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Abstract 

This thesis provides estimation of the parameter of Gumbel type II distribution. We have 

used two informative priors; Gamma prior and Exponential prior for the unknown parameter 

of the Gumbel distribution. The graphs of the posterior distribution of the parameter of the 

Gumble type II distribution using informative and noninformative priors are drawn to check 

the symmetry of the distribution. The comparison of the prior distribution is made on the 

basis of coefficient of skewness andposterior risk under three loss functions (Square error, 

weighted and Quadratic). The Bayesian Hypothesis testing has been done for the testing of 

the parameter of the Gumble distribution. Censoring scheme (type I and type II) is also used 

for time to failure data. The posterior distribution, Bayes estimator and Bayes posterior risk 

using type I and type II censoring is derived. Mixture Prior is used for the parameter of 

Gumble distributions.  The objective of study is to select a suitable prior for parameter of 

Gumble distribution. Exponential prior for the parameter of the Gumble distribution is 

recommended for the Bayesian analysis of the Gumble model as the value of the posterior 

risk using this prior is minimum 
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CHAPTER 1 

Introduction 

The Bayesian approach is more applicable over classical as due to the utilization of prior 

information. This study provides a Bayesian analysis of unknown parameter of Gumbel 

distribution. The posterior distribution using informative and noninformative priors are 

derived. Similarly comparison of the prior has been also made on the basis of Bayes 

estimator, Bayes posterior risk, coefficient of skewness and Bayes factor. Simulations study 

is performed using the Bayes estimator and Bayes posterior risk under three loss functions 

(Quadratic, Square, weighted) using informative (Gamma and Exponential) and non 

informative (Jeffreys and uniform).This study provide the priority of informative priors on 

non informative priors.  

There are seven chapters in this thesis. Chapter 1 includes a basic introduction about the 

thesis, scope and objective of study. 

Chapter 2 describes the brief description of difference between classical and Bayesian 

statistics, Prior distributions and its kinds, loss functions and its types, Censoring scheme, 

type I  type II censoring. This chapter includes a brief note on Gumbel distribution and 

Literature Review about the parameter of Gumbel distribution. 

In chapter 3, we derives the posterior distributions of the parameter of Gumbel distribution 

using informative and noninformative priors.Two informative priors (Gamma and 

Exponential) noninformative priors (Jefferys and uniform) are also used. The Graphs of 

posterior distributions using informative and noninformative priors are also derived.  
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In chapter 4, we have made the comparison of the priors using Bayes estimator, Bayes 

posterior risk. Bayesian hypotheses testing are also for the parameter of the Gumble type II 

distributions. Simulation study is also performed using Bayes estimates and Bayes posterior 

risk under different loss functions (Quadratic, Square, and Weighted).  

Chapter 5 describes the posterior distributions using informative priors (Gamma and 

Exponential) under censoring scheme. Two types of the censoring scheme are used, type I 

and type II censoring. The Bayes estimates and Bayes posterior risk are also calculated for 

the posterior distributions using type I and type II censoring. Simulation study is also 

performed using the Bayes estimators and Bayes Posterior risk under different loss functions 

(Quadratic, Square, and Weighted) using informative priors (Gamma and Exponentia). The 

Graphs of posterior distributions using censoring scheme (type I and type II) using 

informative priors (Gamma and Exponential) is also derived. 

In chapter 6, we derived the posterior distributions using mixture of Gamma and Exponential 

as a priors, and also used Exponential Gamma as a Double prior. The Bayes estimators are 

calulated for the posterior distributions using mixture priors, Bayes posterior risk and Bayes 

estimator are also calculated for the posterior distributions using a double prior. The Graphs 

of posterior distributions using the mixture (Gamma and Exponential) and double 

(Exponential Gamma) priors is also derived. 

Chapter 7 includes the summary of whole work with conclusion and recommendation for the 

further study. 
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Objective of the study 

 The main objectives of this study is as follows: 

1. To derive the posterior distribution under suitable priors for the estimation of the 

parameter of Gumbel distribution with known scale parameter and unknown shape 

parameter. 

2. To Compare the Bayes estimators under different loss functions using informative and 

noninformative priors. 

3. To Compare the Bayes posterior risk under different loss functions using informative 

and noninformative priors. 

4. To Compare the Bayes factor under different loss functions using informative and 

noninformative priors. 

5. To compare the coefficient of skewness under different loss functions using 

informative and noninformative priors. 

6. To Compare the informative priors according to the various graphs of the posterior 

distribution using informative priors. 

1.2 Scope of the study 

This study has many benefits in the field of Bayesian inferences: 

1. Researchers, students and teachers related to the Bayesian inference can easily utilize 

the study, especially in working with the parameter estimation of the Gumbel 

Distribution. 
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2. Research organization working on the Gumbel distribution can easily use the study to 

get a good result by taking recommended prior for the parameter estimation of Gumbel 

Distribution. 
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CHAPTER 2  

Conventional and Bayesian Statistics 

2.1 Introduction 

Mathematical statistics uses two school of thought, conventional (frequentist), and Bayesian. 

Thomas Bayes (1763), who first gave the idea of Bayesian statistics by the application of 

‘Bayes theorem’. R.A Fisher is the founder of frequentist or classical statistics. 

2.2 Classical and Bayesian Approach  

The Bayesian philosophy involves a completely different approach to conventional statistics. 

Bayesian approach is basically the application of Bayes theorem. In Classical statistics we 

use sample information for making inference about uncertain quantity parameter. Parameters 

are generally treated as fixed in classical approach and that putting a probability distribution 

on it doesn't make sense. A statement such as probability between 10.45 and 13.26 or P(10.45 

<θ< 13.26) = 0.95 cannot be made because θ is not a random variable. In Bayesian statistics 

in addition to sample information we utilize the prior information for estimating the unknown 

quantity. Parameters are treated as random in Bayesian approach. Classical approach 

basically requires a different procedure. In Bayesian approach we used only the Bayes 

theorem. Hypothesis testing in classical approach is complicated. Bayesian approach is a 

straight forward method for Hypothesis testing. In Bayesian approach we used a single 

sample for making an inference where as in classical many more sample are require for 

results. In Bayesian approach hypothesis testing are directly related to the probabilities where 

as in classical approach these probabilities are related to type I and type II error which are not 

related to the hypothesis testing. Classical approach does not help to solve the Behrens fisher 

problem. Bayesian approach requires only one credible interval where as classical approach 



6 
 

require many confidence interval for interpreting the parameter. It is true also that the 

Bayesian analysis has certain disadvantages, such as the difficulty of the calculation, but the 

development of new software like the Win BUGS facilitate the calculation of the posterior 

distribution. Bayesian analysis can be particularly useful when there is limited data for a 

given design. A frequentist will design the 95% confidence interval procedure so that out of 

every 100 values, at least 95 of the resulting confidence intervals will be expected to include 

the true value of the parameter. The other 5 might be slightly wrong, or they might be 

complete nonsense, as long as 95 out of 100 inferences are correct. (Of course we would 

prefer them to be slightly wrong, not total nonsense). Bayesian approaches formulate the 

problem differently. Instead of saying the parameter has one true value, a Bayesian method 

says 95% credible interval means out of 100 intervels 95 intervels will contain true 

parameteric value. In Bayesian Bayes estimate can be only calculated by minimizing the 

expected loss function where as classical approach requires method of moments, MLE, 

method of least square.In Bayesian statistics the loss function is the functional value of 

estimator and parameter,whereas in classical approach the function is simply MSE and some 

biasness.  

2.3 The Prior Distribution 

The main contradiction between classicals and Bayesian statistics is the use of prior 

information. As the parameter is treated as random in Bayesian so we assign a probability to 

a random variable known specifically as prior. The prior information is the probability 

distribution that would express uncertainty before the “data”. Parameters of prior 

distributions are called hyperparameters, to distinguish from the parameter of the model. 

Prior informations basically depend upon the data which is in use.When we have large 

amount of data the prior distribution does not yet play role very well, but the use of the prior 
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is still important for making reliable inference by using small amount of data and ensure that 

any information about it is not wasted. A prior is often the purely subjective assessment of an 

experienced expert. Some will choose a conjugate prior when they can, to make calculation 

of the posterior distribution easier. 

2.3.1 The Informative Prior 

An informative prior expresses specific, definite and complete information about parameters. 

Therefore some auther called them a “subjective prior”. When prior information is available 

about parameter, it should be included in the prior distribution of parameter. For example, if 

the present model form is similar to a previous model form, and the present model is intended 

to be an updated version based on more current data, then the posterior distribution of 

parameter from the previous model may be used as the prior distribution of parameter for the 

present model. Sometimes informative prior information is not simply to be used, such as 

when it resides in another person, such as an expert. In this case, their personal beliefs about 

the probability of the event must be elicited into the form of a proper probability density 

function. This process is called prior elicitation. 

2.3.2 The NonInformative Prior 

When the information about parameter is not available we use information from 

hyperparameters distribution hierarchical models (Upton & Cook). These priors are oftenly 

called noninformative prior. The noninformative prior may be proper and improper. The 

usual noninformative priors on continous, unbounded variables are improper. A 

noninformative prior expresses vague or complete lack of information about parameter of 

population. 

2.3.3 Jeffereys Prior  
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A common noninformative prior is Jeffereys prior which is proportional to the square root of 

the determinant of the Fisher information matrix. The Jeffreys prior is quite useful for a 

single parameter but can be serious problem for a nuisense parameter. It can be written as:

( ) f θθ 1/2∝ Ι  

2.3.4 Uniform Prior 

One of the most widely use of noninformative prior, due to Laplace (1812), is a uniform 

(possibly improper prior).The distribution of a uniform prior add no information in Bayesian 

inference. The form of the uniform prior is: 

( )f θ ∝ 1 

2.3.5 Conjugates Prior 

A Cojugate prior is define as prior distribution belonging to same parametric family for 

which the resulting posterior also belongs to the same family. This is an important property, 

since the Bayes estimator, as well as its statistical properties (variance, confidence interval, 

etc) can all be derived from the posterior distribution. Conjugate prior are especially useful 

for sequential estimation, where the posterior of the current measurement is used as the prior 

in the next measurement. 

2.3.6 Proper and Improper Priors 

It is necessary for the prior distribution to be proper for making calculation easy. A prior 

distribution, p(θ) is improper as it does not converge at the given range. An unbounded 

uniform prior distribution is an improper prior distribution. When the prior distribution is 

improper posterior distribution is proper, inferences are invalid, it is non-integrable, and 

Bayes factors cannot be used. 

2.4 Loss function 
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The loss function is used for parameter estimation, the difference between parameter and 

estimater can be express in the function is known as function. The value of the loss function 

itself is a randam quantity because it depends on the outcomes of a random variable say (X). 

Loss function is real valued functions that explicitly provide a loss for decision of given θ. 

Both Bayesian and frequentist statistical theory involve making a decision based on expected 

value of loss function however this quantity is defined differently under two approaches. The 

loss function does not itself completely determine a decision. Therefore the relationship 

between loss function and the prior probability is determined by comparing the two different 

loss function which leads to the same decision. In Bayesian theory, Bayes estimator can also 

be obtained by minimizing the posterior expected value of loss function, it maximizes the 

posterior expectation of a utility function. 

2.4.1 Square error loss function 

The square error loss function is also known as MSE. The square error loss function is 

difference between the value implied by an estimator and true value of quantity being 

estimated. The square error loss has the disadvantages that it has tendency to be dominated by 

outlier. The square error loss function is symmetric loss function. 

2.4.2 Quadratic loss function 

The quadratic loss function is used in linear quadratic optimal control problem. The use of a 

quadratic loss function is common, for example when using least squares techniques or 

Taguchi methods. It is often more mathematically tractable than other loss functions because 

of the properties of variances, as well as being symmetric: an error above the target causes 

the same loss as the same magnitude of error below the target. 

2.5 Bayes risk 
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Suppose an unknown parameter θ have prior distribution £. Let δ be the estimate of θ, and 

L(θ, δ) be loss function. The Bayes risk of δ is defined as E£{L(θ, δ)}, the expectation is 

taken over the probability distribution of estimate with respect to the prior distribution. Bayes 

Risk is undefined in case of improper prior. 

2.6 Risk function 

Risk function is also MSE, the most common risk function in use, primiarly due to its 

simplicity. Risk function is the Expectation of the Loss function with respect to random 

variable. The technical result are usually derived in the form which make it very difficult the 

role played, if any, by different loss function. Loss function the sing of the minimum of the 

expected risk coincide the Bayes optimal solution. 

