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Abstract
This paper focuses on the formulation of estimators for the finite population variance,

leveraging information on the first and second raw moments of the study variable under

stratified random sampling. Furthermore, we introduce combined and separate estimators

that utilize supplementary information on a study variable along with auxiliary variable to

estimate the population variance. The comparative evaluation of the proposed estimators

against existing one is conducted based on absolute bias and relative efficiency. Both

simulated and empirical studies indicate that the newly proposed estimators demonstrate

potential superiority over their existing counterparts.
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Chapter 1

Introduction

1.1 History

Early censuses and data gathering for resource allocation and governance demonstrate

the ancient origins of the concept of sampling. But sampling became formally recognized

as a scientific approach in the 17th and 18th centuries, thanks in large part to the work

of John Graunt in the field of population statistics. With the important contributions

of statisticians like Fisher, Neyman, and Wald, sampling theory, experimental design,

confidence interval construction, and hypothesis testing made tremendous strides in the

20th century. This development, influenced by advances in mathematics and technology,

has taken sampling from a crude instrument for gathering data to a sophisticated, vital

methodology used in a wide range of study fields.

1.2 Sampling Designs

The techniques and procedures used to choose a sample from a population for investigation

or research are known as sampling designs. These methods provide a framework for

choosing a sample that is representative and able to yield reliable and accurate results.

There are some common sampling methods that are briefly covered. By using probability

sampling procedures, it is ensured that there is a known, non-zero chance of selection

for each individual or unit in the population. These solutions rely on statistical ideas

and random selection to attain representativeness. Cluster sampling(CS), stratified

sampling(SS), and simple random sampling(SRS) are examples of probability sampling

techniques. Random selection is not used in non-probability sampling techniques, and

it is not ensured that every single unit of the population has an equivalent chance of

being taken into account. Usually, these techniques are used when probability sampling is

not feasible. Chain-referral sampling, convenience sampling, and selective sampling are

examples of non-probability sampling techniques. The process of cluster sampling involves

1
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dividing the population into groups or clusters, usually based on how close they are to

one another. The sample is drawn at random from the designated clusters and includes

all individuals or items found within them. Cluster sampling is often more practical and

cost-effective when the population is dispersed geographically. Systematic sampling is

the process of regularly choosing individuals or groups of individuals from a community.

Divide the population size by the suitable sample size to find the sampling interval. The

sample interval is added to the serial number of the first selected unit to determine the

subsequent choices, which are made after the first person or item is randomly selected.

Snowball sampling is used when the population of interest is hard to find or identify. The

original participants, sometimes referred to as ”seeds,” are selected using non-probability

techniques. After that, participants are asked to recommend people who meet the study’s

inclusion requirements. This sampling method uses referrals to expand the sample size.

Purposive sampling involves the deliberate selection of individuals or elements based

on predefined characteristics or attributes that align with the objectives of the research

project. Researchers use their best judgment to choose participants who they think are

most pertinent or knowledgeable about the topic at hand. Purposive sampling is useful in

qualitative research and when studying uncommon or unusual groups, though subjective

approaches are unlikely to yield a representative sample.

1.3 Transformation

Data transformation is the process of modifying the original data using mathematical or

statistical methods to meet predetermined assumptions or accomplish specific goals. Data

transformation may be useful to enhance linear correlations between variables, normalize

variables, reduce skewness, improve data distribution, or stabilize variance. We applied the

antithetic variable technique in transformation, a well-liked method for lowering variance

in Monte Carlo simulations. By lowering the variance of the estimates, the technique

aims to improve the estimators’ accuracy and efficiency. Two sets of random variables the

original set and the antithetic set are used in the antithetic variable technique. To create

the antithetic set, the original set is transformed while preserving the correlation structure

among the variables. This transformation typically involves the random variables’ values

being flipped or their signs being altered. The researcher uses this data to develop effective

estimators.

1.4 Auxiliary Information

Auxiliary variables play a crucial role in statistical analysis and survey sampling by

providing supplementary details about the population under study. While not the main

focus, these variables are linked to the study variables and can impact the study design
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and data analysis. The relationship between study variables (Y) and auxiliary variables

(X) varies based on the research context and objectives. Including auxiliary variables

enhances the precision of estimates and improves the overall design and analysis of a

study.

Researchers should carefully consider the choice and inclusion of auxiliary variables,

taking into account their relevance to the study and their potential to enhance analysis

quality. The incorporation of auxiliary variables in sampling is particularly important for

improving the effectiveness, accuracy, and representativeness of survey estimates. Wisely

selecting auxiliary variables allows researchers to optimize sampling design, allocate

sample units strategically, and make necessary estimation adjustments. Inclusion of

supplementary data results in more accurate and reliable study outcomes. Also known

as ancillary data, auxiliary information is vital to improving the accuracy and efficiency

of sampling techniques. It entails the utilization of extra external data that offers

clarification or helps to enhance projections regarding the intended audience. Auxiliary

data may comprise, for example, demographic information, historical trends, or additional

measurements pertaining to the main study. Reducing sampling errors and improving

estimators are two benefits of incorporating such auxiliary data into sampling designs.

Auxiliary data, when properly included, can result in more accurate conclusions and

more efficient use of resources in surveys and sampling, enhancing the overall quality of

statistical estimations Hansen et al. (1953).

The literature on survey sampling often overlooks the estimation of finite population

variance using auxiliary data in Stratified Random Sampling (STRS), mainly due to the

challenges posed by bias and complexity in the conventional variance estimator for STRS.

However, some studies have begun to address this gap. For example, Kadilar and Cingi

(2006) introduced a biased estimator for the finite population variance under STRS. They

also improved the accuracy of this estimator by incorporating a combined ratio estimator

of the population variance, which utilizes secondary info from a specific correlated auxiliary

variable. This ratio estimator works well when there is a strong positive correlation (e.g.,

above 0.50) among the main study variable and the auxiliary variable.

Building on Kadilar and Cingi (2006)’s work, Sidelel et al. (2014) proposed an extension

by introducing a combined ratio estimator that incorporates info from two auxiliary

variables when estimating the population variance under STRS. Additionally, Özel et al.

(2014) as well as Cekim and Kadilar (2020a) suggested separate biased ratio estimators

for the population variance.

For further exploration, researchers can delve into works such as Singh and Solanki

(2013), Cekim and Kadilar (2020b), Qian (2020), Mahanty and Mishra (2020), Singh

et al. (2021), Shahzad et al. (2023), and other related references cited therein, which offer

insights into the estimate of finite population mean and variance.
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1.5 Sampling Methods

Measuring population features, particularly the population mean, is the main objective of

sampling theory. The literature at review sampling defines a number of sample processes

and approaches that are widely used to estimate population characteristics. Auxiliary

information is usually employed throughout the sampling and/or estimating stages in

instruction to improve the accuracy of the mean estimator. It is expected that in cases

while here is a significant correlation among the study and auxiliary variables, the ratio of

the study to auxiliary variables will be less changeable than the study variable alone. On

the other hand, the product technique of estimation is the better option while here is a

negative correlation among the study and auxiliary variables. In some situations, these

estimators are known to exhibit smaller variances than the traditional mean-per-unit

estimator when used with simple random sampling (SRS). The sampling strategy and

estimators to be employed must be decided upon in detail before conducting statistical

research can begin.

To provide accurate estimates, many sampling strategies have been devised; the most

widely used ones are SS and basic random sampling.

1.5.1 Simple Random Sampling(SRS)

SRS stands out as the most commonly employed strategy for data collection when the goal

is to make inferences about a population based on the analysis of a subset. Precision in

results is particularly enhanced when population units exhibit homogeneity. In SRS, each

individual unit in a population is randomly selected, ensuring that every sample has an

equal chance of being chosen at any stage of the process. Two methods are employed for

drawing a sample from SRS: one involves a replacement scheme, and the other operates

without replacement. Within the context of SRS with replacement (SRSWR), every unit

in the population has an equally likelihood of individual chose, and then replaced before

the next sample unit is drawn. On the other hand, in sampling without replacement

(SRSWOR), a subset of observations is randomly chosen, and once selected, an observation

cannot be chosen again.

1.5.2 Stratified Random Sampling(STRS)

When dealing with heterogeneous population units, simple random sampling (SRS) may

not yield satisfactory results because the selected sample might not adequately represent

the population, leading to a decrease in the precision of the estimator. To address this

limitation, researchers often turn to (STRS. In the STRS approach, the entire population of

interest is divide into strata—homogeneous groups from which samples are independently

and separately drawn. It is essential that these strata are mutually exclusive and do
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not overlap. The strata should consist of uniform units, with minimal variability within

subgroups and maximal diversity between them. Various allocation methods are employed

to determine sample size, such as proportional allocation, equal allocation, optimum

allocation, and Neyman’s allocation. This ensures a more accurate representation of the

entire population and enhances the precision of the estimator.

1.6 Motivation for the Present Study

In simulation studies, the utilization of antithetic variables aims at enhancing estimation

efficiency. Similarly, in the context of survey sampling, the primary objective is the

efficient estimation of the population variation by incorporating auxiliary variables. In

this scenario, the focus is on converting the study variable into the auxiliary variable to

achieve a precise and effective approximation of the population variation.

