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Abstract

Shock waves in plasma are very important occurrence, consisting of number of di�er-

ent modes. We have investigated such non-linear wave modes as a�ected by various

non-thermal distribution of electrons, magneto-rotating and relativistic e�ects. In

particular, we have looked into the non-linear ion acoustic shock waves on ion time

scale in the presence of collisional rotating magneto-plasma with non-Maxwellian

electrons and warm relativistic ions. For this a reductive perturbation method has

been employed to derive the respective Zakhrove-Kuznetsov-Burgers (ZKB) equa-

tion in the weak limit of non-linearity. We also present a comparison between (r, q)

and κ distribution for electrons. For that �rst we review the derivation of ZKB equa-

tion by using kappa and Cairns distribution, and then extended for a two indices

(r, q) distribution for electrons. The study of above solutions reveal that due to

non-Maxwellian electrons, it causes the formation of di�erent potential structures.

From the numerical analysis of ZKB equation, kappa distribution provides only

positive amplitude (compressive) shock potential. Unlike kappa, Cairns distribution

exhibits both positive and negative amplitudes (compressive and rarefactive), from

further analysis it is noted there is a discontinuity arises that fail our model. It has

been observed that linear phase speed depicts both fast and slow ion acoustic waves.

In the context of kappa and Cairns distributions it is seen that, the formation of

compressive and rarefactive nature in our system is mainly due to the non-linear

coe�cient A, which changes their sign for the respective structure. The formation

of shock waves depend upon the magnitude of kappa and Cairns distribution index.

Such plasma system is also investigated by using (r, q) distribution function, which

exhibits both the compressive and rarefactive bahavior in shock potential. In the

proper limits, e.g. (r = 0 and q = κ − 1) we recover the results of kappa cases,

and for the case (r = 0 and q→ ∞) the �nding of Maxwellian potential distribution

are recovered. The investigations that are discussed can be useful for plasmas that

are magnetized, rotating on the view of non-inertial frame of reference, for example

such plasma is observed in di�erent region of space like magnetosphere, and pulsars

etc.
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Chapter 1

Introduction

In this chapter we shall introduce some of the fundamentals and preliminaries that

would be used in the subsequent chapters of the dissertation in hand. For example

the plasma system of interest here, various phenomena in such plasmas like relativis-

tic and Coriolis e�ects, particle distribution functions and non-linear wave modes

that are considered here.

1.1 Plasma

Plasma is the four state of matter that is characterized by high energy, electrically

charged medium consisting of pasitively charged ions and negative electrons. It is

found naturally in di�erent regions like stars, auroras, and sun. Plasmas can also

be formed arti�cially, e.g. in �uorescent bulb, and fusion reactors. Generally we say

that, an ionized gas can be a plasma if it satisfy the following condition.

1. Quasi-neutrality

This creteria demands that the densities of ions and electrons of the system are

approximately equal, i.e. ni = ne = n. We can also explain quasi-neutrality by the

condition λD ≪ L, where λD is the Debye length and L denotes the characteristic

length of our system. Here Debye length is the spatial scale over which plasma par-

ticles can e�ectively shield the potential applied/induced in the plasma. The Debye

length for a simple system can be written as

λD =

(
kBTe

4πneoe2

) 1
2
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2. Collective behavior

For collective bahavior, we must have large number of particles in the Debye sphere

ND and statistical analysis is valid, i.e. ND ≫ 1, where

ND = n
4

3
πλ3

D

3. Low collisionality with neutrals

It requires that, ωτ>1, where ω is the frequency of plasma oscillation and τ is the

mean collision time with neutrals. This condition makes sure that the dynamics of

our system is governed by electromagnetic interaction among plasma particles and

not by ordinary collisions as in the usual hydrodynamics. The plasma frequency can

be estimated from the following expression

ωpi =

(
4πnioe

2

mi

) 1
2

1.2 Waves in plasma

A wave is characterized by some disturbance in a medium, and can carry energy and

momentum. The properties of waves depend upon medium in which they propagate.

Here we focus on various aspects of low frequency waves as supported by the plasma

medium, and the e�ects of various plasma parameters on the wave propagation.

Plasma is a medium, that depending upon various conditions, can support propa-

gation of di�erent types of waves like, electron plasma waves in which we assume an

unmagnetized system, where ions are at rest and electrons oscillate. And if thermal

e�ects are included the oscillation couples and give rise to the so-called Langmuir

waves. Upon considering ion motion and magnetic �eld, we can �nd multiple types

of other modes, e.g. ion acoustic, Alfven and magnetosonic waves. In our discussion

we focus on non-linear ion acoustic waves in a medium composed of magnetized

and rotating plasma, furthermore the relativistic e�ects have also been taken into

account. Finally, the perturbed potential is investigated for non-thermal velocity

distributions, namely kappa, Cairns, and (r, q) pro�les.

1.2.1 Ion acoustic waves

The ion acoustic waves (IAWs) are similar to sound waves, composed of large number

of compressions and rarefactions. It is a low frequency waves, due to the larger mass

of ions, and have constant frequency in the limit of small Debye length. The linearize
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dispersion relation for IAWs is given as [1]

ω

k
=

(
γekBTe + γikBTi

M

) 1
2

, (1.1)

where γi and γe are, respectively the ion and electron polytropic coe�cients and M

denotes the mass of ion. In the limiting case, Te ≫ Ti, we �nd

ω

k
=

(
γekBTe

M

) 1
2

(1.2)

which shows that the dispersion relation depends on electron temperature and ionic

mass.

1.2.2 Non-linear waves

The plasma waves having smallar amplitudes can be analyzed by using the linear

analysis, in which second and higher order perturbation are ignored. It can be used

e�ectively to describe the propagation and instabilities (if any). However, if the

amplitude of the wave becomes larger, then the linear analysis is no longer valid and

one needs to employ methods of non-linear theory. The associated waves are termed

as the non-linear modes. The non-linear waves are the one whose interaction can

lead to wave steeping, wave breaking, and formation of coherent structures. These

are described by special equations, having non-linearity, dispersive, and dissipative

terms which make them non-linear and depict multiple structures. Here, we focus

on shock like potential structures, described by ZKB and KdVB equations, which

will be discussed in the subsequent section. Some of the well-known non-linear wave

modes are solitons, shocks and vortices.

1.2.3 Shock waves

In general, shock waves are important in the study of �uid theory, when the speed

of the particle in the �uid is greater or comparable with sound speed. The corre-

sponding behavior is sound like whose compression and rarefaction give di�erent

non-linear e�ects. If the speed of �uid greater or less, we called it supersonic or

subsonic, respectively. The shock structures can be described by the Zakharov-

Kuznetsov-Burgers (ZKB) equation that is given as

∂f

∂t
+ Af

∂f

∂x
+B

∂3f

∂x3
+ C

∂

∂x

(
∂2f

∂y2
+

∂2f

∂z2

)
−D

∂2f

∂x2
= 0, (1.3)
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where f = f(x, t) is a function of space and time, the coe�cients A, B and C

describe, respectively the non-linear, dispersive and dissipative coe�cients.

1.2.4 Solitons

Solitons are formed when there is a balance between non-linearity and dispersion

e�ects in a medium. These waves can retain their shape over long range distance.

The Korteweg-de Vries (KdVB) equation gives solitary and shock waves, and is given

by [2, 3]
∂f

∂t
+ Af

∂f

∂x
+B

∂3f

∂x2
− C

∂2f

∂x2
= 0 (1.4)

1.3 E�ect of Coriolis forces in plasma medium

In rotating plasma, as is the case for others systems, the Coriolis force become

e�ective. For example such bahavior is observed in magnetoshpere and pulsurs [4].

The Coriolis force is given as

F⃗ = 2m(v⃗ × Ω⃗), (1.5)

where v⃗ is the velocity and Ω⃗ denotes the rotating frequency of the particle of mass

m. Furthermore, the Coriolis force also produce magnetic �eld when the plasma

�uid rotates, here in this study we consider a magneto-rotating plasmas [5].

1.4 Viscosity and dissipation e�ects

Viscosity is the measure of internal resistance between di�erent layers in a �uids. It

is the internal friction when particles move at di�erent speeds. This e�ect can cause

a transfer of irreversible momentum to those layers on which the speed is low. To

account for this e�ect, we add a term ηi∇2vi in the force balance equation [6]. Here

ηi is the ions kinematic viscosity, which cover the density properties and viscosity [7]

and µi is also viscosity coe�cient known as Bulk viscosity, that appears when there

is variation in volume (density) in a �uid, causes losses in energy. Therefore, we also

included the term (µi + ηi)∇(∇ · vi) in momentum equation. In our plasma system

we take into account both of these two viscosities (kinematic and Bulk), which give

rise to the non-linear e�ects. In some cases the Bulk viscosity is ignored due to

incompressible �uid approximation, but in this dessertation we take into account,

a compressible plasma system. The formation of shock waves arises due to these

9



viscosities (non-linearity and dissipation) [8]. It is found in di�erent sources that

the ion kinematic viscosity give rise to shock strucures [9, 10].

1.5 Relativistic e�ects in plasmas

When the speed of particles becomes extremely high (closer to speed of light) then

one has to take into account the relativistic corrections in �uid equations to describe

the plasma system. Such behavior is seen in earth magnetosphere [11], laser-plasma

interaction [12] and Van Allen radiation belts [13] by using double probe devices.

The relativistic plasmas can also be create arti�cially by using heating method or

strong laser beam. This e�ect is important when the speed of particle approaches

to light speed c. i.e.,

v ≤ c

Let us introduce the Einstein relativistic factor

γ =
1√

1− v2

c2

which for weakly relativistic case can be expanded, via the binomial theorem, to

write

γ = 1 +
v2

2c2
+

4v2

8c2

In our study we consider the weak e�ects, and upon ignoring the highly order terms

that yields

γ ≈ 1 +
v2

2c2

1.6 Reductive perturbation method

There are several methods to solve non-linear partial di�erential equations (PDEs).

Here we use a reductive perturbative method, which is based on small perturbation

expansion. In this technique we expand the dependent variables in a small parameter

ϵ, whose power is obtained from the dispersion relation [14]. To demonstrate, lets

consider a simple system, where ion dynamics is considered. For which the model

equations in normalize form can be written as (more detail is provided in the next

chapter),
∂ni

∂t
+

∂nivi
∂x

= 0, (1.6)

∂vi
∂t

+ vi
∂vi
∂x

= −∂ϕ

∂x
, (1.7)
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∂2ϕ

∂x2
= ne − ni, (1.8)

where every dependent variables is the sum of perturbed and equilibrium part which

can be written as ni = 1 + n̄i, vi = v̄i, ϕ = ϕ̄.

From equation (1.6) we have

∂

∂t
(1 + n̄i) +

∂

∂x
(v̄i + n̄iv̄i) = 0,

upon neglecting the higher order terms we neglect the higher order terms to write

∂

∂t
n̄i +

∂

∂x
v̄i = 0,

Similarly equations (1.7) and (1.8 ) can be written as

∂ūi

∂t
+

∂ϕ̄

∂x
= 0, (1.9)

and orderly,
∂2ϕ̄

∂x2
= ϕ̄− ni (1.10)

Next, we assume that all the perturbed quantities can be represented by the plane-

wave approximation, i.e. proportional to ei(kx−wt), to write above equations, respec-

tively in the form

−iωn0 + ikvi0 = 0

−iωvi0 + ikϕ0 = 0

n0(k
2 + 1)ϕ0

which are simpli�ed to write the required dispersion relation.

ω2 =
k2

1 + k2
(1.11)

In the limit of large wavelength (small k) limit, using the binomial expansion and

then subtracting (kx) on both side, we �nd

ω = k(1 + k2)
−1
2

ω = k − 1

2
k3

ωt = kt− 1

2
k3t

11



kx− ωt = k(x− t) +
1

2
k3t (1.12)

Following that, let us introduce the so - called stretched coordinates in space and

time as

ξ = ϵα(x− λ0t), τ = ϵβt, (1.13)

where α and β = (α + 1) are the scaling index and 0 < ϵ < 1 is a small parameter.

Thus, the power of ϵ and expansion of the dependent variable could be chosen

from equation (1.14) [3, 4, 15, 16]. The non-linear PDEs, as introduced in the

above discussion, can be solved by using hyperbolic-tangent method, which actually

provides an approximate solution of the respective PDE, when there is high non-

linear e�ect as correspondence to dispersive counterpart [17]. In particular, we get a

travelling solutions which consist of coherent and localized parts [18, 19]. A detailed

derivation is provided in the next chapter.

