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Abstract

When measurements are made twice on the same subject / person, RTM is

noticed when relatively high or low observations are likely to be followed by less

extreme observations that are closer to the true mean. When subjects are selected

based on some cut-off points, the observed mean difference of the pre-post variable

is called the total effect. The total effect is equal to the sum of the RTM effect

and treatment effect and should be accounted for RTM.

Bi-variate binomial-binomial distribution models the data when the two groups,

say i and j, have two possible outcomes in a fixed number of trials in which

the number of success follows a binomial distribution. It is the result of the

convolution of two independent binomial marginals. The study considers the

Bi-variate binomial-binomial distribution. Formula for the total , treatment and

RTM effect are derived. Using R’s optimize function, the log-likelihood function

was maximized to provide the maximum likelihood estimators. The results of the

simulation study showed that the maximum likelihood (ML) estimators of RTM

are unbiased and consistent.

The proposed method is applied to the real data of the number of patients

dealt with in one of two boxes of critical care Emergency service of San Agustin

Hospital, in Linares (Spain).The parameters of real data are estimated through

MLE and substitute in the derived RTM formula. This shows that the Total Effect

= Treatment Effect + RTM Effect.
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Chapter 1

Introduction

When measurements are made twice on the same subject or person, RTM is noticed

when relatively high or low observations are likely to be followed by less extreme

observations that are closer to the true mean. The concept of RTM was first

introduced by Sir Francis Galton (Galton, 1886) in the 19th century, who studied

the inheritance of height in humans. He noticed that the heights of children tended

to regress towards the average height of their parents, rather than being equal

to or more extreme than them as shown in Fig 1.1. He called this phenomenon

regression towards mediocrity in hereditary stature.

As in Fig 1.1 the standardized height z = (x − µ)/σ, where µ and σ are the

population mean and standard deviation, respectively. While the heights of children

are very near the genuine mean, those of parents are on the extremes of left and

right. The amount of the RTM effect is shown by the arrow.

Galton’s idea of RTM was later formalized by Karl Pearson, who developed

the mathematical theory of correlation and regression analysis. Pearson showed

that the correlation coefficient between two variables is equal to the slope of the

regression line that best fits the data. He also proved that the regression line

always passes through the mean of both variables, which explains why extreme

values tend to move toward the mean.

RTM is a common source of error and bias in many fields of research, especially

when the selection of subjects or units is based on an initial measurement that is

subject to random error. For example, if a researcher selects the most intelligent

students based on a test score and then administers another test to them, the

average score of the second test is likely to be lower than the first one, even if

there is no real change in the student’s abilities. This is because the first test

score may have been inflated by random factors, such as guessing, luck, or mood,

and the second test score may have been closer to the true mean of the student’s

intelligence.

1
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Figure 1.1: RTM effect in diastolic blood pressure in baseline and follow-up
measurement with true mean and variation

(James, 1973) examined the effects of RTM in control clinical trials, where

observations were made both before and after the application of treatment but

without the presence of a control group. In his analysis, he found that there were

two types of regression effects: one resulting from biological variation over time

and the other from measurement variance. The author emphasized the significance

of the control group and made a compelling case for randomized clinical trials.

It is essential to distinguish the effects of the RTM from the treatment effects in

order to avoid making inaccurate findings.

According to (Barnett et al., 2005), the RTM effect results from measurements

of observations that contain random error; the higher the random error term, the

bigger the RTM impact. RTM is a common difficulty in data analysis due to the

rarity of data without random error. When the chosen measurements are at the

extreme of the distribution, RTM can occur in groups as well as on an individual

level (Johnson and George, 1991) .

Studies, where repeated measurements or observations are gathered, have been

influenced by RTM throughout a wide range of research fields. For instance,(Yu

and Chen, 2015) in social psychology offered data in support of the effectiveness

of social conformity and unrealistic optimism effects, however, the effects were no

longer perceptible after adjusting for RTM.

(Prior et al., 2005) adjusted RTM in the medical area to reduce cardiovascular

risk factors through health programs by implementing minor interventions without
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a control group. The authors concluded that the intervention had a significant

impact and decreased the risk of cardiovascular disease by reducing smoking, high

blood pressure, and hypercholesterolemia in high-risk individuals. The patients

who were at low risk, on the other hand, and their decrease in systolic blood

pressure was brought about by RTM.

In the field of economics, abnormally high rates of economic growth are rarely

long-lasting and are frequently followed by abrupt declines. As a result, it can

be inaccurate to predict economic growth without taking RTM into account

(Pritchett and Summers, 2014). After grabbing into consideration the effects of

RTM, Pritchett and Summers provide caution over the potential of a reduction in

the present growth rates of the Asian giants, China and India..

1.1 Identification of RTM through graphs

The RTM effect can be visualized by a simple scatter plot of the difference between

follow-up and baseline measurement against baseline measurement. Figure1.2

shows the scatter plot of high diastolic blood pressure patient data in which the

effect size (Follow-up minus Baseline measurement) is plotted against baseline

measurement. The solid line shows no change in baseline and follow-up, while

the regression line is estimated for both groups. The difference between the two

regression lines is the estimated treatment effect. The plot shows the possibility

of the RTM effect such as the patients whose blood pressure is normal but rises

on follow-up measurement then this change is above the solid line. Similarly, in

patients whose diastolic BP is very high and drops on the next measurement, the

change is lower than the zero line. The placebo group highlights that the difference

between the two measurements is scattered around zero and this fluctuation is due

to RTM.
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Figure 1.2: RTM effect in diastolic blood pressure in baseline and follow-up
measurement with true mean and variation

Existing methods for regression to the mean

When choosing treatment subjects based on a truncation point, say x0, there

are several ways to measure and estimate RTM and intervention effects. With

Xi = X0 + Ei, where X0 and Ei are independent of one another, and X0 is

normally distributed as N(µ, σ2
0), these methods assume an additive model of the

true component X0 and a random error component Ei. The error terms Ei are

identically distributed as N(µ, σ2
e), for i = 1, . . . , n. Consequently, Xi has the same

distribution as N(µ, σ2), where σ2 is equal to σ2
0 + σ2

e .

To derive regression to the mean equations, many current approaches (James

1973; Gardner and Heady 1973; Davis 1976; Johnson and George 1991) assume a

bivariate normal distribution. Regression to the mean equations has been derived

by these authors using model (1) or some adaptations.

James (1973) estimated RTM in uncontrolled clinical studies where the bivariate

normal variables are stationary and strictly positively correlated (ρ > 0). Davis

(1976) developed an approach that was useful in reducing the RTM effect. The

approach consists of taking multiple subjects before applying the treatment to

them. Senn et al. (1985) extended the derivation of James (1973) and derived the

maximum likelihood estimators for the parameters to different types of sampling

techniques related to the bivariate normal distribution.

In many real-life situations, the variable under study could be the number of
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successes or counts of an event. In the recent past, Khan and Olivier (2018) and

Khan and Olivier (2019) developed methods for dealing with the problem posed

by the RTM effect using the bivariate Poisson and binomial distributions.

1.2 Consequences of RTM

RTM can produce inaccurate results regarding the impact of an intervention or

treatment, particularly if subjects are chosen using baseline criteria. The following

are some potential effects of RTM if it is not Addressed:

• Overestimating the effectiveness of a treatment that is given to subjects with

low initial values, such as patients with severe symptoms or poor test scores

Morton and Torgerson (2003).

• Underestimating the effectiveness of a treatment that is given to subjects with

high initial values, such as athletes or students with exceptional performance.

• Attributing a causal relationship between two variables that are unrelated,

such as the ”Sports Illustrated jinx” that claims that athletes featured on

the cover of the magazine will perform poorly in their next game.

