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Abstract
Adaptive clinical trials offer a flexible approach to refining sample sizes during

ongoing research, enhancing trial efficiency. This study delves into improving

sample size recalculation through resampling techniques, employing measurement

error and mixed distribution models. The core inquiry addresses the potency of

resampling in enhancing sample size recalculation and evaluates the impact of

measurement error and mixed distribution models on clinical trial efficacy. The

research employs diverse sample size recalculation strategies—standard simulation,

R1, and R2 approaches—where R1 considers the mean and R2 employs both mean

and standard deviation as summary locations. These strategies are tested against

observed conditional power (OCP), restricted observed conditional power (ROCP),

promising zone (PZ), and group sequential design (GSD) on data generated from

measurement error and mixed distribution models.

The key findings indicate that the R1 approach, capitalizing on mean as a

summary location, notably outperforms standard recalculations without resampling,

as it mitigates variability in recalculated sample sizes across effect sizes. The OCP

exhibits superior performance within the R1 approach compared to ROCP, PZ, and

GSD due to enhanced conditional power. However, a tendency to inflate the initial

stage’s sample size is observed in the R1 approach, prompting the development of

the R2 approach that considers mean and standard deviation. The ROCP in R2

approach demonstrates robust performance across most effect sizes, although GSD

retains superiority within R2 approach due to its sample size boundary. Notably,

sample size recalculation designs perform worse than R1 for specific effect sizes,

attributed to inefficiencies in approaching target sample sizes.

In conclusion, resampling-based approaches, particularly R1 and R2, offer

improved sample size recalculation over conventional methods. R1 approach excels

in minimizing recalculated sample size variability, while R2 approach incorporating

both mean and standard deviation, presents a refined alternative. However, chal-

lenges in precisely approaching target sample sizes under certain conditions indicate

avenues for further refinement. This research contributes to the optimization of

adaptive clinical trials, enhancing their efficiency and reliability.
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Chapter 1

Introduction

Clinical trials play a pivotal role in the evaluation of new medical interventions,

aiming to provide reliable evidence for the safety and efficacy of treatments. With

the increasing complexity of medical research and the demand for more efficient

trial designs, adaptive clinical trials have gained significant attention. Adaptive

designs allow for modifications to the study’s parameters based on accumulating

data, maximizing efficiency, and enhancing the trial’s ability to answer research

questions effectively.

One critical aspect of adaptive clinical trials is the sample size, which directly

impacts the trial’s statistical power and the ability to draw meaningful conclusions.

The traditional fixed-sample size designs often face challenges, as the required sam-

ple size is typically determined before any data is collected, leading to inefficiencies

and potential resource wastage.

This thesis delves into the realm of sample size recalculation in the context

of adaptive clinical trials. Specifically, it focuses on a novel approach based on

a measurement error model (MEM) to generate treatment and control groups

and explores various sample size recalculation strategies that adaptively adjust

the sample size based on interim analysis. Furthermore, the thesis delves into an

intricate investigation of diverse strategies tailored for the recalibration of sample

size. These strategies elegantly adapt the trial’s sample size based on interim

analyses, ensuring that the trial remains appropriately powered and resource-

efficient. By seamlessly integrating the generation of treatment and control groups

through a two-component mixture distribution and application of sample size

recalculation approaches that recalculate sample size based on interim analysis.
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1.1 Background

Adaptive clinical trials are a type of clinical trial design that allows for modifications

to trial parameters based on interim data analysis while the trial is ongoing. Unlike

traditional fixed designs, where the trial parameters (such as sample size, treatment

regimen, or patient population) are predetermined and remain fixed throughout

the trial, adaptive trials permit adjustments based on accumulated data. This

flexibility can lead to more efficient and informative trials.

Advantages of Adaptive Trials over Traditional Fixed Designs:

1. Efficiency: Adaptive trials can lead to more efficient resource utilization by

adjusting the trial parameters based on emerging evidence, which can reduce

the number of patients needed to achieve a meaningful outcome.

2. Ethical Considerations: Adaptive trials can stop or modify a trial if

interim results show that a treatment is significantly beneficial or harmful,

potentially sparing patients from unnecessary exposure to ineffective or

harmful interventions.

3. Learning and Decision-Making: Adaptive trials provide opportunities

for learning from interim results, leading to more informed decisions about

treatment strategies and patient populations.

4. Increased Probability of Success: Adaptive designs can increase the

probability of successfully identifying effective treatments or interventions,

as adjustments can be made based on accumulating evidence.

Sample Size Determination in Clinical Trials:

Sample size determination is a critical aspect of clinical trial design. It is

the process of estimating the number of participants needed to provide sufficient

statistical power to detect a meaningful treatment effect. Inadequate sample sizes

can lead to inconclusive or false-negative results, while excessively large sample

sizes can waste resources.

Limitations of Fixed-Sample Size Approaches:

1. Resource Utilization: Fixed-sample size designs may lead to the enrol-

ment of more participants than necessary, wasting resources and potentially

exposing more patients to experimental treatments.

2. Statistical Power: Insufficient sample sizes can result in low statistical

power, reducing the ability of the trial to detect a true treatment effect.

3. Type I Error: Fixed designs may increase the risk of Type-I error (false-

positive results) if the predetermined sample size is too small.

2



1.2 Measurement Error Models and Generating

Treatment and Control Groups

Measurement error models are statistical models used to account for measurement

errors in data. In clinical trials, measurement errors can arise due to various factors,

such as variability in assessments or instruments used to measure outcomes. These

errors can lead to biased results and reduced statistical power.

In the context of generating treatment and control groups, MEMs can be

used to improve the accuracy of treatment effect estimates. By accounting for

measurement errors, researchers can better distinguish true treatment effects from

noise, leading to more reliable and robust conclusions about the effectiveness of

interventions.

In summary, adaptive clinical trials offer flexibility and efficiency compared to

traditional fixed designs. Sample size determination is crucial for ensuring trials

have adequate statistical power. Fixed-sample size approaches have limitations

in terms of resource utilization and statistical power. MEMs are important for

minimizing bias and improving the accuracy of treatment effect estimates in clinical

trials.

1.3 Objective

� The primary objective of this thesis is twofold:

1. To propose a measurement error model-based approach for creating

treatment and control groups in adaptive clinical trials.

2. To investigate the application of different sample size recalculation

methods at interim analyses.

� By implementing these strategies, we aim to achieve the following goals:

1. Enhance the efficiency and accuracy of adaptive clinical trials.

2. Contribute to the advancement of evidence-based medical research.

1.4 Methodology

The research is structured around a rigorous methodological framework. To achieve

the objectives, a simulation-based study is conducted to evaluate the performance of

the MEM in generating trial groups. Furthermore, various sample size recalculation

approaches are applied at interim analyses, including observed conditional power
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(OCP), restricted observed conditional power (ROCP), promising zone (PZ), and

group sequential design (GSD). The effectiveness of these methods is assessed

concerning statistical power, Type-I error control, and overall trial efficiency.

Significance

This thesis holds great significance for both the statistical and medical re-

search communities. The proposed MEM approach offers a valuable contribution

to the literature on adaptive clinical trial designs. By generating groups more

accurately, it promises to enhance the internal validity and precision of treatment

effect estimates. Moreover, The investigation of sample size recalculation methods

addresses a crucial issue in adaptive trials, as it allows for more informed and

data-driven decisions during the course of the study. Moreover, The utilization of

mixture distribution models for the generation of treatment and control groups

addresses the challenges associated with randomization, covariate balance, and

group heterogeneity, ultimately enhancing the robustness and credibility of clinical

trial outcomes. As clinical research continues to evolve, the integration of mixture

distribution models holds the promise of enhancing the validity and impact of

clinical trial outcomes, ultimately leading to improved patient care and medi-

cal decision-making. The thesis is organized as follows: Chapter 2 provides a

comprehensive review of the research motivation behind the study, literature on

adaptive clinical trials, sample size determination, MEMs and mixture distribution

model. Chapter 3 outlines the various sample size recalculation methods and

their implementation in adaptive trials. Also, details the proposed MEM and

mixture distribution model -based approach for group generation. Moreover, we

present the results and analyses from the simulation-based study. Finally, Chapter

4 offers concluding remarks, discusses the implications of the findings, and outlines

potential areas for future research.

With a deep commitment to statistical rigor and scientific inquiry, this thesis

aims to contribute to the advancement of adaptive clinical trial designs and promote

the adoption of efficient and flexible methodologies in medical research.

4



Chapter 2

Research Motivation and

Literature Review

Adaptive clinical trial designs have gained prominence due to their potential to

improve efficiency, flexibility, and ethical considerations in drug development. These

trials allow for modifications in study design, including sample size recalculation,

based on interim analyses or accumulating data. However, the accuracy and

reliability of estimated sample sizes can significantly impact study validity and

subsequent decision-making.

The motivation behind this research is to refine and optimize existing sample

size re-estimation techniques used in adaptive clinical trials. Although various

methods are employed, there is always a room for improvement in terms of

precision, robustness, and efficiency. The current approaches may rely on simplified

assumptions or outdated statistical models, leading to suboptimal adaptations and

potential biases.This research aims to address these limitations and contribute to

advancing sample size re-estimation techniques. By developing novel statistical

methods, we seek to enhance precision, ensuring adequate power while controlling

Type-I error rates.

This research also aims to tackle practical challenges associated with sample size

adaptations in adaptive trials. The challenges include accounting for uncertainty,

managing logistics and costs, handling missing data, and considering recruitment

rates and timelines. By addressing these issues, we can provide reliable and practical

guidelines for conducting adaptive trials with optimal sample size recalculations.

The outcomes of this research will have far-reaching implications for clinical

research and drug development. More accurate and robust sample size recalculation

techniques will enable precise and efficient adaptive trial design, leading to better-

informed decisions about treatment efficacy and safety.

Ultimately, the findings will contribute to advancing statistical methodology
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in adaptive trial designs, providing a foundation for future studies. Improved

precision in sample size adaptation will empower researchers, optimize resource

allocation, and accelerate the development of safe and effective therapies.

By addressing research gaps and challenges in sample size re-estimation methods

for adaptive clinical trials, this study aims to make a significant contribution to

fostering innovation, efficiency, and reliability in the drug development process.

2.1 Literature review

Herrmann et al. (2021) noticed the importance of proper sample size calculations in

clinical trials cannot be overstated. Choosing the wrong parameter assumptions can

lead to underpowered or overpowered studies, which can have serious consequences

for patients, researchers, and healthcare providers. They noticed that adaptive

group sequential study designs have emerged as a promising approach to dealing

with planning uncertainties in clinical trials. These designs allow for sample size

updates during an ongoing trial based on observed interim effects, which can

help improve the efficiency and accuracy of the study. One particular approach

to adaptive group sequential study designs is resampling. Resampling involves

repeatedly drawing samples from the observed data and using these samples to

estimate the distribution of the test statistic under the null hypothesis. This

approach can help deal with uncertainty related to the observed interim effect in

adaptive clinical trials, which can be particularly useful in situations where the

observed effect is smaller than expected or the variance is larger than anticipated.

Several methods have been proposed for implementing resampling in adaptive

clinical trials, including the Pocock and O’Brien-Fleming boundaries. These

methods allow for sample size updates based on the observed interim effect while

controlling the overall Type-I error rate of the study.

Denne (2001) noticed that sample size may be determined by one or more

nuisance characteristics, which are typically unknown, in order to obtain a specific

power at a predetermined absolute difference in mean response. It has been

extensively researched how to recalculate the sample size from an internal pilot

using estimates of these characteristics. The majority of these strategies overlook

the fact that information on the relevant parameter from this internal pilot will

affect the final test statistic’s result. To preserve the likelihood of rejecting the null

hypothesis at the conclusion of the investigation under the prespecified absolute

difference in mean response conditional on the data, the authors offered an approach

that requires recalculating the target sample size.

Friede and Kieser (2001) developed the internal pilot study design, which

enables the sample size to be revised over the course of a trial using the estimated

6



variance discovered by interim analysis. The treatment assignment first must be

unblinded. There should be some benefit of this design over blindfolded sample size

recalculation processes to justify the disclosure of the treatment code, as unblinding

of an ongoing study should be avoided if possible. In this study, they contrasted a

number of sample size recalculation methods that include and exclude unblinding.

Charles et al. (2009) noticed that the primary goal of an a priori sample size

calculation is to determine the minimum number of participants required to identify

a treatment effect that is clinically significant. Some claim that large studies, which

subject too many participants to the new medicine, and small, underpowered trials,

which might not produce meaningful findings, should be avoided.

Calculating sample size typically involves using four parameters: Type-I error,

power, control group assumptions (response rate and standard deviation), and

predicted treatment impact.

Kieser and Friede (2003) discussed two-stage techniques, where the variance

is reestimated from a subsample and the sample size is modified as needed, are

appealing due to the uncertainty in the design step. From a regulatory perspective,

it is crucial to maintain blindness and the capacity to estimate or manage the

Type-I error rate. Several recommendations for sample size adjustment methods

in the context of t-tests have recently been made. Sadly, none of these approaches

meet both of these demands. They demonstrated analytically that the Type-I

error rate of the t-test is not impacted by the use of straightforward, blind variance

estimators for sample size recalculation.

Harden and Friede (2018) analyzed multi-centre randomized clinical trials,

which is crucial for evidence-based medicine, providing advantages like accelerated

recruitment and increased result generalizability. To address clustering in data,

mixed models are used. However, the existing sample size calculation methods only

consider balanced treatment allocations, which may not be realistic. To overcome

this, a new sample size determination procedure is proposed for multi-centre

trials comparing two treatment groups. The method incorporated random effects,

allowing arbitrary sample sizes, and assumed fixed block length block randomization.

Through simulations, the proposed approach demonstrated its superiority over

conventional methods, taking into account parameters such as block length and

centre heterogeneity. It is important to note that unbalanced treatment allocation

can lead to power loss. Therefore, the proposed approach ensured accurate sample

size determination and improved study planning, addressing potential limitations

in previous methodologies.

Das et al. (2016) emphasized the significance of multi-centre randomized con-

trolled clinical trials in evidence-based medicine, highlighting advantages such as

accelerated recruitment, and increased result generalizability. To address potential

7



clustering in the data, the study employed mixed models. However, existing sample

size calculation methods for mixed models typically assume balanced treatment

allocations, which may not be feasible in practice. In response to this limitation, the

paper introduced a novel sample size determination procedure for multi-centre trials,

incorporating random effects and accommodating arbitrary sample sizes. Through

simulations, the proposed method demonstrated its superiority over conventional

approaches, taking into account factors like block length and centre heterogeneity.

Furthermore, the study highlighted the impact of unbalanced treatment allocation

on power loss if centre heterogeneity is overlooked during planning. The proposed

approach aimed to ensure accurate sample size determination and improved study

planning for multi-centre trials, providing valuable insights for researchers in the

field of clinical research.