1.7 Thesis Outline

We consumed the first and second raw moments of the study variables to determine

the finite population variance(FPV) under (STRS) in Chapter 2. Then we operated

simple and combined/separate (difference) estimators used for these moments. These

estimators need data on the study variable and another auxiliary variable, which agrees

us to originate biased and unbiased(B/Ub) estimators for the FPV under (STRS). We

calculated the proposed estimators by doing simulation and real data and linked them

with existing estimators by Kadilar and Cingi (2006), Özel et al. (2014), and Cekim and

Kadilar (2020b). The assessment utilized both the Absolute Bias (AB) and Relative

Efficiency (RE) as criteria, offering a comprehensive evaluation of the measured variance

estimators under (STRS).

Similar to Chapter 2, in Chapter 3, we’ve extended our approach toward show the

FPV under (STRS) while accounting for measurement errors, utilizing the first and second

raw moments of the study variables. Subsequently, we applied simple and combined/sep-

arate (difference) estimators for the first and second raw moments. These estimators

necessitate Details on the study variable and one or more auxiliary variables, facilitating

the development of B/Ub estimators for the FPV under (STRS) within the presence of

measurement errors. To assess how well the suggested estimators performed in the context

of measurement errors, actual data was used. The findings revealed that the separate

class of estimators demonstrates greater precision compared to the combined class of

estimators.



Chapter 2

Literature Review

In the context of in-sample surveys, stratification is a widely used sampling method aimed

at mitigating population heterogeneity, ultimately enhancing the precision of estimators

for underlying population parameters. This sampling strategy proves valuable in practical

scenarios, for example, calculating the mean salary of public employees at various ranks.

In the method of (STRS), the population are initially distributed into distinct groups,

referred to as strata. This division ensures homogeneity within each stratum concerning

the study variable. Subsequently, random samples are selected from each stratum, typically

utilizing a simple random sampling approach. The benefits of stratification encompass

cost reduction in surveys and increased administrative efficiency.

Among sample surveys, improving the exactness of an estimator during the approxi-

mation phase is achievable through the judicious utilization of supplementary information.

This information is often provided in the form of one or more auxiliary variables or char-

acteristics. Usually employed estimator for population parameters, such as the quantiles,

distribution function, variance, mean, and median, involve classical ratio, product, and

difference/regression estimators in survey sampling. For further insights, one can refer to

Sampling Techniques (1977).

The literature on survey sampling often overlooks the estimation of FPV using auxiliary

information in (STRS), mainly due to the challenges posed by bias and complexity in the

conventional variance estimator for STRS. However, some studies have begun to address

this gap. For example, Kadilar and Cingi (2006) introduced a bias estimators for the FPV

under (STRS). Additionally, they increased the accuracy of this estimate by adding a

combined ratio estimator of the population variance, which makes use of additional data

from a single auxiliary variable that is correlated. When the primary study variable and

the auxiliary variable have a significant positive correlation (i.e., above 0.50), the ratio

estimator performs well.

Building on Kadilar and Cingi (2006)’s work, Sidelel et al. (2014) proposed an extension

by introducing a combined ratio estimator that incorporates information from two auxiliary

variables when estimate the population variance under (STRS). Additionally, Özel et al.

6
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(2014) as well as Cekim and Kadilar (2020a) suggested separate biassed ratio estimators

for the populations variance.

For further exploration, researchers can delve into works such as Singh and Solanki

(2013), Cekim and Kadilar (2020b), Qian (2020), Mahanty and Mishra (2020), Singh et al.

(2021), Shahzad et al. (2023), and other related references cited therein, which provide

information on how to estimate the mean and variance of a finite population.

In this investigation, we start by deriving a mathematical expression for the FPV

in (STRS) using the first and second raw moments of the population. We then develop

both biased and unbiased estimators for this variance, utilizing the corresponding sample

raw moments. Drawing from techniques in survey sampling literature, we integrate

supplementary information, often in the form of auxiliary variables, to enhance estimator

precision. Building upon this, we introduce combined or separate difference estimators

for the population’s first and second raw moments, which in turn serve as the basis

for constructing B/Ub estimators for the FPV, requiring data on one or two auxiliary

variables in addition to the study variable.

To evaluate the effectiveness of both current and proposed variance estimators in

(STRS), we assess them based on (ABs) and (REs) using simulated and real population

data. Results suggest that the proposed estimators generally demonstrate superior

precision when compared to existing methods.

2.1 Notations and Symbols

Consider a population denoted as U = {1, 2, 3, . . . , N} comprising N individuals. Let

(Yi, Xi) denote the study variable’s values (Y ) and auxiliary variable (X) for the ith unit

within a finite population. Consider a population, denoted as U , which, according to a

stratifying variable, is divided into L strata. For h = 1, 2, 3, . . . , L, the h-th stratum has

Nh units, so that
∑L

h=1Nh = N .Let the weight of the h-th stratum be given by Wh = Nh

N
.

In the h-th stratum, where i = 1, 2, 3, . . . , Nh, let Y and X stand for the study and

auxiliary variables, respectively, which take values Yi,h and Xi,h. Let (Ȳ , X̄) and (S2
Y , S

2
X)

represent the population mean and variance of (Y,X), respectively, where Ȳ = 1
N

∑N
i=1 Yi,

X̄ = 1
N

∑N
i=1Xi, S

2
Y = 1

N−1

∑N
i=1(Yi− Ȳ )2, and S2

X = 1
N−1

∑N
i=1(Xi−X̄)2. In addition, let

(Ȳ ′
2, X̄ ′

2) and (S2
Y 2 , S2

X2) be the population mean and variance of (Y 2, X2), respectively,

where Ȳ ′
2 = 1

N

∑N
i=1 Y

2
i , X̄

′
2 = 1

N

∑N
i=1X

2
i , S

2
Y 2 = 1

N−1

∑N
i=1(Y

4
i − Ȳ ′)2 and S2

X2 =
1

N−1

∑N
i=1(X

4
i −X̄ ′

2)
2. Similarly, let (Ȳ ′

2,h, X̄2,h) and (S2
Y 2,h, S

2
X2,h) be the population mean

and variance of (Y 2
h , X

2
h) for the h-th stratum, respectively, where Ȳ ′

2,h = 1
Nh

∑Nh

i=1 Y
2
i ,

X̄ ′
2,h = 1

Nh

∑Nh

i=1X
2
i , S

2
Y 2,h = 1

Nh−1

∑Nh
i=1(Y

2
i,h− Ȳ2,h)

2, S2
X2,h = 1

Nh−1

∑Nh
i=1(X

2
i,h− X̄2,h)

2.To

estimate the population variance, a (STRS) is taken from N units, with size n.. In

this process, to choose nh units from Nh units, use SRS with out replacement, with the

constraint that
∑L

h=1 nh = n. The determination of nh values may involve employing an
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allocation scheme, such as proportional allocation, Neyman allocation, and so forth.

Under STRS, let Ȳst =
∑L

h=1WhȲh = Ȳ and X̄st =
∑L

h=1WhX̄h = X̄ be the

population means of Y and X respectively, with their respective unbiased estimators:
ˆ̄Yst =

∑L
h=1Wh

ˆ̄Yh and
ˆ̄Xst =

∑L
h=1Wh

ˆ̄Xh where
ˆ̄Yh = 1

nh

∑nh

i=1 Yi,h and
ˆ̄Xh = 1

nh

∑nh

i=1Xi,h,

along with their respective variances: Var( ˆ̄Yst) =
∑L

h=1 ψhS
2
Y,h and Var( ˆ̄Xst) =

∑L
h=1 ψhS

2
X,h,

where ψh = W 2
hλh with λh = 1

nh
− 1

Nh
. On similar lines, let Ȳ2,st =

∑L
h=1WhȲ ′

2,h,X̄2,st =∑L
h=1WhX̄2,h, be the population means of Y 2 and X2, respectively, with their respec-

tive unbiased estimators: ˆ̄′Y2,st =
∑L

h=1WhŶ ′
2,h,

ˆ̄ ′
X2,st =

∑L
h=1WhX̂ ′

2,h, where
ˆ̄′Y2,h =

1
nh

∑nh

i=1 Y
2
i,h,

ˆ̄ ′
X2,h = 1

nh

∑nh

i=1X
2
i,h, along with their respective variances: Var( ˆ̄

′
Y2,st) =∑L

h=1 ψhS
2
Y 2,h, Var(

ˆ̄ ′
X2,st) =

∑L
h=1 ψhS

2
X2,h.

In the context of STRS, the expression for the finite population variance S2
Y may be

formulated as follows:

S2
Y =

1

N − 1

L∑
h=1

Nh∑
i=1

(
Yi,h − Ȳst

)2

=
L∑

h=1

(
Nh − 1

N − 1

)
S2
y,h +

L∑
h=1

(
Nh

N − 1

)
(Ȳh − Ȳst)

2

(2.1)

Similarly, mathematical expression can be formulated for S2
X .

