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Preface 

Heat transfer enhancement determines the need for new innovative coolants with improved 

performance. The new concept of nanofluids has been introduced to make the performance of 

heat transfer fluids better. The concept of nanofluid has been advanced by S. Choi [1] who 

showed considerable increase of heat transported in suspensions of copper and aluminium 

nanoparticles in water and other liquids. Nanofluids are a new kind of fluids which are 

dispersions of nanoparticles in liquids that are permanently suspended in base fluid. By using 

different particles which are mostly metals (Cu, Ag, Au), metallic oxides (CuO, Al₂O₃, TiO₂, 

ZnO), nitride/carbide ceramics (AlN, SiN, SiC, TiC) and carbon nanotubes etc, the engineers 

created wide range of nanofluids with completely new properties. These heat exchange fluids 

present interesting heat transfer features when compared with more conventional coolants. 

Considerable research on thermal conductivity and convective heat transfer of nanofluidsis done. 

In fact, applications of nanofluids such as coolant in automobiles, heat exchangers in industries 

etc appear promising with these characteristics. Several experimental and theoretical research 

activities for nanofluidsare performed which can be seen through the studies [2-14]. 

Peristaltic flow refers to the transportation of fluid inside a channel or tube by the action of 

flexible walls. It is the major mechanism for fluid flow in many biological and industrial 

systems. Within human body it is involved for swallowing food through esophagus, movement 

of chyme in the gastro-intestinal track, in the dustusefferentes of the male reproductive system, 

vasomotion of small blood vessels such as arterioles, vanules and capillaries etc. Peristaltic 

pumps are used to transport corrosive or very pure materials so as to avoid direct contact of the 

fluid with the pump's internal surface. Many biomedical devices such as dialysis machines, open 

heart bypass pump machines, infusion pumps etc are engineered on the mechanism of peristalsis. 

Shapiro [15] analyzed the peristaltic pumping in a two dimensional flexible tube. Later on the 

theoretical results obtained by [15] were confirmed experimentally by Weinberg [16]. Some 

recent researches dealing with the peristaltic motion are mentioned in the refs. [17-25].  

It is well admitted fact that the tabular organs facilitating fluid flow in the human body are 

internally lubricated with mucus and secretion layer. These layers in turn prevent the fluid from 

sticking to the walls. In that type of cases the no slip conditions between the fluid and the 

boundary is not valid. Therefore it seems important to consider slip condition in such 



situations.Another important phenomena widely encountered in industrial and engineering 

applications and attainted the attention of researchers is mixed convection. Ocean current, sea-

wind formation, formation of microstructure during the cooling of molten metals etcinvolve 

mixed convection. Moreover this phenomenon is utilized in heat exchangers, removal of nuclear 

waste and in modern cooling /heating system. Having such facts in mind, the present dissertation 

is arranged as follows. 

In the first chapter of this dissertation, explanation of some basic concepts and law relevant to 

materials utilized in the next two chapters is provided. These basic concepts include peristalsis, 

nanofluids, heat transfer mechanisms, two phase model for nanofluids, continuity equation, 

momentum equation, energy equation etc.  

The second chapter comprises the work of Shehzadet. al.[38]. In this study the five different 

nanofluids are considered to discuss the peristaltic transport in a symmetric channel. The two 

two phase models namely Maxwell and Hamilton-Crosser are considered for the analysis. The 

study consists of comparison between the results obtained by two phase models.Comparison for 

the five different water based nanofluids is studied. 

In the third chapter, consideration is given to the flow of incompressible water based 

nanofluidssubject to five different types of nanoparticles including metallic and metallic oxides.  

Here the effects of velocity and thermal slip on the peristaltic transport of nanofluids in 

asymmetric channel are especially studied. Energy equation is utilized in view of constant heat 

source /sink parameter. Two thermal conductivity models Maxwell's and Hamilton-Crosser's [44, 

45] are used to compare the results for different nanofluids. It is noted that the analysis with 

above mentioned boundary conditions are not studied yet. Long wavelength and low Reynolds 

number approximation is utilized. System of coupled equations is solved numerically by using 

NDSolve in MATHEMATICA. Graphs are sketched to analyze the results. 
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Chapter 1

Fundamental definitions/equations

The basic aim of this chapter is to provide some basic concepts and equations that will be helpful for

the better understanding of analysis in the subsequent chapters.

1.1 Basics concepts

1.1.1 Fluid

Fluid is defined as a substance that has not a definite shape and deforms continuously under the

action of shear stress no matter how small is it. Mainly fluids show the two characteristics i.e.

not resisting deformation, or slightly resisting because of (viscosity) and the fluidity (ability

to flow) property.

1.1.2 Fluid mechanics

The branch in which consideration is given to the mechanics of fluid and the applied forces on

them. It is further subdivided into two parts defined as follows:

Fluid dynamics

The branch that deals with the studies when the fluid is in motion is named as fluid dynamics.
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Fluid statics

The branch that deals with the situation when the fluid is not in motion is named as fluid

statics.

1.1.3 Fluid density

The density of the fluid represented by the greek symbol  is defined as the mass per unit

volume at specific temperature and pressure. Mathematical expression to define the density at

the point are given by:

 = lim
−→0

µ




¶
 (1.1)

Here  is use to describe the mass element whereas  represents the volume element.

1.1.4 Fluid viscosity

Viscosity of the fluid in common language known as thickness of the fluid. It is the inherent

property of fluid that measures the resistance offered by the fluid during flow under the action

of shear stress. In nature all the fluids found has the viscosity effects. Mathematically, the

expression for viscosity is denoted by the symbol  which is known as dynamic viscosity or

absolute viscosity and is defined by

  () =
 

  
 (1.2)

The unit and dimension of viscosity in SI system is given by Pascal. sec () or  and

[ ] respectively.

1.1.5 Kinematic viscosity

Ratio of absolute viscosity () to the density of the fluid is named as kinematic viscosity

represented by the symbol  Mathematically given by

 =



 (1.3)
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The unit and dimension of kinematic viscosity in SI system is given by 2 and dimension

[2 ]

1.1.6 Pressure

Pressure is defined as the magnitude of the force per unit area. Mathematical relation for

pressure is given by:

 =
   


=
| |


 (1.4)

1.1.7 Flow

A material that show deformation when it is under the influence of various type of forces. If the

material started continuously deforming without any restriction then that type of phenomena

is know as flow.