• Misinterpreting natural variation as real change, such as the ”hot hand

fallacy” that assumes that a player who has a streak of successful shots will

continue to do so.

1.3 Addressing RTM at the design stage

Understanding the RTM effect in intervention studies can be helped by the study

design (Yudkin and Stratton (1996),Linden (2013)). The preceding subsections

include descriptions of several well-known study designs and their possible impacts

on RTM.

1.3.1 Randomized control trials

To reduce selection bias and level the impact of RTM among groups, individuals

can be randomly assigned to treatment groups (such as placebo and therapy). The

RTM impact can be estimated using the mean change in the placebo group. The

difference between the mean change in the treatment group and the mean change

in the placebo group can therefore be used to determine how the treatment effect

accounts for RTM. Randomization, however, isn’t always feasible because of moral

or practical issues.
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1.3.2 Selection based on multiple measurements

RTM is proportional to measurement variability, according to the RTM formula.

Reducing measurement variability can be achieved by choosing two or more baseline

measurements. Assuming the RTM effect occurred between the first and subsequent

measurements, the study selection criterion can then be based on the average of

multiple measurements (Gardner and Heady, 1973), (Davis, 1976). When an

intervention is implemented, reducing variability can be utilized to provide a more

accurate estimate of each subject’s true component. Taking many measurements

is a decision that is based on the cost of gathering and is not always feasible when

resources are constrained.

1.4 Research Motivation

The current methodologies for regression to the mean (RTM) predominantly

rely on continuous or fixed-probability discrete distributions, restricting their

adequacy when success or failure probabilities fluctuate across trials—a common

scenario in medical studies influenced by factors like age, treatment, and conditions.

To accommodate this variability, the bivariate binomial-binomial distribution

emerges as a promising model. This discrete distribution, capturing success and

failure counts across independent trial groups with varying probabilities drawn

from distinct binomial distributions, addresses overdispersion, correlations, and

fluctuating success probabilities. Despite its potential, this distribution remains

underexplored compared to its counterpart, the bivariate beta-binomial, which has

garnered substantial attention across fields like ecology, genetics, and epidemiology.

This research aims to fill this gap by investigating RTM within the bivariate

binomial-binomial distribution and devising methods to analyze and correct this

phenomenon within this framework, paving the way for improved understanding

and application of RTM in this nuanced context.

1.5 Problem Statement

This research aims to address this gap by investigating the complexities of regression

to the mean in a bivariate BB distribution setting. The study will focus on

elucidating how varying success probabilities and the number of trials across

independent groups influence the convergence of extreme observations toward their

respective means. By offering a comprehensive understanding of these dynamics,

this research endeavors to refine statistical inference techniques and predictive

models, catering to diverse fields reliant on categorical data, including but not
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limited to healthcare and social sciences

1.6 Organization of the thesis

This thesis is composed of five chapters, which cover the following topics: Chapter

1 provides a brief history, applications, detection, impacts, and prevention of

RTM. Chapter 2 reviews the existing methods for RTM analysis in the literature.

Chapter 3 presents the technical details, derivation of RTM, its variance, co-

variances, estimated the treatment, total, and RTM effects, and examined the

effect of parameters on RTM. chapter 4 provide calculation of maximum likelihood

estimations (MLEs) under bi-variate binomial-binomial distribution, results of

simulation studies and also applies the proposed method to real data from the

medical field. Chapter 5 summarizes the main findings and contributions of this

research.



Chapter 2

Literature Review

When measuring the same subject at two or more time periods, RTM has significant

consequences for evaluating treatment methods. Many methods have been proposed

in past research to estimate the effect of RTM in various cases. Different authors

have suggested their approaches to reducing the effect of RTM and estimate

treatment effects. In this chapter, we give a brief overview of all these existing

methods and techniques.

2.1 RTM Effect Under Bivariate Normal Distri-

bution

(James, 1973) worked early on the RTM effect for bivariate normal distribution

in clinical studies. He argued that the observed variable is composed of true and

random error components. Let Xi be the effect size on ith measurement of the

same subject and x0 is the true measurement,

Xi = X0 + ei

where ei is random error and i = 1, 2, . . . (James, 1973) found that the treatment

effect was a sum up of two effects i.e., the biological effect and measurement error,

and urged to separate RTM from the true treatment effect to avoid unreliable

results. He argued that the control group should be used to avoid the serious

effect of RTM. James derived the estimator of RTM by assuming that the pre and

post-variables Xi ∼ N (µ, σ2) with cov = σ2
0. Assuming the null treatment effect,

the RTM effect is equal to the condition difference of the pre and post-treatment

mean. The derived RTM effect formula is.

R(x0) =
σ(1− ρ)ϕ(z0)

1− Φ(z0)
=

σ2
e√

σ2
0 + σ2

e

· ϕ(z0)

1− Φ(z0)
(2.1)

8
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James analyzed that if the treatment was effective, then the model relating the

pre-post variables could be written as

X2 − µ = γρ(X1 − µ) + e1 (2.2)

For γ < 1, the treatment was considered effective. The observed difference

under bivariate normal distribution is

E(Z1 − Z2/Z1 > z0) =
(1− γρ)ϕ(z0)

1− Φ(z0)
(2.3)

where Zi is standardized variables for i = 1, 2. James established the above

formula in Eq. 2.3 for the overall proportionate decrease attributable to RTM and

treatment as well as to RTM alone. This will partition the total effect into true

and RTM effects However, it fails when the pre-post measurements variables are

independent.

Similar to (James, 1973), (Gardner and Heady, 1973) worked on the derivation

of the RTM effect, but along with bivariate measures, the authors also investigated

the effect of multiple measurements on RTM. The authors assumed the normal

distribution of pre-post variables with ρ = σo/
√

σ2
0 + σ2

1.

The subjects selected based on the right cut-off point, i.e. Xi > xo follow the

univariate truncated normal distribution with mean.

E (Xi | Xi > x0) = µ+ σ
ϕ (z0)

1− Φ (z0)
. (2.4)

Similarly, the mean of X0 given that the observation is greater than the cutoff

point is.

E (X0 | Xi > x0) = µ+
σ2
0

σ
· ϕ (z0)

1− Φ (z0)
. (2.5)

Since σ > σ2
0/σ unless σ2

e = 0, it is therefore clear from the above equations 2.4

and 2.5 that the observed mean of observation is always greater than their true

mean due to the presence of the RTM effect.

(Gardner and Heady, 1973) derived the RTM formula for multiple measurement

n on the same subject and is given by

R (x0) = E
(
X̄ −X0 | X̄ > x0

)
=

σ2
e/n√

σ2
0 + σ2

e/n
· ϕ (z0n)

1− Φ (z0n)
, (2.6)

where X̄ =
∑

xi/n is the sample mean of n multiple measurements. James’

derivation of RTM is a special case of equation 2.6 for n = 1. However, the RTM

effect approaches zero when n becomes sufficiently large. (Davis, 1976) worked
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on the study design to reduce the RTM effect. Let the mean of all multiple

measurements and a follow-up observation be X̄ and X∗, respectively such that

X̄ ∼ N(µ, σ2
o + σ2

e/n) and X∗ ∼ N(µ, σ2
o + σ2

e). The RTM effect is derived as

shown below:

R (x0, n) = E
(
X̄ −X∗ | X̄ > x0

)
=

σ2
e/n√

σ2
0 + σ2

e/n
· ϕ (z0n)

1− Φ (z0n)
(2.7)

which is the same as derived by (Gardner and Heady, 1973). Using the first

observation X1 as a classification baseline measurement, i.e., choosing a subject

based on the event X1 > x0, and the second observation X2 on the same subject

as the baseline from which the treatment effect may be assessed could be useful to

mitigate the RTM effect (Davis, 1976). Let X3 be the post-treatment measurement,

then the author derived the RTM formula by taking the conditional expectation of

truncated distribution;

R (x0, ρ12, ρ13) = E (X2 −X3 | X1 > x0) = (ρ12 − ρ13) · σ
ϕ (z0)

1− Φ (z0)
. (2.8)

Where the correlation coefficient between (X1, Xi) are represented by ρ1j for

j = 2, 3. The RTM effect becomes zero when the two correlation coefficients are

equal with baseline measurement, thereby not requiring multiple measurements for

reducing the RTM effect. So far, the observed values were assumed to have consisted

of two components, measurement error and the second is biological variables such

as emotional and other influences during the recording of observation. (Johnson

and George, 1991) extend the previous model and included the subject effect,

Si ∼ N(0, σ2
s). Hence the model becomes;

Yij = X0 + Si + Eij (2.9)

where i = 1, 2, ...m, j = 1, 2, ...n and Yij represents the jth replicate measure-

ment at the ith study time. The correlation between Si and Sk is positive and

independent of random error Ei and baseline measurement X0.

