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Abstract

In this study, we used the kinetic theory of plasmas to analyse Whistler waves propagating

parallel to the background magnetic field with electron temperature anisotropy. The Bi-Maxwellian

and Cairns distributions were used to determine the perturbed distribution function. It was used

to derive a dispersion relation for Oblique whistler waves. These distributions have been found to

greatly alter the instability condition for the growth of oblique whistler instability. The dispersion

characteristics and growth rate were also compared to the Maxwellian distribution.
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Chapter 1

Introduction

1.0.1 what is plasma?

As we are fimiliary with the states of matter i-e solid liquid and gas. We are also fimiliary with the

properties of these states like the atoms of solid states are tightly bonded and therefor have a fixed

shape and the atom of solid can’t easily move. Due to fixed arrangement of atoms position, the

atoms only vibrate(to and fro motion) which is know as simple harmonic motion.

While in liquid state, atoms or molecules in a liquid state can freely move because they have

a significant amount of energy that can overcome potential energies due to mutual interactions.

However, molecules can not leave the surface of liquid because at the surface they experience a

barrier or large potential energy which they can not overcome. Similarly the third form of matter

is gaseous state. In gaseous state the atoms/molecules are at large distance from each other as

compared to the liquid state. These atoms/molecules have sufficient amount of kinetic energy and

can move freely. That’s why we need a container or vessel for gaseous state.

These states are interconvertable i-e solid state changes into liquid by increasing the temperature

of solid at certain temperature(at melting point) convert into liquid. Similarly liquid state changes

into gaseous state by increasing the the temperature of liquid at certain temperature(at boiling

point) convert into gas.

Now the question arises that ”what will happen when we heat or increase the temperature of

gaseous state?”. So the answer to this question is when we heat the gaseous state of matter at

certain temperature (10, 000K or above) the atoms of gaseous state get ionized by producing ions

and free electrons. So at this temperature or above it we get a new state of matter which we called

a fourth state of matter that is Plasma.

So, by heating method we can change the solid state into liquid, liquid into gas and gas into

plasma. So if we want a Plasma state a huge amount of heat is required to a gas so that the atoms

of gaseous state get sufficient mount of kinetic energy to get ionized.

In plasma physics we study charged particles which are present in sufficient number so that
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the long range coulombic force determine its statistical properties. The density is low enough that

coulombic force dominates the force due to neighborhood particles. Plasma physics is related to study

of low density ionized gases. While studying oscillations in electric discharges, in 1929, Langmuir

and Tonks used the term “Plasma” as collection of charged particles [1].

1.1 Definition of plasma

Plasma can be define as

”Plasma is quasineutral gas with charged particles and neutral particles and it shows

collective behaviour”.

In this definition the term quasineutral means it is neutral enough so that we can take plasma

density of electron and that of ions as equal. On the average, plasma looks quite neutral from

outside because the electric charge fields due to randomly distributed particles cancel each others

affect. Whereas the collective behaviour means that its not only dependent on local distribution but

also on plasma state in remote regions.

1.2 Conditions of plasma

There are some conditions for any ionized gas to be consider as plasma. These conditions are

a)Debye length

b)Plasma pararmeter

c)Plasma frequency

Debye length

Thermal particle energy tends to perturb the electrical neutrality and due to any charge separation

the electrostatic potential energy tends to restore charge neutrality. And debye length is the length

for which a balance is obtained between these two. Debye length is equal to [2]

λD =

(
εokBTe
nee2

) 1
2

For a plasma to be quasi neutral

λD � L

2



Plasma parameter

The shielding effect is caused by collective behaviour within a debye sphere with radius λD. It is

necessary that debye sphere contains enough particles. The number of particles inside a debye sphere

is 4π
3
neλ

3
D. The term neλ

3
D is called plasma parameter. Second criterion for plasma is

neλ
3
D � 1

Plasma frequency

For plasmas which are not fully ionized, they have substantial amount of neutral particles. If charged

particles hit with neutrals constantly, electrons will be forced into equilibrium with neutrals, and

plasma will cease to exist. For electrons to be remain unaffected by collisions with neutrals, average

time between two electron-neutral collisions must be larger than reciprocal of plasma frequency.

wpeτ > 1

This is the third plasma criteria.

1.3 Micro and Macro treatment of Plasma

There are two common approaches to studying plasma properties and processes. One is macroscop-

ical approach, it includes thermodynamic and fluid behaviour and other is microscopical approach

and that includes kinetic and statistical descriptions. Microscopic approach deals mainly with quan-

tities like temperature and average velocities as function of time and position. These quantities are

emphasized in measuring plasma properties. On the other hand, microscopic approach deals with

correlations between plasma particles, and also with the microfields that these particles produce and

velocity-space distributions of these particles. It is difficult to directly measure microscopic proper-

ties but they play a pivotal role in determining macroscopic properties for a plasma. The distinction

between micro and macro is convenient for beginning of general discussion about unstable plasma

modes.

1.4 Kinetic theory

Kinetic theory of plasma describes and predicts the condition of plasma from microscopic interactions

and motions of its constituents. It provides an essential basis for an introductory course on plasma

physics as well as for advanced kinetic theory [3].
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Plasma oscillations and waves are frequently treated ineffectively using fluid. The velocity distri-

bution functions f(v) are taken into account for this, and the treatment is called as kinetic theory. In

fluids there are only four independent variables. This is because the anticipated velocity distribution

for each specie is a Maxwellian distribution, which can only be determined by temperature. When

the thermal velocity of charged particles approaches the phase velocity of waves, however, the wave

particle interaction differs from that of fluid treatment. As a result, the description for this inter-

action must be based on the dynamics of the particle’s phase space distribution function, in which

particle position and velocity are independent variables. Kinetic theory equations for a plasma with

self-consistent fields provide this kind of description.

1.5 Plasma distributions

The location and velocity of each plasma particle as a function of time are given in a detailed

description of a plasma. This description of a real plasma can only be obtained in a few recent studies

involving the use of modern computers to track the position and velocity of a large number of plasma

particles. Therefore different distribution functions are used to describe a plasma. A distribution

function is equal to number of particles per unit volume in 6-dimensional velocity configuration phase

space. For example, Maxwellian velocity distribution is

n̂f (v) = n̂

(
m

2πkBT

) 3
2

exp

[
− mv2

2kBT

]
Despite the fact that this distribution cannot be achieved in laboratory plasma experiments, it

is used in a number of theoretical treatments. Because ions and electrons act differently on a time

scale less than ion cyclotron relaxation times, it’s common to design separate distribution functions

for each charge specie.

1.6 Anisotropic distributions

All velocity distributions are not simple like isotropic Maxwellian distribution. The presence of

magnetic fields in plasma is responsible for anisotropy due to the fact that it leads to different

particle velocities which can be parallel and perpendicular to the magnetic field. In this approach,

gyrating particles are an interesting example. In this situation, the velocity distribution is determined

by v⊥ and v‖ rather than the angle of gyration. These two velocity components are independent so

equilibrium distribution can be modeled as product of two Maxwellian like

f
(
v⊥, v‖

)
=

n(
π3〈v⊥〉2〈v‖〉

1
2

) exp

[
− v2

⊥
〈v⊥〉2

−
v2
‖

〈v‖〉2

]
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Figure 1.1: Contours of constant f for Maxwellian and anisotropic Bimaxwellian velocity distribution

This resulting distribution function is called Bi-Maxwellian distribution. It accounts explicitly for

difference in two mean velocities 〈v⊥〉 and 〈v‖〉 which are parallel and perpendicular to the magnetic

field direction.

The most of these velocity distributions are found in space plasmas. These types of distributions

are two-dimensional and gyrotropic, which means they are not affected by the phase angle of gyro

motion. The left hand side of above figure shows sketch of Bi-Maxwellian with T⊥ > T‖ , which

means average thermal energy of particles perpendicular to magnetic field is greater than the average

thermal energy parallel to magnetic field. The Bi-Maxwellian contours are deformed into an elliptical

shape while isotropic Maxwellian contours are circular.

1.7 Plasma waves

Mostly people are quite familiar with the word waves like the waves that propagate on the surface

of lakes , sea and oceans and break on beaches. The disturbances in the atmosphere also create

waves but a lot of people conn’t recognize it properly, although they have proper understanding of

it. In the behaviour of plasmas, wave phenomena are extremely essential. In fact, One of the three

conditions for the presence of a plasma is that the particle-particle collision rate is lower than the

plasma oscillation frequency. As a result, the collective interactions that control the plasma gas are

as dependent on electric and magnetic field effects as much as, or more so than, simple collisions [4].

The near-Earth space environment is in a dynamic state as a result of multiple forces working

at the same time; the combination of these forces never allows a proper thermodynamic equilibrium

to develop. However, quasi steady states can exist, which are often close to marginal states where

only a small amount of free energy is required to produce unstable waves. As a result, the space

environment is awash in naturally occurring waves. Even the early probes in almost every region of

space demonstrated this. Waves can be found in partially ionized ionospheric layers, the collision-
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dominated neutral atmosphere, and the fully ionized magnetosphere at high altitudes.

Waves are indicators of local conditions as well as plays an important role for determining spatio-

temporal evolution of the medium. They are also important in accelerating and heating particles,

causing anomalous plasma resistivity, energy transport and in modifying particle velocity distribu-

tions. Therefore, wave study is crucial in understanding of geospace environment [5].

