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                                     Abstract 

 

This theses focus mainly on the theoretical investigation of a new low frequency electrostatic 

wave in  an unmagnetized collisionless dusty plasma, new acoustic waves originating from a balance of 

dust particle inertia and plasma pressure. It is shown that these waves can propagate linearly as a 

normal mode in dusty plasma, also discussed linearly the electromagnetic waves that may exist in a 

nonuniform dusty megnetoplasma by considering the mixed mode. The different limiting cases are 

examined for the couple drift-Alfven-Shukla-Varma modes in a non-uniform dusty magnetoplasma.  

The primary objective of this study was the use of Reductive Perturbation Method (RPM) to 

examine and discuss the stability of the ion acoustic waves (IAWs) in unmagnetized electron-ion 

plasmas. The ion acoustic wave (IAWs) propagates with the phase velocity and depends upon ion mass 

and electron temperature. The nonlinear Schrödinger equation for low amplitude ion acoustic wave 

(IAWs) packet in plasmas with q-nonextensive electron distribution is obtained using the standard 

reductive perturbation technique and the stability of the ion acoustic wave (IAWs)  is also discussed. 

The problem of modulational instability (MI) of ion-acoustic waves (IAWs) in a two-component plasma 

with Cairns--Tsallis distributed electrons is investigated, using the standard multiple scale reductive 

perturbation method, we derive a nonlinear Schrödinger equation NLSE and the MI of the IAWs is 

discussed. The nonlinear Schrödinger equation is derived and then the stability of model is explained. 

The stability depends on q-nonextensive parameter, wave number of ion acoustic wave (IAWs) and the 

velocity of cold beam. For graphical representation of models plots are made with the help of software 

mathematic. In this model studied frequency and group velocity of ion acoustic waves (IAWs) depends 

on nonextensive parameter q. 

 There is also examined the obliquely propagating nonexrensive dust ion acoustic solitary waves in a 

dusty plasma. The reductive perturbation method has been employed to derive K-dV equation which 

admits a solitary wave solution. In this model the amplitude and width of K-dV solitons depends on q-

nonextensive parameter, phase shift, and ratio of number densties of dust and ions at equilibrium, and 

width is also depends on ωci.                                              
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Chapter 1

Introduction

1.1 Plasma

Plasma is fourth state of matter, it is an ionized gas consist of charge and neutral particle.

Plasma is generaly neutral [1]. It is nonconducting liquids, huge number of charged particle in

vaporous form can�t be allocate by standard hypothesis of gasses. Due to its closest neighbour

in plasma the kinetic energy is much larger than its potential energy [2].

Plasma is a dynamic medium which exhibit a vast variety of nonlinear accurance. Research-

ing electromagnetic wave multiplication is a noticable around the most mandatory diagonastic

lab and space plasma. In high temperature plasma the collisional scattering smash are feeble,

the energized waves can grow an abnormal state and depict a variety of nonlinear behaviour

[2].

Charged particles in plasma, shows a �rm reaction to electromagnetic �elds. The reaction

constantly shows an electric current or space charge and �x unique electromagnetic �elds. With

these lines plasma liquids have to be assign with as electromagnetic liquids which are shown by

coupled arrangement of liquid conditions and Maxwell�s conditions for electromagnetism.

1.1.1 Existence of plasma

In plasma charged particles tempertaure is high so their collisions wind up in thermonuclear

reactions. Plasma consisting the bulk of universe and accured naturally but rare on earth,
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surround among di¤erent phenomena, the star crona, solar wind, nebula and region of earth.

1.1.2 Quasineutral

Quasineutrality means su¢ ciently neutral so plasma density is n. The confusion of quasi-

neutrality can be clear up considering plasma is �nite on a cylinder, the plasma seems neutral

from outside of chamber, that is positive particles is equivalent to the negative particles, due

to small �uctuation in control lack of bias there will be electric and attractive forces inside the

cylinder [1].

1.1.3 Debye length

A basic normal for the conduct of plasma is its capacity to shield out electric potential that

are connected to it. Considering to set an electric �eld by place two charged balls linked with

a battery as shown in �gure.

Figure 1.1: Debye Length

The ball linked with positive terminal of bettery is comformed by an electron cloud and

rigidly bound with other ball. The temperature at connected potential are shield out by this

capacity of plasma.The temperature is measure of thermal motions, the particle at the edge
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of cloud have enough energy to escape from the elctric potential due to limited temperature.

Potential is equivalents to the thermal energy of particles at the radius where edge of cloud

accured and the shielding is not ended. Electron debye constanst is given as

�De =

�
"0kBTe
n0e

� 1
2

similarly ion debye constant de�ned as

�Di =

�
"0kBTi
n0e

� 1
2

where kB is boltzmann constant, Te and Ti elctrons and ions temperature, e charge, n is

number densties, at equilibrium ni = ne = n0:

1.1.4 Plasma frequency

Plasma containing negative and positive ions and neutral atoms. A group of electrons shift from

their mean positions, so which will move back the electron by a abandon group pf positively

charged particles. Due to inertia electron will move back and exceed their fundamental position

without collisions, and keep on moving back and forth. Oscillation frequency is given as

!p =

�
e2ne0
me"0

� 1
2

where n is the electron number density at equilibrium e and m electron charge and mass

[1].

1.2 Dusty Plasma

It is observed in our universe almost 99% of matter is in the form of plasma [3]. Dusty plasma

contains electron ion plasma and with further charged component submicrons sized particles,

and in general they are not neutral. The complexity of the system increased by extra component

of macro particles. Thats why it is also called complex plasma. These grains di¤er in shapes

and size in case they are arti�cially made.
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1.2.1 Characteristics of Dusty Plasmas

Dusty plasma contains dust particle or dust grains, depending on the radius of dust grains (rd),

the debye raduis of plasma (�D) ; the everage intergrain distance (a) and the dimensions of

dusty plasma. The condition rd < �D < a here a collection of isolated screened grains are

considered for charged dust grains particles while the condition for rd < a < �D in which the

collective behaviour of dust charge particles accured.

Di¤erences between electron-ion and dusty plasma

Characteristics Electron�ion plasma Dusty plasma

Massive particle charge qi = Zie qd = Zde =� qi

Quasi-neutrality condition ne0 = Zini0 Zdnd0 + ne0 = Zini0

Charge dynamics qi =constant
@qd
@t = net current

Plasma frequency !pi !pd � !pi

Debye radius �De �De � �Di

Particle size uniform dust size distribution

linear waves IAW, LHW ,etc DIAW, DAW, etc

Non linear waves IA solitons/shocks DA/DIA solitons/shocks

E �B0 particle drift ion drift at low B0 dust drift at high B0

Interaction repulsive only attractive between grains

Crystallization no crystallization dust crystallization

Phase transition no Phase transition Phase transition

1.2.2 Dusty Plasmas in Space

In space dusty plasma found everywhere [4]. There are a large number of systems in space

like circumstellar clouds, solar system, interstellar clouds, etc. Where the existence of charged

dust particle has been rooted. A huge medium of dust and gass are �lled the space between the

stars (interstellar space). As new batch of stars are produce in the course of collapsing massive

molecules clouds by decreasing constantly gas contents of interstellar medium with time. The

development of stellar clusters is risen by the fragmentation of these clouds. The dust grains
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as a dielectric(silicates,ices etc), and metallic (madnetic, amorphous carbon, etc ) are found in

interstellar space or circumstellar space.

1.2.3 Interplanetary space

A large amount of dust is �lled interplanetary space called as �interplanetary dust�. The dust

particles was known from zodiacal light, are found in interplanetary space. The inner solar

system are distributed by throughtout the zodiacal light due to dust grains, with �rm con-

tributions from the asteriod belt [5]. For the past two decades in the startosphere NASA has

commonly collected interplanetary dust by using high altitude research aircrafts. The dust par-

ticle are accumulated by inertial in�uence onto plastic plates at altitude of 18 to 20 km:These

plastic plates are coated with highly viscous selicon oil. The size of dust particles are 5 to 20

mm on the collectors. The appearance dust particles of interoplaner space are too much �imsy

and �u¤y.The interplanetary dust particles are shown in �gure (1:2) :

Figure 1.2: Interplanetary dusty plasma in space.
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1.3 Low-frequency electrostatic waves in abounded dusty mag-

netoplasma

The equilibrium quasineutrality condition of an electron ion plasma can change due to presence

of static charge dust grains. Hence when stationary dust charges are added the existing plasma

wave spectra of an electron are modi�ed [6]. The two normal mode of an unmagnetized dusty

plasma DIA and IA waves are accured. Several laboratory dusty plasma devices has been

observed dust acoustic and dust ion acoust modes [7].

In an external magnetic �eld large amount of dusty plasma in laboratory and space en-

vironment are con�ned, the properties of dusty plasma waves is a magnetoplasma is actual

interest to analyse [8]. The dust ion-acoustic solitary wave in an unmagnetized collisional dusty

plasma, which consists on ions having positive charge, dust �uid with negative charge, q nonex-

tensive electrons and background neutral particles. We formulated nonlinear model by the

damped modi�ed Korteweg�de Vries (D-mKdV) equation by applying reductive perturbation

technique. We also constructed the new solitary wave solutions for nonlinear D-mKdV equation

with the help of two techniques.

1.4 Electron-ion plasmas

In di¤erent medium nonlinear analysis of dispersive waves describe that how solitons are create

and how they propagate. The characteristics of solution of K-dV equation by using numerical

techniques in the mid 60,s of 19th century zubusky and krushal studied extensively. They

studied that developing of periodic sinosidal initial perturbation into many solitons. They

regained their identity after the interaction of solitons with each other. In electron ion plasma

the theoretically small and �nite amplitude of ion acoustic wave has been described by washimi

and taniuti in 1966. They take the �uid equation in an electron ion plasma and used boltzmann

distribution of electrons, while ions are taken cold and dynamics. They consider in their model

the lower order nonlinear term and dispersive terms to obtain ion solitary waves. In university

of california at Los Angeles with the help of Double plasma device they predicted the formation

and propagation of ion acoustic solitons. They observed that the solitons interact nonlinearly

which are moving in same directions and those are moving in opposite direction collide and
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having little e¤ect on each other [2].