Steady flow

Steady flow are described as the flow in which properties of the fluid are not a function of time.

Unsteady flow

Unsteady flow are described as the flow in which properties of the fluid are a function of time.

Compressible flow

A compressible flow is defined as flow whose density changes with respect to the space and time

coordinates.

Incompressible flow

An incompressible flow is defined as flow whose density remain unchanged with respect to the

space and time coordinates.
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1.1.8 Stream function

Stream function is defined as a function which describes the form of flow pattern or we can

state that it is the discharge per unit thickness. It is use to illustrate the flow field in terms of

volume flow rate for incompressible fluid and mass flow rate for compressible flow. For the case

of two dimensional steady flow relation is given by

 = ∇×  (1.5)

The velocity components can be described in terms of constant stream function as

 =



  = −


 (1.6)

1.1.9 Real and ideal fluids

Real and ideal fluids are distinguish on the basic of viscosity of the fluid. Ideal fluids are

characterized by the zero viscosity effects. These type of fluids does not show any resistance

against flow. On the other hand the fluids which exhibit the viscosity effects are named as real

fluid. In nature no ideal fluid exist and all the fluid are real. Examples including water, milk,

blood, air, paints, toothpaste etc. Real fluids are subdivide into two types namely Newtonian

or viscous fluid and non-Newtonian fluids.

1.1.10 Newtonian fluids

The fluid are named as Newtonian fluids, which obeys the "Newton’s law of viscosity" which

states that the shear stress is in direct and linearly proportion to deformation rate.

1.1.11 Types of forces

Surface forces

Forces that applied on external surface or internal element of the material. These type of forces

has direct contact with the surface. Surface forces has further two types, pressure forces that

is applied normal to the surface and stress forces that is applied in tangential direction.
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Body forces

Body forces are described as the forces that does not have direct contact with the material and

acts on the control volume. Magnetic force and gravity are example of body forces.

1.1.12 Volume flow rate

When the fluid of volume  moves from the section of pipe. The fluid is moving with velocity 

and constructing an angle  with the normal to , then in this case volume flow rate is defined

as:

 =  cos  (1.7)

In the case when flow is normal to  then we have  = 0 and the volume flow rate become:

 =  (1.8)

1.1.13 No-slip condition

When the fluid adjacent to the boundary stick with the boundary i.e. the relative velocity

between the fluid and boundary is zero. This situation is termed as no-slip condition. In that

type of situations adhesive forces are dominant than the cohesive forces.

1.1.14 Slip condition

Sometimes in the case of permeable wall, coated surfaces etc. the relative velocity of the fluid

and the boundary is not zero. Which means that the fluid attached with the boundary moves

with different velocity as that of the wall. This situation is termed as slip condition. In that

type of situations cohesive forces are dominant than the adhesive forces.

1.2 Basics of heat transfer

1.2.1 Heat

Heat is a form of energy that travel from high temperature region to the region with low

temperature.
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1.2.2 Heat transfer

Heat transfer phenomena consist of transfer of energy between the body located at different

temperature. This is an important phenomena and are utilized in many processes. For example

this principle is utilized in heat exchangers, refrigerating and in chemical processes. Principle

of heat transfer can be applied to human body. Because our body has to maintain a healthy

temperature that is 37 to keep working the organs properly and to avoid the body from

overheating. So extra heat must be dissipated through the body which is produced through

metabolisms.

1.2.3 Mechanisms of heat transfer

When the two bodies are located with different temperature then the heat always move from

the body with higher temperature to one with lower temperature. The transfer of heat is done

by the three mechanisms (modes) as defined below:

Conduction

In this mode, heat transfer between two bodies in direct contact is done through the collusion

of molecules. In this process the molecules with high energy transmit energy to molecules with

low energy. So this process carry on without the transfer of molecules from one place to another.

Convection

In this type of mechanisms heat is transfer via transfer of mass. In this process heat is transfer

via molecules transfer. Convection has further three types as given below:

Natural convection Natural convection which is also referred to as free convection. In this

type of mechanism, heat is transfer due to the variation in temperature which also effect the

density of the fluid when the gravity is present.

Force convection In this type of mechanism some external agent for example fan, pump or

stirrers is responsible for the motion of fluid that help in transfer heat. This type of process is

necessary for enhancing the heat transfer rate.
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Mixed convection When the transfer of heat is done through the combined effects of natural

and force convection then it is named as mixed convection. This type of mechanism of heat

transfer is seen to be useful and are utilized in many engineering devices and process like heat

exchangers, nuclear reactor etc.

Radiation

This type of mechanism comprises of transfer of heat via emission and absorption of electromag-

netic waves. Sun is one of the common example where heat is transfer through the radiation. In

our home use of micro-oven also lie in this category in which the radiations are used to heat the

food. Convection and radiation are the prominent mechanisms of heat transfer in the liquids

and gases whereas in solids conduction is the prominent mechanism.

1.2.4 Specific heat

It is defined as the amount of energy needed to raise the temperature of the body to one degree

Celsius.

1.2.5 Thermal conductivity

It is related to the property of the material to conduct heat. Higher the value of thermal

conductivity means that more heat will flow through the material whereas less heat will flow

through the material when the thermal conductivity of the material is low. Due to these advan-

tages materials with high thermal conductivity are utilized in heat sink applications whereas

in thermal insulations materials with low thermal conductivity are utilized. In SI system the

unit of thermal conductivity is given by  or 3 whose dimension is given by

[ 3]

1.2.6 Viscous dissipation

The phenomena in the flow configuration due to the viscous force is known as viscous dissipation.

In this phenomena due to viscous forces mechanical energy is dissipated into internal energy of

the material.
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1.3 Peristalsis

The word peristalsis has its roots from the Greek word "Peristaltikos" which means "clasping

and compressing". It is the mechanism in which due to the contraction and expansion of waves

fluid moves.

"A successive waves of involuntary contraction and expansion passing along the walls of a

hollow muscular structure and forcing the contents onward"

1.3.1 Peristalsis in physiology

Phenomena of peristalsis is extensively found in the human body where the basic purpose is the

transportation of fluid from one part to the other part of body. It is involve in the transport of

food through the oesophagus, in lymph transport, urine transport from kidney to gall bladder

etc.

1.3.2 Pumping

The phenomena of peristalsis comprises of transportation of material from lower pressure gra-

dient to one with high pressure gradient. This phenomena is named as pumping.