1.8 Whistler wave modes

These whistler modes are found in geospace plasmas and also in other planet’s magnetospheres as

well. In the frequency range above the ion cyclotron frequency and below the lower of plasma and

electron cyclotron frequencies, electronic whistler oscillations are prominent wave modes [6].

Various types of waves such as upper-hybrid waves, whistler waves, electrostatic solitary waves,

electron cyclotron waves, and Langmuir waves have been observed inside/outside the diffusion region

using space measurements in current sheets in the Earth’s magnetopause and magnetotail, including

Magnetospheric Multiscale mission (MMS) observations [11]. one of them is Whistler waves which

can be excited during reconnection by electron-scale kinetic physics. Whistler waves, for example,

are linked to a temperature anisotropy instability caused by electron perpendicular heating or a

loss cone instability, according to space observations. Particle in cell (PIC) simulations and space

observations, on the other hand, show that electron beams can also produce whistler waves. Further

studies are necessary to understand the roles of these waves in reconnection.

There are several studies of whistler wave propagation in the presence of density nonuniformities,

there are significantly fewer investigations in the presence of magnetic nonuniformities, particularly

strongly nonuniform fields with gradient scale lengths smaller than the wavelength. Whistler modes

can be trapped or scattered by density nonuniformities in the ionosphere, such as ducts or striations.

Whistler modes can be focused, guided, and reflected by magnetic field gradients, however there are

few situations where these effects have been proved experimentally.

There are two solutions for the dispersion relation in the cold plasma approximation of electro-

magnetic (EM) wave propagation along background magnetic field with electric field perpendicular

to Bo, corresponding to right(R) and left(L) hand circularly polarized modes. The R hand circu-

larly polarized mode corresponds to parallel propagating whistler wave in this frequency range. Its

dispersion relationship is as follows:

c2k2

w2
= 1−

w2
pe

w2

1− wce
w

The spectrum components of the electron whistler mode can be observed in all ranges, from the

EM (whistler) to the electrostatic (lower hybrid) limits. Typical spectrogram of VLF his E field
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data from ionosphere shows that its spectrum is sharply bounded below by lower hybrid resonant

frequency

wLH =

[
w2
piw

2
ce

w2
pe + w2

ce

] 1
2

At lower hybrid resonance, the fall off in wave electric (E) field power spectrum is precise enough

that the observed cut off frequency can be used to estimate local plasma density. There is no such

boundary in the magnetic spectrum at lower hybrid resonance, indicating that oscillations towards

the low frequency limit are electrostatic [7]. Although electrons carry most of the waves along this

branch, there is a branch of low frequency oscillations known as hydromagnetic or ion whistlers that

exists at ion cyclotron frequencies [8].

Lightning generates a wide range of electromagnetic radiations. These rays are trapped in a

wave guide produced by the lower ionosphere and the ground. The spectrum of lightning between

frequency and time for whistler and sferics is shown in figure.

Figure 1.2: A frequency time-spectrograph of lightening spherics and resulting whistlers

Here red colour shows most intense and black shows least intense electrical component of EM

waves. Whistlers are EM waves with a continuous tone that begin at higher frequencies of around

10kHz, rapidly decline in frequency, and end at low frequencies of a few hundred Hz in a couple

of moments, as shown in the figure. It can be observed from the cold plasma dispersion relation

that higher frequency wave components travel rapidly than lower frequency wave components, which

results in the falling tone of whistlers caused by lightning. Whistlers are described as descending

tones produced by atmospherics propagating through the ducts (field aligned plasmas)of the mag-

netosphere. The propagation of these whistlers is observed in northern and southern hemisphere’s
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magnetically conjugate regions. Whistlers lasts from fraction of second to several seconds. Whistlers

frequency range is from 30kHz to less than 1kHz and the one which can be heard by using simple

equipments lying between 1kHz to 9kHz.

Whistlers and similar phenomena have been seen in space plasma, laboratory plasma, and solid

state physics. Whistlers are described in different ways in space and in laboratory plasmas. Depend-

ing on their noises and spectrum, they are given different titles such as hiss, chorus, roar triggered

emissions, and so on. In laboratory plasma, every wave in whistler mode is called a whistler, while

in solid state physics, these waves are called helicons. Observations from ground and space and

difficulties due to lack of parameter control leads to the desire of studying these waves in controlled

laboratory plasma. Many contributions were made on whistler waves in laboratory plasma physics.

Work on whistlers grow rapidly in recent times due to spacecraft’s data and computer models

which can calculate whistler rays path in plasmasphere [9].

Two unique types of whistlers emerge from the analysis of whistlers using these methods which are

named as ducted and non-ducted propagation. The whistler radiations in plasmasphere are consist

of EM waves which have upper cut off frequency either local plasma frequency (fp) or gyrofrequency

(fg) [10]. As the plasmasphere has a high cold plasma density, fp is larger than fg, allowing whistler

mode emission in the VLF frequency range.

Figure 1.3: The prorogation paths of ducted and non-ducted whistlers
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Ducted whistlers follow the earth’s magnetic field lines, are refracted within ionospheric plasma,

and then diffuse out into the plasmasphere along these magnetic field lines. These ducts make it

easier for VLF lightning to travel through the ionosphere and consequently reaches at the other

hemisphere, as shown in above figure. A single lightning strike can illuminate more than one duct,

as a result numerous whistlers can be seen in opposite hemispheres at separate moments. These may

reflect in the opposite hemisphere in some situations, allowing them to reach the source region and

can be seen on the ground. At the source’s end, there is only a little chance of being received. When

there are more flashes, non-ducted whistlers are produced, which propagate into the plasmasphere.

This sort of whistler does not follow the earth’s magnetic field lines; instead, its route is determined

by the index of refraction of the plasmasphere and their own frequencies.

1.9 History of Whistlers

Whistlers were initially discovered in 1919 by Barkhausen, who was listening in on Allied phone

calls during World War I. They may actually have been observed as early as 1888 by J Fuchs of

the Sonnblick High Altitude Observatory in Austria. In 1928, Eckersley of the Marconi Company

discovered a link between whistlers and numerous atmospheric events, as well as a positive correlation

between their frequency and solar activity [12]. Eckersley also reported an observation by Tremellen

indicating an association of whistlers with visible lightning. Burton and Boardman performed the

first quantitative measurement of the frequency time relationship of a whistler in 1933, using a

whistler recorded in Ireland. In 1935, Eckersley developed a dispersion rule that explained how

whistler frequency changed over time and demonstrated that Burton and Boardman’s published

analysis fitted the new theory closely. For about 15 years, interest in whistlers was then lagged until

Storey began his doctoral studies at Cambridge in 1951. He made a detailed experimental study of

whistlers and related atmospheric signals and identified short whistlers which were not associated

with loud clicks.

RA Helliwell began simultaneous studies of whistlers at spaced stations at Stanford and Seattle

in 1951. Around 25% of the whistlers observed were coincident at the two stations separated by

1120 km, corresponded to the area coverage predicted by Storey. Helliwell proved his prediction of

a relationship between causal atmospherics in the Southern Hemisphere and short whistlers in the

Northern Hemisphere in 1954. Morgan and Allcock obtained simultaneous observations of whistler

echo trains around the geomagnetic conjugate point at Unalaska and Wellington and Dunedin, New

Zealand, in 1955. Their results fully confirm the predicted behavior. In 1955, Koster and Storey

confirmed the predicted absence of whistlers on the geomagnetic equator.

Many first laboratory experiments were driven in order to use whistler and lower hybrid waves

as means of heating in fusion plasmas. Gallet et al. [13] has done some earliest investigations on
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whistlers, he considered possibilty of using these waves as diagnostic of magnetic field in toroidal

plasma.

Gould and Fisher [14] performed experimental and theoretical investigation of radiation pattern

produced by small dipole antenna in magnetized plasma. Hooke and Bernabei [15] showed that

plasma resonance with short perpendicular exists at frequencies near lower hybrid resonance. Then

Sugai [16] showed that these ducts formed even when antennas are driven at frequencies at which

whistlers didn’t propagate.

A study of whistler sources was based on the impulses produced by nuclear explosions. From

1953 to 1962 Stanford made broadband very low frequency recordings during detonations of a large

number of nuclear devices. At one or more receiving stations, a bombexcited whistler was detected

in five cases. It was discovered that nuclear sources produce whistlers that are identical to those

produced by natural lightning in every measurable way, and that a whistler can be excited by

a nuclear explosion in the hemisphere opposite that of the whistler path’s entrance. It was also

discovered that nuclear explosions which take place above the lower edge of the ionosphere produce

signals similar to those arising from subionospheric explosions. This meant that the source of the

electromagnetic impulse was in fact between the earth and the ionosphere and not at the location

of the bomb itself.

1.10 Applications Of whistler

One of the first uses of whistler occurred in 1959, when the Soviet Union deployed two satellites

to the moon to detect ion density along their journey. They confirmed that higher density plasma

can be detected just beyond the ionosphere, but that this density drops rapidly near 10,000 km

altitude [17].

The potential for remote diagnostics of the ionosphere has been clear since the theoretical ap-

proach for whistlers was revealed. The dispersion of low-frequency whistlers, or more precisely, ”nose

whistlers,” can be used to calculate the average electron density. Electron temperature, large-scale

electric fields, ion composition, and fractional densities have been measure. Magnetic fields in solar

and laser plasmas have been calculated, and whistler emissions have been used to infer the presence

of non-maxwellian electron distributions. Whistlers were used to determine the electron density pro-

files of the equator. They were used to measure electric fields in the east west. Due to these classical

methods along with many others, we are able to find out cold plasma densities in magnetosphere.