Chow and Chang (2008) discussed the adaptive design methods in clinical

research, which have gained popularity due to their flexibility and efficiency based

on accrued data. They can be categorized into prospective, concurrent (ad hoc),

and retrospective adaptive designs. However, concerns arise about the deviation of

the patient population and control of the overall Type-I error rate after adaptations,

potentially leading to trials that fail to address intended scientific questions. Despite

these concerns, adaptive designs are valued for reflecting medical practice, ethical

considerations, and providing flexibility and efficiency in clinical development.

Industry groups have proposed strategies to address these issues and ensure the

validity and integrity of the trials. By understanding and implementing adaptive

design methods, researchers can efficiently identify clinical benefits and increase

the success of clinical development.

Jennison and Turnbull (2003) discussed the common practice of setting the

sample size in clinical trials based on a specified treatment effect, disregarding

the importance of detecting smaller but clinically significant effects. It addresses

situations where weak evidence of a positive treatment effect is obtained in an

interim stage, leading to a desire to modify the design for increased power to detect

smaller effects. The proposed group sequential designs focused on reducing the

expected sample size while maintaining sufficiency and considering the possibility

of small treatment effects at the design stage. The methods are compared with

Fisher’s variance spending procedure and shown potential advantages. However,

the study cautioned that the flexibility to redesign an experiment mid-course may

come at a substantial cost in terms of the required number of observations to

correct the initial design.

Pritchett et al. (2015) compared different types of sample size recalculation

(SSR) designs, including blinded SSR, unblinded SSR, and conventional group

sequential designs (GSD). Operational logistics for implementing SSR designs

8



are discussed, along with recommendations for final data analysis and reporting.

Uncertainties in confirmatory study designs can be mitigated by SSR, which

helps avoid underpowered studies and potential failure of a compound in later

development stages. The study presented statistical methods for unblinded and

blinded SSR designs and highlights the importance of controlling Type-I error rate

and accurately estimating the treatment effect. The advantages of unblinded SSR

over GSD are discussed, and it is emphasized that SSR should be prespecified

and adaptive by design. Case studies using SSR designs have shown promising

results, and the appropriate application of SSR in drug development is expected

to continue growing as industry, regulators, and academia gain experience and

knowledge in this area.

Chakraborty and Gu (2009) discussed the prevalent challenges posed by missing

values and dropouts in longitudinal studies within medical and public health fields.

They focused on Intent-to-Treat (ITT) analysis as a key method for analyzing

controlled clinical trials. Missing values, stemming from non-completion of follow-

up per protocol, introduce complexities in ITT analysis. The study investigated

this issue through simulation studies, compared various ad hoc strategies with the

linear mixed model approach. Results indicated that, particularly for studies with

high missing value rates, the mixed model approach imputation is more potent. The

study emphasized the significance of missing data in longitudinal studies, impacting

dataset balance, information loss, and introducing potential bias. The types of

missing data mechanisms are delineated as missing completely at random (MCAR),

missing at random (MAR), and missing not at random (MNAR). The ITT analysis

is advocated for unbiased treatment effect estimation, irrespective of deviations.

The study objective was to provide recommendations for ITT analysis with missing

values, focused on the power and size of different methods in longitudinal design.

Boos and Brownie (1992) introduced novel rank-based methods within the

framework of mixed linear models for analyzing data from multisite clinical tri-

als. Unlike current rank methods, the newly proposed procedures specifically

assess a drug’s main effect in the presence of a random drug by site (or investiga-

tor) interaction. Corresponding procedures are also outlined for the fixed-effects

scenario, with comparisons drawn against existing methods. The rationale for

assuming random investigator effects is explained. Clinical trials often involve

multiple investigators across different sites, randomly assigning subjects to new

or standard drugs. The study addressed the challenge of inferring drug effects

for the study population and broader target populations. Randomization-based

tests, like the van Elteren test, offer validity based on random allocation, while

fixed-effects analysis is suitable for broader population inferences. The mixed

model, with random investigator and drug by investigator effects, is pertinent for

9



larger clinician populations. Nonrandom selection of investigators could lead to

bias, affecting estimates and variance components. The proposed mixed-model

analysis provided a more realistic estimate of variability for evaluating drug effects

while addressing biases introduced by investigator selection. The study outlined

rank-based alternatives for mixed-model ANOVA F tests and extends them to the

fixed-effects scenario, illustrated through a motivating example.

Nagin and Odgers (2010) highlighted the growing utilization of group-based tra-

jectory models in clinical research for tracking symptom development and gauging

diverse responses to clinical interventions. The review furnished a comprehensible

overview of both group-based trajectory and growth mixture modeling, coupled

with instances showcasing their clinical research applications. The study under-

scored challenges linked to these models’ implementation and proposed initial

guidelines for researchers to adhere to when presenting model outcomes. Prospec-

tive avenues for group-based modeling are explored, including leveraging trajectory

models to enable causal inference in cases where random treatment assignment isn’t

feasible. Overall, the study provided insight into the evolving role of group-based

trajectory models in clinical research, their methodological intricacies, and their

potential for advancing causal inference in challenging contexts.

Deng et al. (2022) discussed a novel two-stage multivariate Mendelian random-

ization method (MRMO) for investigating causal effects of clinical factors on various

outcomes, especially in cases of mixed correlated outcomes with different distribu-

tions. The conventional MR methodology focused on single outcomes, disregarding

correlation structures, potentially resulting in reduced statistical power. The pro-

posed MRMO addressed this limitation by jointly analyzing multiple outcomes

using genetic instrumental variables. It was designed to handle both measured

and unmeasured confounders. By applying the gradient descent algorithm and the

adaptive sum of powered score (aSPU) test, the method demonstrated enhanced

power in testing the overall hypothesis while controlling Type-I errors. The study

showcased simulation experiments and a clinical application involving colorectal

cancer patients to underscore the method’s benefits over univariate MR analysis.

This approach offered a promising advancement in clinical research by enabling

the comprehensive assessment of causal relationships between clinical factors and

complex mixed outcomes, aiding in hypothesis generation and identification of

potential associations.

Spanbauer and Sparapani (2021) suggested precision medicine’s transformative

potential for clinical trials and subsequent treatment strategies. Traditionally, trials

aim to uncover universal treatments, yet this approach might overlook varying

treatment effects across population subsets. The study highlighted the relevance of

modern machine learning techniques, particularly Bayesian additive regression trees
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(BART), for identifying distinct population segments and devising personalized

treatment rules. The study introduced novel BART extensions tailored to precision

medicine’s unique inferential needs. These extensions encompass random effects

for longitudinal data and subject clustering within medical centers. An innovative

interaction detection prior is integrated to discern treatment heterogeneity, linked

to patient characteristics. These advancements coalesce within the mixedBART

framework. The study showcased simulation studies and real randomized clinical

trial applications, illustrating precision medicine’s potential by harnessing BART’s

predictive prowess to optimize treatment decisions.

Liang et al. (2003) discussed the dynamic relationship between virologic and

immunologic responses in AIDS clinical trials, specifically analyzing plasma HIV

RNA copies (viral load) and CD4+ cell counts. An innovative mixed-effects varying-

coefficient model is proposed, addressing measurement errors in covariates and

capturing the evolving interplay between these markers during antiviral treatments.

The study, centered on the AIDS Clinical Trials Group’s (ACTG 315) data, uncovers

a time-dependent inverse association between viral load and CD4+ T cell counts

during treatment initiation, followed by a gradual recovery after 8 weeks. The

model accommodated varying associations among individuals and provided insights

into monitoring virologic and immunologic markers longitudinally, crucial for AIDS

clinical studies. The work introduced a tailored approach to unravel the intricate

relationship between viral load and CD4+ cell counts, offered a comprehensive

understanding of treatment dynamics and implications for precision medicine.

Morgan and Elashoff (1987) discussed the impact of measurement error in

prognostic factors, often considered as covariates in clinical trials assessing treatment

effects. Employing Weibull regression models and asymptotic theory, the study

investigated the efficiency of treatment effect estimation when adjusting for a

dichotomous and a continuous covariate affected by measurement error. The

analysis revealed how such errors can diminish estimation efficiency. A real-world

application involved a clinical trial with advanced lung cancer patients illustrated

the findings. By elucidating the effects of measurement error on prognostic factors

and subsequent treatment effect estimation, the study provided valuable insights

into refining the design and interpretation of clinical trials, particularly when

considering the interplay between measurement errors and covariate adjustments.

Wang et al. (1998) discussed the challenges posed by measurement error in the

context of generalized linear mixed models (GLMMs) for clustered data, where one

predictor is afflicted by such error. Focused on additive and normally distributed

measurement error, coupled with a normally distributed error-prone predictor,

the research revealed that the observed data adhere to a GLMM framework,

albeit with distinct fixed and random effects structures and parameter restrictions.
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This divergence lead to biases in common GLMMs when measurement error

is disregarded. The investigation employed the SIMEX method for parameter

estimation, offered a novel approach free from assumptions about unobservable

predictors’ structure. Illustrated through simulations and an empirical example

involved advanced lung cancer patients, the study underscored the importance of

accounting for measurement error and provided a comprehensive understanding of

its impact on parameter estimation in clustered data analysis.

Yang et al. (2015) introduced a corrected empirical likelihood approach for

statistical inference in generalized linear measurement error models, encompassing

Gaussian, Poisson, and logistic regressions. By leveraging the corrected score func-

tion’s moment identities, the method mitigated the adverse impact of measurement

error on parameter estimation. The empirical log-likelihood ratio’s asymptotic

distribution was established as a Chi-squared distribution under certain regularity

conditions, facilitated the derivation of the maximum empirical likelihood estimator

for the regression parameter. Confidence intervals for specific components of the

regression parameter were constructed using partial profile empirical likelihood.

The proposed approach’s efficacy was demonstrated through simulation studies

and the analysis of real data from the ACTG 175 study. The corrected empirical

likelihood method offered a robust means of handling measurement error-induced

bias and uncertainty in generalized linear models, presented a practical solution

for medical research scenarios where covariates may be subject to inaccuracies.

Brakenhoff et al. (2018) investigated the impact of measurement error in

covariates within medical research, particularly their potential to introduce bias

and imprecision in exposure-outcome relationships. Despite the acknowledged

significance of this issue, the extent to which it was addressed in current research

practices remains uncertain. Through a systematic review of general medicine

and epidemiology literature, the study highlighted a lack of consideration for

covariate measurement error in a majority of high-impact journal publications.

This oversight make it challenging for readers to assess the robustness of presented

results. The research underscored the need for heightened awareness regarding the

possible repercussions of measurement error and calls for guidance on employing

correction methods. Measurement error, arising from inaccuracies in measurement

instruments and data, poses a critical challenge to valid inferences in biomedical

research. As medical datasets continue to expand, recognizing and addressing

covariate measurement error becomes imperative for maintaining the integrity of

research findings.
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Chapter 3

Methodology

This chapter serves as a vital component in understanding the research process

undertaken to address the research questions and objectives. In this section, a

comprehensive overview of the research design, data collection methods, data

analysis techniques, and any other pertinent procedures employed to ensure the

validity and reliability of the study’s findings are discussed

The methodology chosen for this research is a critical determinant of the study’s

rigor and its ability to draw meaningful conclusions from the collected data. It

outlines the systematic approach adopted to gather and interpret information,

thereby shedding light on how the research objectives will be achieved.

This chapter is organized as follows: First, the research philosophy and approach

are discussed to establish the overarching framework guiding the study. Second, the

research design is elaborated upon, including the type of investigation, the selection

of participants or samples, and the rationale behind these decisions. Third, the

methods employed for data collection are detailed, emphasizing their alignment

with the research design and the chosen philosophical stance. Fourth, an overview

of the data analysis techniques is provided, illustrating how the collected data will

be processed, interpreted, and synthesized into meaningful outcomes.

In short, this chapter offers a road map for the entire research process, showcas-

ing the logical sequence of decisions and actions that have been carefully planned

to ensure the validity and reliability of the study’s outcomes. By transparently

detailing the research methodology, this thesis aims to establish a strong foundation

for readers to assess the credibility and robustness of the findings presented in the

subsequent chapters.
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3.1 The research problem

We contemplate a clinical experiment that is two-armed, randomized, and controlled.

The n observations in treatment group T and control group C have a normal

distribution with means µT and µC and a same variance of σ2.

XT
i ∼ N(µT , σ2), i = 1, 2, ..., n

XC
i ∼ N(µC , σ2), i = 1, 2, ..., n

We investigate the one-sided superiority test problem throughout this chapter.

H0 : µ
T − µC ≤ 0 vs H1 : µ

T − µC > 0 (3.1)

therefore referring to a situation where high values of the endpoint are viewed fa-

vorably. We investigate an adaptive group sequential design with two stages, which

is the most basic and widely used adaptive group sequential design. Consequently,

we have to make two independent statistics,

Ti =
X̄T

i − X̄C
i

Spooled,i

.

√
ni

2
, (3.2)

where i ∈ {1, 2} denote stages, X̄T
i and X̄C

i are means of treatment and control

groups respectively, Spooled,i is the pooled standard deviation and ni denote sample

size per group in stage i with n1+n2 =n. The formula for Spooled is given as:

Spooled =

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
, (3.3)

where n1 and n2 are the sample sizes of the two groups, S1 and S2 are the standard

deviations of the two groups. It must be noted that T1 only includes data from the

first stage, and T2 only includes data from the second stage, both of which have an

approximately normal distribution.

If the interim test statistic T1 falls within the recalculation area (RA) given as

[q1-α0 ; q1-α1), where α0 denotes to a futility stopping bound for one sided p-value of

stage one, α1 refers to the local one-sided significance level and q are the respective

quantiles of normal distribution, the trial moves to the second stage. If T1 ≥q1-α1

the trial is stopped with an early rejection of null hypothesis after the first stage,

or accept the null hypothesis if T1<q1-α0 . After combining the all observed data

over two stages by means of inverse normal combination test,as given as

T 1+2 =
w1.T1 + w2.T2√

w2
1 + w2

2

, (3.4)

where w1 and w2 are the weights, i.e., w1=
√
n1 and w2 =

√
n2, T1 and T2 are two
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stochastically independent test statistics. If T1+2 ≥ q1−α1+2 , where α1+2 refers to

the local one-sided significance level for the final analysis, then the null hypothesis

is rejected at the final analysis. For instance, local significance levels can be

determined using the adjustments suggested by Pocock or O’Brien and Fleming.