2.7 Posterior distribution 

When applying Bayes' theorem, the prior is multiplied by the likelihood function and then 

normalized to estimate the posterior probability distribution, which is the conditional 

distribution of parameter given the data. 

 2.8 Bayesian Hypothesis testing 

 In Bayesian approach hypotheses testing procedure is simpler than classical hypotheses 

testing. The posterior probabilities are calculated and decision are made on the basis of 

posterior probabilities. Bayesian inference about  is primarily based on the posterior 

distribution of 

Jeffreys developed a procedure for using data y to test between alternative scientific 

hypotheses H

. For example, we can report our findings through point estimates. We can 

also use the posterior distribution to construct hypothesis tests or probability statements. 

o 1Hand  , if hypotheses are simple Vssimplethen we compute the probabilities 

under Ho 1H and . If 1p(Ho) > p( )H then we support Ho and vice versa. If hypothesis are 
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Composite Vs composite then easy way is to compute the Bayes factor p(Ho 1H)/p( ) . If the 

Bayes factor using informative and noninformative prior is less than 1, we will support 1H . 

If the Bayes factor using informative and noninformative prior is less than 1, we will support 

Ho. 

2.9 Censoring Scheme 

Life testing experiment ofhen deal with conserved sanple in order toestimatetheparemter 

involved in the life distribution. Two type of censoring are generally recognized type I  and 

type II censoring. In type I censoring the experiment continous until a preassign time T, and 

failure that occurs after T are not observed. In contrast, in type II censoring scheme the 

experimenter decide to terminate the test after a preassign no of failure observed say k ≤ n. In 

either case, the advantage is that it take less time to complete the experiment. In many cases 

the experimenter may be at liberty to chose between the two censoring scheme. There are 

many reasons affect in the choice of the two type of censoring scheme that is the time require 

to complete the experiment etc. 

2.10 Type I Censoring

For example, suppose a study is conducted to measure the impact of a drug on mortality. In 

such a study, it may be known that an individual's age at death is at least 75 years. Such a 

situation could occur if the individual withdrew from the study at age 75, or if the individual 

is currently alive at the age of 75. 

Type I censoring

  

 

2.11 Type II censoring

occurs if an experiment has a set number of subjects or items and stops the 

experiment at a predetermined time, at which point any subjects remaining are right-

censored. 
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Type II censoring occurs if an experiment has a set number of subjects or items and stops the 

experiment when a predetermined number are observed to have failed; the remaining subjects 

are then right-censored. 

2.12 Progressive Censoring 

Progressive cencoring describes how to make exact or approximate inferences for the 

different statistical models with samples based on progressive censoring schemes. With many 

concrete examples, the book points out the greater efficiency gained by using this scheme 

instead of classical right-censoring methods.

2.13 Left Censored data 

  

In a left censored data, the failure time is only known to be before time. For example we may 

know that a certain unit failed before 10 hours. In other words it could be failed in any 

interval between 0 to 10 hours. 

2.14 Right Censored data 

In case of life time data, these data set are composed of unit that did not failed. For example 

if we have ten units and only six had failed by the end of the test, we would have suspended 

data for four unfailed units. 

2.15 Mixture Models 

A mixture model is a probabilistic model for representing the presence of sub-populations 

within an overall population, without requiring that an observed data-set should identify the 

sub-population to which an individual observation belongs. Formally a mixture model 

corresponds to the mixture distribution that represents the probability distribution of 

observations in the overall population. However, while problems associated with "mixture 

http://en.wikipedia.org/wiki/Probabilistic_model�
http://en.wikipedia.org/wiki/Mixture_distribution�
http://en.wikipedia.org/wiki/Probability_distribution�
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distributions" relate to deriving the properties of the overall population from those of the sub-

populations, "mixture models" are used to make statistical inferences about the properties of 

the sub-populations given only observations on the pooled population, without sub-

population-identity information. 

2.16 The Gumbel Distribution 

The Gumbel distribution takes its name from Emil J Gumbel (1891-1960) is used to model 

the distribution of maximum no of sample of various distribution. The Gumbel distribution 

has two parameters, location and scale; φ and θ respectively. It is also known as the Extreme 

Value Type I distribution. The Gumbel distribution has a thin tailed as compared to Pareto 

and Cauchy distribution. The Gumbel distribution is continuous distribution define on semi 

indefinite rang x>0, The density of Gumbel type II distribution is; 

( ); ,f x θ φ = φ θ ( 1)x− φ+ xe θ −φ− 0,  0,  0  x θ> > φ>   (2.1) 

The Gumbel distribution is widely used in reliability and life testing. An attractive feature of 

Gumbel distribution is that the parameter equations produce an estimate of the mode. 

Gumbel’s focus was basically on applications of extreme value theory to engineering 

problems, in particular modeling of meteorological phenomena such as annual flood flows. In 

environmental sciences it is used to model the extreme associated with the flooding in 

rainfall. Gumbel distribution is special case of generalized extreme value distribution used in 

industry for QA/QC. The Gumbel distribution is used to represent the distribution of 

maximum relate to extreme value that is useful if the distribution of the sample is normal and 

exponential. Practical use of Bayesian estimation is often associated with difficulties to 

choose prior information and prior distribution for a Gumbel parameter. The two parameter 

Gumbel distribution requires a two-dimensional joint prior distribution. The importance of 

http://en.wikipedia.org/wiki/Statistical_inference�
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the Gumbel distribution as a model of quantitative phenomena in social and environmental 

sciences is due to the extreme value. It is oftenly used to see the maximum rang of trading 

value in financial market produce a satisfactory significant fit. It is also useful in predicting 

the chance of extreme earth quack, flood or natural disaster. Pieces of Graph paper also 

incorporate a Gumbel distribution. 

Graph of the Gumbel Distribution 

 

 

 

 

2.17 Properties of the Gumble distribution  

The mean of the Gumbel type II distribution is always equal to mode - γ *scale parameter 

where γ  is Euler constant and its value is -0.5772116. The median of the Gumbel type II 

distribution is G(0.5). The variance of the Gumbel type II distribution is scale*
6

π 
 
 

or 

2 *
6

β π
. The skewness of the Gumbel type II distribution is 1.139547. The Kurtosis of the 

Gumbel type II distribution is 5.4. The Gumbel type II distribution is always asymmetric 

distribution. The Gumbel type II distribution iscontinuous distribution define on semi 
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indefinite range x>0. The Gumbel type II distribution has a thin tailed as compared to other 

distribution pareto and Cauchy distribution .The range of the distribution is 0to∞ . The 

Gumbel type II distribution is particular case of  Weibull distribution. The c.d.f of Gumbel 

type II distribution is 1
abxe

−−− .  

2.18 Literature Review 

A lot of work has been done on the estimation of the parameter of Gumbel type II 

distribution, some of the related literature review are given below. 

Oakes &Manatuga (1992)  proceed the work of  Lee (1967), give explicit formula for 5x5 

dimentional Fisher information matrix for Gumbel’s  (1960)  bivariate type II distribution of 

extreme values with Weibul marginal. Through numerical evaluation he shows that our 

parameterization makes the dependent parameter exactly orthogonal on scale parameter. 

Battacharyya et.al (1991) developed the inference procedure for the bivariate exponential 

distribution of Gumbel. The asymmetric properties of maximum liklehood estimates are 

presented for the case of identical marginals. Optimal test and confidence bound are used for 

model parameter.  

Palutikof et al. (2000) described and reviewed the methods to calculate extreme wind speeds, 

including ‘classical’ methods based on the generalized extreme value (GEV) distribution and 

the generalized Pareto distribution (GPD), and approaches designed specifically to deal with 

short data sets. The main emphasis was on the needs develop the techniques for calculating 

the distribution parameters and quantiles. In this regard the techniques applicable to data sets 

as short as two years, including simulation modelling and methods based on the parameters 

of the parent distribution, were considered. 
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Koutsoyiannis and Baloutsos (2000) analyzed the annual series of maximum daily rainfall 

extending through 1860-1995 in Athens using extreme value distribution. The statistical 

analysis showed that the conventionally employed Extreme Value Type I (EV1 or Gumbel) 

distribution is inappropriate for the examined record (especially in its upper tail), whereas this 

distribution would seem as an appropriate model if fewer years of measurements were 

available. On the contrary, the General Extreme Value (GEV) distribution appears to be 

suitable for the examined series and its predictions for large return periods agree with the 

probable maximum precipitation estimated by the statistical (Hershfield's) method. 

Chechile (2001) obtained the posterior distribution assuming that the random sample is taken 

from the gumbel distribution using the conjugate prior. The normalization constant and the 

marginal distribution of the scale parameter were obtained. The properties of the posterior 

distribution were evaluated using an exact Monte Carlo algorithm. Application of the results 

was discussed using different real life data. 

Wu and Lin (2001) derived an exact confidence interval for the shape parameter and an exact 

joint confidence region for the shape and scale parameters of the Weibull and Gumbel 

distributions under censored samples. The joint confidence region was used to obtain a 

conservative lower confidence bound for the reliability function. Further, the optimal criteria 

to find a best exact confidence interval for the shape parameter and a best exact joint 

confidence region for the shape and scale parameters were discussed. Two   real life 

examples were used to elaborate the results. 

Hirose (2002) derived the confidence intervals for maximum likelihood estimates of 

percentile points in dielectric breakdown voltage using generalized extreme-value 

distribution. A Monte Carlo simulation using the generalized extreme-value distribution 

parameter estimation code reveals the property of the percentile point estimates for extreme-

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Chechile%2C+Richard+A.%29�
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value type distributions. Biases and root mean squared errors of percentile point estimates are 

evaluated both for the maximum likelihood estimates and for some closed form estimates; 

maximum likelihood estimates provide reasonable confidence intervals. A real life example 

was also presented to illustrate the results. 

Mousa (2002) obtained the Bayesian estimation for the two parameters of the Gumbel 

distribution based on record values. Point and interval predictions for the future lower record 

values were obtained. Based on a recurrence relation of conditional moments of nonadjacent 

record values, a characterization for the Gumbel distribution is also given. Numerical 

computations are given to illustrate these procedures.  

Clarke (2002) discussed that the widely-used hydrological procedures for calculating events 

with T-year return periods from data that follow a Gumbel distribution assume that the data 

sequence from which the Gumbel distribution is fitted remains stationary in time. If non-

stationarity is suspected, the hypothesis that the data are Gumbel-distributed is temporarily 

abandoned while testing for trend, but is re-adopted if the trend proves to be not significant. 

They described an alternative model in which the Gumbel distribution has a (possibly) time-

variant mean. Simulated samples from a standard Gumbel distribution were used to calculate 

the power of each of three trend-testing procedures (Maximum Likelihood, Linear 

Regression, and the non-parametric Mann-Kendall test) were compared. The ML test was 

always more powerful than either the Linear Regression or Mann-Kendall tests.  

Van Montfort (2003) checks the adequacy of extreme value distribution by taking type-I 

Gumbel distribution as null hypothesis and taking type-II distribution as alternative 

hypothesis. Montfort  paper give a quick result with high power by proceeding the result of 

elsewhere dealing with the reduction of power using numerically simplified test. 
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Balakrishnan et.al (2007) mentioned that the Bayesian estimation and prediction problems for 

the linear hazard rate distribution using type II censored sample. Markov chain Monte Carlo 

method are used to generate the Bayesian conditional probabilities. 

In practice joint prior for the two parameters Gumble distribution is much difficult. Wanbu 

(2008) in his paper mentioned that joint prior can be obtained in case of two parameters 

Gumbel distribution by using a simple Bayesian estimation procedure proposed by 

Kaminskiy and Vasily (2005). The prior information is presented in the form of 

intervalassessment of reliability function as the Gumble distribution is widely used in 

reliability function. Proceeding the idea of Kaminskiy and Vasily we construct the continous 

joint prior of Gumble parameters as well as the posterior estimate of mean and variance of the 

parameter of the density function. 

Noortwijk et.al (unpublished) mentioned in his paper (Bayesian frequency analysis for 

extreme river discharge) that Bayesian method has been successfully applied to estimate the 

design discharge of river Rhine while taking account of statistical uncertainties involved. For 

this he used seven predictive probability distributions for determining the extreme quantile of 

discharge. 

Kakade et.al (2008) discussed the inferences and MLE of cumulative distribution. He 

constructs the bootstrap and asymptotic confident interval by using asymptotic distribution. 

Testing of the reliability based on asymptotic distribution of the maximum likelihood 

estimator is discussed. Simulation study to investigate performance of the confidence 

intervals and tests has been carried out. 