1.7 Maxwell distribution function

All many body systems present a complicated problems in physics, and if there are

complicated interactions - as is the case in plasma charged particles - then the de-

tailed knowledge of each particle trajectory is almost impossible to describe. For

such systems laws of statistical mechanics are employed, where the identity of indi-

vidual particle is not important, and one looks at the average behavior of system.

Such theories are quite succesful in describe various observed phenomenon. As we

know, a plasma system consists of large numbers of charge species and neutrals par-

ticles. All these particles have di�erent velocity that carry energy and momentum,

but overall when such plasma system is in thermal equilibrium then we use a called

Maxwell distribution function. It turns out - from Boltzman H-theorem - that such

distribution is the most probable for an equilibrium condition. The general form of

Maxwell distribution function is give as [20]

fM(v) =
no

(2π)
3
2vth

exp

(
− v2

2vth

)
(1.14)

where vth is the thermal speed and no is the equilibrium number density of system

particles (electron and ions). Figure (1.1), shows that the average particle velocity

is zero that means the system is in thermal equilibrium.
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Figure 1.1: Structure of non-thermal VDF for an equilibrium plasma system.

1.8 Non-Maxwellian distribution functions

Although, many plasma systems can be described by using the well-knownMaxwellian

distribution over velocities. And the model works well for highly collisional plasmas,

where a thermal equilibrium is achieved and the system attains a Maxwellian pro-

�le. However, from the data analysis of various space/astronomical plasmas with

the help of satellites it is found, there exist a large number of particle whose dis-

tribution functions is di�erent from Maxwellian. Most of such systems consist of

highly non-thermal electrons corresponds to collisionless and inhomogenous plasma.

These high energy electrons spectra was studied within the plasma sheet and give an

empirical velocity distribution formula called kappa distribution function, [21, 22]

which is given as

fκ(v, ϕ) =
neo

(2π)
3
2 θ3

Γ[1 + κ]

Γ[κ− 1
2
]

(
1 +

v2 − 2eϕ
me

κθ2

)−(1+κ)

, (1.15)

where κ is the spectral index that measures the non-thermal e�ects and Γ denote

the gamma function. Such Lorentzian pro�le describe the high energy tails in the

distribution, and in the limit of very high κ one retrieves the Maxwellian (bell like)

pro�le as depicted in the following �gure.

In plasma physics and astrophysics, the kappa distribution in valuable for charac-

terizing the departures from thermal equilibrium that are commonly encountered in

these high- energy environments. It provides a more accurate description of parti-
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cle velocity or energy distribution than the Maxwellian distribution, which assumes

thermal equilibrium. Researchers often �t experimental data to the kappa distribu-

tion or use it in simulations to better understand and model the behavior of particles

in plasmas and other non-equilibrium systems.

fκ for κ=2

fκ for κ=3

fκ for κ=4

fM for κ→∞

-4 -2 0 2 4

10-4

0.001

0.010

0.100

1

v

f

Figure 1.2: Comparison of Kappa and Maxwellian distribution functions for dif-
ferent values of index (κ).

In �gure (1.1), we note that there is major deviation for small κ, however as the

values of κ increases, then the respective distribution approaches to Maxwell coun-

terpart, which corresponds to the dissipation of high energy electrons out from the

system. Such system, can be treated by using linear analysis. This means that when

there is non-linear e�ects exist in a system, for that we may use kappa distribution

function. [8, 23�26].

Twenty years ago, electrostatic solitary waves were explain by another non-Maxwellian

distribution on the ion time scale known as Cairns distribution, that was used to

model the data as observed by Freja satellite. This type of distribution denotes the

existance of rarefactive ion acoustic solitary wave [21, 27]. The Cairns distribution

function is given as

fc(v) =
neo

(2π)
1
2 (1 + 3α)vth

(
1 +

αv4

v4th

)
exp

(
− v2

2v2th

)
, (1.16)

where α corresponds to the non-thermal electrons papulation, and the distribution

approaches to Maxwellian, when α → 0. This scenario is observed in the �gure (1.2),

means that as the value of non-thermal electron papulation (α) goes to minimun

values, the given distribution function approaches to Maxwellian. Here we also note
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that one may get the shoulders like distribution, although such distributions are

generally unstable. In systems undergoing phase transition (e.g., solid to liquid,

liquid to gas), you may observe shoulder pro�les in energy or density distributions.

The shoulder corresponds to particles or molecules that are in a transitional state.

This shoulder represents a secondary state or condition in the system that is less

probable but still signi�cant. The presence of a shoulder indicates that there is a

non-negligible population of particles deviating from the most probable state.

fM for α→0

fc for α=0.3
fc for α=0.5
fc for α=0.7
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Figure 1.3: The Cairns VDF for di�erent values of index (α), we recover the
Maxwellian counterpart as α → 0.

There is another type of more general non-thermal electrons distribution known

as (r,q) distribution function [28] that can be written as

frq(v) =
3Γ[q](q − 1)

−3
(2+2r)

4πβ
3
2v

3
2
thΓ[q − 3

2+2r
]Γ[1 + 3

2+2r
]

(
1 +

1

q − 1

(
v2 − 2eϕ

me

βv2th

)r+1)−q

, (1.17)

where

β =
3(q − 1)

−1
(1+r)Γ[q − 3

2+2r
]Γ[ 3

2+2r
]

2Γ[q − 5
2+2r

]Γ[ 5
2+2r

]

In above equations vth is the thermal speed of the electrons and r, q are the spectral

indices. In the limiting case of small r and large q, we recover the Maxwellian dis-

tribution. Figure (1.3) is plotted for di�erent value of q, upon which the ditribution

function shows deviation from Maxewell distribution.
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frq for q=3
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frq for q=10
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Figure 1.4: Behavior of normalized (r,q) distribution function against normalized
valocity, for r = 0.
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Figure 1.5: Same as previous �gure, but for r = 1.

Figure (1.4), once again plot for di�erent values of q, and �x value of r unlike as

we do in above �gure. In this �gure we observe that, when the value of q increases

the the (r, q) distribution deviate to Maxwellian counterpart.

The obvious advantage of using two indices distribution function is that once can

model huge variety of model data.

Here in this study, we have used a more general (in comparison with kappa and

Cairns) velocity distribution function to see the e�ects of �at-top as well as high

energy tails in the VDF. Which is supposed to give a better insight into the PES
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systems. This type is present in many astrophysical environments, such as the early

universe, neutrons stars, active galactic nuclei, Earth's ionosphere, chromosphere,

corona, solar winds, and pulsars. Moreover, the laboratory plasmas consisting of

pasitive and negative ions with equal masses have been investigated experimentally

by Oohara et al. [29�31]. Flate-top particles distributions are commonly observed

in space plasmas, e.g., in the downstream of Earth's bow shock, and is caused by

various physical processes such as by the interaction of particle with electrostatic

potential generated by the bow shock [? ].
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Chapter 2

Shock structures in magneto-rotating

relativistic plasmas with

non-Maxwellian electrons

In this chapter we shall review the shock like distribution of the perturbed potential

in a magnetized non-thermal plasma. For that the corresponding ZKB equation is

derived by using a reductive perturbation method in the �uid description of plasmas.

Finally, the impact of various parameters on shock pro�les are discussed.

2.1 Model equations

Here we consider a plasma system, which is magnetized, weakly relativistic, com-

posed of warm ions and non-Maxwellian electrons. We consider that the magnetic

�eld is along z-direction, i.e., B⃗ = B0 ẑ, where B0 is the magnitude of the magnetic

�eld. In equilibrium the quasi-neutrality condition demands that ni0 = ne0, where

ni0 and ne0 are the unperturbed densities of ions and electrons. The corresponding

ion �uid equations, namely continuity, force balanced and Poisson's equation, for

our system can be written as

∂ni

∂t
+

∂

∂x
(nivi) = 0, (2.1)

mini

(
∂

∂t
+ v⃗i · ∇⃗

)
γv⃗i = eni(E⃗ + v⃗i × B⃗)− ∇⃗pi + 2mini(v⃗i × Ω⃗)+

miniηi∇2v⃗i +mini(ηi + µi)∇⃗(∇⃗ · v⃗i),
(2.2)

and, respectively

∇⃗ · E⃗ = 4πe(ni − ne). (2.3)
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The left hand side of equation (2.2) is the convective term and the right side contains

Lorentz force, pressure gradient, Coriolsis force and viscosity terms. The variables

v⃗i, ni, mi are velocity, density and mass of an ion, Orderly, the symbol ηi is the

ion kinematic viscosity and µi is the ion bulk viscosity. In our study we focus on

bulk viscosity because our plasma is compressible. The Einstein relativistic factor

is de�ned as, γ =

(
1− v2iz

c2

)−1
2

, and is considered to be weak for our plasma system,

hence the binomial expansion can be applied write, γ = 1 + 1
2

v2iz
c2
.

We take vi in along z-direction because in other two direction the relativistic e�ects

is weak. In equation (2.2), Ω⃗ is the frequency of the rotating plasma whose direction

is same as magnetic �eld, i.e., Ω⃗ = Ω0ẑ.

The electron in our system are assumed to have non-Maxwellian distribution, in

particular we consider kappa (κ) and Cairns (α) VDF.

The 3D kappa (κ) distribution function is given by

fκ(v) =
ne0

θ3

(
1

πκ

) 3
2 Γ(κ+ 1)

Γ(κ− 1
2
)

(
1 +

v2 − 2eϕ/me

κθ2

)−(κ+1)

, (2.4)

where θ is the modi�ed thermal speed for electrons and κ is the spectral index which

quanti�es the deviation from the Maxwellian counterpart. For physically valid VDF

we must have which is κ > 3
2
. Upon integrating the above distribution over velocity

space, the corresponding electron density takes the form [21]

n0 = ne0

[
1− eϕ

(κ− 3
2
)Te

]−(κ− 1
2
)

(2.5)

Similarly the Cairns (α) distribution can be written as,

fe(v) =
ne0

(3α + 1)
√
2πV 2

(
1 +

αv4

v4th

)
exp

(
v2

2v2th

)
, (2.6)

where vth =
√

Te

me
is the warm electrons thermal speed and α de�nes the population

of non-thermal electrons. The respective electronic distribution can be written as

[35]

ne0 = ne0

[
1− β

(
eϕ

Te

)
+ β

(
eϕ

Te

)2]
exp

(
eϕ

Te

)
(2.7)

Here β = 4α
(1+3α)

, and in the limit when α (or β) approaches to zero, we recover the

Maxwellian counterpart, same is true for kappa distribution when κ→∞.
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2.2 Normalizaton of model equations

In mathematical physics, its always easy to deal with dimensionless variables, fol-

lowing that we can write our system of equations in normalized form. For that

various normalization factors are de�ned as follow;

� The electron and ion densities, ne and ni are normalized by the equilibrium

values, i.e., n̄i =
ni

nio
and n̄e =

ne

neo

� Space variables (x, y, z) are normalized by electron Debye length which is

given by, λD =
(

Te

4πneoe2

) 1
2
, i.e., x̄ = x

λD
, ȳ = y

λD
, z̄ = z

λD
.

� The velocity of �uid and the light speed are normalized by ion acoustic speed

Cs, where Cs =
(

Te

mi

) 1
2
.

� The ions cyclotron frequency ωci =
eB0

mic
and the rotation frequency are nor-

malized by ion plasma frequency ωpi =
(

4πnioe
2

mi

) 1
2
.

� Electric �eld is also normalized as, Ē = E
eλDiTe

.

� The time variable is normalized by the inverse of ion plasma frequency, i.e.,

t̄ = tωpi.

� The electrostatic potential is normalized as, ϕ̄ = eϕ
Te
.

� The coe�cients of ion �uid viscosity are normalized by ωpiλ
2
D.

� Note that we can express ion acoustic speed as, Cs = λDωpi.

