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Abstract

Many operating environments, including manufacturing and healthcare, became

more productive due to advances in science and technology. The effectiveness of a

process is increased when a particular cause is precisely and accurately discovered.

The hurdle Poisson process is frequently used for cases where the number of zeros

is excessive. We suggest using risk-adjusted hurdle Poisson cumulative sum control

charts to manage influenza risk.

In a simulation study, we compare how well traditional cumulative sum control

charts stack up against risk-adjusted hurdle Poisson control charts. We evaluate

their performance using the average run length (ARL) and its standard deviation.

We use Tokyo’s flu data to demonstrate how the proposed chart is applied. The

charts reveal that, in the simulation studies, the unadjusted cumulative sum control

chart outperforms the risk-adjusted one in terms of efficiency.
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Chapter 1

Introduction

To ensure a process meets the desired quality standards, statistical process control

(SPC) methods are used to distinguish between unusual and typical sources of vari-

ation. The SPC frequently uses control charts to monitor the process’s consistency

over time, which lowers process variability. Many different industries, including

accounting, the stock market, and healthcare, use control charts. Boucher et al.

(2007) discussed that the Poisson distribution’s mean and variance are both equal

to λ, it is equi-dispersed. Due to this potential weakness of the Poisson distribution,

which may restrict its applicability, it is advised to use alternative distributions,

such as hurdle models.

Mullahy (1986) was the first to discuss the data models for hurdle counts. With

the aid of hurdle models, it is possible to distinguish statistically between individuals

(observations) beneath and above the hurdle. To address results that are above a

predefined hurdle and to differentiate between a binary outcome where the count

falls either below or above this hurdle, a hurdle model is specifically integrated

with a truncated model. Because of this, hurdle models are also known as two-part

models. A hurdle count data model proves to be highly valuable when the hurdle is

set at zero. The presence of excessive zeros can be explained by using the hurdle-at-

zero approach. It implies that this model can be applied when the response variable

contains a large number of zeros. The first part of the two-part model, P(Y=0),

is defined by the hurdle at zero in this scenario. In various studies, different

zero percentages in the response variable are discussed. Chen et al. (2008) they

introduced a generalized zero-inflated Poisson (GZIP) model to account for multiple

random shocks with varying probabilities, all following Poisson distributions. They

recommended employing Shewhart charts, and cumulative sum (CUSUM) charts

and evaluated control charts for probability as GZIP process monitoring tools.

He et al. (2012) recommended the usage of the CUSUM chart to track ZIP

processes. They developed the p-λ CUSUM, which combines the p-CUSUM and

the λ-CUSUM, the chart will signal when either parameter shifts. They provided
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clear definitions for p-CUSUM, which monitors parameter p shifts, and λ-CUSUM,

which monitors the parameter λ changes individually. For simultaneous monitoring

of both parameters, they also suggested using the t-CUSUM. These diverse CUSUM

control charts offer flexibility for various application scenarios, as outlined in their

comparative study.

1.1 Background of the Problem

To comprehensively address these distinct features, the present study constructs

an online quality monitoring and prediction system using the hurdle Poisson

model. Tan et al. (2021) discussed that the CUSUM charts adjusted for risk are

useful in monitoring to promptly and precisely signal influenza surveillance data.

In simulation studies, they conducted a comparison between the ZIP CUSUM

chart with risk adjustment and the standard CUSUM chart without adjustments.

Furthermore, for the cases with excesses of zeros, the hurdle Poisson model is

widely used which has not been considered in the literature for risk-adjusted charts.

1.2 Thesis Objectives

The thesis’ main aim is to provide a thorough analysis of how to monitor the

inflation of zeros using risk-adjusted hurdle Poisson CUSUM charts. especially to

• Propose an un-adjusted standard cumulative sum control chart.

• Create cumulative sum control charts for hurdle Poisson with risk adjustment.

• Evaluate the risk-adjusted and traditional charts by using the average run

length criterion along with its standard deviation and quartiles.

The remainder of the thesis follows the structure: Chapter 2 encompasses

the literature review. Chapter 3 delves into the discussion of both the proposed

unadjusted standard CUSUM control charts and their risk-adjusted counterparts.

Chapter 4 is dedicated to presenting results and engaging in discussions. Finally,

Chapter 5 contains concluding remarks.
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Chapter 2

Literature Review

Saghir and Lin (2015) proposed control charts are designed for monitoring count

data under the assumption of a Poisson distribution. The Poisson distribution is

characterized by having its mean and variance equal, making it an equi-dispersion

distribution. The most commonly used c and u control charts are constructed

based on the Poisson distribution. However, these traditional c and u control charts

are not suitable when dealing with count data that either exhibits zero dispersion

or inflation. In such cases, control charts using a generalized Poisson distribution

are more appropriate. Additionally, the author recommends the use of the MCE

(Modified Cumulative Exponential) chart as a novel control chart for monitoring

process location. The analysis indicates that the proposed MCE control chart

is significantly more sensitive to small and moderate shifts compared to existing

charts, demonstrating a more effective structure.