3.2 Methods for recalculating sample size

Various approaches exist for adjusting sample sizes during the course of an ongoing

clinical trial. One straightforward method is the implementation of a group

sequential design (GSD), where a fixed predetermined sample size is allocated

for each stage. A more flexible variation of this concept is found in adaptive

group sequential designs, where interim sample sizes can be determined based

on the accumulating data. In the realm of adaptive group sequential designs, a

prevalent strategy involves sample size adjustments aimed at attaining a predefined

conditional power value. This conditional power metric delineates the probability

of accurately rejecting the null hypothesis, given the observed interim test statistic

value and the cumulative sample size per group. The calculation of conditional

power is contingent upon the true standardized treatment effect (σ), which gauges

the difference (µT − µC) between means of the treatment and control groups

divided by the shared standard deviation (σ), i.e., ∆ = (µT −µC)/σ. This dynamic

approach to modifying sample sizes within adaptive designs holds substantial

promise for enhancing trial efficiency and statistical robustness based on emerging

data trends.

CP∆(t1,n) =



0, if the trial ends early due to futility,

1− Φ
(
q1−α1+2 .

√
w2

1+w2
2

w2
2

− t1.
w1

w2
−∆.

√
n1

2
.
√

n−n1

n1

)
,

if the sample size is recalculated,

1, if the trial is stopped early for efficacy.

(3.5)

In the subsequent subsections, we outline three distinct methods for recalculating

the sample size by leveraging the observed conditional power. In this context, the

formula incorporates the substitution of ∆ which is replaced by observed interim

effect denoted as t1
√

2/n1. Alternatively, akin strategies entail the integration of an

assumed effect for ∆, often termed as the anticipated conditional power. Notably,

our current focus revolves around evaluating the impact of the proposed resampling

tool, which harmonizes seamlessly with existing recalculation approaches. Given

this specific emphasis, we prioritize a comprehensive exploration of recalculation

rules hinged on the observed conditional power, thereby omitting an exhaustive

examination of varied recalculation strategies diverging primarily in their selection
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of ∆ values. Within this framework, we exclusively investigate recalculation rules

that draw from observed conditional power, while concurrently imposing an upper

limit of nmax on the overall total sample size per group, a measure employed for

practical viability considerations.

3.2.1 The observed conditional power approach (OCP)

For observed interim test statistics to fall in the recalculation area [q1−α0 ; q1−α1),

we want to make sure that we have the right number of people in our groups to

catch any real effects. This idea is called conditional power, which tells us how

likely we are to find something real. If this power (1-β) is higher, it’s better.

The basic concept is: we are doing some calculations to find the smallest whole

number ñ that fits a special rule. This rule says that ñ has to be greater than or

equal to a specific value. This value comes from the equation

ñ ≥ n1.

1 +

qβ − q1−α
1+2

.

√
w2

1+w2
2

w2
+ t1.

w1

w2

t1


2 (3.6)

This equation helps us know how many people we need in each group so that our

study makes sense and we can get meaningful results.

In line with the OCP approach, we determine the overall sample size for each

group as follows: If the interim test statistic t1 falls within a recalculated area

then the total sample size per group is the smaller value between a calculated

quantity denoted as ñ(t1) and a predefined maximum value nmax. On the other

hand, if t1 does not falls within recalculated area, then the total sample size per

group remains fixed at n1. This method ensures that we adapt the sample size

based on the interim results and the level of confidence we seek in our study. The

corresponding formula looks like

nOCP(t1) =

min(ñ(t1), nmax), if t1 ∈ RA,

n1, else.
(3.7)

3.2.2 The restricted observed conditional power approach

The approach known as restricted observed conditional power (ROCP) shares

similarities with the OCP method; however, as implied by its name, it comes with

a specific restriction. An issue raised about the observed conditional power (OCP)

approach centers on a particular scenario: when the formula (3.6) indicates the

need for larger sample sizes than the maximum value nmax, the sample size is then

capped at nmax, irrespective of the potential conditional power achievable with
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this larger size. In light of this, a viable approach might be to consider enlarging

the sample size only if it ensures a minimum acceptable conditional power denoted

as (1 − βROCP
low ). This adjustment aims to strike a balance between sample size

requirements and the attainable level of statistical confidence. As a result, the

total sample size per group according to ROCP approach is as follows

nROCP(t1) =


min(ñ(t1), nmax), if t1 ∈ RA,

and CP (t1, nmax) ≥ 1− βROCP
low ,

n1, else.

(3.8)

3.2.3 The promising zone approach (PZ)

The innovative promising zone (PZ) approach, introduced by Mehta and Pocock

(2011), presents a distinct methodology. It commences with the determination of

an initial total sample size, denoted as nini, for each group. Notably, this initial

size is intentionally kept smaller than the maximum allowable total sample size,

nmax, for each group. Additionally, the PZ approach establishes a predetermined

lower threshold for the conditional power, represented as 1−βPZ
low . Importantly, it’s

worth highlighting that 1− βPZ
low is not necessarily equal to 1− βROCP

low , introducing

flexibility based on specific requirements.

As the study progresses, the PZ approach facilitates sample size updates

contingent on the observed interim test statistic t1. These updates are governed

by two potential pathways. First, if the recalculated sample size, referred to as ñ,

adheres to the formula (3.6), it follows the trajectory set by the initially proposed

total sample size, nini. Alternatively, the sample size is restricted to the maximum

value, nmax, per group. This adaptive approach optimally balances sample size

requirements with the potential for achieving a robust conditional power, further

enhancing the precision and reliability of our study outcomes. Consequently, the

total sample size per group according to promising zone (PZ) approach equals

nPZ(t1) =



min(ñ(t1), nmax), if t1 ∈ RA and 1− βPZ low ≤ CP (t1, nini) < 1− β,

nini, if t1 ∈ RA and CP (t1, nini) < 1− βPZ
low ,

or t1 ∈ RA and CP (t1, nini) ≥ 1− β,

n1, else.

(3.9)
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3.3 Evaluating the performance of sample size

recalculation rules

When our objective centers on enhancing the effectiveness of rules for recalculating

sample sizes, it becomes essential to establish appropriate criteria for evaluating

their performance. Among the common evaluation criteria are the average sample

size and global power, both of which take on a stochastic nature within the

framework of adaptive design. Recognizing the significance of not only assessing

central tendencies but also incorporating measures of variability, we need for a

comprehensive perspective.

The evaluation of a sample size recalculation rule can be approached from

different angles. The global perspective examines the scenario before the trial’s

commencement, providing an average view of the two options: early trial termi-

nation or sample size recalculation at interim stages. However, this perspective

presents challenges in interpreting a combination of performance aspects associated

with both stopping early and recalculating sample sizes.

An alternative approach is the conditional perspective, which prompts the

researcher to consider how the sample size should be recalculated in the event that

the observed effect falls within the recalculation area during the interim analysis.

Here, we assess the recalculation rules under the assumption that the trial continues

past the interim point, where t1 falls between t1 ∈ [q1−α0 ; q1−α1), even though the

specific value of t1 remains unknown. This conditional perspective pertains to the

recalculation area rather than a particular t1 value. In this thesis, our focus is

squarely on this conditional perspective, providing a comprehensive exploration

that offers valuable insights into the optimization of sample size recalculation

methods. As a result, we explore ways to adjust sample sizes, looking at how well

they perform based on the following criteria:

1. The expected conditional power, denoted as E[CPRA
∆ ].

2. The variability of the conditional power, represented as V ar[CPRA
∆ ].

3. The anticipated conditional total sample size per group, marked as E[CNRA
∆ ],

which is the average size per group when we’re in the recalculation area.

4. The variability of the conditional total sample size per group, indicated by

V ar[CNRA
∆ ].

The assessment of performance measures encompasses a range of true stan-

dardized effect sizes, quantified by ∆ = µT−µC

σ
. Notably, these evaluation criteria

can be unified into a comprehensive performance metric, known as the conditional
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performance score (CS). While we provide an overview of this score’s essential

characteristics, the CS is composed of four distinct components: two components

for evaluating the location and variability of the conditional power (eCP (∆) and

vCP (∆)), and two components for the location and variability of the conditional

sample size (eCN(∆) and vCN(∆)).

The fundamental concept underlying the location components is to compare

expected values against predefined target values. In cases where the maximum

allowed sample size is not greater than the corresponding fixed sample size and

the effect size is non-zero, the initially planned power value of 1− β serves as the

target for the conditional power. Conversely, when circumstances differ, such as

when the trial might not merit continuation to the second stage, the target values

shift to the first stage’s sample size n1 and the global one-sided significance level α.

In terms of the variation components, the observed variation is juxtaposed

against the maximum feasible variation within the specific context. Each of the four

score components can assume values ranging from 0 to 1, permitting independent

evaluation. Moreover, these components can be amalgamated into two sub-scores:

the conditional power sub-score SCP (∆) and the conditional sample size sub-score

SCN(∆), or be consolidated into a singular performance value, denoted by the

conditional performance score CS. Mathematically, this score is calculated as

CS(∆) =
1

2
· [SCP (∆) + SCN(∆)] (3.10)

In evaluating all (sub-)scores and components, it is important to note that higher

values are indicative of superior performance. We can give different levels of

importance to the parts included in the two sub-scores by carefully deciding how

much weight to assign to each. This adds more depth and details to how we

evaluate things, for example, for conditional power sub-score

SCP (∆) = γloc · eCP(∆) + γvar · vCP(∆), with γloc + γvar = 1, (3.11)

Here, γloc and γvar represent the weights assigned to the location component eCP

and the variation component vCP , respectively. A similar approach is taken for

the conditional sample size sub-score. For the purposes of this thesis, we opt for

an equal weighting of all components, which means γloc = γvar = 0.5.
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3.4 Resampling approach for recalculating sam-

ple size

To account for the potential variations in the interim effect, we may consider

utilizing resampling as a technique to assess the fluctuation of a random variable.

The application of the resampling approach is contingent upon the observed

interim test statistic falling within the designated recalculation area, indicating

the proposition of a second stage. In this context, B test statistics are resampled

from a normal distribution with the observed interim test statistic as the average

and a standard deviation of 1.

It’s important to note that the resampling procedure exclusively occurs if the

observed interim test statistic aligns with the recalculation area, suggesting the fea-

sibility of a subsequent stage. Consequently, all resampled test statistics, including

those outside the recalculation area, contribute to the computation of the final value

for the sample size of the second stage. This process unfolds as follows: for each of

the B resampled test statistics, the second-stage sample size is reevaluated, resulting

in an array of sample sizes denoted as ñ(∗),1(t1), ñ(∗),2(t1), ñ(∗),3(t1), . . . , ñ(∗),B(t1),

where (*) signifies the index for the initial sample size recalculation rule. It is

important to acknowledge that some of these ”recalculated” sample sizes may

indeed correspond to the initial sample size n1.

In the final step, a comprehensive location metric summarizes the entire set of B

sample sizes, ultimately determining the definitive value for the second-stage sample

size. This methodology empowers us to effectively incorporate the variability of

the interim effect into our decision-making process for sample size adjustment. In

our exploration, we distinguish between two different ways:

1. The simpler approach involves setting the second stage sample size as the

average of all the resampled sample sizes:

nR1
(∗)(t1) =

1

B

B∑
b=1

(ñ(∗),i(t1)) (3.12)

We refer to this method as the R1 approach.

2. Considering that the initial sample size of the first stage can greatly influence

the resampled sample sizes, we contemplate an alternative. Here, we compute

the final second stage sample size as the mean plus the standard deviation of
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the resampled sample sizes:

nR2
(∗)(t1) =

1

B

B∑
b=1

(ñ(∗),i(t1)) +
1

B − 1

√√√√ B∑
b=1

(
ñ(∗),i(t1)−

1

B

B∑
b=1

(ñ(∗),i(t1))

)2

(3.13)

This inclusion of the standard deviation means that we tend to select larger sample

sizes. We term this approach the R2 method. It is worth noting that instead

of incorporating the standard deviation, other measures of the distribution of

resampled sample sizes (such as predefined quantiles) could also be used to achieve

a similar effect. As such, the R2 approach serves as just one illustrative possibility

within this context.

3.5 Simulation study for evaluating the perfor-

mance of sample size recalculation approaches

To comprehensively assess the effectiveness of the various sample size recalculation

methods outlined earlier, a simulation study was undertaken. These approaches

were meticulously evaluated through specific performance measures, including the

novel conditional performance score (3.10), with parameter values of γloc = γvar =

0.5.

In this simulation study, we adhered to the design specifications detailed in

Section 3.1. This involved working with groups of equal size, with the first stage

consisting of n1 = 50 participants. The initial second stage sample size per

group was established as n2 = 50, culminating in an initial total sample size of

nini = n1 + n2 = 100. The maximum feasible sample size per group was set at

four times the interim sample size n1, resulting in nmax = 200. The weights for

the inverse normal combination test were uniformly assigned as w1 = w2 =
√
50.

Our chosen global one-sided significance level was α = 0.025, while the local

significance levels were calculated according to the Pocock method, specifically

α1 = α1+2 = 0.0147. Additionally, a futility bound of α0 = 0.5 was established.

A desired level of conditional power was set at 1 − β = 0.8. For the ROCP,

the lower bound for conditional power (1− βROCP
low ) was held at 0.6. Similarly, for

the promising zone (PZ), a lower bound (1− βPZ
low) was fixed at 0.36, following the

approach proposed by Mehta and Pocock (2011). To explore the performance of

these designs across various scenarios, we considered a range of underlying true

standardized treatment effects ∆ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. To ensure statistical

robustness, each scenario underwent 10,000 simulation iterations. Notably, for

the resampling methods, a total of B = 5000 samples were used. For the sake
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of comparison, a group sequential design (GS) employing n1 = n2 = 50 and

employing the same decision boundaries as described above was also simulated

and evaluated side by side. This extensive simulation endeavor facilitated a

comprehensive exploration of the performance characteristics of the various sample

size adjustment strategies under a wide array of circumstances.

3.5.0.1 Generation of treatment and control groups

1. Measurement error model

MEMs are statistical tools used to account for inaccuracies and uncertainties

in the measurement process when analyzing data. In various research fields,

measurements often contain errors that can distort the true relationships

between variables. These errors can arise from a variety of sources, such

as imperfect instruments, human error, environmental factors, and inherent

variability in the phenomenon being measured.

Measurement error models help researchers address these issues by providing

a framework to estimate the true relationships between variables while

considering the impact of measurement errors. These models can be broadly

categorized into two main types:

(a) Classical Measurement Error Models: In classical MEMs, the error

is assumed to be present in the independent (explanatory) variable. This

type of model is commonly known as an errors-in-variables (EIV) model.

It accounts for the fact that the observed values of the independent

variable are subject to measurement errors, leading to biased and incon-

sistent parameter estimates if not properly addressed. Mathematically,

true relationship: Y = α + β ∗X + u

observed relationship: Yobs = α + β ∗Xobs + ϵ

where Xobs = X + η is the observed (error-prone) value of X and ϵ is

the error in the observed Y.

(b) Errors-in-Response or Dependent Variable Models: These mod-

els focus on measurement errors in the dependent (response) variable.

In this case, the observed responses are considered to be measured with

error. Errors-in-response models are less common but are used when the

measurement error is primarily concentrated in the outcome variable.