1.5 Velocity distributions of electrons

The particles are consider to be in thermodynamic coordinations and maxwellian appropriate

capacity in magnetohydrodynamics.This distribution function allow �uid �ow and diverse tem-

perature that is parallel and opposite in direction to the magnetic�eld. Since plasmas are in

thermal equilibrium, more complex distribution fuction may be used. The distribution function

depict the thermal motion due to speeds and postions of the individual paerticles. On everging

over a large number of particles the utilization of statistical discription of plasma, the macro-

scopic phenomena can accured. In thermal equilibrium maxwellian plasma does not have a free

vitality to discover any plasma wave insecurity. In the meantime diverse species in plasma have

distinguishing temperature [9, 10, 11].

1.6 Solitons

The superposition of di¤erent sinosoidal waves having di¤erent frequencies is called arbitray

pulse. In dispersive medium these linear waves travels with di¤rent velocity and pulse spread

out, but in non dispersive medium the velocity of each wave train is same. If nonlinear e¤ects

are noteable in a medium then latest traits may be explained. The rest part of wave move slower

than the crest or point of large amplitude of wave then wave become steeper and steeper and

at the end breaks down. Solitons is known as �solitary wave�for long time, the medium where

dispersion and nonlinearity have important roles. It is noted that shape of solitons preserved

upon interaction [2].

In a dusty plasma the dynamic of dust ion acoustic solitons is examined. Photoelectric

e¤ect raise the both a positive dust grains charge , due to intense electromagnetic radiation

and in the absence of electromagnetic radiation negative dust charge exist. The nondissipative

soliton can exist are described by mach number and plasma parametres. The negatively charged

dust grains in dusty plasma, both compression and rarefraction solitons are propagate, while in

plasma only compression solitons can exist due to positively charged dust grains. Numerically

solving the hydrodynamic equations for ions and dust grains and dust grain charging studied
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the compression and rarefraction preturbations of solitons [12].

1.6.1 Properties and Application of Solitons

Important properties of solitons are:

1.These are travel with constant velocity without changing of its permanent shape, these

are localized structures.

2.Slitons have particle like propeties because they can attract and repel each other.

3.When they cross each other their shape and velocities remains same.

Applications of solitons are:

1.Waves in plasma physics.

2.Propagation of compressional waves.

J. S. Russel in 1844 and tsunami observed water waves and pressure waves repectively.

1.7 Theoratical methods

In a plasma, it is generally less demanding to portray the movement of charged particles if

starting point of the �elds (electric and magnetic) was outside. The movement of charged

particles in electric and magnetic �elds can be depicted by explaining the condition of movement

for every individual molecule. In any case, because of the movement of the charged particles,

the neighborhood charge focuses are made and subsequently electric �elds.

Fluid theory

The circumstance turns out to be extremely mind boggling when E and B �elds in a plasma

are not recommended. It is confused to take after the direction of every last molecule. The

magnetohydrodynamic approach utilized as a part of �uid mechanics works for plasmas too.

This methodology ignores the character of the individual molecule in a plasma and they are dealt

with as a solitary �uid component. This methodology is helpful to concentrate low frequency

wave wonders in exceptionally directing �uids [13].
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1.7.1 Kinetic theory

In the �uid aproach maxwellian velocity distribution of every species is to be considered. In

case of plasma where the �uid approximation is lacking, considering every species velocity

distribution. For every species the relationship between particles, �elds and velocity distribution

given by dynamic hypothesis treatment. Simple form of kinetic equation is Vlasov condition

[13].

1.7.2 Reductive perturbation technique

Nonlinear equations can be �nd by this technique, it is applicable to nonlinear waves having

small amplitude e.g Korteweg-de Vries equation, Nonlinear Schrödinger equation (NLS), etc. If

a physical system can be discribed by single dependent variable then nonlinear equation seems

very simple.The original equation which are used to determined physical system are not simple,

consisting many dependent variables.

For example when we determined plasma as �uid we need equation of �uid velocity, density,

and other variable with equation of state to solve the system.Thermodynamic conditions are

used to check these conditions are taken or not, while using these equations. All dependent vari-

able are expanded in terms of a small parameter " (" is ratio of the amplitude of wave to equilibrium value)

For example

n = n0 + n1 + n2 + n3:::::::

v = v0 + v1 + v2 + v3::::

The boundry conditions inform us that �rst term will be present or not [14, 15, 16].

12



1.8 Low-frequency potential structures in a nonuniform dusty

magnetoplasma

An unmagnetized dusty plasma asist the dust ion acoustic DIA, dust acoustic DA, and dust

lattics DL [17, 18, 19]. In low temperature dusty plasma discharges, dispersion properties of

waves experimetally determined [20, 21, 22, 23]. Laboratory and space plasmas are ingraft in

an external magnetic �eld B0. In a magnetized dusty plasma the plasma have spectra examined

by many authors [24, 25, 26]. In the uniform dusty magnetoplasma the existance of plasma

wave spectra reformed by presence of stationary charged dust grains.The dust grains dynamics

involved by the new possibility of new eigenmods [28], however besides the modi�ed drift waves

the appearance of a low frequency with the comparison of ion gyrofrequency in a nonuniform

dusty magnetooplasma.

Ion gyrofrequency


i =
eB0
mi

where B0 is the strenght of magnetic �eld mi is mass of ion and e is the magnitude of the

electron charge, �uet like electrostatic mode which is now called as Shukla�Varma (SV) mode

[25].

1.9 Layout of Dissertation

The work done in this dissertation are ordered as follows:

In the �rst chapter, introduction to plasma existance of plasma, quasineutral, debye length,

plasma frequency, dusty plasma, solitons and its properties are described brie�y and theoratical

methods and Low-frequency potential structures in a nonuniform dusty magnetoplasma e¤ects

in dusty plasma are also discussed.

In the second chapter, we have discussed acoustic modes and derive a dispersion relation

for dust acoustic modes and acoustic modes, and we have presented the linear theory of elec-

tromegtic waves in nonuniform dusty magnetoplasma to get the coupled drift Alfven Varma

modes. In order to get that �rst generalized magnetohydrodynamic equations are derived for

case of static charged dust particulates. For quasineutral plasma MHD equations consists of the
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ion continuity equation, the generalized momentum equation and Faraday�s law. In order to get

a dispersion relation we then use fourier transformed MHD equations. We also examined the

dispersion relation for coupled drift-Alfven-shukla-Varma modes in nonuniform megnetoplasma

in various limiting cases.

In third chapter, to study the modulational instability of ion acoustic waves in unmagnetized

electron ion plasma by using standard multiple scale method. Electron taken as q-nonextensive

distributed while ion are assumed to be cold. We use nonlinear method to derive group velocity

is a function of wave vector that gives information ion acoustic waves propegate. At the end we

derived standard nonlinear schrodinger equation and also described in unmagnetized electron

ion plasma, ion acoustic waves modulational instability.

In fourth chapter we determined the basic features of obliquely propegating dust ion acoustic

(DIA) solitary waves (SWs) in nonextensive magnetized dusty plasma. To derive Korteweg-

de Vries equation, the reductive perturbation method has been used. In a collisionless, three

component of magnitized dusty plasma containing negatively charged stationary dust in non-

inertial electrons following nonextensive q-distribution and inertial ions.
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Chapter 2

Acoustic modes

In uniform collisionless, unmegnitized dusty plasmas there are two types of acoustic modes with

a weak Coulomb coupling between the charged dust grains.

Types of acoustic waves

Dust acoustic waves(DA)

Dust ion acoustic waves(DIA)

2.0.1 Dust acoustic waves

In collisionless dusty plasma Dust Acoustic waves pridicted . Collisionless dusty plasma con-

tains electron, ions, and negatively charged dust grains. The thermal speed of elctron and ion

much greater than dust acoustic waves phase velocity [26]. In a multicomponent collisionless

dusty plasma

Boltzmann electron and ion number density is

ne1 � neo
e�

kBTe
(2.1)

and

ni1 � nio
e�

kBTi
(2.2)

Dust continuity equation

15



@nd1
@t

+ ndor � vd = 0 (2.3)

Dust momentum equation

mdnd
@v1d
@t

= �qdondor�1 � 3kBTdrnd1 (2.4)

Poisson�s equation

r2� = 4� (ene1 � eni1 � qdond1) (2.5)

using Eq.(2:1) and Eq.(2:2) in Eq. (2:5) we get

r2� = 4�e
2neo�

kBTe
� 4�e

2nio�

kBTI
� 4�qdond1

As k2D = 4�
e2neo�
kBTe

� 4� e
2nio�
kBTi

r2� = k2D � 4�qdond1 (2.6)

Applying plane waves approximation, so that all perturbed quantities are proportional to

exp(ikz� i!t). (This gives us @=@t = �i! and r = ik).Now replacing @=@t! �i! and r ! ik

in Eq. (2:3� 2:6)

�i!nd1 + ikndovd1 = 0 (2.7)

�i!mdndvd1 = �qdondoik�1 � 3ikBTknd1 (2.8)

�k2� = k2D � 4�qdond1 (2.9)

from Eq. (2:7) we get nd1

nd1 =
k2D + k

2

4�qdo
� (2.10)

using value of nd1 from Eq. (2:10) in Eq. (2:7 )
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�i!k
2
D + k

2

4�qdo
�+ ikndovd1 = 0

vd1 = �
!

k

�
k2D + k

2

4�qdondo

�
� (2.11)

putting value of vd1 and nd1 from Eq. (2:10) and Eq. (2:11) in Eq. (2:8)

�!ndomd
!

k

�
k2D + k

2

4�qdondo

�
� = qdondok�1 � 3kBTk

�
k2D + k

2

4�qdo

�
�

k2D + k
2

4�qdo

�
�md

!2

k
+ 3kBTk

�
= qdondok

k2D + k
2

k2

�
�!2 + 3kBTk

2

md

�
=
4�q2dondo
md

(2.12)

here !2pd =
4�q2dondo
md

k2D + k
2

k2

�
�!2 + 3kBTk

2

md

�
= !2pd

k2D + k
2

k2
=

!2pd�
�!2 + 3kBTk2

md

� (2.13)

where

�De =
kBTe
4�neo

and �Di =
kBTi
4�nei

using value of �De and �Di in Eq. (2:13)

k2D + k
2

k2
=

!2pd�
�!2 + 3kBTk2

md

�
1 +

k2D
k2
=

!2pd�
!2 � 3kBTk2

md

�

17



As �2D =
kBTd

4�ndoq2d
and �2D =

1
!2pd

1 +
k2D
k2
=

!2pd�
!2 � 3kBTk2

md

�
�
!2 � 3kBTk

2

md

�
=

!2pdk
2

1
�2D
+ k2

!2 =
3kBTk

2

md
+

C2Dk
2

1 + k2�2D
(2.14)

CD = �D!pd

Dust acoustic speed condition ! � 3kBTk
2

md
so Dust acoustic wave frequency [26].