Positive and negative pumping

On the basis of dimensionless mean flow rate  the positive and negative pumping is character-

ized. The pumping is positive when the flow rate is positive and negative when the flow rate is

negative.

Adverse and favorable pressure gradient

Adverse pressure occurs when pressure is in the direction of flow i.e. pressure rise per wavelength

(∆) is positive otherwise it is named as favourable pressure gradient.

Peristaltic pumping

Peristaltic pumping depends positive flow rate (  0) and adverse pressure gradient (∆  0).
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Augmented pumping

Augmented pumping is characterized by the positive flow rate (  0) and favourable pressure

gradient (∆  0).

Retrograde pumping

Retrograde pumping depends on the negative flow rate (  0) and adverse pressure gradient

(∆  0).

Free pumping

Free pumping is characterized by the positive flow rate (  0) and pressure rise is neither

favourable nor adverse (∆ = 0).

1.4 Nanoliquids and Nanoparticles

1.4.1 Nanoparticles

Nanoparticles are characterized as the particles having the size between 1-100 nm. These

particles have different shapes like spherical, cylindrical, tube like etc. and made up of different

materials like metals (   ), metallic oxides ( 23  2 34) Carbides/

nitrides (   ), single and multiwalled nanotubes etc. Use of metallic particles

and SWCNT and MWCNT are very common in cooling process as they have high thermal

conductivity value.

1.4.2 Nanoliquids

The suspension comprising of nanoparticles plus base fluid is named as nanoliquid or nanofluid.

These types of fluid have distinct mechanical properties when compared to fluid prepared by

utilizing the large size particles (micro or macro size) of the same material. One of the prominent

feature of this type of fluid is the enhance capability of heat transfer as compared to other

traditional fluids. The base fluid used in the nanofluid are commonly water, ethylene-glycol, oil

etc. and the nanoparticles used are commonly metallic, metallic oxides and nanotubes etc. Due
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to enhance capability of heat transfer nanofluid are utilized in many engineering and industrial

applications. For example nanofluid are widely used as the coolant in automobiles to reduced

the internal combustion of engine. One of the other use of nanofluids is in the cooling of nuclear

reactors, electronic cooling etc.

1.4.3 Two phase thermal conductivity models of nanofluids

Many models of thermal conductivity were given by researchers to estimate the thermal con-

ductivity of the nanofluid consisting of continuous and discontinuous phase. Some of the two

phase models utilized in this dissertation are given below:

Maxwell model

Thermal conductivity model given by Maxwell is comprised of the thermal conductivity of

the nanoparticle having spherical shape and the base fluid thermal conductivity. The effective

thermal conductivity for this model is given by





=
 + 2 − 2( −)

 + 2 + ( −)
 (1.9)

here  and  elucidate the thermal conductivity of the respective nanoparticles and base

fluid.

Hamilton-Crosser’s model

Extension on Maxwell model was done by Hamilton and Crosser and model was given to cover

the non-spherical particles. A factor  is included in the model which is given by  = 3Ψ where

Ψ illustrates the sphericity of the particles included in the nanofluid. Ψ = 1 corresponds to the

spherical particles and in this case two models coincide. The effective thermal conductivity for

this model is given by





=
 + (− 1) − (− 1)( −)

 + (− 1) + ( −)
 (1.10)

here  and  elucidate the thermal conductivity of the respective nanoparticles and base

fluid.
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1.5 Dimensionless numbers

1.5.1 Reynolds number

Reynolds number denoted by Re is defined as the ratio of inertial to viscous forces. It is used

to give information whether the fluid flow is laminar or turbulent. At low value of Reynolds

number where the viscous forces are dominant the fluid is characterized as laminar. For laminar

flow the Reynolds number range is  2000 For turbulent flow the inertial forces are dominant

so the value of Reynolds number is high. Here in this case the Reynolds number range is

 4000 The range between these values is named as transition phase. Mathematical expression

for Reynolds number is given by

Re =
 

 
=




 (1.11)

here  depicts the density of the fluid where  and  are characterized as the velocity and length

scale respectively.

1.5.2 Wave number

The ratio of width of channel to its wavelength is named as wave number. Mathematical

expression for the wave number is as follows:

 =



 (1.12)

1.5.3 Prandtl number

A dimensionless quantity appeared in the analysis which was named on the German pioneer

physicist Ludwig Prandtl. Prandtl number is defined as the ratio of momentum diffusivity and

thermal diffusivity. Mathematically denoted as

Pr =
 

 
=




 (1.13)

in the above equation the quantity  is the viscosity,  is specific heat whereas  describes

the fluid thermal conductivity.
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1.5.4 Eckert number

This dimensionless number appears due to the viscous dissipation effects in the fluid. It is

represented as the ratio of kinetic energy to the enthalpy. It was named after Ernst R. G.

Eckert. Mathematically given by

 =
 


=

2

(1 − 0)
 (1.14)

The viscous dissipation effects are negligible effects for low values of Eckert number (  1)

1.5.5 Brinkman number

It illustrates the ratio of viscous dissipation to the heat transfer through conduction. It is given

by the product of Prandtl and Eckert number.

 = Pr (1.15)

1.5.6 Grashof number

Grashof number is defined as the ratio of buoyancy to viscous forces. It was pronounced as

Grashof number after the German engineer Franz Grashof. Mathematical expression is given

by

 =
 

 
=

 (1 − 0) 
2


 (1.16)

here  and  represent the acceleration due to gravity and thermal expansion coefficient

respectively.

1.6 Basic Equations for flow analysis

The following basic equation are utilized in this dissertation.

• Equation of continuity
• Momentum equation

• Energy equation
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1.6.1 Continuity equation

Continuity equation is derived from the law of conservation of mass which states that the rate

through which mass is entering in the system is equal to the rate through which mass is leaving.

Mathematically, defined as




+ div(V) = 0 (1.17)

where in the expression used in above equation defines  the density, V the velocity vector for

the fluid given by V = [  ]  For the case of incompressible fluid  =constant, continuity

equation takes the form as:

divV = 0 (1.18)

or

∇V = 0 (1.19)

The above mentioned equation is only applicable to the case when source/sink is absent and

volume is controlled one.

