1
2

d2Vnet(a)
dz2 (z − a)2 (4.9)
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ω =

√
d2Vnet(a)

dz2

M
(4.10)

4.3.1 Solution of the Hermite Differential Equation

To solve the Schrodinger equation for a harmonic oscillator it is mandatory to
have the solution of Hermite differential equation. The Hermite differential
equation is expressed as

d2y
dz2 − 2z

dy
dz

+ 2λy = 0 (4.11)

By using power series we can get the Hermite polynomials as the solutions
of the Hermite differential equation. The first few polynomials are

H0(z) = 1 (4.12)

H1(z) = 2z (4.13)

H2(z) = 4z2 + b0 (4.14)

4.3.2 Solution of the Time Independent Schrodinger Equation

The time independent Schrodinger equation equation for the harmonic oscil-
lator is

− h̄2

2M
d2ϕn(z)

dz2 +
1
2

d2Vnet(a)
dz2 (z − a)2 = Enϕn(z) (4.15)

By using basics quantum mechanics, we can solve this equation and get the
eigen energy values and eigen functions for the parabolic potential well.

En = (n +
1
2
)h̄ω (4.16)
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ϕn(z) =
(

Mω

h̄π

) 1
4 1√

2nn!
Hn

(√
Mω

h̄
z

)
e−

Mωz2
2h̄ (4.17)

The eigen functions and eigen energy values for parabolic potential well
are shown in figure 4.2(b). Now the Gaussian wave packet is confined in the
parabolic potential well at E0 level of energy as shown in figure 4.3

Figure 4.3: The time independent Gaussian wave packet confined in a
parabolic potential well at E0

4.3.3 Solution of the Time dependent Schrodinger Equation

The solution of time dependent Schrodinger equation helps us to see the time
evolution of the quantum wave packet as figure 4.4 shows the time evolution
of the imaginary part of the time dependent wave packet.
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ψ(z, t) = ψ(z, 0)e−ι En
h̄ t (4.18)

Im[ψ(z, t)] = −ιψ(z, 0)sin(ωnt) (4.19)

Figure 4.4: The time dependent Gaussian wave packet confined in a parabolic
potential well at E0

4.3.4 Tunneling and Matter Wave Packet Reflection

To observe the phenomena of tunneling through the atomic mirror and for the
quantum reflection of matter wave packet with an energy above the barrier
height would be an interesting experiment. Due to these effects we can round
off the sharp threshold.

27



VAN DER WAALS FORCE INTERACTION

To estimate the probability of tunneling or quantum reflection there exist a
simple analytical formula through which we can find the transmission proba-
bility T for a material wave packet to pass a parabolic height.

T =
1

1 + e−
2πE
h̄Ω

(4.20)

Where Ω represents the oscillation frequency of the atom if the harmonic
oscillator potential were not inverted and E is the difference between the po-
tential barrier height and the energy of the atom. A negative value of E means
a particle whose energy is less then the barrier height would reflect from the
barrier with unit probability. At energies within a few percent of reflection
threshold, tunneling or quantum reflection occur with non negligible proba-
bility.
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Chapter 5

Conclusion

In this work we have found an important consequence that the van der waals
force performs a key role in the functioning of the evanescent wave atomic
mirror. We have seen that in the case of evanescent wave atomic mirror an
exponentially decaying potential is obtained at the interface of the dielectric
due to the total internal reflection of a laser beam. The height of this decaying
optical potential depends on the angle of incidence of the laser beam.

If the matter waves corresponding to the Rubidium atom incident with
a kinetic energy lower then the maximum height of the atomic mirror they
will be reflected back. We have seen that the van der waals force interaction
changes the shape of the total potential and it also reduces reflection threshold
of atomic mirror by a factor of 3 which can cause for tunneling of the mate-
rial wave packet of the Rubidium atom through the atomic mirror. As a result
the dynamics of the wave packet vanish and the Rubidium atom stick to the
surface of the dielectric due to the van der waals force of attaraction.
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