Yeh et al. (2008) discussed that, in numerous cases, the EWMA control charts

outperform the CUSUM control charts. Abujiya et al. (2015) suggested a CUSUM

control chart for detecting variations in the standard deviation of a normal process

across a range of shifts in process variability. Malela-Majika and Rapoo (2016)

proposed that to identify mean shifts effectively, distribution-free CUSUM and

EWMA control charts have been developed by incorporating the Wilcoxon rank-sum

statistic within the context of ranked set sampling. Song et al. (2018) introduced

a new individual EWMA control chart that uses the weighted likelihood ratio test,

showcasing impressive effectiveness in diverse situations, including the detection of

decreased variability and individual observations. Asghar et al. (2023) discussed

the Poisson hurdle model as a basis for Shewhart-style control charts within the

framework of Generalized Linear Models (GLM), especially for the monitoring of

Pearson and deviance residuals.

Saffari et al. (2012a) proposed a hurdle-negative binomial (HNB) to overcome

the dispersion of zero as an ordinary Poisson that cannot accommodate this

problem. Saffari et al. (2013) suggested using the censored hurdle-generalized
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Poisson regression model while examining the maximum likelihood method and

the goodness of fit of the regression model is also evaluated in order to estimate

the parameters. Alwani and Achmad (2021) proposed the Poisson hurdle model as

a solution to address the high frequency of zero values, particularly evident in the

context of acquired immune deficiency syndrome (AIDS) cases in Jambi province

between 2015 and 2017. Through an evaluation using the Akaike information

criteria (AIC), it has been demonstrated that the hurdle Poisson model provides a

superior fit compared to the traditional Poisson regression model, offering a more

suitable approach to handle the excess of zeros. Legisso et al. (2023) proposed

the HP regression model to determine the factors that affect how often blood

pressure is checked. They discussed the uses of extensions of the regression model,

encompassing the zero-inflated model, the hurdle model, and the negative binomial

model, in dental caries research. Additionally, they addressed fundamental aspects

of model fitting, including the evaluation of goodness-of-fit. Dalrymple et al. (2003)

compared the effects of climatic covariates during months with sudden infant death

syndrome (SIDS) and without SIDS using three types of mixture models, namely

finite mixture models, zero-inflated Poisson models, and hurdle models.

Zorn (1998) examined and compared the zero-inflated Poisson model with the

Poisson hurdle model, using data related to congressional responses to supreme court

rulings spanning from 1979 to 1988. Mahmood (2020) proposed the development

of Shewhart-type control charts tailored for zero-inflated Poisson and zero-inflated

negative binomial distributions, using Pearson residuals (PRs).

Bedrick and Hossain (2013) proposed a conditional test to assess the similarity

between zero-inflated Poisson and Poisson-hurdle distributions. In order to forecast

post-cardiac surgery mortality among individuals truly at risk, a model was

introduced. This model exhibited high discriminative power and outstanding

calibration, and it was developed using a retrospective population-based cohort

study that used linked administrative data. Raja (2021) studied both, the Poisson

distribution and the generalized Poisson distribution alongside the zero-inflated

Poisson distribution. After evaluating the goodness of fit for two data sets by

utilizing a portion of the zeroth cell, it was determined that the zero-inflated Poisson

distribution offered a superior fit compared to both the Poisson distribution and

the generalized Poisson distribution.

Mahmood et al. (2021) discussed that the EWMA and the CUSUM control

charts indeed rely on the same probability distributions when compared to the

Shewhart chart. They both leverage statistical distributions to monitor processes

for detecting shifts or deviations from a mean or target value. Park et al. (2020)

discussed Shewhart-type control charts based on GLMs for various distributions,

such as the normal, binomial, Poisson, negative binomial, COM-Poisson, and

5



ZIP distributions. Urbieta et al. (2017) proposed EWMA and CUSUM control

charts based on the negative binomial distribution. Lai et al. (2023b) proposed a

risk-adjusted EWMA chart based on the ZIP process using a generalized likelihood

ratio approach.

6



Chapter 3

Traditional and Risk-adjusted

CUSUM charts

3.1 Hurdle Poisson Model

Mullahy (1986) proposed two models, ZIP and HP, which are the two most impactful

methods for addressing the issue of excessive zero counts in data. The HP model

consists of two parts. The first part introduces the zero-hurdle model, which

helps assess the likelihood of observing a zero count. Typically, the probability of

an excess of zeros is estimated using a logistic regression model. The covariates

incorporated into the logistic regression may consist of factors that influence the

likelihood of encountering a zero count, such as demographic variables, ecological

variables, or other significant indicators, while the other part of the hurdle Poison

model is the count model. The count model is used for the positive counts, which is

conditional on the observation being non-zero. The frequently used count model is

the Poisson regression model, which assumes that non-zero counts follow a Poisson

distribution. Similar to any Poisson regression, covariates can be incorporated

to capture the impact of the explanatory variables on the count. By combining

the two stages, the Poisson hurdle model calculates the probability of observing

a zero count (zero hurdle) and the mean count for non-zero observations (count

model) simultaneously. Model boundaries were assessed using the most extreme

probability assessment or Bayesian techniques. The benefits of the Poisson hurdle

model include its capacity to deal with the abundance of zeros and capture the

two-step process of count data generation. The researchers suggested using hurdle

models when dealing with count data that exhibits an unusually high number of

zeros.