Mathematically,

true relationship: Y = α + β ∗X + u

observed relationship: Yobs = Y + ϵ

where ϵ is the error in the observed response variable Y.
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Impact of Measurement Error on the Reliability of Estimates:

Measurement errors can significantly affect the reliability and validity of

the estimates derived from statistical analyses. The key implications of

measurement errors on estimates include:

(a) Bias: Measurement errors can introduce bias in parameter estimates,

leading to incorrect conclusions about the relationships between variables.

For example, if the true relationship between two variables is linear,

measurement errors can make it appear non-linear or attenuate the

observed relationship.

(b) Efficiency Loss: Measurement errors can reduce the precision and ef-

ficiency of parameter estimates. The variability introduced by mea-

surement errors can inflate standard errors, leading to wider confidence

intervals and reduced statistical power.

(c) Inconsistency: Inconsistent estimates occur when the magnitude and

direction of bias change across different samples or settings. This

can lead to difficulties in replicating research findings and generalizing

results.

(d) Incorrect Hypothesis Testing: Measurement errors can distort hypothesis

tests, leading to incorrect p-values and flawed decisions about statistical

significance. This can result in both type I and type II errors.

(e) Misinterpretation of Relationships: Measurement errors can lead to mis-

interpretation of the true relationships between variables. Researchers

may overestimate or underestimate the strength of associations, leading

to misguided policy recommendations or interventions.

For simulation purpose, initially we generated treatment group from MEM

and control group from normal distribution having n=50, µ= 0.3 and σ= 1,

i.e., control=rnorm(50,0.3,1). Also, we generated both treatment and control

groups from MEM and run the simulation.

2. Mixed distribution models:

We discuss the methodology employed to generate treatment and control

groups for simulation using a mixed distribution model (MDM). The MDM

is a powerful statistical technique that allows researchers to create well-

balanced and comparable groups, taking into account the heterogeneity

of the underlying data. This section outlines the process of utilizing the

MDM for group assignment, its advantages, and the steps involved in its

implementation. The MDM is a sophisticated statistical approach that
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combines elements of probability distributions to create groups that are

representative of the underlying population. It allows for the incorporation

of various covariates and factors, ensuring that the treatment and control

groups are not only randomized but also balanced with respect to relevant

characteristics. The MDM takes into consideration both continuous and

categorical variables, accommodating the complexity of real-world data.

The general form of a mixed distribution model can be expressed as follows:

f(x; θ) =
k∑

i=1

πi · fi(x; θi)

where

� f(x; θ) represents the mixed distribution with parameters θ.

� k is the number of components in the mixture.

� πi are the mixing proportions, satisfying
∑k

i=1 πi = 1.

� fi(x; θi) represents the ith component distribution with parameters θi.

Advantages of MDM

� Enhanced Balance: The MDM ensures that treatment and control

groups are balanced, thereby reducing the risk of confounding variables

affecting the results. This balance enhances the internal validity of the

clinical trial.

� Sample Representativeness: By accounting for the underlying distri-

bution of the data, the MDM helps ensure that the generated groups

accurately represent the population.

For simulation purpose, we generated treatment and control groups of length

n=50 from MDM. One distribution is taken as standard normal distribu-

tion,i.e., N(0,1), while, the other distribution is also taken as normal having

µ= 0.5 and σ= 1, i.e., N (0.5,1). However, the mixing proportion is chosen

0.1, 0.5, i.e., p=0.1, 0.5.

3.6 Results from mixed distribution model

In this section, we discuss the results with the help of conditional power score

(CPS). The criteria to access the performance is that which approach has higher

conditional performance score than its respective approach is a better performer.

In the standard sample size recalculation without resampling, we can see that
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group sequential design performed well. The reason behind this is that there is no

variation in recalculated sample sizes. If we access the performance of R1 approach,

this approach consider mean as summary location measure, performs better than

respective standard sample size recalculation approach without resampling with

respect to CPS for all delta (∆), true standardized effect sizes. The reason behind

the better performance of R1 approach over standard sample size recalculation

approach without resampling is that resampling approach (R1 approach) reduces

the variability in recalculated sample sizes for all ∆.

Furthermore, in R1 approach the OCP performed either better than the GS

design or have similar conditional performance score as compared to the ROCP and

PZ(3.1, column 3 and 4). The reason behind this is better conditional power of the

OCP (3.2 and 3.3). It is to be noted that there is an observable tendency towards

increasing the initial stage’s sample size, denoted as n1, when utilizing sample size

recalculation via the R1 approach (3.3). This phenomenon arises because, under

the R1 approach, test statistics that falls outside the recalculated area (RA) could

undergo resampling, even if the interim test statistic actually falls within RA. To

address this concern R2 approach has been developed. This alternative approach

(R2 approach) relies on a distinct summary location measure, which is calculated

as the mean of the resampled sample sizes along with its corresponding standard

deviation. As it can be seen in Table 3.4 that R2 approach has tendency to move

towards GS design due to nmax as sample size boundary.

In R2 approach, the ROCP performed well for almost all delta with respect to

the CPS (3.1, column 5) compared to the OCP and PZ approach. Overall, the R2

approaches secured distinguished position against original sample size recalculation

without resampling, However, the GS design outperforms the different designs in R2

approach for all ∆. It is to be noted that CPS of respective designs in R2 approach

is worse than R1 approach for same value of ∆ ∈ (0.0, 0.1, 0.2, 0.3, 0.4, 0.5). The

reason behind this worst behaviour of R2 approach is that sample size recalculation

designs in R2 approach do not tend towards the target values of sample size

effectively, this can be seen in the worst values of conditional sample size sub-score

SCN (Table 3.3 and Table 3.4).

25



Table 3.1: Conditional power score when both treatment and control generated
from MDM with p.mix=0.5

Delta Design Standard Simulation R1 Approach R2 approach
0 OCP 0.3780 0.4736 0.5082
0 ROCP 0.4255 0.6096 0.6604
0 PZ 0.4978 0.6511 0.6684
0 GSD 0.6741 0.7764 0.7764
0.1 OCP 0.3780 0.4300 0.4654
0.1 ROCP 0.4255 0.5403 0.6174
0.1 PZ 0.4978 0.5954 0.6282
0.1 GSD 0.6741 0.7422 0.7422
0.2 OCP 0.3780 0.3981 0.4306
0.2 ROCP 0.4255 0.4798 0.5820
0.2 PZ 0.4978 0.5490 0.5943
0.2 GSD 0.6741 0.7105 0.7105
0.3 OCP 0.6242 0.6208 0.6923
0.3 ROCP 0.4072 0.3898 0.6232
0.3 PZ 0.5381 0.5272 0.6521
0.3 GSD 0.6173 0.6099 0.6099
0.4 OCP 0.5279 0.5522 0.6015
0.4 ROCP 0.5257 0.5443 0.6878
0.4 PZ 0.6069 0.6222 0.7001
0.4 GSD 0.7443 0.7562 0.7562
0.5 OCP 0.4685 0.5407 0.5836
0.5 ROCP 0.4662 0.5221 0.6644
0.5 PZ 0.5475 0.5923 0.6740
0.5 GSD 0.6850 0.7212 0.7212
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Table 3.2: Standard simulation when both treatment and control generated from MDM with p.mix=0.5

∆ Design mean cp e cp var cp v cp score cp mean n e n var n v n score n score cond
0 OCP 0.5421 0.4696 0.0924 0.3922 0.4309 167.0027 0.2200 1825.7502 0.4303 0.3251 0.3780
0 ROCP 0.4451 0.5691 0.1504 0.2244 0.3968 102.5864 0.6494 3087.8035 0.2591 0.4543 0.4255
0 PZ 0.4626 0.5512 0.1244 0.2946 0.4229 117.4977 0.5500 921.0116 0.5954 0.5727 0.4978
0 GSD 0.3869 0.6288 0.0897 0.4010 0.5149 100.0000 0.6667 0.0000 1.0000 0.8333 0.6741
0.1 OCP 0.5421 0.4696 0.0924 0.3922 0.4309 167.0027 0.2200 1825.7502 0.4303 0.3251 0.3780
0.1 ROCP 0.4451 0.5691 0.1504 0.2244 0.3968 102.5864 0.6494 3087.8035 0.2591 0.4543 0.4255
0.1 PZ 0.4626 0.5512 0.1244 0.2946 0.4229 117.4977 0.5500 921.0116 0.5954 0.5727 0.4978
0.1 GSD 0.3869 0.6288 0.0897 0.4010 0.5149 100.0000 0.6667 0.0000 1.0000 0.8333 0.6741
0.2 OCP 0.5421 0.4696 0.0924 0.3922 0.4309 167.0027 0.2200 1825.7502 0.4303 0.3251 0.3780
0.2 ROCP 0.4451 0.5691 0.1504 0.2244 0.3968 102.5864 0.6494 3087.8035 0.2591 0.4543 0.4255
0.2 PZ 0.4626 0.5512 0.1244 0.2946 0.4229 117.4977 0.5500 921.0116 0.5954 0.5727 0.4978
0.2 GSD 0.3869 0.6288 0.0897 0.4010 0.5149 100.0000 0.6667 0.0000 1.0000 0.8333 0.6741
0.3 OCP 0.5421 0.7355 0.0924 0.3922 0.5639 167.0027 0.9386 1825.7502 0.4303 0.6845 0.6242
0.3 ROCP 0.4451 0.6360 0.1504 0.2244 0.4302 102.5864 0.5092 3087.8035 0.2591 0.3842 0.4072
0.3 PZ 0.4626 0.6539 0.1244 0.2946 0.4743 117.4977 0.6086 921.0116 0.5954 0.6020 0.5381
0.3 GSD 0.3869 0.5764 0.0897 0.4010 0.4887 100.0000 0.4919 0.0000 1.0000 0.7450 0.6173
0.4 OCP 0.5421 0.7355 0.0924 0.3922 0.5639 167.0027 0.2200 1825.7502 0.4303 0.4919 0.5279
0.4 ROCP 0.4451 0.6360 0.1504 0.2244 0.4302 102.5864 0.9831 3087.8035 0.2591 0.6211 0.5257
0.4 PZ 0.4626 0.6539 0.1244 0.2946 0.4743 117.4977 0.8837 921.0116 0.5954 0.7395 0.6069
0.4 GSD 0.3869 0.5764 0.0897 0.4010 0.4887 100.0000 0.9996 0.0000 1.0000 0.9998 0.7443
0.5 OCP 0.5421 0.7355 0.0924 0.3922 0.5639 167.0027 0.3160 1825.7502 0.4303 0.3731 0.4685
0.5 ROCP 0.4451 0.6360 0.1504 0.2244 0.4302 102.5864 0.7454 3087.8035 0.2591 0.5023 0.4662
0.5 PZ 0.4626 0.6539 0.1244 0.2946 0.4743 117.4977 0.6460 921.0116 0.5954 0.6207 0.5475
0.5 GSD 0.3869 0.5764 0.0897 0.4010 0.4887 100.0000 0.7626 0.0000 1.0000 0.8813 0.6850
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Table 3.3: R1 Approach when both treatment and control generated from MDM with p.mix=0.5

Delta Metric mean cp e cp var cp v cp score cp mean n e n var n v n score n score cond
0 OCP 0.2609 0.7580 0.0877 0.4077 0.5828 192.0012 0.0533 592.1704 0.6756 0.3644 0.4736
0 ROCP 0.1579 0.8637 0.0960 0.3803 0.6220 73.1073 0.8460 2388.8495 0.3484 0.5972 0.6096
0 PZ 0.1801 0.8409 0.0762 0.4480 0.6445 107.3459 0.6177 513.5704 0.6979 0.6578 0.6511
0 GSD 0.1493 0.8725 0.0470 0.5666 0.7196 100.0000 0.6667 0.0000 1.0000 0.8333 0.7764
0.1 OCP 0.3398 0.6771 0.1023 0.3604 0.5188 186.2969 0.0914 940.2896 0.5912 0.3413 0.4300
0.1 ROCP 0.2322 0.7875 0.1257 0.2909 0.5392 81.5523 0.7897 2810.1827 0.2932 0.5414 0.5403
0.1 PZ 0.2543 0.7648 0.1018 0.3618 0.5633 110.4791 0.5968 657.4211 0.6581 0.6275 0.5954
0.1 GSD 0.2096 0.8107 0.0647 0.4913 0.6510 100.0000 0.6667 0.0000 1.0000 0.8333 0.7422
0.2 OCP 0.4232 0.5916 0.1058 0.3496 0.4706 179.2309 0.1385 1335.0099 0.5129 0.3257 0.3981
0.2 ROCP 0.3178 0.6997 0.1460 0.2360 0.4678 90.8845 0.7274 3112.3824 0.2562 0.4918 0.4798
0.2 PZ 0.3361 0.6810 0.1195 0.3088 0.4949 113.4007 0.5773 775.1167 0.6288 0.6031 0.5490
0.2 GSD 0.2784 0.7401 0.0798 0.4352 0.5876 100.0000 0.6667 0.0000 1.0000 0.8333 0.7105
0.3 OCP 0.5090 0.7015 0.0992 0.3701 0.5358 170.7438 0.9636 1713.0396 0.4482 0.7059 0.6208
0.3 ROCP 0.4099 0.5999 0.1524 0.2194 0.4097 99.7227 0.4901 3166.8077 0.2497 0.3699 0.3898
0.3 PZ 0.4269 0.6174 0.1261 0.2897 0.4535 116.5629 0.6024 903.0076 0.5994 0.6009 0.5272
0.3 GSD 0.3556 0.5442 0.0889 0.4036 0.4739 100.0000 0.4919 0.0000 1.0000 0.7450 0.6099
0.4 OCP 0.5868 0.7814 0.0829 0.4243 0.6028 160.4308 0.5975 1987.2072 0.4057 0.5016 0.5522
0.4 ROCP 0.5027 0.6951 0.1419 0.2467 0.4709 106.8062 0.9550 2911.7071 0.2806 0.6178 0.5443
0.4 PZ 0.5168 0.7095 0.1194 0.3089 0.5092 118.4771 0.8772 931.1456 0.5932 0.7352 0.6222
0.4 GSD 0.4365 0.6272 0.0906 0.3980 0.5126 100.0000 0.9996 0.0000 1.0000 0.9998 0.7562
0.5 OCP 0.6525 0.8487 0.0617 0.5031 0.6759 150.6506 0.4250 2120.4296 0.3861 0.4055 0.5407
0.5 ROCP 0.5832 0.7776 0.1194 0.3090 0.5433 111.9700 0.6828 2608.7351 0.3190 0.5009 0.5221
0.5 PZ 0.5970 0.7918 0.1023 0.3604 0.5761 119.8581 0.6302 961.3278 0.5866 0.6084 0.5923
0.5 GSD 0.5105 0.7031 0.0843 0.4192 0.5612 100.0000 0.7626 0.0000 1.0000 0.8813 0.7212