Under Equation.2.9 the RTM formula derived by (Johnson and George, 1991)

is

RT (y0) =
(1− ρs)σ

2
s + σ2

e/n

mσȳ

· ϕ (z1)

1− Φ (z1)
(2.10)

The above equation 2.10 represents the total RTM effect due to measurement

error and subject effect. One can decrease the RTM measurement error by either

increasing the number of repeated measurements or by increasing the number of
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replication n. On the other hand, a greater number of time-dependent, repeated

measurements m minimize the impact of subject variability on the regression.

The detailed work on RTM under normal distribution was recently done by

(Khan and Olivier, 2023). The authors partitioned the total effect into true

treatment and RTM effects, derived the MLE, and checked their properties such

as unbiasedness, consistency, and normality. The RTM effect was depicted for

both positive and negative correlations. They derived the RTM effect in a pre-post

measurement case in which the pre-variable is composed of true and random parts

i.e., X1 = X0 + ϵ1 and post-variable X2 = a+ bX0 + ϵ2. Where a+ bX0 is the true

part and ϵ2 is the random component. The RTM effect is estimated as.

T (x0, θ) = (µ1 − µ2) + (σ1 − ρσ2)
ϕ (z)

1− Φ (z)
(2.11)

The first part on the right-hand side, (µ1 − µ2), of the above equation is the

average treatment effect, and the second term is the RTM effect. The authors also

derived the variance of RTM as shown below.

var (X1 −X2 | X1 > x0) =
2∑

i=1

var (Xi | X1 > x0)− 2× cov (X1, X2 | X1 > x0) .

(2.12)

The maximum likelihood estimators of the total, RTM, and true effect were

derived.

T̂r (x0,x) = µ̂1 − µ̂2 +
ϕ (ẑ0)

1− Φ (ẑ0)
· (σ̂1 − ρ̂σ̂2) , (2.13)

R̂r (x0;x) = (σ̂1 − ρ̂σ̂2) ·
ϕ (ẑ0)

1− Φ (ẑ0)
, and (2.14)

δ̂(x) = µ̂1 − µ̂2. (2.15)

The distribution of RTM and true treatment δ̂(x) were shown to be asymptoti-

cally normal and unbiasedness and consistency of the estimators were established.

The simulation study shows that the RTM and intervention estimates are close to

the true value in all cases while James (1973) method gives poor estimates.

2.2 Bivariate binomial distribution

The quantification of the RTM effect before and after treatment involving bino-

mial experiments is derived by (Khan and Olivier, 2019). The authors proposed

expressions for the RTM when the variable of interest is the number of successes in
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the fixed number of trials. The successive number of successes can be expressed as

X1 = Y
(1)
0 + Y1, X2 = Y

(2)
0 + Y2 (2.16)

where Xi is the total number of successes before and after study design where the

number of trials is fixed, say n, Y
(i)
0 are an actual number of successes and Yi are a

random number of successes for i = 1, 2. (Khan and Olivier, 2019) used bivariate

binomial distribution which was first discussed by (Aitken and Gonin, 1936) and

given by

fX1,X2(x1, x2, n) =

min(x1,x2)∑
α=0

f(·),

where

f(·) =
(

n

α, x1 − α, x2 − α, n+ α− x1 − x2

)
θα0 θ

x1−α
1 θx2−α

2 (1− θ0 − θ1 − θ2)
n+α−x1−x2

with cov(X1, X2) = n(θ0−(θ0+θ1)(θ0+θ2)). The expected truncated difference

of pre and post-variables is equal to the RTM effect. For a null intervention left

and right RTM are obtained by putting θ1 = θ2 as

Rl(x0;θ) = E(X1 −X2|X1 ≤ x0),

= nθ1 ·
Pn−1(X1 = x0)

Fn(x0|θ0 + θ1)
,

and

Rr(x0;θ) = E(X1 −X2|X1 > x0),

= nθ1 ·
Pn−1(X1 = x0)

1− Fn(x0|θ0 + θ1)
.

(Khan and Olivier, 2019) derived formulae for the total effect which is the

sum of the intervention effect and RTM effect. If the selection is based on all

measurements greater than the baseline point x0, then total effect is given by

Tr(x0,θ) = n.
θ1 (1− Fn−1(x0|θ0 + θ1))− θ2 [1− Fn(x0|θ0 + θ1)− (θ0 + θ1)Pn−1(X1 = x0)]

1− Fn(x0|θ0 + θ1)
.

On the other hand, if the selection is based on all measurements less than or equal

to the baseline point x0, then the total effect is given by



Chapter 2. Literature Review 13

Tl(x0,θ) = n.
θ2 [Fn(x0|θ0 + θ1) + (θ0 + θ1)Pn−1(X1 = x0)]− θ1Fn−1(x0 − 1|θ0 + θ1)

Fn(x0|θ0 + θ1)

where Pn−1(X1 = x0) =
(
n−1
x0

)
(θ0 + θ1)

x0(1− θ0 − θ1)
n−1−x0 . (Khan and Olivier,

2019) derived the maximum likelihood estimates (MLE) of the parameters when α

is known as

θ̂0 =
k∑

j=1

αj/k, θ̂1 =
k∑

j=1

(x1j−αj)/k, θ̂2 =
k∑

j=1

(x2j−αj)/k.

When α is unknown, the parameters of the bivariate binomial distribution were

derived using numerical methods.

2.3 Bivariate Beta-Binomial distribution

The chance of success (p) in the binomial distribution is taken to be constant from

trial to trial. This presumption might not be true in many circumstances. In these

cases, an alternate distribution called the beta-binomial distribution is applied. A

binomial distribution is referred to as a beta-binomial distribution if the success

probability is randomly selected from the beta distribution rather than being fixed

at each n trail. The probability of success is fixed in a binomial distribution and

not fixed in a beta-binomial distribution, which is the key distinction between the

two.

The probability mass function (PMF) of bivariate beta-binomial distribution is

given by

P (X1, X2) =

(
n1

x1

)(
n2

x2

)
B(x1 + x2 + α, n1 + n2 + β − x1 − x2)

B(α, β)
(2.17)

where x1 = 0, 1, 2, . . . , n1, x2 = 0, 1, 2, . . . , n2, n1, n2 = 1, 2, . . . , and α, β > 0

B(·,·) is the beta function and α and β are the parameters. The marginal PMF ofX1

and X2 are the univariate beta-binomial with parameter ni ,α and β, respectively,

for i = 1, 2. The respective mean and variance of the univariate beta-binomial

distribution are

E(Xi) =
nα

α + β

and

Var(Xi) =
nαβ(n+ α + β)

(α + β + 1)(α + β)2
for i = 1, 2
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The correlation coefficient of bivariate beta-binomial distribution is

ρx1x2 =

[(
1 +

α + β

n1

)(
1 +

α + β

n2

)]− 1
2

(2.18)

For n1 = n2 = n, the correlation coefficient ρ of the symmetrical bivariate

beta-binomial distribution is

ρx1x2 =

{
1 + α + β

N

}−1

=
N

N + α + β
(2.19)

Rr(x0;α, β) = E(X1 −X2 |X1 > x0)

=
α

(α + β)

[
n1(1− Fn1−1(x0 − 1 |α′, β))− n2(1− Fn2(y0 |α′, β))

1− Fn1(x0 |α, β)

]
and

Rr(x0;α, β) = E(X1 −X2 |Y ≤ y0)

=
α

(α + β)

[
n2(1− Fn2(x0 |α′, β))− n1(1− Fn1−1(x0 − 1 |α′, β))

1− Fn1(x0 |α, β)

]
The treatment or intervention effect in pre-post studies is the expected difference

between the pre-post observations.