Upon introducing the diamensionless variables, the continuity equation can be writ-

ten as,
∂ni

∂t
+

∂

∂x
(nivi) = 0

∂(n̄ineoωpi)

∂t̄
+

∂

∂(x̄λD)
(n̄inioCsv̄i) = 0

neoωpiλD
∂n̄i

∂t̄
+

∂

∂(x̄)
(n̄iv̄inioCs) = 0

ne0Cs

ni0

∂n̄i

∂t̄
+

∂

∂x̄
(n̄iv̄iCs) = 0

As ne0

nio
= 1, hence the continuity equation becomes

∂n̄i

∂t̄

∂

∂x̄
(n̄iv̄i) = 0 (2.8)
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The equation of motion can also be written in normalized variables as follows,

mini

(
∂

∂t
+v⃗i·∇⃗

)
γv⃗i = eni(E⃗+v⃗i×B⃗)−∇⃗pi+2mini(v⃗i×Ω⃗)+miniηi∇2v⃗i+mini(ηi+µi)∇⃗(∇⃗·v⃗i)

After using the equation of state p = niTe we �nd(
∂

∂t
+v⃗i·∇⃗

)
γv⃗i = − e

mi

∇⃗ϕ+ωci

(
v⃗i×ẑ

)
− Ti

mi

∇⃗ni

ni

+2Ω0

(
v⃗i×ẑ

)
+ηi∇⃗2vi+

(
ηi+µi

)
∇⃗
(
∇⃗·v⃗i

)
(
∂ωpi

∂t̄
+

Cs

λD

(v̄i · ∇̄)

)
Csγv̄i+

eTe

miλD

∇̄ϕ̄− ωpiCsω̄ci

(
v̄i × ẑ

)
+

Ti��nio

miλD��nio

∇̄n̄i

n̄i

− 2Ω̄0ωpiCs

(
v̄i × ẑ

)
=

ωpiCsη̄i�
�λ2
D

�
�λ2
D

∇̄2v̄i + ωpiCs(η̄ + µ̄)∇̄
(
∇̄ · v̄i

)
�
�λ2
D

�
�λ2
D

ωpiCs

(
∂

∂t
+ ��Cs

��Cs

(v̄i · ∇̄)

)
γv̄i+

eTe

miλD

∇̄ϕ̄− ωpiCsω̄ci

(
v̄i × ẑ

)
+

Ti

miλD

∇̄n̄i

n̄i

− 2Ω̄0ωpiCs

(
v̄i × ẑ

)
=

ωpiCsη̄i∇̄2v̄i + ωpiCs(η̄ + µ̄)∇̄
(
∇̄ · v̄i

)
(

∂

∂t
+ (v̄i · ∇̄

)
γv̄i +

�e��Te��mi

�e��Te��mi

∇̄ ¯phi−�
�ωpi��Cs

�
�ωpi��Cs

ω̄ci

(
v̄i × ẑ

)
+

Ti��4π��nio��e
2
��mi

��4π��nio��e
2
��miTe

∇̄n̄i

n̄i

− ��ωpi��Cs

��ωpi��Cs

2Ω̄0

(
v̄i × ẑ

)
=

��ωpi��Cs

��ωpi��Cs

η̄∇2n̄i +
��ωpi��Cs

��ωpi��Cs

(
η̄i + m̄ui

)
∇̄
(
∇̄ · v̄i

)
(

∂

∂t
+v̄i·∇̄

)
γv̄i+∇̄ϕ̄−ω̄ci

(
v̄i×ẑ

)
+σ

∇̄n̄i

n̄i

= 2Ω0

(
v̄i×ẑ

)
+η̄i∇̄2v̄i+

(
η̄i+µ̄i

)
∇̄
(
∇̄·v̄i

)
(

∂

∂t
+v̄i·∇̄

)
γv̄i = −∇̄ϕ̄−σ

∇̄n̄i

n̄i

+2Ω0

(
v̄i×ẑ

)
+ω̄ci

(
v̄i×ẑ

)
+η̄i∇̄2v̄i+

(
η̄i+µ̄i

)
∇̄
(
∇̄·v̄i

)
,

(2.9)

where Ωc = ωci + 2Ω0 and σ = Ti

Te
, represents the temperature ratio of ions to

electrons.

Poisson's equation also transforms in the following manner,

∇̄2ϕ̄Te

λ2
De

= 4πe

(
neon̄e − nion̄i

)

��Te�4�π��nio��e
2

��Te��4π��nio��e
2
∇̄2ϕ̄ =

(
n̄e − n̄i

)
∇̄2ϕ̄ = n̄en̄i
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The normalized version of kappa density distribution takes the form,

n0 = ne0

[
1− eϕ

(κ− 3
2
)Te

]−(κ− 1
2
)

(2.10)

��ne0n̄e =��ne0

[
1− ϕ̄

(κ− 3
2
)

]−(κ− 1
2
)

n̄e =

[
1− ϕ̄

(κ− 3
2
)

]−(κ− 1
2
)

, (2.11)

where ϕ̄ = e ϕ
Te
. Likewise, for the Cairns VDF we �nd

��ne0n̄e =��ne0

[
1− β

(
�e��Teϕ̄

��Te�e

)
+ β

(
�e��Teϕ̄

��Te�e

)2]
exp

(
�e��Teϕ̄

�e��Te

)

n̄e =

[
1− βϕ̄+ βϕ̄2

]
exp(−ϕ̄). (2.12)

From now on, for a mathematical ease we shall omit the overhead bar from our

normalized variables.

The continuity, force balanced and Poisson's equations can be written in cartesian

form as
∂ni

∂t
+

(
∂ni

∂x
x̂+

∂ni

∂y
ŷ +

∂ni

∂z
ẑ

)
·
(
vixx̂+ viyŷ + viz ẑ

)
∂

∂t
ni+

∂

∂x
nivix +

∂

∂y
niviy +

∂

∂z
niviz = 0, (2.13)

∂

∂t

(
vixx̂+ viyŷ + viz ẑ

)
+

(
(vixx̂+ viyŷ + viz ẑ) · (

∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ)

)(
vixx̂+ viyŷ + viz ẑ

)
+(

∂

∂x
ϕx̂+

∂

∂y
ϕŷ +

∂

∂z
ϕẑ

)
− Ωc

(
(vixx̂+ viyŷ + viz ẑ)× ẑ

)
− σ

ni

(
∂

∂x
ni −

∂

∂y
ni −

∂

∂z
ni

)
=

ηi

(
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)(vixx̂+ viyŷ + viz ẑ)

)
+

(
ηi + µi

)[
∂2

∂x2
vixx̂+

∂2

∂y2
viyŷ +

∂2

∂z2
viz ẑ+

∂2

∂x∂y
viyx̂+

∂2

∂x∂z
vizx̂+

∂2

∂y∂x
vixŷ +

∂2

∂y∂z
vizŷ +

∂2

∂z∂x
vixẑ +

∂2

∂z∂y
viyẑ

]
The x, y and z-component of above equations, can be separated to write

∂

∂t
vix + vix

∂

∂x
vix + viy

∂

∂y
vix + viz

∂

∂z
vix +

∂

∂x
ϕ− Ωcviy +

σ

ni

∂

∂x
ni =

ηi

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
vix +

(
ηi + µi

)(
∂2

∂x2
vix +

∂2

∂x∂y
viy +

∂2

∂x∂z
viz

) (2.14)
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∂

∂t
viy + vix

∂

∂x
viy + viy

∂

∂y
viy + viz

∂

∂z
viy +

∂

∂y
ϕ+ Ωcvix +

σ

ni

∂

∂y
ni =

ηi

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
viy +

(
ηi + µi

)(
∂2

∂y2
viy +

∂2

∂x∂y
vix +

∂2

∂z∂y
viz

) (2.15)

∂

∂t
γviz + vix

∂

∂x
γviz + viy

∂

∂y
γviz + viz

∂

∂z
γviz = − ∂

∂z
ϕ− σ

ni

∂

∂z
ni+

ηi

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
viz +

(
ηi + µi

)(
∂2

∂z2
viz +

∂2

∂x∂z
vix +

∂2

∂z∂y
viy

)
,

(2.16)

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= ne − ni. (2.17)

Inserting equation (2.11) into (2.17), and then expand it by using binomial expansion

yields
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 1 +

(κ− 1
2
)

(κ− 3
2
)
ϕ+

(κ− 1
2
)(κ+ 1

2
)

2(κ− 3
2
)2

ϕ2 − ni

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 1 + c1ϕ+ c2ϕ

2 − ni,

where c12 for kappa VDF is given by

c1,2 =


κ− 1

2

κ− 3
2

κ− 1
2
κ+ 1

2

2(κ− 3
2
)2

(2.18)

Now, using equation (2.5) into (2.17), and following the same steps to write

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
=

(
1− βϕ+ βϕ2

)
exp(ϕ)− ni

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
=

[
1 + (1− β)ϕ+

ϕ2

2

]
− ni

Here c12 coe�cients of Cairns density function are given by

c1,2 =


1− β

1
2

(2.19)
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2.3 The reductive perturbation method

We use a reductive perturbation method to derive ZKB equation. This schemes

are helpul in the study of waves which have small but measurable amplitudes. In

particular, here we consider small amplitude of ion acoustic shock waves. Now �rst

we transform the coordinates, also called stretching of coordinates, to de�ne space

and time variables as following

ξ = ϵ
1
2x, η = ϵ

1
2y,

ζ = ϵ
1
2 (z − λ0t), τ = ϵ

3
2 t

(2.20)

where 0 < ϵ << 1, and λ0 is the linear wave speed. The next step, in our scheme,

is to expand the dependent variables in the power series of epsilon as following

ni = 1 + ϵn1 + ϵ2n2 + .......

vix = ϵ
3
2u1 + ϵ2u2 + .......

viy = ϵ
3
2v1 + ϵ2v2 + .......

viz = v0 + ϵw1 + ϵ2w2 + .......

ϕ = ϵϕ1 + ϵ2ϕ2 + .......

(2.21)

We assume that the damping is �imsy such that di�erent viscosities can be written

as
ηi = ϵ

1
2η0,

µi = ϵ
1
2µ0

where η0 and µ0 have values of very small magnitude. The respective derivatives

are then transformed as

∂f(ξ, η, ζ, τ)

∂x
=

∂f

∂ξ

∂ξ

∂x
+

∂f

∂η

∂η

∂y
+

∂f

∂ζ

∂ζ

∂z
+

∂f

∂τ

∂τ

∂t
·

∂f(ξ, η, ζ, τ)

∂x
= ϵ

1
2
∂f

∂ξ
+ 0 + 0 + 0

∂

∂x
= ϵ

1
2
∂

∂ξ
(2.22)

∂

∂t
= ϵ

3
2
∂

∂τ
− λ0ϵ

1
2
∂

∂ζ
(2.23)
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∂

∂y
= ϵ

1
2
∂

∂η

∂

∂z
= ϵ

1
2
∂

∂ζ

∂2

∂x2
= ϵ

∂2

∂ξ2
∂2

∂y2
= ϵ

∂2

∂η2

∂2

∂z2
= ϵ

∂2

∂ζ2
∂2

∂x∂y
= ϵ

∂2

∂ξ∂η

∂2

∂x∂z
= ϵ

∂2

∂ξ∂ζ

∂2

∂y∂z
= ϵ

∂2

∂ζ∂η

(2.24)

Next, we have to use all these transform derivatives in our model equations and then

campare coe�cients of various powers of ϵ. From Poisson's equation the di�erent

powers of ϵ can be seperated as

(n1 − c1ϕ1)ϵ+ (n2 − c2ϕ
2
1 − c1ϕ2 + ϕ′′

1[ξ] + ϕ′′
1[ζ] + ϕ′′

1[η])ϵ
2 + (−2c2ϕ1ϕ2 + ϕ′′

2[ζ] + ϕ′′
2[η]+

ϕ2[ξ])ϵ
3 − c2ϕ

2
2ϵ

4 +Oϵ8 = 0

(2.25)

Similarly, from continuity equation we have

v′0[ζ]ϵ
1
2 − (λ0n

′
1[ζ] + v0n

′
1[ζ] + n1v

′
0[ζ] + w′

1[ζ])ϵ
3
2 + (u′

1[ξ] + v′1[η])ϵ
2 + (w1[ζ]n

′
1[ζ] + n′

1[τ ]− λ0n
′
2[ζ]

+ v0n
′
2[ζ] + u′

2[ξ] + n2[ζ]v
′
0[ζ] + v′2[η] + n1w

′
1[ζ] + w′

2[ζ])ϵ
5
2 + (v1n

′
1[η] + u1n

′
1[ξ] + n1u

′
1[ξ] + n1v

′
1η)ϵ

3

+ (w2n
′
1[ζ] + v2n

′
1[η] + u2n

′
1[ξ] + w1n

′
2[ζ] + n′

2[τ ] + n1u2[ξ] + n1v
′
2[η] + n2w1[ζ] + n1w

′
2[ζ])ϵ

7
2

+ (v1n
′
2[η] + u1n

′
2[ξ] + n2u

′
1[ξ] + n2v

′
1[η])ϵ

4 + (w2n
′
2[ζ] + v2n

′
2[η] + u2n

′
2[ξ] + n2u

′
2[ξ] + n2v

′
2[η]

+ n2w
′
2[ζ])ϵ

9
2 +Oϵ

15
2 = 0

(2.26)