! =
CDk�

1 + k2�2D
� 1
2

(2.15)

For longer wavelength k2�2D << 1

! = k!pd�
2
D

!2 = k!2pd
�De�Di

(�De + �Di)
1
2

by using values of debye radius �De; �Di and dust plasma frequency !pd we get.

!2 = k2
�
4�nd0zd0
md

��
kBTe
4�ne0e2

� kBTi
4�ni0e2

��
kBTe
4�ne0e2

+
kBTi
4�ni0e2

��1

!2 = k2
�
nd0z2d0
md

��
kBTe
ne0e2

� kBTi
ni0e2

��
4�ne0e

2

kBTe

��
1 +

Tine0
Teni0

��1

!2 = k2
�
nd0z

2
d0

md

��
kBTi
ni0

��
1 +

Tine0
Teni0

��1

! = kzd0

�
nd0
ni0

� 1
2
�
kBTi
md

� 1
2
�
1 +

Tine0
Teni0

�� 1
2
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so dust acoustic phase velocity is

Vp = kz2d0

�
nd0
ni0

��
kBTi
md

��
1 +

Tine0
Teni0

�� 1
2

(2.16)

2.0.2 Dust ion acoustic waves

The restoring force comes from hot electrons that is Boltzmann distributed (inertialess) and ion

mass gives the inertia [27]. In an electron-ion-dust plasma due to negatively charge dust grains

the DIA waves. Phase speed is smaller than speed of usual ion acoustic speed but for positively

charge dust grain DIA waves phase speed is larger than usual acoustic speed, Ci =
�
kBTe
mi

� 1
2
:

where kB is boltzmann contant, mi is mass of ion and Te is electron mass [28].

With the DIA waves the perturbed number density of electron is given by

ne1 � neo
e�

kBTe

Continuity equation

@nd1
@t

+ nior:vd1 = 0

Momentum equation

mindo
@vd1
@t

= �endor�1 � 3kBTdrnd1 (2.18)

Poisson�s equation

r2� = 4� (ene1 � qdond1 � eni1) (2.19)

r2� = 4�e2neo
�

kBTe
� 4�qdond1 � 4�e2nio

�

kBTi

where

ne1 � neo
e�

kBTe

ni1 � nio
e�

kBTi

for stationary dust grains nd1 � 0
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r2� = k2De�1 � 4�qdond1 � 4�e2nio
�

kBTi
(2.20)

where k2De = 4�neo
e2�
kBTe

Applying plane waves approximation, so that all perturbed quantities are proportional to

exp(ikz� i!t) (This gives us @=@t = �i! and r = ik), Now replacing @=@t! �i! and r ! ik

in Eq. (2:17� 2:20).

�i!nd1 + niokvd1 = 0 (2.21)

�i!mdndovd1 = �ikend0�1 � ik3kBTind1 (2.22)

�k2�1 = k2De�1 � 4�qdond1 � 4�e2nio
�

kBTi
(2.23)

Eq. (2:21) can also be expressed as

nd1 =

�
k2De + k

2

4�qdo
� e2nio
kBTiqdo

�
�1 (2.24)

where nd1 is dust number density perturbation.

using value of dust number density from Eq. (2:24) in dust continuity Eq. (2:21) we get.

1.

!

�
k2De + k

2

4�qdo
� e2nio
kBTiqdo

�
�1 + ndokvd1 = 0

vd1 =
�!
kndo

�
k2De + k

2

4�qdo
� e2nio
kBTiqdo

�
�1 (2.25)

where vd1 is dust �uid velocity.

using Eq. (2:24) and Eq. (2:25) in momentum ion Eq. (2:22)

i!mdndo
!

kndo

�
k2De + k

2

4�qdo
� e2nio
kBTiqdo

�
�1

= �ikqdond0�1 + ik3kBTi
!

kndo

�
k2De + k

2

4�qdo
� e2nio
kBTiqdo

�
�1
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!mdndo
!

kndo

�
k2De + k

2

4�qdo
� e2nio
kBTiqdo

�
= �kqdond0 + k3kBTi

!

kndo

�
k2De + k

2

4�qdo
� e2nio
kBTiqdo

�
�
k2De + k

2

4�qdo
� e2nio
kBTiqdo

��
�md

!2

k
+ 3kBTd

�
= �kqdond0

Multiplying both side by 4�qdo

4�qdo

�
k2De + k

2

4�qdo
� e2nio
kBTiqdo

��
�md

!2

k
+ 3kBTd

�
= �4�kq2dond0

1

md

�
�md

!2

k
+ 3kBTdk

��
k2De + k

2 � 4�e
2nio

kBTi

�
=
�4�kq2dond0

md�
�!

2

k2
+
3kBTd
mdk

��
k2De + k

2 � mi

kBTi
!2pi

�
= �!2pd (2.26)

Where !pi is the Langmuir frequency, nio is density of ion, and mi is mass of ion [29].

!2pi =
4�e2nio
mi

; !2pd =
4�q2dond0
md

� V 2Ti =
mi

kBTi

Suppose ! � kVTi; kVTd so dust ion acoustic wave dispersion relation [30].

�!
2

k2

�
k2De + k

2 � k2

!2
!2pi

�
= �!2pd

�!
2

k2
�
k2De + k

2
�
+ !2pi = �!2pd

�!
2

k2
�
k2De + k

2
�
= �

�
!2pd + !

2
pi

�
so dust ion acoustic(DIA) wave dispersion relation

1 +
k2De
k2

�
!2pd + !

2
pi

�
!2pd + !

2
pi

�
!2

= 0 (2.27)

Dust plasma frequency is much smaller than ion plasma frequecncy due to smaller mass

of ion as compared to dust grains mass. As mi � md so !pd � !pi, debye wavelenghth
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for dust grains is k2De =
1
�2De

!2 =

�
!2pd + !

2
pi

�
�2Dek

2

1 + �2Dek
2

(2.28)

let

CS = !pi�De =

�
nio
neo

� 1
2

cs

cs =

�
kBTi
mi

� 1
2

Eq. (2:28) gives

!2 =
k2C2S

1 + �2Dek
2

Condition

for longer wavelength limit k2�2De � 1

applying limit k2�2De � 1 in Eq. (2:72) we get

!2 = k2C2S

!2 = k2

"�
nio
neo

� 1
2

cs

#2

! = k

�
nio
neo

� 1
2

cs

DIA wave phase velocity VP = !
k

VP =

�
nio
neo

� 1
2

cs (2.30)

For negatively charged dust grains nio � neo Eq. (2:30) expressed that cs is smaller than

dust acoustic waves phase velocity. Debye radius of electron is larger when in the back ground

plsama the electron density depletion allocated by increase in the phase velocity. Thus raise

the phase velocity of DIA waves due to appearance of stronger space charge electric �eld.
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2.1 Waves in non-uniform megnetoplasma

In an elctron -ion plasma due to an external magnetic �eld notably modi�es the dispersion

properties of electromagnetic waves. Drift motions and associated waves in magnetized dusty

plasma caused by some region of inhomogeneity in dusty plasma.

Considering nonuniform dusty megnetoplasma consisting static dust grains and unperturbed

number densties of plasma ns0(x), suppose that is inhomogenous along x-axis (equilibrium density gradient @ns0=@x)

and study the dispersion properties of longer wavelength (comparing with the ion gyroradius)

and low frequency (comparing with !ci) electrostatic and electromagnetic waves.

In an electron ion plasma when neutral dust grain are added, dust grains are charged that

can modify the wave propegation [31].

At equilibrium the quasi-neutrality condition is

eni0 � ene0 + qd0nd0 = 0

the electric �eld of low frequency waves

E? = �r?�

The electron and ion �uid velocity prependicular componenets are [32].

ve? �
c

B0
ẑ �r?��

ckBTe
eB0ne0

ẑ �r?ne1 (2.31)

vi? �
c

B0
ẑ �r?��

ckBTi
eB0ni0

ẑ �rni1 �
c

B0!ci

�
@

@t
+ ui��r

�
r?� (2.32)

2.2 Electromagnetic waves

To study electromagnetic waves in a non-uniform dusty magnetoplasma. Consider di¤erent

types of mixed modes (mixture ofelectrostatic and electromagnetic waves) and a purely elec-

tromagnetic mode, namely a non-ducted dust.
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2.2.1 Mixed mode (static dust)

Low �

� =
8�n0kBT

B2
� 1 (2.32)

Ampere�s law

r�B =
4�e

c
(nivi � neve � Zdondvd) =

�
4�

c

�
J (2.33)

Electron continuity equation

@ne1
@t

+r: (neve) = 0 (2.34)

where ne = ne0 + ne1

Ion continuity equation
@ni1
@t

+r: (nivi) = 0 (2.35)

Poisson�s equation, for stationary dust grains (nd ! 0)

r2� = 4� (ne1 � ni1) (2.36)

B = rAZ � ẑ

parallel component of vetor potential is AZ

using value of B in Eq. (2:33) ; neglecting parallel component of ion and dust current densitis

ni; nd:

r� (rAZ � ẑ) =
4�e

c
(neveZ )

veZ =
c

4�eneo
(r? � (r?AZ � ẑ ))

veZ =
c

4�eneo
[(r?AZ :ẑ )r? � (r?:ẑ )r?AZ ]

24



since (r?:ẑ )r?AZ = 0

now

veZ =
c

4�eneo

��
r2?AZ

��
(2.37)

where veZ is parallele component of electron �uid velocity.