δi(α, β) = E(X1 −X2) =
n1α

α + β
− n2α

α + β
(2.20)

The treatment effect will be zero when n1 and n2 are equal, and RTM is ac-

countable for the total effect. The bivariate beta-binomial distribution is restricted

in this manner when the parameters in X1 and X2 are identical.

The total effect for the right cut-off point under the bivariate beta-binomial

distribution is.

Tr(x0;α, β) =
α

(α + β)

[
n1(1− Fn1−1(y0 − 1 |α′, β))− n2(1− Fn2(x0 |α′, β))

1− Fn1(x0 |α, β)

]
The total effect for the left cut-off point is defined as

Tl(x0;α, β) =
α

(α + β)

[
n2(Fn1(x0 |α′, β))− n1(Fn1−1(y0 − 1 |α′, β))

Fn1(y0 |α, β)

]



Chapter 3

Derivation of Regression to the

mean

Bi variate binomial-binomial distribution models the data when the two groups, say

i and j, have two possible outcomes in a fixed number of trials in which the number

of success follows a binomial distribution. It is the result of the convolution of two

independent binomial marginals. Previous work on RTM quantification was done by

Khan and Olivier (2019) when the samples were drawn from binomial distribution,

and Khan and Aimal worked on bi-variate beta-binomial when the probability of

success is drawn randomly from beta distribution, but it has two defects One is

that the distribution has identical marginals, therefore we cannot estimate the true

treatment effect. The other is that when the probability of success is not constant

throughout the trial and follow a beta distribution, then the existing method under

the bi-variate binomial distribution of RTM is not appropriate. In this chapter, we

derive the RTM effect under the bi-variate BB distribution, its variance, covariance,

and maximum likelihood when the observation is selected based on a cutoff point

either on the left or right side. The bi-variate binomial-binomial distribution is

also derived as a mixture model which is useful for computer sampling from the

distribution and facilitates computation of the joint probabilities. The bi-variate

binomial-binomial distribution is shown to be positive quadrant dependent. The

chi-square goodness of fit for the bi-variate binomial-binomial distribution is better

than the bi-variate Generalized Poisson distribution (Famoye and Consul, 1995)

and bi-variate Conway Maxwell Poisson distributions (Ong et al., 2021).

3.1 Bi-variate Binomial-Binomial Distribution

The probability mass function (PMF) of bivariate binomial-binomial distribution

is given by

15
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p(i, j) =
m∑
k=0

(
n1 + k

i

)
piqn1+k−i

(
n2 + k

j

)
θj(1− θ)n2+k−j

(
m

k

)
bk(1− b)m−k (3.1)

where i = 1, 2.....n1 + k, j = 1, 2, ...., n2 + k, n1, n2 and m are positive integers.

The marginal PMF of i and j are the univariate binomial distribution with

parameters n1, P, n2, θ,m and b respectively. Then the respective mean and variance

of the univariate binomial-binomial distribution are

E(i) = n1p+mbp,

E(j) = n2θ +mbθ,

Var(I) = n1p− n1p
2 +mbp−mb2p2,

Var(j) = n2θ − n1θ
2 +mbθ −mb2θ2,

The covariance between i and j is follow

Cov(I, J) = pθmb− pθmb2

3.2 RTM, total, and treatment effects

In intervention studies like epidemiology, medicine, subjects/patients with measure-

ments below or above some specified truncation or cut-off point, say i0, are selected

for intervention or treatment. Let i and j be some characteristics of interest before

and after treatment on the same subject. The joint distribution of the before and

after treatment measurements at truncated point i0 is given by

fr(i, j) =
f(i, j)

f(i > i0)
where i0 < i < ∞,−∞ < j < ∞

where the subscript r represents the right truncated in fr(i, j). The total effect

T (i0, θ) is defined as the conditional expectation of the difference between before

and after treatment variables and is given by
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T (i0, θ) = E(i− j|i > i0)

=
∞∑

m=i0

∞∑
n=1

(im − jn)f(im, jn|i > i0) (3.2)

where θ is the parameter vector. Depending on how well the treatment effect

works, the total effect may be partially or totally driven by the RTM effect. The

treatment effect is zero when both im and jn have the same distribution, i.e.,

E(im − jn) = 0. The RTM effect is defined as the conditional expectation of the

difference between im and in, and it is given by

R(i0, θ) = E(i− j|i > i0) (3.3)

The difference between the unconditional means of i and j is defined as the

average treatment effect.

δ(λ) = E(i− j)

Thus, the total effect T (i0, θ) can be written as

T (i0, θ) = R(i0, θ) + δ(λ), (3.4)

where λ= (n1,n2,p,θ,m,b) is a function of the means of i and j. The treatment

or intervention may be applied to the extreme cases above and below some specified

cut-off point, denoted as i0. The cut-off point may be either on the right or left side

of the distribution. In this chapter, both the right and the left extreme or cut-off

points are considered, and their derivations are given in the following subsection.

3.2.1 Case 1: Subjects in the right extreme

Let the application of an intervention be decided on the basis that the initial

value i is greater than some cut-off point, say i0, then the truncated bivariate

binomial-binomial distribution is given by

Pt(i, j) =
1

1−P (i≤i0)

∑m
k=0

(
m
k

)
bk(1− b)m−k

(
n1+k

i

)
piqn1+k−i

(
n2+k

j

)
θj(1− θ)n2+k−j

The expectation of i conditioned on the event, i > io, is
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E(i | i > i0) =
1

1− P (i ≤ i0)

n1+k∑
i=i0+1

n2+k∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−ki

(
n1 + k

i

)
piqn1+k−i

×
(
n2 + k

j

)
θj(1− θ)n2+k−j

After some algebraic manipulation, the expectation reduces to

E(i | i > i0) =
1

1− P (i ≤ i0)

[
n1p

n1+k−1∑
i=i0

n2+k∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

·
(
n1 +K − 1

i

)
piqn1+k−i−1

(
n2 + k

j

)
θj(1− θ)n2+k−j +mpb

n1+k−1∑
i=i0

n2+k∑
j=0

m−1∑
k=0

(
m− 1

k

)
bk(1− b)m−k−1

·
(
n1 +K − 1

i

)
piqn1+k−i−1

(
n2 + k

j

)
θj(1− θ)n2+k−j

]
,

(3.5)

where 1− P (i ≤ i0) =
∑n1+k

i=i0+1

∑m
k=0

(
m
k

)
bk(1− b)m−k

(
n1+K

i

)
piqn1+k−i

and is the cumulative distribution function (CDF) of the uni-variate binomial-

binomial distribution. Now considering the conditional expectation of (j|i > i0),

we have

E(j | i > i0) =
1

1− P (i ≤ i0)

[
n1+k∑
i=i0+1

n2+k∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

(
n1 +K

i

)
piqn1+k−i

j

(
n2 + k

j

)
θj(1− θ)n2+k−j

]