From equation of motion the x-component provides the following relation among

various epsilon power terms

(−v1Ωc + σn′
1[ξ] + ϕ′

1[ξ])ϵ
3
2 + (−v2Ωc + v0u

′
1[ζ]− λ0u

′
1[ζ])ϵ

2 + (w1u1[ζ] + u′
1[τ ])ϵ

3 + (w2u
′
1[ζ]

+ u2u
′
1[ξ] + u1u

′
2[ξ] + v2v

′
1[η] + v1v

′
2[η])ϵ

4 + (−σn1n
′
1[ξ] + σn′

2[ξ] + v0u
′
2[ζ]− λ0u

′
2[ζ] + ϕ2[ξ])ϵ

5
2

+ (−σn2n
′
1[ξ]− σn1n

′
2[ξ] + u1u

′
1[ξ] + w1u

′
2[ζ] + u2[τ ] + v1v

′
1[η])ϵ

7
2 − (σn2n

′
2[ξ] + w2u

′
2[ζ]

+ u2u
′
2[ξ] + v2v

′
2[η])ϵ

9
2 +Oϵ

15
2 = 0

(2.27)
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Likewise, the y and z-components yield, respectively

(u1Ωc + σn′
1[η] + ϕ′

1[η])ϵ
3
2 + (u2Ωc + v0v

′
1[ζ]− λ0v

′
1[ζ])ϵ

2 + (w1v
′
1[ζ] + v′1[τ ])ϵ

3 + (w2v
′
1[ζ] + v2v

′
1[η]

+ u2v
′
1[ξ] + v1v

′
2[η] + u1v

′
2[ξ])ϵ

4 + (−σn1n
′
1[η] + σn′

2[η] + v0v
′
2[ζ]− λ0v

′
2[ζ] + ϕ2[η])ϵ

5
2 + (−σn2n

′
1[η]

− σn1n
′
2[η] + v1v

′
1[η] + u1v

′
1[ξ] + w1v

′
2[ζ] + v2[τ ])ϵ

7
2 + (−σn2n

′
2[η] + w2v

′
2[ζ] + v2v

′
2[η] + u2v

′
2[ξ])ϵ

9
2

+Oϵ
15
2 = 0

(2.28)

and

Oϵ0 +Oϵ1 +Oϵ2 + (v1w
′
1[η] +

3v20v1w
′
1[η]

2c2
+ u1w

′
1[ξ] +

3u1v
2
0w

′
1[ξ]

2c2
)ϵ3 + (

3v1v0w1w
′
1[η]

c2
+

3u1v0w1w
′
1[ξ]

c2
+ v1w

′
2[η] +

3v1v
2
0w

′
2[η]

2c2
+ u1w

′
2[ξ] +

3u1v
2
0w

′
2[ξ]

2c2
)ϵ4 + (σn′

1[ζ] + v0w
′
1[ζ] +

3v30w
′
1[ζ]

2c2
−

λ0w
′
1[ζ]−

3λ0v
2
0w

′
1[ζ]

2c2
+ ϕ′

1[ζ])ϵ
3
2 + ..... = 0

(2.29)

Equating coe�cients of ϵ in equation (2.25) yields

n1 − c1ϕ1 = 0

n1 = c1ϕ1 (2.30)

Similarly, comparing ϵ
3
2 terms in equation (2.26) and (2.28) to write

∂n1v0
∂ζ

− λ0
∂n1

∂ζ
+

∂w1

∂ζ
= 0

v0n1 − λ0n1 + w1 = 0

n1(λ0 − v0) = w1

n1 =
w1

(λ0 − v0)
(2.31)

and, orderly

u1Ωc + σ
∂ni

∂η
+

∂ϕ1

∂η
= 0 (2.32)

Using equation (2.30) into equation (2.32) we �nd

u1Ωc + σc1
∂ϕ1

∂η
+

∂ϕ1

∂η
= 0

u1 = −Ω−1
c (1 + σc1)

∂ϕ1

∂η
(2.33)
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Coe�cients of ϵ
3
2 in equation (2.27) give,

−v1Ωc + σ
∂n1

∂ξ
+

∂ϕ1

∂ξ
= 0 (2.34)

which, upon using equation (2.30) provides

−v1Ωc + σc1
∂ϕ1

∂ξ
+

∂ϕ1

∂ξ
= 0

v1 = Ω−1
c (1 + σc1)

∂ϕ1

∂ξ
(2.35)

Coe�cient of ϵ
3
2 in equation (2.29) results in

σ
∂n1

∂ζ
+ v0

∂w1

∂ζ
+

3v30
2c2

∂w1

∂ζ
− λ0

∂w1

∂ζ
− 3v20

2c2
∂w1

∂ζ
+

∂ϕ1

∂ζ
= 0 (2.36)

(
v0 − λ0 +

3v30
2c2

− 3v20λ0

2c2

)
∂w1

∂ζ
+

∂ϕ1

∂ζ
+ σ

∂n1

∂ζ
= 0

By using values of n1 the above equation can be written as,

∂

∂ζ

[
ϕ1 + σc1ϕ1 +

(
v0 − λ0 +

3v30
2c2

− 3v20λ0

2c2

)
w1

]
= 0

[
ϕ1 + σc1ϕ1 +

(
v0 − λ0 +

3v30
2c2

− 3v20λ0

2c2

)
w1

]
= 0,

ϕ1(1 + σc1) + w1v0(1 + 1.5γ0)− (1.5γ0 + 1)w1λ0 = 0

ϕ1(1 + σc1) + w1(v0 − λ0 + 1.5v0γ0 − 1 · 5γ0λ0) = 0

ϕ1(1 + σc1) + (1 + 1.5v0)(v0 − λ0)w1 = 0 (2.37)

ϕ1(1 + σc1) = (λ0 − v0)γ1w1

where γ0 =
v20
c2
, γ1 = 1 + 1.5γ2

0 and

w1 =
ϕ1(1 + σc1)

(λ0 − v0)γ1
(2.38)

Now comparing the coe�cient of ϵ2 in equation (2.28) to write

u2Ωc + v0
∂v1
∂ζ

− λ0
∂v1
∂ζ

= 0

(v0 − λ0)
∂v1
∂ζ

+ u2Ωc = 0
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u2Ωc = (λ0 − v0)
∂v1
∂ζ

(2.39)

Similarly, from equation (2.27) we �nd

−v2Ωc + v0
∂u1

∂ζ
− λ0

∂u1

∂ζ
= 0

(v0 − λ0)
∂u1

∂ζ
− v2Ωc = 0

v2Ωc = −(λ0 − v0)
∂u1

∂ζ
(2.40)

And orderly, from equation (2.25) we �nd

∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2
− c2ϕ

2
1 = c1ϕ2 − n2 (2.41)

Upon that solving equations (2.30), (2.31) and (2.38) to obtain phase speed λ0 as

c1ϕ1 =
w1

(λ0 − v0)

ϕ1 =
w1

c1(λ0 − v0)

��w1 =
(1 + σc1)

(λ0 − v0)γ1

��w1

c1(λ0 − v0)

(λ2
0 + v20 − 2v0λ0)c1γ1 = (1 + σc1)

λ2
0c1γ1 + v20c1γ1 − 2λ0c1γ1v0 = 1 + σc1

λ2
0 − 2λ0v0 +

c1γ1v
2
0 − 1− σc1
c1γ1

= 0

λ2
0c1γ1 − 2c1γ1λ0v0 + c1γ1v

2
0 − 1− σc1 = 0

λ0 = 2c1γ1v0 ±
(
(2c1γ1v0)

2 − 4c1γ1(c1γ1v
2
0 − 1− σc1)

) 1
2

λ0 = v0 ±
(
(4c1γ1 + 4c21γ1σ)

4c21γ1

) 1
2

λ0 = v0 ±
(
(1 + σc1
c1γ1

) 1
2

(2.42)

This equation shows the phase speed for ion acoustic waves, where pasitive sign

shows the fast mode of ion acoustic waves and negative sign corresponds to the

slower counterpart.

28



Coe�cients of ϵ
5
2 in equation (2.26) yield

w1
∂n1

∂ζ
+

∂n1

∂t
+ v0

∂n2

∂ζ
− λ0

∂n2

∂ζ
+

∂u2

∂ξ
+

∂v2
∂η

+ n1
∂w1

∂ζ
+

∂w2

∂ζ
+ n2

∂v0
∂ζ

= 0

∂n1

∂t
− λ0

∂n2

∂ζ
+

∂u2

∂ξ
+

∂v2
∂η

+
∂w2

∂ζ
+

∂n1w1

∂ζ
+

∂n2v0
∂ζ

= 0

(v0 − λ0)
∂n2

∂ζ
+

∂n1

∂t
+

∂u2

∂ξ
+

∂v2
∂η

+
∂w2

∂ζ
+

∂n1w1

∂ζ
= 0

−∂n1

∂t
− ∂n1w1

∂ζ
= −(λ0 − v0)

∂n2

∂ζ
+

∂u2

∂ξ
+

∂v2
∂η

+
∂w2

∂ζ
· (2.43)

Likewise, same comparison in equation (2.29) provides the following

− σn1
∂n1

∂ζ
+ σ

∂n2

∂ζ
+ w1

∂w1

∂ζ
+

3v20w1

2c2
∂w1

∂ζ
+

3v20w1

c2
∂w1

∂ζ
− 3v0λ0w1

c2
∂w1

∂ζ
+

∂w1

∂τ
+

3v20
2c2

∂w1

∂τ
+

v0
∂w2

∂ζ
+

3v30
2c2

∂w2

∂ζ
− λ0

∂w2

∂ζ
− 3v20λ0

2c2
∂w2

∂ζ
+

∂ϕ2

∂ζ
− 2η0

∂2w1

∂ζ2
− µ0

∂211
∂ζ2

− η0
∂2w1

∂η2
− η0

∂2w1

∂ξ2
= 0

(2.44)

First of all we solve w1
∂w1

∂ζ
term in above equation as

−3v0λ0w1

c2
∂w1

∂ζ
+−3v20w1

2c2
∂w1

∂ζ
+

3v20w1

c2
∂w1

∂ζ
+ w1

∂w1

∂ζ

Multiplying and Dividing by 2vo to write

−3λ0γ
2
0

2v0

∂w2
1

∂ζ
+

3v0γ
2
0

2v0

∂w2
1

∂ζ
+ w1

∂w1

∂ζ
+

3γ2
0w1

2

∂w1

∂ζ

= −λ0γ2
∂w2

1

∂ζ
+ v0γ2

∂w2
1

∂ζ
+ γ1w1

∂w1

∂ζ

= (−λ0 + v0)γ2
∂w2

1

∂ζ
+ γ1w1

∂w1

∂ζ
, (2.45)

where γ2 =
3γ2

0

2
.

Secondly, we try to solve ∂w1

∂τ
term in (2.44) as follows

∂w1

∂τ
+

3v20γ
2
0

2c2
∂w1

∂τ

=

[
1 +

3γ2
0

2

]
∂w1

∂τ
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= γ1
∂w1

∂τ
,

next term in equation in (2.44) can be simpli�ed as

v0 +
3v30
2c2

∂w2

∂ζ
− λ0

∂w2

∂ζ
− 3v20λ0

2c2
∂w2

∂ζ

=
∂w2

∂ζ
v0

(
1 +

3

2
γ2
0

)
− λ0

(
1 +

3

2
γ2
0

)
∂w2

∂ζ

=

(
v0 − λ0

)
γ1

∂w2

∂ζ

After plugging in all of the above three solvable steps in equation (2.44) and rear-

ranging the terms yields

− (−λ0 + v0)γ1
∂w2

∂ζ
+

∂ϕ2

∂ζ
+ σ

∂n2

∂ζ
= (λ0 − v0)γ2

∂w2
1

∂ζ
− γ1

∂w1

∂τ
− γ1w1

∂w1

∂ζ
+ σn1

∂n1

∂ζ
+ η0(

∂2w1

∂ξ2
+

∂2w1

∂η2
+

∂2w1

∂ζ2
) + (η0 + µ0)

∂2w1

∂ζ2
·

(2.46)

2.4 Extraction of ZKB equation

From equation (2.41), we have

∂

∂ζ

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
− c2

∂ϕ2
1

∂ζ
= c1

∂ϕ2

∂ζ
− ∂n2

∂ζ

∂ϕ2

∂ζ
=

1

c1

∂

∂ζ

(
∂2ϕ1

∂ξ2

)
+

1

c1

∂

∂ζ

(
∂2ϕ1

∂η2

)
+

1

c1

∂

∂ζ

(
∂2ϕ1

∂ζ2

)
+

1

c1

(
∂n1

∂ζ

)
− c1

c2

(
∂ϕ2

1

∂ζ

)
(2.47)