1.6.2 Momentum equation

This equation comes from the law of conservation of the linear momentum. Mathematically

given in vector form:


V


= divS+ ρb (1.20)

here S denotes the Cauchy stress tensor and b is used to represent the body force. The material

derivative represented by



is defined as




=




+V∇ (1.21)

1.6.3 Energy equation

The energy equation is derived from first law of thermodynamics which states that

"The change in total energy of the system is equal to the amount of heat added to the system

minus workdone by the system on the surrounding."
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The energy equation for the flow configuration is given by:



µ



+V∇

¶
 = ∇2 + SL (1.22)

Here  denotes the density,  the specific heat whereas  is used for the thermal conductivity

of the fluid. Also the term SL represents the viscous dissipation effect.
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Chapter 2

Peristaltic motion of water-based

nanomaterials

2.1 Introduction

In this chapter consideration is given to the peristaltic transport of nanofluid in a vertical

symmetric channel. Water based nanofluids are utilized here. Base fluid here is considered

water. The considered nanoparticles are Titanium oxide or titania (TiO2), Aluminum oxide or

Alumina (Al2O3), Copper oxide (CuO), Copper (Cu) and Silver (Ag). Two effective thermal

conductivity models namely Maxwell and Hamilton-Crosser’s are employed. Energy equation

includes viscous dissipation and heat generation/absorption. Moreover study has been carried

out not only by applying long wavelength but also by considering low Reynolds number assump-

tion. Solution of the considered problem is developed by using NDSolve of MATHEMATICA.

Graphical results are analyzed for different embedded parameters involved in the problem. This

chapter comprises of detailed review of a paper by Shehzad et al. [38].

2.2 Physical model

We examine the two dimensional flow of an incompressible nanofluid in a symmetric vertical

channel of width 2. Flow is induce in the channel because of the sinusoidal waves having

the small amplitude 1 and long wavelength . Selection of rectangular coordinates system
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¡


¢
is done in such a manner that  − lies along the length of channel where wave is

propagating and  − lies in the direction normal to  − (  21).

Fig 2.1: Schematic Diagram

The walls of the channel are described by the expression

 = 
¡
 

¢
= + 1 cos

2



¡
 − 

¢
at right wall, (2.1)

 = − ¡ 
¢
= −

∙
+ 1 cos

2



¡
 − 

¢¸
at left wall. (2.2)

Here  is the wall displacement,  is the half width of the considered symmetric channel, 1

describes the amplitude with which the wave is travelling whereas speed and wavelength of the

wave are represented by  and  respectively. For the considered flow configuration the two

dimensional velocity field V is given by

V =
£

¡
  

¢
 
¡
  

¢
 0
¤
 (2.3)

where 
¡
  

¢
and 

¡
  

¢
are the respective velocity components in the longitudinal

and transverse directions in the fixed frame of reference.
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2.3 Problem formulation

The basic equations for the incompressible nanofluid are

divV = 0 (2.4)


V


= divS+ () ( − 0)  (2.5)

()



= ∇2 + SL+Φ (2.6)

In the above mentioned equations V represents the velocity,  denotes effective density of

the nanofluid, S is used for the Cauchy stress tensor,  the gravitational acceleration, ()

denotes the effective thermal expansion coefficient for nanofluid, () the effective heat ca-

pacity,  the effective thermal conductivity of the nanofluid and the material time derivative




is given by




=




+ 




+ 




 (2.7)

The Cauchy stress tensor S for the case of viscous incompressible nanofluid is

S =−  I+ A1 (2.8)

here  depicts the pressure, I symbolizes the identity tensor,  the effective viscosity whereas

A1 shows the first Rivlin-Ericksen tensor defined as

A1 = L+ L
  (2.9)

where

L = (gradV) (2.10)

where superscript  depict the transpose of L. Now we have

L =

⎡⎢⎢⎢⎣
  0

    0

0 0 0

⎤⎥⎥⎥⎦ , L =
⎡⎢⎢⎢⎣

   0

   0

0 0 0

⎤⎥⎥⎥⎦  (2.11)
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In view of Eq. (29), we get

A1 =

⎡⎢⎢⎢⎣
2  +   0

  +  2  0

0 0 0

⎤⎥⎥⎥⎦  (2.12)

Now substituting the obtained value of A1 mentioned above in Eq. (28) we obtained

S =

⎡⎢⎢⎢⎣
− + 2 

¡
 +  

¢
0


¡
 +  

¢ − + 2  0

0 0 0

⎤⎥⎥⎥⎦  (2.13)

Moreover

SL = (SL) =  + 
¡
 +  

¢
+   (2.14)

After putting all the values calculated in Eqs. (28) − (214)  the continuity, momentum, and
energy equations in the presence of body force take the form as define below




+




= 0 (2.15)

 (



+ 




+ 




) = − 


+ 

∙
2


2
+

2


2

¸
+ () ( − 0)  (2.16)

 (



+ 




+ 




) = −


+ 

∙
2


2
+

2


2

¸
 (2.17)

() (



+ 




+ 




) = 

∙
2


2
+

2


2

¸
+Φ

+

⎡⎢⎣ 2
µ³





´2
+
³




´2¶
+
³



+ 



´2
⎤⎥⎦  (2.18)
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The quantities   ()  () and  for the two phase flow model are defined as

 = (1− ) +  () = (1− )() + ()

() = (1− ) +   =


(1− )25
 (2.19)

The expression for the effective thermal conductivity of nanofluid for Maxwell [44] and Hamilton-

Crosser’s [45] models are





=
 + 2 − 2( −)

 + 2 + ( −)
 (2.20)





=
 + (− 1) − (− 1)( −)

 + (− 1) + ( −)
 (2.21)

where and describe the thermal conductivities for nanoparticles and base fluid. Moreover

 = 3Ψ where Ψ define the sphericity of the nanoparticles used in the nanofluid. Hamilton-

Crosser model for  = 3 becomes Maxwell model.