After some algebraic manipulation, the expectation reduces to
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E(j | i > i0) =
1

1− P (i ≤ i0)

[
n2θ

n1+k∑
i=i0+1

n2+k−1∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

·
(
n1 +K

i

)
piqn1+k−i

(
n2 + k − 1

j

)
θj(1− θ)n2+k−j−1 +mθb

n1+k∑
i=i0+1

n2+k−1∑
j=0

m−1∑
k=0

(
m− 1

k

)
bk(1− b)m−k−1

·
(
n1 +K

i

)
piqn1+k−i

(
n2 + k − 1

j

)
θj(1− θ)n2+k−j−1

]
, (3.6)

To get the total effect for the right cut-off point under the bi-variate binomial-

binomial distribution subtract equation 3.4 from 3.5, we get

Tr(io, i, j) =
1

1− P (i ≤ i0)

[
n1p

n1+k−1∑
i=i0

n2+k∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

·
(
n1 +K − 1

i

)
piqn1+k−i−1

(
n2 + k

j

)
θj(1− θ)n2+k−j +mpb

n1+k−1∑
i=i0

n2+k∑
j=0

m−1∑
k=0

(
m− 1

k

)
bk(1− b)m−k−1

·
(
n1 +K − 1

i

)
piqn1+k−i−1

(
n2 + k

j

)
θj(1− θ)n2+k−j − n2θ

n1+k∑
i=i0+1

n2+k−1∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

·
(
n1 +K

i

)
piqn1+k−i

(
n2 + k − 1

j

)
θj(1− θ)n2+k−j−1 −mθb

n1+k∑
i=i0+1

n2+k−1∑
j=0

m−1∑
k=0

(
m− 1

k

)
bk(1− b)m−k−1

·
(
n1 +K

i

)
piqn1+k−i

(
n2 + k − 1

j

)
θj(1− θ)n2+k−j−1

]
. (3.7)

3.2.2 Case 2: Subjects in the left extreme

When the subjects selected for treatment are in the left tail/end of a distribution,

i.e., i is less than or equal to the cut-off point, say i0, then, the truncated probability

distribution function of i and j is

Pi≤io(i, j) =
1

P (i≤i0)

∑m
k=0

(
m
k

)
bk(1− b)m−k

(
n1+k

i

)
piqn1+k−i

(
n2+k

j

)
θj(1− θ)n2+k−j
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The expectation of i conditioned on the event i ≤ i0 is

E(i | i ≤ i0) =
1

P (i ≤ i0)

io∑
i=0

n2+k∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−ki

(
n1 + k

i

)
piqn1+k−i

×
(
n2 + k

j

)
θj(1− θ)n2+k−j,

The conditional expectation upon simplification becomes

E(i | i ≤ i0) =
1

P (i ≤ i0)

[
n1p

io−1∑
i=0

n2+k∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

·
(
n1 +K − 1

i

)
piqn1+k−i−1

(
n2 + k

j

)
θj(1− θ)n2+k−j +mpb

io−1∑
i=0

n2+k∑
j=0

m−1∑
k=0

(
m− 1

k

)
bk(1− b)m−k−1

·
(
n1 +K − 1

i

)
piqn1+k−i−1

(
n2 + k

j

)
θj(1− θ)n2+k−j

]
,

(3.8)

Now considering the conditional expectation of j | i ≤ io , we have

E(j | i ≤ i0) =
1

P (i ≤ i0)

[
i0∑
i=0

n2+k∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

(
n1 +K

i

)
piqn1+k−i

j

(
n2 + k

j

)
θj(1− θ)n2+k−j

]
,

Solving the E(j|I ≤ i0) we get,

E(j | i ≤ i0) =
1

P (i ≤ i0)

[
n2θ

io∑
i=0

n2+k−1∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

·
(
n1 +K

i

)
piqn1+k−i

(
n2 + k − 1

j

)
θj(1−θ)n2+k−j−1+mθb

io∑
i=0

n2+k−1∑
j=0

m−1∑
k=0

(
m− 1

k

)
bk(1−b)m−k−1

·
(
n1 +K

i

)
piqn1+k−i

(
n2 + k − 1

j

)
θj(1− θ)n2+k−j−1

]
, (3.9)
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The total effect for the left cut-off point is defined as a

Tl(i0; i, j) = E(j | i ≤ i0)− E(i | i ≤ i0), (3.10)

where the subscript l is for the left cut-off point. An expression for Tl(i0; i, j)

can be obtained by subtracting equation (3.8) from equation (3.7), as

Tl(i0; i, j) =
1

P (i ≤ i0)

[
n1p

io−1∑
i=0

n2+k∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

·
(
n1 +K − 1

i

)
piqn1+k−i−1

(
n2 + k

j

)
θj(1− θ)n2+k−j +mpb

io−1∑
i=0

n2+k∑
j=0

m−1∑
k=0

(
m− 1

k

)
bk(1− b)m−k−1

·
(
n1 +K − 1

i

)
piqn1+k−i−1

(
n2 + k

j

)
θj(1− θ)n2+k−j − n2θ

io∑
i=0

n2+k−1∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

·
(
n1 +K

i

)
piqn1+k−i

(
n2 + k − 1

j

)
θj(1− θ)n2+k−j−1 −mθb

io∑
i=0

n2+k−1∑
j=0

m−1∑
k=0

(
m− 1

k

)
bk(1− b)m−k−1

·
(
n1 +K

i

)
piqn1+k−i

(
n2 + k − 1

j

)
θj(1− θ)n2+k−j−1

]
.

3.2.3 Variance of total effect Tk(i0; i, j)

For statistical inferences, the derivation of variance is important. The respective

variances of the total effect can be obtained by combining variances of i and j and

covariance of (i, j) as

var(i− j|i > i0) = var(i|i > i0) + var(j|i > i0)− 2cov(i, j|i > i0), (3.11)

and

var(j − i|i ≤ i0) = var(i|i ≤ i0) + var(j|i ≤ i0)− 2cov(i, j|i ≤ i0), (3.12)
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where

var(i|i > i0) = E(i(i− 1)|i > i0) + E(i|i > i0)− (E(i|i > i0))
2,

var(j|i > i0) = E(j(j − 1)|i > i0) + E(j|i > i0)− (E(j|i > i0))
2,

Cov(i, j|i > i0) = E(i, j|i > i0)− E(i|i > i0) · E(j|i > i0).

After completing derivation equation 3.11 becomes

var(i− j|i > io) =
1

1− p(i ≤ io)(
n2
1p

2C + 2n1mbP 2D − n1p
2C + p2m2b2E −mb2p2E + n1pA+ pmbB

)
−

[
1

1− P (i ≤ io)
(n1pA+ pmbB)

]2
+

1

1− P (i ≤ io)(
n2
2θ

2H + 2n2mbθ2I − n2θ
2H + θ2m2b2J −mb2θ2J + n2θF + θmbG

)
−

[
1

1− P (i ≤ io)
(n2θF + θmbG)

]2
− 2

[
1

1− P (i ≤ io)(
n1n2pθK + n1pmbθL+ n2pmbθL+m2b2pθM −mb2pθM + pθmbL

)
−

[
1

p(i ≤ io)
(n1pA+ pmbB) (n2θF +mbθG)

