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Preface

These privacy, security, and accessibility remain unchanged but have evolved to include

additional criteria. Not only should data be encrypted while it is stored on a computer,

but also when it is being transmitted to and from other machines.

Cryptology refers to the study of techniques for securing communications against third

parties (referred to as adversaries). It is further divided into two subfields called Cryp-

tography and Cryptanalysis. The former relates to the use and practice of the technolo-

gies needed to create secure communication protocols, while the latter pertains to the

study of how to access encrypted information without gaining access to the key, which

is equivalent to learning how to break cryptographic protocols. It is evident that neither

area would exist without the other, and the interaction between the two is extremely

vital. Historically, this subject was viewed exclusively through the lens of privacy, and

the words ‘cryptography’ and ‘encryption’ were considered synonymous. The intended

purpose of encryption was always to exchange keys between two parties who possess

the same key (symmetric cryptography). With the development of computers, modern

cryptology evolved in numerous directions, offering today a wide range of protocols,

including public-key cryptography, authentication schemes, zero-knowledge methods of

identification, and so on.

Cryptography has received a lot of attention in the last several decades, and many new

areas of study have been created as a result of concerns about the safety of sensitive in-

formation. Numerous proposals for data security techniques were made by researchers,

each one built on a unique mathematical framework. The goal of these methods is to

prevent unauthorized parties from accessing sensitive information by rendering it un-

intelligible. To create confusion in the input data up to a certain degree, most classic

symmetric cryptosystems, such as Advance Encryption Standard (AES), International
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Data Encryption Algorithm (IDEA), and Data Encryption Standard (DES), effectively

depend on the use of substitution boxes (S-boxes). This means that the effectiveness of

these systems is almost entirely dependent on the cryptographic characteristics of their

S-boxes. When it comes to improving encryption’s robustness, the S-box is crucial.

Elliptic curves (ECs) have been receiving a lot of attention in the cryptography commu-

nity as of late, and are being included in some of the most secure cryptosystems available.

Algorithms for building S-boxes using elliptic curves have been devised by certain cryp-

tographers. built 8x8 S-boxes using an elliptic curve over an ordered isomorphic elliptic

curve and typical orderings on a class of Mordell elliptic curves over a finite field. For a

particular elliptic curve, all of these elliptic curve-based techniques can only produce a

single S-box, in either x or y coordinates.

This thesis is arranged in a way that the definitions and introductory ideas introduced in

Chapter 1, are crucial to understanding the overall argument of the thesis. Chapter

2, contains the research behind the construction of S-boxes using Mordell elliptic curves.

Chapter 3, has explained a model approach for building S-boxes via elliptic curves over

a Galois field. Lastly, Chapter 4, contains a detailed comparison of the new S-boxes to

various already-in-place schemes and conducts a thorough security study of their design.
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Chapter 1

Introduction to Cryptography

1.1 Introduction

Two Greek terms are the source of the English word "cryptology", "crypt" means "secret"

in origin, and "logos" originates from "word" (words). So, cryptology is the study of

how to send data in a safe and secure way. For secret writing and sharing data, we

use the word cryptography. Cryptography is the simple meaning of securing data or

messages with the help of some codes, so only those who read or understand our data

which we choose ourselves. It is a deliberate attempt to confuse or diffuse information

so that opponents do not have access to confidential data[25]. It was just about the

security of connectivity between the two parties. Cryptography is a technique in which

we use codes to secure data only those who can decipher will understand our messages

or data. Cryptography works as a confidentiality we use mathematically some strategies

to secure the records against some counterattacks. Therefore, we use cryptography to

find secure and safe ways to convey data. In the past cryptography was a slow process

of encryption and decryption with the help of some secret keys[1]. The following are

typical reasons why businesses use cryptography. Information delivered to the target

user must be able to reach them known as Privacy. The information can’t be changed

while it’s being saved or sent from the sender to the recipient is known as Reliability.

The sender cannot later reverse or dispute the material once it has been sent is known

as Non Repudiation. Both the sender and the recipient must confirm their identities

before sending or receiving any messages is known as Authentication.
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Figure 1.1: Basic flow of cryptography

1.1.1 Security Purposes

Three primary purposes of network protection are

1) Confidentiality

2) Integrity

3) Availability

These three foundations of network protection are often represented as a CIA triangle[10]

Figure 1.2: CIA

Confidentiality, "Confidentiality" is the first goal of network protection. Protecting

sensitive organizational data from unauthorized parties is the goal of confidentiality.

Only intended and authorized individuals get access to information thanks to network
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security’s confidentiality-related components. Only those who are authorized to use

the information should have access to it. Integrity, effective information updates are

needed. The balance of a customer’s account must be changed if they deposit money

into or withdraw money from one bank. To maintain integrity, modifications must only

be made by authorized parties through established procedures. An integrity breach is

not always the consequence of malevolent activity; a platform failure, such as a power

outage, could potentially result in unintended changes to some data. Availability, the

third element of privacy is data accessibility, which guarantees that information created

and held by an organization is available to authorized parties. Data has no value if it

is not available. Regular updates are required, which suggests that only people with

permission should have access to the data. Information loss can be as damaging to a

business as confidentiality or integrity violations. Think about the effects, for instance,

if bank customers couldn’t access their accounts to make payments.

1.1.2 Basic Terms in Cryptography

Below are a few fundamental terms in cryptography.

Plaine Text describes a message that doesn’t need any extra tools or techniques to read

and interpret. Cipher text is the encrypted data formed from encrypting Cipher Text.

Encryption Encryption is a method of encrypting data in plain text for protection.

The method used to convert data returning to where it started is called Decryption.

There must be a secret code that transforms a encode the message into a code is called

Key. Encrypting and decrypting using the same key in order to save time and effort

using Symmetric Key. Encryption is performed using the public key, while decryption

is performed using the private key in Asymmetric Key .

1.1.3 Cryptography Distribution

Symmetric and asymmetric are the two important cryptography classes[15].

1.1.3.1 Symmetric Cryptography

Many people use the phrase "symmetric cryptography" to refer to the situation when two

parties both encryption and decryption should be performed using the same secret key.
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Data may be encrypted (encoded) and decrypted (decoded) using symmetric encryption,

which only requires a single key. It is the most traditional and well-known method of

encryption. The message’s private key could be a word, a number, or a string of letters.

Both parties are fully aware of the key, the process of encoding and decoding messages

involves the use of a specific technique. The field of symmetric key cryptography includes

a wide range of techniques such as Block Cipher and Stream Cipher.

1.1.3.2 Asymmetric Cryptography

There are two separate keys given. Both the encryption and decryption processes need

just one key (the public key) to work. Asymmetrical public key cryptography encrypts

data using a pair of keys (public key), and a matching private key is used to decode the

data. Asymmetric encryption is sometimes referred to as "public cryptography" because

the user typically matches both keys in the pair, one of which is made public while the

other is kept private. Asymmetric key cryptography comes in a few different flavors as

RSA, DSA, and Elliptic Curve Cryptography (ECC)

Figure 1.3: Asymmetric key encryption

1.1.3.3 Hash Function

In order to obtain a fixed-length output from an input message of any length, hash

functions are algorithms. Creating a hash is sometimes referred to as the hash message

from a numerical input as a mathematical equation. This approach only works one

way and doesn’t call for a key. A hash function uses the current block array as input

and produces an output depending on what happened in the previous iteration for each

iteration[29]. Hash functions include, for instance:
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i) MD5, also known as Message Digest 5, is a widely used cryptographic hash function.

ii) The Secure Hash Algorithm, often known as SHA

Figure 1.4: Symmetric Encryption

Figure 1.5: Hashing

1.2 Block and Stream Cipher

There are two primary divisions. There are two types of ciphers block and stream used

in literature to group acceptable Cipher. Here are some detail about block cipher and

stream cipher.

1.2.1 Block Cipher

A block cipher is a kind of cipher that encrypts a group of bytes of plaintext at once using

a single key. The bits of plain text are encrypted one block at a time using a block cipher

using a single key. This may be seen as the inverse of a stream cipher. If you’re using a

block cipher, for instance, encrypt the first sentence of this paragraph before continuing

on. This is how many times a block cipher will have to go through to encrypt the whole

lecture. This procedure will continue until the entire paragraph has been encrypted.

The stream cipher first encrypts the first letter of the first paragraph before going on

to the next paragraph in the same paragraph. Block ciphers are used more frequently
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compared to stream ciphers in reality, and this is true, especially for encrypting computer

communication via the Internet. For instance, a typical block cipher uses keys of the

default length to encrypt AES 128-bit blocks: 128, 192, or 256 bits. Block cipher like the

(PRP) pseudo-random permutation family that operates on block specific size of bits

1.2.2 Stream Cipher

The procedure of encrypting and decrypting data using a stream cipher is taken out one

symbol at a time. Bits are encrypted one at a time using a symmetric or secret key

encryption process known as a stream cipher. When using a stream cipher, the same bit

or byte of plain text will encrypt a new bit or byte each time.