The boundary conditions for the flow configuration are given by




= 0 at  = 0 (2.22)

 = 0 at  = 
¡
 

¢
= + 1 cos

2



¡
 − 

¢
 (2.23)




= 0 at  = 0 (2.24)

 = 0 at  = 
¡
 

¢
= + 1 cos

2



¡
 − 

¢
 (2.25)

Numerical values of the thermo-physical parameters of water and nanoparticles are mentioned

in Table 1.
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Table 1: Thermo-physical parameters of water and nanoparticles

 (kg m−3)  (j kg−1 K−1) 
¡
W m−1K−1

¢
 (l/k) × 10−6

H2O 997.1 4179 0.613 210

TiO2 4250 686.2 8.9538 9.0

Al2O3 3970 765 40 8.5

CuO 6320 531.8 76.5 18.0

Cu 8933 385 401 16.7

Ag 10500 235 429 18.9

To transform our system from laboratory to wave frame of reference the transformation

between two frames are given by

 =  − ,  =   ( ) = 
¡
  

¢− 

( ) = 
¡
  

¢
 ( ) = 

¡
  

¢
 (2.26)

here ( ) ( ) and ( ) are the velocity components and pressure in the wave frame

respectively. After utilizing these transformation our system of equations take the form




+




= 0 (2.27)

¡
(1− ) + 

¢µ
(+ )




+ 





¶
(+ ) = −


+



(1− )25

∙
2

2
+

2

2

¸
+
¡
(1− ) + 

¢
× ( − 0)  (2.28)

¡
(1− ) + 

¢µ
(+ )




+ 





¶
 = −


+



(1− )25

∙
2

2
+

2

2

¸
 (2.29)
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((1− )() + ())

µ
(+ )




+ 





¶
 = 1

∙
2

2
+

2

2

¸
+Φ

+


(1− )25

"
2

Ãµ




¶2
+

µ




¶2!

+

µ



+





¶2#
 (2.30)

2.3.1 Non-dimensionalization

Non-dimensional parameters and variables for the present flow configuration are introduced as

follows:

 =



  =




  =




  =




  =




  =






 =
1


  =

2


  =

 − 0

0
 Re =






Pr =




  =
2

0
  = Pr  =

2Φ

0



 =
0

2


  =




  = −


 (2.31)

After utilizing the above mentioned non-dimensional quantities we get

Re3

µ
(



+ 1)

2


− 



2

2

¶
= −


+1

µ
2

3

2
+

3

3

¶
+2 (2.32)

3Re3

µ
−(


+ 1)

2

2
+





2



¶
= −


+ 21

µ
−2

3

3
− 3

2

¶
 (2.33)

PrRe4

µ
(



+ 1)




− 







¶
= 1

µ
2
2

2
+

2

2

¶
+ 

+


(1− )25

⎡⎢⎣ 22
µ³
− 2



´2
+
³

2


´2¶
+
³
−2 2

2
+ 2

2

´2
⎤⎥⎦ (2.34)

2

2
= 0




= 0 at  = 0 (2.35)




= −1  = 0 at  =  (2.36)
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1 =
1

(1− )25
 2 = 1− + 

Ã
()

()

!


3 = 1− + 

µ




¶
 4 = 1− + 

Ã
()

()

!


1 =
 + 2 − 2( −)

 + 2 + ( −)
used for Maxwell’s model and

1 =
 + (− 1) − (− 1)( −)

 + (− 1) + ( −)
used for Hamilton-Crosser’s model.(2.37)

The wall shape in dimensionless form is

() = 1 +  cos(2) (2.38)

Here  represents the wave number,  the dimensionless amplitude of peristaltic wave at walls,

 represents the dimensionless pressure, Re, Pr,  and  represent the Reynolds, Prandtl,

Eckert and Brinkman numbers respectively.  denotes the heat generation or absorption para-

meter.

Applying long wavelength and small Reynolds number approximation ultimately Eqs. (232)−
(234) become




= 1

3

3
+2 (2.39)




= 0 (2.40)

1
2

2
+



(1− )25

µ
2

2

¶2
+  = 0 (2.41)

Dimensionless flow rates in the laboratory (= 

) and wave frames  (= 


) are related by

equation

 =  + 1 (2.42)

where  and  represent the dimensional flow rates in the laboratory and wave frames respec-

tively and

 =

Z 

0




 (2.43)
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The boundary conditions in the dimensionless form are defined as

 = 0,
2

2
= 0




= 0 at  = 0

 =  ,



= −1  = 0 at  =  (2.44)

Now we cross differentiate the Eqs. (239) and (240) and get the following Eq.

1
4

4
+2




= 0 (2.45)

Now we solve the Eqs. (241) and (245) numerically by NDSolve of MATHEMATICA with

boundary conditions given in Eq. (244). Results are analyzed physically via graphs.

2.4 Discussion

Via change in nanoparticle volume fraction numerical values for the axial velocity at the

center of channel when  = 30  = 07  = 1  = 07  = 03 and  = 25.

Table 2.1

Nanoparticles  = 0.01  = 0.01  = 0.02  = 0.02

(0) for Maxwell (0) for H—C (0) for Maxwell (0) for H—C

TiO2 0.822144 0.809994 0.783753 0.762341

Al2O3 0.818989 0.800684 0.778032 0.746314

CuO 0.821373 0.8018 0.782426 0.748403

Cu 0.822213 0.801484 0.783979 0.747948

Ag 0.823961 0.80313 0.787197 0.750856

Nanoparticles  = 0.05  = 0.05  = 0.1  = 0.1

(0) for Maxwell (0) for H—C (0) for Maxwell (0) for H—C

TiO2 0.685082 0.647393 0.561421 0.516771

Al2O3 0.674205 0.620556 0.547001 0.486308

CuO 0.682959 0.624876 0.559468 0.492701

Cu 0.686085 0.624521 0.56397 0.492973

Ag 0.692459 0.629783 0.572938 0.499696
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Via change in nanoparticle volume fraction numerical values for the temperature at the center

of channel when  = 30  = 07  = 1  = 07  = 03 and  = 25.

Table 2.2

Nanoparticles  = 0.01  = 0.01  = 0.02  = 0.02

(0) for Maxwell (0) for H—C (0) for Maxwell (0) for H—C

TiO2 4.2984 4.20839 4.15376 3.98999

Al2O3 4.27595 4.14036 4.11178 3.86923

CuO 4.27713 4.13269 4.11343 3.85522

Cu 4.27606 4.12336 4.1112 3.83866

Ag 4.27885 4.12574 4.11608 3.84245

Nanoparticles  = 0.05  = 0.05  = 0.1  = 0.1

(0) for Maxwell (0) for H—C (0) for Maxwell (0) for H—C

TiO2 3.77532 3.45692 3.27644 2.82643

Al2O3 3.68751 3.23417 3.13838 2.52572

CuO 3.68803 3.20668 3.13367 2.48647

Cu 3.6821 3.17624 3.12201 2.44574

Ag 3.6905 3.18144 3.13169 2.45034

In this section analysis of obtained numerical results is done. Our main focus is to com-

pare the results obtained in the case of two thermal conductivity models i.e. Maxwell and

Hamilton-Crosser. Moreover analysis is also done using five different nanofluids. For the sake of

comparison of effective thermal conductivity between two phase models (Maxwell and Hamilton-