Zuur et al. (2009) discussed the various modeling approaches, including zero-

altered models, conditional models, and compatible models, to characterize hurdle
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models. These hurdle models consist of two key segments. In the initial part, the

data is segregated into zero and non-zero categories and the likelihood of observing

a zero value is computed using a binomial model. The subsequent section employs

a truncated count model to describe the positive counts. The binary components

were estimated using a binary model, such as logistic regression. In contrast,

for estimating the positive count component, a zero-truncated count model, like

the zero-truncated Poisson model, was used. The following is a mathematical

representation of the model:

P (Q = 0) = s1(0)

P (Q = q) =

(
1− s1(0)

1− s2(0)

)
s2(q) , q = 1, 2, ...

where the probability mass function (PMF) s2 represents positive counts, and

s1 represents zero counts. The following is how the HP PMF can be expressed:

P (Xi = xi) =

pi, xi = 0

1−pi
1−e−λi

λ
xi
i e−λi

xi
, xi > 0

(3.1)

where the probability pi of the binary component signifies whether the outcome

is zero, and λi represents the mean response. The HP model’s pi can be generated

using the logit model. The expressions for the mean and variance of these models

are as follows:

E(Xi) = µHP =
(1− pi)λi

1− eλi

V ar(Xi) = σ2
HP =

(1− pi)λi

1− eλi
+
λ2
i (1− λi)(λi − eλi)

1− eλ
2
i

, 0 < p < 1 and λ > 0

3.1.1 Standard Hurdle Poisson CUSUM Model

The CUSUM control chart is primarily used for detecting small and persistent

shifts or changes in a process. Its basic purpose is to provide a sensitive method

for identifying gradual or incremental deviations from a target value or mean

in a process. The CUSUM control chart was initially proposed by Page (1954).

When using count data, ordinary Poisson cannot be used to check for inflation

of zeros; instead, the hurdle Poisson CUSUM is used. This is especially helpful

when there are more zeros in the data than a standard Poisson distribution can

adequately illustrate. Experts can detect changes in count data with extra zeros

using the hurdle Poisson CUSUM, enabling them to spot changes in the data and
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take appropriate action. The typical tabular CUSUM statistic is as follows:

St = max(0, St−1 +Wt)

where t takes on values 1, 2, 3, and so forth, St represents the CUSUM statistic

at time t, with S0 set to 0. Additionally, Wt represents the observational score

for the t-th observation, determined using the log-likelihood ratio. Let H0 be the

alternative hypothesis and H1 be the null hypothesis. Log(H1/H0) can be used

to express the score Wt. The CUSUM control chart will trigger an alert when

St exceeds the control limit denoted by h which is set to achieve a specific level

of in-control performance. When the CUSUM statistic exceeds this control limit,

it indicates that the process is no longer under control. The chart serves as an

early warning system for practitioners, drawing attention to abrupt changes as

they occur. Steiner et al. (2000) suggested the lower CUSUM statistic

Mt = min(0,Mt−1 +Wt)

where t ranging from 1, 2, 3, and so forth, with M0 initially set to 0, the log-

likelihood ratio forms the basis, while Wt represents the observation’s score. The

CUSUM control chart will trigger an alert when St falls below -h, where h represents

the control limit set to attain the desired level of in-control performance. If

the CUSUM statistic surpasses this control limit, it signifies that the process is

considered out of control. According to the p-CUSUM chart, which was suggested

by Tan et al. (2021), p0 and p1 are random probabilities in the context of the null

and alternative hypotheses, respectively, and p1 shows a specific shift of p0.

Wt =

log(p1
p0
), X = 0

log
(

1−p1
1−p0

)
, X > 0

(3.2)

When p shifts, the process is monitored using this score in combined with the

CUSUM statistic. Comparably, HP λ-CUSUM’s score Wt is:

Wt =

log(p0
p0
), X = 0

log
(

λ
xi
1 e−λi (1−e−λ0 )

λ
xi
0 e−λ0 (1−e−λ1 )

)
, X > 0

(3.3)

used to monitor the process when λ shifts.

The score Wt of HP t-CUSUM can be characterized as follows:

Wt =

log
(

p1
p0

)
, X = 0

log
(

λ
xi
1 e−λ1 (1−e−λ0 )

λ
xi
0 e−λ0 (1−e−λ1 )

)
+log

(
p1
p0

)
, X > 0

(3.4)

9



In a simulation study, we take the parameters are known, but in actual situations,

we must estimate them from Phase I using maximum likelihood estimation (MLE).

The HP model’s MLE procedure:

1. Formulate the HP model

2. Construct the likelihood function

3. Take the natural logarithm

4. Maximize the log-likelihood

After maximizing the log-likelihood, you will obtain estimates for the model

parameters

3.2 Hurdle Poisson Regression

Mullahy (1986) discussed that the logistic regression model estimates the log odds

(logit) of observing zero as a function of the predictor variables. The predictors

can include categorical and continuous variables, and their coefficients represent

the effect on the likelihood of observing zero. The Poisson regression model was

used to model positive counts. Specifically, the log of the expected positive count

is estimated through this regression model, considering the predictor variables.