Parallel component of electron continuity equation using Eq. (2:33) we get

@ne1
@t

+r?: (nev?e) + ne
@

@z
vez = 0

here ne = ne0 + ne1 and ne1 � ne0

@ne1
@t

+r?: (ne0v?e) + ne0
@

@z
vez = 0 (2.38)

using value v?e and vez from Eq. ( 2:31) and Eq. (2:37) in Eq. (2:38)

@ne1
@t

+r?:
�
ne0

c

B0
ẑ �r?��

neockBTe
eB0ne0

ẑ �r?ne1
�
+ ne0

c

4�eneo

@

@z

�
r2?AZ

�
= 0

assuming Te ! 0

@ne1
@t

+r? �
�
ne0

c

B0
ẑ �r?�

�
+

c

4�e

@r2?AZ
@z

= 0

@ne1
@t

+

�
ne0r? �

c

B0
ẑ �r?��

c

B0
ẑ �r?� � r?neo

�
+

c

4�e

@r2?AZ
@z

= 0

as r � ẑ �r =

26664
@x @y @z

0 0 1

@x @y @z

37775 = 0

@ne1
@t

+

�
� c

B0
ẑ �r?� � r?neo

�
+

c

4�e

@r2?AZ
@z

= 0 (2.39)
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Prependicular components of Ion continuity equation.

@ni1
@t

+r? � (ni0 � v?i) + nei
@v?i
@z

= 0 (2.40)

using value of v?i in Eq. (2:40) :

@ni1
@t

+r?�
�
ni0 �

�
c

B0
ẑ �r?��

ckBTi
eB0ni0

ẑ �rni1 �
c

B0!ci

�
@

@t
+ ui� � r

�
r?�

��
+nei

@v?i
@z

= 0

24 @ni1
@t +r? �

�
ni0

c
B0
ẑ �r?�

�
�r? �

�
nio

ckBTi
eB0ni0

ẑ �rni1
�
�r? �

�
neo

c
B0!ci

@
@tr?�

�
+r? � neoc

B0!ci
(ui� � r)r?�+ nei @v?i@z

35 = 0
(2.41)

consider second term from Eq. (2:41)

r? �
�
ni0

c

B0
ẑ �r?�

�
=

c

B0
ẑ � (r?� � r?nio) +

�
nio

c

B0
ẑ �r?�

�
� r?

r? �
�
ni0

c

B0
ẑ �r?�

�
=

c

B0
ẑ � (r?� � r?nio)

consider 4th and 5th term from Eq. (2:41)

r? �
�
neo

c

B0!ci

@

@t
r?�

�
=

nioc

B0!ci

�
@

@t

�
r2?�

r? �
nioc

B0!ci
(ui� � r)r?� =

nioc

B0!ci
(ui� � r)r2?�

using value of theses terms in Eq. (2:41), assume Ti ! 0 we get

@ni1
@t

= � c

B0
ẑ � (r?� � r?nio) +

nioc

B0!ci

�
@

@t

�
r2?�+

nioc

B0!ci
(ui� � r)r2?� = 0 (2.42)

subtractiing Eq. (2:39) and Eq. (2:42)

24 @
@t (ne1�ni1)�

c
B0
ẑ � (r?neo �r?nio) � r?�+ c

4�e
@r2?AZ

@z + nioc
B0!ci

@
@tr

2
?�

+ nioc
B0!ci

(ui� � r)r2?�

35 = 0 (2.43)
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Poisson�s equation

r2� = 4�e (ne1 � ni1)

using poisson�s equation in Eq. (2:43)

24 @
@t

�
1
4�er

2
?�
�
� c

B0
ẑ � (r?neo �r?nio) � r?�+ c

4�e
@r2?AZ

@z + nioc
B0!ci

@
@tr

2
?�

+ nioc
B0!ci

(ui� � r)r2?�

35 = 0
qdndo = nio � neo

now we get

24 @
@t

�
1
4�er

2
?�
�
� c

B0
ẑ �r? (qdndo) � r?�+ c

4�e
@r2?AZ

@z � nioc
B0!ci

@
@tr

2
?�

+ nio
B0!ci

(ui0ŷ � r)r2?�

35 = 0
24 @

@t

�
1
4�er

2
?�
�
� c

B0
ẑ �r? (qdndo) � r?�+ c

4�e
@r2?AZ

@z + nioc
B0!ci

@
@tr

2
?�

+ nio
B0!ci

ui0
@
@yr

2
?�

35 = 0
24 @

@t

�
1
4�er

2
?�
�
� c

B0
r?

� qdndo
e

�
� ẑ �r?�+ c

4�e
@r2?AZ

@z

+ nioc
B0!ci

�
@
@t + ui0

@
@y

�
r2?�

35 = 0 (2.44)

as
c

B0
r?

�qdndo
e

�
� ẑ �r?� =

c

eB0
(qdndo)

@

@x
ln (qdndo) � ẑ �r?�

so now Eq. (2:44) is

24 @
@t

�
1
4�er

2
?�
�
+ c

B0
(qdndo)

@
@x ln (qdndo) � ẑ �r?�+

c
4�e

@r2?AZ
@z

+ nioc
B0!ci

�
@
@t + ui0

@
@y

�
r2?�

35 = 0
multiplying both side by B0!ci

nioc
; we get
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�
@

@t
+ ui0

@

@y

�
r2?�+

!ciqd0nd0
enio

@

@x
ln (qdndo) � ẑ �r?�

+
B0!ci
4�enio

@r2?AZ
@z

+
B0!ci
4�enioc

@

@t
r2?� = 0 (2.45)

as 26664
@
@x 0 0

0 0 1

@
@x

@
@y 0

37775 = @
@x

@
@y so

!ci
enio

qd0nd0
@

@x
ln (qdndo) � ẑ �r?� =

!ci
nio

qd0nd0
@

@x
ln (qdndo)

@�

@x

Now from Eq. (2:45) we get

�
@

@t
+ ui0

@

@y

�
r2?�+

!ci
enio

qd0nd0
@

@x
ln (qd0nd0)

@�

@y
+
B0!ci
4�enio

@r2?AZ
@z

+
B0!ci
4�enioc

@

@t
r2?� = 0

(2.46)

sssuming

�d =
qd0nd0
enio

, kd =
@

@x
ln (qd0nd0) ,

V 2A
c
=

B0!ci
4�enio

�
@

@t
+ ui0

@

@y

�
r2?�+ !ci�dkd

@�

@y
+

V 2A
c

@r2?AZ
@z

+
V 2A
c

@

@t
r2?� = 0 (2.47)

Electron momentum equation

mne
d�e
dt

= �eneoE �r� (2.48)

Electron momentum equation (parallel component )

mne0

�
@�?e
@t

+
@vez
@t

�
= �eneoEz � kBTer?ne1 � kBTerzne1 � e (�? �B)� e (vez �B)
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mne0

�
@�?e
@t

+
@vez
@t

�
= eneoEz � kBTe

@ne1
@z

� e (vez �B)

�
@�?e
@t

+
@vez
@t

�
=

eneo
mne0

Ez �
kBTe
ne0

@ne1
@z

� e (vez �B)

where

Ez = �
@�

@z
�B = B0ẑ

so now we get
@ve?
@t

+
@vez
@t

=
e

m

@�

@z
� kBTe

ne0

@ne1
@z

(2.49)

using Eq. (2:32) and Eq. (2:37) in Eq. (2:49)

�
@

@t

�
c

B0
ẑ �r?��

ckBTe
eB0ne0

ẑ �r?ne1
�
+
@

@t

�
c

4�eneo
r2?AZ

��
=

e

m

@�

@z
� kBTe

ne0

@ne1
@z
(2.50)

considering equations

@ne1
@t

+

�
� c

B0
ẑ �r?� � r?neo

�
+

c

4�e

@r2?AZ
@z

= 0 (2.51)

�
@

@t
+ ve0

@

@y

�
Az � �2e

@

@t
r2?Az + c

@�

@z
� ckBTe

e

ne1
ne0

= 0 (2.52)

�
@

@t
+ ui0

@

@y

�
r2?�+ !ci�dkd

@�

@y
+

V 2A
c

@r2?AZ
@z

+
V 2A
c

@

@t
r2?� = 0 (2.53)

linearizing above three equations as @
@t ! �i! and r ! ik

now

�i!ne1 �
�
� c

B0
ẑ � @

@x
neo � iky�

�
� c

4�e
ikzk

2
?Az = 0

ne1 =
c

!B0

@

@x
neoky��

c

4�!e
ikzk

2
?Az = 0 (2.54)

and

�i!Az + ve0ikyAz + �2ei! (ik?)
2Az + cikz��

ckBTe
e

ikz
ne1
ne0

= 0
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as we know that

�2e =
kBTe
4�ne0e2

� !�e = ve0ky

so

�!Az + !�eAz � �2e!k2?Az + ckz�� �2ee4�kzne1 = 0 (2.55)

�i!i2k2?�+uioikyi2k2?� +!ci
qd0nd0
enio

@

@x
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V 2A
c
(�i!) i2k2?�+

V 2A
c2
(ikz) i

2k2?Az = 0

!k2?�+ !
�
i k
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?� +

!ci
enio

@

@x
(qd0nd0) ky +

V 2A
c2
(�i!) i2k2?�+

V 2A
c2
(ikz) i

2k2?Az = 0

!k2?�+ !
�
i k
2
?� +

!ci
enio

@

@x
(qd0nd0) ky +

V 2A
c2
!k2?�+

V 2A
c2
kzk

2
?Az = 0 (2.56)

where

!sv = �
4�e!ciky

@
@x (qd0nd0)

B0k2?!
2
pi

!2pi = �
ni0e2

"0mi

!2ci =
e2B20
c2m2

i

now ratio of !ci
!2pi
;we get

ni0e =
B0!

2
pi

4�c!ci

using value of ni0e in Eq. (2:56)

!k2?�+ !
�
i k
2
?� +

!2ci4�c

!2piB0
ky

@

@x
(qd0nd0)�+

V 2A
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V 2A
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2
?Az = 0
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!k2?�+ !
�
i k
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?� +

!2ci4�ck
2
?