]]
where

A =
∑n1+k−1

i=io

∑n2+k
j=0

∑m
k=0

(
m
k

)
bk(1−b)m−k

(
n1+k−1

i

)
piqn1+k−1−i

(
n2+k

j

)
θj(1−θ)n2+k−j

B =
∑n1+k−1

i=io

∑n2+k
j=0

∑m−1
k=0

(
m−1
k

)
bk(1−b)m−k−1

(
n1+k−1

i

)
piqn1+k−1−i

(
n2+k

j

)
θj(1−

θ)n2+k−j

C =
∑n1+k−2

i=io−1

∑n2+k
j=0

∑m
k=0

(
m
k

)
bk(1−b)m−k

(
n1+k−2

i

)
piqn1+k−2−i

(
n2+k

j

)
θj(1−θ)n2+k−j

D =
∑n1+k−2

i=io−1

∑n2+k
j=0

∑m−1
k=0

(
m−1
k

)
bk(1−b)m−k−1

(
n1+k−2

i

)
piqn1+k−2−i

(
n2+k

j

)
θj(1−

θ)n2+k−j

E =
∑n1+k−2

i=io−1

∑n2+k
j=0

∑m−2
k=0

(
m−2
k

)
bk(1−b)m−k−2

(
n1+k−2

i

)
piqn1+k−2−i

(
n2+k

j

)
θj(1−

θ)n2+k−j



Chapter 3. Derivation of Regression to the mean 23

F =
∑n1+k

i=io+1

∑n2+k−1
j=0

∑m
k=0

(
m
k

)
bk(1−b)m−k

(
n1+k

i

)
piqn1+k−i

(
n2+k−1

j

)
θj(1−θ)n2+k−j−1

G =
∑n1+k

i=io+1

∑n2+k−1
j=0

∑m−1
k=0

(
m−1
k

)
bk(1−b)m−k−1

(
n1+k

i

)
piqn1+k−i

(
n2+k−1

j

)
θj(1−

θ)n2+k−j−1

H=
∑n1+k

i=io+1

∑n2+k−2
j=0

∑m
k=0

(
m
k

)
bk(1−b)m−k

(
n1+k

i

)
piqn1+k−i

(
n2+k−2

j

)
θj(1−θ)n2+k−j−2

I =
∑n1+k

i=io+1

∑n2+k−2
j=0

∑m−1
k=0

(
m−1
k

)
bk(1− b)m−k−1

(
n1+k

i

)
piqn1+k−i

(
n2+k−2

j

)
θj(1−

θ)n2+k−j−2

J =
∑n1+k

i=io+1

∑n2+k−2
j=0

∑m−2
k=0

(
m−2
k

)
bk(1− b)m−k−2

(
n1+k

i

)
piqn1+k−i

(
n2+k−2

j

)
θj(1−

θ)n2+k−j−2

K =
∑n1+k−1

i=io

∑n2+k−1
j=0

∑m
k=0

(
m
k

)
bk(1−b)m−k

(
n1+k−1

i

)
piqn1+k−i−1

(
n2+k−1

j

)
θj(1−

θ)n2+k−j−1

l =
∑n1+k−1

i=io

∑n2+k−1
j=0

∑m−1
k=0

(
m−1
k

)
bk(1−b)m−k−1

(
n1+k−1

i

)
piqn1+k−i−1

(
n2+k−1

j

)
θj(1−

θ)n2+k−j−1

M=
∑n1+k−1

i=io

∑n2+k−1
j=0

∑m−2
k=0

(
m−2
k

)
bk(1−b)m−k−2

(
n1+k−1

i

)
piqn1+k−i−1

(
n2+k−1

j

)
θj(1−

θ)n2+k−j−1

Similarly, an expression of the variance for left cut-off point is given by

var(j − i|i ≤ io) =
1

p(i ≤ io)(
n2
1p

2C ∗+2n1mbP 2D ∗ −n1p
2C ∗+p2m2b2E ∗ −mb2p2E ∗+n1pA ∗+pmbB∗

)
−

[
1

P (i ≤ io)
(n1pA ∗+pmbB∗)

]2
+

1

P (i ≤ io)(
n2
2θ

2H ∗+2n2mbθ2I ∗ −n2θ
2H ∗+θ2m2b2J ∗ −mb2θ2J ∗+n2θF ∗+θmbG∗

)
−

[
1

P (i ≤ io)
(n2θF ∗+θmbG∗)

]2
− 2

[
1

P (i ≤ io)(
n1n2pθK ∗+n1pmbθL ∗+n2pmbθL ∗+m2b2pθM ∗ −mb2pθM ∗+pθmbL∗

)
−

[
1

p(i ≤ io)
(n1pA ∗+pmbB∗) (n2θF ∗+mbθG∗)

]]
where
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A∗ =
∑i0−1

i=0

∑n2+k
j=0

∑m
k=0

(
m
k

)
bk(1−b)m−k

(
n1+k−1

i

)
piqn1+k−1−i

(
n2+k

j

)
θj(1−θ)n2+k−j

B∗ =
∑io−1

i=0

∑n2+k
j=0

∑m−1
k=0

(
m−1
k

)
bk(1− b)m−k−1

(
n1+k−1

i

)
piqn1+k−1−i

(
n2+k

j

)
θj(1−

θ)n2+k−j

C∗ =
∑io−2

i=0

∑n2+k
j=0

∑m
k=0

(
m
k

)
bk(1−b)m−k

(
n1+k−2

i

)
piqn1+k−2−i

(
n2+k

j

)
θj(1−θ)n2+k−j

D∗ =
∑io−2

i=0

∑n2+k
j=0

∑m−1
k=0

(
m−1
k

)
bk(1− b)m−k−1

(
n1+k−2

i

)
piqn1+k−2−i

(
n2+k

j

)
θj(1−

θ)n2+k−j

E∗ =
∑io−2

i=0

∑n2+k
j=0

∑m−2
k=0

(
m−2
k

)
bk(1− b)m−k−2

(
n1+k−2

i

)
piqn1+k−2−i

(
n2+k

j

)
θj(1−

θ)n2+k−j

F ∗ =
∑io

i=0

∑n2+k−1
j=0

∑m
k=0

(
m
k

)
bk(1−b)m−k

(
n1+k

i

)
piqn1+k−i

(
n2+k−1

j

)
θj(1−θ)n2+k−j−1

G∗ =
∑io

i=0

∑n2+k−1
j=0

∑m−1
k=0

(
m−1
k

)
bk(1 − b)m−k−1

(
n1+k

i

)
piqn1+k−i

(
n2+k−1

j

)
θj(1 −

θ)n2+k−j−1

H∗ =
∑io

i=0

∑n2+k−2
j=0

∑m
k=0

(
m
k

)
bk(1−b)m−k

(
n1+k

i

)
piqn1+k−i

(
n2+k−2

j

)
θj(1−θ)n2+k−j−2

I∗ =
∑io

i=0

∑n2+k−2
j=0

∑m−1
k=0

(
m−1
k

)
bk(1 − b)m−k−1

(
n1+k

i

)
piqn1+k−i

(
n2+k−2

j

)
θj(1 −

θ)n2+k−j−2

J∗ =
∑io

i=0

∑n2+k−2
j=0

∑m−2
k=0

(
m−2
k

)
bk(1 − b)m−k−2

(
n1+k

i

)
piqn1+k−i

(
n2+k−2

j

)
θj(1 −

θ)n2+k−j−2

K∗ =
∑io−1

i=0

∑n2+k−1
j=0

∑m
k=0

(
m
k

)
bk(1− b)m−k

(
n1+k−1

i

)
piqn1+k−i−1

(
n2+k−1

j

)
θj(1−

θ)n2+k−j−1

l∗ =
∑io−1

i=0

∑n2+k−1
j=0

∑m−1
k=0

(
m−1
k

)
bk(1−b)m−k−1

(
n1+k−1

i

)
piqn1+k−i−1

(
n2+k−1

j

)
θj(1−

θ)n2+k−j−1

M∗ =
∑io−1

i=0

∑n2+k−1
j=0

∑m−2
k=0

(
m−2
k

)
bk(1−b)m−k−2

(
n1+k−1

i

)
piqn1+k−i−1

(
n2+k−1

j

)
θj(1−

θ)n2+k−j−1

3.3 Derivation of RTM and treatment effects

The treatment or intervention effect in pre-post studies is the expected difference

between the pre-post observations. Let Ri(i0; i, j) and δi(i, j) be the RTM and

intervention effects, respectively for i = r, l. The average treatment effect can be

written as
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δi(i, j) = E(i− j) = n1p+mbp− n2θ −mbθ