Using equation (2.43) and rearrange it to write

∂w2

∂ζ
= −∂n1

∂t
− ∂

∂ζ
(n1w1)−

∂u2

∂ξ
− ∂v2

∂η
+ (λ0 − v0)

∂n2

∂ζ
(2.48)

Upon using equations (2.47) and (2.48) into equation (2.46), we �nd

− (λ0 − v0)γ1

[
− ∂n1

∂t
− ∂

∂ζ
(n1w1)−

∂u2

∂ξ
− ∂v2

∂η
+ (λ0 − v0)

∂n2

∂ζ

]
+

1

c1

∂

∂ζ

[
n2 +

∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2
− c2ϕ

2
1

]
+ σ

∂n2

∂ζ
= 2(λ0 − v0)

3γ2n1
∂n1

∂ζ
− γ1(λ0 − v0)

∂n1

∂τ
+ σn1

∂n1

∂ζ
− (λ0 − v0)

2n1
∂n1

∂ζ
+

η0

[
∂2w1

∂ξ2
+

∂2w1

∂η2
+

∂2w1

∂ζ2

]
+ (η0 + µ) +

∂2n1

∂ζ2
·
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(λ0 − v0)γ1
∂n1

∂τ
+ (λ0 − v0)γ1

∂n1w1

∂ζ
− (λ0 − v0)

2γ1
∂n2

∂ζ
+ (λ0 − v0)γ1

∂u2

∂ξ
+ (λ0 − v0)γ1

∂v2
∂η

+
1

c1

∂

∂ζ(
∂2ϕ1

∂ξ2

)
+

1

c1

∂

∂ζ

(
∂2ϕ1

∂η2

)
+

1

c1

∂

∂ζ

(
∂2ϕ1

∂ζ2

)
+

1

c1

∂n2

∂ζ
− 2

c1
c2
ϕ1

∂ϕ1

∂ζ
+ σ

∂n2

∂ζ
= 2(λ0 − v0)

3γ2n1
∂n1

∂ζ
−

γ1(λ0 − v0)
∂n1

∂τ
+ σn1

∂n1

∂ζ
− (λ0 − v0)

2n1
∂n1

∂ζ
+ η0

[
∂2w1

∂ξ2
+

∂2w1

∂η2
+

∂2w1

∂ζ2

]
+ (η0 + µ) +

∂2w1

∂ζ2
·

(λ0 − v0)γ1
∂n1

∂τ
+ (λ0 − v0)γ1

[
n1

∂w1

∂ζ
+ w1

∂n1

∂ζ

]
− (λ0 − v0)

2γ1
∂n2

∂ζ
+ (λ0 − v0)γ1

∂u2

∂ξ
+

(λ0 − v0)γ1
∂v2
∂η

+
1

c1

∂

∂ζ

(
∂2ϕ1

∂ξ2

)
+

1

c1

∂

∂ζ

(
∂2ϕ1

∂η2

)
+

1

c1

∂

∂ζ

(
∂2ϕ1

∂ζ2

)
+

1

c1

∂n2

∂ζ
− 2

c2
c1
ϕ1

∂ϕ1

∂ζ
+ σ

∂n2

∂ζ
=

2(λ0 − v0)
3γ2n1

∂n1

∂ζ
− γ1(λ0 − v0)

∂n1

∂τ
+ σn1

∂n1

∂ζ
− (λ0 − v0)

2n1
∂n1

∂ζ
+ η0

[
∂2w1

∂ξ2
+

∂2w1

∂η2
+

∂2w1

∂ζ2

]
+

(η0 + µ)
∂2w1

∂ζ2
·

(2.49)

Using w1 = n1(λ0 − v0) in above equation, we �nd

(λ0 − v0)γ1
∂n1

∂τ
+

[
2γ1(λ0 − v0)

2n1
∂n1

∂ζ

]
− (λ0 − v0)

2γ1
∂n2

∂ζ
+ (λ0 − v0)γ1

∂u2

∂ξ
+ (λ0 − v0)γ1

∂v2
∂η

+

1

c1

∂

∂ζ

(
∂2ϕ1

∂ξ2

)
+

1

c1

∂

∂ζ

(
∂2ϕ1

∂η2

)
+

1

c1

∂

∂ζ

(
∂2ϕ1

∂ζ2

)
+

1

c1

∂n2

∂ζ
− 2

c2
c1
ϕ1

∂ϕ1

∂ζ
+ σ

∂n2

∂ζ
= 2(λ0 − v0)

3γ2

n1
∂n1

∂ζ
− γ1(λ0 − v0)

∂n1

∂τ
+ σn1

∂n1

∂ζ
− (λ0 − v0)

2n1
∂n1

∂ζ
+ c1η0(λ0 − v0)

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
+

c1(η0 + µ0)(λ0 − v0)
∂2ϕ1

∂ζ2
·

(2.50)

Next, using equations (2.30), (2.39) and (2.40) in equation (2.50) yields

(λ0 − v0)c1γ1
∂ϕ1

∂τ
+ 2(λ0 − v0)

2c21γ1ϕ1
∂ϕ1

∂ζ
− γ1(λ0 − v0)

2∂n2

∂ζ
+ (λ0 − v0)γ1[

(λ0 − v0)

Ωc

∂

∂ξ
(
∂v1
∂ζ

)

]
+ (λ0 − v0)γ1

[
−(λ0 − v0)

Ωc

∂

∂η
(
∂u1

∂ζ
)

]
+

1

c1

∂n2

∂ζ
+

1

c1

∂

∂ζ
(
∂2ϕ1

∂ξ2
) +

1

c1

∂

∂ζ
(
∂2ϕ1

∂η2
)+

1

c1

∂3ϕ1

∂ζ3
− 2

c2
c1
ϕ1

∂ϕ1

∂ζ
+ σ

∂n2

∂ζ
− 2γ2c

2
1(λ0 − v0)

3ϕ1
∂ϕ1

∂ζ
+ γ1c1(λ0 − v0)

∂ϕ1

∂τ
+ γ1c

2
1(λ0 − v0)

2ϕ1
∂ϕ1

∂ζ
−

σc21ϕ1
∂ϕ1

∂ζ
− c1η0(λ0 − v0)

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
+ c1(η0 − µ0)(λ0 − v0)

∂2ϕ1

∂ζ2
= 0
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(λ0 − v0)c1γ1
∂ϕ1

∂τ
+ 2(λ0 − v0)

2c21γ1ϕ1
∂ϕ1

∂ζ
− γ1(λ0 − v0)

2∂n2

∂ζ
+

(λ0 − v0)
2γ1

Ωc

∂2v1
∂ξ∂ζ

− (λ0 − v0)
2γ1

Ωc

∂2u1

∂η∂ζ
+

1

c1

∂n2

∂ζ
+

1

c1

∂

∂ζ
(
∂2ϕ1

∂ξ2
) +

1

c1

∂

∂ζ
(
∂2ϕ1

∂η2
) +

1

c1

∂3ϕ1

∂ζ3
− 2

c2
c1
ϕ1

∂ϕ1

∂ζ
+ σ

∂n2

∂ζ
− 2γ2c

2
1(λ0 − v0)

3ϕ1

∂ϕ1

∂ζ
+ γ1c1(λ0 − v0)

∂ϕ1

∂τ
+ γ1c

2
1(λ0 − v0)

2ϕ1
∂ϕ1

∂ζ
− σc21ϕ1

∂ϕ1

∂ζ
− c1η0(λ0 − v0)

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
− c1(η0 + µ0)(λ0 − v0)

∂2ϕ1

∂ζ2
= 0

(2.51)

Which upon making use of equations (2.33) and (2.35) transforms to the following

form

(λ0 − v0)c1γ1
∂ϕ1

∂τ
+ 2(λ0 − v0)

2c21γ1ϕ1
∂ϕ1

∂ζ
− γ1(λ0 − v0)

2∂n2

∂ζ
+

(λ0 − v0)
2γ1

Ω2
c

(1 + σc1)
∂

∂ζ
(
∂2ϕ1

∂ξ2
)+

(λ0 − v0)
2γ1

Ω2
c

(1 + σc1)
∂

∂ζ
(
∂2ϕ1

∂η2
) +

1

c1

∂n2

∂ζ
+

1

c1

∂

∂ζ
(
∂2ϕ1

∂ξ2
) +

1

c1

∂

∂ζ
(
∂2ϕ1

∂η2
) +

1

c1

∂3ϕ1

∂ζ3
− 2

c2
c1
ϕ1

∂ϕ1

∂ζ
+

σ
∂n2

∂ζ
− 2γ2c

2
1(λ0 − v0)

3ϕ1
∂ϕ1

∂ζ
+ γ1c1(λ0 − v0)

∂ϕ1

∂τ
+ γ1c

2
1(λ0 − v0)

2ϕ1
∂ϕ1

∂ζ
− σc21ϕ1

∂ϕ1

∂ζ
− c1η0

(λ0 − v0)

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
− c1(η0 + µ0)(λ0 − v0)

∂2ϕ1

∂ζ2
= 0

[
2γ1c

2
1(λ0 − v0)

]
∂ϕ1

∂τ
+

[
2γ1c

3
1(λ0 − v0)

2ϕ1 − 2c2 − 2γ2(λ0 − v0)
3c31 + γ1(λ0 − v0)

2c31 − σc31

]
ϕ1

∂ϕ1

∂ζ
+

∂3ϕ1

∂ζ3
+

c1γ1(1 + σc1)(λ0 − v0)
2

Ω2
c

∂3ϕ1

∂ζ∂ξ2
+

c1γ1(1 + σc1)(λ0 − v0)
2

Ω2
c

∂3ϕ1

∂ζ∂η2
+

∂n2

∂ζ
+

∂

∂ζ
(
∂2ϕ1

∂ξ2
) +

∂

∂ζ

(
∂2ϕ1

∂η2
) + σc1

∂n2

∂ζ
− c1γ1(λ0 − v0)

2∂n2

∂ζ
− c21η0(λ0 − v0)

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
− c21(η0 + µ0)

(λ0 − v0)
∂2ϕ1

∂ζ2
= 0[

2γ1c
2
1(λ0 − v0)

]
∂ϕ1

∂τ
+

[
3(λ0 − v0)

2c31γ1 − 2(λ0 − v0)
3c31γ2 − 2c2 − σc31

]
ϕ1

∂ϕ1

∂ζ
+

∂

∂ζ
(
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
)[

1 + Ω−2
c c1γ1(λ0 − v0)

2(1 + σc1)

]
+

∂3ϕ1

∂ζ3
+

[
1 + σc1 − γ1c1(λ0 − v0)

2

]
∂n2

∂ζ
− c21η0(λ0 − v0)

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
− c21(η0 + µ0)(λ0 − v0)

∂2ϕ1

∂ζ2
= 0

(2.52)

From equation (2.35) we have

(λ0 − v0)
2γ1c1 = 1 + σc1 (2.53)
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Now inserting equation (2.53) in (2.52) to cancel ∂n2

∂ζ
term and yielding[

2γ1c
2
1(λ0 − v0)

]
∂ϕ1

∂τ
+

[
3(λ0 − v0)

2c31γ1 − 2(λ0 − v0)
3γ2c

3
1 − 2c2 − σc31

]
ϕ1

∂ϕ1

∂ζ
+

∂3ϕ1

∂ζ3
+

∂

∂ζ

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2

][
1+

Ω−2
c c1γ1(λ0 − v0)

2(1 + σc1)

]
− c21η0(λ0 − v0)

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
− c21(η0 + µ0)(λ0 − v0)

∂2ϕ1

∂ζ2
= 0

(2.54)

Divide equation (2.54) by 2c21γ1(λ0 − v0) to write

∂ϕ1

∂τ
+

3(λ0 − v0)
2c31γ1 − 2(λ0 − v0)

3γ2c
3
1 − 2c2 − σc31

2c21γ1(λ0 − v0)
ϕ1

∂ϕ1

∂ζ
+

1

2c21γ1(λ0 − v0)

∂3ϕ1

∂ζ3
+

1 + Ω−2
c (λ0 − v0)

2γ1c1(1 + σc1)

2c21γ1(λ0 − v0)

∂

∂ζ

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2

]
− η0

2γ1

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
− η0 + µ0)

2γ1

∂2ϕ1

∂ζ2
= 0

∂ϕ1

∂τ
+Aϕ1

∂ϕ1

∂ζ
+B

∂3ϕ1

∂ζ3
+C

∂

∂ζ

[
∂2ϕ1

∂ξ2
+
∂2ϕ1

∂η2

]
−D

∂2ϕ1

∂ξ2
+
∂2ϕ1

∂η2
+
∂2ϕ1

∂ζ2
−E

∂2ϕ1

∂ζ2
= 0

(2.55)

Which is the desired ZKB equation, where

A =
3(λ0 − v0)

2c31γ1 − 2(λ0 − v0)
3γ2c

3
1 − 2c2 − σc31

2c21γ1(λ0 − v0)
(2.56)

B =
1

2c21γ1(λ0 − v0)
(2.57)

C =
1 + Ω−2

c (λ0 − v0)
2γ1c1(1 + σc1)

2c21γ1(λ0 − v0)
(2.58)

D =
η0
2γ1

(2.59)

E =
η0 + µ0)

2γ1
(2.60)

2.5 Solution of ZKB equation

First we transform the ZKB equation by de�ning the travelling coordinate as fol-

lowing

χ = lxζ + lyη + lzζ − U0τ, (2.61)

where lx, ly and lz are direction cosines which shows relation between propagating

vector k and ξ, η and ζ axis, such that l2x + l2y + l2z = 1.
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The derivatives change accordingly, i.e.