Miladinovic (2008) describes the application of the Kernel density prior to the Gumbel 

probability distribution. Bayesian and empirical estimates of the reliability and failure rate 

function under the Gumble failure model are derived and compared with the kernel density 
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estimates. The comparison of the Bayes estimates of the Gumble reliability function using six 

different prior including kernel density prior is performed. He use jackknife procedure to 

improve ML parameter estimates. 

Hoppe and Fang (2008) derived the posterior predictive distribution and predictive intervals 

for gumbel distribution. The data from the outlet side feeder pipes at Ontario nuclear power 

plants was used to predict the minimum thickness of all remaining uninspectedpipes and to 

show that with what confidence can it be saidthat the remaining wall thicknesses are above an 

acceptable minimumto ensure a sufficiently high thickness up to the endof the next operating 

interval. A hybrid Bayesian method and full Bayesian approach using Markov Chain Monte 

Carlo was used. It was shown thatthe latter gives larger lower prediction limits and therefore 

moremargins to fitness for service. 

Nakajima et.al (2009) proposed a new approach to model the time dependence in extreme 

value process. Under a Bayesian approach he used an efficient alogrithem and implementson 

Markov chain Monte Carlo method and derived a very accurate approximation of the Gumbel 

distribution by a ten-component mixture of normal distributions. 

Al-Aboud (2009) extends the work of Balakrishnan et al.(2004) discussed in classical 

framework, the point and interval estimation for parameters of extreme value distribution 

based on censored data. Preceding his work in this paper, Bayes estimates of two (unknown) 

parameters, the reliability and failure rate functions are obtained by using approximation of 

Lindley (1980). The estimators are estimated under both symmetric and asymmetric loss 

functions. A practical example consisting of various types of real data was presented. Finally, 

in order to investigate the accuracy of estimation, Monte Carlo simulation study was 

conducted, and the estimated risks of Bayes estimates are computed and compared with the 

corresponding estimated risks of maximum likelihood estimates. 
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Thompson et al. (2011) introduced a distributional hypothesis test for left censored Gumbel 

observations based on the probability plot correlation coefficient (PPCC). Critical values of 

the PPCC hypothesis test statistic are computed from Monte-Carlo simulations and are a 

function of sample size, censoring level, and significance level. When applied to a global 

catalog of earthquake observations, the left-censored Gumbel PPCC tests and likelihood tests 

are unable to reject the Gumbel hypothesis for 45 of 46 seismic regions. 

Evin et al. (2011) studied the mixtures of distributions with normal, Gamma, and Gumbel 

components. Moving away from the standard normal setting, gamma mixtures are developed 

in order to model strictly positive hydrological data and Gumbel mixtures for extreme 

variates. Time dependent and independent cases were considered. Dependent cases were 

modeled by Markov process. The relevance adequacy of the mixture models was tested by 

calculating the marginal likelihoods, for a given data, under Bayesian framework.  

Mahdavi and Mojtaba (2011) represented a new method for computing the reliability of a 

system which is arranged in series or parallel model. They obtained the life distribution 

function of whole structure using the asymptotic Extreme Value (EV) distribution of Type I, 

or Gumbel theory. All parameters were also estimated by Moments method. Reliability 

function and failure (hazard) rate and p-th percentile point of each function are determined. 

Other important indexes such as Mean Time to Failure (MTTF), Mean Time to repair 

(MTTR), for non-repairable and renewal systems in both of series and parallel structure were 

computed.  
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CHAPTER 3 

THE POSTERIOR DISTRIBUTION 

3.1 Introduction 

In this chapters, the Posterior Distribution for the parameter of the Gumbel distribution of the 

type II is derived using two informative priors (Gamma and Exponential) and noninformative 

prior (Jeffreys and uniform). The graphs of the posterior distribution are also drawn in this 

chapter. 

3.2 The Posterior Distribution for the Parameter of Gumbel Distribution 

The posterior distributions for the parameter of Gumbel type II distribution using informative 

and noninformative priors are derived below: 

3.3 The Posterior Distribution using noninformative prior 

We derived the posterior distribution using two noninformative priors the Jeffreys and 

uniform prior in the following sections. 

3.3.1 Using Jefferys Prior  

The p.d.f for the parameter of Gumbel Type II  distribution for a randam variable X having 

parameters φ and θ is: 
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( ); ,f x θ φ = φ θ ( 1)x− φ+ xe θ −φ− 0,  0,  0  x θ> > φ>         (3.1) 

The Likelihood function of Gumbel Type II  distribution with the parameters φ andθ is: 

                       ( );L x θ = ( )
1

; ,
n

i
f x θ

=
φΠ

 

The Fisher’s information is: 

  ( ) I θ = ( )2

2

ln ;L x
E

θ
θ

 ∂
−  ∂ 

 

 

The Jeffreys prior for tha parameter θ is: 

  ( )Jp θ ∝ 2

1
θ

 

  ( )Jp θ ∝
1
θ 0θ >  

The posterior distribution of θ given data x  is: 

( )p θx ∝ ( );L x θ ( );f θ φ  

  ( )p θx ∝
1
θ

nθ 1

n

ii
x

e
θ −φ

=

 
− Σ 

   

( )p θx ∝ 1nθ − 1

n

ii
x

e
θ −φ

=

 
− Σ 

   

which is density kernel of gamma distribution with the parameters nα = and
1

n

ii
xβ

−φ

=
= Σ  

So theposterior distribution of θ  given data is ( )gamma α,β . 

Example 3.1 The data regarding failure times of the air conditioning system of an aero plane: 

23,   261,   87,   7,   120,   14,   62,   47,   225,   71,   246,   21,   42,   20,   5,   12,    

120,   11,   14,   71,    11,   14,   11,    16,  3,   90,   1,   16,   52,   95. 

where 
1

1,  n 30, 2.68
n

i
xi

=

−φφ = = =∑  
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The graph of the posterior distribution with its parameter is given below. 

For the posterior parameters a 30  α = β = 2.68  

 
 

 

 

                                                                             

 

3.3.2 The Uniform Prior 

The Uniform Prior Distribution for the parameter θ (assuming φ =1)is 

( )f θ ∝ 1 

The posterior distribution ofθ  given data is;  

( )p θx ∝ nθ 1

n

ii
x

e
θ −φ

=

 
− Σ 

 

 

( )p θx ∝ 1 1nθ + − 1

n

ii
x

e
θ −φ

=

 
− Σ 

   

which is the density kernel of Gamma distribution with the parameters n+1α = and

1

n

ii
xβ

−φ

=
= Σ . So theposterior distribution of  θ   given data is ( )Gamma α,β . 

where 1

1
 1,  n 30, 2.68

n

i
i

x −

=
φ = = ∑ =  

The graph of the posterior distribution with its parameters is given below. 

For the posterior parameters a 31,  and  α = β = 2.68 . 
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3.4 The Posterior Distribution using Informative prior 

We have used two informative priors Gamma distribution and Exponential distribution as a 

prior in the following sections: 

3.4.1 Using Gamma Distribution as Prior  

The informative prior Gamma distribution of θ with hyper parameter ‘a’ and ‘b’ is given 
below. 

( ); ,f a bθ =
ab
aΓ

1aθ − be θ− 0θ > , 0a > , 0b >  

The posterior distribution of  θ   given data x  is: 

11 ( 1)

1

n

i
n xa b n

i
p e x e

θθθ θ θ
−φ

=
− Σ− − − φ+

=
(  ) ∝ Πx

 

11
n

i
xa n bp e e

θθθ θ
−φ

=
− Σ+ − −(  ) ∝x  

( ) 11

n

i
b x

a np e
θ

θ θ
−φ

=

 
 − +Σ
 + −   ∝x  

1 p e θθ θ α− − β(  ) ∝x  

which is density kernel of Gamma distribution with the parameters a nα = +   and

1

n

ii
b x −φ

=
β = ( + Σ ) .So theposterior distribution of  θ   given data is Gamma distribution with 

parameters ( )α,β . 
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where 1

1
1,  n 30, 2.68

n

i
i

x −

=
φ = = ∑ =  

The graph of the Gamma distribution (prior) and posterior distribution for the different values 

of hyperparameter is given below 

1. It is assumed that hyperparameter for the Gamma distribution is a =5 and b=2 then 

the posterior parameter will be α = 35, and β = 4.68 

 

 
 

      
      
 

      
      
      
         

     
      
       

2. It is assumed that hyperparameter for the Gamma distribution is a =4 and b = 3 

then the  posterior parameter will be α = 34 and β = 5.68.  

 

 
 

     
     
 

     
     
     
     
     
     
      

3. It is assumed that hyperparameter for the Gamma distribution is a = 6 and b = 4 

then the posterior parameter will be α =36 and β=6.68. 
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3.4.2 Using Exponential Distribution as Prior  

The informative prior Exponential distribution of θ with hyper parameter‘s’ is given below. 

( ) c;c cf eθ −θ= 0θ > ,     0c >  

The posterior distribution of  θ   given data is;  

11 ( 1)

1

n

i
n xn c n

i
p e x e

θθθ θ θ
−φ

=
− Σ− − − φ+

=
(  ) ∝ Πx  

1( 1)

1

n

i
n x cn

i
p x e

θ
θ θ

−φ

=
− ( Σ + )− φ+

=
(  ) ∝ Πx  

1

n

i
x cnp e

θ
θ θ

−φ

=
− ( Σ + )

(  ) ∝x  

11 1
n

i
x cnp e

θ
θ θ

−φ

=
− ( Σ + )+ −(  ) ∝x  

1p e θθ θ α− − β(  ) ∝x  

which is density kernel of Gamma distribution with the parameters  1nα = + and

1
c

n

ii
x −φ

=
β = ( + Σ ) .So theposterior distribution of  θ   given data is gamma distribution with 

parameters ( )α,β . 

The graph of the posterior distribution for the different values of hyperparameter is given 

below. 

1. It is assumed that hyperparameter for the Exponential distribution is c=2  then the 

posterior parameter will be α =31and  β = 4.68. 
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2. It is assumed that hyperparameter for the Exponential distribution is c = 3 then the  

posterior parameter will be α =31 and β= 5.68 

 

 
 

 

     
      
 

    
 

  
      
      
      
      
      
       

3. It is assumed that hyperparameter for the Exponential distribution is c = 4 then the  

posterior parameters will be α =31 and  β= 6.68 
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CHAPTER 4 

Comparisons of Priors 

Introduction 

In this chapter the informative and noninformative priors are compared on the basis of Bayes 

estimators, posterior risks, coefficient of skewness. Bayesian Hypotheses testing has been 

performed in this section. Finally simulation study is performed using Bayes estimator and 

Bayes Posterior risk under three loss functions (Quadratic, Square, Weighted) using 

informative (Gamma and Exponential) and noninformative (Jeffreys and Uniform). 

4.1 Comparison of Priors using Bayes Estimators 

Comparisionof Informative and noninformative Priors using Bayes risk under three loss 

functionispresentedin the following sections. 