We analyse the resulting relative error term to get the mean and variance of combined

and separate estimators based on auxiliary information under (STRS) for the population

variance S2
Y . Let’s consider the following expressions:

Vrst = E
(
ξr0ξ

s
1ξ

t
2

)
= E

[(
ˆ̄Yst − Ȳ

Ȳ

)r( ˆ̄Xst − X̄

X̄

)s( ˆ̄Zst − Z̄

Z̄

)t]
(2.2)

V ′
rst = E

(
ξ′r0 ξ

′s
1 ξ

′t
2

)
= E

( ˆ̄Y ′
2,st − Ȳ ′

2

Ȳ ′
2

)r( ˆ̄X ′
2,st − X̄ ′

2

X̄ ′
2

)s( ˆ̄Z ′
2,st − Z̄ ′

2

Z̄ ′
2

)t
 (2.3)

This expression yields

V200 = E
(
ξ20
)
=

1

Ȳ 2

L∑
h=1

ψhS
2
Y,h, V ′

200 = E
(
ξ′20
)
=

1

Ȳ ′2
2

L∑
h=1

ψhS
2
Y 2,h,

V020 = E
(
ξ21
)
=

1

X̄2

L∑
h=1

ψhS
2
X,h, V ′

020 = E
(
ξ′21
)
=

1

X̄ ′2
2

L∑
h=1

ψhS
2
X2,h,

V002 = E
(
ξ22
)
=

1

Z̄2

L∑
h=1

ψhS
2
Z,h, V ′

002 = E
(
ξ′22
)
=

1

Z̄ ′2
2

L∑
h=1

ψhS
2
Z2,h,
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V110 = E (ξ0ξ1) =
1

Ȳ X̄

L∑
h=1

ψhSY X,h, V
′
110 = E (ξ′0ξ

′
1) =

1

Ȳ ′
2X̄ ′

2

L∑
h=1

ψhSY 2X2,h,

V101 = E (ξ0ξ2) =
1

Ȳ Z̄

L∑
h=1

ψhSY Z,h, V
′
101 = E (ξ′0ξ

′
2) =

1

Ȳ ′
2Z̄ ′

2

L∑
h=1

ψhSY 2Z2,h,

V011 = E (ξ1ξ2) =
1

X̄Z̄

L∑
h=1

ψhSXZ,h, V
′
011 = E (ξ′1ξ

′
2) =

1

X̄ ′
2Z̄ ′

2

L∑
h=1

ψhSX2Z2,h,

where SY X,h = ρY X,hSY,hSX,h, SY Z,h = ρY Z,hSY,hSZ,h, SXZ,h = ρXZ,hSX,hSZ,h, SY 2X2,h =

ρY 2X2,hSY 2,hSX2,h, SY 2Z2,h = ρY 2Z2,hSY 2,hSZ2,h, and

SX2Z2,h = ρX2Z2,hSX2,hSZ2,h.

Here, ρY X,h (ρY 2X2,h) represents the coefficient of correlation between Yh and Xh (Y 2
h

and X2
h) for the h-th stratum. Similar reasoning holds true for other correlation coefficients

between (X,Z) and (Y, Z).

In a comparable manner, consider the following

Vrst,h = E
(
ξr0,hξ

s
1,hξ

t
2,h

)
= E

[(
ˆ̄Yh − Ȳh
Ȳh

)r( ˆ̄Xh − X̄h

X̄h

)s( ˆ̄Zh − Z̄h

Z̄h

)t]
(2.4)

V ′
rst,h = E

(
ξ′r0,hξ

′s
1,hξ

′t
2,h

)
= E

( ˆ̄Y ′
2,h − Ȳ ′

2,h

Ȳ ′
2,h

)r( ˆ̄X ′
2,h − X̄ ′

2,h

X̄ ′
2,h

)s( ˆ̄Z ′
2,h − Z̄ ′

2,h

Z̄ ′
2,h

)t
 (2.5)

which results in

V200,h = E
(
ξ20,h
)
=

1

Ȳ 2
h

λhS
2
Y,h, V ′

200,h = E
(
ξ′20,h
)
=

1

Ȳ ′2
2,h

λhS
2
Y 2,h,

V020,h = E
(
ξ21,h
)
=

1

X̄2
h

λhS
2
X,h, V ′

020,h = E
(
ξ′21,h
)
=

1

X̄ ′2
2,h

λhS
2
X2,h,

V002,h = E
(
ξ22,h
)
=

1

Z̄2
h

λhS
2
Z,h, V ′

002,h = E
(
ξ′22,h
)
=

1

Z̄ ′2
2,h

λhS
2
Z2,h,

V110,h = E (ξ0,hξ1,h) =
1

ȲhX̄h

λhSY X,h, V
′
110,h = E

(
ξ′0,hξ

′
1,h

)
=

1

Ȳ ′
2,hX̄ ′

2,h

λhSY 2X2,h,

V101,h = E (ξ0,hξ2,h) =
1

ȲhZ̄h

λhSY Z,h, V
′
101,h = E

(
ξ′0,hξ

′
2,h

)
=

1

Ȳ ′
2,hZ̄ ′

2,h

λhSY 2Z2,h,

V011′h = E (ξ1,hξ2,h) =
1

X̄hZ̄h

λhSXZ,h, V
′
011,h = E

(
ξ′1,hξ

′
2,h

)
=

1

X̄ ′
2,hZ̄ ′

2,h

λhSX2Z2,h,
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2.2 Existing estimators

We give a quick summary of some of the current combined and separate estimators for

the population variance under (STRS) in this section.

2.2.1 Kadilar and Cingi (2006) Combined Estimators

Kadilar and Cingi (2006) proposed several estimators to assess the FPV under Stratified

Random Sampling (STRS). In alignment with equation (3.1), they recommended the

following estimators for S2
Y and S2

X

ŜY =
L∑

h=1

(
nh − 1

n− 1

)
Ŝ2
X,h +

L∑
h=1

(
nh

n− 1

)
( ˆ̄Yh − ˆ̄Yst)

2 (2.6)

and

ŜX =
L∑

h=1

(
nh − 1

n− 1

)
Ŝ2
X,h +

L∑
h=1

(
nh

n− 1

)
( ˆ̄Xh − ˆ̄Xst)

2 (2.7)

Furthermore, this one be able to demonstrated that these estimators Ŝ2
Y,st and Ŝ

2
X,st exhibit

bias in estimating S2
Y and S2

X respectively, in (STRS).

Kadilar and Cingi (2006) also suggested a combined ratio estimator for the estimate

of S2
Y , which is expressed as using data from an auxiliary variable X.

t1 = Ŝ2
Y,st

(
aS2

X + b

aŜ2
X,st + b

)
(2.8)

In this case, a and b stand for the given parameters, usually unit-free coefficients, related

from the auxiliary factor X; for example, CX and β2X indicate the auxiliary variable X’s

kurtosis and coefficients of variations, respectively. As expected, t1 is a biassed estimator

of S2
Y . The mean square error (MSE) of t1 was determined mathematically by Kadilar

and Cingi (2006).

2.2.2 Sidelel et al. (2014) combined estimator

When we have access to a third auxiliary variable Z in addition to Y and X, we may

use data from Y and (X,Z) to extend the combined ratio estimator that was previously

discussed for predicting the population variance. Sidelel et al. (2014) developed combined

ratio estimators that use data from two auxiliary variables to estimate the FPV under

(STRS), improving on the foundation established by Kadilar and Cingi (2006). The

expression for these estimators is:

u1 = Ŝ2
Y,st

(
aS2

X + b

aŜ2
X,st + b

)(
aS2

Z + b

aŜ2
Z,st + b

)
, (2.9)



Chapter 2. Literature Review 11

where

ŜZ =
L∑

h=1

(
nh − 1

n− 1

)
Ŝ2
Z,h +

L∑
h=1

(
nh

n− 1

)
( ˆ̄Zh − ˆ̄Zst)

2

The parameters c and d represent known coefficients of Z, such as CZ and β2ZAs

expected, the estimator u1 exhibits bias in estimating S2
Y .The Mean Squared Error (MSE)

within this estimate has a quantitative formulation given by Sidelel et al. (2014).

2.2.3 Özel et al. (2014) separate estimator

In order to determine the population variance with (STRS), Özel et al. (2014) suggested

a collection of distinct ratio-type estimators using data from a single auxiliary variable

(X). These estimators are expressed as:

t2 =
L∑

h=1

WhŜ
2
Y,h

(
ahS

2
X + bh

ahŜ2
X,h + bh

)
(2.10)

In which the parameters or coefficients specified in relation to X for the h-th stratum are

represented by ah and bh. It is clear that bias in estimating S2
Y is introduced by t2. The

Mean Squared Error (MSE) used in this estimator was determined mathematically by

Özel et al. (2014) over the first order of approximation.

Using data from two auxiliary variables (X,Z), a set of improved distinct ratio-type

estimators for population-level variance are given as follows, in accordance with the

methodology of Özel et al. (2014):

u2 =
L∑

h=1

WhŜ
2
Y,h

(
ahS

2
X + bh

ahŜ2
X,h + bh

)(
chS

2
Z + dh

chŜ2
Z,h + dh

)
(2.11)

whereas the parameters mentioned above or coefficients related to Z for the h-th stratum

are indicated by the variables ch and dh.