!2piB0k
2
?
ky

@

@x
(qd0nd0)�+

V 2A
c2
!k2?�+

V 2A
c2
kzk

2
?Az = 0 (2.57)

using value of !sv in above Eq. (2:57)

!k2?�+ !
�
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?� + !svk

2
?�+

V 2A
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so now we get
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c!sv
V 2Akz

� (2.58)

using Eq. (2:58) in Eq. (2:54)
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V 2Akz
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eB0ne0
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using Eq. (2:59) in Eq. (2:55)

�!Az � !�eAz � �2e!k2?Az + ckz�� �2ee4�kz
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(2.60)
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using value of AZ from Eq. (2:58) in Eq. (2:60) ; so we get
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(2.61)

where
�
4�e2ne0
kBTe

�
= �2e

multiplying Eq. (2:61) by !V 2Akz
c� we get
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Ignoring term !3V 2Ak
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2.2.2 Properties of electromagnetic waves in nonuniform dusty magneto-

plasma in various limiting case

Case 1

For homogeneous dusty plasma (!j = 0)

When the parallel component of phase velocity is lesser than electron thermal plasma speed

VTe, the frequency of the dispersive alfven waves is generated . We neglected the parallel

component of electron inertial e¤ect k2y�
2
e << 1 then we get from Eq. (2:62)

�
!2 � !2IAk2?�2S

�
(!) = !2IA (!)

!2 = !2IA
�
1 + k2?�

2
S

�
!2 = kzVA

�
1 + k2?�

2
S

� 1
2 (2.63)

Which is dispersive kinetic alfven waves in an intermediate plasma.

for !
kz
>> VTe and neglacting the parallel electron pressure gradient term k2?�

2
S ; so

! =
kzVA�

1 + k2y�
2
e

� 1
2

Which is dispersive inertial alfven waves frequency at very low � plasma
�
me
mi

>> �
�
:

Case 2
�
! >> !m; !

�
j

�
The dispersive Alfven waves lineraly coupled with SV mode, From Eq. (2:62).

! = !sv

In a cold dusty plasma (Tj = 0) with !�i << ! and VTe << !
kz
, we get from Eq. (2:62)

!2 (! � !sv) = !IA!

by using value of !IA =
k2zV

2
A

1+k2y�
2
e
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!2 � !!sv �
k2zV

2
A

1 + k2y�
2
e

= 0 (2.64)

which depicts the coupling of inertial Alfven waves and SV modes because of parallel electron

motion in the wave electric and magnetic �elds. Neglacting the parallel component of pressure

gradient force (ks�s ! 0) and !�i = 0:

we get from Eq. (2:63)

�
!2 � !!m

�
(! � !sv) = !IA (! � !�e)

where

!m =
!�e

1 + ky�
2
e

, !IA =
k2zV

2
A

1 + k2y�
2
e

so we get

�
!2 � ! !�e

1 + ky�
2
e

�
(! � !sv) =

k2zV
2
A

1 + k2y�
2
e

(! � !�e)

�
!
�
1 + ky�

2
e

�
� !�e

�
(! � !sv)! = k2zV

2
A (! � !�e) (2.65)

which reveales that linearly coupling of megnatostatic drift modes ! = !m, the inertial Alfven

waves ! = !IA, the elactron drift mode ! = !e and SV mode ! = !sv.

Case 3 (kzvez = 0)

Assuming parallel motion of electron vanish completely from Eq. (2:62) we get

�
!2 � !!m

�
(! � !�i � !sv) = 0

�
!2 � !!m

�
= 0 and (! � !�i � !sv) = 0 (2.66)

hence the modi�ed SV mode (! = !�i + !sv) and �ute like magnetostatic mode (! = !m)

arises as independent normal modes of a non uniform dusty magnetoplasma consisting of warm

ions.
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Case 4
�
k2y�

2
e << 1

�
When �e is much smaller than the prependicular wavelength for ! >> !�i :

So from Eq. (2:62) we get

�
!2 � !!�e � k2zV 2Ak2?�2S

�
(! � !sv) = k2zV

2
z (! � !�e)

! (! � !�e) (! � !sv)� k2zV 2z (! � !�e) = k2zV
2
Ak

2
y�
2
S (! � !sv)

(! � !�e)
�
!2 � !!sv

�
� k2zV 2z (! � !�e) = k2zV

2
Ak

2
y�
2
S (! � !sv)�

!2 � !!sv � k2zV 2z
�
(! � !�e) = k2zV

2
Ak

2
y�
2
S (! � !sv) (2.66)

In a dusty plasma due to �nite Larmour radius correction of ions at the electron tempera-

trure, coupling between SV mode and drift kinetic Alfven waves are

�
!2 � !!�i � k2zV 2z

�
(! � !�e) = k2zV

2
Ak

2
y�
2
S (! � !�i ) (2.67)

which is dispertion relation of the coupled drift -kinetic Alfven waves without charged dust

grains, in a warm electron ion magnetoplasma.

2.3 Conclusion

In this chapter, in dusty plasmas reveales the linearly propegation of dust acoustic waves and

dust ion aouctic waves. In DA waves we study the low frequency and long wavelength cumulative

oscillations. We shall consider the modes in which dust particle dynamics is crictical. We

describe in the thermodynamical equilibrium the combined motion of negtively charged dust

grains in the framework of ions and hot electrons and determined a latest type of sound wave,

having low frequency namely the dust-acoustic waves. We have shown that the pressure of

the inertialess ion and electron produce restoring force in the DA waves, while inertia due to

dust mass assist the waves. The dust plasma frequency is much greater than the frequency

of DA waves. We also determined the phase velocity of DIA waves, due to ni0 < ne0 for

negatively dust charge cs is less than phase velocity of DIA waves, where cs =
�
kBTi
mi

� 1
2
: In the

back ground of plasma the electron density plasma depletion due to increase in phase velocity,
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hence electron debye radius become larger. We have also study the electromagnetic waves,

present in non uniform dusty magnetoplasma and considering static dust and derive the genral

dispersion relation. We observe that when ! >> !m; !j� the dispersive ALfven waves are

linearly coupled with the SV mode ! = !sv also various other limiting cases are discussed

to obtained magnetostatic mode (! = !m), coupling of drift-coupling Alfven waves and SV

modes and dispersion relation of the coupled drift- kinetic Alfven waves in a warm electron ion

magnetoplasma without charged dust grains.

37



Chapter 3

Modulational instability of ion

acoustic waves in plasma with

q-nonextensive electron distribution

3.1 Model

Consider the slow amplitude modulation of linear wave, and one dimentional motion of ion

acoustic waves in unmagnetized electron-ion plasma, consisting of q-nonextensive distributed

electrons and cold ions.

Continuity equation for ion number density n is given by

@v

@t
+
v@v

@x
= � e

m

@�

@x
(3.1)

where � is the electrostatic potential and m and e are mass and charge of ions.

The system is closed by poisson�s equation, which is given below

"o
@2�

@x2
= e [ne � n] (3.2)

where ne and n are number densities of electron and ion respectively.Velocity v and electro-
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static potential � are normalized by the ion-acoustic speed Cs =
�
Te
m

� 1
2 and Te

e . The space

x and time t are in the units of electron debye length

�D =

�
Te

4�e2neo

� 1
2

and reciprocal of ion plasma frequency equation of motion

!pi =

�
4�e2no
mi

� 1
2

here the q tells us the strength of nonextensivity. Resulting normalized sets of equations

are given as
@n

@t
+
@ (nv)

@x
= 0 (3.3)

@u

@t
+
u@ (u)

@x
= �@�

@x
(3.4)

and
@2�

@x2
= [ne � n] (3.5)

where

ne = [1 + (q � 1)�]
q+1
2(q�i) (3.6)

after aplying bionomial theorem

ne = 1 + c1�+ c2�
2 + c3�

3:::

when we use ne in the poisson�s equation then it is transformed as

@2�

@x2
= 1 + c1�+ c2�

2 + c3�
3:::� n (3.7)

where

c1 =
(q + 1)

2
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c1 =
(q + 1) (q � 3)

8

c2 =
(q + 1) (q � 3) (3q � 5)

48

3.2 Outline of Method

Let 	 be any system variables and describing the State of the system at time t and position x.

Consider small deviation from equilibrium state which tells us that and described by

	 = 	(0) +�1n�1"
n	(n) (3.8)

We use the standard reductive perturbation technique to study the modulation of IAW and

obtain the NLSE. The independent variables are

� = " (x� vgt)

and

� = "2t

where " is the small parameter and vg is the group velocity of IAW which strongly depends

upon the dispersion relation. The dependent variables are

n = 1 + �1n�1"
n�1n�1n

n
i (�; �) e

�{l(kx�!t)

u = �1n�1"
n�1n�1u

n
i (�; �) e

�{l(kx�!t)

� = �1n�1"
n�1n�1�

n
i (�; �) e

�{l(kx�!t) (3.9)

where n; u and � must satisfy the reality condition

 
(n)
��{ =

�
 
(n)
��{

��
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now dependent variable can be written as

n = 1 +
�
"n11 + "

2n21 + "
3n31 + :::

�
e�{l� (2.10)

v =
�
"v11 + "

2v21 + "
3v31 + :::

�
e�{l�

� =
�
"�11 + "

22
1 + "

3v31 + :::
�
e�{l� (3.12)

where

� = kx� !t

@
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=

@

@t
+
@�

@t

@

@�
+
@�

@t

@

@�

@

@t
=

@

@t
� "vg

@

@�
+ "2

@
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(3.13)

@

@t
(" (x� vgt)) = �"vg;

@

@t

�
"2t
�
= "2

@

@x
=

@

@x
+ "

@

@�
(3.14)

now in case if initially
@

@x
= 0

@

@x
=
@�

@x

@

@�
= "

@

@�
;
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= " (3.15)
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@�
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@�
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@�2
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@�
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@�
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@�
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= �"vg0
@�
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= "2 (3.17)

Lets proceeding for continuity equation

First term
@n

@t
=
@n

@t
� "vg
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@�
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Second Term
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Combined continuity equation by using equations 3.18 and 3.19
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comparing " order tern for n = 1 , l = 1

(�il!) "n11e�{l� + ilk
�
"v11
�
e�{l� = 0

!n11 + kv
1
1 = 0 (3.21)

now equation of motion
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Second term
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combining Eq. (3:22) and Eq. (3:23)
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(3.24)

Third term

� = 1 +
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combining all terms from Eq. (3:24) and Eq. (3:25)
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comparing " order term for n = 1; l = 1; hence we get

eil� (�il!) "v11 = �ilk
�
"�11
�
eil�

!v11 = k�11 (3.27)

Finally for poison�s equation
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as from Eq. (3:15) and Eq. (3:17)
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now combining both sides of poison�s equations by using Eq. (3:29) and Eq. (3:30)
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comparing order of terms n = 1; l = 1; we get

�l2k2eil�"�11 = �"n11e�{l� + "�11c1e�{l�

�k2�11 = �11c1 � n11

now considering the Eq. (3:21), Eq. ( 3:27) and Eq. (3:32)

we get for the the �rst homonic n = 1; l = 1

!n11 + kv
1
1 = 0

!v11 = k�11

�k2�11 = �11c1 � n11

by solving above equations we get dispersion relation

n11 =
kv11
!

and

v11 =
k�11
!

n11 =
k

!

k�11
!

so

�k2�11 = �11c1 �
k2

!2
�11

!2 =
k2

c1 + k2

! =

s
k2

c1 + k2
(3.33)

So wave dispersion relation describes that the wave is moving or a simple oscillation, if the

frequency IAW frequency ! is the function of wave vector k then the IAW is propagating, else
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if it is not function of wave vector then there will be simple oscillations.