(i) The square error loss function  
 
The Bayes estimator is: 

The square error loss function for the parameter θ is: 

2
1 L    L  

Λ Λ

= (θ,θ) =(θ − θ)  

The Bayes estimator is: 

 
Λ

θ = Ε(θ)  

The Bayes estimator for the Jeffreys prior is: 
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Λ

θ = 
α
β

=

1

n

ii

n

x −φ

=
Σ

 

The Bayes estimator Using Uniform prior is: 

 
Λ

θ = 
α
β

=

1

1
n

ii

n

x −φ

=

+

Σ
 

The Bayes estimator Using Gamma distribution as a prior is: 

 
Λ

θ = 
α
β

=

1

 n

ii

a n

b x−φ

=

+

+ Σ
 

The Bayes estimator Using Exponential distribution as a prior is: 

 
Λ

θ = 
α
β

= 

1

1
n

ii

n

c x −φ

=

+

+ Σ
 

(ii) The weighted loss function  

The Bayes estimator is: 

The weighted loss function is defined as: 

2

2 L    L  
Λ

Λ (θ − θ)
= (θ,θ) =

θ
 

The Bayes estimator is: 

2^ ^
2

2
2L θ + θ − θθ

=
θ

 

^
12

^

(L ) 2 ( ) 2E E −θ
θ

∂
= θ θ −

∂ θ
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1

1Λ

−θ =
Ε(θ )

 

The Bayes estimator using Jeffreys prior is: 

1

1

1

)
n

ii

n

x

Λ

−

=

−
θ =

(Σ
 

The Bayes estimator Using Uniform as a prior is: 

1

1
)

n

ii

n

x

Λ

−

=

θ =
(Σ

 

The Bayes estimator Using Gamma distribution as a prior is: 

 
Λ

θ =
1

1

1

)
n

ii

a n

x b−

=

+ −

(Σ +
 

The Bayes estimator Using Exponential distribution as a prior  

1

1
)

n

ii

n

x c

Λ

−

=

θ =
(Σ +

 

(iii) The Quadratic loss function  

The Quadratic loss function is defined as: 

2

3  L    L  
Λ

Λ  θ − θ = (θ,θ) =
 θ
   

The Bayes estimator is: 

2^ ^
2

3 2

2L θ + θ − θθ
=

θ  
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^
2 13

^

(L ) 2 ( ) 2 ( )E E Eθ
− −θ

θ

∂
= θ θ − θ

∂ θ
 

  

1

2

−Λ

−

Ε(θ )
θ =

Ε(θ )  

The Bayes estimator using Jeffreys prior is: 

1

1

2
n

ii

n

x

Λ

−

=

−
θ =

Σ
 

The Bayes Using Uniform prior is: 

   
1

1

1
n

ii

n

x

Λ

−

=

−
θ =

Σ
 

The Bayes estimator using Gamma distribution as a prior is: 

1

2

b
n

ii

a n

x

Λ

−1

=

+ −
θ =

( + Σ )
 

The Bayes estimator Using Exponential distribution as a prior is: 

1

1

1

c
n

ii

n

x

Λ

−

=

−
θ =

( + Σ )
 

Comparison of priors using Bayes Estimator under different loss functions using informative 

(Gamma and Exponential) and noninformative (Uniform and Jeffreys) priors are shown in the 

following table 4.1. 
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Table 4.1: Bayes Estimators Using Different Loss Functions 
Loss function Prior 

Distributions 
Posterior 

parameters 
Bayes     

Estimators 
L

Λ

(θ,θ)  ( )α,β  Λ

θ  
 
 

1 L  

IP                 
 

GP ( )35, 4.68  7.4786 

EP ( )31, 4.68  6.6239  
NIP JP ( )30, 2.68  11.1940  

UP ( )31, 2.68  11.5671 
 
 

2L  

IP GP ( )35, 4.68  7.2649  

EP ( )31, 4.68  6.4102  
NIP JP ( )30, 2.68  10.8209  

UP ( )31, 2.68  11.1940  
 
 

3L  

IP GP ( )35, 4.68  7.0512  

EP ( )31, 4.68  6.1965 
NIP JP ( )30, 2.68  10.4477  

UP ( )31, 2.68  10.8209  
 

 Here GP: Gamma prior, EP: Exponential prior, JP: Jeffreys prior, UP: Uniform prior  

The above table describes the Bayes estimators under different loss function using 

informative (Gamma and Exponential) and noninformative (Jeffreys and uniform) priors. 

4.2 Comparision of Priors using Bayes Posterior Risk 

The Expectation of a Loss function with respect to the posterior distribution is known as 

posterior risk. 

(i) The square error loss function  
 

The Bayes posterior risk under SELF is variance of posterior distribution: 

The posterior risk under square error loss function Using Jeffery prior is: 
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2V xθ α
(  ) =

β
 

2

1

 n

ii

nV x
x

θ
−1

=

(  ) =
(Σ )

here 1 φ =  

The posterior risk undersquare error loss function Using Uniform prior is: 

   
2

1

1
n

ii

nV x
x

θ
−1

=

+
(  ) =

(Σ )
 

The posterior risk undersquare error loss function Using Gamma as a prior is: 

   
2

1
b

n

ii

a nV x
x

θ
−1

=

+
(  ) =

( + Σ )
 

The posterior risk undersquare error loss function Using Exponential as a prior is: 

   
2

1

1 
s

n

ii

nV x
x

θ
−1

=

+
(  ) =

( + Σ )
 

(ii) The Quadratic loss function  

The Bayes posterior risk (PR) under QLF is: 

The posterior risk Using Jeffery prior is:

  
2

PR  L  E E
Λ

Λ

θ θ

 θ − θ = (θ,θ) =
 θ
 

 

2

PR  E
Λ

θ

 θ = 1−
 θ
 
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2
2 1PR E E

Λ Λ
− −

θ θ= θ (θ ) +1− 2θ (θ )  

1 1
2 2 1

2 2PR E EE E
E E

− −
− −θ θ

θ θ− −
θ θ

(θ ) (θ )
= ( ) (θ ) +1− 2( ) (θ )

(θ ) (θ )
 

The posterior risk Using Jefferysprior is: 

2PR
1

n
n

( − )
=1−

( − )
 

The posterior risk Using Uniform prior is: 

1PR n
n

( − )
=1−

( )
 

The posterior risk using a Using Gamma prior is: 

2PR
1

a n
a n

( + − )
=1−

( + − )
 

The posterior risk Using Exponential prior is: 

1PR n
n

( − )
=1−

( )  

   iii)    The Weighted loss function 
 

The Bayes posterior risk under WLF is: 

1 1PR − −= Ε(θ) − Ε(θ )  

The posterior risk Using Jeffery prior is: 

11

1PR  
) ( )

n n

i iii

n n

x x−1 −1

==

−
= −

(Σ Σ
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The posterior risk Using Uniform as a prior is: 

1 1

1PR  
) )

n n

i i
i i

n n

x x−1 −1

= =

+
= −

(Σ (Σ
 

The posterior risk Using Gamma prior is:          

11

1PR  
) ( )

n n

i iii

a n a n

x b x b−1 −1

==

+ + −
= −

(Σ + Σ +
 

The posterior risk Using Exponential distribution as a prior is: 

1 1

1PR  
) )

n n

i i
i i

n n

x c x c−1 −1

= =

+
= −

(Σ + (Σ +
 

Comparison of priors using Bayes Posterior risk under different loss functions using 

informative (Gamma and Exponential) and noninformative (Uniform and Jeffreys) priors is 

discussed in the following table 4.2 
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Table 4.2:Bayes Posterior risk Using Different Loss Functions 
Loss function Prior 

Distributions 
Posterior 
parameters 

Bayes     
Posterior Risk 

L
Λ

(θ,θ)  
( )α,β  PR  

 
 

1 L  

IP 
 

GP ( )35, 4.68  1.5979  
EP ( )31, 4.68  1.4153  

NIP JP ( )30, 2.68  4.1768  
UP ( )31, 2.68  4.3161 

 
 

2L  

IP GP ( )35, 4.68  0.02944  

EP ( )31, 4.68  0.03333 

NIP JP ( )30, 2.68  0.03448 

UP ( )31, 2.68  0.03333 

 
 

3L  

IP GP ( )35, 4.68  0.2136  
EP ( )31, 4.68  0.2137  

NIP JP ( )30, 2.68  0.3732  
UP ( )31, 2.68  0.3731 

 

Table 4.2 describes that the comparison of posterior Risk using different loss functions. It is 

cleared that the posterior risk for noninformative priors ( Jeffery and Uniform )  is greater than 

the informative prior ( Gamma and Exponential ) using Quadratic, Weighted loss Functions 

and Square error loss functions. On the whole Bayes posterior risk under Gamma distribution 

is minimum under three loss functions. However, using the noninformative priors the best 

prior is Uniform as it has minimum posterior risk under all loss function. 

4.4 Bayesian Estimation using Simulation 

In this section we simulate the Bayes Estimate and Bayes Posterior Risk using different  loss 

(Quadratic, Weighted, Square) functions as well as different sample size by using informative 

(Gamma and Exponential) and uninformative (Uniform and Jeffreys) priors. 
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 4.4.1 Simulation using Bayes Estimates and Bayes Posterior Risk under  

          Square error loss function 

Simulation using Bayes estimator and Bayes Posterior risk under Square error loss function 

using informative (Gamma and Exponential) and noninformative (Jeffreys and Uniform) 

priors is given as 

Table 4.3 Simulation using Bayes Estimates and Bayes Posterior Risk 
 under Jeffreys Prior 

Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  6.10655
(0.77017)  

7.19467
(1.02441)  

8.19369
(1.36478)  

9.20042
(1.72414)  

10.1809
(2.13354)  

2 100n =  6.08595
(0.37119)  

7.06968
(0.50620)  

8.08871
(0.66366)  

9.08448
(0.83420)  

10.1215
(1.02853)  

3 200n =  6.0439
(0.18203)  

7.00418
(0.24955)  

8.03708
(0.32382)  

9.04363
(0.41454)  

10.0153
(0.51504)  

4 300n =  6.0252
(0.12142)  

7.02257
(0.16640)  

8.02135
(0.21625)  

9.02991
(0.27254)  

10.0612
(0.33778)  

5 500n =  6.01152  
(0.07327)  

7.00554
(0.09844)  

 

8.01832
(0.12920)  

 

9.01049
(0.16361)  

10.0034  
(0.20085)  

 

Table 4.4 Simulation using  Bayes Estimates and Bayes Posterior Risk 
under Uniform Prior 

Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  6.22088
(0.78146)  

7.30248
(1.06176)  

8.35138
(1.38676)  

9.41436
(1.73703)  

10.4451
(2.17)  

2 100n =  6.10053
(0.37170)  

7.17299
(0.51361)  

8.18117
(0.66424)  

9.12131
(0.84462)  

10.1678
(1.03945)  

3 200n =  6.06155
(0.18176)  

7.08598
(0.25241)  

8.0737
(0.32598)  

9.09045
(0.41180)  

10.0682
(0.51071)  

4 300n =  6.03901
(0.12229)  

7.05038
(0.16562)  

8.06155
(0.21545)  

9.0586
(0.27342)  

10.0343
(0.33702)  

5 500n =  6.02568
(0.07271)  

7.02242
(0.09863)  

8.02809
(0.12912)  

9.04974
(0.16325)  

10.0397
(0.20148)  
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Table 4.5 Simulation using Bayes Estimates and Bayes Posterior Risk 
 

using Gamma prior 
Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  
5.26119

(0.80303)  
5.95122

(1.09035)  
6.5966

(1.37274)  
7.21301

(1.70878)  
7.82749

(2.09774)  

2 100n =  5.6543
(0.38210)  

6.45408
(0.51944)  

7.22733
(0.67863)  

7.98545
(0.84967)  

8.71244
(1.05183)  

3 200n =  5.80241
(0.18591)  

6.70091
(0.25029)  

7.5754
(0.33467)  

8.45912
(0.41403)  

9.29611
(0.51743)  

4 300n =  5.88154
(0.12263)  

6.79937
(0.16648)  

7.7072
(0.21815)  

8.63079
(0.27497)  

9.52674
(0.34769)  

5 500n =  5.91824
(0.07281)  

6.86896
(0.09919)  

7.82052
(0.12913)  

8.78708
(0.16437)  

9.70859
(0.20207)  

 

Table 4.6 Simulation using Bayes Estimates and Bayes Posterior Risk 
using Exponential Prior 

Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  
4.98538
(0.75398)  

5.63923
(1.00126)  

6.24389
(1.31)  

6.85748
(1.64237)  

7.37711
(2.00564)  

2 100n =  5.44871
(0.37263)  

6.27038
(0.49624)  

6.99786
(0.65158)  

7.73629
(0.82214)  

8.47489
(1.02094)  

3 200n =  5.70022
(0.18303)  

6.57579
(0.24895)  

7.47888
(0.32748)  

8.33302
(0.40988)  

9.18449
(0.50505)  

4 300n =  5.81657
(0.12138)  

6.74396
(0.16495)  

7.64535
(0.21393)  

8.5515
(0.27322)  

9.43659
(0.33497)  

5 500n =  5.88167
(0.07262)  

6.84429
(0.09891)  

7.77781
(0.82214)  

8.70299
(0.16364)  

9.64704
(0.20157)  

 

 For simulation the Bayes estimator and Bayes Posterior risk under square error loss function 

using informative (Gamma and Exponential) priors and non informative priors is used. The 

above tables shows the simulation using Bayes estimates and Bayes Posterior risk under 

Square error loss function for Informative and noninformative priors  for the different values 

of sample size and parameter.  After simulation it is observed that as sample size increases 

the value of the parameter approaches to its true value, and the Posterior risk decrease as the 

sample sizes increased. 