This is essential to note that both of the estimators t2 and u2 only take account of

differences within the strata; they do not take into consideration differences between the

strata. As a result, while measuring the population variance with (STRS), such estimators

do not achieve unbiasedness in estimating S2
Y . This limitation stands as a significant

drawback for these estimators.

2.2.4 Cekim and Kadilar (2020b) separate estimator

Cekim and Kadilar (2020b) expanded upon the work of Özel et al. (2014) by developing

a distinct ratio-type estimator for the FPV with stratified sampling that included the
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conventional logarithmic modification. The estimator they suggest is stated as follows:

t3 =
L∑

h=1

WhŜ
2
Y,h ln

(
S2
X

Ŝ2
X,h

− 3

)
(2.12)

This estimator is biased when estimating S2
Y . Much like t2, a limitation of t3 lies

in its reliance solely on within-strata variations, overlooking variances between stratum.

Additionally, within its first order of approximating, Cekim and Kadilar (2020b) offered a

mathematical formula for the Mean Squared Error (MSE) used in this estimator.

Using data collected from the two auxiliary variables (X,Z), a modified distinct

ratio-type estimator that the overall variance is formulated as follows, in accordance with

the methods suggested by Cekim and Kadilar (2020b).

u3 =
L∑

h=1

WhŜ
2
Y,h ln

(
S2
X

Ŝ2
X,h

− 3

)
ln

(
S2
Z

Ŝ2
Z,h

− 3

)
(2.13)

This estimator is also characterized as a biased estimator for S2
Y .

2.3 Haq et al. (2023) Combined and Separate estima-

tors

In this investigation, we initially explore unbiased difference estimators for both the

population mean and the second raw moment in Stratified Random Sampling (STRS).

These estimators incorporate data from the study variable as well as one or two auxiliary

variables, either combined or separately. Following this, we utilize these estimators for

development B/Ub estimators for the FPV within the framework of STRS.

The population variance S2
Y as defined in equation (3.1) can be expressed as:

S2
Y =

1

N − 1

L∑
h=1

Nh∑
i=1

(Yi,h − Ȳst)
2 =

1

N − 1

N∑
i=1

(Yi − Ȳ )2

=
N

N − 1

 1

N

N∑
i=1

Y 2
i −

(
1

N

N∑
i=1

Yi

)2
 = γ[Ȳ2 − Ȳ 2]

= γ[E(Y 2)− (E(Y ))2]

(2.14)

In this context, where γ = N
N−1

, the initial approach involves constructing difference

estimators for E(Y ) and E(Y 2) under Stratified Random Sampling (STRS). Subsequently,

these estimators are utilized in equation (2.15) to formulate unbiased estimators for S2
Y .

With the information on (Y, X) and (Y, X, Z), this combined difference estimators of
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E(Yy′) and E(Y
2
y′) are provided by

ˆ̄Yc,1 =
ˆ̄Yst +K1,1(Xs) − ˆ̄Xst) (2.15)

ˆ̄Y ′
c,1 =

ˆ̄Y ′
2,st +K ′

1,1(X
′
2,st −

ˆ̄X ′
2,st) (2.16)

and
ˆ̄Yc,2 =

ˆ̄Yst +K1,2(X̄ − ˆ̄Xst) +K2,2(Z̄ − ˆ̄Zst) (2.17)

ˆ̄Y ′
c,2 =

ˆ̄Y ′
2,st +K ′

1,2(X̄
′
2 − ˆ̄X ′

2,st) +K ′
2,2(Z̄

′
2 − ˆ̄Z ′

2,st) (2.18)

accordingly, where

K1,1 =
Ȳ V110
X̄V020

, K ′
1,1 =

Ȳ ′
2V

′
110

X̄ ′
2V ′

020

K1,2 =
Ȳ (V011V110 − V110V020)

X̄(V 2
011 − V002V020)

, K ′
1,2 =

Ȳ ′
2(V

′
011V110 − V ′

110V
′
020)

X̄ ′
2(V 2

011′ − V ′
002V

′
020)

,

K2,2 =
Ȳ (V011V110 − V101V020)

Z̄(V 2
011 − V002V020)

, K ′
2,2 =

Ȳ ′
2(V

′
011V110 − V ′

101V
′
020)

Z̄ ′
2(V 2

011′ − V ′
002V

′
020)

,

are established constants. The variance of ˆ̄Yc,1 and ˆ̄Yc,2 are provided by

Var( ˆ̄Yc,1) = Ȳ 2V200

(
1− V 2

110

V200V020

)
= Ȳ 2V200(1− ρ2Y X,st) (2.19)

and

Var( ˆ̄Yc,2) = Ȳ 2V200

(
1− V 2

110V002 + V 2
101V020 − 2V110V101V011

V200(V020V002 − V 2
011)

)
= Ȳ 2V200(1−R2

Y,XZ,st)

(2.20)

where the correlation coefficient between Y and X is denoted by ρ2Y X,st and multiple

correlation coefficient between Y on X and Z is denoted by R2
Y,XZ,st under STRS.

Sampling Techniques (1977) has provided the mean and variance of ˆ̄Yc,1. By following

analogous steps, one can determine the mean and variance of ˆ̄Y ′
c,1.

The expression for the estimator ˆ̄Yc,2 can be formulated as:

Ŷc,2 = Ȳ (1 + ξ0)−K1,2X̄ξ1 −K2,2X̄ξ2(
Ŷc,2 − Ȳ

)
= Ȳ ξ0)−K1,2X̄ξ1 −K2,2Z̄ξ2

(2.21)

By squaring both sides and then calculating the expectation, we derive

Var( ˆ̄Yc,2) =Ȳ
2V200 +K1,2XȲ

2V020 +K2,2ZȲ
2V002 − 2K1,2Ȳ XV110

− 2K2,2Ȳ ZV101 + 2K1,2K2,2XZV011.
(2.22)
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The optimal values for K1,2 and K2,2 are determined by minimizing the variance of
ˆ̄Yc,2, i.e., by taking the derivatives of Var( ˆ̄Yc,2) with respect to K1,2 and K2,2 and setting

The subsequent computation that leads to 0. The minimum variance of ˆ̄Yc,2 is achieved

by substituting these optimal values back into the expression for Var( ˆ̄Yc,2).

Similarly, by following a similar procedure, one can determine the optimal values for

K ′
1,2 and K ′

2,2 and minimize the variance of ˆ̄Y ′
c,2. The Appendix contains the condensed

versions of those constants.

Using the data on (Y,X) and (Y,X,Z), the separate difference estimators of E(Y )

and E(Y 2) are provided by

ˆ̄Ys,1 =
L∑

h=1

Wh
ˆ̄Ys,1,h,

ˆ̄Y ′
s,1 =

L∑
h=1

Wh
ˆ̄Y ′
s,1,h (2.23)

ˆ̄Ys,2 =
L∑

h=1

Wh
ˆ̄Ys,2,h,

ˆ̄Y ′
s,2 =

L∑
h=1

Wh
ˆ̄Y ′
s,2,h (2.24)

where
ˆ̄Ys,1,h = ˆ̄Yh +K1,1,h(X̄h − ˆ̄Xh)

ˆ̄Y ′
s,1,h = ˆ̄Y ′

2,h +K ′
1,1,h(X̄

′
2,h − ˆ̄X ′

2,h)

Ŷs,2,h = ˆ̄Yh +K1,2,h(X̄h − ˆ̄Xh) +K2,2,h(Z̄h − ˆ̄Zh)

Ŷ ′
s,2,h = ˆ̄Y ′

2,h +K ′
1,2,h(X̄

′
2,h − ˆ̄X ′

2,h) +K ′
2,2,h(Z̄

′
2,h − ˆ̄Z ′

2,h)

K1,1,h =
ȲhV110,h
X̄hV020,h

, K ′
1,1,h =

Ȳ ′
2,hV

′
110,h

X̄ ′
2,hV

′
020,h

,

K1,2,h =
Ȳh(V011,hV110,h − V110,hV020,h)

X̄h(V 2
011,h − V002,hV020,h)

, K ′
1,2,h =

Ȳ ′
2,h(V

′
011,hV110,h − V ′

110,hV
′
020,h)

X̄ ′
2,h(V 2

011,h − V ′
002,hV

′
020,h)

,

K2,2′h =
Ȳh(V011,hV110,h − V101,hV020,h)

Z̄h(V 2
011,h − V002,hV020,h)

, K ′
2,2,h =

Ȳ ′
2,h(V

′
011,hV110,h − V ′

101,hV
′
020,h)

Z̄ ′
2,h(V 2

011,h′ − V ′
002,hV

′
020,h)

,

The constants K1,1,h and K ′
1,1,h are known constants, and their simplified expressions can

be found in the Appendix. The variances of ˆ̄Ys,1 and ˆ̄Ys,2 are given by:

Var( ˆ̄Ys,1) =
L∑

h=1

W 2
h Ȳ

2
h V200,h

(
1−

V 2
110,h

V200,hV020,h

)

=
L∑

h=1

ψS2
Y,h(1− ρ2Y X,h)

(2.25)
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and

Var(Ŷs,2) =
L∑

h=1

W2,hȲ2,hV200,h

(
1−

V 2
110,hV002,h + V 2

101,hV020,h − 2V110,hV101,hV011,h

V200,h(V020,hV002,h − V 2
011,h)

)

=
L∑

h=1

ψS2
Y,h(1−R2

Y,XZ,h)

(2.26)

The quantity R2
Y.XZ,h represents the multiple correlation coefficient of Yh on Xh and Zh

for the h-th stratum.