∂

∂τ
=

∂χ

∂τ

∂

∂χ
,

∂

∂τ
= −Uo

∂

∂χ
∂

∂ζ
=

∂χ

∂ζ

∂

∂χ
,

∂

∂ζ
= lz

∂

∂χ
∂

∂ξ
=

∂χ

∂ξ

∂

∂χ
,

∂

∂ξ
= lx

∂

∂χ
∂

∂η
=

∂χ

∂η

∂

∂χ
,

∂

∂ξ
= ly

∂

∂χ

∂2

∂ξ2
= l2x

∂2

∂χ2
,

∂2

∂η2
= l2y

∂2

∂χ2

∂2

∂ζ2
= l2z

∂2

∂χ2
,

∂3

∂ζ3
= l3z

∂3

∂χ3

=>
∂

∂ζ

∂2

∂ξ2
= l2xl

2
z

∂3

∂χ3
,

∂

∂ζ

∂2

∂η2
= l2yl

2
z

∂3

∂χ3

(2.62)

Using equations (2.62) into (2.55) yields

−U0
∂ϕ1

∂χ
+ Alzϕ1

∂ϕ1

∂χ
+

[
Bl2z + C(l2x + l2y)

]
lz
∂3ϕ1

∂χ3
−
[
(l2x + l2y) + El2z

]
∂2ϕ1

∂χ2
= 0

−U0
dϕ1

dχ
+ Alzϕ1

dϕ1

dχ
+Hlz

d3ϕ1

d3χ
−G

d2ϕ1

dχ2
= 0 (2.63)

Here G = D+El2z and H = l2zB+(l2x+ l2y)C. Equation (2.63) gives the shock waves

solution, because it contains both dispersive and dissipative terms. The amplitude

of this shock waves can be found by using tangent hyperbolic method. For this we

assume that our potential is bounded at χ = ±∞. The complete solution is given

by,

ϕ1(χ) =
3G2

25HAl2z

[
2− 2tanh

(
Gχ

10Hlz

)
+ sech2

(
Gχ

10Hlz

)]
(2.64)

Which is the shock waves solution of ZKB equation. The value ϕm = 9G2

25HAl2z
is the

amplitude and G
10Hlz

is the width of the shock waves, χ is the moving coordinate and

U0 is the normalized shock speed. The coe�cients D, E denote the dissipative and

B, C represent dispersive terms. The pasitive and negative amplitude depends on

the sign of coe�cient. There will be compression of amplitude when the coe�cient

of non-linear term is pasitive and rarefaction of amplitude when that is negative.
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2.6 Graphical results and discussion

In this section, we present the numerical analysis to describe the shock parameters

as a�ected by di�erent plasma variables like σ, lz etc.
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Figure 2.1: Variation of ϕm with the spectral index κ.

Figure (2.1) indicates the potential amplitude decrease with κ. That implies

that for higher values of κ - that is for Maxwellian VDF - the potential amplitude

is smallar in comparison with the scenario when superthermal particle are more in

numbers (small value of κ).
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Figure 2.2: E�ect of Cairns parameter α on the ion acoustic shock amplitude ϕm.

Figure (2.2) depicts the e�ect of Cairns VDF on ϕm of ion acoustic shock waves.
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Variation for cairns distribution can be seen by a parameter α (non-thermal electrons

population). We note that ϕm changes with alpha variation. To evaluate the critical

value of α we have plotted the distribution of perturbed potential, as a function of

Cairns parameter in �gure (2.2). Here we see that at α = 0.15 the shock amplitude

changes its sign and thus a transition between compressive and rarefactive shock

takes place.

In �gure (2.3), we have plotted A and H against α, we observe that the compressive

and rarefactive nature of ion acoustic shock waves corresponds to pasitive and neg-

ative sign of non-linear coe�cient in equation (2.55). This �gure is consistant with

previous one.
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Cairns index, α

A
,H

Figure 2.3: Variations in non-linear and dispersive coe�cients with respect to
Cairns index α.

In �gure (2.4), we see that as the value of kappa κ increases the structure of

shock pro�le decreases. Its indicate that there is fewer of non-thermal electrons and

it is likely that shock pro�le have high degree of Maxwellian electrons.
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Figure 2.4: Structure of shock wave pro�les for di�erent values of κ.

Figure (2.5) shows that as the value of α (Non-thermal electrons population)

increases the amplitude of shock pro�le decreases. This corresponds to rarefactive

nature of shock ionic waves.
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Figure 2.5: Structure of shock wave pro�les for di�erent values of α.

Figure (2.6) shows that as we increase the values of viscosity index eta (η), i.e.

The dissipation in the system and it variate the shock potential for kappa electrons.

We see in this �gure that as dissipative variable increases, the shock potential in-

crease in such manners that is is easily predicted.
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In �gure (2.7), a similar trend is observed for Cairns VDF. However, the ampli-

tude ϕm in case of later is more than kappa VDF.
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Figure 2.6: Behavior of shock wave pro�le ϕ1 for di�erent value of η (ion kinematic
viscosity).
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Figure 2.7: Same as the last �gure but for kappa distributed electrons.

In �gure (2.8), we see that ionic shock wave pro�le varies as we increase the

rotational frequency Ω. The high amplitude of the potential corresponds to high

values of rotational frequency for kappa electrons.

In �g. (2.9), a similar trend is also observed for Cairns VDF but exhibiting a higher

strength

38



Ωc=0.3
Ωc=0.4
Ωc=0.5

-200 -100 0 100 200

0.000

0.002

0.004

0.006

0.008

0.010

0.012

χ

ϕ 1

Figure 2.8: Behavior of shock pro�le for di�erent value of Ω (rotaional frequency).
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Figure 2.9: Same as previous �gure for Cairns distribution of electrons.

Figures (2.10) and (2.11) shows how the perturbed potential distribution for

both kappa and Cairns electronic distributions, as a�ected by direction cosine lz.

Here we note that as we enlarge the lz, the obliqueness angle deminish which shows

that there is enlarged behavior of cyclotron character. Thus the magnitude of shock

potential is diminish as the lz gets larger values.
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Figure 2.10: The shock potential distribution as a�ected by direction cosine lz and
kappa spectral index.
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Figure 2.11: Behavior of shock potential ϕ1 with respect to direction cosine lz and
Cairns VDF.

In �gure (2.12), we extend our study to see bahavior of ϕ1 (perturbed potential)

for di�erent values of ion to electron temperature ratio σ. When we increase σ, the

shock pro�le diminish both for kappa and Cairns electron distributions.
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Figure 2.12: Structures of shock pro�le ϕ1 for di�erent values of ion electron
temperature ratio σ.
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Figure 2.13: Same as previous �gure but for kappa distributed electrons.

But in �gure (2.13), it is seen that as compared to kappa, shock pro�le have

enlarge amplitude for Cairns case.
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Chapter 3

IA shock-like potential with (r, q)

distributed electrons

3.1 Model equations

Again consider a plasma system, which is magnetized, composed of warm ions and

non-Maxwellian electrons. We also consider that magnetic �eld is along z-direction,

i.e., B⃗ = B0ẑ. The equilibrium quasi-neutrality condition demands that ni0 = ne0,

where ne0 and ni0 are, respectively the unperturbed densities of ions and electrons.

The corresponding ion �uid equations, namely continuity, force balanced, and Pois-

son's equation, for our system can be written as

∂ni

∂t
+

∂

∂x
(nivi) = 0, (3.1)

mini

(
∂

∂t
+ v⃗i · ∇⃗

)
v⃗i = eni(E⃗ + v⃗i × B⃗)− ∇⃗pi + 2mini(v⃗i × Ω⃗) +miniηi∇2v⃗i,

(3.2)

and, respectively

∇⃗ · E⃗ = 4πe(ni − ne) (3.3)

Here all the symbols have their usual meaning, as de�ned in previous chapter. The

electrons (r, q) distribution function is given by [28]

frq(v) =
3Γ[q](q − 1)

−3
(2+2r)

4πβ
3
2v

3
2
thΓ[q − 3

2+2r
]Γ[1 + 3

2+2r
]

(
1 +

1

q − 1

(
v2 − 2eϕ

me

βv2th

)r+1)−q

, (3.4)
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where

β =
3(q − 1)

−1
(1+r)Γ[q − 3

2+2r
]Γ[ 3

2+2r
]

2Γ[q − 5
2+2r

]Γ[ 5
2+2r

]
(3.5)

Here vth is the thermal velocity, r and q are the spectral indices. By choosing di�er-

ent values of these indices, one can model huge number of non-Maxwellian plasmas.

Upon integrating the above distribution over velocity space, the corresponding elec-

tron density takes the form [36]

ne = ne0(1 + A1ϕ+ A2ϕ
2) (3.6)

with

A1 =
(q − 1)

−1
r+1Γ[q − 1

2r+2
]Γ[ 1

2r+2
]

2βΓ[ 3
2r+2

]Γ[q − 3
2r+2

]
, (3.7)

A2 =
−(q − 1)

−2
r+1Γ[q + 1

2r+2
]Γ[ −1

2r+2
]

8β2Γ[ 3
2r+2

]Γ[q − 3
2r+2

]
(3.8)

In the limit when r = 0 and q → ∞, we recover the Maxwellian counterpart for

which A1 = 1 and A2 = 1
2
. For a limit when value of r = 0 and q → κ + 1 we

recover the kappa VDF whose coe�cients are given as, A1 =
κ− 1

2

κ− 3
2

, A2 =
(κ− 1

2
)(κ+ 1

2
)

2(κ− 3
2
)2

.

For physically acceptable results, values of r and q must satisfy the condition, q > 1

and q(1 + r) > 5
2
.

3.2 Normalization of model equations

Here again we use the same normalized variable as discussed in the last chapter.

The continuity equation (2.8), in its normalized form, is given as

∂n̄i

∂t̄

∂

∂x̄
(n̄iv̄i) = 0, (3.9)

Likewise, the force balance expression takes the following form

mini

(
∂

∂t
+ v⃗i · ∇⃗

)
v⃗i = −eni

∂ϕ

∂x
+eni(v⃗i× B⃗)−kBTi

∇⃗ni

ni

+2mini(v⃗i× Ω⃗)+mini∇2v⃗i

Divide above equation with mini, and then by Csωpi gives,(
∂

∂t
+ v⃗i ·∇⃗

)
v⃗i =

−e��ni

mi��ni

∂ϕ

∂x
+

e��ni

mi��ni

(v⃗i×B⃗)− kBTi

mi

∇⃗ni

ni

+
2���mini

���mini

(v⃗i×Ω⃗)+
���mini

���mini

ηi∇2v⃗i
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(
ωpi

∂

∂t̄
+
Cs

λD

v̄i·∇̄
)
v̄iCs = − kBTe

miλD

∂ϕ̄

∂x̄
+
eB0Cs

mi

(v̄i×ẑ)−KBTi

miλD

∇̄n̄i

n̄i

+2CsωpiΩ0(v̄i×ẑ)+ωpiη̄iCs∇2v̄i

ωpi

(
∂

∂t̄
+

Cs

λDωpi

v̄i·∇̄
)
v̄iCs =

−kBTe

miλD

∂ϕ̄

∂x̄
+ωciCs(v̄i×ẑ)− kBTi

miλD

∇̄n̄i

ni

+2ωciCsΩ0(v̄i×ẑ)+ωpiCsη̄i∇2v̄i(
∂

∂t̄
+ v̄i · ∇̄

)
v̄i = −∂ϕ̄

∂x̄
− σ

∇̄n̄i

n̄i

+ Ωc(v̄i × ẑ) + η̄i∇̄2v̄i, (3.10)

where Ωc = ωci + 2Ω0 and σ represents the temperature ratio of ion to electron.