1.3 Cryptanalysis

The science and art of cryptosystem cracking is cryptanalysis. Modern cryptosystems

depend on cryptanalysis.[26]. It is about finding the right price for certain securities [8].

Cryptanalysis refers to the study of ciphers. Any cryptosystem’s performance may be

better examined with the help of a security analysis. Some types of cryptanalysis attacks

are given in below [38].

Figure 1.6: Cryptanalysis

1.3.1 Known Plaintext Analysis (KPA)

The attacker has access in this attack scenario to specific original messages and cipher

text data and uses that knowledge to try to anticipate the private key.
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1.3.2 Chosen Plain text Attack (CPA)

In this kind of attack, the perpetrator picks random plain texts, obtains matching cipher

texts, and then tries to decipher the encryption key. This technique is similar to Known

Plain text attacks (KPA) in that it is reasonably simple to use but has a low success

rate in actual use.

1.3.3 Cipher text only Analysis (COA)

Attackers use this technique to try to figure out both the plain text and the context of

a message and encryption key while only having a partial understanding of the cipher

text. Despite being difficult to carry out, this attack has a higher chance of success than

other ones because it only depends on the cipher text.

1.3.4 Man in the middle Attack (MITM)

In this situation, the communication is intercepted by the attacker or the key as it is

being sent between the parties and illegally acquired it.

1.3.5 Adaptive Chosen Plain text Analysis (ACPA)

This attack bears a resemblance to a chosen plain text attack (CPA). After successfully

deciphering certain texts, the attacker requests the plain texts of additional encrypted

texts.

1.4 The Process of Sending Information from one De-

vice to Another

Data becomes susceptible while in transit, especially if someone trying to interfere, copy,

edit, corrupt, or delete it. Data transport privacy must be protected, which is a key

component of privacy applications. Typically, transmission involves two parties: the

sender and the recipient. Information should be encrypted before being sent to the

sender until it safely reaches the destination in order to achieve effective encryption

throughout transmission. Data is encrypted when it is changed from a conventional,
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readable format to one that is unintelligible to unauthorized parties. Only parties with

permission to access and read the data are able to do so with encrypted data.

1.5 Elliptic Curve Cryptography (ECC)

We will explore the realm of elliptic curve cryptography (ECC ) in this session. ECC

is a potent type of public key cryptography that provides higher security than earlier

encryption techniques still in use today. We’ll examine the elliptic curve’s underlying

mathematics, structure, and operations, as well as the special qualities that make them

effective instruments for cryptography. Elliptic curves have served a variety of functions

throughout history, and we’ll also talk about how they’re used in contemporary tech-

nology. The fact that not all elliptic curves provide the same amount of security is an

important consideration, and we’ll discuss how to use ECC securely in production to

reduce any concerns. In addition, we’ll evaluate the differences between ECC and other

widely used encryption techniques. We will give historical and current applications of

ECC , both in theory and in practice. Notably, ECC has found use in supporting key

exchanges for web browsers and safeguarding domain name system security extensions

(DNSSE). We’ll also look at how ECC is now used in gadgets like smartphones and the

Internet of Things (IoT). Electronic health data (E-health), RFID, smart grids, and iris

recognition are just a few of the current applications for ECC. We will discuss the future

of encryption and the feasibility of ECC in a post-quantum age, addressing the problems

that standard cryptographic systems face due to quantum computing. In this situation,

the adaptability and capability of ECC will be evaluated.

1.5.1 Applications of ECC

1.5.1.1 Exchange of Diffie-Hellman keys

Whitfield Diffie and Martin Hellman came up with the name for the method [28], thereby

the name.

Assume that Ǎ and B̌ desire to converse through an unsafe connection. To employ

a symmetric key system, the assumption is that these persons cannot get together to

share keys that are similar. Then they utilize the symmetric key system to communicate
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with those keys by first attempting to publicly disclose those keys in a safe manner

that prevents anyone from recreating them. This is the procedure through which it is

executed.

1) They choose an elliptic curve E mod a big prime number p to make it difficult to

solve the DLP in the group E(Zp), and the participants choose a point P on E in order

to construct a cyclic subgroup with a very big order that is independent of E(Zp) or one

that is extremely comparable to the group’s natural order.

2) Ǎ chooses a secret integer value from the set r performs rP to determine the position

R and then reports the result R to B̌.

3) likewise, B̌ selects a secret integer value from the set s , computes sP to get the point

S , and then transmits S to Ǎ .

4) A and B, denoted as Ǎ and B̌ may calculate Q by multiplying r by sP . The point

rP multiplies s in this operation. Point Q indicates their common key’s success. An

outsider must solve for r or s using P and R or P and S to get this key. The DLP

intricacy presents this problem. Participants can see E , P ,R , and S but r and s are

private.

1.5.1.2 Elgamal’s Elliptic Curve Work

Tahir Elgamal, An early encryption method that used EC was developed by a trailblazing

computer scientist. The Elgamal public-key encryption technique bears the name of this

pioneer. Elgamal digital signatures were also introduced.[13]. Explain the concept of a

cryptosystem.

Cryptosystem is a five-tupleA five-tuple like (P̌ ,Č ,Ǩ , Ě , Ďˇ,ǧ) describes a cryptosystem,

where:

1)Set P̌ is the clear text,

2)Set Č is the cipher text,

3)Set ǩ is the set of possible keys and Sets ě and Ď are the sets of encryption rules and

decryption rules, respectively.

4) ǧ is an essential condition is that decrypting plain text encrypted in this way should

restore the plain text that was encrypted.

Here is how Elgamal public Key encryption is used when two persons to communicate

using Elgamal public key encryption, persons Ǎ and B̌ complete these steps:
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Ǎ chooses curve E and point P (modZp). With a private integer r , Ǎ calculatesR = rP .

The tuple (E ,Zp, P ,R ) is delivered to B̌, with r now public but still secret.

When sending a message m to Ǎ , B̌ represents it as a point M on E(modZp). A private

integer s is chosen by B̌ and S = sP is calculated. After forming M ∗ = M + sR = M

+ s(rP ), B̌ encrypts the message. S , M ∗ became public after being transmitted to Ǎ . A

retrieves message M from S using the following computations:

rS = r (sP ).

M = (M + srP ) - (rsP ).

Any third party seeking access to the communication must first determine r or s by

solving the DLP of (P ,R ) or (P ,S). It is critical that when B sends a message to A,

it always uses a new private integer s value. If this safety measure is skipped, the

system and the message become vulnerable. The use of modestly sized keys is the

icing on the cake for elliptic curves’ importance. As mobile phones and other low-

power devices increasingly rely on encryption, this quality is becoming more valuable.

The United States government uses elliptic curves for secure internal communications,

Apple’s iMessage uses them for digital signatures, and Bitcoin uses them to confirm

ownership.

1.5.2 RSA and ECC

Initial techniques were based on discrete logarithm problems (DLP ) or integer factoriza-

tion. Important algorithms include the Exchange of Diffie-Hellman Keys protocol and

RSA [8]. R. Rivest, A. Shamir, and L. Adleman invented RSA in 1976 , which is based

on integer factorization. Diffie-Hellman, which was created in 2002 , depends on the

hypothesized DLP . The integer factorization challenge is producing an integer by multi-

plying two significant prime numbers. Depending on how tough the factorized product

is, different techniques exist to solve the integer factorization problem. The DLP is de-

fined using cyclic group elements and modular arithmetic. Let α be a multiplicative

cyclic group Zp generator where p is prime. We know that αi = β. Then the discrete

logarithm problem is to determine "i" When only "α" and "β" are Known[39]. The key

size recommended by the (NIST) for DLP is 1024 bits, requiring a minimum field size

of 1024 bits for secure transmission. Moreover, the computations take a lot of time to

execute due to the size of the keys
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Figure 1.7: Key size NIST

Figure 1.8: NIST key Size

Therefore, an improved approach was necessary for cryptography. The use of an EC was

then introduced, and it was discovered that the DLP can be made more difficult if it is

defined over an EC . The major benefit of using ECs are that the same level of protection

can be obtained with only a 160 -bit field, hence resolving the issue of processing com-

plexity necessary to accomplish the necessary level of security. In this section, we will

discuss EC in depth and discuss how they are formed.

Definition of Elliptic Curve: An elliptic curve E over a field F is given by long

Weierstrass equation[25]

E : Y 2 + α1XY + α2Y = X 3 + α3X 2 + α4X + α5 (1.1)

where α1,α2,α3,α4 and α5 ∈ F. This is the simple representation form of the curve, and

the curve must not have a singular point. The set of points on this EC over F is

(E)F =
{
(x , y) ∈F : Y 2 + α1XY + α2Y = X 3 + α3X 2 + α4X + α5

}
∪ O.

where O is a the infinite point. This particular kind of EC may be modified into two

different forms, which are known as the Medium Weierstrass Equation and the

Short Weierstrass Equation, respectively, by performing the right transformation on
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it.