Ground-based experiments can be used to generate VLF signals in a controlled manner. Because

these signals may travel deep into the earth, they are employed to communicate with submarines

and to image subterranean structures.Whistler waves have also been used in laboratory plasma.

Helicon plasma sources, for example, are employed in the production of microelectronic devices used
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in computers [18]. They’re also used in toroidal fusion devices to drive currents.

Whistlers’ precipitation of energetic electrons is a key aspect of energy transfer from the mag-

netosphere to the atmosphere. Controlled precipitation using VLF injection could be useful in

communication and aeronautics. Experiments with active whistler wave injection from space are

deserving of additional consideration. To assess spatial wave properties, free-flying or tethered diag-

nostic packages are needed.

1.11 Oblique Whistler Wave Mode

Whistler mode waves are electromagnetic waves that occur at frequencies lower than the electron

gyrofrequency in magnetised plasmas. Non-maxwellian electron distributions, such as beams, loss

cones, rings, and temperature anisotropies, cause various plasma instabilities, which result in whistler

frequency emissions [19]. They are given various names based on their frequency-time spectral

properties and sound as heard through a loudspeaker, such as plasmaspheric hiss, lion roars, chorus,

tweeks, and so on.

Whistler mode waves often propagate parallel or quasi-parallel (θkBo < 30◦) to the ambient field

B0, according to satellite measurements and theoretical research. Here θkBo is the angle between

wave vector k and ambient field B0. In space plasma zones, however, highly oblique whistler mode

waves have been observed. When waves travel parallel to the ambient magnetic field direction,

Whistler mode wave fields are understood to be right-hand circularly polarized. The magnetic field

components of whistler mode chorus waves observed in the magnetosphere are circularly polarized

regardless of propagation angles, according to Goldstein & Tsurutani and Tsurutani et al. The

polarisation plane is perpendicular to the wave propagation direction k in this case. Following

previous observations, Verkhoglyadova et al. and Bellan demonstrated that the wave magnetic

fields are certainly circularly polarized (to first order) at all angles of propagation in the limit

of cold plasma (k2ρ2
e � 1) with a low frequency (ω � |Ωe| cos θkBo) approximation. Here ρe is

the electron gyroradius. The wave electric field components are elliptically polarized, according

to Verkhoglyadova et al., since their polarization plane is not orthogonal to the wave vector k.

While the total wave electric field is elliptically polarized, Bellan demonstrated that the electric field

components transverse to the propagation vector k are circularly polarized for all propagation angles.

In the Earth’s dawnside outer radiation belt, the STEREO observation by Cattell et al. [20]

[2008] reported the finding of obliquely propagating whistler waves with amplitudes as high as

∼ 240mV/m. The propagation angle is reported to be in the range of 45◦ − 70◦, the ambient

magnetic field intensity (derived from measured electric field intensity) is 300nT to 350nT , and the

observed background electron number density is in the range of 25cm−3, resulting in a local plasma

to electron gyrofrequency ratio of roughly 3 or so. The peak frequency detected is 0.2fce, which is
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within the whistler range.

Yoon [2011] examined the nonlinear wave properties of obliquely propagating whistler waves

using an arbitrarily high wave amplitude. The claimed goal of such a prescription was to accelerate

numerical computations so that long-term nonlinear dynamical development could be studied within

a reasonable computing time scale. Because oblique whistlers are compressional waves, He discovered

that they will gradually steepen.. However, even though the steepening of oblique whistler waves is

a general consequence of a compressional wave, by re-examining the problem.
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Chapter 2

Model Of Oblique Whistler Modes

2.1 Fluid Model

When the phase velocity of a wave excited in a plasma exceeds than the thermal velocity, the main

body of the plasma particles are out of resonance with the wave and the number of the resonant

particles which exchange the energy with the wave is small. Plasma can be treated as a fluid in

this situation. The electron and ion fluids are expected to be interpenetrating each other in the

fluid plasma. Through the electromagnetic field, they interact and exchange momentum and energy

through collisions. Although transport coefficients based on collisional processes are given by the

kinetic theory, transport coefficients associated with the waves excited in the plasma are determined

in the frame work of the fluid theory.

So, The fluid model in plasma is one that considers the entire flow of fluid constituents. The Or-

dinary collisions between particles in fluid maintain all of the fluid’s constituents moving together.

Fluid model works when the collisions are incredibly high. In this model plasma is described the

macroscopic quantities such as density, flux, average velocity, pressure, temperature or heat flux. Ions

and electrons can be treated independently as two fluid plasmas in a general description. Fluid mod-

els are accurate for high collisions in order to keep velocity distributions close to Maxwell-Boltzmann

distribution. This model can not resolve wave particle affects due to the fact that in fluid model

plasma is taken as single flow at certain temperature and at each spatial location.

2.2 Kinetic Model

The velocity distributions in kinetic models are not considered to be purely Maxwell-Boltzmann. For

collisionless plasma, a kinetic model was considered. This model is more intensive computationally.

The dynamics of a system of charged particles interacting with an electromagnetic field are described

by the Vlasov equation.
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2.3 Kinetic Theory

A plasma contains a huge number of interacting ions and electrons, it is best to analyze it using a

statistical approach. The fluid description is the most basic and can be used to describe a variety of

phenomena. We investigate velocity distributions for each species for those phenomena where fluid

treatment is inappropriate, and this treatment is known as kinetic theory.

The dependent variables in fluid theory are functions of only four independent variables : x, y, z,

and t. This is possible because the velocity distribution of each species is assumed to be Maxwellian

everywhere and can therefore be uniquely specified by only one number, the temperature T. The

wave-particle interaction is significantly different from that described by the fluid equations if the

velocity of a significant number of charged particles (usually the thermal velocity) is close to the

phase velocity of waves. A proper description of this interaction must be based upon the dynamics

of the particles’ phase space distribution function in which the particles’ velocity and position are

independent variables. Such a description is provided by the kinetic theory equations for a plasma

with self-consistent fields.

Due to the rarity of collisions in high-temperature plasmas, deviations from thermal equilibrium

can be maintained for longer periods of time. Consider two velocity distributions f1(vx) and f2(vx)

in a one-dimensional system; if the area under the curve is the same for both, we cannot distinguish

between them using the fluid model. In realistic case where electric and magnetic fields are present,

the distribution function is not symmetric there. Let if we perturb the system then number of

particles will be different from equilibrium state.

dNα(t+4t, x+4x, us + a4t)

We can write the distribution function as

[hα(t+4t, x+4x, us + a4t)− hα (t, x, us)] d
3xd3us = (

∂hα
∂t

)col.d
3xd3us4t(

∂hα
∂t

)
col

is rate of change of hα due to collisions

Expanding the first term

[
hα (t, x, us) +

∂hα
∂t
4t+

∂hα
∂x
4x+

∂hα
∂us
4us + .....− hα (t, x, us)

]
d3xd3us = (

∂hα
∂t

)col.d
3xd3us4t

[
∂hα
∂t

+ us.∇hα + a.∇hα
]
d3xd3us4t = (

∂hα
∂t

)col.d
3xd3us4t

Let 4t→ 0,so
∂hα
∂t

+ us.∇hα + a.∇hα = α(
∂hα
∂t

)col.
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To find acceleration in third term

F = qα (E + u×B)

a =
qα
mα

(E + us ×B)

Putting this in the above equation we have,

∂hα
∂t

+ us.∇hα +
qα
mα

(E + us ×B) .∇hα = (
∂hα
∂t

)col.

This equation is Boltzmann Vlasov equation. For collisionless plasma it can be written as

∂hα
∂t

+ us.∇hα +
qα
mα

(E + us ×B) .∇hα = 0

2.4 Electromagnetic Dispersion Relation

Vlasov equation For collisionless plasma is

∂hα(t, x, us)

∂t
+ us.∇hα (t, x, us) +

(
qα
mα

E +
qα
mα

usα ×B
)
.∇hα (t, x, us) = 0

As we know Maxwell equations are

∇.E =
1

εo

∑
α

q
′

α

∫
hαd

3v ∇× E = −∂B
∂t

1

µo
∇×B = εo

∂E

∂t
+α qα

∫
vhαd

3v ∇.B = 0

If we perturb the system slightly then

hα (r, us, t) = hαo (r, us) + hα1 (r, us, t)

B = Bo (r) +B1

E = Eo + E1 = 0 + E1

Here h1 (r, us, t) , B1 and E1 depend upon ei(k.r−wt). Taking first order terms

∂hα1

∂t
+ uαs.∇hα1 +

qα
mα

(uαs ×B) .∇hα1 = − qα
mα

(E1 + uαs ×B1) .∇hαo
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ik.E1 =
1

εo

∑
α

nαqα

∫
hαod

3v

1

µo
~k × ~B1 = −ω

(
εo ~E1 +

i

ω

∑
α

nαqα

∫
~us hα1 d

3v

)
(2.1)

~B1 =
1

ω

(
~k × ~E1

)
From above equation we have

Dhα1

(
~r (t) , ~us (t) ,~t

)
Dt

=
∂hα1

∂t
+
∂hα1

∂~r
· ∂~r
∂t

+
∂hα1

∂~u
· ∂~u
∂t

= − qα
mα

(
~E1 + ~us × ~B1

)
· ~∇v hα0

hα1 = − qα
mα

t

−∞
dt́
(
~E1 + ~us × ~B1

)
· ~∇v hα0

Using equation (2.1) we have

hα1 = − qα
mα

t

−∞
dt
′
[
~E1

(
~r
′
, t
′
)

+ ~u′s

(
t
′
)
× 1

ω

(
~k × ~E1

(
~r
′
, t
′
))]
· ~∇v′ hα0 (2.2)

= t
−∞Xdt

′

As X is defined as

X = − qα
mα

[
~E1 (~r′, t′) + ~u′s (t′)× 1

ω

(
~k × ~E1 (~r′, t′)

)]
· ~∇v′ hα0

Taking into account wave propagation perpendicular to the uniform applied magnetic field
−→
B o..