28



Table 3.4: R2 Approach when both treatment and control generated from MDM with p.mix=0.5

Delta Metric mean cp e cp var cp v cp score cp mean n e n var n v n score n score cond
0 OCP 0.2759 0.7427 0.1058 0.3494 0.5460 197.8248 0.0145 30.7337 0.9261 0.4703 0.5082
0 ROCP 0.1992 0.8213 0.0739 0.4564 0.6389 119.5676 0.5362 167.0806 0.8277 0.6819 0.6604
0 PZ 0.2027 0.8178 0.0735 0.4578 0.6378 129.5780 0.4695 28.7307 0.9285 0.6990 0.6684
0 GSD 0.1493 0.8725 0.0470 0.5666 0.7196 100.0000 0.6667 0.0000 1.0000 0.8333 0.7764
0.1 OCP 0.3655 0.6508 0.1290 0.2816 0.4662 196.9414 0.0204 46.8099 0.9088 0.4646 0.4654
0.1 ROCP 0.2752 0.7434 0.0975 0.3756 0.5595 122.5617 0.5163 154.5922 0.8342 0.6752 0.6174
0.1 PZ 0.2786 0.7399 0.0966 0.3785 0.5592 130.6722 0.4622 25.9024 0.9321 0.6972 0.6282
0.1 GSD 0.2096 0.8107 0.0647 0.4913 0.6510 100.0000 0.6667 0.0000 1.0000 0.8333 0.7422
0.2 OCP 0.4617 0.5521 0.1391 0.2541 0.4031 195.5099 0.0299 72.7119 0.8863 0.4581 0.4306
0.2 ROCP 0.3594 0.6571 0.1136 0.3259 0.4915 125.3510 0.4977 130.9209 0.8474 0.6726 0.5820
0.2 PZ 0.3626 0.6538 0.1122 0.3300 0.4919 131.5675 0.4562 22.1661 0.9372 0.6967 0.5943
0.2 GSD 0.2784 0.7401 0.0798 0.4352 0.5876 100.0000 0.6667 0.0000 1.0000 0.8333 0.7105
0.3 OCP 0.5627 0.7566 0.1359 0.2627 0.5097 193.6949 0.8834 100.3212 0.8665 0.8749 0.6923
0.3 ROCP 0.4517 0.6428 0.1197 0.3080 0.4754 127.7445 0.6769 102.5951 0.8650 0.7709 0.6232
0.3 PZ 0.4544 0.6456 0.1179 0.3133 0.4794 132.2288 0.7068 18.5098 0.9426 0.8247 0.6521
0.3 GSD 0.3556 0.5442 0.0889 0.4036 0.4739 100.0000 0.4919 0.0000 1.0000 0.7460 0.6099
0.4 OCP 0.6591 0.8555 0.1199 0.3076 0.5815 191.4547 0.3907 122.8456 0.8522 0.6214 0.6015
0.4 ROCP 0.5450 0.7385 0.1150 0.3217 0.5301 129.6691 0.8026 70.1434 0.8883 0.8455 0.6878
0.4 PZ 0.5471 0.7406 0.1130 0.3277 0.5342 132.6528 0.7827 14.5122 0.9492 0.8659 0.7001
0.4 GSD 0.4365 0.6272 0.0906 0.3980 0.5126 100.0000 0.9996 0.0000 1.0000 0.9998 0.7562
0.5 OCP 0.7418 0.9403 0.0945 0.3851 0.6627 189.0689 0.1688 143.8981 0.8401 0.5045 0.5836
0.5 ROCP 0.6276 0.8232 0.0995 0.3691 0.5961 130.8612 0.5569 46.9952 0.9086 0.7327 0.6644
0.5 PZ 0.6293 0.8249 0.0976 0.3751 0.6000 132.7406 0.5444 13.1325 0.9517 0.7480 0.6740
0.5 GSD 0.5105 0.7031 0.0843 0.4192 0.5612 100.0000 0.7626 0.0000 1.0000 0.8813 0.7212
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Figure 3.1: Standard simulation when both treatment and control generated from
MDM with p.mix=0.5
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Figure 3.2: Standard simulation when both treatment and control generated from
MDM with p.mix=0.5
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Figure 3.3: R1 Approach when both treatment and control generated from MDM
with p.mix=0.5
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Figure 3.4: R1 Approach when both treatment and control generated from MDM
with p.mix=0.5
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Figure 3.5: R2 Approach when both treatment and control generated from MDM
with p.mix=0.5
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Figure 3.6: R2 Approach when both treatment and control generated from MDM
with p.mix=0.5
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Table 3.5: Conditional power score when both treatment and control generated
from MDM with p.mix=0.1

Delta Design Standard Simulation R1 Approach R2 Approach
0 OCP 0.3781 0.5479 0.3963
0 ROCP 0.4160 0.7264 0.5437
0 PZ 0.4902 0.6603 0.5554
0 GSD 0.6700 0.6700 0.6700
0.1 OCP 0.3781 0.5480 0.3963
0.1 ROCP 0.4160 0.7266 0.5440
0.1 PZ 0.4902 0.6603 0.5554
0.1 GSD 0.6700 0.6700 0.6700
0.2 OCP 0.3781 0.5478 0.3963
0.2 ROCP 0.4160 0.7266 0.5439
0.2 PZ 0.4902 0.6603 0.5553
0.2 GSD 0.6700 0.6700 0.6700
0.3 OCP 0.6284 0.6485 0.7173
0.3 ROCP 0.4213 0.5714 0.6488
0.3 PZ 0.4902 0.6156 0.6729
0.3 GSD 0.6231 0.6231 0.6231
0.4 OCP 0.5391 0.6759 0.5904
0.4 ROCP 0.5298 0.6984 0.6784
0.4 PZ 0.6114 0.7391 0.6911
0.4 GSD 0.7501 0.7501 0.7501
0.5 OCP 0.4797 0.6164 0.5310
0.5 ROCP 0.4703 0.7069 0.6190
0.5 PZ 0.5520 0.6797 0.6317
0.5 GSD 0.6908 0.6908 0.6908

In standard sample size recalculation, GSD is the performance winner (3.5,

Column 3). This is due to the reason that there is no variation in recalculated

sample sizes. R1 approach performed well as compared to standard sample size

recalculation for all delta values in all designs. The reason behind better perfor-

mance of R1 approach against standard simulation is that resampling approach

(R1 approach) reduces the variability in recalculated sample sizes for all ∆ (3.7).

Furthermore, in R1 approach, the ROCP and PZ have approximately same CPS

as GSD. While, the OCP have little less CPS than GSD. This is due to less

conditional power of OCP. While recalculating sample size using R1 approach

,this approach has tendency to increase initial sample size, denoted as n1 (3.7).

This is due the reason that if the test statistics falls outside the recalculation

area (RA), could go through resampling, even if interim test statistics falls within

recalculated area (RA). To overcome this issue R2 approach is introduced ,this

approach relies on mean as well as standard deviation of resampled sample sizes as

summary location measure. The effect of this can be seen in (3.8). The R2 apprach

36



tends to recalculate sample size upto maximum allowed sample size nmax. Overall,

R2 approach has secured distinct position against R1 approach and standard

simulation. However, GSD in standard simulation outperformed various designs in

R2 approach for all ∆. The detailed simulation results are presented in (3.6), (3.7),

(3.7). The box plots for second stage conditional power and recalculated sample

size for standard simulation, R1 approach and R2 approach are illustrated in (3.7,

3.8), (3.9,3.10), (3.11,3.12) respectively.
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Table 3.6: Standard simulation when both treatment and control generated from MDM with p.mix=0.1

Delta Metric mean cp e cp var cp v cp score cp mean n e n var n v n score n score cond
0 OCP 0.5638 0.4474 0.0877 0.4079 0.4276 164.9150 0.2339 1871.2579 0.4233 0.3286 0.3781
0 ROCP 0.4717 0.5418 0.1469 0.2335 0.3876 105.5823 0.6295 3087.6155 0.2592 0.4443 0.4160
0 PZ 0.4862 0.5270 0.1218 0.3019 0.4145 118.4798 0.5435 952.6482 0.5885 0.5660 0.4902
0 GSD 0.4063 0.6090 0.0887 0.4044 0.5067 100.0000 0.6667 0.0000 1.0000 0.8333 0.6700
0.1 OCP 0.5638 0.4474 0.0877 0.4079 0.4276 164.9150 0.2339 1871.2579 0.4233 0.3286 0.3781
0.1 ROCP 0.4717 0.5418 0.1469 0.2335 0.3876 105.5823 0.6295 3087.6155 0.2592 0.4443 0.4160
0.1 PZ 0.4862 0.5270 0.1218 0.3019 0.4145 118.4798 0.5435 952.6482 0.5885 0.5660 0.4902
0.1 GSD 0.4063 0.6090 0.0887 0.4044 0.5067 100.0000 0.6667 0.0000 1.0000 0.8333 0.6700
0.2 OCP 0.5638 0.4474 0.0877 0.4079 0.4276 164.9150 0.2339 1871.2579 0.4233 0.3286 0.3781
0.2 ROCP 0.4717 0.5418 0.1469 0.2335 0.3876 105.5823 0.6295 3087.6155 0.2592 0.4443 0.4160
0.2 PZ 0.4862 0.5270 0.1218 0.3019 0.4145 118.4798 0.5435 952.6482 0.5885 0.5660 0.4902
0.2 GSD 0.4063 0.6090 0.0887 0.4044 0.5067 100.0000 0.6667 0.0000 1.0000 0.8333 0.6700
0.3 OCP 0.5638 0.7577 0.0877 0.4079 0.5828 164.9150 0.9247 1871.2579 0.4233 0.6740 0.6284
0.3 ROCP 0.4717 0.6633 0.1469 0.2335 0.4484 105.5823 0.5292 3087.6155 0.2592 0.3942 0.4213
0.3 PZ 0.4862 0.6781 0.1218 0.3019 0.4900 118.4798 0.6151 952.6482 0.5885 0.6018 0.4902
0.3 GSD 0.4063 0.5962 0.0887 0.4044 0.5003 100.0000 0.4919 0.0000 1.0000 0.7460 0.6231
0.4 OCP 0.5638 0.7577 0.0877 0.4079 0.5828 164.9150 0.5676 1871.2579 0.4233 0.4954 0.5391
0.4 ROCP 0.4717 0.6633 0.1469 0.2335 0.4484 105.5823 0.9632 3087.6155 0.2592 0.6112 0.5298
0.4 PZ 0.4862 0.6781 0.1218 0.3019 0.4900 118.4798 0.8772 952.6482 0.5885 0.7328 0.6114
0.4 GSD 0.4063 0.5962 0.0887 0.4044 0.5003 100.0000 0.9996 0.0000 1.0000 0.9998 0.7501
0.5 OCP 0.5638 0.7577 0.0877 0.4079 0.5828 164.9150 0.3299 1871.2579 0.4233 0.3766 0.4797
0.5 ROCP 0.4717 0.6633 0.1469 0.2335 0.4484 105.5823 0.7254 3087.6155 0.2592 0.4923 0.4703
0.5 PZ 0.4862 0.6781 0.1218 0.3019 0.4900 118.4798 0.6394 952.6482 0.5885 0.6140 0.5520
0.5 GSD 0.4063 0.5962 0.0887 0.4044 0.5003 100.0000 0.7626 0.0000 1.0000 0.8813 0.6908
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Table 3.7: R1 Approach when both treatment and control generated from MDM with p.mix=0.1

Delta Metric mean cp e cp var cp v cp score cp mean n e n var n v n score n score cond
0 OCP 0.4993 0.5136 0.0969 0.3775 0.4455 129.9407 0.4671 155.9233 0.8335 0.6503 0.5479
0 ROCP 0.3276 0.6896 0.0653 0.4891 0.5894 79.6770 0.8022 31.8719 0.9247 0.8634 0.7264
0 PZ 0.4035 0.6118 0.0799 0.4347 0.5233 101.0800 0.6595 23.5975 0.9352 0.7974 0.6603
0 GSD 0.4063 0.6090 0.0887 0.4044 0.5067 100.0000 0.6667 0.0000 1.0000 0.8333 0.6700
0.1 OCP 0.4992 0.5136 0.0969 0.3776 0.4456 129.9226 0.4672 155.9836 0.8335 0.6503 0.5480
0.1 ROCP 0.3274 0.6898 0.0652 0.4894 0.5896 79.6364 0.8024 31.7193 0.9249 0.8637 0.7266
0.1 PZ 0.4035 0.6118 0.0799 0.4347 0.5233 101.0741 0.6595 23.6070 0.9352 0.7974 0.6603
0.1 GSD 0.4063 0.6090 0.0887 0.4044 0.5067 100.0000 0.6667 0.0000 1.0000 0.8333 0.6700
0.2 OCP 0.4994 0.5135 0.0969 0.3775 0.4455 129.9531 0.4670 156.3103 0.8333 0.6501 0.5478
0.2 ROCP 0.3275 0.6897 0.0652 0.4893 0.5895 79.6552 0.8023 31.7583 0.9249 0.8636 0.7266
0.2 PZ 0.4035 0.6118 0.0799 0.4348 0.5233 101.0739 0.6595 23.7079 0.9351 0.7973 0.6603
0.2 GSD 0.4063 0.6090 0.0887 0.4044 0.5067 100.0000 0.6667 0.0000 1.0000 0.8333 0.6700
0.3 OCP 0.4993 0.6915 0.0969 0.3775 0.5345 129.9278 0.6915 155.5575 0.8337 0.7626 0.6485
0.3 ROCP 0.3276 0.5155 0.0653 0.4890 0.5022 79.6738 0.3564 31.8717 0.9247 0.6406 0.5714
0.3 PZ 0.4035 0.5933 0.0799 0.4348 0.5140 101.0767 0.4991 23.6722 0.9351 0.7171 0.6156
0.3 GSD 0.4063 0.5962 0.0887 0.4044 0.5003 100.0000 0.4919 0.0000 1.0000 0.7460 0.6231
0.4 OCP 0.4993 0.6916 0.0969 0.3775 0.5345 129.9513 0.8007 155.6195 0.8337 0.8172 0.6759
0.4 ROCP 0.3275 0.5154 0.0652 0.4892 0.5023 79.6554 0.8640 31.7655 0.9249 0.8944 0.6984
0.4 PZ 0.4035 0.5933 0.0799 0.4347 0.5140 101.0715 0.9932 23.6154 0.9352 0.9642 0.7391
0.4 GSD 0.4063 0.5962 0.0887 0.4044 0.5003 100.0000 0.9996 0.0000 1.0000 0.9998 0.7501
0.5 OCP 0.4994 0.6916 0.0969 0.3774 0.5345 129.9593 0.5629 155.2517 0.8339 0.6984 0.6164
0.5 ROCP 0.3276 0.5155 0.0653 0.4891 0.5023 79.6695 0.8982 31.6864 0.9249 0.9116 0.7069
0.5 PZ 0.4035 0.5933 0.0799 0.4348 0.5141 101.0786 0.7554 23.7130 0.9351 0.8453 0.6797
0.5 GSD 0.4063 0.5962 0.0887 0.4044 0.5003 100.0000 0.7626 0.0000 1.0000 0.8813 0.6908
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Table 3.8: R2 approach when both treatment and control generated from MDM with p.mix=0.1