Utilising just Y data, unbiased and biassed estimators that estimate the FPV over

(STRS) are provided as

The FPV over (STRS) can be estimated with both biased and unbiased estimators,

utilizing information just from variable Y.

tp = γ

(
ˆ̄Y ′
2st) − ˆ̄Y 2

st

)
(2.27)

and

t∗p = γ

(
ˆ̄Y ′
2st − ˆ̄Y 2

st +
L∑

h=1

ψhŜ
2
h

)
(2.28)

In the same way, Ŝ2
h is a traditional, unbiased estimator of S2

h.

The expectation of tp mathematically is

E(tp) = γ

[
E

(
ˆ̄Y2st

)
− E

(
ˆ̄Y 2
st

)]
= γ

[
Ȳ ′

2 − Ȳ 2 − V(Ȳst)

]
= S2

Y − γ
L∑

h=1

ψhS
2
Y,h

This indicates that tp is a biased estimator of S2
Y since it underestimates S2

Y . A reasonable

estimate for S2
Y can be obtained by

E(t∗p) = E(tp) + γE

( L∑
h=1

ψhŜ
2
Y,h

)

= E(tp) + γ

L∑
h=1

ψhS
2
Y,h = S2

Y

(2.29)

Biased combined and separate estimators of the FPV over (STRS), utilizing kwonledge
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about on (Y, X) and (Y, X, Z), are presented as follows:

tp,1 = γ
(
ˆ̄Y ′
c,1 − ˆ̄Y 2

c,1

)
(2.30)

tp,2 = γ
(
ˆ̄Y ′
c,1 − ˆ̄Y 2

st

)
(2.31)

tp,3 = γ
(
ˆ̄Y ′
s,1 − ˆ̄Y 2

s,1

)
(2.32)

tp,4 = γ
(
ˆ̄Y ′
s,1 − ˆ̄Y 2

st

)
(2.33)

and

up,1 = γ
(
ˆ̄Y ′
c,2 − ˆ̄Y 2

c,2

)
(2.34)

up,2 = γ
(
ˆ̄Y ′
c,2 − ˆ̄Y 2

st

)
(2.35)

up,3 = γ
(
ˆ̄Y ′
s,2 − ˆ̄Y 2

s,2

)
(2.36)

up,4 = γ
(
ˆ̄Y ′
s,2 − ˆ̄Y 2

st

)
(2.37)

The expectation of tp,1 mathematically is

E(tp,1) = γ

[
E

(
ˆ̄Y ′
c,1

)
− E

(
ˆ̄Y 2
c,1

)]
= γ

[
Ȳ ′

2 − Ȳ 2 − V( ˆ̄Yc,1)

]
= S2

Y − γ

( L∑
h=1

ψhS
2
Y,h

)(
1− ρ2Y X,st

) (2.38)

This indicates that tp,1 also provides a biased estimation of S2
Y , demonstrating that the

estimator is biassed. It has been shown that there is bias in various estimators of S2
Y .

t∗p,1 = tp,1 + γ
L∑

h=1

ψhŜ
2
Y,h(1− ρ2Y X,st) (2.39)

t∗p,2 = tp,2 + γ

L∑
h=1

ψhŜ
2
Y,h (2.40)

t∗p,3 = tp,3 + γ
L∑

h=1

ψhŜ
2
Y,h(1− ρ2Y X,h) (2.41)

t∗p,4 = tp,4 + γ
L∑

h=1

ψhŜ
2
Y,h (2.42)
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and

u∗p,1 = up,1 + γ

L∑
h=1

ψhŜ
2
Y,h(1−R2

Y,XZ,st) (2.43)

u∗p,2 = up,2 + γ

L∑
h=1

ψhŜ
2
Y,h (2.44)

u∗p,3 = up,3 + γ

L∑
h=1

ψhŜ
2
Y,h(1−R2

Y,XZ,h) (2.45)

u∗p,4 = up,4 + γ
L∑

h=1

ψhŜ
2
Y,h (2.46)

Demonstrating the unbiasedness of the mentioned estimators is a straightforward process.



Chapter 3

Variance of a Finite Population

Estimated Utilising Transformations

In this chapter, a set of unique estimators leveraging known auxiliary variables under

SRS is proposed for the estimation of the finite population variance. At the initial

approximation level, statements for the bias and mean square error of both the current

and proposed families generated from estimators. Subsequently, we provide a conceptual

comparison between the proposed set of estimators and other existing methods.

3.1 Notations and Symbols

Let U = U = {1, 2, . . . , N} be a finite population made up of N units., partitioned into L

strata based on a stratifying variable. Each stratum, denoted by the index h (ranging

from 1 to L), contains Nh units, and the total population is distributed across these strata

such that the sum of Nh for all h equals N . The stratum’s weight in hth, represented by

Wh, is defined as Nh/N . The study variable Y ′
Y and auxiliary variable (fx) are defined,

taking values (YY ′(i,h), fxi,h) i = 1, 2, . . . , Nh in the hth stratum.

Let (ȲY ′ , f̄x) and (S ′2
Y , S

2
fx) be the population mean and variance of (YY ′ , fx), re-

spectively, where ȲY ′ = 1
N

∑N
i=1 YY ′i, f̄x = 1

N

∑N
i=1 fxi, S

2
Y ′ = 1

N−1

∑N
i=1(YY ′i − ȲY ′)2,

and S2
fx = 1

N−1

∑N
i=1(fxi − f̄x)2. In addition, let (Ȳ ′

Y ′(2), ¯fx′2) and (S2
Y ′2 , S2

fx2) be the

population mean and variance of (Y ′2, fx2), respectively, where Ȳ ′
Y ′(2) =

1
N

∑N
i=1 Y

2
Y ′i,

¯FX ′
2 =

1
N

∑N
i=1 fx

2
i , S

2
Y ′2 = 1

N−1

∑N
i=1(Y

4
Y ′i − Ȳ ′

Y ′)2 and S2
fx2 = 1

N−1

∑N
i=1(fx

4
i − f̄x2)

2.

Similarly, let (Ȳ ′
Y ′(2,h), f̄x2,h) and (S2

Y ′2(h), S
2
fx2(h)) be the population mean and vari-

ance of (Y 2
Y ′(h), fx

2
h) for the h-th stratum, respectively, where Ȳ ′

Y ′(2,h) =
1
Nh

∑Nh

i=1 Y
2
Y ′i,

¯fx′2,h = 1
Nh

∑Nh

i=1 fx
2
i , S

2
Y ′(2,h) =

1
Nh−1

∑Nh
i=1(Y

2
Y ′(i,h)−ȲY ′(2,h))

2, S2
fx2,h = 1

Nh−1

∑Nh
i=1(fx

2
i,h−

f̄x2,h)
2.To estimate the population variance, a (STRS) sample of size n units is drawn from

N units. In this process, nh units are selected from Nh units using (SRSWOR), ensuring

that
∑L

h=1 nh = n. The determination of nh values may involve using an allocation scheme,

18
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such as proportional allocation, Neyman allocation, etc.

Under STRS, let ȲY ′(st) =
∑L

h=1WhȲY ′(h) = ȲY ′ and f̄xst =
∑L

h=1Whf̄xh = f̄x be the

population means of YY ′ and fx respectively, with their respective unbiased estimators:
ˆ̄YY ′(st) =

∑L
h=1Wh

ˆ̄YY ′(h) and ˆ̄fxst =
∑L

h=1Wh
ˆ̄fxh where ˆ̄YY ′(h) = 1

nh

∑nh

i=1 YY ′(i,h) and
ˆ̄fxh = 1

nh

∑nh

i=1 fxi,h, along with their respective variances: Var( ˆ̄Yst) =
∑L

h=1 ψhS
2
Y,h

and Var( ˆ̄fxst) =
∑L

h=1 ψhS
2
fx,h, where ψh = W 2

hλh with λh = 1
nh

− 1
Nh

. On simi-

lar lines, let Ȳ ′
Y ′(2,st) =

∑L
h=1WhȲ ′

Y ′(2,h),f̄x
′
2,st =

∑L
h=1Whf̄x

′
2,h, be the population

means of Y 2
Y ′ and fx2, respectively, with their respective unbiased estimators: ˆ̄′YY ′(2,st) =∑L

h=1WhŶ ′
Y ′(2,h),

ˆ̄fx′2,st =
∑L

h=1Whf̂x
′
2,h, where

ˆ̄Y ′
Y (2,h) =

1
nh

∑nh

i=1 Y
2
Y (i,h),

ˆ̄fx′2,h = 1
nh

∑nh

i=1 fx
2
i,h,

along with their respective variances: Var( ˆ̄Y ′
Y ′(2,st)) =

∑L
h=1 ψhS

2
Y ′2,h, Var(

ˆ̄ ′
fx2,st) =∑L

h=1 ψhS
2
fx2,h.