And Bo is in the direction of z axis, so
−→
B o. = Boẑ. Propagation Vector

−→
k is normal to

−→
B o. and along the

−→
k =kxx̂+ kz ẑ (2.3)

Charged particles motion in a uniform magnetic field
−→
B o. can be described as

Body Math
d~r
′

dt′
= ~us

d~u
′
s

dt′
=

q

m
(~u
′

s ×Bo)

At t = t′, we can write

~r
′
=~r , ũs= (us⊥Cosθ, us⊥Sinθ, us‖) (2.4)
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Here we take the cylindrical coordinates

du
′
sx

dt′
=

q

m
u
′

syBo

du
′
sy

dt′
= − q

m
u
′

sxBo

As ωc =
qBo

m
so,

du
′
sx

dt′
= ωcu

′

sy

du
′
sy

dt′
= −ωcu

′

sx

d2u
′
sx

dt2′
= ωc

du
′
sy

dt

d2u
′
sx

dt2′
= −ω2

cu
′

sx

So, the solution of above equations will be

u
′

sx(t
′
) = us⊥Cos

[
θ − ωc(t

′ − t)
]

u
′

sy(t
′
) = us⊥Sin

[
θ − ωc(t

′ − t)
]

(2.5)

u
′

sz(t
′
) = us‖

Now
dx
′

dt′
= u

′

sx(t
′
)

Body Math Integrating from t to t′

∫ t′

t

dx
′

dt′
dt
′
=

∫
u⊥ cos

[
θ − ωc(t

′ − t)
]
dt
′

After integration we have

x
′
(t
′
) = x+

us⊥
ωc

[
sin θ − sin

{
θ − ωc(t

′ − t)
}]

y
′
(t
′
) = y − us⊥

ωc

[
cos θ − cos

{
θ − ωc(t

′ − t)
}]

(2.6)

z
′
(t
′
) = z + usz(t

′ − t)

Using the mathematical identity for triple cross product i-e

~A×
(
~B × ~C

)
=
(
~A. ~C

)
~B −

(
~A. ~B

)
~C

So,

~us ×
(
~k × ~E1

)
=
(
~us · ~E1

)
~k −

(
~k · ~us

)
~E1
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Here X becomes,

X = − qα
mα

[(
1−

~k · ~u′s (t′)

ω

)
~E1 (~r′, t′) +

1

ω

(
~u′s (t′) · ~E1 (~r′, t′)

)
~k

]
· ~∇v′ hα0

Now equation (2.2) becomes

hα1 = − qα
mα

t

−∞
dt′

[(
1−

~k · ~u′s (t′)

ω

)
~E1 (~r′, t′) +

1

ω

(
~u′s (t′) · ~E1 (~r′, t′)

)
~k

]
· ~∇v′ hα0 (2.7)

We haveho (r, us) = ho
(
us⊥, us‖

)
go (r, u) = go

(
u⊥, u‖

)
And

u2
s⊥ = u2

sx + u2
sy

~E1 (~r′, t′) = ~E exp
[
i
(
~k · (~r′ − ~r)− ω (t′ − t)

)]
(2.8)

The exponential term becomes

exp
[
i
(
~k · (~r′ − ~r)− ω (t′ − t)

)]
= exp [i (kx (x′ − x) + kz (z′ − z)− ω (t′ − t))]

Where ky = 0. Now using equations (2.6) we have

= exp

[
i

(
kxu⊥
ωc

[
sin θ − sin

{
θ − ωc(t

′ − t)
}]

+ (kzuz − ω) (t′ − t)

)]
So (2.8) becomes

~E1 (~r′, t′) = ~E exp

[
i

(
kxus⊥
ωc

[
sin θ − sin

{
θ − ωc(t

′ − t)
}]

+ (kzusz − ω) (t′ − t)

)]
Putting this in above equation (2.7) we have

h1 = − q

m

t

−∞
dt′


[(

1− ~k·~u′s(t′)
ω

)
~E + 1

ω

(
~u′s (t′) · ~E

)
~k
]

exp i

(
kxus⊥
ωc

[
sin θ − sin

{
θ − ωc(t

′ − t)
}]

+ (kzusz − ω) (t′ − t)

)  · ~∇v′ h0

Taking

τ = t
′ − t dτ = dt′
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t′ → t → τ → 0 t′ → −∞ τ → −∞

So

g1 = − q

m

0

−∞
dτ


[(

1− ~k·~u′(t′)
ω

)
~E + 1

ω

(
~u′ (t′) · ~E

)
~k
]

exp i

(
kxu⊥
ωc

[sin θ − sin {θ − ωcτ}] + (kzuz − ω) τ

)  · ~∇v′ g0 (2.9)

From the generating function of bessel function we have

eix sin θ =
∞∑

n=−∞

Jn (x) einθ (2.10)

Now taking

X1 = exp i

(
kxus⊥
ωc

[sin θ − sin (θ − ωcτ)] + (kzusz − ω) τ

)
From equation (2.9) and using (2.10) we have

X1 =
∞∑

n=−∞

∞∑
m=−∞

Jn

(
kxus⊥
ωc

)
Jm

(
kxus⊥
ωc

)
e−in(θ−ωcτ)eimθei(kzusz−ω)τ

Putting value of X1 in equation (2.9) we have

h1 = − q

m

0∫
−∞

dτ

[(
1−

~k · ~u′s (t′)

ω

)
~E +

1

ω

(
~u′s (t′) · ~E

)
~k

]
· ~∇v′ h0

∞∑
n=−∞

∞∑
m=−∞

Jn

(
kxus⊥
ωc

)
Jm

(
kxus⊥
ωc

)
e−in(θ − ωcτ)eimθei(kzusz− ω)τ (2.11)

Now taking the term

X2 =

[(
1−

~k · ~u′s (t′)

ω

)
~E +

1

ω

(
~u′s (t′) · ~E

)
~k

]
· ~∇v′h0

From (2.11) it simplifies as

X2 =
∂ho
∂u′sx

[(
1− kzu

′
sz

ω

)
Ex +

kx
ω

(
u′syEy + u′szEz

)]
+
∂ho
∂u′sy

(
1− kxu

′
sx + kzu

′
sz

ω

)
Ey

+
∂ho
∂u′sz

[(
1− kxu

′
sx

ω

)
Ez +

kz
ω

(
u′sxEx + u′syEy

)]
(2.12)
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From chain rule
∂ho
∂u′sx

=
∂ho
∂us⊥

∂u⊥
∂u′sx

Where as u2
s⊥ = ú

′2
sx + ú2

sy

∂us⊥
∂u′sx

=
u′sx
us⊥

So
∂ho
∂u′sx

=
u′sx
us⊥

∂ho
∂us⊥

Similarly
∂ho
∂u′sy

=
u′sy
us⊥

∂ho
∂us⊥

∂ho
∂u′sz

=
∂ho
∂usz

=
∂ho
∂us‖

Where as u′sz = usz

Now using above equation (2.12) we have,

X2 =

[
∂ho
∂us⊥

(
1− kzusz

ω

)
+
∂ho
∂usz

kzus⊥
ω

](
Ex

u′sx
us⊥

+ Ey
u′sy
us⊥

)
+

[
∂ho
∂us⊥

kzusz
ω
− ∂ho
∂usz

kxus⊥
ω

](
Ez

u′sx
us⊥

)
+
∂ho
∂usz

Ez

As

u′sx
us⊥

= cos (θ − ωcτ) =
ei(θ−ωcτ) + e−i(θ−ωcτ)

2

u′sy
us⊥

= sin (θ − ωcτ) =
ei(θ−ωcτ) − e−i(θ−ωcτ)

2i

Using above equations we have

X2 =

[(
1− kzusz

ω

)
∂ho
∂us⊥

+
kzus⊥
ω

∂ho
∂usz

](
Ex
ei(θ−ωcτ) + e−i(θ−ωcτ)

2
+ Ey

ei(θ−ωcτ) − e−i(θ−ωcτ)

2i

)
+

[
kxusz
ω

∂ho
∂us⊥

− kxus⊥
ω

∂ho
∂usz

](
ei(θ−ωcτ) + e−i(θ−ωcτ)

2

)
Ez +

∂ho
∂usz

Ez

U =

[(
1− kzusz

ω

)
∂ho
∂us⊥

+
kzus⊥
ω

∂ho
∂usz

]
V =

[
kxusz
ω

∂ho
∂us⊥

− kxus⊥
ω

∂ho
∂uz

]
a =

kxus⊥
ωc

ωc =
qBo

m
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So now

X2 =
UEx

2

[
ei(θ−ωcτ) + e−i(θ−ωcτ)

]
− iUEy

2

[
ei(θ−ωcτ) − e−i(θ−ωcτ)