Medium Weierstrass Equation: When CharF ̸= 2, by using the transformations

below

T =

X = x

Y = y − 1
2
(βx+ γ)

(1.2)

after simplification we get, Medium Weierstrass Equation that is

Y 2 = X3 + α2X
2 + α4X + α6 (1.3)

Short Weierstrass Equation: When CharF ̸= 3, substituting the values

T =

X = x +−1
3
(α2)

Y = y

(1.4)

after simplification, we get the required Short Weierstrass Equation, i.e.

y 2 = x 3 + Ax + B (1.5)

where A and B ∈ F, and

A =
1

3
α2
2 −

2

3
α2
2 + α4.

B =
1

27
α3
2 +

1

9
α3
2 −

1

3
α2α4 + α6.

Examples

a) y2 = x3 − 4x2 − 4x+ 9 (Medium Weierstrass Equation)

b) y2 = x3 + 11x2 + 13x+ 2 (Medium Weierstrass Equation)

c) y2 = x3 − 4x+ 4 (Short Weierstrass Equation)

Graphical View
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Figure 1.9: a)medium Weierstrass equation

Figure 1.10: b) medium

Figure 1.11: c) Short Weierstrass Equation
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1.5.3 Addition Law

Take the elliptic curve E seen in the figure 1.12 and select P and Q as two points on it.

First, a line L Points P and Q are connected by the line L. There are three spots on

E where this line L meets it: P, Q, and R′ . To obtain a new point R′ , we reverse

it along the x-axis, which means multiplying its Y-coordinate by 1. The location R′

is often referred to as the "sum of P and Q", despite the fact that this operation has

nothing in common with traditional arithmetic. We’ll be using the plus sign (’⊕’) to

indicate this peculiar rule for adding. This leads us to the equation P ⊕ Q = R
′

Figure 1.12: The Addition Law on Elliptic Curve E

1.5.4 Elliptic Curve Over Real Numbers

The simplified version of the Weierstrass equation, which is the main focus of our atten-

tion in cryptography, is defined as

y2 = X3 + AX +B (1.6)

This curve is said to be smooth if the discriminant ∆ is nonzero. The smooth Weierstrass

curve is called the elliptic curve. If the field F=R

Y 2 = x3 − 5x+ 4.

A smooth Weierstrass curve, also known as an elliptic curve, is the graphic representation

in figure 1.13 that is free of all edges and points of intersection with itself. It is also

possible to verify the curve’s smoothness using its discriminant, which is ∆ = 4A3 +
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27B2 ̸= 0.

Now, to find the discriminant of the equation which is

y2 = x3 − 5x+ 6.

We get,

4(−5)3 + 27(6)2 = 4(−125) + 27(36) = −500 + 972 = 472 ̸= 0.

Since the discriminant is nonzero, so it is the smooth or singular curve.

Figure 1.13: graph y2 = x3 − 5x+ 6 over the field R

Example: Let E be the EC

y2 = x3 − 15x+ 18 (1.7)

Let P1 = (7, 16) and P2 = (1, 2), Where P1, P2 follow the curve E . The equation

gives us the line L that goes between them.

Y =
7
3

x − 1
3

(1.8)

Substituting 1.8 into 1.7 and solving for x gets the coordinates of the intersections of E

and L.

(
7
3
x− 1

3
)2 = x 3 − 15 x + 18.

49
9

x 2 − 14
9

x +
1
9
= x 3 − 15 x + 18.

x 3 − 49
9

x 2 − 121

9
x +

161
9

= 0.
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This cubic polynomial must have roots. It might be challenging to locate the roots of

a cube polynomial. Because P1 and P2 are in the intersection E ∩ L, we can clearly

deduce that x = 7 and x = 1. The third variable may be determined with the minimum

effort once,

x 3 − 49

9
x 2 − 121

9
x +

161

9
= (x − 7 )(x − 1)(x +

2
9
).

Therefore, Third point of intersection of x and y between E and L is -23
9
.The x -

coordinate is then calculated by putting x=-23
9

into the equation 1.8 using these numbers,

we get R=(-23
9
,-170

27
). At last, R is obtained by reflecting across the x-axis.

P1 ⊕P2 = (−23

9
,
170

27
).

Graphical view of P1 ⊕P2 =R

Figure 1.14: P1 ⊕ P2

Now, to discuss some cases of addition points on an elliptic curve:

case 1

From above example To do the calculations for P1 ⊕P2 . Implicitly differentiating

equation 1.7 for the slope of E at P. Thus

2y
dy

dx
= 3x 2 − 15 .

⇒ dy

dx
=

3x 2 − 15

2y
.
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By putting the point P1= (7,16) above equation we get the slope λ = 33
8
. Hence, the

equation denotes the tangent line to E at point P1 is

L : Y =
33

8
x− 103

8
(1.9)

Now, by putting equation 1.9 in equation 1.7

33
8

x − 103

8
= x 3 − 15x + 18.

x 3 − 1089
64

x 2 +
2919
32

x − 9457
64

= 0.

⇒ (x − 7 )2(x− 193
64

) = 0.

It was simple to factor the cubic equation because the double root of the cubic polynomial,P ’s

x -coordinate, x = 7 , may be found. Now by substituting x = 193
64

in the equation 1.9 for

the line L we get y = - 223
512

, Now switch the sign of y we get the addition of P1 to itself

that is

P1 ⊕ P2 = (
193

64
,
223

512
).

Graphical view of adding a point P to itself:

Figure 1.15: adding point p itself

case 2 Add P = (α, β) and P
′ = (α, -β)

Only at points P and P
′ does the vertical line x = α, which passes through points P

and P
′ , cross the curve E as seen in figure1.16.The current situation presents a chal-

lenge as there is no viable means to attain a third point of intersection. Nevertheless,

an exit strategy is available. One possible solution is to incorporate an additional point

O, brought up to as the "point at infinity" to provide further clarification, we disregard
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the fact that the point in question does not actually reside on any specified vertical line

within the xy plane, and instead adopt the assumption that it does.

P ⊕P′
= 0.

Graphical view of adding points P and P
′ :

Figure 1.16: addition P to P′

case 3 Add P = (α, β) and O

Given that O is located on vertical lines, the intersection of P , O, and P
′ = (, ) on E ,

and the line L connecting P and O If you draw a vertical line across P , you’ll get the

lineL that goes from P to O. To add P to O, we must first reflect P
′ across the X -axis,

which returns us to P . O may be treated as zero when combining elliptic curves since P

+ O = P .

Remark 1: P = (α,β ) denotes a point on the elliptic curve E . Let P = (α,β ) be the

reflection of point P ; we may denote this with the letter P . Keep in mind that if we

define P ⊖ P (or P - P ), it implies that P ⊕ (⊖ P ) ⇒ (α,β ) ⊕ (α,-β ).

Remark 2: If point P joins itself yet again, it signifies that point P has been doubled

by the number N .i.e.

NP = P + P + P + ...+ n times P︸ ︷︷ ︸ .
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Theorem: E must be an EC . The following qualities are satisfied by the addition

law[33]:

a) P ⊕ 0 = 0 ⊕ P = P ∀ P ∈ E

b) P ⊕ (⊖ P ) =0 ∀ P ∈ E

c) ( P ⊕ Q ) ⊕ R = P ⊕( Q ⊕ R ) ∀ P ∈ E

d) P ⊕ Q = Q ⊕ R ∀ P ∈ E

When this rule is put into practice, an abelian group with points in E is created.

Theorem (Algorithm for EC addition). Let an EC

E : y 2 = x 3 + Ax + B.

Where A and B are constants and let P1 = (x1, y1) and P2 = (x2, x2) be two points on

EC E if P1 ̸= P2 then

λ =
y2 − y2
x2 − x1

.

if P1 = P2 then

λ =
3x 2 − A

2y
.

And let

x3 = λ2 − x1 − x2.

y3 = λ(x1 − x3)− y1.

then P1 ⊕ P2 = P3 where P3 = (x3, y3).

1.5.5 Finite Fields and the Elliptic Curve

An elliptic curve E over the field Zp, where p > 3 , the equation is Weierstrass [37]given

below

E : Y 2 + a1XY + a3Y = X 3 + a2X 2 + a4X + a6 .

Where the coefficients a1, a2, a3, a4, a6 ∈ Zp and for each point (X ,Y ) on the curves, the

Co-ordinate (X ,Y )∈ Zp along with a imaginary point O. The partial derivatives must

be satisfied by all of the curve’s points 2Y1 + a1X1 + a3 and 3X 2
1 +2a2X1 + a4 − a1Y1

equals zero simultaneously[9]. The elliptic curve’s non-singularity is determined by the

partial derivative terms.

29



Discriminant: Curve consistency can also be checked by calculating the discriminant

of the curve [32]. Let expressions

β2 = a 2
1 + 4a2.

β4 = a1a3 + 2a4.

β6 = a 2
3 + 4a6 .