4.4.2 Simulation using Bayes estimates and Bayes Posterior risk  
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            under Weighted loss function 

The  Simulation using  Bayes estimator and Bayes Posterior risk  under weighted loss 

function using  informative ( Gamma and Exponential) and noninformative (Uniform and 

Jeffreys)  priors  is given as  

Table 4.7 Simulation using Bayes Estimates and Bayes Posterior risk  
 under Jeffreys Prior 

Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  6.05733
(0.12266)  

6.95253
(0.14301)  

7.99101
(0.16524)  

8.93386
(0.18508)  

9.99331
(0.20309)  

2 100n =  5.96899
(0.06070)  

6.97725
(0.07056)  

7.98770
(0.80704)  

8.97897
(0.09084)  

10.0158
(0.10104)  

3 200n =  6.0006
(0.03022)  

7.02004
(0.03512)  

7.99827
(0.04021)  

9.0316
(0.04510)  

10.0067
(0.05022)  

4 300n =  6.02434
(0.02003)  

7.00807
(0.02339)  

8.01139
(0.02609)  

9.03238
(0.03009)  

9.9994
(0.03335)  

5 500n =  6.00235
(0.019967)  

7.00206
(0.01402)  

8.00536
(0.01607)  

9.0256
(0.01799)  

10.0063
(0.02003)  

 

Table 4.8 Simulation using Bayes Estimates and Bayes Posterior risk  
under Uniform Prior 

Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  6.10655
(0.12207)  

7.19467
(0.14192)  

8.19369
(0.16274)  

9.20042
(0.18674)  

10.1809
(0.20565)  

2 100n =  6.08595
(0.06050)  

7.06968
(0.07079)  

8.08871
(0.08080)  

9.08448
(0.09100)  

10.1215
(0.10130)  

3 200n =  6.0439
(0.03021)  

7.00418
(0.03516)  

8.03708
(0.04011)  

9.04363
(0.04513)  

10.0153
(0.05031)  

4 300n =  6.0252
(0.02008)  

7.02257
(0.02339)  

8.02135
(0.02673)  

9.02991
(0.03004)  

10.0612
(0.03339)  

5 500n =  6.01152
(0.01237)  

7.00554
(0.01402)  

8.01832
(0.01601)  

9.01049
(0.01803)  

10.0034
(0.02001)  

 

 
 
 
 
 

Table 4.9 Simulation using Bayes Estimatesand Bayes Posterior risk 
 under Gamma Prior  
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Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  5.21558
(0.09822)  

5.84117
(0.14192)  

6.4944
(0.12267)  

7.11019
(0.13416)  

7.64938
(0.14475)  

2 100n =  5.57232
(0.0500)  

6.37195
(0.07079)  

7.20702
(0.06944)  

7.94218
(0.07710)  

8.62835
(0.08395)  

3 200n =  5.77524
(0.02896)  

6.65009
(0.03516)  

7.54008
(0.03724)  

8.42761
(0.04151)  

9.28736
(0.04546)  

4 300n =  5.83435  
(0.01913)  

6.7577
(0.02241)  

7.69693
(0.02543)  

8.59904
(0.02846)  

9.49693
(0.03162)  

5 500n =  5.90388  
(0.01173)  

6.86426
(0.01368)  

7.80043
(0.01550)  

8.79255
(0.01739)  

9.68065
(0.01926)  

 

Table 4.10 Simulations using Bayes Estimates and Bayes Posterior risk 
using Exponential Prior 

Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  4.87707  
(0.09772)  

5.52053
(0.11076)  

6.12371
(0.12278)  

6.70454
(0.13314)  

7.21076
(0.14480)  

2 100n =  5.37798  
(0.05413)  

6.14306
(0.06178)  

6.94554
(0.06947)  

7.69965
(0.07653)  

8.38107
(0.08360)  

3 200n =  5.6805  
(0.02840)  

6.59922
(0.03287)  

7.4379
(0.03708)  

8.2884
(0.04163)  

9.13814
(0.04551)  

4 300n =  5.78947  
(0.01933)  

6.69175
(0.02238)  

7.63045
(0.02539)  

8.50808
(0.02842)  

9.37014
(0.03128)  

5 500n =  5.86467
(0.01176)  

6.82504
(0.01358)  

7.75019
(0.01554)  

8.69572
(0.01739)  

9.63613
(0.01921)  

 

For simulation the Bayes estimator and Bayes Posterior risk under weighted loss function 

using informative  (Gamma and Exponential) priors and non informative priors is used. The 

above tables shows the simulation using Bayes estimates and Bayes Posterior risk under 

Square error loss function for Informative and noninformative priors  for the different values 

of sample size and parameter.  After simulation it is observed that as sample size increases 

the value of the parameter approaches to its true value, and the Posterior risk decrease as the 

sample sizes are increased. 

 

4.4.3 Simulation using of the Bayes Estimates and Bayes Posterior risk  

          Under Quadratic loss function 
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The  Simulation using  Bayes estimator and Bayes Posterior risk  under Quadratic loss 

function using  informative ( Gamma and Exponential) and noninformative (Uniform and 

Jeffreys)  priors  is given as  

Table 4.11 Simulation using Bayes Estimates and Bayes Posterior Risk 
 under Jeffreys Prior 

Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  5.87893  
(0.02040)  

6.83896
(0.02040)  

7.77992
(0.02040)  

8.80499
(0.02040)  

9.81102
(0.02040)  

2 100n =  5.94266  
(0.01010)  

6.96943
(0.01010)  

7.91718
(0.01010)  

8.86646
(0.01010)  

9.89516
(0.01010)  

3 200n =  5.97331
(0.005025)  

6.96658
(0.005025)  

7.91718
(0.005025)  

8.98282
(0.005025)  

9.95026
(0.005025)  

4 300n =  5.97099
(0.003344)  

6.96892
(0.003344)  

7.95405
(0.003344)  

8.97897
(0.003344)  

9.97974
(0.003344)  

5 500n =  5.97769
(0.00200)  

6.96829
(0.00200)  

7.9807
(0.00200)  

9.00041
(0.00200)  

9.96546
(0.00200)  

 

Table 4.12 Simulation using Bayes Estimates and Bayes Posterior risk 
using Uniform prior is: 

Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  6.05733
(0.02)  

6.95253
(0.02)  

7.99101
(0.02)  

8.93386
(0.02)  

9.99331
(0.02)  

2 100n =  5.96899  
(0.01)  

6.97725
(0.01)  

7.98770
(0.01)  

8.97897
(0.01)  

10.0158
(0.01)  

3 200n =  6.0006
(0.005)  

7.02004
(0.005)  

7.99827
(0.005)  

9.0316
(0.005)  

10.0067
(0.005)  

4 300n =  6.02434
(0.003)  

7.00807
(0.003)  

8.01139
(0.003)  

9.03238
(0.003)  

9.9994
(0.003)  

5 500n =  6.00235  
(0.002)  

7.00206
(0.002)  

8.00536
(0.002)  

9.0256
(0.002)  

10.0063
(0.002)  

 

 

Table 4.13 Simulation using Bayes Estimates and Bayes Posterior risk 
using Gamma Prior 

Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  
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1 50n =  5.08793  
(0.01960)  

5.74827
(0.01960)  

6.38944
(0.01960)  

6.97801
(0.01960)  

7.50804
(0.01960)  

2 100n =  5.50191 
(0.00990)  

6.28679
(0.00990)  

7.0981
(0.00990)  

7.82837
(0.00990)  

8.55254
(0.00990)  

3 200n =  5.73808  
(0.00497)  

6.61814
(0.00497)  

7.50791
(0.00497)  

8.39371
(0.00497)  

9.23853
(0.00497)  

4 300n =  5.82198  
(0.00332)  

6.77206
(0.00332)  

7.65973
(0.00332)  

8.56283
(0.00332)  

9.47671
(0.00332)  

5 500n =  5.89856  
(0.00199)  

6.85553
(0.00199)  

7.80434
(0.00199)  

8.73983
(0.00199)  

9.69897
(0.00199)  

 

Table 4.14  Simulation using Bayes Estimates and Bayes Posterior risk 
using Exponential prior is: 

Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  4.7934  
(0.02)  

5.4346
(0.02)  

5.96745
(0.02)  

6.53527
(0.02)  

7.08682
(0.02)  

2 100n =  5.37191
(0.01)  

6.13752
(0.01)  

6.89477
(0.01)  

7.63386
(0.01)  

8.31 
(0.01)  

3 200n =  
5.65424  
(0.005)  

6.55393
(0.005)  

7.39888
(0.005)  

8.24984
(0.005)  

9.08315
(0.005)  

4 300n =  5.78098  
(0.003)  

6.66969
(0.003)  

7.65973
(0.003)  

8.50629
(0.003)  

9.3527
(0.003)  

5 500n =  5.8708  
(0.002)  

6.82264
(0.002)  

7.75321
(0.002)  

8.67104
(0.002)  

9.61704
(0.002)  

 

For simulation the Bayes estimator and Bayes Posterior risk under Quadratic loss function 

using informative (Gamma and Exponential) priors and non informative priors is used. The 

above tables shows the simulation using Bayes estimates and Bayes Posterior risk under 

Square error loss function for Informative and noninformative priors  for the different values 

of sample size and parameter.  After simulation it is observed that as sample size increases 

the value of the parameter approaches to its true value, and the Posterior risk decrease as the 

sample sizes are increased. 

4.5 Comparison of Prior Using Coefficient of Skewness 

The Coefficient of Skewness using informative prior is calculated by the following formula. 
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The Posterior distribution derived for the informative and noninformative priors i.e Uniform, 

Jeffreys, Gamma and Exponential belongs to the family of Gamma distribution with different 

hyperparameters. So the Coefficient of Skewness are preaented in Table 4.15. 

Table 4.15: Coefficient of skewness using Informative Prior 
 Name of Prior  Hyperparameter Moment about mean of the 

posterior distribution 
Coefficient of 
skewness  

1µ  2µ  3µ   

 
 
Gamma Prior 

5a =
 

2b =  0  1.59799  0.70878 .37341 

4a =
 

3b =  0  1.05385  0.37436  .34603  

6a =
 

4b =  0  .80676  0.24257  0.3345 

7a =
 

5b =  0  .62730  0.16266  0.3292 

 
 
Exponential Prior 

c = 2  0  1.41537  0.59751 0.39451 

c = 4  0  0.69471 0.22521 0.38894 

c = 5  0  0.52558 .24030  0.63197  

c = 6  0  0.41145 0.10217  0.38712  

 

The Table 4.15 shows that the coefficient of Skewness of the posterior distribution using 

informative prior (Gamma and Exponential). From the above table it is clear that coefficient 

of skewness of each posterior distribution is greater than zero, which suggest that all the 

posterior distribution are positively skewed, as shown in the graphs in chapter 3, but the 

coefficient of skewness for the posterior distribution using Gamma prior is less skewed than 

Exponential distribution. So overall we conclude that Gamma prior is preferable or 
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comparatively suitable than other informative prior (Exponential) as Gamma prior has small 

value of coefficient of skewness. 

4.6 Bayes factor for Hypotheses testing: 

The Bayes factor of hypotheses using informative (Gamma and Exponential) and 

noninformative (Jeffreys and Uniform) priors is given in the following section: 

 

 

 

 

 

 

 

 

 

 

 

 Table 4.16: Bayes factor for hypotheses testing   

Null 
hypothesis 

Alternative 
Hypothesis 

Prior 
Distributions 

Posterior Probability Bayes Factor 
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H0  1H  P H0( )  P H1( )         B 

 

 

θ ≥ 6  

 

 

θ < 6  

IP GP 0.9794  0.0206  47.5436  

EP 0.97900  0.021  46.6190  

NIP JP 0.97740  0.0226  44.1327  

UP 0.9736  0.0264  36.8787  

 

 

θ ≥ 7  

 

 

 

θ < 7  

 

IP GP 0.9688  0.0312  31.0512  

EP 0.9682  0.0318  30.4465  

NIP JP 0.9762  0.0238  41.0168  

UP 0.9761  0.0239  40.8410  

 

 

θ ≥ 8  

 

 

θ < 8  

IP GP 0.96490  0.03509  27.49571 

EP 0.97617  0.02382  40.36091 

NIP JP 0.97248  0.02751 35.33992  

UP 0.959588  0.04040  23.75147  

 

The above table describes the comparison of prior using Bayes factor under the following 

hypotheses. 

For H0 : θ ≥ 6 versus 1H : θ < 6 , the Bayes factor using informative and noninformative prior 

is greater than 1. So we support H0 using informative and 

noninformativeprior.ForHypothesis H0 : θ ≥ 7 versus 1H : θ < 7 ,the Bayes factor using 

noninformative prior and informative prior  is greater than 1.So we support H0 using 

informative prior (Gamma). For Hypotheses H0 : θ ≥ 8 versus 1H : θ < 8 the Bayes factor using 

informative and noninformative prior is greater than 1. So we support H0 using informative 

and noninformative prior. 
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CHAPTER 5 

Censoring scheme 

5.1 Introduction 

In this chapter, the Posterior Distribution for the parameter of the Gumbel distribution of the 

type II is derived using the censoring scheme. Two censoring schemes are used Type I and 

Type II censoring using two informative priors (Gamma and Exponential). The Bayes 

estimators and Posterior risk had been also derived in this sections under different loss 

functions (Quadratic, Weighted, Square). The graphs for posterior distributions using type I 

and type II censoring using two informative priors (Gamma and Exponential) had been also 

drawn in this section. 