In the context of Stratified Random Sampling (StRS), the expression for the finite

population variance S2
Y ′ can be formulated as follows:

S2
Y ′ =

1

N − 1

L∑
h=1

Nh∑
i=1

(YY ′(i,h) − ȲY ′(st))
2

=
L∑

h=1

(
Nh − 1

N − 1

)
S2
Y ′,h +

L∑
h=1

(
Nh

N − 1

)(
ȲY ′(h) − ȲY (st)

)2
(3.1)

Similarly, mathematical expression can be formulated for S2
fx.

To determine the mean and variance of auxiliary-information-based (AIB) combined

and separate estimators under Stratified Random Sampling (STRS) for the population

variance with measurement error, denoted as SY ′2 , we examine the following relative error

terms.

VY ′(rst) = E (ξr0ξ
s
1) = E

[(
ˆ̄YY ′(st) − ȲY ′

ȲY ′

)r( ˆ̄fxst − f̄x

f̄x

)s]
(3.2)

V ′
Y ′(rst) = E (ξ′r0 ξ

′s
1 ) = E

 ˆ̄Y ′
Y ′(2,st) − Ȳ ′

Y ′(2)

Ȳ ′
Y ′(2)

r(
ˆ̄fx′2,st − f̄x

′
2

f̄x
′
2

)s
 (3.3)

This expression yields

VY ′(20) = E
(
ξ20
)
=

1

Ȳ 2
Y ′

L∑
h=1

ψhS
2
Y ′,h, V ′

Y ′(20) = E
(
ξ′20
)
=

1

Ȳ ′2
Y ′(2)

L∑
h=1

ψhS
2
Y ′2,h,

VY (02) = E
(
ξ21
)
=

1

f̄x
2

L∑
h=1

ψhS
2
fx,h, V ′

Y ′(02) = E
(
ξ′21
)
=

1

¯fx′
2
2

L∑
h=1

ψhS
2
fx2,h,

VY ′(11) = E (ξ0ξ1) =
1

ȲY ′ f̄x

L∑
h=1

ψhSY ′fx,h, V
′
Y ′(11) = E (ξ′0ξ

′
1) =

1

Ȳ ′
Y (2)

¯fx′2

L∑
h=1

ψhSY 2
Y ′fx

2,h,
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where SY ′fx,h = ρY ′fx,hSY ′,hSfx,h, SY ′2fx2,h = ρY ′2fx2,hSY ′2,hSfx2,h. Here, ρY ′fx,h (ρY ′2fx2,h)

represents the correlation coefficient between Y ′
h and fxh (Y ′2

h andfx
2
h) for the h-th stratum.

In a comparable manner, consider the following

VY ′(rst,h) = E
(
ξr0,hξ

s
1,h

)
= E

[(
ˆ̄YY ′(h) − ȲY ′(h)

ȲY ′(h)

)r( ˆ̄fxh − f̄xh
f̄xh

)s]
(3.4)

V ′
Y ′(rst,h) = E

(
ξ′r0,hξ

′s
1,h

)
= E

 ˆ̄Y ′
Y ′(2,h) − Ȳ ′

Y ′(2,h)

Ȳ ′
Y ′(2,h)

r(
ˆ̄fx′2,h − f̄x

′
2,h

f̄x
′
2,h

)s
 (3.5)

This expression yields

VY ′(20,h) = E
(
ξ20,h
)
=

1

Ȳ 2
Y ′,h

λhS
2
Y ′,h, V ′

Y ′(20,h) = E
(
ξ′20,h
)
=

1

Ȳ ′2
Y ′(2,h)

λhS
2
Y ′2,h,

VY (02,h) = E
(
ξ21,h
)
=

1

f̄x
2,h
λhS

2
fx,h, V ′

Y ′(02,h) = E
(
ξ′21,h
)
=

1

¯fx′
2
2,h

λhS
2
fx2,h,

VY ′(11,h) = E (ξ0,hξ1,h) =
1

ȲY ′,hf̄xh
λhSY ′fx,h, E

(
ξ′0,hξ

′
1,h

)
=

1

Ȳ ′
Y ′(2,h)

¯fx′2,h
λhSY ′2fx2,h,

where SY ′fx,h = ρY ′fx,hSY ′,hSfx,h, SY ′2fx2,h = ρY ′2fx2,hSY ′2,hSfx2,h. Here, ρY ′fx,h (ρY ′2fx2,h)

represents the correlation coefficient between Y ′
h and fxh (Y ′2

h andfx
2
h) for the h-th stratum.

3.2 Proposed Estimators

In this investigation, our initial focus is on unbiased (both combined and separate) differ-

ence estimators for the population mean and second-raw moment within the framework

of Stratified Random Sampling (STRS). We leverage information from the study variable

and auxiliary variable. Subsequently, these estimators are employed to formulate B/Ub

estimators for the FPV over STRS Haq et al. (2023). Following the previously mentioned

estimator, an alternative approach to reorganize the population units is outlined as follows.

The population of size N is arranged based on the ascending order of the auxiliary variable

magnitude, as

Y = Y1, Y2, . . . , YN−1, Yn

The auxiliary variables are first organized in ascending order based on their magnitudes,

and the median is determined. Following this, fx1 is added to the smallest value of the

auxiliary variable, and the same value is subtracted from the largest one. Similarly, fx2 is

added to the second smallest value, and it is subtracted from the second largest variable.

This process continues for the remaining values of the auxiliary variable, excluding the
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median. Mathematically, the scheme is

Y ′ = YY ′1, YY ′2, . . . , YY ′i, . . . , YY ′N−1, YY ′N

Y ′ = (y1 + fx1), (y2 + fx2), . . . , yi, . . . , (yN−1 − fx2), (yN − fx1)

where YY ′i = (yi ± fxi), i = 1, 2, . . . , N .

Therefore, (YY ′1, YY ′2, YY ′3, . . . , YY ′N−2, YY ′N−1, YY ′N) represents the transformed pop-

ulation values. The finite population variance under STRS is then estimated using these

estimators to create biased and unbiased estimators.

S2
Y ′ =

1

N − 1

L∑
h=1

Nh∑
i=1

(YY i′,h − ȲY ′,st)
2 =

1

N − 1

N∑
i=1

(YY ′i − ȲY ′)2

=
N

N − 1

 1

N

N∑
i=1

Y 2
Y ′i −

(
1

N

N∑
i=1

Y ′
Y ′i

)2
 = γY ′ [ȲY ′,2 − Ȳ 2

Y ′ ]

= γY ′ [E(Y 2
Y ′)− (E(YY ′))2]

(3.6)

In this context, where γY ′ = N
N−1

, the initial approach involves constructing difference esti-

mators for E(YY ′) and E(Y 2
Y ′) under Stratified Random Sampling (STRS). Subsequently,

these estimators are utilized in equation (3.1) to formulate unbiased estimators for S2
Y ′ .

Using the data on (YY ′ , fx), the combined difference estimators of E(YY ′) and E(Y 2
Y ′)

are provided by
ˆ̄YY ′(c,1) =

ˆ̄YY’(st) +KY ′(1,1)(fxst − ˆ̄fxst) (3.7)

and
ˆ̄Y ′
Y ′(c,1) =

ˆ̄Y ′
Y’(2,st) +K ′

Y ′(1,1)(fx
′
2,st −

ˆ̄fx′2,st) (3.8)

accordingly, where

KY ′(1,1) =
Ȳ ′

Y ′V ′
Y ′(11)

f̄xV ′
Y ′(02)

, K ′
Y ′(1,1) =

Ȳ ′
Y ′(2)V

′
Y ′(11)

¯fx′2V
′
Y ′(02)

are established constants. The variance of ˆ̄Y ′
Y ′(c,1) are provided by

Var( ˆ̄YY ′(c,1)) = Ȳ 2
Y ′VY ′(20)

(
1−

V 2
Y ′(11)

VY ′(20)VY ′(02)

)
= Ȳ 2

Y ′VY ′(20)(1− ρ2Y ′fx,st) (3.9)

where the correlation coefficient between YY ′ and fx is denoted by ρ2Y ′fx,st under STRS.

Using the data on (YY ′ , fx), the separate difference estimators of E(YY ′) and E(Y 2
Y ′) are
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provided by

ˆ̄YY ′(s,1) =
L∑

h=1

Wh
ˆ̄YY ′(s,1,h),

ˆ̄Y ′
Y ′(s,1) =

L∑
h=1

Wh
ˆ̄Y ′
Y ′(s,1,h)

where
ˆ̄YY ′(s,1,h) =

ˆ̄YY ′(h) +KY ′(1,1,h)(f̄xh − ˆ̄fxh)

ˆ̄Y ′
Y ′(s,1,h) =

ˆ̄Y ′
Y ′(h) +K ′

Y ′(1,1,h)(f̄x
′
h − ˆ̄fx′h)

with

KY ′(1,1,h) =
Ȳ ′

Y ′(h)V
′
Y ′(11,h)

f̄xhV
′
Y ′(02,h)

, K ′
Y ′(1,1,h) =

Ȳ ′
Y ′(2,h)V

′
Y ′(11,h)

¯fx′2V
′
Y ′(02,h)

are recognized constants.The following is the variance of ˆ̄YY ′(s,1).