Figure 3.1:Variation of frequency of IAW with the wave

vector k for di¤erent values of non-extensive parameter q.

Solid curve corresponds to q=0.8;Dashed curve to q=1;

DotDashed curve to q=1.5
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Figure 3.2:Variation of frequency of IAW with the

wave vector k for di¤erent values of non-extensive

parameter q.Solid curve corresponds to q=2;Dashed

curve to q=3; DotDashed curve to q=4;Dotted curve

to q=5

when the value of non-extensive parameter q is increased then the frequency ! grows slowly

with the wave vector. The frequency ! of IAW depends upon the non-extensive parameter

q,and the frequency ! of IAW grows fastly for smaller value of non-extensive parameter as

compared to the large value of non-extensive parameter.

The �rst order reduced equations for 1st harmonics in terms of the potential �(1)1 are

n
(1)
1 =

�
c1 + k

2
�
�
(1)
1 (3.34)

n
(1)
1 =

k

!
�
(1)
1 (3.35)

Eq. (3:34), Eq. (3:35) are the perturbed number density and velocity in terms of �rst order

and �rst harmonic potential which is usually known to us. These results are very important

and used again and again to convert all the equations into known �rst harmonic and �rst order
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potential. It is observed that zeroth order terms as well as higher orders terms are zero.

 
(n)
l>n =

k

!
�
(1)
1 ;  

(n)
0 = 0

3.3 Second order terms:second and zeroth harmonics,group ve-

locity

Considering Eq. (3:20) ; comparing "2order term for n = 2; l = 1 only e�{l� term
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comparing "2 order term for n = 2; l = 1; containing only e�{l� term
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k

!
=
@�11
@�

�21 (3.37)

considering Eq. (3:31)
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comparing "2 oreder term for n = 2; l = 1 consisting only eil� term

so we get

�k2l2"2�21e�{l� � 2ilk"2eil�
@�11
@�

= �c1
�
"2�21

�
e�{l� � "2n21e�{l�

�k2l2�21 � 2ilk
@�11
@�

= c1
�
�21
�
� n21

2ilk
@�11
@�

= c1
�
�21
�
� n21 + k2�21 (3.38)

note now from equation (3:36� 3:38) we found
�
in term of �11

�
�21; n

1
1 and v

1
1

�i!n21 + ikv21 =
�
vg
@n11
@�

� @v11
@�

�
= f1 (3.39)

�i!v21 + ik�21 =
�
vg
@v11
@�

� @�11
@�

�
= f2 (3.40)

n21 +
�
c1 + k

2
�
�21 = �2ilk

@�11
@�

= f3 (3.41)

for n21, multiplying Eq. (3:39)and Eq. (3:40) by ! and k respectively. we get

�i!2n21 + ik!v21 = f1! (3.42)

�ik!v21 + ik2�21 = f2k (3.43)

adding Eq. (3:42) and Eq. (3:43)
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�i!2n21 + ik!v21 � ik!v21 + ik2�21 = f1! + f2k

�i!2n21 + ik2�21 = f1! + f2k (3.44)

multiplying Eq. (3:44) by i on both sides

!2n21 � k2�21 = if1! + if2k (3.45)

where

�
vg
@n11
@�

� @v11
@�

�
= f1 (3.46)

�
vg
@v11
@�

� @�11
@�

�
= f2 (3.47)

use following equations in Eq. (3:46) and Eq. (3:47)

vg = c1
!3
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n11 =
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v11 =
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1
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(3.49)

ikf2 = ic1
!3

k3
k2

!

@�11
@�

� ik@�
1
1

@�

ikf2 = ic1
!2

k

@�11
@�

� ik@�
1
1

@�
(3.50)
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now using value of i! f1 and ikf2 from Eq. (3:49) and Eq. (3:50) in Eq. (3:45) ; so we get

!2n21 = k2�21 + ic1
!2

k

@�11
@�

� ik@�
1
1

@�
+ ic1

!2

k

@�11
@�

� ik@�
1
1

@�
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k2�21
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+
2ic1
k

@�11
@�

� 2ik
!2

@�11
@�

(3.51)

for v21 considering Eq. (3:40) using value of vg and v
1
1

vg = c1
!3

k3
; v11 =

k

!
�11

i!v21 = ik�21 � c1
!3

k3
k

!

@�11
@�

+
@�11
@�

v21 =
k

!
�21 + i

@�11
@�

�
c1
!

k2
� 1

!

�
(3.52)

3.3.1 Compatibility condition

Compatibility condition can be calculated as

from Eq. (3:33)

! =

s
k2

c1 + k2

d!

dk
=

p
k2 + c1 � kp

k2+c1
k

k2 + c1

d!

dk
=
k2 + c1 � k2

(k2 + c1)
3
2

d!

dk
=

c1

(k2 + c1)
3
2

(3.53)

as from equation 3.33
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!

k
=

1p
(k2 + c1)p

(k2 + c1) =
k

!
(3.54)

using Eq. (3:54) in Eq. (3:53) we get group velocity

d!

dk
= c1

!3

k3
(3.53)

Group velocity gives us information that ion acoustic wave is propagating or it is just a simple

oscillation. As group velocity is function of wave vector k so ion acoustic wave is propagating.

.

4

Figure 3.3:Variation of; the Group velocity with the carrier wave

number k for di¤erent values of q-non-extensive paramer q. Solid

curve corresponds to q=-0.1; Dashed to q=-0.3; DotDashed curve

to q=-0.6 and Solid curve to q=-0.9.
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Figure 3.4:: Variation of; the Group velocity with the carrier wave

number k for di¤erent values of q-non-extensive parameter q.

Dotted curve corresponds to q=4; DotDashed to q=3; Dashed curve

to q=2 and Solid curve to q=1.
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Figure 3.4: Variation of; the Group velocity with the carrier wave

number k for di¤erent values of q-non-extensive parameter q. Dotted

curve corresponds to q=4; DotDashed to q=3; Dashed curve to q=2

and Solid curve to q=1.

comparing "2 order terms for n = 2; l = 2 (for equation of motion)

�il!"2v21eil� � eil�vg"2
@v11
@�

+ ilk"2v11v
1
1e
i2l� = �eil�"2@�

1
1

@�
� "2�21ilkeil�

now put l = 2 in eil� term and l = 1 in ei2l� term, neglecting @v12
@� ;

@�12
@�

�!v22 + kv11v11 = �k�22

v22 =
kv11
!
+
k

!
�22 (3.54)

comparing "2 order terms for n = 2; l = 2 (for poisson�s equation )

�k2l2"2�21eil� + 2ilk"2eil�
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@�

= c1
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now put l = 2 in eil� term and l = 1 in ei2l� term and neglecting @�12
@�

�4k2�22 = c1�
2
2 � c2

�
�11
�2 � n22 (3.55)

comparing "2 order term for n = 2; l = 2 (for continuity equation)
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solving Eq. (3:54� 3:56) simultaneously, we get

�
4k2 + c1

�
�22 � c2

�
�11
�2
=

 
kv1

2

1

!
+
k

!
�22

!
k

!
+
kv11n

1
1

2!

�
4k2 + c1

�
�22 �

k2

!2
= c2

�
�11
�2
+
k2

!2
v1

2

1 ++
kv11n

1
1

2!

now use

n11 =
k2

!2
�11 , v11 =

k

!
�11

k2 + c1 =
k2

!2

hence ��
4k2 + c1

�
�
�
k2 + c1

��
�22 =

�
c2 +

3k4

2!4

�
�1

2

1

3k2�22 =

"
c2 +

3
�
k2 + c1

�2
2

#
�1

2

1

�22 =

"
c2
3k2

+

�
k2 + c1

�2
2

#
�1

2

1
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�22 = A'�
12

1 (3.57)

A' =

"
c2
3k2

+

�
k2 + c1

�2
2

#

use Eq. (3:37) in Eq. (3:35)

n22 =
�
4k2 + c1

�
A'
�
�11
�2 � c2 ��11�2

n22 =
��
4k2 + c1

�
A' � c2

� �
�11
�2

n22 = An
�
�11
�2

(3.58)

An =
�
4k2 + c1

�
A' � c2

now considering

n22 = v22
k

!
+
kv11n

1
1

2!

use

n11 =
k2

!2
�11 , v11 =

k

!
�11 , n22 = An

�
�11
�2

An
�
�11
�2
= v22

k

!
+
�
�11
�2 k4

2!4

v22 =
!

k

"
An �

�
c1 + k

2
�2

2

# �
�11
�2

v22 = Au
�
�11
�2

(3.59)

where

Au =
!

k

"
An �

�
c1 + k

2
�2

2

#
Similarly B�;Bn;Bu are calculated by comparing n = 3 and l = 0 terms for continuity equation,

motion equation and comparing n = 2 and l = 0 terms for poison�s equation

Continuity equation given for n = 3 and l = 0
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�vg
@n20
@�

+
@v20
@�

+ 2
@v11n

1
1

@�
= 0

�vg@n20 + @v20 + 2@v11n11 = 0

integrating

�vgn20 + v20 + 2v11n11 = 0 (3.60)

equation of motion for n = 3 and l = 0

�vg
@v20
@�

+
@�20
@�

+ 2v11
@v11
@�

= 0

�vg@v20 + @�20 + 2v11@v11 = 0

integrating

�vgv20 + �20 + 2v11v11 = 0 (3.61)

Poison�s equation, comparing n = 2 and l = 0

�c1�20 + n20 + 2c2�11�11 (3.62)

solving Eq. (3:60� 3:62) simultaneously, we get

�22 =

�
2c2v

2
g + 3c1 + k

2
�

v2gc1 � 1
�1

2

1

B� =

�
2c2v

2
g + 3c1 + k

2
�

v2gc1 � 1

Bn = c1B� � 2c2

Bu = �2
!

k

�
k2 + c1

�2
+ vgBn
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v20 = Bu
�
�11
�2
, n22 = Bn

�
�11
�2

, �22 = B�
�
�11
�2

now �nding the third order term for equation of continuity n = 3 and l = 1

�i!n31 + ikv31 � vg
@n21
@�

+
@n11
@�

+
@v21
@�

+ ikv20v
1
1 � ikv22v1�1 + ikn11v20 + ikn1�1v22 = 0

using values of n21; n
1
1; v

2
1; n

2
0; v

1
1; n

2
2; v

1
�1; v

2
0; n

1
�1; v

2
2 in terms of �

1
1 the equation can be sim-

pli�ed.