5.2 Type I Censoring 

As discussed in the section 2.11 in Type I censored sample, suppose that a random samples of 

n units is tested under a predetermine time T at which the test is terminate. Time to failure of 

‘k’ observations is observed at random thus the life times of rx i=1,2,...n observed only 

iX T≤ and thus the Likelihood function is given by: 

k

i
( , ) ( ; ){1 ( ; )}n k

iL x f x F tθ θ θ −

=1
= ∏ −
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5.2.1 The Posterior Distribution under Type I censoring using Gamma prior. 

The informative prior Gamma distribution of θ with hyper parameter ‘a’ and ‘b’ is given 

below. 
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( ); ,f a bθ =
ab
aΓ

1aθ − be θ− 0θ > , 0a > , 0b >  

The posterior distribution of  θ   given data x  is: 
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which is density kernel of Gamma distribution with the parameters a kα = + and

1 1
( )

1
( )( )

k

i t
i

b x x n k− −

=

 β = + + − 
 

∑ . So the posterior distribution of  θ   given data is Gamma 

distribution with parameters ( )α,β . 

5.2.3 The Posterior Distribution under Type I censoring using Exponential  prior. 

The informative prior Exponential distribution of θ with hyper parameter‘s’ is given below. 

( ) c;c cf eθ −θ= 0θ > ,     0c >  

The posterior distribution of  θ   given data is: 

 

( )
1

1
( )1

k ( )( )c ( 1)

i
c ( )

k

i
ti

x
x n kk

ip e x e e
θ

θθθ θ
−

−
=

−
− −− − φ+

=1

∑
 ∝ ∏x  

( )
1

1
( )1 ( )( )cce ( )

k

i
ti

x
x n kkp e e

θ
θθθ θ

−
−

=

 
 −   − −−  
∑

 ∝x  

 



49 
 

( )
1 1

( )
1

( )( )
1 1

k

i t
i

c x x n k
kp e

θ

θ θ
− −

=

 
 − + + − + −  

∑
 ∝x  

 

1 p e θθ θ α− − β(  ) ∝x   

which is density kernel of Gamma distribution with the parameters kα =1+ and

1 1
( )

1
c ( )( )

k

i t
i

x x n k− −

=

β = ( + + −∑ .So the posterior distribution of  θ   given data is Gamma 

distribution with parameters ( )α,β . 

5.3 Type II Censoring 

Let X= 1, 2,.....( )rx x x where ix is the time of ith component to fail since the remaining n-r 

component have not been yet failed and thus have lifetime greater than rx . 

The likelihood function can be written as: 
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5.3.1 The Posterior Distribution under Type II censoring using Gamma as a prior  

The informative prior Gamma distribution of θ with hyper parameter ‘a’ and ‘b’ is given 

below. 

( ); ,f a bθ =
ab
aΓ

1aθ − be θ− 0θ > , 0a > , 0b >  
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The posterior distribution of  θ   given data x  is: 
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which is density kernel of Gamma distribution with the parameters a rα = + and
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∑ . So the posterior distribution ofθ  given data is Gamma 

distribution with parameters ( )α,β . 

5.3.2 The Posterior Distribution under Type II censoring using Exponential as prior. 

The informative prior Exponential distribution of θ with hyper parameter‘s’ is given below. 

( ) c;c cf eθ −θ= 0θ > ,     0c >  

The posterior distribution of  θ   given data is: 
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1 p e θθ θ α− − β(  ) ∝x  

Which is density kernel of Gamma distribution with the parameters 1rα = + and

1 1
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c x x n r− −

=

 β = + + − 
 

∑ . So the posterior distribution of  θ   given data is Gamma 

distribution with parameters ( )α,β . 

5.4 Comparison of a Priors using Bayes Estimator under Type I censoring  

 (i) The square error loss function 

The Bayes estimator Using Gamma distribution as a prior under Type I censoring is: 
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The Bayes estimator Using Exponential distribution as a prior under Type I censoring is: 
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(ii) The weighted loss function 

The Bayes estimator Using Gamma distribution as a prior under Type I censoring is: 
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The Bayes estimator Using Exponential distribution as a prior under Type I censoring is: 
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(iii) The Quadratic loss function 

The Bayes estimator Using Gamma distribution as a prior under Type I censoring is: 
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The Bayes estimator Using Exponential distribution as a prior under Type I censoring is: 
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5.5 Comparison of a Priors using Bayes Estimator under Type II censoring  

 (i) The square error loss function 

The Bayes estimator Using Gamma distribution as a prior under Type II censoring is: 
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The Bayes estimator Using Exponential distribution as a prior under Type II censoring is: 
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(ii) The weighted loss function 

The Bayes estimator Using Gamma distribution as a prior under Type II censoring is: 
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The Bayes estimator Using Exponential distribution as a prior under Type II censoring is: 
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(iii) The Quadratic loss function 

The Bayes estimator Using Gamma distribution as a prior under Type II censoring is: 
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The Bayes estimator Using Exponential distribution as a prior under Type II censoring is: 
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Comparison of priors under different loss functions in type I censoring using informative 

(Gamma and Exponential) noninformative priors (Jeffreys and uniform) is discussed in the 

following table 5.1.  

Table 5.1: Bayes Estimators Using  Type I censoring  
under Different Loss Functions 

Loss function Prior Distributions Posterior 
parameters 

Bayes     
Estimator 

L
Λ

(θ,θ)   HP ( )α,β  Λ

θ  
 
 

1 L  

GP              
 

5,  b=2a =  (30,8.68)  3.45622  

EP 2c =  ( )26,8.68  2.99539  
 

 
 

GP 5,  b=2a =         (30,8.68)   3.34101  
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The above table describes the Bayes estimator under different loss functions (Quadratic, 

Weighted, Square) using informative Gamma and Exponential  priors in type I censoring. 

Comparison of priors under different loss functions in type II censoring using informative 

(Gamma and Exponential)  priors  is discussed in the following table 5.2.  

 

 

 

 

 

 

 
Table 5.2: Bayes Estimators Using Type II censoring  

under Different Loss Functions 

2L  EP 2c =  ( )26,8.68  
 

       2.88012  

 
 

3L  

GP 5,  b=2a =  (30,8.68)  3.22580  

EP 2c =  ( )26,8.68  
 

2.76497  
 
 

Loss function Prior Distributions Posterior 
 

Bayes     
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The above table describes the Bayes estimator under different loss function (Quadratic, 

Weighted, Square) using informative (Gamma and Exponential)  priors in type I censoring. 

5.6 Comparison of a Priors using Bayes Posterior risk under Type I censoring  

 (i) The square error loss function 

   The Bayes posterior risk Using Gamma distribution prior under Type I censoring is: 
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 The Bayes posterior risk Using Exponential distribution prior under Type I censoring is: 

L
Λ

(θ,θ)   HP ( )α,β  Λ

θ  
 
 

1 L  

GP              
 

5,  b=2a =  (30,18.58)  1.61463  

EP 2c =  ( )26,18.58  1.39935  
 

 
 

2L  

GP 5,  b=2a =         (30,18.58)   1.50681  

EP 2c =  ( )26,18.58  
 

       1.34553  

 
 

3L  

GP 5,  b=2a =  (30,18.58)  1.50699  

EP 2c =  ( )26,18.58  
 

1.29171 
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(ii) The weighted loss function 

The Bayes posterior risk Using Gamma distribution as a prior under Type I censoring is: 
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The Bayes posterior risk Using Exponential distribution prior under Type I censoring is: 
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(iii) The Quadratic loss function 

The Bayes posterior risk Using Gamma distribution as a prior under Type I censoring is: 

1PR
2

a k
a k

+ −
=1−

+ −
  

The Bayes posterior risk Using Exponential distribution prior under Type I censoring is: 

PR
1

k
k

=1−
−  

 

 

5.7 Comparison of a Priors using Bayes Posterior risk under Type II censoring  

 (i) The square error loss function 
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   The Bayes posterior risk Using Gamma distribution prior under Type II censoring is: 
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The Bayes posterior risk Using Exponential distribution prior under Type I censoring is: 
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(ii) The weighted loss function 

The Bayes posterior risk Using Gamma distribution prior under Type I censoring is: 
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The Bayes posterior risk Using Exponential distribution prior under Type I censoring is: 
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(iii) The Quadratic loss function 

The Bayes posterior risk Using Gamma distribution prior under Type II censoring is: 
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1

a r
a r

+ −
=1−

+ −  

 

The Bayes posterior risk Using Exponential distribution prior under Type II censoring is: 

1PR r
r
−

=1−
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Comparison of priors under different loss functions (Quadratic, Weighted, Square) in type I 

censoring using informative (Gamma and Exponential) priors is discussed in the following 

table 5.3. 

Table 5.3: Bayes Posterior risk Using Type I censoring under Different Loss Functions 
 

 

 

 

 

 

 

 

Table 5.3 describes that the Bayes posterior Risk using different loss functions.  It is clear 

that the posterior risk for informative priors (Gamma and Exponential) under Quadratic loss 

function is less than the others two loss functions (Weighted and Square) loss functions. On 

the whole Bayes posterior risk under Gamma distribution is minimum under three loss 

functions. So the best prior is Gamma as it has minimum posterior risk. 

 

Comparison of priors under different loss functions (Quadratic, Weighted, Square) in type II 

censoring using informative (Gamma and Exponential) priors is discussed in the following 

table 5.4. 

Table 5.4: Bayes Posterior risk Using Type II censoring under Different Loss Functions 

Loss function Prior Distributions Posterior 
parameters 

Bayes     
Posterior Risk 

L
Λ

(θ,θ)   HP ( )α,β  Λ

θ  
 
 

1 L  

GP              
 

5,  b=2a =  (30,8.68)  0.39818 

EP 2c =  ( )26,8.68  0.34509  
 

 
 

2L  

GP 5,  b=2a =         (30,8.68)    0.11520  

EP 2c =  ( )26,8.68  
 

       0.11521 

 
 

3L  

GP 5,  b=2a =  (30,8.68)    0.03487  

EP 2c =  ( )26,8.68  
 

0.04  
 
 

Loss function Prior Distributions Posterior 
 

Bayes     Posterior 
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Tabl

e 5.4 

desc

ribes 

that 

the 

Bay

es 

posterior Risk using different loss functions.  It is clear that the posterior risk for informative 

priors (Gamma and Exponential) under Quadratic loss function is less than the others two 

loss functions (Weighted and Square). On the whole Bayes posterior risk under Gamma 

distribution is minimum under three loss functions.  

5.8 Graphs of the Posterior distribution using type I Censoring  

(i) Using  Gamma as a Prior 

The graph of the posterior distribution with its parameter is given below. 

1. It is assumed that the hyperparameters 4,  b 2a = =  than the posterior parameters will 

be 29,  and 8.68α = β = . 

 

 

 
 

 
     

 
  
       
       
       

L
Λ

(θ,θ)   HP ( )α,β  Λ

θ  
 
 

1 L  

GP              
 

5,  b=2a =  (30,18.58)  0.08690  

EP 2c =  ( )26,18.58  0.07531 
 

 
 

2L  

GP 5,  b=2a =         (30,18.58)    0.05382  

EP 2c =  ( )26,18.58  
 

0.05383 

 
 

3L  

GP 5,  b=2a =  (30,18.58)    0.03487  

EP 2c =  ( )26,18.58  
 

0.04  
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2. It is assumed that the hyperparameters 5,  b 3a = =  than the posterior parameters will 

be 30,  and 9.68α = β = . 

 
 

 
 

     
 
  
        

       

 
 

      
       
       
       
       

      

 
 
 
 

(ii) Using  Exponential as a Prior 

The graphs of the posterior distribution with its parameter is given below. 

1. It is assumed that the hyperparameters 2c =  than the posterior parameters will be 

26,  8.68α = β = . 
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2. It is assumed that the hyperparameters 3c =  than the posterior parameters will be 

26,  9.68α = β = . 

 
 

 
 

     
 
  
 

      
        

 
 

      
       
       
       

 

 
 

     
       5.9 Graphs of the Posterior distribution using type II Censoring  

(i) Using  Gamma as a Prior 

The graph of the posterior distribution with its parameter is given below. 