Var( ˆ̄YY ′(s,1)) =
L∑

h=1

WY ′(h)Ȳ
2
Y ′(h)VY ′(20,h)

(
1−

V 2
Y ′(11,h)

VY ′(20,h)VY ′(02,h)

)

=
L∑

h=1

ψS2
Y ′fx,h(1− ρ2Y ′fx,h)

(3.10)

where YY ′ on fx for the hth stratum is correlated with a coefficient of ρ2Y ′fx,h.

Using only data on YY ′ under STRS, B/Ub estimators of the FPV are provided by

bp = γY ′

(
ˆ̄Y ′
Y ′(2,st) − ˆ̄Y 2

Y ′(st)

)
(3.11)

and

b∗p = γY ′

(
ˆ̄Y ′
Y ′(2,st − ˆ̄Y 2

Y ′(st)

)
+

L∑
h=1

ψhŜ
2
Y ′(h) (3.12)

In the same way, Ŝ2
y′(h) is a traditional, Ub estimator of S2

y′(h).

The expectation of bp mathematically is

E(bp) = γY ′

[
E

(
ˆ̄YY ′(2,st)

)
− E

(
ˆ̄Y 2
Y ′(st)

)]
= γY ′

[
Ȳ ′

Y ′(2) − Ȳ 2
Y ′ − V(ȲY ′(st))

]
= S2

Y ′ − γY ′

L∑
h=1

ψhS
2
Y ′(h)

(3.13)

This indicates that bp is a biased estimator of S2
Y ′ since it underestimates S2

Y ′ . A reasonable
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estimate for S2
Y ′ can be obtained by

E(b∗p) = E(bp) + γY ′E

( L∑
h=1

ψhŜ
2
Y ′(h)

)

= E(bp) + γY ′

L∑
h=1

ψhS
2
Y ′(h) = S2

Y ′

(3.14)

Using the data on (YY ′ , fx) under STRS, B and Ub estimators of the FPV are provided

by

bp,1 = γY ′

(
ˆ̄Y ′
Y ′(c,1) − ˆ̄Y 2

Y ′(c,1)

)
(3.15)

and

b∗p,1 = bp,1 + γY ′

( L∑
h=1

ψhŜ
2
Y ′,h

)(
1− ρ2Y ′fx,st

)
(3.16)

Similarly, an old-fashioned, Ub estimator of S2
Y ′(h) is Ŝ

2
Y ′(h).

The expectation of bp,1 mathematically is

E(bp,1) = γY ′

[
E

(
ˆ̄Y ′
Y ′(c,1)

)
− E

(
ˆ̄Y 2
Y ′(c,1)

)]
= γY ′

[
Ȳ ′

Y ′(2) − Ȳ 2
Y ′ − V( ˆ̄YY ′(c,1))

]
= S2

Y ′ − γY ′

( L∑
h=1

ψhS
2
Y ′,h

)(
1− ρ2Y ′fx,st

) (3.17)

This also indicates that bp,1 is a biased estimator of S2
Y ′ since it underestimates S2

Y ′ . A

reasonable estimate for S2
Y ′ can be obtained by

E(b∗p,1) = E(bp,1) + γY ′E

( L∑
h=1

ψhŜ
2
Y ′,h

)(
1− ρ2Y ′fx,st

)

= E(bp,1) + γY ′

( L∑
h=1

ψhS
2
Y ′,h

)(
1− ρ2Y ′fx,st

)
= S2

Y ′

(3.18)

Using the data on (YY ′ , fx), biassed combined/separate estimators of the FPV under

STRS are provided by

bp,2 = γY ′

(
ˆ̄Y ′
Y ′(c,1) − ˆ̄Y 2

Y ′(st)

)
(3.19)

bp,3 = γY ′

(
ˆ̄Y ′
Y ′(s,1) − ˆ̄Y 2

Y ′(s,1)

)
(3.20)

bp,4 = γY ′

(
ˆ̄Y ′
Y ′(s,1) − ˆ̄Y 2

Y ′(st)

)
(3.21)
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The expectation of bp,2 mathematically is

E(bp,2) = γY ′

[
E

(
ˆ̄Y ′
Y ′(c,1)

)
− E

(
ˆ̄Y 2
Y ′(st)

)]
= γY ′

[
Ȳ ′

Y ′(2) − Ȳ 2
Y ′ − V( ˆ̄YY ′(st))

]
= S2

Y ′ − γY ′

( L∑
h=1

ψhS
2
Y ′,h

) (3.22)

This also indicates that bp,2 is a biassed estimator of S2
Y ′ since it underestimates S2

Y ′ . A

reasonable estimate for S2
Y ′ can be obtained by

E(b∗p,2) = E(bp,2) + γY ′E

( L∑
h=1

ψhŜ
2
Y ′,h

)

= E(bp,2) + γY ′

( L∑
h=1

ψhS
2
Y ′,h

)
= S2

Y ′

(3.23)

Given the data on (YY ′ , fx), unbiassed combined/separate estimators of the FPV under

STRS are provided by

b∗p,3 = bp,3 + γY ′

( L∑
h=1

ψhŜ
2
Y ′,h

)(
1− ρ2Y ′fx,h

)
(3.24)

b∗p,4 = bp,4 + γY ′

( L∑
h=1

ψhŜ
2
Y ′,h

)
(3.25)

The proof of the provided estimators is alike to the case of biased combined and separate

estimators.

3.3 Simulation and Real Data

In this section, actual populations are examined, and the suggested estimators’ values in

numbers for both ABs and REs are computed.

3.3.1 Population

The dataset, sourced from Kadilar and Cingi (2006), focuses on apple production, measured

in 100 tonnes, denoted as YY ′ , Using the auxiliary variable fx representing the quantity

of apple trees, expressed in terms of 100 trees. For the duration of 1999, it includes 854

villages spread over six regions: Marmarian, Agean, Mediterranean, Black Sea, Central

Anatolia, and East and Southeast Anatolia. The Neyman allocation method is used to



Chapter 3. Variance of a Finite Population Estimated Utilising
Transformations 25

assign numbers of samples to each of these areas. Table 3.1 provides a summary of the

dataset’s statistics.

The biass and mean squared errore (MSE) of the proposed estimators are assessed

over ten thousand iterations (denoted as = 10000 per simulation). Absolute biases (ABs),

MSEs, and relative efficiencies (REs) of the proposed variance estimators within the

framework of STRS are computed, taking into account measurement error. Formulas for

computing ABs, MSEs, and REs are provided as follows:

AB(bi) =
1

r

r∑
i=1

|bi − S2
Y | (3.26)

MSE(bi) =
1

r

r∑
i=1

(bi − S2
Y )

2 (3.27)

RE(b, bp) =
MSE(b)

MSE(bp)
(3.28)

In the context of the given variance estimator under Stratified Random Sampling (STRS),

denoted as b, the numerical outcomes are displayed in Tables 2.4. These tables utilize

information on just one auxiliary variable (either fx). Additionally, when discussing the

existing estimators, they assume b = d = 0 (bh, dh) and a = c = 1 (ah = ch = 1) for the

purpose of simplicity.

Conversely, when incorporating information from the auxiliary variable fx, all proposed

estimators (bp, b
∗
p for i = 1, 2, 3, 4) surpass the precision of existing estimators (Ŝ2

Y ′,st and

ti for i = 1, 2, 3). Cases highlighted in bold in Table 2.4 emphasize this observation. As

expected, Amongst the estimators that are suggested, the Ub ones (b∗p,i for i = 1, 2, 3, 4)

exhibit fewer Absolute Biases compared to their biased counterparts (bp,i for i = 1, 2, 3, 4),

with the Relative Efficiencies of the former being almost equivalent to those of the latter.
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Table 3.1: Descriptive statistics for actual Population

1 2 3 4 5 6

Nh 106 106 94 171 204 173

nh 11 20 47 81 8 3

Ȳh 1536.77 2212.59 9384.31 5588.01 966.956 404.399

X̄h 24375.6 27421.7 72409.9 74364.7 26441.7 9843.83

Ȳ ′
2,h 4.3254× 107 1.37075× 108 9.73007× 108 8.46874× 108 6.61801× 106 1.05281× 106

X̄ ′
2,h 2.99091× 109 4.02252× 109 3.08112× 1010 8.66222× 1010 2.75047× 109 4.48072× 108

SY,h 6425.09 11551.5 29907.5 28643.4 2389.77 945.749

SX,h 49189.1 57460.6 160757 285603 45402.8 18794

SY 2,h 3.82606× 108 1.34521× 109 4.97464× 109 8.52128× 109 4.60968× 107 5.51211× 106

SX2,h 1.45741 ×1010 2.21695 ×1010 1.53676 ×1011 8.39145 ×1011 1.31575 ×1010 2.23427 ×109

ρY X,h 0.815641 0.855999 0.90112 0.985876 0.713099 0.893599

ρY 2X2,h 0.716031 0.967265 0.792559 0.996738 0.534591 0.78124

Table 3.2: A comparison between the REs and ABs for the proposed and current variance
estimators in the context of STRS, utilizing simulated population and information derived
from auxiliary variable.