Crosser) and by using different nanoparticles  22 is plotted. It is observed through the

figure that effective thermal conductivity estimated through the Hamilton-Crosser model is

greater than the Maxwell model. Moreover the difference in value of effective thermal con-

ductivity become larger when the nanoparticle volume fraction become enlarge. Also, this

difference between the values of effective thermal conductivity of two models become larger

when the nanoparticle with high thermal conductivity are utilized.
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2.4.1 Analysis of velocity profile

In this subsection examination of numerical values for axial velocity at the channel’s center is

done. The values of axial velocity at the center of the channel for the case of both effective

thermal conductivity models are presented through the Table 2.1. Observations show that

the axial velocity at the center of the channel is greater for Maxwell model than Hamilton-

Crosser model in all the cases when the nanoparticle volume fraction varies. Moreover when

the metallic nanoparticles are used, the difference between the values obtained by two models

become larger than the metallic oxides nanoparticles. Furthermore such difference is also larger

when nanoparticles volume fraction get larger values.

2.4.2 Analysis of temperature profile

The temperature profile at the center of channel is analyzed through the numerical data given

in Table 2.2. It is examined through the table that the temperature profile at the center of the

channel shows less values in the case of Hamilton-Crosser model as compared to that of Maxwell

model. It is also noticed that when we increase the volume fraction of the nanoparticles in the

nanofluid the difference between the values estimated by utilizing the two thermal conductivity

models become large. Moreover for metallic particles the difference between estimated values

of two models is larger than the metallic oxides ones.

2.4.3 Heat transfer rate

To see the behavior of nanoparticles volume fraction on the heat transfer rate at the wall for five

different type of nanoparticles used in the analysis  23−27 are drawn. These figures also
give the comparison of the values estimated by the two thermal conductivity models. The row of

the bars present the value predicted by the Maxwell model of thermal conductivity whereas the

second row of the bars represent the values for Hamilton-Crosser model. It is examined through

these graphs that the heat transfer rate at the wall predicted by Hamilton-Crosser model is

greater than Maxwell model for all the nanoparticles used in the analysis. It is also noticed that

heat transfer rate at the wall increases when volume fraction of the nanoparticles enlarged. Also

heat transfer rate is higher for the nanoparticle with high thermal conductivity. The difference

between the values of the two model increases when nanoparticle volume fraction is enhanced.
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This difference also increases when nanoparticles with greater thermal conductivity value is

used.

 22 Effective thermal conductivity for Maxwell’s and Hamilton-Crosser’s model
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 23 Change via nanoparticle volume fraction in heat transfer rate at the wall (−



0()) for 2-water nanofluid when  = 30  = 07  = 0  = 07  = 03 and  = 25
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 24 Change via nanoparticle volume fraction in heat transfer rate at the wall (−



0()) for 23-water nanofluid when  = 30  = 07  = 0  = 07  = 03 and  = 25
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 25 Change via nanoparticle volume fraction in heat transfer rate at the wall (−



0()) for -water nanofluid when  = 30  = 07  = 0  = 07  = 03 and  = 25
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 26 Change via nanoparticle volume fraction in heat transfer rate at the wall (−



0()) for -water nanofluid when  = 30  = 07  = 0  = 07  = 03 and  = 25
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 27 Change via nanoparticle volume fraction in heat transfer rate at the wall (−



0()) for -water nanofluid when  = 30  = 07  = 0  = 07  = 03 and  = 25
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Chapter 3

A model for an application to

biomedical engineering through

nanoparticles

3.1 Introduction

Main purpose of this chapter is to analyze partial slip conditions on the mixed convective

peristaltic flow of water based nanofluids in a vertical asymmetric channel. Viscous dissipation

and heat generation/absorption effects are present. Problem is solved by utilizing the lubrication

technique. Five types of nanofluids are utilized in the analysis comprising of nanoparticles

namely Titanium oxide or titania (TiO2), Aluminum oxide or Alumina (Al2O3), Copper oxide

(CuO), Copper (Cu) and Silver (Ag) with water as base fluid. Study is based on the comparison

of two effective thermal conductivity models namely as Maxwell model of thermal conductivity

and Hamilton-Crosser model of thermal conductivity. Effects of slip parameters on the axial

velocity and temperature are examined for all the nanofluids considered in the problem. Further

the impact of nanoparticle volume fraction on the axial velocity profile, temperature distribution

and heat transfer rate at the wall is analyzed for the two thermal conductivity models. Further

NDSolve is employed for the computations.
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3.2 Mathematical formulation

We examine the two dimensional flow of an incompressible nanofluid in an asymmetric vertical

channel of width 1 + 2. Two sinusoidal waves of speed  having the small amplitudes 1 and

1 with wavelength  induces the flow in channel (  31). The shapes of the walls are

given by the expression defined below:

 = 1

¡
 

¢
= 1 + 1 cos

2



¡
 − 

¢
 at right wall, (3.1)

 = 2

¡
 

¢
= −2 − 1 cos(

2



¡
 − 

¢
+ ) at left wall. (3.2)

Fig. 3.1: Schematic diagram

Here the walls of the channel 1

¡
 

¢
and 2

¡
 

¢
are in the region   0 and   0 with

amplitudes 1 and 1 respectively. The phase difference between the two waves is depicted by

the notation  whose range varies between 0     and  is use for the time. Moreover

following condition must satisfy by 1, 1, 1, 2 and 

21 + 21 + 211 cos   (1 + 2)
2
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The constant temperature 0 and 1 ( 0) are maintained at the respective walls 1

¡
 

¢
and 2

¡
 

¢
. The velocity field for the two dimensional flow configuration is represented by

[
¡
  

¢
,
¡
  

¢
 0].

The governing system of equations for the considered flow is




+




= 0 (3.3)

 (



+ 




+ 




) = − 


+ 

∙
2


2
+

2


2

¸
+() ( − )  (3.4)

 (



+ 




+ 




) = −


+ 

∙
2


2
+

2


2

¸
 (3.5)

() (



+ 




+ 




) = 

∙
2


2
+

2


2

¸
+Φ

+

"
2

Ãµ




¶2
+

µ




¶2!