The predictors can be the same or different, and their coefficients represent their

effect on the expected count. Saffari et al. (2012b) describe the hurdle regression

as follows:

logit(p) = log
( p1
1− p1

)
=

m∑
j=1

ζijδj (3.5)

where δ represents the vector of unknown parameters in m-dimensional columns

and ζi represents the ith row of the covariate matrix denoted as Z, where ζi=1,

ζi=2,..., ζi=m. In this setup, the logit link function is utilized to model the non-

negative function p. In addition, since the value of λ is typically included in a

log-linear model, the goal is to capture any systematic variation in that particular

value.

log(λ) =
m∑
j=1

Xijβj (3.6)

The regression model incorporates the independent variables denoted as βj”.

The overall count of independent variables in this regression model is represented

as m. When the coefficients are known, it is possible to compute the values for

the parameters p and λ. However, when dealing with applications where these

10



coefficients and intercepts are not known, we can conveniently estimate these

parameters by using the hurdle() function within the pscl package in R to fit the

HP data.

3.2.1 Risk-Adjusted HP CUSUM

We designate λt as the mean and pt as the adapted probability of a random shock.

Eq.3.5 and Eq.3.6 can be used to determine the values of pt and λt. Based on the

odd ratios for shock probability p and relative risk for mean λ, respectively, we

define the hypotheses H0 and H1. Let OR0 and OR1 stand for the respective odds

ratios for the null and alternative hypotheses. The ratio pt/(1-pt), where pt denotes

the estimated probability of a shock, represents the likelihood of a shock occurring.

The odds of a shock for the t-th observation under the H0 are given by OR0pt/(1-

pt), which corresponds to a probability of OR0pt/(1-pt + OR0pt). The odds are

OR1pt/(1-pt), which corresponds to a probability of OR1pt/(1-pt + OR1pt), under

the H1. Using the probability density function of the HP distribution, we calculate

the log-likelihood ratio score for monitoring individual shifts in each pt as follows:

Wt =

log
(

OR1(1−pt+ptOR0)
OR0(1−pt+ptOR1)

)
, X = 0

log
(

(1−pt+OR0pt)
(1−pt+ptOR1)

)
, X > 0

(3.7)

This score is combined with CUSUM statistics to obtain p-CUSUM.

Derivation of Eq.3.7 we have let:

H0: OR0pt/(1-pt + OR0pt),

H1: OR1pt/(1-pt + OR1pt).

We have log(H1/H0)

log(OR1pt/(1-pt + OR1pt)/OR0pt/(1-pt + OR0pt))

log(OR1(1-pt + ptOR0)/OR0(1-pt + ptOR1)).

Let the relative risks for the null and alternative hypotheses be RR0 and RR1

respectively,

H0:RR0λt , H1:RR1λt.

The H0 and H1 are associated with mean values of RR0λt and RR1λt, cor-

respondingly, for the mean number of observations at time t. We used the log-

likelihood ratio score, which relies on the probability density function of the HP

distribution, to monitor specific changes in λt.

Wt =

log(pt
pt
), X = 0

log
(

RR1e−RR1λt (1−e−RR0λt )

RR0e−RR0λt (1−e−RR1λt )

)
, X > 0

(3.8)

The score Wt of the t-CUSUM can be formulated as follows to detect changes
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in the two parameters, p and λ:

Wt =

log
(

OR1(1−pt+ptOR0)
OR0(1−pt+ptOR1)

)
, X = 0

log
(

RR1e−RR1λt (1−e−RR0λt )

RR0e−RR0λt (1−e−RR1λt )

)
+ log

(
(1−pt+OR0pt)
(1−pt+ptOR1)

)
, X > 0

(3.9)

To assess the performance of the control chart, we use the Average Run Length

(ARL), which represents the average number of observations required before the

CUSUM statistics initially exceed the control limit. This ARL is referred to as

ARL0 under the in-control condition H0 and is purposefully set to be large to

reduce false alarms. The ARL under H1, ARL1, should be as small as possible to

allow for quick shift detection.

3.2.2 Algorithm to compute ARL

The value of h in the HP-CUSUM control chart serves as a fundamental determinant

influencing the width of the chart. The subsequent steps illustrate the process for

obtaining the control chart constants needed for specific charts.

1. Generate a data set from the HP model.

2. Calculate the score function on the basis of probability, mean, odd ratio, and

relative risk.

3. Calculate the CUSUM model with their respective score function.

4. Plot the CUSUM statistic against the prefixed control limit and record the

sample number at which it crosses the limit.

5. To achieve the prespecified ARL0, repeat steps 1-4, 10,000 times. If the

desired ARL0 is not achieved, change the value of h and repeat the steps 1-5

until the desired ARL0 is achieved.
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Chapter 4

Results and Discussion

This chapter evaluates the chart detection capabilities using the HP model. The

performance is assessed based on the ARL, SDRL, Q1, Q2, and Q3 for ARL0 =

200

4.0.1 Standard CUSUM

We detect upward shifts in the parameter p1 > p0 as well as the lower shifts p1 <

p0. Similarly, for the detection of the shift of the parameter λ, both cases λ1 < λ0

or λ1 > λ0 are considered.