Existing Simulated Proposed Simulated

Estimators EstimatorsAB RE AB* RE

Ŝ2
Y,st 0.0066 1.000 Ŝ2

Y ′,st 0.0060 1.100

tp 0.0008 1.010 bp 0.0008 5.2728

t∗p 0.0001 1.010 b∗p 0.0002 5.2759

t1 0.0021 2.188 b1 2.6804 0.8774

tp,1 0.0002 3.791 bp,1 2.6733 0.09464

t∗p,1 0.0000 3.791 b∗p,1 2.6740 0.09461

tp,2 0.0005 0.305 bp,2 2.6696 0.09446

t∗p,2 0.0001 0.305 b∗p,2 2.6702 0.0944

t2 2.8519 0.001 b2 0.0573 1.6765

t3 2.7441 0.001 b3 0.0414 1.8190

tp,3 0.0002 5.207 bp,3 0.0665 1.8073

t∗p,3 0.0000 5.206 b∗p,3 0.0659 1.8079

tp,4 0.0005 0.326 bp,4 0.0305 5.1993

t∗p,4 0.0001 0.326 b∗p,4 0.0299 5.2032
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Table 3.3: With population 1 from an auxiliary variable, real population data are used to
analyse the ABs and REs values of the proposed and existing variance estimators under
STRS.

Existing Data Proposed Data

Estimators EstimatorsAB RE AB* RE

Ŝ2
Y,st 37633.900 1.000 Ŝ2

Y ′,st 29789 1.2633

tp 71.307 11.767 bp 63.8905 153.0285

t∗p 19.581 11.732 b∗p 46.9726 153.0549

t1 6043.980 11.423 b1 0.8779 13.2907

tp,1 8.687 93.640 bp,1 6.6761 173.7761

t∗p,1 8.601 93.478 b∗p,1 5.8643 174.6355

tp,2 43.196 94.771 bp,2 33.3556 84.4209

t∗p,2 8.531 94.331 b∗p,2 4.9800 84.5127

t2 2396.900 53.653 b2 2.4887 1.9903

t3 9265.290 6.621 b3 2.0885 2.8263

tp,3 3.110 188.932 bp,3 56.1821 176.2353

t∗p,3 5.850 188.744 b∗p,3 56.0531 177.0221

tp,4 45.490 188.502 bp,4 36.0000 87.1095

t∗p,4 6.236 188.038 b∗p,4 34.0000 87.3153

Table 3.4: Descriptive statistics for actual Population 2

1 2 3 4 5 6

Nh 48 35 68 39 45 49

nh 20 15 25 10 18 17

Wh 0.169 0.1232 0.2394 0.1373 0.1584 0.1725

λh 0.0291 0.0381 0.0252 0.0743 0.0333 0.0384

Ȳh 49.5833 24.1428 33.1176 20.2564 20.8444 23.1428

X̄h 24375.6 176.3714 314.3823 145.3846 163.667 179.102

R̄xh
24.5 18 34.5 20 23 25

SY,h 94.5859 20.5471 57.4691 19.5592 23.313 945.749

SX,h 902.6175 174.0182 896.1789 153.0143 199.8747 202.6107

SRxh
13.5218 10.1691 17.7333 11.2921 13.0148 14.1888

ρYhXh
0.9986 0.9735 0.9836 0.9962 0.9979 0.9957

ρYhRxh
-0.0875 0.0081 0.0705 -0.1387 -0.0635 -0.2046

ρXhRxh
-0.0959 0.0678 0.0915 -0.1068 -0.0643 -0.1760
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Table 3.5: With population 2 from an auxiliary variable, real population data are used to
analyse the ABs and REs values of the proposed and existing variance estimators under
STRS.

Existing Data Proposed Data

Estimators EstimatorsAB RE AB* RE

Ŝ2
Y,st 40923.739 1.000 Ŝ2

Y ′,st 39657.160 1.032

tp 89.307 8.845 bp 43.564 167.194

t∗p 35.637 34.745 b∗p 29.640 169.269

t1 4032.675 21.604 b1 3.648 9.064

tp,1 18.047 57.374 bp,1 13.937 138.428

t∗p,1 16.453 55.953 b∗p,1 11.749 139.633

tp,2 51.578 69.093 bp,2 61.628 57.837

t∗p,2 13.492 68.792 b∗p,2 8.592 56.973

t2 3952.547 42.683 b2 8.278 1.368

t3 18224.833 7.273 b3 3.793 2.021

tp,3 9.264 153.932 bp,3 67.427 153.763

t∗p,3 12.538 152.734 b∗p,3 70.482 153.104

tp,4 63.794 124.773 bp,4 48.106 58.798

t∗p,4 3.741 207.630 b∗p,4 60.492 57.810



Chapter 4

Conclusion and future works

4.1 Conclusion

In survey sampling, we need accurate and precise estimates of the parameters of a

finite population. To achieve this, we often use extra information during the estimation

process.This chapter has demonstrated how to use the first and second raw moments of

the variables under study to compute the FPV under STRS with measurement error. We

have also developed biased and unbiased estimators for the FPV under STRS, taking

into account measurement errors. Based on data regarding the variable under study

and another variable, these estimators employ simple and combined/separate (difference)

estimators for the first and second raw moments.

An empirical study was undertaken to evaluate the performance of the proposed estima-

tors in the presence of measurement errors. The findings indicated that the separate class

of estimators demonstrates superior precision compared to the combined class of estima-

tors. In conclusion, it is advisable to use the estimators bp,b
∗
p, (b2, b3, bp,3, b

∗
p,3andbp,4, b

∗
p,4),

when information is available on (YY ′) (YY ′ , fx).

The Absolute Biases (ABs) and Relative Efficiencies (REs) of both the existing and

proposed variance estimators are detailed in Table 3.2 for the simulated populations and

Table 3.3 and 3.5 for the real population 1 and population 2, respectively. Analysis of

Table 3.2 indicates that, in general, the proposed variance estimators (bp, b
∗
p, b2, b3, bp,3,

b∗p,3, b
∗
p,4, b

∗
p,4), whether simple or combined/separate, exhibit greater precision compared

to their existing counterparts. While the other proposed estimators are not as efficient

as the existing estimators (b1, bp,1, b
∗
p,1, bp,2, b

∗
p,2), which target the estimation of the

population’s first raw moment through Ȳst, they demonstrate lower efficiency than both

the existing (b2, b3) and proposed (bp, b
∗
p, bp,3, b

∗
p,3, bp,4, b

∗
p,4) estimators.

Overall, the combined estimators (bp, b
∗
p) demonstrate greater precision than the

separate estimators (bp,i, b
∗
p,i for i = 3, 4).

29
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4.2 Future works

• The current study has the potential for extension to encompass other probability

sampling techniques, such as systematic sampling and cluster sampling.
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Özel, G., Çingi, H., and Oğuz, M. (2014). Separate ratio estimators for the population

variance in stratified random sampling. Communications in Statistics-Theory and

Methods, 43(22):4766–4779.

Qian, J. (2020). Variance estimation with complex data and finite population correction—a

paradigm for comparing jackknife and formula-based methods for variance estimation.

ETS Research Report Series, 2020(1):1–16.

Sampling Techniques (1977). Sampling techniques. New York, pages 423–457.

Shahzad, U., Ahmad, I., Almanjahie, I. M., Al-Noor, N. H., and Hanif, M. (2023). A

novel family of variance estimators based on l-moments and calibration approach under

31



References 32

stratified random sampling. Communications in Statistics-Simulation and Computation,

52(8):3782–3795.

Sidelel, E. B., Orwa, G. O., and Otieno, R. O. (2014). Variance estimation in stratified

random sampling in the presence of two auxiliary random variables.

Singh, G., Bhattacharyya, D., and Bandyopadhyay, A. (2021). Calibration estimation

of population variance under stratified successive sampling in presence of random non

response. Communications in Statistics-Theory and Methods, 50(19):4487–4509.

Singh, H. P. and Solanki, R. S. (2013). A new procedure for variance estimation in simple

random sampling using auxiliary information. Statistical papers, 54:479–497.


	Introduction
	History
	Sampling Designs
	Transformation
	Auxiliary Information
	Sampling Methods
	Simple Random Sampling(SRS)
	 Stratified Random Sampling(STRS)

	Motivation for the Present Study
	Thesis Outline

	Literature Review
	Notations and Symbols
	Existing estimators
	kadilar2006ratio Combined Estimators
	sidelel2014variance combined estimator
	ozel2014separate separate estimator
	cekim2020ln separate estimator

	haq2023estimation Combined and Separate estimators

	Variance of a Finite Population Estimated Utilising Transformations
	Notations and Symbols
	Proposed Estimators
	Simulation and Real Data
	Population


	Conclusion and future works
	Conclusion
	Future works

	References