Delta Metric mean cp e cp var cp v cp score cp mean n e n var n v n score n score cond
0 OCP 0.6282 0.3814 0.1240 0.2958 0.3386 192.5196 0.0499 113.2262 0.8581 0.4540 0.3963
0 ROCP 0.5122 0.5003 0.1152 0.3211 0.4107 129.2916 0.4714 78.1722 0.8821 0.6768 0.5437
0 PZ 0.5146 0.4979 0.1133 0.3268 0.4124 132.6754 0.4488 15.2234 0.9480 0.6984 0.5554
0 GSD 0.4063 0.6090 0.0887 0.4044 0.5067 100.0000 0.6667 0.0000 1.0000 0.8333 0.6700
0.1 OCP 0.6282 0.3814 0.1240 0.2959 0.3386 192.5073 0.0500 113.3504 0.8581 0.4540 0.3963
0.1 ROCP 0.5120 0.5005 0.1152 0.3211 0.4108 129.2288 0.4718 77.7308 0.8825 0.6771 0.5440
0.1 PZ 0.5145 0.4979 0.1133 0.3268 0.4124 132.6560 0.4490 15.3417 0.9478 0.6984 0.5554
0.1 GSD 0.4063 0.6090 0.0887 0.4044 0.5067 100.0000 0.6667 0.0000 1.0000 0.8333 0.6700
0.2 OCP 0.6282 0.3814 0.1240 0.2958 0.3386 192.5183 0.0499 112.9620 0.8583 0.4541 0.3963
0.2 ROCP 0.5121 0.5004 0.1152 0.3212 0.4108 129.2657 0.4716 77.6728 0.8825 0.6770 0.5439
0.2 PZ 0.5146 0.4979 0.1133 0.3268 0.4124 132.6547 0.4490 15.5099 0.9475 0.6982 0.5553
0.2 GSD 0.4063 0.6090 0.0887 0.4044 0.5067 100.0000 0.6667 0.0000 1.0000 0.8333 0.6700
0.3 OCP 0.6282 0.8237 0.1240 0.2959 0.5598 192.5155 0.8913 112.9250 0.8583 0.8748 0.7173
0.3 ROCP 0.5122 0.7048 0.1153 0.3211 0.5129 129.2884 0.6872 78.1121 0.8822 0.7847 0.6488
0.3 PZ 0.5146 0.7072 0.1133 0.3268 0.5170 132.6620 0.7097 15.3983 0.9477 0.8287 0.6729
0.3 GSD 0.4063 0.5962 0.0887 0.4044 0.5003 100.0000 0.4919 0.0000 1.0000 0.7460 0.6231
0.4 OCP 0.6282 0.8238 0.1240 0.2958 0.5598 192.5257 0.3835 112.8584 0.8584 0.6209 0.5904
0.4 ROCP 0.5121 0.7048 0.1153 0.3210 0.5129 129.2641 0.8053 77.7168 0.8825 0.8439 0.6784
0.4 PZ 0.5145 0.7072 0.1133 0.3268 0.5170 132.6471 0.7827 15.4134 0.9477 0.8652 0.6911
0.4 GSD 0.4063 0.5962 0.0887 0.4044 0.5003 100.0000 0.9996 0.0000 1.0000 0.9998 0.7501
0.5 OCP 0.6282 0.8238 0.1240 0.2958 0.5598 192.5379 0.1457 112.3631 0.8587 0.5022 0.5310
0.5 ROCP 0.5121 0.7048 0.1152 0.3211 0.5129 129.2849 0.5674 77.5956 0.8826 0.7250 0.6190
0.5 PZ 0.5145 0.7072 0.1133 0.3269 0.5171 132.6613 0.5449 15.2100 0.9480 0.7464 0.6317
0.5 GSD 0.4063 0.5962 0.0887 0.4044 0.5003 100.0000 0.7626 0.0000 1.0000 0.8813 0.6908
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Figure 3.7: Standard simulation when both treatment and control generated from
MDM with p.mix=0.1

41



OCP ROCP PZ GSD

0.
0

0.
4

0.
8

Delta = 0.3

C
on

di
tio

na
l p

ow
er

 s
ec

on
d 

st
ag

e

(a) Plot 1

OCP ROCP PZ GSD

50
10

0
15

0
20

0

Delta = 0.3

R
ec

al
cu

la
te

d 
S

am
pl

e 
S

iz
e

(b) Plot 2

OCP ROCP PZ GSD

0.
0

0.
4

0.
8

Delta = 0.4

C
on

di
tio

na
l p

ow
er

 s
ec

on
d 

st
ag

e

(c) Plot 3

OCP ROCP PZ GSD

50
10

0
15

0
20

0
Delta = 0.4

R
ec

al
cu

la
te

d 
S

am
pl

e 
S

iz
e

(d) Plot 4

OCP ROCP PZ GSD

0.
0

0.
4

0.
8

Delta = 0.5

C
on

di
tio

na
l p

ow
er

 s
ec

on
d 

st
ag

e

(e) Plot 5

OCP ROCP PZ GSD

50
10

0
15

0
20

0

Delta = 0.5

R
ec

al
cu

la
te

d 
S

am
pl

e 
S

iz
e

(f) Plot 6

Figure 3.8: Standard simulation when both treatment and control generated from
MDM with p.mix=0.1
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Figure 3.9: R1 Approach when both treatment and control generated from MDM
with p.mix=0.1
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Figure 3.10: R1 Approach when both treatment and control generated from MDM
with p=0.1
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Figure 3.11: R2 Approach when both treatment and control generated from MDM
with p=0.1
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Figure 3.12: R2 Approach when both treatment and control generated from MDM
with p=0.1
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3.7 Results from measurement error model (MEM)

Table 3.9: Conditional power score when both treatment and control generated
from MEM

Delta Design Standard Simulation R1 Approach R2 Approach
0 OCP 0.4355 0.6210 0.6210
0 ROCP 0.5436 0.7960 0.7960
0 PZ 0.5997 0.7329 0.7329
0 GSD 0.7475 0.7475 0.7475
0.1 OCP 0.4355 0.6209 0.6209
0.1 ROCP 0.5436 0.7960 0.7960
0.1 PZ 0.5997 0.7330 0.7329
0.1 GSD 0.7475 0.7475 0.7475
0.2 OCP 0.4355 0.6209 0.6209
0.2 ROCP 0.5436 0.7960 0.7960
0.2 PZ 0.5997 0.7329 0.7329
0.2 GSD 0.7475 0.7475 0.7475
0.3 OCP 0.6045 0.6170 0.6170
0.3 ROCP 0.3408 0.5380 0.5380
0.3 PZ 0.5050 0.5939 0.5940
0.3 GSD 0.5954 0.5954 0.5954
0.4 OCP 0.4776 0.6300 0.6300
0.4 ROCP 0.4677 0.6650 0.6650
0.4 PZ 0.5974 0.7095 0.7095
0.4 GSD 0.7223 0.7223 0.7223
0.5 OCP 0.4181 0.5706 0.5706
0.5 ROCP 0.4710 0.6888 0.6888
0.5 PZ 0.5380 0.6501 0.6501
0.5 GSD 0.6631 0.6631 0.6631

From Table (3.9) one can see that the GSD is the performance winner in

standard simulation without resampling. This is due to fact recalculated sample

sizes have no variation. Moreover, it is interesting to note that CPS in standard

simulation remained same for ∆= 0,0.1,0.2,0.3. In R1 approach, the ROCP

and PZ have approximately the same CPS, while the OCP has less value of

the CPS. Furthermore, the performance of R1 approach, this approach consider

mean as summary location measure, is better against standard simulation. This

is due to decreased variation by R1 approach in recalculated sample size. The

performance of the R1 approach and R2 approach is the same for all ∆. This is

mainly due to generation of treatment and control groups from MEM. The detailed

simulation results are presented in (3.10), (3.11), (3.12). The box plots for second

stage conditional power and recalculated sample size for standard simulation,

R1 approach and R2 approach are illustrated in (3.13, 3.14), (3.15), (3.16,3.17)
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Table 3.10: Standard simulation results when both treatment and control generated from MEM

Delta Metric mean cp e cp var cp v cp score cp mean n e n var n v n score n score cond
0 OCP 0.3319 0.6852 0.1003 0.3668 0.5260 187.4409 0.0837 872.6132 0.6062 0.3449 0.4355
0 ROCP 0.2240 0.7959 0.1226 0.2997 0.5478 81.2458 0.7917 2857.3641 0.2873 0.5395 0.5436
0 PZ 0.2453 0.7740 0.0987 0.3717 0.5729 110.4077 0.5973 666.4830 0.6558 0.6265 0.5997
0 GSD 0.2011 0.8194 0.0615 0.5039 0.6617 100.0000 0.6667 0.0000 1.0000 0.8333 0.7475
0.1 OCP 0.3319 0.6852 0.1003 0.3668 0.5260 187.4409 0.0837 872.6132 0.6062 0.3449 0.4355
0.1 ROCP 0.2240 0.7959 0.1226 0.2997 0.5478 81.2458 0.7917 2857.3641 0.2873 0.5395 0.5436
0.1 PZ 0.2453 0.7740 0.0987 0.3717 0.5729 110.4077 0.5973 666.4830 0.6558 0.6265 0.5997
0.1 GSD 0.2011 0.8194 0.0615 0.5039 0.6617 100.0000 0.6667 0.0000 1.0000 0.8333 0.7475
0.2 OCP 0.3319 0.6852 0.1003 0.3668 0.5260 187.4409 0.0837 872.6132 0.6062 0.3449 0.4355
0.2 ROCP 0.2240 0.7959 0.1226 0.2997 0.5478 81.2458 0.7917 2857.3641 0.2873 0.5395 0.5436
0.2 PZ 0.2453 0.7740 0.0987 0.3717 0.5729 110.4077 0.5973 666.4830 0.6558 0.6265 0.5997
0.2 GSD 0.2011 0.8194 0.0615 0.5039 0.6617 100.0000 0.6667 0.0000 1.0000 0.8333 0.7475
0.3 OCP 0.3319 0.5199 0.1003 0.3668 0.4434 187.4409 0.9251 872.6132 0.6062 0.7656 0.6045
0.3 ROCP 0.2240 0.4092 0.1226 0.2997 0.3544 81.2458 0.3669 2857.3641 0.2873 0.3271 0.3408
0.3 PZ 0.2453 0.4311 0.0987 0.3717 0.4014 110.4077 0.5613 666.4830 0.6558 0.6086 0.5050
0.3 GSD 0.2011 0.3858 0.0615 0.5039 0.4448 100.0000 0.4919 0.0000 1.0000 0.7450 0.5954
0.4 OCP 0.3319 0.5199 0.1003 0.3668 0.4434 187.4409 0.4174 872.6132 0.6062 0.5118 0.4776
0.4 ROCP 0.2240 0.4092 0.1226 0.2997 0.3544 81.2458 0.8746 2857.3641 0.2873 0.5810 0.4677
0.4 PZ 0.2453 0.4311 0.0987 0.3717 0.4014 110.4077 0.9310 666.4830 0.6558 0.7934 0.5974
0.4 GSD 0.2011 0.3858 0.0615 0.5039 0.4448 100.0000 0.9996 0.0000 1.0000 0.9998 0.7223
0.5 OCP 0.3319 0.5199 0.1003 0.3668 0.4434 187.4409 0.1797 872.6132 0.6062 0.3929 0.4181
0.5 ROCP 0.2240 0.4092 0.1226 0.2997 0.3544 81.2458 0.8877 2857.3641 0.2873 0.5875 0.4710
0.5 PZ 0.2453 0.4311 0.0987 0.3717 0.4014 110.4077 0.6933 666.4830 0.6558 0.6745 0.5380
0.5 GSD 0.2011 0.3858 0.0615 0.5039 0.4448 100.0000 0.7626 0.0000 1.0000 0.8813 0.6631
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Table 3.11: R1 approach when both treatment and control generated from MEM

Delta Metric mean cp e cp var cp v cp score cp mean n e n var n v n score n score cond
0 OCP 0.2674 0.7514 0.0835 0.4220 0.5867 134.2499 0.4383 91.6999 0.8723 0.6553 0.6210
0 ROCP 0.1566 0.8650 0.0426 0.5874 0.7262 75.0924 0.8327 57.6779 0.8987 0.8657 0.7960
0 PZ 0.2043 0.8161 0.0587 0.5155 0.6658 103.4696 0.6435 10.7147 0.9564 0.8000 0.7329
0 GSD 0.2011 0.8194 0.0615 0.5040 0.6617 100.0000 0.6667 0.0000 1.0000 0.8333 0.7475
0.1 OCP 0.2674 0.7514 0.0835 0.4221 0.5867 134.2495 0.4383 92.3015 0.8719 0.6551 0.6209
0.1 ROCP 0.1566 0.8650 0.0426 0.5874 0.7262 75.0968 0.8327 57.6619 0.8988 0.8657 0.7960
0.1 PZ 0.2042 0.8162 0.0587 0.5155 0.6658 103.4566 0.6436 10.6550 0.9565 0.8001 0.7330
0.1 GSD 0.2011 0.8194 0.0615 0.5040 0.6617 100.0000 0.6667 0.0000 1.0000 0.8333 0.7475
0.2 OCP 0.2674 0.7513 0.0835 0.4221 0.5867 134.2559 0.4383 92.4370 0.8718 0.6551 0.6209
0.2 ROCP 0.1566 0.8651 0.0425 0.5875 0.7263 75.0861 0.8328 57.7243 0.8987 0.8657 0.7960
0.2 PZ 0.2042 0.8162 0.0587 0.5155 0.6658 103.4633 0.6436 10.6586 0.9565 0.8000 0.7329
0.2 GSD 0.2011 0.8194 0.0615 0.5040 0.6617 100.0000 0.6667 0.0000 1.0000 0.8333 0.7475
0.3 OCP 0.2674 0.4537 0.0835 0.4221 0.4379 134.2269 0.7201 92.1377 0.8720 0.7961 0.6170
0.3 ROCP 0.1566 0.3401 0.0426 0.5873 0.4637 75.0970 0.3259 57.8272 0.8986 0.6123 0.5380
0.3 PZ 0.2042 0.3889 0.0587 0.5157 0.4523 103.4598 0.5150 10.7746 0.9562 0.7356 0.5939
0.3 GSD 0.2011 0.3858 0.0615 0.5039 0.4448 100.0000 0.4919 0.0000 1.0000 0.7460 0.5954
0.4 OCP 0.2675 0.4538 0.0835 0.4219 0.4379 134.2471 0.7721 91.7246 0.8723 0.8222 0.6300
0.4 ROCP 0.1565 0.3401 0.0425 0.5875 0.4638 75.0896 0.8336 57.4948 0.8989 0.8662 0.6650
0.4 PZ 0.2042 0.3889 0.0587 0.5157 0.4523 103.4654 0.9773 10.8016 0.9562 0.9667 0.7095
0.4 GSD 0.2011 0.3858 0.0615 0.5039 0.4448 100.0000 0.9996 0.0000 1.0000 0.9998 0.7223
0.5 OCP 0.2674 0.4537 0.0835 0.4221 0.4379 134.2260 0.5345 92.0832 0.8721 0.7033 0.5706
0.5 ROCP 0.1566 0.3401 0.0425 0.5875 0.4638 75.0960 0.9287 57.5004 0.8989 0.9138 0.6888
0.5 PZ 0.2042 0.3889 0.0587 0.5157 0.4523 103.4638 0.7395 10.7710 0.9562 0.8479 0.6501
0.5 GSD 0.2011 0.3858 0.0615 0.5039 0.4448 100.0000 0.7626 0.0000 1.0000 0.8813 0.6631
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Table 3.12: R2 Approach when both treatment and control generated from MEM