1. It is assumed that the hyperparameters 4,  b 2a = =  than the posterior parameters will 

be 29 and 18.58α = β = .. 
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2. It is assumed that the hyperparameters 5,  b 2a = =  than the posterior parameters will 

be 30,  and 18.58α = β = . 

 
 

 
 

    
 
  
      
       

 
 

     
      
      
      
      
       

(ii) Using  Exponential as a Prior 

The graphs of the posterior distribution with its parameter is given below. 

1. It is assumed that the hyperparameters 2c =  than the posterior parameters will be 

26,  and 18.58α = β =  
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2. It is assumed that the hyperparameters 3c =  than the posterior parameters will be 

26,  and 19.58α = β = . 

 
 

 
 

    
 
  
      
       

 
 

     
      
      
      
      
       

 

 

 

 

 

 

 

 

CHAPTER 6 

Posterior Distribution using Mixture and double Priors 

 

6.1 Introduction 

In this chapters, the Posterior Distribution for the parameter of the Gumbel type II 

distribution are derived using two mixture priors (Gamma and Exponential). The posterior 

distribution using double prior has been also derived in this section. The Bayes estimators 

θ
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under square error loss function using mixture priors has been derived in this section. The 

Bayes estimators and Bayes posterior risk under different loss functions are calculated using 

double prior. Simulations using Bayes estimators under Square error loss function using 

mixture of Gamma and mixture of Exponential as a priors. Finally the Simulation study is 

performed using Bayes Estimators and Bayes Posterior risk using double prior. The graphs of 

the posterior distributions using mixtures of Gamma and Exponential priors under Square 

error loss function and double (Exponential Gamma) prior under  three loss functions 

(Square, Quadratic and Weighted)  has been also drawn in the following sections. 

6.2 The Posterior Distribution using Mixture of Gamma Distribution as a Prior  

The Mixture Prior of Gamma Distribution for the parameter θ  (assuming φ =1) is: 

( )
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1 1 1 2 2 21 11 2
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Γ Γ

 

1 2 1 1 2 20, 0, 0, 0, 0, 0a b a bθ θ> > > > > >  

 

 

 

 

 

The posterior distribution of  θ   given data x  is: 
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which is the complete pdf of  mixture of Gamma distribution with parameters

1 1
1 1 1 1 2 2 2 2

1 1
,  ,  ,  

n n

i i
a n b x a n b x− −

= =

α = + β = + α = + β = +∑ ∑  . So the posterior distribution of  θ   

given data is Gamma distribution with parameters ( )1 2 1 2,α ,α ,β β . 

6.3 The Posterior Distribution using Mixture of Exponential Distribution as a prior  

The Mixture Prior of Exponential Distribution for the parameter θ (assuming φ =1)is: 
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( ) 1 1 2 2
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The posterior distribution of  θ   given data x  is: 
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which is the complete pdf of  mixture of Gamma distribution with parameters

1 1
1 1 1 2 2 2

1 1
1 ,  ,  1 ,  

n n

i i
n c x n c x− −

= =

α = + β = + α = + β = +∑ ∑  . So the posterior distribution of  θ   

given data is the mixture of Gamma distribution with parameters ( )1 2 1 2,α ,α ,β β . 

6.4 The Posterior Distribution using Exponential Gamma Distribution double Prior 

The informative prior Exponential distribution of θ with hyperparameter ‘c’ is given below. 

( ) c;c cf eθ −θ= 0θ > ,     0c >  

 

The informative prior Gamma distribution of θ with hyperparameters ‘a’ and ‘b’ is given 

below. 

( ); ,f a bθ =
ab
aΓ

1aθ − be θ− 0θ > , 0a > , 0b >  

now double prior is obtained by combining the above two priors:   

( ) ( ) ( )* ; ; ,f f c f a bθ θ θ∝  

( )* 1 ( )a b cf e θθ θ − − +∝  

The posterior distribution of  θ   given data x  is: 

11 ( ) ( 1)

1

n

i
n xa b c n

i
p e x e

θθθ θ θ
−φ

=
− Σ− − + − φ+

=
(  ) ∝ Πx  

1
( )1

n

i
b c xa np e

θ
θ θ

−φ

=
− + + Σ+ −(  ) ∝x  

1 p e θθ θ α− − β(  ) ∝x  
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which is density kernel of Gamma distribution with the parameters  a nα = + and

1
b

n

ii
c x −φ

=
β = ( + + Σ ) . So the posterior distribution of  θ   given data is Gamma distribution with 

parameters ( )α,β . 

6.4 Bayes Estimator using Square error loss function 

The Bayes estimator using Square error loss function is presented in the following 

section. 

(i) The square error loss function  

 

The Bayes estimator is: 

The square error loss function for the parameter θ is: 

^ ^

1 21 2w w
Λ

θ = Ε(θ ) + Ε(θ )  

The Bayes estimator using the mixture of Gamma prior is: 

1 2
1 2

1 2

 w w
Λ α α
θ = +

β β
 

1 1

1 2
1 2

1 1
1 2

1 1

n n

i i
i i

a n a nw w
b x b x

Λ

− −

= =

+ +
θ = +

+ +∑ ∑
 

The Bayes estimator using the mixture of Exponential prior is: 

* *
* *1 2
1 2* *

1 2

 w w
Λ α α
θ = +

β β
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1 2

* *
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1 1
1 2

1 1

1 1
n n

i i
i i
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c x c x

Λ

− −

= =

+ +
θ = +

+ +∑ ∑
 

Comparison of priors under Square error loss function using informative prior (mixture of 

Gamma and Exponential) is discussed in the following table 6.1. 

Table 6.1 Bayes Estimator using mixture priors  
Loss function Prior Distributions Posterior 

parameters 
Bayes     

Estimator 
L

Λ

(θ,θ)  IP HP ( )1 1 2 2,α ,β α ,β  Λ

θ  
 
 
 
 
 
 

1 L  

 
GP 
 
 
 
 

1 14,  b 2a = =  

2 23,  b 2a = =  

 
( )34, 4.68,33,4.68  

7.22115 

1 15,  b 3a = =  

2 25,  b 4a = =  

 
(35,  5.68, 35, 6.68)  

6.12569  

1 16,  b 3a = =

2 25,  b 4a = =  

 
(36,  5.68, 35, 6.68)  

6.33280  

 
EP 

1 2c 2,  c 3= =  (31,  4.68, 31, 5.68)  6.05111 

1 2c 3,  c 3= =  (31,  5.68, 31, 5.68)  5.03142  

1 2c 3,  c 4= =  (31,  5.68, 31, 6.68)  5.42771 

 

The above table describes the Bayes estimators under Square error loss function using 

mixture of Gamma and Exponential priors. 

6.5 Simulation using Bayes Estimates under Square error loss function 

The Simulation using the Bayes estimator under square error loss function using mixture of 

Gamma and Exponential prior is given as  

Table 6.2 Simulation using Bayes Estimates using mixture of a Gamma as a Prior 
Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  5.18132  5.87596  6.5225  7.03863  7.66593  

2 100n =  5.56705  6.35319  7.13468  7.92618  8.64209  

3 200n =  5.7753  6.67563  7.56577  8.42069  9.26427  
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4 300n =  5.84283  6.7775  7.70936  8.60311 9.47775  

5 500n =  5.91314  6.8579  
 

7.816  8.75813  9.65463  

 

For simulation the Bayes estimator under square error loss function using mixture of   

Gamma prior is used. The above tables shows the simulation using Bayes estimates under 

Square error loss function using the mixture of Gamma  prior  for the different values of 

sample sizes and parameters.  After simulation it is observed that as sample size increases the 

value of the parameter approaches to its true value. 

Table 6.3 using Bayes Estimates Using mixture of Exponential as a Prior 
Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  4.98607  5.61709  6.25164  6.81912  7.37688  

2 100n =  5.45891 6.24745  6.26106  7.92618  8.48573  

3 200n =  5.71749  6.61125  7.51923  8.32411 9.17655  

4 300n =  5.81293  6.71863  7.63476  8.55296  9.46425  

5 500n =  5.88683  6.83723  
 

7.7921  8.71191 9.65834  

 

For simulation the Bayes estimator under square error loss function using mixture of  

Exponential prior  is used. The above tables shows the simulation using Bayes estimates 

under Square error loss function using the mixture of Exponential  prior  for the different 

values of sample size and parameter.  After simulation it is observed that as sample size 

increases the value of the parameter approaches to its true value. 

6.6  Graphs of the Posterior distribution using mixture Priors  
The graphs of the posterior distribution under Square error loss functions using 

mixture of Gamma and Exponential as prior are presented in the following sections: 

(i) Using Mixture of Gamma as a Prior 

The graphs of the posterior distribution with its parameter are given below. 
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1. It is assumed that the hyperparameters 1 1 2 24,  b 2,  3,  b 2a a= = = =  than the posterior 

parameters will be 1 1 2 234,  =33 and =4.68α = β = 4.68, α β . 

 

 
 

 

    
 
  

 
 

     
 

    
 

  
      
      
      
      
       

2. It is assumed that the hyperparameters are 1 1 2 25,  b 3,  5,  b 4a a= = = = than the 

posterior parameters will be  1 1 2 235,  =35 and =6.68α = β = 5.68, α β  

 

 
 

     
 
 
  

    
  
  
      
  

      
      
       

3. It is assumed that the hyperparameters are 1 1 2 26,  b 3,  5,  b 4a a= = = = than the 

posterior parameters will be  1 1 2 236,  =35 and =6.68α = β = 5.68, α β . 
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(ii) Using Mixture of Exponential as a Prior 

The graphs of the posterior distribution with its parameter is given below. 

1. It is assumed that the hyperparameters 
1 22,  c 3c = =  than the posterior parameters 

will be 1 1 2 231,  =31 and =5.68α = β = 4.68, α β . 

 

 

 
 

     
 
 
      
 

    
 

  
      
      
      
      
       

2. It is assumed that the hyperparameters 
1 23,  c 3c = =  than the posterior parameters 

will be 1 1 2 231,  =31 and =5.68α = β = 5.68, α β . 
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3. It is assumed that the hyperparameters 
1 23,  c 4c = =  than the posterior parameters 

will be 1 1 2 231,  =31 and =6.68α = β = 5.68, α β . 

 

 
 

 

    
 
 
      
 

    
 

  
      
      
      
      
       

6.7 Bayes Estimator using Exponential Gamma as double prior 

(i) The square error loss function  

The Bayes estimator using the Exponential Gamma as a double prior is: 

^

1
b

n

ii

a n

c x −1

=

+
θ =

( + + Σ )
 

(ii) The weighted loss function 

The Bayes estimator using the Exponential Gamma as a double prior is: 

^

1

1

b
n

ii

a n

c x −1

=

+ −
θ =

( + + Σ )
 

(iii) The Quadratic loss function 
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The Bayes estimator using the Exponential Gamma as a double prior is: 

^

1

2

b
n

ii

a n

c x −1

=

+ −
θ =

( + + Σ )
 

   6.8    Bayes Posterior Risk using Exponential Gamma as double prior 

(i) The Square error loss function  

The Bayes Posterior risk using the Exponential Gamma as a double prior is: 

2
2

1
b

n

ii

a nV x
c x

θ
−1

=

α +
(  ) = =

β ( + + Σ )  

 

 

(ii) The Weighted loss function  

The Bayes Posterior risk using the Exponential Gamma as a double prior is: 

1 1

1PR
b b

n n

i ii i

a n a n

c x c x−1 −1

= =

+ + −
= −

( + + Σ ) ( + + Σ )
 

(iii) The Quadratic loss function  

2PR
1

a n
a n

+ −
=1−

+ −  

Comparison of priors under different loss functions (Quadratic, Sqtuare, Weighted) using 

double (Exponential Gamma) is discussed in the following table 6.4. 

Table 6.4: Bayes Estimators Using  Double Prior under  
different Loss Functions 

Loss functions  Double Prior Distributions Posterior 
parameters 

Bayes     
Estimator 

L
Λ

(θ θ)  
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( )α,β  Λ

θ  

 
 

1 L  

                
EG 

5, b=2, c=2a =  ( )35,6.68  5.23952  

4, b=3, c=2a =  ( )34,7.68  4.42708  

 
 

2L  
 

 
EG 

5, b=2, c=2a =  ( )34,6.68  
 

5.08986  

4, b=3, c=2a =  ( )33,7.68  
 

4.29687  
 

3L   
EG 

5, b=2, c=2a =  ( )33,6.68  
 

        4.90411 

4, b=3, c=2a =  ( )32,7.68  4.16666  

 
The above table describes the Bayes estimator under different loss function (Square, 

Quadratic, Weighted) using double prior (Exponential Gamma) . 