]
+

Iz
2

[
ei(θ−ωcτ) + e−i(θ−ωcτ)

]
+
∂ho
∂usz

Ez

Putting X2 in equation (2.11) we have

h1 = − q

m

∞∑
n=−∞

∞∑
m=−∞

0∫
−∞

dτ ×



UEx
2

 e−i(n−1)θe[i(kzusz−ω−(n−1)ωc)τ ]Jn (a)

+e−i(n+1)θe[i(kzusz−ω−(n+1)ωc)τ ]Jn (a)


−iUEy

2

 e−i(n−1)θe[i(kzusz−ω−(n−1)ωc)τ ]Jn (a)

−e−i(n+1)θe[i(kzusz−ω−(n+1)ωc)τ ]Jn (a)


+V Ez

2

 e−i(n−1)θe[i(kzusz−ω−(n−1)ωc)τ ]Jn (a)

+e−i(n+1)θe[i(kzusz−ω−(n+1)ωc)τ ]Jn (a)


+ ∂ho
∂usz

Eze
−inθei(kzusz−ω−nωc)τJn (a)



Jm (a) eimθ

Where as

n+ 1→ n Jn (a)→ Jn−1 (a) ; n− 1→ n Jn (a)→ Jn+1 (a)

h1 = − q

m

∞∑
n=−∞

∞∑
m=−∞

0∫
−∞

dτ ×



UEx
2

[Jn−1 (a) + Jn+1 (a)]

+iUEy
2

[Jn−1 (a)− Jn+1 (a)]

+V Ez
2

[Jn−1 (a) + Jn+1 (a)]

+ ∂ho
∂usz

EzJn (a)


Jm (a) e−inθei(kzusz−ω−nωc)τeimθ

As Recurrence relations of bessel function is

Jn−1 (a) + Jn+1 (a)

2
=
n

a
Jn (a) ;

Jn−1 (a)− Jn+1 (a)

2
=

d

da
Jn (a) = J ′n (a)
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So h1 becomes

h1 = − q

m

∞∑
n=−∞

∞∑
m=−∞

 U n
a
Jn (a)Ex + iUJ ′n (a)Ey

+
[
V n
a
Jn (a) + ∂ho

∂usz
Jn (a)

]
Ez

 Jm (a) ei(m−n)θ

i (kzusz − ω − nωc)
(2.13)

Now from (??) and (2.1)we have

~k ×
(
~k × ~E1

)
= −ω

2

c2

(
~E1 +

i

ωε0

∑
α

nαqα

∫
~us hα1 d

3v

)

−
−→
k ×

(−→
k ×
−→
E 1

)
=
ω2

c2

−→
E 1 + i

ω

c2ε0

∑
α

nαqα

∫
~ushα1dv (2.14)

Separating the equation in component we have

εxxEx + εxyEy + εxzEz = 0

εyxEx + εyyEy + εyzEz = 0

εzxEx + εzyEy + εzzEz = 0

It can be written as

←→ε ·
−→
E = 0

Where

←→ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


Now using equation(2.13) , equation (2.14) becomes

Body Math

L.H.S = −
−→
k ×

(−→
k ×
−→
E 1

)
= −

(
k⊥x̂+ k‖ẑ

)
×
[(
k⊥x̂+ k‖ẑ

)
× (Exx̂+ Eyŷ + Ez ẑ)

]
= −

(
k⊥x̂+ k‖ẑ

)
×
{
−k‖Eyx̂+

(
−k⊥Ez + k‖Ex

)
ŷ + k⊥Eyẑ

}
= −

{
−
(
−k⊥k‖Ez + k2

‖Ex
)
x̂+

(
−k2
⊥Ey − k2

‖Ey
)
ŷ +

(
−k2
⊥Ez + k⊥k‖Ex

)
ẑ
}
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(
−k⊥k‖Ez + k2

‖Ex
)
x̂+

(
k2
⊥Ey + k2

‖Ey
)
ŷ +

(
k2
⊥Ez − k⊥k‖Ex

)
ẑ

=
ω2

c2
(Exx̂+Eyŷ+Ez ẑ) + i

ω

c2εo

∑
α

nαqα

∫
(us⊥cos θx̂+us⊥sin θŷ+usz ẑ)×− q

m

∑
n,m

 U
{
nJn(a)
a

}
Ex − iUJ´

n(a)Ey

+
{
V nJn(a)

a
+ ∂ho

∂usz
Jn(a)

}
Ez

{Jm(a) exp {−i(m− n)θ}
i(kzusz − ω + nΩ)

} dv (2.15)

Know calculating
∫
~us hα1 d

3v we have

(A) us⊥Cosθx̂

∫
d3vh1us⊥ cos θx̂ =

∫ ∞
0

us⊥dus⊥

∫ ∞
−∞

dus‖

∫ 2π

0

dθ h1us⊥Cosθx̂

= − q

m

∞∑
n=−∞

∞∑
m=−∞

∫ ∞
0

u2
s⊥dus⊥

∫ ∞
−∞

dus‖

∫ 2π

0

cos θei(m−n)θdθ U n
a
Jn (a)Ex + iUJ ′n (a)Ey

+
[
V n
a
Jn (a) + ∂ho

∂usz
Jn (a)

]
Ez

 Jm (a)

i (kzusz − ω − nωc)
x̂ (2.16)

∫ 2π

0
cos θei(m−n)θdθ =

∫ 2π

0
cos (m− n) θ cos θ + i sin (m− n) θ sin θdθ

As
∫ 2π

0
cos ax cos bx dx =

 πδab a 6= 0

0 for all others

∫ 2π

0
sin ax cos bx dx ={0 for all integral a and b}

So
∫ 2π

0
cos (m− n) θ cos θ dθ = π if and only if m− n = ±1∫ 2π

0
cos θe±iθdθ = π

Integral exists only if m = n+ 1 m = n− 1 so we have

∞
m=−∞

∫ 2π

0

cos θei(m−n)θdθJm (a) =

∫ 2π

0

cos θeiθdθJn+1 (a) +

∫ 2π

0

cos θe−iθdθJn−1 (a)

= 2π

(
Jn−1 (a) + Jn+1 (a)

2

)
= 2π

(n
a

)
Jn (a)

=

∫ 2π

0

dθ
(n
a

)
Jn (a)
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So equation (2.16) becomes

∫
d3ush1us⊥ cos θx̂ = − q

m

∞

n=−∞

∫
d3usus⊥

 U n
a
Jn (a)Ex + iUJ ′n (a)Ey

+
[
V n
a
Jn (a) + ∂ho

∂usz
Jn (a)

]
Ez

(
n
a

)
Jn (a)

i (kzusz − ω + nωc)
x̂ (2.17)

Similarly,

(B) us⊥ sin θŷ

∫
d3ush1us⊥ sin θŷ = − q

m

∞

n=−∞

∫
d3usus⊥

 U n
a
Jn (a)Ex + iUJ ′n (a)Ey

+
[
V n
a
Jn (a) + ∂ho

∂usz
Jn (a)

]
Ez

 −J ′n (a)

(kzusz − ω − nωc)
ŷ

(2.18)

(C) v‖ ẑ

∫
d3ush1us‖ẑ = − q

m

∞∑
n=−∞

∫
d3usus‖

 U n
a
Jn (a)Ex + iUJ ′n (a)Ey

+
[
W n

a
Jn (a) + ∂ho

∂usz
Jn (a)

]
Ez

 Jn (a)

i (kzusz − ω − nωc)
ẑ

(2.19)

Now putting(2.17) (2.18) (2.19) in (2.15) we have

(
−k⊥k‖Ez + k2

‖Ex

ω2
c2 − Ex

)
x̂+

(
k2
⊥Ey + k2

‖Ey

ω2
c2 − Ey

)
ŷ +

(
k2
⊥Ez − k⊥k‖Ex

ω2
c2 − Ez

)
ẑ

= −
∑
α

nαq
2
α

mωε0

∞∑
n=−∞

∫
d3us

 U n
a
Jn (a)E + iUJ ′n (a)Ey

+
[
V n
a
Jn (a) + ∂ho

∂usz
Jn (a)

]
Ez

 us⊥
(
n
a

)
Jn (a)

(kzusz − ω − nωc)
x̂+ U n

a
Jn (a)Ex + iUJ ′n (a)Ey

+
[
V n
a
Jn (a) + ∂ho

∂usz
Jn (a)

]
Ez

 −ius⊥J ′n (a)

(kzusz − ω − nωc)
ŷ+ U n

a
Jn (a)Ex + iUJ ′n (a)Ey

+
[
V n
a
Jn (a) + ∂ho

∂usz
Jn (a)

]
Ez

 us‖Jn (a)

(kzusz − ω − nωc)
ẑ


Now separating the components with Ex, Ey and Ez term and comparing it we have
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(1) x-component(
1−

k2
‖c

2

ω2
−
∑
α

nαq
2
α

mωε0

∞∑
n=−∞

∫
d3us

{
U
n

a
Jn (a)

} us⊥
(
n
a

)
Jn (a)

(kzusz − ω − nωc)

)
Ex +(

−
∑
α

nαq
2
α

mωε0

∞∑
n=−∞

∫
d3us {iUJ ′n (a)}

us⊥
(
n
a

)
Jn (a)

(kzusz − ω − nωc)

)
Ey +(

k⊥k‖c
2

ω2
−
∑
α

nαq
2
α

mωε0

∞∑
n=−∞

∫
d3us

{
V
n

a
Jn (a) +

∂ho
∂usz

Jn (a)