Delta Metric mean cp e cp var cp v cp score cp mean n e n var n v n score n score cond
0 OCP 0.2674 0.7514 0.0835 0.4220 0.5867 134.2499 0.4383 91.6999 0.8723 0.6553 0.6210
0 ROCP 0.1566 0.8650 0.0426 0.5874 0.7262 75.0924 0.8327 57.6779 0.8987 0.8657 0.7960
0 PZ 0.2042 0.8161 0.0587 0.5155 0.6658 103.4696 0.6435 10.7147 0.9564 0.8000 0.7329
0 GSD 0.2011 0.8194 0.0615 0.5039 0.6617 100.0000 0.6667 0.0000 1.0000 0.8333 0.7475
0.1 OCP 0.2674 0.7514 0.0835 0.4221 0.5867 134.2495 0.4383 92.3015 0.8719 0.6551 0.6209
0.1 ROCP 0.1566 0.8650 0.0426 0.5874 0.7262 75.0968 0.8327 57.6619 0.8988 0.8657 0.7960
0.1 PZ 0.2042 0.8162 0.0587 0.5155 0.6658 103.4566 0.6436 10.6550 0.9565 0.8001 0.7329
0.1 GSD 0.2011 0.8194 0.0615 0.5039 0.6617 100.0000 0.6667 0.0000 1.0000 0.8333 0.7475
0.2 OCP 0.2674 0.7513 0.0835 0.4221 0.5867 134.2559 0.4383 92.4370 0.8718 0.6551 0.6209
0.2 ROCP 0.1566 0.8651 0.0425 0.5875 0.7263 75.0861 0.8328 57.7243 0.8987 0.8657 0.7960
0.2 PZ 0.2042 0.8162 0.0587 0.5155 0.6658 103.4633 0.6436 10.6586 0.9565 0.8000 0.7329
0.2 GSD 0.2011 0.8194 0.0615 0.5039 0.6617 100.0000 0.6667 0.0000 1.0000 0.8333 0.7475
0.3 OCP 0.2674 0.4537 0.0835 0.4221 0.4379 134.2269 0.7201 92.1377 0.8720 0.7961 0.6170
0.3 ROCP 0.1566 0.3401 0.0426 0.5873 0.4637 75.0970 0.3259 57.8272 0.8986 0.6123 0.5380
0.3 PZ 0.2042 0.3889 0.0587 0.5157 0.4523 103.4599 0.5150 10.7746 0.9562 0.7356 0.5940
0.3 GSD 0.2011 0.3858 0.0615 0.5040 0.4448 100.0000 0.4919 0.0000 1.0000 0.7460 0.5954
0.4 OCP 0.2675 0.4538 0.0835 0.4220 0.4379 134.2471 0.7721 91.7246 0.8723 0.8222 0.6300
0.4 ROCP 0.1565 0.3401 0.0425 0.5875 0.4638 75.0896 0.8336 57.4948 0.8989 0.8662 0.6650
0.4 PZ 0.2042 0.3889 0.0587 0.5157 0.4523 103.4654 0.9773 10.8016 0.9562 0.9667 0.7095
0.4 GSD 0.2011 0.3858 0.0615 0.5040 0.4448 100.0000 0.9996 0.0000 1.0000 0.9998 0.7223
0.5 OCP 0.2674 0.4537 0.0835 0.4221 0.4379 134.2260 0.5345 92.0832 0.8721 0.7033 0.5706
0.5 ROCP 0.1566 0.3401 0.0425 0.5875 0.4638 75.0960 0.9287 57.5004 0.8989 0.9138 0.6888
0.5 PZ 0.2042 0.3889 0.0587 0.5157 0.4523 103.4638 0.7395 10.7710 0.9562 0.8479 0.6501
0.5 GSD 0.2011 0.3858 0.0615 0.5040 0.4448 100.0000 0.7626 0.0000 1.0000 0.8813 0.6631
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Figure 3.13: Standard simulation when both treatment and control generated from
MEM
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Figure 3.14: Standard simulation when both treatment and control generated from
MEM
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Figure 3.15: R1 Approach when both treatment and control generated from MEM
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Figure 3.16: R2 Approach when both treatment and control generated from MEM
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Figure 3.17: R2 Approach when both treatment and control generated from MEM
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Table 3.13: Conditional power score where only treatment is generated with MEM
and control from a normal distribution

Delta Design Standard Simulation R1 Approach R2 Approach
0 OCP 0.4797 0.6577 0.5135
0 ROCP 0.6176 0.8263 0.6648
0 PZ 0.6608 0.7650 0.6725
0 GSD 0.7794 0.7794 0.7794
0.1 OCP 0.4797 0.6576 0.5135
0.1 ROCP 0.6176 0.8263 0.6649
0.1 PZ 0.6608 0.7649 0.6723
0.1 GSD 0.7794 0.7794 0.7794
0.2 OCP 0.4797 0.6576 0.5135
0.2 ROCP 0.6176 0.8262 0.6648
0.2 PZ 0.6608 0.7650 0.6724
0.2 GSD 0.7794 0.7794 0.7794
0.3 OCP 0.6059 0.6162 0.6472
0.3 ROCP 0.3480 0.5372 0.5701
0.3 PZ 0.5159 0.5975 0.6142
0.3 GSD 0.5974 0.5974 0.5974
0.4 OCP 0.4790 0.6292 0.5202
0.4 ROCP 0.4749 0.6640 0.6341
0.4 PZ 0.6205 0.7116 0.6434
0.4 GSD 0.7243 0.7243 0.7243
0.5 OCP 0.4196 0.5698 0.4608
0.5 ROCP 0.5081 0.6948 0.5748
0.5 PZ 0.5611 0.6522 0.5840
0.5 GSD 0.6650 0.6650 0.6650

In standard sample size recalculation, GSD performed well against all other

designs for all delta(3.13) This is due to no variation in recalculated sample size.

If we compare the designs in R1 approach with GSD we can see that ROCP and

PZ have approximately similar performance as GSD, while OCP have a little less

score. This is due to better conditional power of ROCP and PZ against OCP. The

R1 approach demonstrates competitive performance across different delta values.

It is expected that this approach reduces variability in recalculated sample sizes,

contributing to consistent CPSs. The R2 approach might have some tendencies to

converge toward the performance of the GSD design, possibly due to the sample

size boundary imposed by nmax(3.16. This behavior can be seen in the similar

CPSs for certain scenarios. The CPS of R1 approach is higher than R2 approach.

This is due to lack of R2 to target the values of sample size effectively. The detailed

simulation results are presented in (3.14), (3.15), (3.16). The box plots for second

stage conditional power and recalculated sample size for standard simulation, R1

approach and R2 approach are illustrated in (3.18), (3.19) respectively.
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Table 3.14: Standard simulation where only treatment is generated with MEM and control from a normal distribution

Delta Metric mean cp e cp var cp v cp score cp mean n e n var n v n score n score cond
0 OCP 0.2484 0.7708 0.0858 0.4141 0.5925 192.1952 0.0520 569.4070 0.6819 0.3669 0.4797
0 ROCP 0.1523 0.8694 0.0933 0.3890 0.6292 72.2506 0.8517 2302.4635 0.3602 0.6060 0.6176
0 PZ 0.1713 0.8500 0.0737 0.4570 0.6535 106.7504 0.6217 458.6497 0.7145 0.6681 0.6608
0 GSD 0.1426 0.8794 0.0458 0.5718 0.7256 100.0000 0.6667 0.0000 1.0000 0.8333 0.7794
0.1 OCP 0.2484 0.7708 0.0858 0.4141 0.5925 192.1952 0.0520 569.4070 0.6819 0.3669 0.4797
0.1 ROCP 0.1523 0.8694 0.0933 0.3890 0.6292 72.2506 0.8517 2302.4635 0.3602 0.6060 0.6176
0.1 PZ 0.1713 0.8500 0.0737 0.4570 0.6535 106.7504 0.6217 458.6497 0.7145 0.6681 0.6608
0.1 GSD 0.1426 0.8794 0.0458 0.5718 0.7256 100.0000 0.6667 0.0000 1.0000 0.8333 0.7794
0.2 OCP 0.2484 0.7708 0.0858 0.4141 0.5925 192.1952 0.0520 569.4070 0.6819 0.3669 0.4797
0.2 ROCP 0.1523 0.8694 0.0933 0.3890 0.6292 72.2506 0.8517 2302.4635 0.3602 0.6060 0.6176
0.2 PZ 0.1713 0.8500 0.0737 0.4570 0.6535 106.7504 0.6217 458.6497 0.7145 0.6681 0.6608
0.2 GSD 0.1426 0.8794 0.0458 0.5718 0.7256 100.0000 0.6667 0.0000 1.0000 0.8333 0.7794
0.3 OCP 0.2484 0.4343 0.0858 0.4141 0.4242 192.1952 0.8934 569.4070 0.6819 0.7876 0.6059
0.3 ROCP 0.1523 0.3357 0.0933 0.3890 0.3624 72.2506 0.3069 2302.4635 0.3602 0.3336 0.3480
0.3 PZ 0.1713 0.3552 0.0737 0.4570 0.4061 106.7504 0.5369 458.6497 0.7145 0.6257 0.5159
0.3 GSD 0.1426 0.3258 0.0458 0.5718 0.4488 100.0000 0.4919 0.0000 1.0000 0.7450 0.5974
0.4 OCP 0.2484 0.4343 0.0858 0.4141 0.4242 192.1952 0.3857 569.4070 0.6819 0.5338 0.4790
0.4 ROCP 0.1523 0.3357 0.0933 0.3890 0.3624 72.2506 0.8146 2302.4635 0.3602 0.5874 0.4749
0.4 PZ 0.1713 0.3552 0.0737 0.4570 0.4061 106.7504 0.9554 458.6497 0.7145 0.8349 0.6205
0.4 GSD 0.1426 0.3258 0.0458 0.5718 0.4488 100.0000 0.9996 0.0000 1.0000 0.9998 0.7243
0.5 OCP 0.2484 0.4343 0.0858 0.4141 0.4242 192.1952 0.1480 569.4070 0.6819 0.4149 0.4196
0.5 ROCP 0.1523 0.3357 0.0933 0.3890 0.3624 72.2506 0.9476 2302.4635 0.3602 0.6539 0.5081
0.5 PZ 0.1713 0.3552 0.0737 0.4570 0.4061 106.7504 0.7176 458.6497 0.7145 0.7161 0.5611
0.5 GSD 0.1426 0.3258 0.0458 0.5718 0.4488 100.0000 0.7626 0.0000 1.0000 0.8813 0.6650
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Table 3.15: R1 Approach where only treatment is generated with MEM and control from a normal distribution

Delta Metric mean cp e cp var cp v cp score cp mean n e n var n v n score n score cond
0 OCP 0.1944 0.8262 0.0664 0.4848 0.6555 134.2621 0.4383 79.1251 0.8814 0.6598 0.6577
0 ROCP 0.1095 0.9134 0.0310 0.6481 0.7807 73.0042 0.8466 59.4450 0.8972 0.8719 0.8263
0 PZ 0.1459 0.8760 0.0445 0.5782 0.7271 103.8817 0.6408 6.8861 0.9650 0.8029 0.7650
0 GSD 0.1426 0.8794 0.0458 0.5718 0.7256 100.0000 0.6667 0.0000 1.0000 0.8333 0.7794
0.1 OCP 0.1945 0.8262 0.0664 0.4846 0.6554 134.2819 0.4381 79.2867 0.8813 0.6597 0.6576
0.1 ROCP 0.1095 0.9134 0.0310 0.6477 0.7805 73.0023 0.8467 59.3560 0.8973 0.8720 0.8263
0.1 PZ 0.1459 0.8760 0.0445 0.5781 0.7271 103.8963 0.6407 6.9131 0.9649 0.8028 0.7649
0.1 GSD 0.1426 0.8794 0.0458 0.5718 0.7256 100.0000 0.6667 0.0000 1.0000 0.8333 0.7794
0.2 OCP 0.1944 0.8262 0.0664 0.4847 0.6554 134.2665 0.4382 79.0940 0.8814 0.6598 0.6576
0.2 ROCP 0.1095 0.9133 0.0310 0.6477 0.7805 73.0069 0.8466 59.4505 0.8972 0.8719 0.8262
0.2 PZ 0.1459 0.8760 0.0445 0.5782 0.7271 103.8917 0.6407 6.9135 0.9649 0.8028 0.7650
0.2 GSD 0.1426 0.8794 0.0458 0.5718 0.7256 100.0000 0.6667 0.0000 1.0000 0.8333 0.7794
0.3 OCP 0.1945 0.3790 0.0664 0.4846 0.4318 134.2649 0.7204 79.7480 0.8809 0.8007 0.6162
0.3 ROCP 0.1095 0.2918 0.0310 0.6477 0.4697 72.9981 0.3119 59.3621 0.8973 0.6046 0.5372
0.3 PZ 0.1459 0.3291 0.0445 0.5783 0.4537 103.8943 0.5179 6.9698 0.9648 0.7413 0.5975
0.3 GSD 0.1426 0.3258 0.0458 0.5718 0.4488 100.0000 0.4919 0.0000 1.0000 0.7460 0.5974
0.4 OCP 0.1944 0.3789 0.0664 0.4848 0.4318 134.2287 0.7722 79.5930 0.8811 0.8266 0.6292
0.4 ROCP 0.1096 0.2918 0.0311 0.6473 0.4696 73.0094 0.8197 59.5854 0.8971 0.8584 0.6640
0.4 PZ 0.1459 0.3292 0.0445 0.5781 0.4536 103.9047 0.9743 6.9338 0.9649 0.9696 0.7116
0.4 GSD 0.1426 0.3258 0.0458 0.5718 0.4488 100.0000 0.9996 0.0000 1.0000 0.9998 0.7243
0.5 OCP 0.1944 0.3789 0.0664 0.4848 0.4319 134.2600 0.5342 79.3819 0.8812 0.7077 0.5698
0.5 ROCP 0.1095 0.2918 0.0310 0.6477 0.4697 73.0023 0.9426 59.5091 0.8971 0.9199 0.6948
0.5 PZ 0.1459 0.3291 0.0445 0.5782 0.4537 103.8885 0.7367 6.9205 0.9649 0.8508 0.6522
0.5 GSD 0.1426 0.3258 0.0458 0.5718 0.4488 100.0000 0.7626 0.0000 1.0000 0.8813 0.6650
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Table 3.16: R2 approach where only treatment is generated with MEM and control from a normal distribution