β8 = a 2
1 a6 − a1a3a4 + 4a2a6 + a2a 2

3 − a 2
4 .

Let E be a curve over Zp and let , β4, β6 and β8 .

The curve’s discriminant E is represented by ∆ satisfied. The curve E is a non-singular

and EC , if ∆ ̸= 0

∆ = −b22b8 − 8b34 − 2726 + 9b2b4b4.

In Weierstrass form an (EC )E over Fp which is a finite field. p is prime, Char(Fp) ̸= 2, 3

E : x 3 + Ax + B.

where A ,B ∈ Fp discriminant is defined as

∆ = 4A3 + 27B2.

All operations over the field under the modulo prime p.

This discriminant cannot disappear for x3 +Ax + B to have three distinct roots on an

EC . If the discriminant disappears, it shows that two or more roots have fused, giving

the curve an apex or other irregular shape. Unsmoothed curves are called singular. This

notion will be elaborated upon in the future. The use of singular curves in encryption is

insecure

Theorem: An Elliptic Curve is non-singular if and only if its discriminant is not equal

to zero ∆ ̸= 0[2]

Theorem: In elliptic Curve E : y2 = x3 +Ax+ B over a field F then curve is singular

at point (x,y) if and only if ∆ = 0[2] and they have just singular points

Example: Let Y 2 = x3 + 3x − 2 be an EC and the general formula of its discriminant

∆ = 4A3 + 27B2 and ∆ = 4(3)3 + 27(−2)2 = 216 and ∆ ̸= 0 this curve is not a singular

curve cause its discriminant is not equal to zero, ∆ > 0
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let Y 2 = x 3−3x +2 be an EC and the general formula of its discriminant ∆ = 4A3+27B2

so here are A= -3 and B=2

∆ = 4(−3)3 + 27(2)2 = −108 + 108 = 0.

so the points (1,0) lie on the given curve. Now we take partial derivative in relation to

x and y respectively then

g(x , y)x = 3x 2 − 3.

g(x , y)y = −2y .

therefore g(x , y)x = g(x , y)y = 0. Therefore singular point on this curve is at (1 , 0 ).

1.5.6 Group Order

It was said that the number of points on the EC over the finite field is finite if E is an EC

over the prime field (Zp). The order of an EC is equal to the number of its fixed points.

Point’s Order, let’s say that E is an EC with a point P on it. Let k be a number that

goes up. If KP = O then the order of point P is K . We can find the order of points if

they have any condition of the following

i) An elliptic curve E with a point P on it s.t it’s x -coordinate is zero then its order is

two.

ii) Let P be a point on the EC E s.t the x -coordinates of P and 2P are equal than the

order of P is three.

iii) Let P be a point on the EC E s.t the x -coordinates of P and KP (where K is a least

positive integer with this property) are equal then the order of P is K + 1.

Example 1.5.7.1. Let An Elliptic Curve y2 = x3 + 3x+ 4( mod7 ).the points lies on it

are

{O, (0, 2), (0, 5)(1, 1), (1, 6), (2, 2), (2, 5), (5, 2), (5, 5)(6, 0)} .

There are 10 points lying on EC, so the order of EC is 10.

Now, to find the order of any element, let P = (3, 2), 2P = (3, 5), 3P = O, so that

the order of P is 3. Similarly, we can find the order of any element of elliptic curve.

31



1.6 S-box

A table containing r × s mapping of the form {0, 1}r → {0, 1}s is called S-Box (Substi-

tution Box), where r and s are non-negative integers. A mapping f : {0 , 1}r → {0 , 1} is

said to be a Boolean Function, where r is a non-negative integer. S-box is categorized

into three types

An S-box that sends and receives the same number of data bits is said to be a Straight

S-box. It is the simplest and most fundamental type of S-box. A Straight S-box is an

example, as is the S-box used in AES. It receives fewer bits of data and transmits more

bits. A few of the input or output bits can be copied to create this type of S-box is

known as Expanded S-box. A form of S-box called a Compressed S-box receives

more bits but puts out fewer. An excellent representation of a compressed S-box is the

one found in DES. It receives 6 input bits in one input block and outputs 4 bits from

the same block.

1.6.1 Standards for the Ideal S-Box

A good S-box should be simple to build, support encryption and decryption well, and

protect against plain text assaults. The ideal S-box fulfills a number of criteria estab-

lished by NIST.

1) Balanced S-box

If the truth table of an S-box is equally split between zeros and ones, we say that the

box is balanced.

2) Non Linearity (NL)

Difference between S-boxes actual behavior and the set of all possible affine functions is

what is known as its non-linearity. Having a high non-linearity value makes an S-box

resistant to linear attacks, which are a kind of cryptographic deficiency.

3) Hamming Weight

The quantity of ones within a binary sequence directly correlates to the weight of a

hammer.

4) Strict Avalanche Criteria (SAC)

If you change just one bit in an S-box, it will affect more than half of its transmissions.

5) Higher Order SAC
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A change in more than one bit is a higher degree strict avalanche requirement.

6) Propagation Criteria

For the propagation criteria, SAC and higher-order SAC are combined
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Chapter 2

Literature Review of S-boxes

This chapter is made up of two sections, in which we explain some S-Box construction

techniques. The following article [27] introduces an exciting encryption technique capa-

ble of encrypting various forms of digital data. The proposed scheme relies on a SPN

as its fundamental component. The proposed algorithm utilizes two distinct bijective

mappings. in this part, we discuss the method, a number of replacement boxes with

strong cryptographic features may be generated using elliptic curves (ECs). Due to

evil and suspicious users that interrupt communication, protecting channel or network

data is difficult. They want to know how real users send information. Cryptography,

steganography, and watermarking help secure data transfer.

Digital database generation and multimedia technologies have advanced rapidly, mak-

ing it necessary to safeguard sensitive data from unauthorized access. This may be done

using pictures and generic cryptosystems. Private, conventional, military, and medical

records value images.

Several methods, including chaotic and strategy-based systems, secure picture trans-

mission. These technologies help secure sensitive picture communication and use for so

many purposes.
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2.1 Hasse Theorem

(Hasse’s Theorem). If# Fp denotes how many points there are on an EC over a field of

p elements, then this theorem states that there is a bound on the points as[2],

|#Fp − (P + 1)| ≤ 2
√

P .

Let P be a prime number, and denote this Fp as Fp. Here we characterize the field Fp in

terms of the non-singular EC (a , b, p). a , b ∈ W if and only if a , b ≤ p. If the discriminant

of the EC ∆ = 4A3 + 27B2 (modp) is not zero, then

E(a , b, p) =
[
(x , y) ∈ F 2

p |(y 2 = x 3 + ax + b) ∪∞
]

(2.1)

The numbers a , b, and p stand in for the parameters in the expression E(a , b, p). When

defined over a ring, an elliptic curve EC has a finite number of elements, represented by

#B, with the ith element denoted by i . In elliptic geometry, the total number of elements

#E(a , b, p) is of great importance. Finding the right #E(a , b, p) may be difficult in most

cases. However, Hasse’s theorem [37]may be used to determine a border on #E(a, b, p)

as follows:

P+ 1− 2
√

P ≤ #E(a , b, p)≤P+ 1+ 2
√

P.

Function of injecting rho(x , y) 7→ (xp , yp (modp) through #E(a , b, p) to ρ is termed as

Frobenius function.

2.1.1 Adding Points to an Elliptic Curve

Different concepts, such as addition modulo R and addition modulo P , may be used to

describe ECaddition. An EC over the field R is represented and described by the sum

of points over R , denoted by E(R ).

y2 = x3 +Ax+B.

Having a pair of points

P1(x1, y1),P2(x2 , y2).

on E

E : y 2 = x 3 + Ax +B.
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Introduce a new perspective, called p3.

p1 + p2 = p3.

The given equation illustrates a distinction between this operation and the simple addi-

tion of location coordinates. We’ll start from the beginning, p1, ̸= p2, and neither point

is ∞. Slope is given

m
′
=

y2 − y1

x2 − x1

Consider the scenario where we are given two points, R1 and R2, belonging to the set

of points R. Let R1 be represented as (x1, y1) and R2 as (x2, y2). Our objective is to

perform the addition operation on these two points. To do this, we will examine several

scenarios.

case 1

R1 +R2 =

 R1, if R2 = ∞,

R2, if R1 = ∞
(2.2)

case 2

R1 +R2 =

 ∞, if x1 = x2andy1 ̸= y2

∞, if x1 = x2andy1, y2 = 0
(2.3)

Consider Case 3 for the sum of two points if Scenarios 1 and 2 do not meet. case 3

R1 +R2 =R3 = (x3, y3).

where

x3 = m 2 − x1 − x2.

y3 = m(x1 − x3)− y1.

where m is

m =


y2−y1
x2−x1

, if R1 ̸=R2

3x2−A
2y

, if =R1 =R2

(2.4)

2.2 Method Suggested for Forming S-Boxes

Here, we’ll show you a quick and easy way to generate injective m × n S-boxes from

a large number of unique entities. These S-boxes, which are based on the x and y

coordinates of an elliptic curve (EC ), may be used to protect information that does not
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depend on any other factors. For the suggested method to work, the input values a , b

and p must all be less than 1 . The significance level p is set high enough so that it

provides a reliable statistical analysis of the result of interest.