Table 4.1: Standard p-CUSUM assuming HP(λ,p) where p0=0.10, λ0= 1.14,
ARL0= 200

UCL = 59.5

Rp p1 ARL SDRL Q1 Q2 Q3

1.5 0.142 199.85 6.66 196 199 205
2 0.1818 126.68 6.3 122 127 130

2.5 0.217 103.69 6.75 98 103 180
3 0.25 93.211 7.25 88 93 98

LCL = 298.5

Rp p1 ARL SDRL Q1 Q2 Q3

0.2 0.021 200.4 2.3 199 200 202
0.4 0.042 366.5 4.189 364 366 369
0.6 0.062 682.011 7.28 677 682 687
0.8 0.081 1616.9 13.49 1608 1617 1625

Table 4.2: Standard λ-CUSUM assuming HP(λ,p) where ARL0= 200, λ0= 1.14.

UCL = 4.059

Rl λ1 ARL SDRL Q1 Q2 Q3

1.5 1.71 200.34 130.98 106 166 256
2 2.28 61.01 41.63 31 52 81

2.5 2.85 31.46 23 15 26 42
3 3.42 20.8514 15.44 10 17 28
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4.0.2 Risk-adjusted CUSUM

The risk-adjusted p-CUSUM chart is made to take into account the various odd

ratio levels associated with process changes. The UCL and LCL are calculated

based on these odd ratio levels, providing a more sensitive and effective way to

monitor the process. If the value of OR0 < OR1, the UCL is used. However OR0

> OR1, the LCL is used.

In practical application, we typically estimate the coefficients through the

HP regression method, but in this context, we are simply assuming that they

are already known. The constant values we have β=-0.5, δ= -1.386, ζ=1.06003,

X=0.6695. Using these constant values in Eq.3.5 and Eq.3.6, we get the values of

pt=0.13087, λt= 0.7155.

Table 4.3: Risk-adjusted p-CUSUM assuming HP(λ,p), ARL0= 200,R0=2

UCL = 29.8

R1 ARL SDRL Q1 Q2 Q3

2.5 200.7761 5.76362 196 200 204
3 113.58 4.49 111 114 116

3.5 84.53 4.47 81 84 87
4 70.13 4.19 67 70 73

LCL = 375

R1 ARL SDRL Q1 Q2 Q3

0.2 199.85 4.75 196 200 203
0.4 295.2 5.85 291 295 298.25
0.6 404.16 7.13 400 404 409
0.8 542.4 8.46 536 542 548

Table 4.4: Risk-adjusted λ-CUSUM assuming HP(λ,p), ARL0= 200,RR0=2

UCL = 28.5

RR1 ARL SDRL Q1 Q2 Q3

0.2 199.45 28.15 180 198 218
0.4 219.92 29.78 199 219 239
0.6 249.99 31.29 228 248 270
0.8 290.13 34.53 266 288 312

LCL = 8.94

RR1 ARL SDRL Q1 Q2 Q3

2.5 200.02 28.2 180 198 218
3 100.14 19.93 86 99 239

3.5 65.29 16.18 53 64 270
4 49.78 13.96 40 48 312
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The risk-adjusted λ chart is made to take into account the various relative risk

values connected to uncommon events or defects in a process. The UCL and LCL

are calculated based on these relative risk values, providing a more sensitive and

effective way to monitor the rate of rare events. When RR0 > RR1 the UCL is

calculated. In contrast, when RR0 < RR1 the LCL is calculated.

Table 4.5: Comparison of standard and risk-adjusted t-CUSUM assuming Rp ∈
(1.5,2,2.5,3), Rl ∈ (1.5,2,2.5,3), OR1 ∈(1.5,2,2.5,3), RR1 ∈ (1.5, 2, 2.5, 3), OR0= 1,
RR0= 1,ARL0= 200, λ1 ∈ (1.71,2.28,2.85,3.42)

Standard t-CUSUM Risk-adjusted t-CUSUM

UCL ∈(67,108,137,160) UCL ∈(35.1,65.3,85.5,102)

Rp Rl 1.5 2 2.5 3 OR1/RR1 1.5 2 2.5 3

1.5 ARL 200.8 167.32 132.51 104.27 1.5 200 297.88 603.27 4421.42
SDRL 10.18 16.56 18.28 17.77 22 53.96 196.41 -
Q1 194 156 120 92 184 260 462 -
Q2 201 167 132 104 198 292 572 -
Q3 208 179 144 116 214 330 708 -

2 ARL 200.21 173.7 143.89 117.3 2 201.32 245 316.38 452.5
SDRL 7.03 11.93 14.2 14.85 17.31 29.15 29.15 29.15
Q1 195 166 134 107 189 224 280 379
Q2 200 174 144 117 200 244 321 441
Q3 205 182 153 127 213 263 347 511

2.5 ARL 199.56 174.9 147.13 122.18 2.5 199.7 229.8 274.07 341.9
SDRL 5.966 10.21 12.53 13.12 15.19 23.9 36.57 58.02
Q1 196 168 139 113 186 214 248 300
Q2 200 175 147 122 199 228 271 336
Q3 204 182 156 130 209 245 297 377