So, expressions of RTM for right and left extreme/cut-off are, respectively,

RTM = Totaleffect− Treatmenteffect (3.13)

Rr(i0, i, j) = E(i− j | i > i0)

=
1

1− P (i ≤ i0)

[
n1p

n1+k−1∑
i=i0

n2+k∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

·
(
n1 +K − 1

i

)
piqn1+k−i−1

(
n2 + k

j

)
θj(1− θ)n2+k−j +mpb

n1+k−1∑
i=i0

n2+k∑
j=0

m−1∑
k=0

(
m− 1

k

)
bk(1− b)m−k−1

·
(
n1 +K − 1

i

)
piqn1+k−i−1

(
n2 + k

j

)
θj(1− θ)n2+k−j − n2θ

n1+k∑
i=i0+1

n2+k−1∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

·
(
n1 +K

i

)
piqn1+k−i

(
n2 + k − 1

j

)
θj(1− θ)n2+k−j−1 −mθb

n1+k∑
i=i0+1

n2+k−1∑
j=0

m−1∑
k=0

(
m− 1

k

)
bk(1− b)m−k−1

·
(
n1 +K

i

)
piqn1+k−i

(
n2 + k − 1

j

)
θj(1− θ)n2+k−j−1

]
− (n1p+mbp− n2θ −mbθ).

(3.14)

and
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Rl(i0, i, j) = E(i− j | i ≤ i0)

=
1

P (i ≤ i0)

[
n1p

io−1∑
i=0

n2+k∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

·
(
n1 +K − 1

i

)
piqn1+k−i−1

(
n2 + k

j

)
θj(1− θ)n2+k−j +mpb

io−1∑
i=0

n2+k∑
j=0

m−1∑
k=0

(
m− 1

k

)
bk(1− b)m−k−1

·
(
n1 +K − 1

i

)
piqn1+k−i−1

(
n2 + k

j

)
θj(1− θ)n2+k−j − n2θ

io∑
i=0

n2+k−1∑
j=0

m∑
k=0

(
m

k

)
bk(1− b)m−k

·
(
n1 +K

i

)
piqn1+k−i

(
n2 + k − 1

j

)
θj(1− θ)n2+k−j−1 −mθb

io∑
i=0

n2+k−1∑
j=0

m−1∑
k=0

(
m− 1

k

)
bk(1− b)m−k−1

·
(
n1 +K

i

)
piqn1+k−i

(
n2 + k − 1

j

)
θj(1− θ)n2+k−j−1

]
− (n1p+mbp− n2θ −mbθ).

3.4 The effect of cut-off point, i0, on RTM

The severity of RTM is dependent on the cut-off point and behaves differently

for different distributions. Using the formula Rr(i0; i, j) and Rl(i0; i, j), a graph

for various cut-off points is depicted in Figure 3.1. For demonstrative purposes,

we fixed the values of parameters (n1 = 15, n2 = 13, P = 0.5, θ = 0.5, m = 14,

b = 0.1, n = 10000). As the graph shows, increasing the value of i0, RTM for

the right cut-off point increases steeper than a linear relation. Increasing the left

cut-off causes RTM to decrease and approach zero for larger values of i0.
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Figure 3.1: Graph of the derived formula of RTM for less than or greater than
cut-off points, when the distribution under study is bivariate binomial-binomial
with parameters n1=15, n2=13,P=0.5,θ =0.5,m =14,b=0.1,n=10000

3.5 Effect of parameters on RTM

Usually, the RTM effect decreases with increasing correlation between the successive

variables. For the binomial-binomial distribution, the correlation is a function of i,

j, and b, and decreases with increasing values of the parameters. To see this effect,

we separately plot RTM as a function of each parameter.

3.5.1 RTM as a function of p

RTM is a function of parameter p1 shown in Figure 3.2. For right side, we

can fix cut off point as well as other parameters too ( n1=20, n2=20,θ =0.3,m

=30,b=0.3,n=10000,io=15). As seen in the graph when the value of p1 increases,

the RTM value decreases.
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Figure 3.2: RTM is a function of parameter p (Right cut off)

3.5.2 RTM as a function of θ

RTM is a function of parameter θ is shown in Figure 3.3. For the right side, we

can fix cut off point as well as other parameters too ( n1=20, n2=20,p=0.6,m

=30,b=0.3,n=10000,io=15). As seen in the graph as the value of θ increases, the

RTM value increases.
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Figure 3.3: RTM is a function of parameter θ (Right cut off)

3.5.3 RTM as a function of b

RTM is a function of parameter b shown in Figure 3.4. For the right side, we can

fix cut off point as well as other parameters too ( n1=20, n2=20,p=0.6,θ =0.3,m

=30,n=10000,io=15) as seen in the graph when the value of b increases, the RTM

value decreases.
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Figure 3.4: RTM is a function of parameter b (Right cut off)
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Estimation and Simulation Study

4.1 Maximum Likelihood Estimation of RTM

Let (i1, j1), (i2, j2), . . . , (in, jn) be the pairs of pre and post measurements of size n

from the bivariate binomial-binomial distribution. For simplicity, let us consider

P (I = i, J = j|i > i0) by PT (i, j) for brevity. The respective likelihood and

log-likelihood functions can be written as,

L(i, j;x) =
n∏

i=1

PT (ii, ji)

and

l(i, j;x) =
n∑

i=1

log(PT (ii, ji))

where PT (i, j) is the truncated bi-variate binomial-binomial probability mass

function. The log-likelihood function can be maximized by the ‘optim‘ function in

R since there exists no explicit solution, and a numerical method could be used.

4.2 Data generation and simulation study

Data generation is mandatory for conducting a simulation study. For bivariate

binomial-binomial distribution, first generate a variate r from B(m, b). Next,

we generate number of pre successes from B(n1 + r, p) and Y from B(n2 + r, θ)

respectively.

The density function from which the random numbers are generated is shown

below

p(i, j) =
∑m

k=0

(
n1+k

i

)
piqn1+k−i

(
n2+k

j

)
θj(1− θ)n2+k−j

(
m
k

)
bk(1− b)m−k

Random data can be generated from the above distribution using the builtin

functions in R, as

31
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r = rbinom(n,m, b)

X = rbinom(n, r + n1, p1)

Y = rbinom(n, r + n2, θ)

The following steps are followed to generate bivariate samples.

• First a random sample of size m was generated from binomial distribution

with parameter m = 30 and probability of success b = 0.3

• Then two random samples of size n were generated from the binomial distri-

bution using the parameters n1 = 20,p = 0.6, n2 = 20 and θ = 0.3

• Then the pre and post-variables were generated from the univariate binomial

distribution with parameters r + n1, p1 and r + n2, θ respectively.

• i and j were considered pre and post-observations of an intervention study.

• After generating a random number the observation which is below or above

the specific cutoff point the selected sample was considered as truncated

sample.