2.2.1 Algorithm

The following are the five main phases of the suggested S-box generation procedure.

1) Choose any two integers, a and b, from the set W and a prime integer P , where a , b

≤ p − 1.

2) P is set such that there are at least 256 distinct elements in the EC E(a , b, p). Given

that there are precisely 256 unique entries in an S-box in GF (28), this condition is

mandatory

3) Use the equation2.1 to create the points on the given elliptic curve at this step.

E : y2 = x 3 +Ax +B.

4) During this particular stage, a certain elliptic curve point (x , y) is chosen and next

subjected to a bijective transformation. As a result, two unique output values are ob-

tained for every point present on the EC E(a , b, p).

5) At this particular phase, we examine a point (x , y) on an EC . By use of a bijective

transformation, we get two separate output values for each point on the EC E(a , b, p),

with the exception of the point having an x coordinate of 0 . The bijective mappings are

delineated as follows.

E
u(x ,y)
(a ,b,p) = x , y |u =

2(y + 1)
x 2

; (x , y) ∈ E(a , b, p) (2.5)

E
v(x ,y)
(a ,b,p) = x , y |u =

4(y + 1)
x 3

; (x , y) ∈ E(a , b, p) (2.6)

6) Extract the first 256 unique numbers from each of the two specified relations produced

by equations 2.5 and 2.6 in this phase, using different sets
(
E

u(x ,y)
(a ,b,p), Ev(x ,y)

(a,b,p)

)
choose to

form an S-boxes Su(a ,b,p) and Sv(a ,b,p). The suggested method depends on the values in 2.5

and 2.6 having exactly 256 different digits in order to produce an S-box. The proposed

S-box preserves bijectivity. New S-boxes on many elliptic curves are generated using this

method and tabulated for your convenience.

37



Algorithm 1: Elliptic Curves Over a Prime Field for generating S-Boxes.
Input: EC with parameters a , b and a , b≤ p − 1, where p is a prime integer.

Bijectivity is maintained by these mappings.

Output: S − box1, S − box2

1 M1 = {},M2 = {}

2 A = the point (a , b,P);

3 x = A(3 : length(A), 1 );

4 y = A(3 : length(A), 2 );

5 for i = 1 len(x ); do

6 for j = 1 len(y); do

7 u = 2∗(y+1)
x 2

8 v = 4∗(y+1 )
x 2

9 m1(i , :) = s1;

10 m2(j , :) = s2;

11 end for

12 end for

Su(a ,b,p) and Sv(a ,b,p) are two S-boxes produced using the newly suggested scheme and

shown in a 16 × 16 matrix in tables below.

The suggested algorithmic procedure provides the S-box Su(909,230,1723), as shown in Table

2.1.
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Table 2.1: S1

19 140 164 132 154 92 27 196 115 99 199 26 243 108 182 200

43 207 29 227 79 159 100 131 134 73 1 93 65 35 110 57

212 33 251 149 116 83 89 11 142 242 77 98 129 210 112 139

137 136 255 223 194 184 185 7 71 106 219 124 56 201 248 158

225 176 15 202 34 191 244 41 25 16 133 180 143 28 44 55

59 252 113 54 114 135 163 204 66 247 111 171 150 87 8 220

173 105 61 151 147 32 62 168 36 70 236 250 86 82 13 218

145 157 238 246 253 49 209 117 121 58 102 144 170 240 94 2

40 109 186 95 18 52 148 76 213 30 104 119 206 97 60 63

46 193 6 197 222 38 165 48 162 10 84 215 5 37 85 239

217 231 214 103 175 120 178 211 195 50 205 138 128 174 228 14

152 237 161 155 189 49 75 90 22 208 203 192 141 47 125 146

190 187 91 122 170 9 21 101 160 130 153 51 31 230 45 42

234 96 235 107 233 53 241 20 81 17 72 166 80 156 78 226

69 39 188 198 221 181 0 118 169 232 123 24 64 126 3 216

172 4 127 68 183 74 88 224 254 12 229 67 167 245 177 23

The S-box Sv((431,1148,1723) obtained by using the suggested method is shown in Table

2.2.
Table 2.2: S2

4 62 81 75 129 26 21 194 12 225 202 23 102 150 197 33

248 31 226 1 89 99 119 54 130 64 85 146 66 9 56 176

73 181 195 55 187 219 208 185 0 63 79 126 25 162 147 186

222 211 51 61 148 143 77 40 192 193 97 58 114 234 206 250

155 87 154 53 132 224 68 111 158 45 48 214 227 196 14 80

35 34 110 189 165 37 105 210 249 173 113 215 233 88 151 172

156 182 128 46 177 18 93 229 98 209 50 112 142 118 218 164

15 207 116 44 123 140 120 121 29 127 100 122 125 30 96 237

167 169 179 65 239 157 200 106 107 235 78 221 76 43 115 231

124 131 188 134 216 170 144 166 255 108 203 60 36 241 163 201

94 52 5 70 251 205 236 245 39 198 38 22 20 138 191 238

28 11 183 254 47 174 117 160 228 82 10 220 149 109 253 242

72 16 243 13 59 83 135 137 48 42 57 168 8 86 145 213

95 104 190 32 27 67 153 84 212 161 199 41 7 90 17 3

223 244 240 180 175 6 69 19 133 141 103 204 247 74 217 178

184 246 232 159 24 136 101 71 230 139 252 2 92 152 171 91
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The S-box Sv((431,1159,1723) obtained by using the suggested method is shown in Table

2.3.
Table 2.3: S3

16 143 219 121 5 238 204 208 37 75 197 209 170 30 95 188

179 22 77 50 159 255 92 1 119 230 236 63 109 115 99 38

140 34 32 64 8 10 35 135 157 227 65 113 223 112 176 51

48 146 103 228 177 43 181 20 86 3 125 210 247 243 229 201

251 152 244 196 9 97 124 126 145 116 185 184 245 198 62 91

127 53 147 60 193 192 129 52 163 23 100 151 131 114 212 11

102 70 187 83 21 57 203 29 26 153 239 104 132 171 217 175

207 111 180 85 226 93 94 46 206 13 144 49 73 24 221 235

17 78 33 68 211 130 237 232 172 15 215 47 6 4 164 69

41 82 162 25 59 199 142 214 141 154 189 178 72 139 74 254

241 101 36 123 161 27 233 88 169 155 71 160 156 222 252 165

31 166 90 81 98 252 61 250 205 158 117 242 56 248 150 96

108 7 149 79 28 14 220 133 225 58 54 128 136 148 18 87

249 234 40 39 120 190 218 110 167 42 2 44 106 105 138 12

107 182 194 89 186 195 19 67 183 241 45 231 200 55 66 174

84 76 122 246 118 137 202 213 134 191 0 216 224 80 173 168
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Chapter 3

Proposed Scheme for the Construction

of S-box Using Linear Congruent

Generator

3.1 Introduction

Block ciphers typically use S-boxes (Substitution boxes) to introduce non-linearity and

increase both cryptographic security and efficiency. For ordinary attacks like linear and

differential cryptanalysis, this is vital. Any cryptographic usage of an S-box is only as

safe as its creation technique. In this section, The present work provides the algebraic

structure utilized for constructing the S-boxes, as well as the recommended technique.

We will get an S-box with cryptographic properties.

Definition 3.1.1. Mordell Elliptic Curve (MEC ) Among elliptic curves, those of this

type are known as mordell elliptic curves[6].

E : y2 = x 3 + B.

i.e., such an elliptic curve where A = 0

Theorem. MEC over Fp has precisely p + 1 points and the point y-coordinates are

unique

if p > 3[4] is the number P is a prime number and satisfies the congruence P ≡ 2(mod3).
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Example. Consider EC

E : y 2 = x 3 + 4.

and field is finite Fp = F23, where B = 4 These are the total points which lie on the curve.

E(F23) = {O,(0,2),(0,21),(2,14),(2,9),(3,10),(3,13),(6,6),(6,17),(7,5)(7,18),(11,1),(11,22),(13,4)

(13,19),(16,11),(16,12),(17,8),(17,15),(19,3),(19,20),(20,0),(22,7),(22,16)}.

So, # E(F23) = 23. Since the field Fp = F23 and 23 ≡ 2( mod 3) and # E(F23) = p + 1

= 23 + 1 = 24. By definition of the elliptic curve, E is a mordell elliptic curve (MEC )

that satisfies the above theorem

3.2 Linear Congruent Generator (LCG)

LCGs have been put to use in a wide range of contexts. Pseudorandom numbers are gen-

erated by an LCG based on a recurring congruence[21]. The following equation represents

the LCG in its simplest form. It is mostly used in computational fields and simulations.