Poisson's equation in normalized form reads

∂2ϕ̄

∂2x̄
= ne − ni. (3.11)

For a mathematical ease we shall omit the overhead bar from our normalized vari-

ables.

The continuity, forced balanced, and Poisson's equations can be written in the carte-

sian coordinates
∂ni

∂t
+

∂nivix
∂x

+
∂niviy
∂y

+
∂niviz
∂z

= 0, (3.12)

∂

∂t

(
vixx̂+ viyŷ + viz ẑ

)
+

(
(vixx̂+ viyŷ + viz ẑ) · (

∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ)

)(
vixx̂+ viyŷ + viz ẑ

)
+(

∂

∂x
ϕx̂+

∂

∂y
ϕŷ +

∂

∂z
ϕẑ

)
− Ωc

(
(vixx̂+ viyŷ + viz ẑ)× ẑ

)
− σ

ni

(
∂

∂x
ni −

∂

∂y
ni −

∂

∂z
ni

)
=

ηi

(
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)(vixx̂+ viyŷ + viz ẑ)

)
∂

∂t

(
vixx̂+ viyŷ + viz ẑ

)
+

(
(vixx̂+ viyŷ + viz ẑ) · (

∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ)

)(
vixx̂+ viyŷ + viz ẑ

)
−(

∂

∂x
ϕx̂+

∂

∂y
ϕŷ +

∂

∂z
ϕẑ

)
+ Ωc

(
(viyx̂− vixŷ + 0)

)
− σ

ni

(
∂

∂x
ni −

∂

∂y
ni −

∂

∂z
ni

)
=

ηi

(
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)(vixx̂+ viyŷ + viz ẑ)

)
Next the x, y, and z-component of the above equation can be seperated to write

∂

∂t
vix + vix

∂

∂x
vix + viy

∂

∂y
vix + viz

∂

∂z
vix +

∂

∂x
ϕ− Ωcviy +

σ

ni

∂

∂x
ni =

ηi

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
vix

(3.13)

∂

∂t
viy + vix

∂

∂x
viy + viy

∂

∂y
viy + viz

∂

∂z
viy +

∂

∂y
ϕ+ Ωcvix +

σ

ni

∂

∂y
ni =

ηi

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
viy

(3.14)
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∂

∂t
viz + vix

∂

∂x
viz + viy

∂

∂y
viz + viz

∂

∂z
viz = − ∂

∂z
ϕ− σ

ni

∂

∂z
ni+

ηi

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
viz,

(3.15)

and, respectively
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= ne − ni (3.16)

Inserting equation (3.6) into (3.17) yields

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= (1 + A1ϕ1 + A2ϕ2)− ni (3.17)

3.3 Application of RPT

For the transformation of coordinates and expansion of dependent variables, we use

the same analysis as in chapter 2.

From Poisson's equation the di�erent powers of ϵ can be seperated as

(n1 − A1ϕ1)ϵ+ (n2 − A2ϕ
2
1 − A1ϕ2 + ϕ′′

1[ξ] + ϕ′′
1[ζ] + ϕ′′

1[η])ϵ
2 + (−2A2ϕ1ϕ2 + ϕ′′

2[ζ] + ϕ′′
2[η]

+ ϕ2[ξ])ϵ
3 − A2ϕ

2
2ϵ

4 +Oϵ8 = 0

(3.18)

Similarly, from continuity equation we have

− (λ0n
′
1[ζ] + w′

1[ζ])ϵ
3
2 + (u1[ξ] + v′1[η])ϵ

2 + (w1[ζ]n
′
1[ζ] + n′

1[τ ]− λ0n
′
2[ζ] + u′

2[ξ]+

v′2[η] + n1w
′
1[ζ] + w′

2[ζ])ϵ
5
2 + (v1n

′
1[η] + u1n

′
1[ξ] + n1u

′
1[ξ] + n1v

′
1η)ϵ

3 + (w2n
′
1[ζ] + v2n

′
1[η]+

u2n
′
1[ξ] + w1n

′
2[ζ] + n′

2[τ ] + n1u
′
2[ξ] + n1v

′
2[η] + n2w

′
1[ζ] + n1w

′
2[ζ])ϵ

7
2 + (v1n

′
2[η]+

u1n
′
2[ξ] + n2u

′
1[ξ] + n2v

′
1[η])ϵ

4 + (w2n
′
2[ζ] + v2n

′
2[η] + u2n

′
2[ξ] + n2u

′
2[ξ] + n2v

′
2[η]+

n2w
′
2[ζ])ϵ

9
2 +Oϵ

11
2 = 0

(3.19)

From equation of motion the x-component provides the relation among various pow-

ers of ϵ as

− (v1Ωc + σn′
1[ξ] + ϕ′

1[ξ])ϵ
3
2 + (−v2Ωc − λ0u

′
1[ζ])ϵ

2 + (w1u
′
1[ζ] + u′

1[τ ]− η0u
′′
1[ξ]− η0u

′′
1[η]

− η0u
′′
1[ζ])ϵ

3 + (w2u
′
1[ζ] + u2u

′
1[ξ] + u1u

′
2[ξ] + v2u

′
1[η] + v1u

′
2[η])ϵ

4 + (−σn1n
′
1[ξ] + σn′

2[ξ]

− λ0u
′
2[ζ] + ϕ2[ξ])ϵ

5
2 + (−σn2n

′
1[ξ]− σn1n

′
2[ξ] + u1u

′
1[ξ] + w1u

′
2[ζ] + u′

2[τ ] + v1u
′
1[η]− η0u

′′
2[ξ]

− η0u
′′
2[η]− η0u

′′
2[ζ])ϵ

7
2 − (σn2n

′
2[ξ] + w2u

′
2[ζ] + v2u

′
2[ξ] + u2u

′
2[ξ])ϵ

9
2 +Oϵ

15
2 = 0

(3.20)
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Likewise, the y and z-components provide

(u1Ωc + σn′
1[η] + ϕ′

1[η])ϵ
3
2 + (u2Ωc − λ0v

′
1[ζ])ϵ

2 + (w1v
′
1[ζ] + v′1[τ ]− η0v

′′
1 [ξ]− η0v

′′
1 [η]− η0v

′′
1 [ζ])ϵ

3

+ (w2v
′
1[ζ] + v2v

′
1[η] + u2v

′
1[ξ] + v1v

′
2[η] + u1v

′
2[ξ])ϵ

4 + (−σn1n
′
1[η] + σn1n

′
2[η]− λ0v

′
2[ζ] + ϕ2[η])ϵ

5
2

+ (−σn2n
′
1[η]− σn1n

′
2[η] + v1v

′
1[η] + u1v

′
1[ξ] + w1v

′
2[ζ] + v′2[τ ]− η0v

′′
2 [ξ]− η0v

′′
2 [η]− η0v

′′
2 [ζ])ϵ

7
2

+ (−n2n
′
2[η] + w2v

′
2[ζ] + v2v

′
2[η] + u2v

′
2[ξ])ϵ

9
2 +Oϵ

15
2 = 0

(3.21)

and, respectively

(v1w
′
1[η]u1w

′
1[ξ])ϵ

3 + (v1w
′
2[η] + u1w

′
2[ξ])ϵ

4 + (σn′
1[ζ]− λ0w1[ζ] + ϕ1[ζ])ϵ

3
2 + (−σn1n1[ζ] + σn′

2[ζ]

+ w1w
′
1[ζ] + w′

1[τ ]− λ0w
′
2[ζ] + ϕ′

2[ζ]− η0w
′′
1 [ξ]− η0w

′′
1 [η]− η0w

′′
1 [ζ])ϵ

5
2 + (−σn2n

′
1[ζ]− σn1n

′
2[ζ]

+ w2w
′
1[ζ] + v2w1[η] + u2w

′
1[ξ] + w1w2[ζ] + w′

2[τ ]− η0w
′′
2 [ξ]− η0w

′′
2 [η]− η0w

′′
2 [ζ])ϵ

7
2 + (−σn2n

′
2[ζ]

+ w2w
′
2[ζ] + v2w

′
2[eta]u2w

′
2[ξ])ϵ

9
2 + oϵ

15
2 = 0

(3.22)

Equating coe�cients of ϵ in equation (3.18) yields

n1 − A1ϕ1 = 0

n1 = A1ϕ1 (3.23)

From equation (3.19), the coe�cients of ϵ
3
2 can be written as

−λ0
∂n1

∂ζ
+

∂w1

∂ζ
= 0

n1 =
w1

λ0

(3.24)

Similarly, comparing the coe�cients of ϵ
3
2 for x, y and z component in EOM results

in

−v1Ωc + σ
∂n1

∂ξ
+

∂ϕ1

∂ξ
= 0

which can be simpli�ed as following

v1Ωc = (1 + σA1)
∂ϕ1

∂ξ
(3.25)

u1Ωc + σ
∂n1

∂η
+

∂ϕ1

∂η
= 0
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u1Ωc = (1 + σA1)
∂ϕ1

∂η
(3.26)

and, orderly

σ
∂n1

∂ζ
− λ0

∂w1

∂ζ
+

∂ϕ1

∂ζ
= 0

σn1 − λ0w1 + ϕ1 = 0

w1 =
(1 + σA1)ϕ1

λ0

(3.27)

Upon that solving equations (3.23), (3.24) and (3.27) to obtain the phase speed (λ0)

as
w1

λ0

= A1ϕ1

w1

ϕ1

=
(1 + σA1)

λ0

A1λ
2
0 = 1 + σA1

λ2
0 =

1 + σA1

A1

λ0 =

(
1 + σA1

A1

) 1
2

(3.28)

Coe�cients of ϵ2 in equations (3.19), (3.20) and (3.21) can be written as

−v1Ωc − λ0
∂u1

∂ζ
= 0

v2Ωc = λ0
∂u1

∂ζ
(3.29)

u2Ωc − λ0
∂v1
∂ζ

u2Ωc = λ0
∂v1
∂ζ

(3.30)

and, orderly
∂2ϕ1

∂2ξ2
+

∂2ϕ1

∂2η2
+

∂2ϕ1

∂2ζ2
= A2ϕ

2
1 + A1ϕ2 − n2

∂2ϕ1

∂2ξ2
+

∂2ϕ1

∂2η2
+

∂2ϕ1

∂2ζ2
− A2ϕ

2
1 = A1ϕ2 − n2 (3.31)

From equations (3.19) and (3.22), the coe�cients of ϵ
5
2 can be seperated to write

w1
∂n1

∂ζ
+

∂n1

∂τ
− λ0

∂n2

∂ζ
+

∂u2

∂ξ
+ n1

∂w1

∂ζ
+

∂v2
∂η

+
∂w2

∂ζ
,
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−λ0
∂n2

∂ζ
+

∂u2

∂ξ
+

∂v2
∂η

+
∂w2

∂ζ
= −∂n1

∂τ
− ∂n1w1

∂ζ
, (3.32)

−σn1
∂n1

∂ζ
+ σ

∂n2

∂ζ
+w1

∂w1

∂ζ
+

∂w1

∂τ
− λ0

∂w2

∂ζ
+

∂ϕ2

∂ζ
− η0

[
∂2w1

∂ξ2
+

∂2w1

∂η2
+

∂2w1

∂ζ2

]
= 0

(3.33)

3.4 Derivation of ZKB equation

Upon taking the derivative of equation (3.30), we obtain the following

∂

∂ζ

(
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂ϕ
1

∂ζ2

)
− A2

∂ϕ2
1

∂ζ
= A1

∂ϕ2

∂ζ
− ∂n2

∂ζ
,

∂ϕ2

∂ζ
=

1

A1

∂

∂ζ

(
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

)
− A2

A1

∂ϕ2
1

∂ζ
+

1

A1

∂n2

∂ζ
(3.34)

Inserting equations (3.25), (3.26), (3.29), (3.30), (3.32) and (3.34) into equation

(3.33) yields
∂w2

∂ζ
= λ0

∂n2

∂ζ
− ∂u2

∂ξ
− ∂v2

∂η
− ∂n1

∂τ
− ∂n1w1

∂ζ

− σn1
∂n1

∂ζ
+ w1

∂w1

∂ζ
+

∂w1

∂τ
− η0

[
∂2w1

∂ξ2
+

∂2w1

∂η2
+

∂2w1

∂ζ2

]
+ σ

∂n2

∂ζ
− λ0

(
λ0

∂n2

∂ζ
− ∂u2

∂ξ
− ∂v2

∂η
− ∂n1

∂τ

− ∂n1w1

∂ζ

)
+

1

A1

∂

∂ζ

(
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

)
− A2

A1

∂ϕ2
1

∂ζ
+

1

A1

∂n2

∂ζ
= 0

− σn1
∂n1

∂ζ
+ w1

∂w1

∂ζ
+

∂w1

∂τ
− η0

[
∂2w1

∂ξ2
+

∂2w1

∂η2
+

∂2w1

∂ζ2

]
+ σ

∂n2

∂ζ
− λ0

[
λ0

∂n2

∂ζ
−
(

∂2

∂ξ∂ζ
λ0Ω

−2
c

(1 + σA1)
∂ϕ1

∂ξ

)
−

(
∂2

∂η∂ζ
λ0Ω

−2
c (1 + σA1)