}
us⊥

(
n
a

)
Jn (a)

(kzusz − ω − nωc)

)
Ez

= 0

(2) y-component(
−
∑
α

nαq
2
α

mωε0

∞∑
n=−∞

∫
d3us

{
U
n

a
Jn (a)

} −ius⊥J ′n (a)

(kzusz − ω − nωc)

)
Ex +1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

nαq
2
α

mωε0

∞∑
n=−∞

∫
d3us {iUJ ′n (a)} −ius⊥J ′n (a)

(kzusz − ω − nωc)

Ey +

(
−
∑
α

nαq
2
α

mωε0

∞∑
n=−∞

∫
d3us

{
V
n

a
Jn (a) +

∂ho
∂usz

Jn (a)

}
−ius⊥J ′n (a)

(kzusz − ω − nωc)

)
Ez

= 0

(3) z-component(
1 +

k⊥k‖c
2

ω2
−
∑
α

nαq
2
α

mωε0

∞∑
n=−∞

∫
d3us

{
U
n

a
Jn (a)

} us‖Jn (a)

(kzusz − ω − nωc)

)
Ex +(

−
∑
α

nαq
2
α

mωε0

∞

n=−∞

∫
d3us {iUJ ′n (a)}

us‖Jn (a)

(kzusz − ω − nωc)

)
Ey +(

1− k2
⊥c

2

ω2
−
∑
α

nαq
2
α

mωε0

∞

n=−∞

∫
d3us

{
V
n

a
Jn (a) +

∂ho
∂usz

Jn (a)

}
us‖Jn (a)

(kzusz − ω − nωc)

)
Ez

= 0

Now by comparing Ex, Ey,Ez terms from the above equations we get
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εxx = 1−
k2
‖c

2

ω2
−
∑
α

∞∑
n=−∞

nαq
2
α

mωε0

∫
d3us us⊥U

[(
n
a

)
Jn (a)

]2
(kzusz − ω − nωc)

εxy = −
∑
α

∞∑
n=−∞

nαq
2
α

mαωεo

∫
d3us us⊥ {iUJ ′n (a)}

(
n
a

)
Jn (a)

(kzusz − ω − nωc)

εxz =
k⊥k‖c

2

ω2
−
∑
α

∞∑
n=−∞

nαq
2
α

mαωεo

∫
d3us us⊥

{
V
n

a
Jn (a) +

∂ho
∂usz

Jn (a)

} (
n
a

)
Jn (a)

(kzusz − ω − nωc)

εyx = −
∑
α

∞
n=−∞

nαq
2
α

mαωεo

∫
d3usus⊥

{
U
n

a
Jn (a)

} −iJ ′n (a)

(kzusz − ω − nωc)

εyy = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

∞∑
n=−∞

nαq
2
α

mαωεo

∫
d3usus⊥ {UJ ′n (a)} J ′n (a)

(kzusz − ω − nωc)

εyz = −
∑
α

∞∑
n=−∞

nαq
2
α

mαωεo

∫
d3usus⊥

{
V
n

a
Jn (a) +

∂ho
∂usz

Jn (a)

}
−iJ ′n (a)

(kzusz − ω − nωc)

εzx = 1 +
k⊥k‖c

2

ω2
−
∑
α

∞∑
n=−∞

nαq
2
α

mαωεo

∫
d3us us‖

{
U
n

a
Jn (a)

} Jn (a)

(kzusz − ω − nωc)

εzy = −
∑
α

∞∑
n=−∞

nαq
2
α

mαωεo

∫
d3us us‖ {iUJ ′n (a)} Jn (a)

(kzusz − ω − nωc)

εzz = 1−k
2
⊥c

2

ω2
−
∑
α

∞∑
n=−∞

nαq
2
α

mαωεo

∫
d3us us‖

{
V
n

a
Jn (a) +

∂ho
∂usz

Jn (a)

}
Jn (a)

(kzusz − ω − nωc)

←→ε =
←→
A −

∑
α

∞∑
n=−∞

ω2
pα

ω

∫
d3us

Sij
(kzusz − ω − nωc)

(2.20)

Sij =



us⊥
(
n
a

)2
J2
n (a)U ius⊥

(
n
a

)
Jn (a) J ′n (a)U us⊥

(
n
a

)
J2
n (a)

{
V
(
n
a

)
+
∂ho
∂us‖

}
−ius⊥

(
n
a

)
Jn (a) J ′n (a)U us⊥UJ

′ 2
n (a) −ius⊥Jn (a) J ′n (a)

{
V
(
n
a

)
+
∂ho
∂us‖

}
us‖
(
n
a

)
J2
n (a)U ius‖Jn (a) J ′n (a)U us‖J

2
n (a)

{
V
(
n
a

)
+
∂ho
∂us‖

}


(2.21)

←→
A =


1−

k2‖c
2

ω2 0
k⊥k‖c

2

ω2

0 1− (k2⊥+k2‖)c2

ω2 0

1 +
k⊥k‖c

2

ω2 0 1−k2⊥c
2

ω2

 (2.22)

U =

[(
1− kzusz

ω

)
∂ho
∂us⊥

+
kzus⊥
ω

∂ho
∂us‖

]
V =

[
kxusz
ω

∂ho
∂us⊥

− kxus⊥
ω

∂ho
∂us‖

]
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a =
kxus⊥
ω

ωc =
qBo

m

Where as uz = u‖

From above components εyy is taken as kinetic relation for whistler modes, which is

εyy = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

∞∑
n=−∞

nαq
2
α

mαωεo

∫
d3usus⊥ {UJ ′n (a)} J ′n (a)

(kzusz − ω − nωc)

This is generalized kinetic dispersion relation for oblique whistler modes.
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Chapter 3

Oblique whistler waves mode with

Bi-Maxwellian distribution

3.1 Bi-Maxwellian distribution function

The Bi-maxwellian distribution is an anisotropic distribution that isn’t the same as the simple

Maxwellian distribution. Anisotropy in plasma caused by the presence of a magnetic field causes

different particle velocities that can be parallel or perpendicular to the magnetic field. The velocity

distribution of gyrating particles is determined by the independent variables v⊥ and v‖. In this

case, equilibrium distribution is modelled as product of two Maxwellian and resulting distribution

is Bi-Maxwellian which is equal to

f
(
v⊥, v‖

)
=

n(
π3〈v⊥〉2〈v‖〉

1
2

)Exp[− v2
⊥

〈v⊥〉2
−

v2
‖

〈v‖〉2

]

Now we will use this distribution in kinetic treatment of oblique whistler waves.

3.2 Oblique Whistler treatment with Bi-Maxwellian dis-

tribution

For Bi-Maxwellian distribution starting from relation propagation

1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

ω2
pα

ω

∫
d3v

v⊥ (J ′n (a))2(
k‖v‖ − ω − nωc

) ((1−
k‖v‖
ω

)
∂fo
∂v⊥

+
k‖v⊥
ω

∂fo
∂v‖

)
= 0 (3.1)

As Bi-Maxwellian distribution is,
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fo = A exp

(
− v

2
⊥
v2
t⊥
−
v2
‖

v2
t‖

)
where as,

A =
1

(π)3/2 v2
t⊥vt‖

Taking the derivative of the perpendicular and parallel component of velocity respectively we

have,

∂fo
∂v⊥

= −fo
(

2v⊥
v2
t⊥

)

∂fo
∂v‖

= −fo

(
2v‖
v2
t‖

)
Putting these values in Eq (3.1) , we have,

1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω

∫
d3v

v⊥ (J ′n (a))2 f0(
k‖v‖ − ω − nωc

) ((1−
k‖v‖
ω

)(
2v⊥
v2
t⊥

)
+
k‖v⊥
ω

(
2v‖
v2
t‖

))
= 0

After simplifying the terms we have,

1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

2ω2
pα

ωv2
t⊥
A

∫
d3v

v2
⊥ (J ′n (a))2 exp

(
− v

2
⊥
v2
t⊥
−
v2
‖

v2
t‖

)
(
k‖v‖ − ω − nωc

) (
1 +

k‖v‖
ω

AT

)
= 0

Since,

AT =
v2
t⊥
v2
t‖
− 1 =

T⊥
T‖
− 1

Here
∫
d3v =

∫
v⊥dv⊥dv‖dθ, and their limits are taken as dv⊥ is from 0 → ∞, dv‖ is from

−∞→∞ and for dθ, 0→ 2π, so

1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

2ω2
pα

ωv2
t⊥
A

∫
2πdv⊥dv‖

v3
⊥ (J ′n (a))2 exp

(
− v

2
⊥
v2
t⊥
−
v2
‖

v2
t‖

)
(
k‖v‖ − ω − nωc

) (
1 +

k‖v‖
ω

AT

)
= 0 (3.2)
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Now integrating the perpendicular component of velocity we have,

∫ ∞
0

dv⊥ (J ′n (a))
2
v3
⊥ exp

(
− v

2
⊥
v2
t⊥

)
Defining the values of x, dx and b we have,

x =
k⊥v⊥
ωc

, dx =
k⊥
ωc
dv⊥

b =
k2
⊥v

2
t⊥

2ω2
c

So integrating the perpendicular component of velocity will become,

(
ωc
k⊥

)4 ∫ ∞
0

dx (J ′n (x))
2
x3 exp

(
−x

2

2b

)
=

(
ωc
k⊥

)4

e−b

 b (2b2 − 2bn+ n2) In (b)−
2b3In+1 (b)