A linear congruential formula is applied iteratively to the preceding number in the series

to create the sequence. Its general formula is

xn+1 =
(
b ∗ (xn) + a

)
(modn).

In this context, the symbol "xn" denotes the present pseudo-random number in the series,

whereas "xn+1" indicates the following pseudo-random number in the sequence. The

variables b and a are important components of this scheme that have been selected for

the purpose of defining the generator. Modulo is the term that gives back the Quotient

number after division. The produced integers will follow the pattern X0 , X1 , X2 ,...,

where X0 is an initial value (the seed) that must be provided. The values of a, b, m,

and X0 are referred to as the LCG’s parameters. The quality of a linear congruential

generator (LCG) is contingent upon the careful selection of its parameters. In this specific

instance m = 2 n . LCG is computationally more effective and relatively easy to build. The

values of the variables a , c, and m used for the generator determine the unpredictability

and statistical characteristics of the results. is simple and efficient, but the quality of

randomness depends on well-chosen constants. When chosen badly, LCGs may produce

sequences with undesired patterns and correlations, rendering them inappropriate for

some applications that require high-quality random numbers. To guarantee the LCG
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generates a sequence of pseudo-random integers that pass statistical tests for variability

and have desirable qualities for diverse applications, it is necessary to set the constants

with care.

3.3 Scheme Proposed for Making S-Box

In this particular section, we will describe a new proposed scheme to constructing new

S-boxes on mordell elliptic curves. The S-boxes developed with this proposed method

are more customized and secure. The following are the various stages that make up

the proposed method for obtaining an S-box. Initially, we choose a MEC . Whereas its

general form is E : y 2 = x 3 + B. Where A = 0. But we choose M-EC over prime P.

When we choose a M-EC y 2 = x 3 + B where B is belong to prime field P and P ≡

2(mod 3 ). The prime which we choose must be greater or equal to 257 . These elements

are unique or distinct elements because we generate 8 × 8 S-box which consists of 256

distinctive numbers. When we choose 256 unique elements y ∈ {0 ,255} in (x ,y) pair

form. Now we will apply the linear congruent generator (LCG) method which obtains

points from MEC where xn+1 = {256 points} which is the absolute value of (x -y). Where

b is any prime less than prime P. a is the
(
inverse of (b)

)
modulo P. xn+1 ={256

points } and EC points =(x ,y)→ 256 .Merge points of LCG in EC as new points (x ,y ,z ).

The following are given below

1. The M-EC

E : y 2 = x 3 + B over P .

Where P is field which is prime s.t P ≡ 2(mod) and P ≥ 257 .

2. Choose pairs of points (x , y) that satisfy the specified criteria EC x ∈ {0 ,P -1} and y

∈ {0 ,255}, or y ∈ {0 ,2 8 - 1}

3. Create a new set having absolute values from order pair (x ,y) respectively

4. Apply LCG linear Congurent Generator on a new set where x0 is the first value of the

new set.

5. Using LCG

xn+1 =
(
b ∗ (xn) + a

)
(modn).

Where b = any prime less than P s.t b < P and a =
(
inverse of (b)

)
modP .

6. xn + 1 = {256 distinct points }.
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7. Merge new values come from step 4 above in form (x ,y ,z )

8. Sort with respect to z .

9. Pick all y values from pair (x ,y ,z )

10. Get a unique S-box that has good Cryptographic properties.

Figure 3.1: Flow chart of the proposed algorithm

Newly constructed S-boxes in given below following 3.1,3.2,3.3 and 3.4 tables

3.4 Proposed Algorithem

Algorithm 2: Proposed Algorithm for generation S-Box
Input: An M -EC E : y 2 = x 3 + B over P (2n)

Output: M -EC E : y 2 = x 3 + B over P (2n)

1 b = P0 /* Any prime less than P */

2 b = P
′
0 /* inverse of P0 under modP */

3 P = prime /* choose a prime number, where P ≥ 257 and P ≡ 2(mod3) */

4 A = [ ] /* List of pair (x,y) that satisfy M -EC */
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Algorithm 3: Continue Algorithm 2

1 for x in renge(P ) do

2 for y in range(256) do

3 X = (X 3 + b)%P

4 Y = y 2 %P

5 if X==Y then

6 P = (x , y) /* pair (x,y) that satisfy M -EC */

7 A.appendP

8 B = [ ] /* list of elements of the absolute value of pair x,y */

9 for i in range(len(A)) : do

10 x1 = A[ i ][ 0 ] , y1 = A[ i ][ 1 ]

11 u = abs(y1 − x1 )

12 B .append (u)

13 C = [ ] /* list of elements by applying LCG */

14 for j in range(len(B)) : do

15 v = B [ j ]

16 w = (a∗v + b) % (256)

17 C .append(w)

18 D = [ ] /* list of pair x,y,z where z ∈ C */

19 for k in range(len(C)) : do

20 a1 = A[ k ][ 0 ]

21 a2 = A[ k ][ 1 ]

22 a3 = C [ k ]

23 D1 = (a1 , a2 , a3 )

24 D . append(D1 )

25 T= Sorted ( D , key = lambda element : (element[ 2 ], element[ 0 ]) /* sort the

element w.r.t "z" */

26 Q = [ ] /* list of 256 distinct elements */

27 for l in range(len(T )) : do

28 e1 = T [ l ][ 1 ]

29 Q . append(e)
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Table 3.1: S1
227 201 192 184 136 45 182 154 107 251 209 64 160 48 230 137

120 183 206 145 163 132 27 51 85 235 176 186 90 118 129 49

3 36 140 195 250 221 41 96 98 15 147 87 130 28 237 233

172 9 35 80 81 43 174 223 19 21 244 245 127 86 71 114

13 39 108 219 115 69 215 149 106 207 125 181 94 67 93 53

214 121 194 113 248 212 8 61 97 104 135 222 254 210 239 238

177 42 197 218 117 11 112 255 187 12 57 157 179 16 1 92

79 151 82 122 25 229 158 205 200 73 111 159 32 216 66 220

6 40 240 2 31 68 52 231 83 224 109 22 242 134 124 180

191 166 170 178 78 252 18 161 198 60 211 236 139 46 14 131

155 74 100 58 128 202 228 34 91 56 141 171 190 119 249 225

24 99 101 241 50 148 165 77 37 226 26 65 167 196 142 253

89 10 7 84 33 55 204 59 162 232 116 164 246 44 88 75

156 20 234 193 217 29 17 110 62 72 150 208 63 143 76 189

105 5 138 169 133 38 103 203 173 247 126 95 123 23 144 185

47 153 152 213 70 146 30 54 175 0 188 102 168 4 243 199

Table 3.2: S2
107 217 172 215 165 196 120 143 47 61 191 127 101 238 52 131

0 95 57 32 121 249 177 5 96 185 106 78 29 192 243 60

50 254 155 206 208 26 140 209 132 46 100 63 133 69 158 80

227 173 187 64 58 65 203 213 92 153 97 130 179 228 18 45

2 223 123 245 3 108 59 164 25 184 36 73 162 253 82 72

40 193 103 83 43 201 149 145 189 30 117 199 176 152 84 139

244 125 137 114 250 113 34 234 241 169 10 204 147 38 68 79

134 156 160 167 109 252 170 166 212 181 7 144 251 17 210 99

235 12 87 77 183 49 55 219 194 226 93 16 53 151 163 23

126 76 104 182 19 41 67 44 28 22 74 218 178 6 136 86

148 31 188 116 70 230 88 138 21 174 91 9 90 229 35 135

240 224 110 39 214 62 154 129 180 13 14 239 221 157 11 190

37 54 246 202 105 237 248 15 247 222 85 115 20 98 205 207

56 255 220 225 231 42 112 118 197 89 102 111 71 66 168 94

216 119 122 4 195 27 175 128 150 146 8 81 142 186 24 48

198 200 124 51 75 159 211 232 233 161 242 236 33 141 1 171
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Table 3.3: S3
165 193 242 33 131 28 203 6 103 159 152 127 37 139 108 62