Finding third order terms for equation of motion using n = 3 and l = 1:Equation obtained

as follows

�i!v31 + ik�31 � vg
@v21
@�

+
@v11
@�

+
@�21
@�

+ ikv20v
1
1 � ikv22v1�1 + 2ikv1�1v22 = 0

using values of n21; n
1
1; v

2
1; n

2
0; v

1
1; n

2
2; v

1
�1; v

2
0; n

1
�1; v

2
2 ; �

2
1 in terms of �

1
1 the equation can be

simpli�ed.

Finding third order terms for poissons equation using n = 2 and l = 1:we get

�
�
c1 + k

2
�
�31 + n

3
1 + 2ik

@�21
@�

+
@2�11
@�2

+ c2�
2
0�
1
1 + c2�

2
2�
1
�1 + c2�

2
0�
1
1 + c2�

2
2�
1
�1 = 0

using values of �22; n
1
1; v

2
1; n

2
0; v

1
1; n

1
�1; v

2
2 ; �

2
1 in terms of �

1
1 the equation can be simpli�ed

Finally solving all above third order equation gives Schrodinger equation .

i
@�11
@�

+ P
@2�11
@�2

Q
����121 ����11 = 0 (3.63)

now in nonlinear schrodinger equation the constant P is calculated as

d!

dk
= c1

!3

k3

P =
1

2

d2!

dk2
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P =
3

2
c1
!3

k4

�
c1
!2

k3
d!

dk
� 1
2
c13

!3

k4

�

P =
3

2
c1
!3

k4

�
c1
!3

k2
� 1
�

using

!2 =
k2

c1 + k2

P =
3

2
c1
!3

k4

�
c1

c1 + k2
� 1
�

P = �3
2
c1
!5

k4
(3.64)

Q =
!3

2k2

24 3c3 � 2c2 (A' +B')� 2 k! �k2 + c1� (Au +Bu)
�
�
k2 + c1

�
(An +Bn)

35

3.4 Stability analysis

In unmagnetized electron ion plasma the modulational instability of ion acoustic waves are

examined by splitting amplitude in to two parts.

a =
�
a0 + �a (�) e

i��
	

(3.65)

In the above equation a nonlinear frequency shift �, real amplitude of IAW is a, the small

amplitude perturbation is �a, where �a << a and � = K� �
� is the modulation phase of the

wave, where frequency of modulation is ! >> 
 and wave number is k >> K respectively.

� = �Qa20

now when we substitute Eq. (3:66) into Eq. (3:65) and then collecting the same order terms

we get

i
@�a

@�
+ P

@2�a

@�2
+Qa20 (�a+ ��a) (3.67)
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where ��a is complex conjugate to �a: Now assuming perturbation of the form

�a = fU0; V0g exp fi (K� � 
�) + ccg

where V0 and U0 are real constant using above equation in Eq. (3:67), we obtained two

coupled equation by separating the real and imaginary part.

@V

@�
= P

@2U

@�2
+ 2Qa20U

and for the nontrival solution the following dispersion relation for Ion acoustic waves IAW

in e-i plasma is obtained.
@V

@�
= P

@2U

@�2

For the ion acoustic waves the nontrival solution of dispersion relation in electron ion plasma

is


2 = PK2
�
PK2 � 2Qa20

�
hence instability growth rate is

� = Im (
 (K))

�nally instability growth rate is de�ned as, if PQ > 0, the amplitude of IAW a grows and

becomes unstable and if PQ < 0 the amplitude of IAW a is stable to external perturbation

this is called modulational instability. This exist for the critical values is greater than the wave

number.

Kcr =

r
2Q

Pa0

Where coe¢ cients P and Q are functions of the q-nonextensive parameter so this parameter

would alter the conditions of modulational instability, or we can say that the wave remains

stable at Kcr << k and becomes unstable at Kcr >> k. Dark solitons ac-cures in the former

case, while bright envelope solitons accures in the latter region.
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3.5 Graphical representation of analytical result

Figure 3.5: Variation of the NLSE coe¢ cient Q with the carrier

wave number k for di¤erent values of q-non-extensive parameter q.

Solid curve corresponds to q=0.1; Dashed curve to q=0.3 and

Dotted curve to q=1.
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Figure 3.6: Variation of the NLSE coe¢ cient Q with the carrier

wave number k for di¤erent values of q-non-extensive parameter

q. Solid curve corresponds to q=0.1; Dashed curve to q=0.3 and

Dotted curve to q=1.
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Figure 3.7: Variation of the NLSE coe¢ cients PQ with the carrier

wave number k for di¤erent values of q-non-extensive parameter q.

Solid curve corresponds to q=0.1; Dashed curve to q=0.3 and

Dotted curve to q=1.

Fig. 3.8 Variation of the NLSE coe¢ cients P/Q with the carrier wave number k for di¤erent

values of q-non-extensive parameter q. Solid curve corresponds to q=0.1; Dashing curve to

q=0.3 and Dotted curve to q=1.
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Figure 3.9: Variation of the NLSE coe¢ cients P/Q with the

carrier wave number k for di¤erent values of q-non-extensive

parameter q. Solid curve corresponds to q=0.1; Dashed curve

to q=0.3 and Dotted curve to q=1.

Fig 3.10 Variation of growth rate with wave number for di¤erent values of q-non-extensive
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parameter q. solid curve q=-0.9 dotted curve q=-0.6 Dashed curve q=-0.3 Dotted dashed

curve q=-0.1

Fig 3.11 Variation of growth rate with wave number k for di¤rent value of q non extensive

parameter Solid curve q=0.1 dotted curve q=0.3, dashed curve q=0.6, dot-dashed curve q=1.

3.6 Conclusion

We have studied the problem of modulational instability of ion acoustic waves in e-i plasma

with electron velocity distribution taken as q-nonextensives. The parameter q justi�es the

generalized entropy proposed by tsallis. Nonlinear schrodinger equation is derived by using

reductive perturbation technique. Frequency of IAW decreases with the increase in the value of

parameter q. Three di¤erent regions of q-nonextensive parameter on modulational instability

are discussed. Bright and dark excitations are formed in each case. The critical value of wave

number k at which modulational instability is formed increases for 0<q<1 and decreases for

-1<q<0. If we increase the value of k beyond 1 the it gives us large values of critical wave

number. One important thing which must be noted that q=0 is not the special value in any

distribution but at q=0 our results changes severly.Growth rate increasing with wave number

for negative value of q, and decreasing for positive value of q. We have tried our best but fail to

�nd the physical reson for q=0 behaviour. Our theoretical results are applicable in laboratory

and space e-i plasmas with q-nonextensive electron velocity distribution.
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Standard multiple scale method has been discussed to study the modulational instability of

ion acoustic waves (IAWs) in unmagnetized electron ion plasma. Ions are assumed to be cold

while electrons taken are q-nonextensive distributed..Group velocity gives us information that

ion acoustic wave is propagating or it is just a simple oscillation. As group velocity is function

of wave vector k so ion acoustic wave is propagated.
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Chapter 4

Obliquely propagation non extensive

dust-ion- acoustic solitory wave in

dusty magnetoplasma

4.1 Model

We consider a collisionless, three components of magnitized dusty plasma system in which non-

linear DIA wave propegated. This system consisting inertial ions, non inertial electron following

nonextensive q-distribution, and stationary dust that is negatively charged. At equilibrium

ni0 = ne0 + Zdnd00

where ne0; ni0; and nd0 are number densities of electron, ion and dust. Zd is the number of

electrons occupy on the surface of dust particle. The range of Zd is 103 to 105. For the study of

dust ion acoustic waves range of Zd is used in both experimental and theoratrical observations

[33]. In presence of an external magnetic �eld the phase speed of DIA waves much smaller than

the thermal speed of electron and larger than the thermal speed of ion.

External magnetic �eld

B0 = �zB0
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Equation of motion
@ni
@t

+r � (niui) = �zB0 (4.1)

Equation of continuity

@ui
@t

+ (ui � r)ui = �r�+ !ci (ui � �z) (4.2)

Poison�s equation

r2� = �ni + (1� �)ne + � (4.3)

The electron density in normalized form

ne = [1 + (q � 1)�]
1+q

2(q�1)

ne = [1 + (q � 1)�]
1+q

2(q�1)

ne = 1 + c1�+ c2�
2 + c3�

3::: (4.4)

where

c1 =
(q + 1)

2

c1 =
(q + 1) (q � 3)

8

c2 =
(q + 1) (q � 3) (3q � 5)

48

ion number density is ni and it is normalized by equilibrium value ni0.

Fluid speed of ion ui is normalized by

Ci =

�
kBTe
mi

� 1
2

Electrostatic wave potential � is normalized by

� =
kBTe
e

, � =
Zdnd0
ni0
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where Boltzmann constant KB, nonextensive parametere is q, and e is electron charge�s

magnitude.

normalization of time variable t is

!�1pi =

�
mi

4�e2ni0

� 1
2

and space variable is normalized by Debye length of ion

�Di =

�
kBTi
4�e2ni0

� 1
2

�Di is sheath thickness, here we have ni0 >> ne0 and Ti � Te, hence �Di ' �De so dust

grains of negatively charged in dusty plasma, the temperature and density of ion is determined

the thickness of the sheath �Di.