Putting it back in Eq (3.2) and after some simplifications we have ,

1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

v2
t⊥ω

2
pα

2ω
A

∫
2πdv‖

exp

(
−
v2
‖

v2
t‖

)
(
k‖v‖ − ω − nωc

) ×
(

1 +
k‖v‖
ω

AT

)
e−b

b

 (2b2 − 2bn+ n2) In (b)−
2b2In+1 (b)


= 0

Let defining some term in above equation i-e

I (nb) =
e−b

b

 (2b2 − 2bn+ n2) In (b)−
2b2In+1 (b)


Putting this value in above equation we have,

1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

v2
t⊥ω

2
pα

2ω
A

∫
2πdv‖

exp

(
−
v2
‖

v2
t‖

)
(
k‖v‖ − ω − nωc

) (1 +
k‖v‖
ω

AT

)
I (nb) = 0 (3.3)

Taking the parallel component of velocity for integration i-e,
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∫ ∞
−∞

dv‖

(
1 +

k‖v‖
ω
AT

)
k‖v‖ − (ω ± ωc)

exp

(
−
v2
‖

v2
t‖

)

Let S =
v‖
vt‖

and dSvt‖ = dv‖

=

∫ ∞
−∞

vt‖dS

(
1 +

k‖vt‖S

ω
AT

)
k‖vt‖S − (ω ± ωc)

exp
(
−S2

)

=
1

k‖

∫ ∞
−∞

dS
exp [−S2]

S − (ω±ωc)
k‖vt‖

+
1

k‖

k‖vt‖AT
ω

∫ ∞
−∞

dS
S exp [−S2]

S − (ω±ωc)
k‖vt‖

Here, we defined ξ = (ω±ωc)
k‖vt‖

. Now simplifying parallel components we have,

=
1

k‖

[∫ ∞
−∞

ds
exp [−s2]

s− ξ
+
k‖vt‖AT

ω

∫ ∞
−∞

ds
s exp [−s2]

s− ξ

]
The plasma dispersion function and its derivative is defined as,

Z (ξ) =
1√
π

∫ ∞
−∞

ds
e−s

2

S − ξ

Ź (ξ) = − 2√
π

∫ ∞
−∞

ds
se−s

2

(s− ξ)

Using the values of Z (ξ) and Ź (ξ) to get,

=

√
π

k‖

[
Z (ξ)−

k‖vt‖AT
2ω

Ź (ξ)

]
Putting this value in Eq (3.3) and simplifying equation we have,

1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω

I (nb)

k‖vt‖

[
Z (ξ)−

k‖vt‖AT
2ω

Ź (ξ)

]
= 0

Expanding the plasma dispersion function for large argument we have,

Z(ξ) = i
√
πe−ξ

2 − 1

ξ

(
1 +

1

2ξ2
+

3

4ξ4
+

15

8ξ6

)
........

The derivative of the plasma dispersion function has the following form,

Ź(ξ) = −2i
√
πξe−ξ

2

+
1

ξ2

Now we have,
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1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω

I (nb)

k‖vt‖

[
i
√
πe−ξ

2 − 1

ξ

(
1 +

1

2ξ2
+ ....

)
−
k‖vt‖AT

2ω

(
−2i
√
πξe−ξ

2

+
1

ξ2

)]
= 0

Separating the Real and Imaginary parts we have,

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω

I (nb)

k‖vt‖

[
−1

ξ

(
1 +

1

2ξ2
....

)
−
k‖vt‖AT

2ω

(
1

ξ2

)]

Di (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω

I (nb)

k‖vt‖

[√
πe−ξ

2 −
k‖vt‖AT

2ω

(
−2
√
πξe−ξ

2
)]

As,

Dr (ω) = 0

So, the real part of the dispersion relation is,

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω

I (nb)

k‖vt‖

[
−1

ξ

(
1 +

1

2ξ2
....

)
−
k‖vt‖AT

2ω

(
1

ξ2

)]
= 0

Taking the terms of plasma dispersion function upto 1
ξ2

we have,

1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω

I (nb)

k‖vt‖

[
−1

ξ
−
k‖vt‖AT

2ω

1

ξ2

]
= 0

Putting value of ξ where ξ = ωr−|ωc|
k‖vt‖

and as ωr−|ωc|
k‖vt‖

>> 1 so we have |ωc| >> ωr ,

1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω
I (nb)

[
1

|ωc|
− AT

2ω

(
k‖vt‖

)2

|ωc|2

]
= 0

ω

|ωc|
=

(
k2
⊥ + k2

‖

)
c2

ω2
pαI (nb)

1+
ω2
pαI (nb)(
k2⊥
k2‖

+ 1

)AT
2

(
vt‖
)2

c2 |ωc|2


Putting the values of c2 = 1

µoεo
, ω2

pα = ne2

mεo
, v2

t‖ =
T‖
m

and ωc = eB
m

in
ω2
pα

2

v2
t‖

c2|ωc|2
to get

nT‖µo
2B2 . Now

putting this value in ω
|ωc| expression we have,

ω

|ωc|
=

(
k2
⊥ + k2

‖

)
c2

ω2
pαI (nb)

1+
AT I (nb)(
k2⊥
k2‖

+ 1

) nT‖µo
2B2


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Now further simplifying it by putting β‖ =
nT‖µo
B2 we have,

ω

|ωc|
=

(
k2
⊥ + k2

‖

)
c2

ω2
pαI (nb)

1+
β‖AT I (nb)

2

(
k2⊥
k2‖

+ 1

)


Where speed of light is defined as c2 = 1
µoεo

, the plasma frequency as ω2
pα = ne2

mεo
, the parallel

thermal velocity as v2
t‖ =

T‖
m

and

the cyclotron frequency as ωc = eB
m

.This is the required dispersion relation for oblique Whistler

waves mode when we take the Bi-Maxwellian distribution function.

To find growth rate of this model using Bi-Maxwellian distribution function, consider

γ = −Di (ω)
∂Dr(ω)
∂ωr

(3.4)

As the expression for Dr (ω) and Di (ω) respectively are,

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω

I (nb)

k‖vt‖

[
−1

ξ

(
1 +

1

ξ2
....

)
−
k‖vt‖AT

2ω

(
1

ξ2

)]

Di (ω) =
∑
α

ω2
pα

ω

I (nb)

k‖vt‖

[√
πe−ξ

2 −
k‖vt‖AT

2ω

(
−2
√
πξe−ξ

2
)]

As |ωc| >> ωr so we have ω − |ωc| = − |ωc| and Simplifying the Di (ω) part we have,

Di (ω) =
∑
α

√
πe
−
(
ω−|ωc|
k‖vt‖

)2

ω2
pα

ω

I (nb)

k‖vt‖

[
1−

(
k‖vt‖AT

ω

)(
− |ωc|
k‖vt‖

)]

Di (ω) =
∑
α

√
πe
−
(
ω−|ωc|
k‖vt‖

)2

ω2
pα

ω2

I (nb)

k‖vt‖
(ω + AT (|ωc|))

Now Simplifying Dr (ω) expression we have,

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω

I (nb)

k‖vt‖

[
−1

ξ

(
1 +

1

2ξ2
....

)
−
k‖vt‖AT

2ω

(
1

ξ2

)]

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω
I (nb)

[
− 1

(ωr − |ωc|)
−

(
k‖vt‖

)2

2 (ωr − |ωc|)3 −
AT
2ω

(
k‖vt‖

)2

(ωr − |ωc|)2

]

Taking the derivative of the real part we have,
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∂Dr (ω)

∂ωr
= +2

(
k2
⊥ + k2

‖

)
c2

ω3
+
∑
α

ω2
pα I (nb)


(2ω−|ωc|)

[ω(ω−|ωc|)]2
+

(k‖vt‖)
2
(4ω3−9ω2|ωc|+6ω|ωc|2−|ωc|3)

2(ω(ω−|ωc|)3)
2 +

AT
2

(k‖vt‖)
2
(4ω3−6ω2|ωc|+2ω1|ωc|2)
(ω2(ω−|ωc|)2)

2



As |ωc| >> ω, neglecting the higher power terms of ω, and using (ωr − |ωc|) = − |ωc|

∂Dr (ω)

∂ωr
= 2

(
k2
⊥ + k2

‖

)
c2

ω3
+
∑
α

ω2
pα I (nb)

[
− 1

ω2 |ωc|
−
(
k‖vt‖

)2

2ω2 |ωc|3
+ AT

(
k‖vt‖

)2

ω3 |ωc|2

]
Now putting these values in Eq (3.4) we have,

γ = −
∑

α

√
πI (nb)ω2

pαe
−
(
ω−|ωc|
k‖vt‖

)2

(ω + AT (|ωc|))

ω2k‖vt‖

(
2

(
k2⊥+k2‖

)
c2

ω3 +
∑

α ω
2
pα I (nb)

[
− 1
ω2|ωc| −

(k‖vt‖)
2

2ω2|ωc|3
+ AT

(k‖vt‖)
2

ω3|ωc|2

])

After some further simplification we have,

γ = −
∑

α

√
πI (nb)ω2

pαe
−
(
ω−|ωc|
k‖vt‖

)2

(ω + AT (|ωc|))

k‖vt‖

(
2

(
k2⊥+k2‖

)
c2

ω
− I (nb)

[
ω2
pα

|ωc| +
ω2
pα(k‖vt‖)