120 216 244 155 23 17 183 206 235 189 40 204 13 178 166 75

150 253 16 208 10 32 207 77 252 230 162 49 157 249 57 99

226 128 161 73 201 223 188 125 4 225 158 130 113 231 110 205

228 97 65 3 136 55 107 167 98 46 213 68 53 239 154 76

90 51 129 174 35 63 144 30 42 60 170 220 102 104 173 218

236 247 149 156 105 47 148 69 119 118 248 72 95 209 255 109

54 151 192 34 171 64 164 66 26 25 138 112 85 132 22 0

56 250 134 19 78 29 221 179 196 9 48 254 234 214 241 137

251 168 141 176 172 211 93 7 163 195 184 86 233 94 245 8

198 41 82 237 145 191 215 39 194 153 187 115 58 133 222 126

106 197 169 87 229 238 96 89 200 146 114 50 79 67 122 240

44 140 31 52 190 38 160 219 243 12 20 135 14 21 177 36

124 18 101 70 186 147 182 185 61 71 111 199 143 202 142 100

232 92 116 2 181 212 123 217 180 45 210 1 84 59 117 81

15 80 24 121 227 88 83 91 175 11 74 5 43 246 224 27

Table 3.4: S4
29 117 99 241 20 135 149 164 123 203 161 142 251 59 80 144

28 70 110 185 50 10 12 19 5 4 212 222 121 56 69 232

6 137 204 31 186 158 65 38 140 120 162 218 48 245 25 157

243 249 201 179 127 42 200 32 54 217 77 132 253 240 171 129

238 30 13 166 118 250 242 53 211 60 221 252 15 97 209 115

143 202 141 122 94 244 51 76 67 78 125 75 228 18 233 36

46 72 11 134 189 220 3 87 37 90 14 73 112 197 103 22

79 85 64 248 24 0 153 86 183 236 230 152 169 173 224 107

156 41 145 7 133 154 231 181 27 21 163 247 226 191 124 39

184 180 215 207 34 190 109 84 136 101 213 92 131 139 170 17

74 81 199 176 62 63 219 225 208 98 214 116 138 229 167 26

196 2 254 160 104 111 44 49 237 66 151 195 177 47 23 146

178 71 187 147 198 239 113 55 165 206 83 9 102 188 126 52

96 194 8 255 227 235 88 148 33 246 155 159 40 61 205 108

119 45 100 91 95 216 210 193 114 82 58 16 182 68 172 175

1 130 234 192 128 93 168 105 43 106 150 89 223 174 57 35
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3.5 Application

3.5.0.1 Multiple Data

S-boxes are used to handle or convert several blocks of data in cryptographic contexts.

S-boxes are used on various data in several ways:

Multiple blocks of data can be authenticated with a single message using message au-

thentication codes (MACs), which can be generated using S-boxes. The S-box proce-

dures add to the MAC’s originality and reliability. In Hash Function Cryptographic

hash algorithms can use S-boxes to compress data in a way that introduces nonlinear-

ity and confusion during the hashing process. As a result, the hash function’s security

is increased and the avalanche effect is created. Virtual private networks (VPNs) and

secure sockets layer (SSL) protocols are two examples of how S-boxes may be used to

encrypt and decrypt data during network connection. In this case, various chunks of

data (packets on the network) are processed in S-boxes before being sent securely.

3.5.0.2 Block Cipher

S-boxes, or substitution boxes, play a crucial role in the operation of current block

ciphers. They’re crucial since they enable encipherment to become nonlinear and com-

plicated. S-boxes have found widespread use in the following block cipher applications:

Nonlinearity and Disruption: S-boxes translate input bit patterns to output bit patterns

nonlinearly to cause confusion. This nonlinearity makes it difficult for attackers to de-

termine plaintext ciphertext correlations, improving cipher security.

Substitution Operation: S-boxes substitute plaintext bit patterns with ciphertext bit

patterns. This procedure mixes data and prevents encrypted data patterns from being

kept.

Key Mixing: S-boxes are routinely mixed with key material to hide the plaintext-key

link. This combination of key and data makes encryption tougher to hack by influencing

both aspects.

The Substitution-Permutation Network (SPN) structure combines S-boxes with permu-

tation layers and is used by several contemporary block ciphers including the AES . S-

boxes help in to the operations of confusion and dispersion within the architecture of the
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Substitution-Permutation Network (SPN). S-boxes play a crucial role in block ciphers,

allowing for the development of robust and safe encryption methods. S-boxes increase

the block cipher’s cryptographic strength and overall security by introducing confusion,

nonlinearity, and complexity.

3.5.0.3 Light-Weight Cryptography

Lightweight cryptography increases cryptographic algorithms for resource-constrained

contexts like low-power devices and computers with restricted computing capability.

Lightweight cryptography makes use of S-boxes, which need the careful design of small,

efficient, and secure components that create nonlinearity and confusion while yet fitting

within the limitations imposed by settings with few resources. These small S-boxes are

very important for getting good cryptographic security.

Standardization and Evaluation: Lightweight cryptographic algorithms and associated

S-boxes are rigorously standardized and evaluated to assure real-world security and ef-

ficiency.Simple logic operations like bitwise XOR, AND, and OR are used to efficiently

create S-boxes. This speeds execution on resource-limited systems without undue pro-

cessing loads. Some lightweight cryptographic methods use S-boxes with bitwise shifts

and modular arithmetic to generate efficient and safe transformations.
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Chapter 4

Security Analysis

4.1 Security Analysis of Constructed S-Boxes

To evaluate a cryptographic algorithm’s efficacy, it must first undergo a security analysis,

which assesses the algorithm’s resistance to probable intrusions. Many methods are

used, each designed to counter a certain class of cyber attacks. Methods like histogram

analysis, entropy evaluation, and differential assaults are among those used in this section

to examine the suggested method’s security. The proposed encryption method will be

demonstrated to be effective against standard attack vectors.

4.1.1 Non-Linearity (NL)

The idea of non-linearity is given in[23]. An S-box must cause some sort of data confusion

to prevent an adversary from accessing the information. For every S-box

S : GF (28) → GF (28).

non-linearity is determined by finding the shortest distance ν(S ) to an affine function

over Galois field GF(28).

N(S) = min
χ,µ,ω

{x ∈ GF (2 8 )s.tχ · S (x) ̸= µ · x⊕ ω}.

Where χ ∈ GF (28), µ ∈ GF (28), ω ∈ GF (28) \{0}. and "·" denotes the dot product

over GF (28). Non-linearity value over the GF (28) for an ideal S-box is 120 . A highly
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nonlinear S-box that performs in data confusion creation. An S-box with perfect non-

linearity could pass one cryptographic test but fail another. However, the question of

particular importance is if an S-box passed the security tests with a high non-linearity.

We calculated the NL of the newly constructed S-box shown in the table 4.1. The

Newly Constructed S-boxes had good NL in comparison to some other existing schemes

[12, 3, 27, 19, 36, 34, 16] shown in 4.5
Table 4.1: Newly Constructed S-Box

SM −y2=x3+b
LCG(a,b,P) Minimum(NL) Maximum(NL) Average(NL)

SM −y2=x3+b
LCG(8124 ,9743 ,9749 ) 106 108 106.75

SM −y2=x3+b
LCG(7188 ,9623 ,9719 ) 104 108 105.25

SM −y2=x3+b
LCG(1799 ,7103 ,7499 ) 104 108 105.25

SM −y2=x3+b
LCG(463 ,941 ,1289 ) 104 106 104.75

4.1.2 Linear Approximation Probability (LAP)

The LAP measure of S-box toughness against linear attack. The concept of linear ap-

proximation probability (LAP) is presented in[14] for a substitution box (S-box). The

highest value of LAP(S) of input bits that correspond with output bits is used to deter-

mine the LAP of a certain S-box. LAP can be expressed as

κ(τ, η) = {x ∈ GF (2 8 ) : τ · x = η · S(x)}.

LAP (S) = 1

2n
{max

τ,η
|κ(τ, η)|}.

where τ ∈ GF (2 8 ),η ∈ GF (2 8 ) and "·" denotes the dot product over GF (2 8 ). To figure

out if this approximation corresponds to the real behavior of the S-box, we refer to a

numerical number known as the Linear Approximation Probability. A more resistant

S-box with more non-linearity and a lower Linear Approximation Probability will resist

a wider range of cryptanalysis methods, including linear and differential attacks. The

experimental results of LAP of the proposed S-boxes are given in Table 4.2 Below. The

experimental results of LAP of the proposed S-boxes are given in table4.5 with some

existing scheme [12, 3, 27, 19, 36, 34, 16].
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4.1.3 Differential Approximation Probability (DAP)

The idea of Differential Approximation Probability (DAP) was established by Shamir

et al in[5]. The resistance of an S-box to various infections is measured using D. In

this instance, we took measurements to determine the probability influence of a certain

variation in the input bits on the resulting difference in the output bits. For an S-box S ,

the mathematical representation of DAP is as follows:

DP (S) = 1

2n
{{max

∆p,∆q
(|M (∆p,∆q)|)}.

M (∆p,∆q) = {m ∈ GF (28) : S(p⊕∆p) = S(p)⊕∆p}.