4.1.1 Outline of method

Dynamical equation for DIA solitary wave is derived by using Eq. (4:1� 4:4) with small and

�nite amplitude of nonextensive electrons. We construct for the DIA waves a nonlinear theory

and here we follow the reductive perturbation technique. So the independent variable are

� = "
1
2 (lxx+ lyy + lzz � Vpt)

� = "
3
2 t

where the weakness of dispersion is measured by " that is smaller parameter (0 < " < 1), ion

acoustic speed (Ci) is normalized the phase speed Vp and lx;ly and lz along the x; y and z

axes, are the direction cosines of the wave vector respectively. So

l2x + l
2
y + l

2
z = 1

here Debye radius (�Di) normalized the x; y and z, and inverse of ion plasma period
�
!�1pi

�
normalized the � expanding the power series of "
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ni =
�
1 + "n

(1)
i + "2n

(2)
i + "3n

(3)
i + :::

�
eil�

uix =
�
0 + "

3
2u
(1)
ix + "

2u
(2)
ix + :::

�
eil�

uiy =
�
0 + "

3
2u
(1)
iy + "

2u
(2)
iy + :::

�
eil�

uiz =
�
0 + "

3
2u
(1)
iz + "

2u
(2)
iz + :::

�
eil�

� =
�
0 + "�(1) + "2�(2) + :::

�
eil�

where
@

@t
=

@

@t
+
@�

@t

@

@�
+
@�

@t

@

@�

@

@t
=

@

@t
� "

1
2Vp

@

@�
+ "

3
2
@

@�
(4.5)

p;
@

@t

�
"
3
2 t
�
= "

3
2

@

@z
=

@

@z
+ "

1
2 lz

@

@�
(4.6)

lets proceeding for continuity equation (lz component) ; considering Eq. (4:1)

@ni
@t

+
@

@z
(niuiz) = 0

First term

@ni
@t

=
@ni
@t

� "
1
2Vp

@ni
@�

+ "
3
2
@ni
@�

@

@t
(ni) =

@

@t

�
1 + "n

(1)
i + "2n

(2)
i + "3n

(3)
i + :::

�
eil�

�"
1
2Vp

@

@�

�
1 + "n

(1)
i + "2n

(2)
i + "3n

(3)
i + :::

�
eil�

+"
1
2
@

@�

�
1 + "n

(1)
i + "2n

(2)
i + "3n

(3)
i + :::

�
eil�
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@

@t
(ni) = �il!

�
1 + "n

(1)
i + "2n

(2)
i + "3n

(3)
i + :::

�
eil�

�"
1
2Vp
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2
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�
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(1)
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i + "3n

(3)
i + :::

�
eil� (4.7)

Second Term

@ (niuiz)

@z
=

@

@z

�
0 + "

3
2u
(1)
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(2)
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�
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�
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= ilk
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now combining both terms of continuity equation

�il!
�
1 + "n

(1)
i + "2n

(2)
i + "3n

(3)
i + :::

�
eil�

�"
1
2Vp

@

@�

�
1 + "n

(1)
i + "2n

(2)
i + "3n

(3)
i + :::

�
eil�

+"
3
2
@

@�

�
1 + "n

(1)
i + "2n

(2)
i + "3n

(3)
i + :::

�
eil�

+ilk
�
0 + "

3
2u
(1)
iz + "

2u
(2)
iz + :::

�
eil� + "

1
2 lz

@

@�

�
0 + "

3
2u
(1)
iz + "

2u
(2)
iz + :::

�
eil�

+

�
@

@x
+ "

1
2
@

@�

�24 �
0 + "

3
2u
(1)
iz + "

2u
(2)
iz + :::

�
�
1 + "n

(1)
i + "2n

(2)
i + "3n

(3)
i + :::

�
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= 0

comparing equation for order "
3
2 , now we get
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now considering Eq. (4:2) (z component) ; so we have
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Second term (uiz � r)uiz

@uiz
@z

=
@

@z

�
0 + "

3
2u
(1)
iz + "

2u
(2)
iz + :::

�
eil� + "

1
2
@

@�

�
0 + "

3
2u
(1)
iz + "

2u
(2)
iz + :::

�
eil�

74



@uiz
@z

= ilk
�
0 + "

3
2u
(1)
iz + "

2u
(2)
iz + :::

�
eil� + "

1
2
@

@�

�
0 + "

3
2u
(1)
iz + "

2u
(2)
iz + :::

�
eil�

uiz
@uiz
@z

= ilk
�
0 + "

3
2u
(1)
iz + "

2u
(2)
iz + :::

�2
eil2�

+
�
0 + "

3
2u+ "2u

(2)
iz + :::

��
"
1
2
@

@�

�
0 + "

3
2u
(1)
iz + "

2u
(2)
iz + :::

��
eil2� (4.12)

Third term r�
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now combining all terms
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comparing order terms of "
3
2 ; we get
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now use Eq. (4:15) in Eq. (4:10), we get
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now considering z component of poisson�s Eq. (4:3)
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using Eq. (4:17) in Eq. (4:18), so we get
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from Eq. (4:19) comparing " order of terms
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as from Eq. (4:16)
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Vp = lz
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(4.20)

The Eq. (4:20) gives linear dispersion relation of phase speed of DIA waves. In the nonex-

tensive plasma system the DIA waves propegate with phase speed Vp .

4.2 First order y and x component of electric �eld drift.

considering Eq. (4:2)
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Second term (uiy � r)uiy
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combining all terms now we have from Eq. (4:20� 4:24) ; we get
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now comparing order of "
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2 term
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similarly solving for y componenet of momentum equation we get
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Eq. (4:26) and Eq. (4:27) are the x; y component of electric �eld drift.

4.2.1 Comparing higher order term of "2

Now again considering the Eq. (4:9) and comparing higher order term of "2 ,l = 1; we get
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similarly for x component
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here u(2)iy �u
(2)
ix are the second order of momentum equation.

Now for poison�s equation, considering Eq. (4:17), comparing "2 order of terms
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Eq. (4:31) is second order poisson�s equation
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�"
5
2Vp

@n2i
@�

eil� + "
5
2
@n1i
@�

eil� + "
5
2 lz

@u2iz
@�

eil� = 0

�Vp
@n2i
@�

+
@n1i
@�

+ lz
@u2iz
@�

= 0 (4.32)

comparing "
5
2 terms for l = 1;for momentum equation

�"
5
2Vp

@u2iz
@�

eil� = "
5
2 lz

@u2iz
@�

�Vp
@u2iz
@�

eil� = lz
@u2iz
@�

(4.33)

comparing "3 terms for l = 1; for poisson�s equation
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using Eq. (4:32� 4:34), we eliminate the n2i ; u2iz and �2 along using n1i ; u1iz; in terms of �1:

82



�nally we get nonlinear propegation of dust ion acoustic waves in a magnetized nonextensive

dusty plasma, hense K-dV equation.
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solution of stationary solitary wave of the K-dV equation is obtained by transformation of

indepedent variables � and �

� = � � U0�� , � = ��

where U0 is constant speed, boundary condition �1 ! 0; d�
1

d� ! 0; d
2�1

d�2
! 0 at � = �1

hence solution of Eq. (3:35) is

�1 = �m sech
2
h �
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i
(4.38)

where �m is amplitude, it is normalized by kBTe
e and � is width which is normalized by �Dm;

given by

�m =
3U0
A

, � =

r
4B

U0
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4.3 Graphical representation of analytical result

Figure 4.1:Variation of qc [obtained from A (q = qc) = 0]

varies with �:

Figure 4.2: Vriation of amplitude of the K-dV Solitons with q

and � for � = 10� and U0 = 0:1:
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Figure 4.3: Variation of amplitude of the K-dV solitons with

q and � for � = 4� and U0 = 0:1

Figure 4.4: Variation of amplitude of K-dV solitons with q

and � for � = 0:5 and U0 = 0:1:
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Figure 4.5: Variation of amplitude of the K-dV solitons with q

and � for � = 0:5 and U0 = 0:1

Figure 4.6: Variation of width of the K-dV solitons

with q and � for � = 100;and U0 = 1:
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Figure 4.7: Variation of width of the K-dV soliton

with !ci and � for � = 0:5 ,q = 0:75;and U0 = 1:

Polarity the SWs transfer from negative to positive potential at the minimum value of

nonextensive prametre q. Amplitude of positive SWs decreases (increases) with increasing the

value of q; �. For the lowest range of � (from 0�to 45�) the width of solitary wave increases, for

hiegher range of � (from 45� to 90�) the width of solitary wave decreases, and at � ! 90� width

is goes to zero.The width decreases with increasing (!ci), which is valid for � < 90�.

4.4 Conclusion

We have studied consisting of nonextensive electron, negatively charge static dust and inertial

ions, in a magnetized dusty plasma system and revealed the presence of obliquely propegating

refractive and compressive second order poisson�s equation by deriving K-dV equation. KdV

equation determined the nonlinear propegation of the DIA waves in magnetized non extensive

dusty plasma. As U0 > 0 it depend on the sign of A:The schrodinger waves will be cor-

related with either negative potential (�m < 0) or positive potential (�m > 0) : When A > 0;

the schrodinger waves accured with positive potential and A < 0;then it exists with a negative

potential. If we increased the number density of dust �, the number density of ions reduced

continuously. The parameter q that underpins tsallis generalized entropy is connected to un-

derlying dynamics of the system, the energy of particles of system behaves nonextensively. The
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amount of its nonextensivity is measured by parametre q:It is also determined that amplitude

of schrodinger waves is not e¤ected by magnitude of external magnetic �eld B0:It has direct

e¤ect on the schrodinger waves width, as width of waves increased by decreasing magnitude of

B0: So the solitary structure become spiky and the system is bounded due to magnetic �eld. It

is found that in the presence of external magnetic�eld nonextensitivty of electron are modi�es

the basic features of dust ion acoustic schrodinger waves.The results of this investigation should

be helpfull in laboratory plasmas for understanding the nonlinear features of eletrostatic dis-

turbances since the DIA waves are more suitable than the DA waves to examine in laboratory

dusty plasma condition. In presence of nonextensive electrons and external magnetic �eld, we

propose to perfom a laboratory experiment in which we can examine the latest features of DIA

schrodinger waves propegating in dusty plasma.
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