∂ϕ1

∂η

)
− ∂n1

∂τ
− ∂n1w1

∂ζ

]
+

1

A1

∂

∂ζ

(
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

)
− A2

A1

∂ϕ2
1

∂ζ
+

1

A1

∂n2

∂ζ
= 0

− σn1
∂n1

∂ζ
+ w1

∂w1

∂ζ
+

∂w1

∂τ
− η0

[
∂2w1

∂ξ2
+

∂2w1

∂η2
+

∂2w1

∂ζ2

]
+ σ

∂n2

∂ζ
− λ0

[
λ0

∂n2

∂ζ
− Ω−2

c λ0

(1 + σA1)
∂

∂ζ

∂2ϕ1

∂ξ2
− Ω−2

c λ0(1 + σA1)
∂

∂ζ

∂2ϕ1

∂η2
− ∂n1

∂τ
− ∂n1w1

∂ζ

]
+

1

A1

∂3ϕ1

∂ζ3
+

1

A1

∂3ϕ1

∂ζ3
+

1

A1

∂

∂ζ

∂2ϕ1

∂η2

+
1

A1

∂

∂ζ

∂2ϕ1

∂ξ2
− 2A2

A1

ϕ1
∂ϕ1

∂ζ
+

1

A1

∂n2

∂ζ
= 0
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Using equations (3.23), (3.24) and (3.27) in above and multiplying with A1 to write

σ
∂n2

∂ζ
− λ2

0

∂n2

∂ζ
+ λ2

0Ω
−2
c (1 + σA1)

∂

∂ζ

∂2ϕ1

∂ξ2
+ λ2

0Ω
−2
c (1 + σA1)

∂

∂ζ

∂2ϕ1

∂η2
+ A1λ0

∂ϕ1

∂τ
+ 2λ2

0A
2
1ϕ1

∂ϕ1

∂ζ

+
1

A1

∂3ϕ1

∂ζ3
+

1

A1

∂

∂ζ

∂2ϕ1

∂η2
+

1

A1

∂

∂ζ

∂2ϕ1

∂ξ2
− 2A2

A1

ϕ1
∂ϕ1

∂ζ
+

1

A1

∂n2

∂ζ
− A2

1σϕ1
∂ϕ1

∂ζ
+ A2

1λ
2
0ϕ1

∂ϕ1

∂ζ

+ A1λ0
∂ϕ1

∂τ
− A1λ0η0

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
= 0

A1σ
∂n2

∂ζ
− A1λ

2
0

∂n2

∂ζ
+ A1λ

2
0Ω

−2
c (1 + σA1)

∂

∂ζ

∂2ϕ1

∂ξ2
+ A1λ

2
0Ω

−2
c (1 + σA1)

∂

∂ζ

∂2ϕ1

∂η2
+ A2

1λ0
∂ϕ1

∂τ

+ 2λ2
0A

3
1ϕ1

∂ϕ1

∂ζ
+

∂3ϕ1

∂ζ3
+

∂

∂ζ

∂2ϕ1

∂η2
+

∂

∂ζ

∂2ϕ1

∂ξ2
− 2A2ϕ1

∂ϕ1

∂ζ
+

∂n2

∂ζ
− A3

1σϕ1
∂ϕ1

∂ζ
+ A3

1λ
2
0ϕ1

∂ϕ1

∂ζ

+ A2
1λ0

∂ϕ1

∂τ
− A2

1λ0η0

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
= 0

(A1σ − A1λ
2
0 + 1)

∂n2

∂ζ
+

(
A1λ

2
0Ω

−2
c (1 + σA1)

)
∂

∂ζ

∂2ϕ1

∂ξ2
+

(
A1λ

2
0Ω

−2
c (1 + σA1)

∂

∂ζ

∂2ϕ1

∂η2

)
+ 2A2

1λ0
∂ϕ1

∂τ
+

(
2λ2

0A
3
1 − 2A2 − A3

1σ + A3
1λ0

)
ϕ1

∂ϕ1

∂ζ
+

(
− A2

1λ0η0

)[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
+

∂3ϕ1

∂ζ3
+

∂

∂ζ

∂2ϕ1

∂ξ2
+

∂

∂ζ

∂2ϕ1

∂η2
= 0

Now, using λ2
0A1 = 1 + σA1 to make the above equation in �rst order terms, and

then divide with (2λ0A
2
1) to write(

���A1λ
2
0 −���A1λ

2
0

)
∂n2

∂ζ
+

(
A1λ

2
0Ω

−2
c (1 + σA1)

)
∂

∂ζ

∂2ϕ1

∂ξ2
+

(
A1λ

2
0Ω

−2
c (1 + σA1)

∂

∂ζ

∂2ϕ1

∂η2

)
+ 2A2

1λ0
∂ϕ1

∂τ
+

(
3λ2

0A
3
1 − 2A2 − A3

1σ

)
ϕ1

∂ϕ1

∂ζ
+

(
− A2

1λ0η0

)[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
+

∂3ϕ1

∂ζ3
+

∂

∂ζ

∂2ϕ1

∂ξ2
+

∂

∂ζ

∂2ϕ1

∂η2
= 0

∂ϕ1

∂τ
+

3A3
1λ

2
0 − A3

1σ − 2A2

2A2
1λ0

ϕ1
∂ϕ1

∂ζ
+

1

2λ0A2
1

∂3ϕ1

∂ζ3
+

1 + A1λ
2
0Ω

−2
c (1 + A1σ)

2λ0A2
1

∂

∂ζ

(
∂2ϕ1

∂ξ2
+

∂ϕ1

∂η2

)
− �

��A2
1λ0η0

�
��λ0A

2
12

[
∂2ϕ1

∂ξ2
+

∂2ϕ1

∂η2
+

∂2ϕ1

∂ζ2

]
=⇒ ∂ϕ1

∂τ
+Arqϕ1

∂ϕ1

∂ζ
+Brq

∂3ϕ1

∂ζ3
+Crq

∂

∂ζ

(
∂2ϕ1

∂ξ2
+
∂ϕ1

∂η2

)
−Drq

[
∂2ϕ1

∂ξ2
+
∂2ϕ1

∂η2
+
∂2ϕ1

∂ζ2

]
= 0

(3.35)
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which is the desired ZKB equation, where non-linear, dispersive and dissipative

coe�cients are given by

Arq =
3A3

1λ
2
0 − A3

1σ − 2A2

2A2
1λ0

, (3.36)

Brq =
1

2λ0A2
1

, (3.37)

Crq =
1 + A1λ

2
0Ω

−2
c (1 + A1σ)

2λ0A2
1

, (3.38)

and, respectively

Drq =
η0
2

(3.39)

For benchmarking our results with previous chapter, we apply the limits r = 0 and

q → κ+1.

3.5 Numerical results and discussion

The transform form of ZKB equation can be written as

−U0
dϕ1

dχ
+ Arqlzϕ1

∂ϕ1

dχ
+Hrqlz

d3ϕ1

dχ3
−Drq

d2ϕ1

dχ2
, (3.40)

where Hrq = Crq(l
2
x + l2y)+Brql

2
z and the coe�cients of dissipative, non-linear terms

remain the same. The complete solution of the above equation takes the form

ϕ1(χ) =
3D2

rq

25HrqArql2z

[
2− 2 tanh

(
Drqχ

10Hrqlz

)
+ sech2

(
Drqχ

10Hrqlz

)]
(3.41)

where ϕm =
9D2

rq

25HrqArql2z
is the amplitude and Drq

10Hrqlz
is the width of shock structure.

Here we use the following plasma parameters for our numerical analysis,

σ = 0.01,

η0 = 0.1,

lz = 0.9,

ωci = 0.3,

Ω0 = 0.01.
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3.6 Potential pro�les for (r, q) VDF

Figure (3.1), displays the behavior of non-linear coe�cient (A) for kappa and (r, q)

distributions. Here we have, for our comparison, r = 0, 1, 2 and q = 3 to 12, for

which the value of κ is choosen accordingly (κ = q − 1). We note that both VDFs

give the same value of non-linear coe�cient only for r = 0 and q → κ+1 case, which

benchmark our �nding for the non-linear coe�cient.
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Figure 3.1: Comparison of the non-linear coe�cient for kappa and (r,q) VDFs,
for r = 0, 2, 3 in our discussion.

Figures (3.2) and (3.3) also shows non-linear behavior for kappa and (r,q) dis-

tributions. Here we use the same values as in the previous �gure.

Figure 3.2: Behavior of the non-linear coe�cients B for kappa and (r,q) VDFs,
by using r = 0, 2, 3.
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Figure 3.3: Behavior of the non-linear coe�cients C for kappa and (r,q) VDFs,
by using r = 0, 2, 3.

Figure (3.4), shows the variation of dispersive coe�cient H for kappa and (r,q)

distributions. Here we use the same limit and values of r, q just as above. In this

�gure, we observe that the dispersive coe�cient H is mainly responsible for di�erent

structures of shock potential.
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Figure 3.4: Comparison of dispersive coe�cient H for kappa and (r,q) VDFs.
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Figure 3.5: Variation of perturbed potential for di�erent values of q and r=1.

Figure (3.5), shows the behavior of perturbed potential for di�erent value of q.

As the value of q increases, the shock potential strength decrease which correspond

to lower energy and high tail electrons. This means that as the values of q decrease,

there is enlarging numbers non-thermal electrons which maximize amplitudes of

shock potential.
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Figure 3.6: Comparison of perturbed potential for (r,q) with kappa VDF.

Figure (3.6) displays that, in the limit of r and q our perturbed potential behavior

goes to kappa distribution, which tells that as the value of κ increase the strength

of shock potential decreases which corresponds to low energy electrons.
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Chapter 4

Summary and outlook

The study of ion acoustic shock waves in magneto-rotating plasmas, incorporated in

this study is not only a contribution for the understanding of fundamental plasma

physics, but it also help in studying non-linear waves generated due to various

process like dissipation and dispersion in the important space media like magneto-

sphere and pulsars. In this thesis, we have studied the ion acoustic shock waves in

a medium that is magneto-rotating and relativistic (chapter 2) plasma and well as

non relativistic (as studied in chapter 3) systems. For such systems we derived the

respective Zakharov Kuznetsov Burgers (ZKB) equation by using a reductive per-

turbation technique. Due to collisions the two viscosities - ion kinematic and bulk

have been included in the force balanced equation. The Coriolis term, accounting

for rotating e�ects also added because the system is viewed in a non-inertal frame

of reference.

For huge number of non-thermal electrons we have used kappa and Cairns distri-

butions and extended the study to a more generalized non-thermal pro�le called

(r, q) distribution. It is observed that after employing kappa and Cairns distribu-

tion, the former depicts only compressive shock pro�le while the later exhibits both

compressive and rarefactive perturbed potentials. However, in a speci�c limit our

model is no more applicable when there is a discontinuity. Moreover it is seen that

the non-linear term (coe�cient A) is responsible for the formation of compressive

and rarefactive shock structures. Further we have plotted shock structure against

kappa and Cairns parameter that shows, the strength of ion acoustic shock waves is

greater for Cairns as compared to kappa distribution. After reviewing the one index

VDFs we have extended our study to a more general non-Maxwellian distribution

function, namely the (r, q) pro�elds. With the use of such VDF one can model a

huge number of observed data exhibiting both high energy particles as well �at-top

distributions. Thus, the study can be used to analyze the potential distribution for
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a large number of plasma systems. To benchmark our �ndings proper limits have

been applied to recover the kappa and Maxwellian potential distributions. For the

said VDF both compressive and rarefactive shock structures have been obtained.

The given work and models in this dissertation may also be applied in future stud-

ies for di�erent types of complex medium, that arises enormous non-linear e�ects.

The results which were obtained in this thesis have some correspondence to the ro-

tating �ows in magnetoplasmas that are infer to exist in planetary magnetosphere

of Saturn and Jupiter, and respectively in magnetosphere.

The work has also been extended for electron-positron-ion plasmas which is not

discuss here.
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