3 ARL 200.36 176.78 149.24 124.4 3 200.5 226.08 260.86 309.81
SDRL 5.32 9.46 11.47 12.12 16.27 22.44 31.63 47.26
Q1 197 170 141 116 189 210 239 277
Q2 200 177 149 124 200 225 259 306
Q3 204 183 157 132 211 241 281 340

15



4.1 Standard CUSUM Analysis

4.1.1 Shifts in p1 as Rpp0/1+(Rp -1)p0

Table 4.1 summarizes the outcomes of altering Rp, which indirectly impacts the

shifts in p1. Where p1=Rpp0/1+(Rp-1)p0 when the value of ARL0 is 200. A shift

size of 0.1818 in p1 can cause ARL1 = 126.68 while SDRL-6.66. A decreasing trend

in the ARL is observed as Rp increases. This means that the higher Rp values used

in the standard p-CUSUM chart lead to quicker detection of shifts.

A lower ARL implies that the chart possesses greater sensitivity in detecting

shifts when associated with higher Rp values. In the case of LCL, the shift size

0.042 can cause ARL1= 366.5 and SDRL= 4.189. The ARL values against the

comparing Rp values show an increasing pattern as Rp increases. This implies that

larger Rp values used in the standard p-CUSUM chart lead to a higger number of

samples needed to detect shifts. A larger ARL shows that the chart turns out to

be less sensitive to shifts with higher Rp values.

4.1.2 Shifts in λ1 as Rlλ0

Table 4.2 summarizes the results that either λ0 < λ1 or λ0 > λ1 and the UCL

CUSUM statistic is applicable. We have λ1 = 2.28, and the ARL1 is roughly

61.01. The SDRL which measures the variability in detection performance, is

approximately 41.63. This implies that higher Rl values used in the standard

λ-CUSUM chart lead to speedier identification of changes in the process mean.

A smaller ARL means that the chart turns out to be more sensitive in detecting

shifts with higher Rl values.

4.2 Risk-adjusted CUSUM Analysis

4.2.1 Shifts in OR1

The results of Table 4.3 show the direct shifts in OR1. If we take R1 = 3, the

ARL1 is approximately 113.58, that is the process will, on average, detect a shift

in the mean every 113.58 consecutive samples. The SDRL is approximately 5.134,

which indicates variability in the detection performance. Similarly, if we assume

that OR1 = 0.4 the results will typically identify a shift in the mean every 295.2

consecutive samples with LCL. The ARL values decrease while OR1 increases from

2.5 to 4. This means that higher odd ratios lead to a speedier identification of

changes. In general, the ARL rises as the OR1 value rises. This suggests that more

samples are required to identify changes in the process mean when larger odds
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ratios are used in the risk-adjusted p-CUSUM chart. A larger ARL indicates that

the chart becomes less sensitive to detect shifts with higher odds ratios.

4.2.2 Shifts in RR1

Table 4.4 summarizes the results of shifts in RR1. Assuming RR1 = 0.4, the

ARL is approximately 219.92, that is, the process will, on average, detect a shift

with a relative risk of 0.4 for every 219.92 consecutive samples. The SDRL is

approximately 29.78, which suggests the degree of variability in the run length. By

analyzing the ARL values in relation to different values of RR1, it is evident that as

RR1 increases from 0.2 to 0.8, the ARL values also increase. This trend indicates

that as the relative risk of identifying a shift in the process mean increases, a greater

number of consecutive samples are necessary to detect the shift. In contrast, in the

case of LCL where RR1 is 3, the ARL is approximately 100.14. This indicates that

a shift in relative risk of 3 will be detected, on average, after every 100.14 samples.

The ARL values show that as the RR1 increases, the ARL values decrease. This

means that higher relative risks lead to faster detection of shifts. Just as with this,

lower ARL values suggest that the risk-adjusted λ-CUSUM chart is more sensitive

in detecting shifts with higher relative risks.

4.3 Comparison of Traditional and Risk-adjusted

t-CUSUM Analysis

4.3.1 Shifts in p1 and λ1

Table 4.5 provides an overview of the results stemming from the indirect shifts

in both p1 and λ1. We consider different values of the parameter Rp and Rl

and assume both the parameters are independent. It is noticed that the ARL

values show a decreasing trend for different values of Rp and Rl. This means that

the trend leads to quicker detection shifts. However, in the case of the standard

t-CUSUM, a smaller ARL shows that the chart is more sensitive.

4.3.2 Shifts in RR1 and OR1

Similarly, Table 4.5 summarizes the results of RR1 and OR1. In these results, the

ARL values show an increasing trend which means that a larger number of samples

is needed to detect shifts. In addition, a larger value of ARL shows that the

chart turns out to be less sensitive. This suggests that more samples are required

to identify changes in the process mean when larger odds ratios are used in the
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risk-adjusted. To establish the presence of a shift, a larger number of samples is

required as the relative risk of detecting a shift in the process mean increases

Furthermore, a comparison between standard t-CUSUM and risk-adjusted

t-CUSUM results in Table 4.5 indicates that the standard t-CUSUM chart shows

greater sensitivity than the risk-adjusted t-CUSUM.