+

µ



+





¶2#
 (3.6)

The slip conditions at the walls in the fixed frame of reference are given by

 − 
¡
1 

¢
= e ∗ 1 ∗ , at  = 1


¡
2 

¢−  = e ∗ 1 ∗ , at  = 2 (3.7)

 −  + e ∗ 1 ∗ 


= 0 at  = 1

 −  − e ∗ 1 ∗ 


= 0 at  = 2 (3.8)

where  and  represent the velocity and temperature at the wall respectively. Shear stress

is represented by  whereas the dimensional form of slip parameters for the velocity and

temperature are denoted by 1 and 1 respectively.
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The transformation between fixed and moving frame of reference is given by

 =  − ,  =   ( ) = 
¡
  

¢− 

( ) = 
¡
  

¢
 ( ) = 

¡
  

¢
 (3.9)

Applying these transformation our system of equations and boundary conditions become




+




= 0 (3.10)

¡
(1− ) + 

¢µ
(+ )




+ 





¶
(+ ) = −


+



(1− )25

∙
2

2
+

2

2

¸
+
¡
(1− ) + 

¢
× ( − )  (3.11)

¡
(1− ) + 

¢µ
(+ )




+ 





¶
 = −


+



(1− )25

∙
2

2
+

2

2

¸
 (3.12)

((1− )() + ())

µ
(+ )




+ 





¶
 = 1

∙
2

2
+

2

2

¸
+Φ+



(1− )25

"
2

Ãµ




¶2
+

µ




¶2!

+

µ



+





¶2#
 (3.13)


¡
 1

¢
+ + e ∗ 1 ∗  = 0, at  = 1


¡
 2

¢
+ − e ∗ 1 ∗  = 0, at  = 2 (3.14)

 + e ∗ 1 ∗  = 0 at  = 1 (3.15)

 − e ∗ 1 ∗  = 1 at  = 2 (3.16)
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Dimensionless form of variables and parameters are defined as

 =



  =



1
  =




  =




  =

1


 1 =

1

1
 2 =

2

1


 =
2

1
  =

1

1
  =

1

1
  =

21


  =

 − 

1 − 0
 Re =

1




Pr =




  =
2

 (1 − 0)
  = Pr  =

21Φ

(1 − 0)

  =
1
1


 =
1

1
  =

 (1 − 0)
2
1


  =




  = −


 (3.17)

Here  represents the wave number,  and  are the dimensionless amplitudes of peristaltic wave

at walls,  (= 1+0
2
) is the mean temperature,  represents the dimensionless pressure, Re,

Pr,  and  represent the Reynolds, Prandtl, Eckert and Brinkman numbers respectively. 

denotes the heat generation or absorption parameter. Moreover dimensionless slip parameters

for velocity and temperature are defined by  and  respectively.

Using non-dimensional variables, the governing mathematical problem is

Re3

µ
(



+ 1)

2


− 



2

2

¶
= −


+1

µ
2

3

2
+

3

3

¶
+2 (3.18)

3Re3

µ
−(


+ 1)

2

2
+





2



¶
= −


+ 21

µ
−2

3

3
− 3

2

¶
 (3.19)

PrRe4

µ
(



+ 1)




− 







¶
= 1

µ
2
2

2
+

2

2

¶
+ 

+


(1− )25

⎡⎢⎣ 22
µ³
− 2



´2
+
³

2


´2¶
+
³
−2 2

2
+ 2

2

´2
⎤⎥⎦ (3.20)
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1 =
1

(1− )25
 2 = 1− + 

Ã
()

()

!


3 = 1− + 

µ




¶
 4 = 1− + 

Ã
()

()

!


1 =
 + 2 − 2( −)

 + 2 + ( −)
used for Maxwell’s model and

1 =
 + (− 1) − (− 1)( −)

 + (− 1) + ( −)
used for Hamilton-Crosser’s model.(3.21)

Flow rates in the laboratory (= 
1
) and wave frames  (= 

1
) in non-dimensional form are

corelated by equation

 =  + 1 +  (3.22)

where  and  show the dimensional flow rates in the laboratory and wave frames respectively

and

 =

Z 1

2




 (3.23)

The dimensionless form of considered boundary conditions become

 =


2
,




+



(1− )25
2

2
= −1  + 




= −1

2
 at  = 1

 = −
2
,




− 

(1− )25
2

2
= −1  − 




=
1

2
 at  = 2 (3.24)

where the dimensionless form of walls are written as

1() = 1 +  cos(2)

2() = −−  cos(2+ ) (3.25)

In view of lubrication approach our system of Eqs. and boundary conditions become




= 1

3

3
+2 (3.26)




= 0 (3.27)

40



1
2

2
+



(1− )25

µ
2

2

¶2
+  = 0 (3.28)

 =


2
,
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
+



(1− )25
2

2
= −1  + 




= −1

2
 at  = 1

 = −
2
,




− 

(1− )25
2

2
= −1  − 




=
1

2
 at  = 2 (3.29)

The above mentioned system with the corresponding boundary conditions in Eq. (3.29) are

solved numerically with the help of NDSolve of MATHEMATICA.

3.3 Analysis and discussion

This section is prepared to examine the effects of different embedded parameters on the axial

velocity, temperature and heat transfer rate at the wall. Analysis include the comparison of

axial velocity profile, temperature distribution and heat transfer rate at the wall for the case of

considered two effective thermal conductivity models.

Fig. 3.2 is plotted to observe the comparison of the effective thermal conductivity of the

nanofluids estimated by the Maxwell’s and Hamilton-Crosser’s models. It is observed from

Fig. that the effective thermal conductivity anticipated by Hamilton-Crosser’s model is greater

than the Maxwell’s model for all nanoparticles used. Likewise by increasing the nanoparticle

volume fraction the difference between the effective thermal conductivity predicted by the two

models became large. For metallic particles such difference is greater than the metallic oxides

nanoparticles.

Figs. (3.3-3.7) depict the velocity profile for five different nanoparticles (TiO2 Al2O3, CuO,

Cu, Ag), for two considered model i-e Maxwell’s and Hamilton-Crosser’s. It can been seen from

Figs. that the axial velocity is maximum near the center of the channel. It can also be observed

that value of axial velocity decreases by enhancing the volume fraction of nanoparticles. The

fact behind this behavior is that by increasing the nanoparticles volume fraction the resistance

to the flow increases and the fluid can not attain the high values of velocity. It is illustrated

by the Figs. that the values of axial velocity near the center of channel is higher for Maxwell’s

thermal conductivity model in comparison to Hamilton-Crosser’s thermal conductivity model.
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This difference is enhanced as we increase the volume fraction of nanoparticles. Moreover for the

nanoparticles with high thermal conductivities like metallic particles such difference enhances.