Delta Metric mean cp e cp var cp v cp score cp mean n e n var n v n score n score cond
0 OCP 0.2631 0.7558 0.1039 0.3552 0.5555 197.8316 0.0145 28.8411 0.9284 0.4714 0.5135
0 ROCP 0.1901 0.8306 0.0724 0.4618 0.6462 118.9021 0.5407 170.0101 0.8262 0.6834 0.6648
0 PZ 0.1934 0.8273 0.0721 0.4630 0.6451 129.2970 0.4714 28.8894 0.9283 0.6998 0.6725
0 GSD 0.1426 0.8794 0.0458 0.5718 0.7256 100.0000 0.6667 0.0000 1.0000 0.8333 0.7794
0.1 OCP 0.2631 0.7558 0.1040 0.3552 0.5555 197.8344 0.0144 28.6883 0.9286 0.4715 0.5135
0.1 ROCP 0.1901 0.8307 0.0724 0.4618 0.6462 118.8988 0.5407 169.4012 0.8265 0.6836 0.6649
0.1 PZ 0.1935 0.8272 0.0721 0.4629 0.6450 129.3287 0.4711 29.0120 0.9282 0.6997 0.6723
0.1 GSD 0.1426 0.8794 0.0458 0.5718 0.7256 100.0000 0.6667 0.0000 1.0000 0.8333 0.7794
0.2 OCP 0.2631 0.7558 0.1040 0.3552 0.5555 197.8328 0.0144 28.6835 0.9286 0.4715 0.5135
0.2 ROCP 0.1901 0.8307 0.0725 0.4617 0.6462 118.9015 0.5407 169.7098 0.8263 0.6835 0.6648
0.2 PZ 0.1934 0.8272 0.0721 0.4630 0.6451 129.3149 0.4712 28.9132 0.9283 0.6998 0.6724
0.2 GSD 0.1426 0.8794 0.0458 0.5718 0.7256 100.0000 0.6667 0.0000 1.0000 0.8333 0.7794
0.3 OCP 0.2631 0.4494 0.1040 0.3552 0.4023 197.8225 0.8559 28.8739 0.9284 0.8921 0.6472
0.3 ROCP 0.1901 0.3744 0.0724 0.4617 0.4181 118.8925 0.6179 169.5006 0.8264 0.7222 0.5701
0.3 PZ 0.1935 0.3779 0.0721 0.4630 0.4204 129.3271 0.6874 28.8702 0.9284 0.8079 0.6142
0.3 GSD 0.1426 0.3258 0.0458 0.5718 0.4488 100.0000 0.4919 0.0000 1.0000 0.7460 0.5974
0.4 OCP 0.2631 0.4493 0.1040 0.3552 0.4023 197.8144 0.3483 29.2819 0.9279 0.6381 0.5202
0.4 ROCP 0.1901 0.3745 0.0725 0.4615 0.4180 118.9108 0.8743 170.1555 0.8261 0.8502 0.6341
0.4 PZ 0.1935 0.3780 0.0722 0.4628 0.4204 129.3448 0.8047 29.0698 0.9281 0.8664 0.6434
0.4 GSD 0.1426 0.3258 0.0458 0.5718 0.4488 100.0000 0.9996 0.0000 1.0000 0.9998 0.7243
0.5 OCP 0.2631 0.4493 0.1039 0.3552 0.4023 197.8254 0.1105 28.8752 0.9284 0.5194 0.4608
0.5 ROCP 0.1901 0.3745 0.0725 0.4616 0.4181 118.8953 0.6367 169.9171 0.8262 0.7314 0.5748
0.5 PZ 0.1935 0.3779 0.0721 0.4629 0.4204 129.3121 0.5672 29.0699 0.9281 0.7477 0.5840
0.5 GSD 0.1426 0.3258 0.0458 0.5718 0.4488 100.0000 0.7626 0.0000 1.0000 0.8813 0.6650
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Figure 3.18: Standard simulation where only treatment is generated with MEM
and control from a normal distribution
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Figure 3.19: R2 approach where only treatment is generated with MEM and control
from a normal distribution

3.8 Illustrative Clinical trial example

In the context of a clinical trial conducted by Bowden and Mander (2014), we

investigate the effectiveness of treatment labeled as T and placebo labeled as P in

alleviating pain among osteoarthritis patients. The trial aims to assess pain relief

over a 2-week period compared to the baseline. Pain relief levels are measured

using the McGill pain scale Melzack and Torgerson (1971), which ranges from

0 (indicating no pain) to 50 (indicating the highest pain level). In this trial, we

assume that data is generated through MDM having both distributions normal

and mixing proportion is p=0.5. Moreover, the pain relief values may be subject

to measurement errors and may follow a MEM. To enhance comprehension of

the proposed methods, we have adapted the original clinical trial design based

on recommendations from Herrmann and Rauch (2021). Initially, a pilot study

indicated the superiority of the new treatment. However, further evidence is needed

to quantify its actual effect, considering both the MEM and the MDM. As a result,

the following hypotheses are formulated:

H0 : µ
T
baseline − µP

baseline ≤ 0 vs H1 : µ
T
baseline − µP

2 weeks > 0. (3.14)

Here, µT
baseline represents the expected pain relief after 2 weeks for the new
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treatment, while µP
baseline signifies the same for the standard treatment. Given

the potential for measurement errors, the clinical trial employs an adaptive two-

stage design, allowing adjustments to the sample size during an interim analysis.

Specifically, n1 = n2 = 50 is chosen, and the maximum sample size is capped at

nmax = 200, recognizing the need for a larger sample size to account for potential

measurement inaccuracies and then utilized the results from these tables (3.2, 3.3

and 3.4). Also, utilized results from these tables (3.10, 3.11 and 3.12). Additionally,

the trial incorporates a binding futility stop bound (α0 = 0.5), a global significance

level (α = 0.025), and locally adjusted significance levels using the Pocock method,

with adjustments made to account for the possible deviations from a strictly normal

distribution.

Suppose that during an interim analysis, an interim effect size of ∆ = 0.2

is observed, corresponding to an interim test statistic of T1 = 1. The focus

lies in assessing the conditional performance differences among the OCP, ROCP,

and PZ approaches, both with and without the R1 resampling approach, while

taking into account both the MEM and the MDM. The evaluation assigns equal

weight to conditional performance score components, with the understanding

that recalibrating the sample size should be driven by reasonable adjustments

considering the complex data distribution.

While the primary emphasis is on performance at ∆ = 0.2, neighboring ef-

fect sizes (∆ = 0.1 and 0.3) are also considered, taking into account the mixed

distribution performance metrics are presented in Tables (3.1), 3.2, 3.3 and 3.4).

Moreover, for measurement errors performance metrics are presented in Table (3.9),

along with Tables (3.10, 3.11 and 3.12) Without resampling and with an interim

effect size of ∆ = 0.2, the OCP approach suggests a maximum sample size of 164.

Conversely, the ROCP approach implies no need for increased sample size or a

second trial stage, taking into account the complexity of the data distribution. The

PZ approach advocates adhering to the total sample size of 118, with potential

adjustments for measurement errors and mixed distribution. However, upon imple-

menting the R1 resampling approach, trial continuation is recommended for all

three approaches (OCP, ROCP, PZ), with total sample sizes ranging from at least

75 to a maximum of 130. Upon comparing overall conditional performance, as

quantified by the conditional performance score, the R1 approach outperforms the

original approach across all three recalculation rules and the considered effect sizes,

especially given the mixed distribution and measurement errors. This improvement

primarily results from variance reduction in conditional sample size and power

due to the resampling approach, which is particularly relevant when dealing with

complex data distributions (as illustrated in Tables (3.2) and (3.3)). For effect sizes

of 0.1 and 0.2, the ROCP R1 resampling approach exhibits the best performance,

63



while for an effect size of 0.3, the OCP R1 resampling approach takes the lead,

showcasing the adaptability of these approaches to different effect sizes within the

mixed distribution.

For those interested in global performance, the OCP R1 approach attains

greater global power than the other ROCP and PZ R1 approaches across the

considered effect sizes, courtesy of larger sample sizes and robust statistical methods.

In conclusion, the integration of resampling techniques accounts for potential

measurement errors and the MDM, thereby improving the reliability of the sample

size determination process, especially when dealing with complex and non-normal

data distributions.
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Chapter 4

Discussion and Conclusion

Integrating resampling into established sample size recalculation rules enhances

the robustness of recalculation approaches, leading to significantly improved perfor-

mance across various individual characteristics and a conditional performance score.

This improvement is primarily due to the decreased variance in conditional sample

size and conditional power. It is important to note that reference values and the

weighting scheme for the conditional performance score could also be adjusted.

Additionally, it is observed that CPS fluctuates around ∆ = 0.3 is a common trait

of recalculation rules. This pattern emerges because, for small effects, increasing

the sample size is not advantageous, while for medium effects and beyond, an

increase becomes reasonable.

One could argue against increasing the sample size as the interim test statistic

increases, and similarly against substantial jumps in the sample size function, as

this implies a drastic change in sample size with minimal alterations in the test

statistic. The resampling approach, where conventional rules exhibit these issues,

presents a compromise between these extremes. It can be contended that any

recalculation rule with significant jumps is not inherently reasonable, and thus, the

compromise offered by the resampling approach might not be optimal either.

A general recommendation suggests configuring design settings to avoid these

jumps, such as by setting a smaller maximal sample size nmax or a larger local

significance level (α1+α2). While the resampling approaches surpass original

sample size recalculation rules concerning the conditional performance score, it

does not imply that resulting sample sizes are point-wise optimal. Instead, it

mitigates the average risk of selecting a completely incorrect sample size, leading

to favorable average outcomes. However, in specific cases, this approach might not

be suitable.

This characteristic is not a drawback for the resampling approach but is

generally applicable to sample size recalculation rules. Resampling-based sample

size recalculation rules provide a favorable approach to balance the cost–benefit
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ratio. By reducing the average deviation from the ideal sample size, the method

effectively navigates the costs and benefits of a study, achieving an optimal trade-off.

Notably, the similarity between resampling procedures and sample size recalculation

for group sequential designs is remarkable.

Particularly, the promising zone approach in conjunction with resampling

closely approximates a group sequential design. This arises because the promising

zone approach introduces significant sample size adjustments within a narrow

range of interim effects, minimally impacting the smoothed sample size curve.

This observation further supports the notion that group sequential designs hold a

distinctive position among designs incorporating sample size recalculation.

Nevertheless, while sample size recalculation based on group sequential designs

depends solely on the interim test statistic for early trial termination, integrating

resampling into recalculation rules permits basing sample size adjustments on

conditional power considerations. This integration effectively mitigates drastic

fluctuations in sample size. Consequently, resampling enhances the robustness of

sample size recalculation rules, effectively addressing the inherent randomness in

observed interim test statistics.

4.1 Recommendations and future work

Recommendations:

1. Applicability to Different Endpoints: Consider that the resampling

techniques outlined in formulas (3.12) and (3.13) can be extended to studies

involving various types of endpoints, as long as the test statistics exhibit

approximate normal distribution characteristics.

2. Binary Endpoints: For studies with binary endpoints, you can readily

apply the resampling approach by utilizing the normal approximation to

binomial.

3. Time-to-Event Endpoints: When dealing with time-to-event endpoints,

explore the possibility of employing the resampling approach through the

utilization of the logrank test within an adaptive design framework, as this

test is also suitable in such scenarios.

Future work:

1. Direct Performance Optimization: As an alternative path to enhancing

the efficacy of sample size recalculation, consider the development of a more

direct approach. This approach could involve formulating a sample size
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recalculation function that is specifically designed to optimize the conditional

performance score.

2. Numerical Constrained Optimization: Explore the idea of implementing

the aforementioned alternative approach within a numerical constrained

optimization framework. This would involve setting up a mathematical

optimization problem where the objective is to maximize the conditional

performance score while adhering to certain constraints.
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Appendix A

Conditional performance score

formulas

In the ensuing discussion, we will delve into the formulas governing the conditional

performance score, along with its constituent sub-scores. For a more comprehensive

understanding of the rationale behind this scoring system, readers are encouraged

to consult Herrmann et al. (2020). Let’s commence by elucidating the four key

components, denoted as e n, v n, e cp, and v cp, as well as the two sub-scores,

SCN and SCP, which collectively constitute the overarching total score, CS.

The fundamental concept underpinning the two location components, namely

e cp and e n, is to assess and compare the calculated average conditional power

and the calculated average conditional sample size against predefined target values.

The target value for the sample size is specified as

Ntarget =

nfix, if nfix ≤ nmax and ∆ ̸= 0,

n1, if nfix ≥ nmax or ∆ = 0,
(A.1)

where nfix is required sample size in fixed study design. The target value for

conditional power is as follows

CPtarget =

1− β, if nfix ≤ nmax and ∆ ̸= 0,

α, if nfix ≥ nmax or ∆ = 0,
(A.2)

where α is defined as global one-sided significance level. For conditional sample

size, the sub-score is defined as

68



SCP (∆) = γloc

(
1− |E[CNRA

∆ (T1)]−Ntarget|
nmax − n1

)
+γvar

(
1−

√
Var (NRA

∆ (T1))

Varmax (NRA
∆ (T1))

)
(A.3)

where as
(
1− |E[CNRA

∆ (T1)]−Ntarget|
nmax−n1

)
= e cp and

(
1−

√
Var(NRA

∆ (T1))
Varmax(NRA

∆ (T1))

)
= v cp

where γloc + γvar =1. Both sub-scores, SCN and SCP, have a range of [0, 1]. They

are determined by the degree to which certain conditions are met. Specifically,

SCN is influenced by the closeness of the variation to its target value. Similarly,

SCP is determined by the degree to which another set of conditions is met. Both

SCN and SCP attain larger values when the respective variations are small, and

the predefined target values are closely approached. Therefore, we can define the

point-wise total conditional performance score, CS, as follows:

CS(∆) =
1

2
· [SCP (∆) + SCN(∆)] (A.4)
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