4.4 Real Data Application

This section uses the Tokyo influenza dataset (Imai et al., 2015) to serve as an

example of how to use the risk-adjusted CUSUM control chart. The dataset

comprises weekly counts of reported cases of influenza-like illnesses obtained from

the National Institute of Infectious Diseases (NIID) in Japan. This data contains

cases from Tokyo from April 1999 to March 2004. Since influenza season in Japan

generally occurs from October through the following March, the epidemic year

starts from April and it is used instead of the calendar time year to cover the whole

course of each influenza epidemic season.

To assess the effectiveness of our suggested approach for handling influenza

data that includes an excess of zero values, we select the weekly influenza data

from 1999 to 2002 as the Phase-I dataset. These data are used to create control

charts. The remaining data from 2003-2004 is used for monitoring.

Weekly ILI cases from 1999 to 2004 can be observed in Fig. 4.1. The coefficients

used in our analysis are derived through HP regression using the 1999-2002 ILI

data, as presented in Table 4.8.

We use a modified CUSUM chart and a standard CUSUM chart to monitor

the data from 2003 to 2004. Figure 4.2 displays the risk-adjusted CUSUM chart

with h= 6.675, while Figure 4.3 presents the standard CUSUM chart with h= 220,

where ARL0=200. In CUSUM charts, the solid line represents the observations,

while the red line represents the control limit. It is evident from Figure 4.2 that

the risk-adjusted CUSUM chart detects an out-of-control (OOC) signal during

the 9th week. Conversely, Fig. 4.3 demonstrates that the standard CUSUM chart

detects OOC starting from the 56th week. This study’s proposed chart signals an

OOC condition during the 9th week, indicating its superior efficiency compared to

the traditional chart.
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Table 4.6: Summary of real data 1999-2004

Minimum Q1 Median Mean Q3 Maximum

Year 1999 2000 2002 2002 2003 2004
sntl 140 178 178 176 178 188
count flu 0 0 6.50 49.60 70.25 921
temp mean 3.329 10.11 17.42 17.16 23.24 30.68

There are three variables described in the summary Table.4.6: ”sntl” has a

fairly stable distribution around a mean of 176, ”count flu” shows a distribution

that is significantly skewed, featuring an average of 93.93, and the presence of

potential outliers, and ”temp mean” represents temperature data with a mean of

17.16 and a moderate spread between quartiles.

Table 4.7: Test Results for Dispersion

Dispersion z p
61.8126 2.0432 0.02052

Table 4.7 shows a dispersion test in the hurdle Poisson regression model. The

dispersion value is larger than 1 and p value is less than 0.05 indicates overdispersion.

Table 4.8: HP regression coefficients of Phase I data 1999-2002

Count model

Estimate Standard error z value Pr(>|z|)

Intercept 4.69 0.2982 15.731 2.00E-16
b1 0.012228 0.00165 7.395 1.41E-13
b2 -0.176081 0.001802 -97.71 2.00E-16

Zero hurdle model

Estimate Standard error z value Pr(>|z|)

Intercept 9.03213 3.2038 2.819 0.00481
b1 -0.006255 0.016719 -0.374 0.70831
b2 -0.345138 0.051125 -6.751 1.47E-11

These models are used to examine count data from Table 4.8, which contains

a substantial number of zero values. The count model describes the relationship

between predictors and the count itself, whereas the zero hurdle model describes the

likelihood of observing zero counts. The statistical significance of each coefficient is

determined by the p-value, which is set at 0.05; lower p-values than 0.05 indicate

greater statistical significance.

Table 4.9 presents a summary of the AIC, BIC, and log-likelihood for each

model. The Poisson model may not be suitable for the data due to its elevated
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Table 4.9: The log-likelihood, AIC, and BIC, of different model results

Model AIC BIC Log-likelihood

Poisson 77409.86 77423,53 –
ZIP 30758.94 30781.17 -1.5370
ZINB 2227.61 2253.53 -1107
HP 30758.77 30780.99 -1.5370

AIC and BIC values. On the other hand, the ZIP model, with its lower AIC and

BIC values, could offer a more favorable fit. The ZINB model, which exhibits

the lowest AIC and BIC values, appears to be the most suitable choice for this

data. Similarly, the HP model, characterized by its low AIC and BIC values, also

presents a better fit.
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Figure 4.1: weekly Influenza-Like Illness cases during 1999-2004
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Figure 4.2: Risk-adjusted CUSUM chart for 2003-2004 influenza monitoring
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Figure 4.3: Standard CUSUM chart for 2003-2004 influenza monitoring

21



4.4.1 New Method for Comparison of Traditional and Risk-

adjusted CUSUM charts

Lai et al. (2023a) discussed that during Phase I, the in-control parameters remain

constant and are estimated using MLE along with the Newton-Raphson method.

Let’s consider that xi is collected over time from the change-point model described

below.

xi ∼

HP(p0i , λ0i) for i = 1, . . . , τ − 1

HP(p1i , λ1i) for i = τ, τ + 1, . . .
(4.1)

τ is the unknown change-point, and p1i and λ1i represent the parameters after

time τ for observations i. Based on this model, hypotheses can be formulated.