Comparison of priors using posterior risk under different loss functions (Quadratic, Square, 

Weighted) using double (Exponential Gamma) prior are shown in the following table 6.5.  

Table 6.5 : Bayes Posterior risk Using double Prior 
under Different Loss Functions 

Loss functions  Double Prior Distributions Posterior 
parameters 

Bayes Posterior 
risk 

L
Λ

(θ,θ)  ( )α,β  Λ

θ  

 
 

1 L  

                
EG 

5, b=2, c=2a =  ( )35,6.68  0.46454  

4, b=3, c=2a =  ( )34,7.68  0.57644  

 
 

2L  
 

 
EG 

5, b=2, c=2a =  ( )34,6.68  
 

0.10408  

4, b=3, c=2a =  ( )33,7.68  
 

0.130401 
 

 
 
3L  

 
EG 

5, b=2, c=2a =  ( )33,6.68  
 

        0.03125  

4, b=3, c=2a =  ( )32,7.68  0.03225  
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Table 6.5 describes that the comparison of posterior Risk using different loss function 

(Quadratic, Square, Weighted). It is clear that the posterior risk under Quadratic loss function 

is less than the other two loss functions (Square and Weighted). 

6.9 Simulation using Bayes Estimates and Bayes Posterior risk under Square 

error loss function 

The Simulation using Bayes estimator under Square error loss function using Exponential 

Gamma as double prior is given a 

Table 6.6 Simulation using Bayes Estimates and Bayes Posterior risk 
 using double prior  

Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  4.4023
(0.36210)   

4.88421
(0.44904)  

5.30681
(0.52936)  

5.70565
(0.60527)  

10.1809
(0.67958)  

2 100n =  5.08316
(0.24810)  

5.75511
(0.31688)  

6.32708
(0.39083)  

6.91358
(0.46169)  

10.1215
(0.53743)  

3 200n =  5.49402  
(0.18468)  

6.30222
(0.19512)  

7.05318
(0.24438)  

9.04363
(0.30020)  

10.0153
(0.36022)  

4 300n =  5.66336
(0.10480)  

6.51427
(0.13975)  

7.32863
(0.17709)  

9.02991
(0.21962)  

10.0612
(0.26606)  

5 500n =  5.77856
(0.06657)  

6.68609
(0.08902)  

7.5923
(0.11433)  

8.47617
(0.14235)  

10.0034
(0.17415)  

 
For simulation the Bayes estimator and Bayes Posterior risk under square error loss function 

using double prior is used. The above tables shows the simulation using Bayes estimates 

under Square error loss function using the double prior for the different values of sample size 

and parameter.  After simulation it is observed that as sample sizes increases the value of the 

parameter approaches to its true value. And as the sample sizes increases the posterior risk 

decreases. 

6.10 Simulation of the Bayes Estimates under Weighted loss function  

The Simulation using Bayes estimator under Weighted loss function using Exponential 

Gamma as double prior is given as  
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Table 6.7 Simulation using Bayes Estimates and Bayes Posterior risk 
using double prior 

Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  4.4023
(0.08226)  

4.88421
(0.09031)  

5.30681
(0.09825)  

5.70565
(0.10587)  

10.1809
(0.11204)  

2 100n =  5.08316
(0.04871)  

5.75511
(0.05504)  

6.32708
(0.060945)  

6.91358
(0.06645)  

10.1215
(0.07185)  

3 200n =  5.49402  
(0.02689)  

6.30222
(0.03080)  

7.05318
(0.03458)  

9.04363
(0.03808)  

10.0153
(0.04179)  

4 300n =  5.66336  
(0.01855)  

6.51427
(0.02138)  

7.32863
(0.02418)  

9.02991
(0.02685)  

10.0612
(0.02962)  

5 500n =  5.77856  
(0.01148)  

6.68609
(0.01329)  

7.5923
(0.01504)  

8.47617
(0.01685)  

10.0034
(0.018579)  

 

For simulation the Bayes estimator under weighted loss function using double prior is used. 

The above tables shows the simulation using Bayes estimates under Square error loss 

function using the double prior for the different values of sample size and parameter.  After 

simulation it is observed that as sample sizes increases the value of the parameter approaches 

to its true value. And the sample sizes increases the posterior risk decreases. 

6.11 Simulations using Bayes Estimates and Bayes Posterior risk under 

Quadratic loss function 

The Simulation using Bayes estimates and Bayes posterior risk  under Quadratic loss function 

using Exponential Gamma as double prior is given as 



78 
 

 

 

 

 

 

 

 Table 6.8 Simulation using Bayes Estimates and Bayes Posterior risk 
using double prior 

Sample sizes 6θ =  7θ =  8θ =  9θ =  10θ =  

1 50n =  4.4023
(0.98113)  

4.88421
(0.98113)  

5.30681
(0.98113)  

5.70565
(0.98113)  

10.1809
(0.98113)  

2 100n =  5.08316  
(0.99629)  

5.75511
(0.99629)  

6.32708
(0.99629)  

6.91358
(0.99629)  

10.1215
(0.99629)  

3 200n =  5.49402  
(0.99501)  

6.30222
(0.99501)  

7.05318
(0.99501)  

9.04363
(0.99501)  

10.0153
(0.99501)  

4 300n =  5.66336
(0.9969)  

6.51427
(0.9969)  

7.32863
(0.9969)  

9.02991
(0.9969)  

10.0612
(0.9969)  

5 500n =  5.77856  
(0.99890)  

6.68609
(0.99890)  

7.5923
(0.99890)  

8.47617
(0.99890)  

10.0034
(0.99890)  

 

For simulation the Bayes estimator under Quadratic loss function using double prior is used. 

The above tables show the simulation using Bayes estimates under Quadratic loss function 

using the double prior for the different values of sample size and parameter.  After simulation 

it is observed that as sample sizes increases the value of the parameter approaches to its true 

value. 

6.12 Graphs of the Posterior distribution using Double Prior  

(i) Using Exponential Gamma as a Double Prior 

The graphs of the posterior distribution with its parameter is given below. 
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1. It is assumed that the hyperparameters 5,  2,  c 2a b= = =  than the posterior 

parameters will be 35 and 6.68α = β = . 

 

 

 

 
 

     
 

    
      
      

 

 

 
 

    
 

      

 
 

     

  

    
    
    
    
    
     

2. It is assumed that the hyperparameters 5,  3,  c 2a b= = =  than the posterior 

parameters will be 35 and 7.68α = β = . 
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3. It is assumed that the hyperparameters 5,  3,  c 3a b= = =  than the posterior 

parameters will be 35 and 8.68α = β = . 

 

 

 

 

 
 

   
     
      

 
 

    

   

  
  
  
  
 

  
   

4. It is assumed that the hyperparameters 5,  4,  c 3a b= = =  than the posterior 

parameters will be 35 and 9.68α = β = . 
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CHAPTER 7 

Conclusion and Recommendation 

7.1 Conclusion 

This study provides a Bayesian analysis of unknown parameter of Gumbel type II 

distribution. Using the informative and non informative priors, the posterior distributions are 

derived. For checking which of the prior is suitable comparisons are made on the basis of 

Bayes estimators, Bayes Posterior risk and coefficient of skewness? The posterior 

distributions are derived using the same work for the noninformative priors. 

As explain in detail in chapter 03 about the graphs. The graphs of informative priors are 

symmetrical, whereas the graphs of the noninformative priors are slightly positively skewed. 

As explain in detail chapter 04 about the results.  Finally we conclude that the informative 

prior Gamma distribution is best prior under weighted loss function and Quadratic loss 

function but in Square error loss function Exponential prior is best for the estimation of 

Gumble distribution because of minimum posterior risk. Whereas in the noninformative prior 

uniform prior is suitable under Square error, Quadratic and Weighted loss functions because 

of minimum posterior risk 

Simulation study is performed using the Bayes estimator and Bayes Posterior risk under 

different loss functions (Quadratic, Square, Weighted), and finally conclude that as sample 
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size increase the value of the parameter approach to its true value, posterior risk decrease as 

the sample size increase.  

. 

The whole conclusion of the Bayesian analysis of the unknown parameter of the Gumble 

distribution is that the best informative prior is Gamma. In case of having noninformative 

prior Uniform is best prior. The Bayes factor for hypotheses testing is also presented for the 

testing of parameter, and conclude that our hypotheses conclude to oH . 

Chapter 05 describes the posterior distributions using the mixture and double prior is derived 

and conclude that the posterior distributions are also a mixture of Gamma distribution. 

Simulation study is performed using the Bayes estimates under Square error loss function 

using the mixture of Gamma and Exponential as a prior. Simulation study is also performed 

for the Bayes estimates and Bayes posterior risk under (Square, Quadratic, Weighted) using 

Exponential Gamma as a prior. The Graph for the posterior distribution using mixture and 

double priors are slightly positively skewed. 

Chapter 06 describes that the posterior distributions are derived using two informative priors 

(Gamma and Exponential) for type I and type II censoring. The Bayes estimates and Bayes 

Posterior risk are calculated using type I censoring and conclude that under Square error loss 

function Exponential prior is best and under Quadratic and Weighted loss function Gamma 

prior is best as it has minimum posterior risk. Similarly the Bayes estimates and Bayes 

Posterior risk are calculated using type II censoring and conclude that under Square error loss 

function Exponential prior is best and under Quadratic and Weighted loss function Gamma 

prior is best as it has minimum posterior risk. The Graph for the posterior distribution using 

type I and type II censoring are slightly positively skewed. 
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7.2 Recommendations 

1. The work can be further extended for the mixture of the Gumbel distributions. 

2. The work can be further extended to compare the more informative prior. 

3. Bayesian analysis can be done for the both unknown parameters of this distribution.  
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Appendix-A 

Properties of the Gamma distribution  

1.  The mean of the Gamma distributionis α
β

. 

2.  The variance of the Gamma distributionis 2

α
β

. 

3.  The median of the Gamma distribution is G(0.5). 

4. The mode of the Gamma distribution is α −1
β

. 

5.  The skewness of the Gamma distributionis 1
2

α
. 

6.   The Kurtosis of the Gamma distribution is
6

3+
α

. 

7.    The Gamma distribution is always asymmetric distribution. 

8.    The Gamma distribution iscontinuous distribution define on semi indefinite range x>0. 

9.   The range of the Gammmadistributionis 0to∞ . 

10.   The m.g.f of Gamma distribution is 
t

α
 β
 β − 

. 

11.   The c.d.f of Gamma distribution is not in close form. 

12.  The s.d. of Gamma distribution is α
β

. 
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13.  The coefficient of variation of Gamma distribution is 1
α

. 

Properties of the Exponential distribution 

1.  The mean of the Exponential distribution is
θ
1

. 

2.  The variance of the Exponential distribution is 2θ
1

. 

3.  The median of the Exponential distribution is ln 2
θ
1

. 

4. The mode of the Exponential distribution is 0 . 

5.  The skewness of the Exponential distribution is 2 . 

6.   The Kurtosis of the Exponential distribution is9 . 

7.    The Exponential distribution is always asymmetric distribution. 

8.   The Exponential distribution is continuous distribution define on semi indefinite range 

x>0. 

9.   The range of the Exponential distribution is 0to∞ . 

10.   The m.g.f of Exponential distribution is
t

θ
θ −

. 

11.   The c.d.f of Exponential distribution is1 xe θ−− . 

 

12.  The s.d. of Exponential distribution is
θ
1

. 
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13.   The coefficient of variation of Exponential distribution is1. 
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Programe for Simulated data 

 

SIM=1000;BE=RandomReal[UniformDistribution[{0,0}],SIM]; 

For[i=1,i≤SIM,i++,θ=10;n=500; 
u=RandomReal[UniformDistribution[{0,1}],n]; 

  x=-θ*(Log[(1-u)])-1; 
  total1=Total[(x)-1]; 
BE[[i]]=((n-2)/total1);]; 
Table[BE[i],{BE[i],1,n}] 

 

Mean[BE] 

SIM=1000;BE=RandomReal[UniformDistribution[{0,0}],SIM]; 

For[i=1,i≤SIM,i++,θ=10;c=3;w=.0000669;n=500; 
u=RandomReal[UniformDistribution[{0,1}],n]; 

  x=-θ*(Log[(1-u)])-1; 
  total1=Total[(x)-1]; 
  BE[[i]]=(w*(n+1)/ b+total1+(1-w)*(1+n)/ d+total1);]; 
Table[BE[i],{BE[i],1,n}] 

 

Mean[BE] 
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