Where ∆p, ∆q ∈ GF (28) Where ∆p and ∆q are input and output differentials, respec-

tively and ’⊕’ denotes the bit-wise addition over GF (28). A high-quality S-box has a low

DAP value against differential assaults. The experimental results of DAP of the pro-

posed S-boxes are given in Table 4.2 Below. The newly constructed S-boxes comparison

with some existing schemes in table 4.5 [12, 3, 27, 19, 36, 34, 16].
Table 4.2: LAP and DAP of proposed S-boxes

S-boxes

SM −y2=x3+b
LCG(a,b,P)

SM −y2=x3+b
LCG(8124 ,9743 ,9749 ) SM −y2=x3+b

LCG(7188 ,9623 ,9719 ) SM −y2=x3+b
LCG(1799 ,7103 ,7499 ) SM −y2=x3+b

LCG(463 ,941 ,1289 )

LAP 0.1328125 0.125 0.1328125 0.140625

DAP 0.046875 0.046875 0.0390625 0.0546875

4.1.4 Bit Independence Criterion (BIC)

Bit independence criteria (BIC) is an additional significant test used to evaluate S-box

quality. The BIC was developed by Webster and Tavares in 1986 and is used to assess

the performance of bit pattern generators[30]. This verification procedure checks how

two output bits react differently when one input bit is swapped. If the BIC value of a

proposed S-box is close to 0.5, then it is a strong proposal. A matrix over GF (28) with

a boolean function of dimension 8 represents the BIC values for the proposed S-boxes.

Bij =
1

2n

( ∑
r∈GF (28),1≤k≤8

α

(
Si(r ⊕ γj)⊕ Si(r)⊕ Sk (r + γj)⊕ Sk (r)

))
.

definitely Bij = 0. The BIC of the proposed S-box is shown in the table 4.3. The

comparison of newly constructed S-boxes with some existing scheme [12, 3, 27, 19, 36,

34, 16] shown in table 4.5
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4.1.5 Strict Avalanche Criterion (SAC)

SAC is used to determine the stability of an S-box[22] to evaluate the potential for the

formation of diffusion. SAC of an S-box is to determine the change in the output bits

When one input bit is changed[18]. The probability of each output bit fluctuating is 1
2
.

A square of 8× 8 matrix represents the SAC of S-box S. i.e. K (S) = nij and calculated

with the boolean function Si, where 1 ≤ i ≤ 8 the entries of 8 × 8 is found by:

Mjk =
1

2n

( ∑
r∈GF (28 )

α
(
Sj(r⊕h(k)⊕Sj(r)

))
.

Where h(k) ∈ GF (2 8 ) and number of non-zero bits is denoted by α(p) in vector p. The

average value of SAC is much closer to 0.5, which is considered an ideal SAC value.

The stronger the S-box, the smaller the deviation from 0.5. The table of SAC of the

newly constructed S-Box is shown in the table given 4.3 below. The comparison of newly

constructed S-boxes with some existing scheme [12, 3, 27, 19, 36, 34, 16] shown in table

4.5
Table 4.3: BIC and SAC of New Proposed S-boxes

S-boxes

SM −y2=x3+b
LCG(a,b,P)

SM −y2=x3+b
LCG(8124 ,9743 ,9749 ) SM −y2=x3+b

LCG(7188 ,9623 ,9719 ) SM −y2=x3+b
LCG(1799 ,7103 ,7499 ) SM −y2=x3+b

LCG(463 ,941 ,1289 )

BIC

Minimum
94 98 96 92

SAC

Minimum
0.3750 0.3906 0.3750 0.3750

4.1.6 Fixed Point

If the input element x ∈ GF (2n) is a fixed point then the S-box S :GF (2n) → GF (2n) is

a fixed point (FP) box if S (x ) = x [19]. In symmetric key encryption, the hash value

determines the affine transformation parameter, and since 128 bits are used, the new S-

box has some FP . The only other permutation that has 4 FP is the power permutation.

The fixed point of the newly constructed S-box is shown in the given table 4.4 below. The

newly constructed S-boxes comparison with some existing scheme [12, 31, 3, 7] shown in

table 4.5.
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4.1.7 Linear Structure

To determine how well an S-box (substitution box) performs within a cryptographic

algorithm, the linear structure of the S-box test can be applied. The purpose of this

analysis is to determine whether or not the S-box is susceptible to cryptanalytic attacks

by observing its behavior under linear modifications. The significance of the S-box’s

linear structure in cryptography is analyzed. It’s been pointed out that attacks that can

crack block ciphers with a linear design can do so much faster than a full key search[11].

This means that the linear structure can’t be used in The block cipher’s confusion phase.

An S-box’s linear structure may be expressed mathematically as

f (x ) + f (x + a) = C .

The linear structure of an S-box is denoted by the letter C for certain values of a and C

in the field F (2n), where f (x ) belongs to F (2n). Invariant linear structures have C = 0,

whereas complementary linear structures have C = 1. The lack of linear structure in

the suggested S-box is shown in the table, making it an excellent candidate for use in

cryptography. The linear structure of the newly constructed S-box is shown in the given

table 4.4 below. The newly constructed S-boxes comparison with some existing scheme

[12, 31, 3, 7] shown in table 4.5.

4.1.8 Algebraic Degree

A secure S-box has a high algebraic degree (AD), with higher values indicating greater

security.When a function’s degree becomes larger, so does the level of complexity in its

algebraic representation, making it more resistant to low approximation attacks[20]. An

S-box S is said to have a minimum algebraic degree, denoted as
(

Deg(S)
)

, if and only

if all non-zero linear combinations of its members have degrees greater than zero. if and

only if the degrees of the non-zero linear combinations of its components are all greater

than zero.

Deg(S) = min{deg(c1f1 ⊕ c2f2 ⊕ ...⊕ cmfm)}.

The algebraic degree of 7 is seen in the output-bit functions of both the S-box before

to and after the permutation function, as shown by the obtained results. The S-box

from GF (28) → GF (28) has attained the highest possible algebraic degree, which is
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n − 1. This result indicates that the S-boxes, regardless of the presence or absence of

the permutation function, have achieved the highest possible value of 7 for the algebraic

degree. As a result[35], the permutation function stays unaltered in the evaluation of

algebraic degrees. The table 4.4 below illustrates the algebraic degree of the freshly

formed S-box. The table 4.5 also includes a comparison between the recently developed

S-boxes and other older systems. [12, 31, 3, 7] shown in below table
Table 4.4: Fixed Point, Linear Structure and Algebraic Degree, of New Proposed S-boxes

S-boxes

SM −y2=x 3+b
LCG(a,b,P)

SM −y2=x 3+b
LCG(8124 ,9743 ,9749 ) SM −y2=x 3+b

LCG(7188 ,9623 ,9719 ) SM −y2=x 3+b
LCG(1799 ,7103 ,7499 ) SM −y2=x 3+b

LCG(463 ,941 ,1289 )

Fixed Point

Minimum
2 2 0 0

Linear Structure

Minimum
0 0 0 0

Algebraic Degree

Minimum
6 7 7 7

4.2 Comparison with other S-Boxes Scheme

Table 4.5: A comparison between the planned S-boxes and a certain current system
S-box NL LAP DAP SAC BIC FP LS AD

Ref.[16] 104 0.1328 0.2500 0.4060 98 - - -

Ref.[34] 103 0.0352 0.0391 0.4414 100 - - -

Ref.[17] 100 0.0547 0.1328 0.4219 100 - - -

Ref.[36] 106 0.0469 0.0391 0.4375 92 - - -

Ref.[4] 106 0.1484 0.0391 0.4063 98 - - -

Ref.[19] 104 0.1090 0.0469 0.3900 98 - - -

Ref.[27] 106 0.1718 0.0390 0.4997 98 - - -

Ref.[24] 100 0.1328 0.0391 0.4219 100 - - -

Ref.[12] 94 0.1484 0.0781 0.3750 94 1 0 -

Ref.[31] 94 0.1328 0.0390 0.3750 94 2 0 -

Ref.[3] 94 0.1328 0.0390 0.3437 92 2 0 -

Ref.[7] 102 0.1484 0.0391 0.3750 96 1 0 -

SM −y2=x3+b
LCG(8124 ,9743 ,9749 ) 106 0.1328 0.0469 0.3750 94 2 0 6

SM −y2=x3+b
LCG(7188 ,9623 ,9719 ) 104 0.125 0.0469 0.3906 98 2 0 7

SM −y2=x3+b
LCG(1799 ,7103 ,7499 ) 104 0.1328 0.0390 0.3750 96 0 0 7

SM −y2=x3+b
LCG(463 ,941 ,1289 ) 104 0.1406 0.0546 0.3750 92 0 0 7
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4.3 Conclusion

Our work offers a method that requires little effort and time yet produces a large num-

ber of distinct S-boxes.Our work offers a method that requires little effort and time yet

produces a large number of distinct S-boxes. In summary, the suggested approach uti-

lizes linear congruential generators to create S-boxes, presenting a potentially promising

path for augmenting cryptographic methodologies. The S-boxes exhibit a high level of

security and compatibility, making them valuable in both symmetric and asymmetric

cryptographic algorithms, as well as other cryptographic systems. The security of these

S-boxes outperforms that of formerly mentioned ones.

In order to determine whether or not the recommended S-boxes are effective, many in-

spections are performed. The results of several computations and an analysis of the

method’s performance indicate that it may be possible for the proposed method to gen-

erate a significant quantity of one-of-a-kind dynamic S-boxes that are resistant to a wide

range of cryptographic cyberattacks and that may be used for the secure transfer of data.
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