H0 : p1i = p0i ,λ1i=λ0i

H1 : p1i ̸= p0i , λ1i ̸= λ0i

The control limits are established for the in-control data to accommodate an

acceptable shift, and the CUSUM scheme will monitor the range of shift between

predicted and estimated values. We set αλ =
λ1i

λ0i
, αp =

p1i
p0i

to represent the shift

range, and the CUSUM statistics are given by

Ci = max(0, Ci−1 + αp)

Di = max(0, Di−1 + αλ)

where C0= 1, D0= 1.

Based on hypotheses the likelihood ratio test statistic for the risk-djusted HP

process can be obtained as

R =

log
(

Cip1
p0

)
, X = 0

log
(

Diλ
xi
1 e−Diλ1 (1−e−λ0 )

λ
xi
0 e−λ0 (1−e−Diλ1 )

)
+ log

(
Cip1
p0

)
, X > 0

(4.2)

To construct the control chart, the chart statistic R is compared to the control

limit. When R exceeds the control limit, alarm signals should be triggered.
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Table 4.10: Comparison of standard and risk-adjusted CUSUM assuming p0= 0.10,
λ0= 1.14 ARL0= 200, λ1 ∈ (2.14,3.14,4.14,5.14) p1 ∈ (0.20,0.40,0.50,0.60), UCL-s
∈ (149,178,220), UCL-r ∈(6.675)

Standard CUSUM Risk-adjusted CUSUM

λ1 p1 0.2 0.40 0.5 0.6 λ1/p1 0.2 0.40 0.5 0.6

2.14 ARL 200.36 100.36 86.08 76.91 2.14 200.108 51.1 33.09 24.08
SDRL 7.22 3.566 3.18 2.96 0.346 0.925 0.749 0.821
Q1 196 98 84 75 200 51 33 24
Q2 200 100 86 77 200 51 33 24
Q3 206 103 88 79 203 51 33 24

3.14 ARL 200.77 100.67 85.39 75.4 3.14 200.108 51.117 33.11 24.109
SDRL 13.73 6.564 5.65 5.06 0.346 0.36 0.479 0.414
Q1 191 96 82 72 200 51 33 24
Q2 201 101 85 75 200 51 33 24
Q3 210 105 89 79 200 51 33 24

4.14 ARL 200.31 99.6 83.45 72.8 4.14 200.104 51.117 33.11 24.11
SDRL 17.9 8.63 7.15 6.25 0.343 0.36 0.36 0.35
Q1 186 94 74 69 200 51 33 24
Q2 198 99 83 73 200 51 33 24
Q3 211 105 88 77 200 51 33 24

5.14 ARL 199.8 99.87 82.9 71.66 5.14 200.108 51.117 33.11 24.11
SDRL 20.95 9.8 7.93 6.744 0.3466 0.364 0.36 0.35
Q1 185 93 77 67 200 51 33 24
Q2 199 100 83 72 200 51 33 24
Q3 213 106 88 76 200 51 33 24
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Table 4.10 provides an overview of the results arising from direct shifts in both

p1 and λ1. We consider various values for the parameters p1 and λ1, assuming their

independence. It is observed that the ARL values exhibit a decreasing trend across

different combinations of p1 and λ1, indicating quicker detection of shifts. However,

the risk-adjusted CUSUM shows greater efficiency compared to a standard CUSUM

in terms of both the ARL and SDRL for the specified parameter combinations.
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Chapter 5

Conclusion And

Recommendations

When dealing with count data analysis, we frequently encounter the challenge of an

inflation of zeros. For counting data with too many zeros, we suggest using a risk-

adjusted HP CUSUM chart. We assessed the effectiveness of our suggested chart by

conducting a detailed simulation study, focusing on its run-length characteristics.

In a simulation study the standard p-CUSUM chart, when Rp is transformed into

p1 using the formula p1 = Rpp0/(1+(Rp-1)p0) with an initial ARL0 of 200. A chart

with UCL shows quicker shift detection and greater chart sensitivity. Conversely,

the LCL chart suggests that more samples are needed for shift detection, indicating

reduced chart sensitivity.

The standard λ-CUSUM chart results show quicker shift detection and greater

sensitivity. Risk-adjusted p-CUSUM chart with the UCL shows more sensitivity

than the LCL chart. Also, higher odds ratios lead to faster detection. In contrast,

the LCL chart has larger odds ratios and needs more samples for a change iden-

tification, showing reduced sensitivity. The risk-adjusted λ-CUSUM chart with

the UCL shows the ARL values increase, which means requiring more consecutive

samples to detect shifts with higher relative risk. Thus, the LCL chart shows more

sensitivity than the UCL.

The simulation results indicate that in the comparative scenario, risk-adjusted

HP CUSUM chart performs better than the traditional HP CUSUM chart. For

real-world data sets, we implement the proposed risk-adjusted hurdle Poisson

model to demonstrate its suitability and effectiveness in practical situations.

In the future, control charts for data with inflated zero values might be made

using different hurdle models. It is feasible to introduce risk-adjusted charts based

on the generalized likelihood ratio. It is also possible to introduce the hurdle

Poisson EWMA case as well as risk-adjusted zero-inflated Poisson EWMA charts.
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