Figs. (3.8-3.12) elucidate the velocity profile for five nanofluids while velocity slip parameter

is varying. It can be examined that with an increase in the velocity slip parameter the maximum

velocity of the nanofluid decreases.

Figs. (3.13-3.17) illustrate the behavior of temperature profile for different nanoparticles

when their volume fraction  is varying. The results are discussed for Hamilton-Crosser’s and

Maxwell’s model. It can be noticed that the values of temperature decreases with an increase

in nanoparticles volume fraction. The reason of decreasing the temperature profile is the high

thermal conductivity of the nanoparticles which enhanced the heat transfer rate, as a result

temperature decreases. Moreover the values of temperature for Maxwell’s thermal conductivity

model is higher than the Hamilton-Crosser’s model in all cases. It is concluded from the

results that with enhancement in nanoparticles volume fraction such difference widens. Also by

using the nanoparticles with high thermal conductivities the difference between the two models

became large.

Figs. (3.18-3.22) show the effect of thermal slip parameter on temperature. Clearly it can

be seen that with an increase in the thermal slip parameter temperature of the fluid increases

uniformly throughout the channel. Physically the thermal slip parameter appear because of

the difference in the temperature of the boundary and the fluid near at the interface.

Figs.( 3.23-3.27 ) are sketched to examine the heat transfer rate at the wall for different

nanoparticles by altering the nanoparticle volume fraction for two effective thermal conductivity

models (i-e Maxwell’s and H-C’s). The front row of the bars represents the values of heat transfer

rate at the wall for Maxwell’s model whereas the back row is for the heat transfer rate at the

wall for Hamilton-Crosser’s model. It is examined from the Figs. that the heat transfer rate at

the wall enhances by increasing the volume fraction of nanoparticles.

Furthermore, it is observed that the values of Hamilton-Crosser’s model is greater than

the values of Maxwell’s model. So we concluded that the difference in the values of Maxwell’s

and Hamilton-Crosser’s model increases by increase in nanoparticles volume fraction and heat

transfer rate is higher for the nanoparticle with high thermal conductivity.
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 32 Effective thermal conductivity for Maxwell’s and Hamilton-Crosser’s model
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 33 Variation of axial velocity for TiO2 for change in  when  = 07  = 06  = 2

 = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25

  34 Variation of axial velocity for Al2O3 for change in  when  = 07  = 06  = 2

 = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25
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 35 Variation of axial velocity for CuO for change in  when  = 07  = 06  = 2

 = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25

  36 Variation of axial velocity for Cu for change in  when  = 07  = 06  = 2

 = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25
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 37 Variation of axial velocity for Ag for change in  when  = 07  = 06  = 2

 = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25

  38 Variation of velocity for TiO2 for change in velocity slip when  = 07  = 06

 = 2  = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25
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 39 Variation of velocity for Al2O3 for change in velocity slip when  = 07  = 06

 = 2  = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25

  310 Variation of velocity for CuO for change in velocity when  = 07  = 06  = 2

 = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25
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 311 Variation of velocity for Cu for change in velocity slip when  = 07  = 06

 = 2  = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25

  312 Variation of velocity for Ag for change in velocity slip when  = 07  = 06

 = 2  = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25
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 313 Variation of temperature for TiO2 for change in  when  = 07  = 06  = 2

 = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25

  314 Variation of temperature for Al2O3 for change in  when  = 07  = 06  = 2

 = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25
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 315 Variation of temperature for CuO for change in  when  = 07  = 06  = 2

 = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25

  316 Variation of temperature for Cu for change in  when  = 07  = 06  = 2

 = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25
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 317 Variation of temperature for Ag for change in  when  = 07  = 06  = 2

 = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25

  318 Variation of temperature for TiO2 for change in thermal slip when  = 07  = 06

 = 2  = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25
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 319 Variation of temperature for Al2O3 for change in thermal slip when  = 07

 = 06  = 2  = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25

  320 Variation of temperature for CuO for change in thermal slip when  = 07  = 06

 = 2  = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25
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 321 Variation of temperature for Cu for change in thermal slip when  = 07  = 06

 = 2  = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25

  322 Variation of temperature for Ag for change in thermal slip when  = 07  = 06

 = 2  = 08  = 0  = 07  = 03  = 01  = 01  = 30  = 25
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 323 Change via nanoparticle volume fraction in heat transfer rate at the wall

(−


0(1)) for TiO2 -water nanofluid when  = 07  = 06  = 2  = 08  = 0

 = 07  = 03  = 01  = 01  = 30  = 25
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 324 Change via nanoparticle volume fraction in heat transfer rate at the wall

(−


0(1)) for Al2 O3-water nanofluid when  = 07  = 06  = 2  = 08  = 0

 = 07  = 03  = 01  = 01  = 30  = 25
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 325 Change via nanoparticle volume fraction in heat transfer rate at the wall

(−


0(1)) for CuO- water nanofluid when  = 07  = 06  = 2  = 08  = 0

 = 07  = 03  = 01  = 01  = 30  = 25
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 326 Change via nanoparticle volume fraction in heat transfer rate at the wall

(−


0(1)) for Cu-water nanofluid when  = 07  = 06  = 2  = 08  = 0  = 07

 = 03  = 01  = 01  = 30  = 25
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 327 Change via nanoparticle volume fraction in heat transfer rate at the wall

(−


0(1)) for Ag-water nanofluid when  = 07  = 06  = 2  = 08  = 0  = 07

 = 03  = 01  = 01  = 30  = 25

3.4 Conclusions

Here consideration is given to the mixed convection peristaltic transport of water based nanoflu-

ids with velocity and thermal slip conditions in an asymmetric channel. The main observations

of the analysis are:

• By adding the nanoparticles, fluid’s maximum velocity decreases.

• Increase in velocity slip parameter decreases the velocity of the nanofluid near the center
of channel.

• Thermal slip parameter and nanoparticles volume fraction  show opposite behavior for

temperature .
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• The heat transfer rate at the walls is enhanced when the nanoparticles with high thermal
conductivity are used.

• Greater values of heat transfer for Hamilton-Crosser’s model than the Maxwell’s model
shows that the cylindrical shaped nanoparticles enhanced the heat transfer rate more than

the spherical shaped nanoparticles.

• The difference of values of the two models widens when we increase the nanoparticles
volume fraction.
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