• The above steps are replicated 1000 times and the corresponding total effect,

treatment effect, and RTM effect are estimated using the maximum likelihood

estimation
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4.2.1 Estimation of RTM and intervention effect under

different sample sizes
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4.2.2 Empirical properties of RTM

To check the normality of the sampling distribution of R̂k(i0; i, j), normal Q-Q

plots are constructed from 1000 repeated samples and are given in Figure 4.1. The

graph indicates that the sampling distribution of R̂k(i0; i, j) for the right cut-off
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point i0 = 15 and for sample sizes 50, 150, and 250 are approximately normal. The

sampling distribution of RTM was also determined to be normal at various cut-off

points and parameters but is not given here for brevity.
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Figure 4.1: The distribution of RTM effect via Normal Q-Q plot for n1=20,
n2=20,P=0.6,θ =0.3,m =30,b=0.3,n=10000

To check the empirical properties such as unbiasedness and consistency of

RTM, the estimated RTM for the different sample sizes are depicted in Figure

4.2. As seen in the graph, the mean estimated RTM (the blue dots) is very close

to the true RTM (the red dotted line) revealing the asymptotic unbiasedness of

RTM. Furthermore, it is shown that if the sample size increases the variance of the

estimate of RTM is reduced and shrinks toward the mean of the RTM estimate

which suggests that the estimate is consistent.



Chapter 4. Estimation and Simulation Study 36

50 100 150 200 250

0.
5

1.
0

1.
5

2.
0

2.
5

sample size

R
T

M

Figure 4.2: Sampling distribution and estimates of RTM for different sample sizes
n1=20, n2=20,P=0.6,θ =0.3,m =30,b=0.3,n=10000

4.3 Data Example

The proposed method is applied to the real data of the number of patients dealt

with in one of two boxes of critical care Emergency service at San Agustin Hospital,

in Linares (Spain) (Rodrıguez et al., 2023) The total number of patients admitted

in each box is estimated by the proposed Method. The cutoff point is chosen at

2 which means that the total number of Patients in box 1 is at least two. The

Estimated total, Treatment, and RTM Effect are shown in the following Table 4.1.

Total Treatment RTM

Proposed 0.762 0.084 0.678

Table 4.1: Total, Treatment, and RTM Effects

The total effect is estimated is 0.762 which is the additive component of RTM

and Treatment effect. RTM was major part of the total effect and could have

exaggerated the treatment effect.
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Box 2

Box 1 0 1 2 3 4 5 6

0 0 0 0 1 0 0 0

1 0 1 4 5 3 1 0

2 0 3 10 13 11 3 0

3 1 4 12 11 11 5 1

4 1 3 10 10 7 3 1

5 0 1 4 4 4 1 0

6 0 0 1 1 1 0 0

Table 4.2: Observed frequencies of the number of patients in two boxes of the
Critical Care and Emergency Service in the San Agustin Hospital, in Linares
(Spain)

The parameters of the data are estimated through MLE which shows that

p = 0.150, θ = 0.496, and b = 0.01.

4.4 Discussion

Regression to the mean, or RTM, is a significant problem in data analysis that

could produce incorrect conclusion in a study; for this reason, it’s necessary to

consider RTM to prevent incorrect conclusions. In literature, RTM expressions are

available for bi-variate Normal, binomial, and beta binomial distribution.However

the expression of RTM for bi-variate binomial binomial distribution are missing in

literature . Therefore, quantifying the RTM effect for bi-variate binomial binomial

distribution and developing a method are the main objectives discussed in this

chapter. Expression for the RTM effect was derived for both left and right cut-

off/extreme points. RTM happens when subjects in a pre-post-study design are

selected at the extreme points of distribution. The severity of the RTM effect

increases when the extreme/cut-off points are farther in the tail of a distribution.

As the cutoff point (i0) increases the RTM effect increases exponentially for

the right cut-off and vice versa.

When cut off point (i0) and all other Parameters (n1,n2,θ,m,b,n) are fixed the

RTM effect for right cut off decreases as we increase the value of p. Similarly

when the value of θ increases, the RTM effect for the right cutoff also increases.

parameter b causes the decrease in the RTM effect for the right cutoff when its

value increases.

Using R’s optimize function, the log-likelihood function was maximized to

provide the maximum likelihood estimators. The results of the simulation study
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showed that the RTM’s maximum likelihood (ML) estimators are unbiased and

consistent.

We perform a simulation study to demonstrate the behavior of different effects.

The process is replicated 100 times on different sample sizes. As we increase

the sample sizes the estimated Effects such as total, treatment, and RTM effect

approaches to true values.

Finally, we apply the proposed method to the real data of a number of patients

dealt with in one of two boxes of critical care emergency service at San Agustin

Hospital, in Linares (Spain). The parameters of real data are estimated through

MLE and substituted in the derived RTM formula. This shows that the Total

Effect = Treatment Effect + RTM Effect.The total effect was mostly driven by the

RTM effect. Overlooking the RTM effect could result in declaring an ineffective

treatment as an effective one.
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Conclusion

In literature, the RTM effect is estimated when the probability of success is drawn

from beta distribution also their marginal density are identical due to which

the treatment effect cannot be estimated therefore in this work we derive RTM

its properties when the marginal density is the convolution of two independent

marginal binomial distribution.

In conclusion, the discussion emphasizes the significance of Regression to the

Mean (RTM) as a crucial concern in data analysis, particularly in the context of

studies where pre-post designs involve selecting subjects from extreme points of

distribution. The chapter addresses a gap in the literature by deriving expressions

for RTM effects in the case of bivariate binomial distributions, both for left and

right cut-off points.

The severity of the RTM effect is highlighted, noting that it increases when

extreme or cut-off points are farther in the tail of a distribution. The relationship

between the cut-off point (i0) and the exponential increase in the RTM effect for

right cut-off points is established. Additionally, the discussion explores the impact

of various parameters, such as p, θ, and b, on the RTM effect for the right cut-off,

demonstrating how changes in these parameters influence the RTM phenomenon.

The application of R’s optimize function to maximize the log-likelihood function

is discussed, showing that the Maximum Likelihood (ML) estimators for RTM are

unbiased and consistent, as demonstrated in a simulation study replicated across

different sample sizes.

The simulation study further reveals that as sample sizes increase, estimated

effects such as Total, Treatment, and RTM approach their true values. Finally,

the proposed method is applied to real data from the critical care Emergency

service of San Agustin Hospital, demonstrating that the Total Effect is equal

to the sum of the Treatment Effect and the RTM Effect. Overall, the chapter

provides a comprehensive exploration of RTM in the context of bivariate binomial

distributions, offering valuable insights and a practical methodology for addressing
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this issue in data analysis.
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Rodrıguez, J., Conde, A., Sáez, A. J., and Olmo, M. J. (2023). Some aspects of

bivariate gaussian discrete distributions. No Journal.

Senn, S. J., Brown, R. A., and James, K. (1985). Estimating treatment effects in

clinical trials subject to regression to the mean. Biometrics, 41(2):555–560.

Yu, R. and Chen, L. (2015). The need to control for regression to the mean in

social psychology studies. Frontiers in Psychology, 5:1574.

Yudkin, P. and Stratton, I. (1996). How to deal with regression to the mean in

intervention studies. The Lancet, 347(8996):241–244.


	Introduction
	Identification of RTM through graphs
	Consequences of RTM
	Addressing RTM at the design stage
	Randomized control trials
	Selection based on multiple measurements

	Research Motivation
	Problem Statement
	Organization of the thesis

	Literature Review
	RTM Effect Under Bivariate Normal Distribution
	Bivariate binomial distribution
	Bivariate Beta-Binomial distribution

	Derivation of Regression to the mean 
	Bi-variate Binomial-Binomial Distribution
	RTM, total, and treatment effects
	Case 1: Subjects in the right extreme
	Case 2: Subjects in the left extreme
	Variance of total effect Tk(i0; i, j)

	Derivation of RTM and treatment effects
	The effect of cut-off point, i0, on RTM
	Effect of parameters on RTM
	RTM as a function of p
	RTM as a function of 
	RTM as a function of b


	Estimation and Simulation Study
	 Maximum Likelihood Estimation of RTM
	Data generation and simulation study
	 Estimation of RTM and intervention effect under different sample sizes
	Empirical properties of RTM 

	Data Example
	Discussion

	Conclusion
	References