2

2|ωc|3
− AT

(k‖vt‖)
2
ω2
pα

ω|ωc|2

])

Putting the value of c2, ω2
pα, v2

t‖ and ωc in
k‖vt‖
|ωc| to get

(
k‖c

ωpα

)√
β‖. Putting it in above equation

and rearranging we have

γ = −

∑
α |ωc|

√
πI (nb) e

−

 ω
|ωc|
−1(

k‖c
ωpα

)√
β‖


2 (

ω
|ωc| + A

(
ω
|ωc| − 1

))
(
k‖c

ωpα

)√
β‖

(
2|ωc|
ω

(
k‖c

ωpα

)2
(

1 +
k2⊥
k2‖

)
− I (nb)

[
1 + 1

2

(
k‖c

ωpα

)2

β‖ − AT

( ω
|ωc|)

(
k‖c

ωpα

)2

β‖

])

For simplification let x =
k‖c

ωpα
the γ

|ωc| will be,

γ

|ωc|
= −

∑
α

√
πI (nb) e

−
(

ω
|ωc|
−1

x
√

β‖

)2 (
ω
|ωc| + A

(
ω
|ωc| − 1

))
x
√
β‖

(
2|ωc|
ω
x2

(
1 +

k2⊥
k2‖

)
− I (nb)

[
1 + 1

2
x2β‖ − AT

( ω
|ωc|)

x2β‖

])
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Here, we have taken AT =
T⊥
T‖
− 1 =

v2t⊥
v2
t‖
− 1 and β‖ =

nT‖µ◦
B2 . Real frequency is denoted by ω, ωpα

is plasma frequency, ωc is cyclotron frequency,

k‖ is wave vector, c is speed of light, B is magnetic field and T⊥ and T‖are perpendicular and

parallel electron temperatures.

So, this is the required growth rate formula of oblique Whistler mode using Bi-Maxwellian dis-

tribution.

3.3 Results and Discussion

Here we will discuss the results obtained for oblique whistler waves with electron temperature

anisotropy for Bi-Maxwellian distributed electrons. We’ll look at how the oblique whistler wave’s

dispersion properties and growth rate change when the electron temperature anisotropy, parallel

electron beta, and k⊥/k‖ grow.

In figure 3.1(a) and 3.1(b) The dispersion relation and the growth rate of the oblique whistler

waves with electron temperature anisotropy by increasing k⊥/k‖ leaving the other parameters of

plasma unchanged. It is discovered that increasing the k⊥/k‖ population of electrons reduces the

real frequency of oblique whistler waves, whereas increasing the k⊥/k‖ population increases the

growth of the oblique whistler instability. In this figure we have choose the AT = 0.1 and β‖ = 0.504.
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Figure 3.1: (a) Oblique whistler mode dispersion relation for AT = 0.1, β‖ = 0.504 and for changing values
of k⊥/k‖. (b) Oblique whistler mode growth rate for AT = 0.1, β‖ = 0.504 and for changing values of k⊥/k‖.
Here blue solid curve represents k⊥/k‖ = 0, red dotted curve represents k⊥/k‖ = 0.1, brown dot-dashed
curve represents k⊥/k‖ = 0.2, green small dashed curve represents k⊥/k‖ = 0.3 and purple large dashed
curve represents k⊥/k‖ = 0.4

Figures 3.2(a) and 3.2(b) show how increasing the k⊥/k‖, while choosing a higher value of

anisotropy, changes the dispersion relation and causes oblique whistler instability to grow. In this

figure we have choose the AT = 1 and β‖ = 0.504.
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Figure 3.2: (a) Oblique whistler mode dispersion relation for AT = 1, β‖ = 0.504 and for changing values
of k⊥/k‖. (b) Oblique whistler mode growth rate for AT = 1, β‖ = 0.504 and for changing values of k⊥/k‖.
Here blue solid curve represents k⊥/k‖ = 0, red dotted curve represents k⊥/k‖ = 0.1, brown dot-dashed
curve represents k⊥/k‖ = 0.2, green small dashed curve represents k⊥/k‖ = 0.3 and purple large dashed
curve represents k⊥/k‖ = 0.4

Figures 3.3(a) and 3.3(b) show that by taking same value for β‖., choosing a higher value of

anisotropy and increasing the k⊥/k‖, changes the dispersion relation and causes oblique whistler

instability to grow. In this figure we have choose the AT = 1.5 and β‖ = 0.504.
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Figure 3.3: (a) Oblique whistler mode dispersion relation for AT = 1, β‖ = 0.504 and for changing values of
k⊥/k‖. (b) Oblique whistler mode growth rate for AT = 1.5, β‖ = 0.504 and for changing values of k⊥/k‖.
Here blue solid curve represents k⊥/k‖ = 0, red dotted curve represents k⊥/k‖ = 0.1, brown dot-dashed
curve represents k⊥/k‖ = 0.2, green small dashed curve represents k⊥/k‖ = 0.3 and purple large dashed
curve represents k⊥/k‖ = 0.4

In Figures 3.4(a) and 3.4(b) even with the variation in the real frequency and the growth rate of

oblique waves by increasing the k⊥/k‖ value, however only if the electron temperature anisotropy is

set to a positive magnitude. In this figure we have choose the AT = 0.1 and β‖ = 1.872
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Figure 3.4: (a) Oblique whistler mode dispersion relation for AT = 0.1, β‖ = 1.872 and for changing values
of k⊥/k‖. (b) Oblique whistler mode growth rate for AT = 0.1, β‖ = 1.872 and for changing values of k⊥/k‖.
Here blue solid curve represents k⊥/k‖ = 0, red dotted curve represents k⊥/k‖ = 0.1, brown dot-dashed
curve represents k⊥/k‖ = 0.2, green small dashed curve represents k⊥/k‖ = 0.3 and purple large dashed
curve represents k⊥/k‖ = 0.4

Figures 3.5(a) and 3.5(b) show that by taking same value for β‖, choosing a higher value of

anisotropy and increasing the k⊥/k‖, changes the dispersion relation and causes oblique whistler

instability to grow. In this figure we have choose the AT = 1 and β‖ = 1.872
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Figure 3.5: (a) Oblique whistler mode dispersion relation for AT = 1, β‖ = 1.872 and for changing values of
k⊥/k‖. (b) Oblique whistler mode growth rate for AT = 0.1, β‖ = 1.872 and for changing values of k⊥/k‖.
Here blue solid curve represents k⊥/k‖ = 0, red dotted curve represents k⊥/k‖ = 0.1, brown dot-dashed
curve represents k⊥/k‖ = 0.2, green small dashed curve represents k⊥/k‖ = 0.3 and purple large dashed
curve represents k⊥/k‖ = 0.4

Figures 3.6(a) and 3.6(b) show the fluctuation in the real frequency and growth rate of whistler

waves by increasing the k⊥/k‖, but this time by setting the parallel electron beta greater than 1.

This shows us the importance of parallel electron beta in determining the dispersion characteristics

of oblique whistler waves with electron temperature anisotropy. The change in parallel electron beta

increases the growth rate. In this figure we have choose the AT = 1.5 and β‖ = 1.872
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Figure 3.6: (a) Oblique whistler mode dispersion relation for AT = 1.5, β‖ = 1.872 and for changing values
of k⊥/k‖. (b) Oblique whistler mode growth rate for AT = 1.5, β‖ = 1.872 and for changing values of k⊥/k‖.
Here blue solid curve represents k⊥/k‖ = 0, red dotted curve represents k⊥/k‖ = 0.1, brown dot-dashed
curve represents k⊥/k‖ = 0.2, green small dashed curve represents k⊥/k‖ = 0.3 and purple large dashed
curve represents k⊥/k‖ = 0.4

By comparing all the figures, we can say that oblique whistler treatment with Bi-Maxwellian

distribution shows dependence of growth rate and dispersion relation upon electron temperature

anisotropy. we see that the growth rate increases by increasing dispersion relation and electron

temperature anisotropy.
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Chapter 4

Oblique whistler waves mode with Cairns

distribution

4.1 Anisotropic Cairns distribution function

The distribution function for plasma particles deviates from Maxwellian distribution if collisions

between slower particles are more than collisions between high energy particles. These high-energy

particles’ mean free path is proportional to v4, and the distribution function does not relax to a

Maxwellian distribution. In the space and astrophysical environment, distribution functions with

tails like a power law are observed. The presence of ion and electron populations which are not

in thermodynamic equilibrium in space plasma observations led to model these effects by simplest

analytical way. These non-thermal velocity distributions include a ring structure. One of these

non-thermal distribution function was introduced by Cairns et al. to explain the reverse-polarity

structures observed in space plasma. Although the Cairns distribution can be used to represent

non-Maxwellian plasma, it is not used to fit velocity distribution data. The enlarged high energy

tail of this nonthermal distribution is superimposed on a Maxwellian-like low energy component.

Anisotropic cairns distribution function is

fcairns =
1

π
3
2 (3Λ + 1) v2

tα⊥vtα‖

[
1 + Λ

{
v4
⊥
v4
t⊥

+
v4
‖

v4
t‖ ⊥

}]
Exp

{
−

(
v2
⊥

v2
tα⊥

+
v2
‖

v2
tα‖

)}
Here vtα⊥ and vtα‖ are perpendicular and parallel thermal velocities respectively. And they are

equal to vtα⊥ = 2kBT⊥
mα

and vtα‖ =
2kBT‖
mα

. Here Λ is nonthermality parameter.
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4.2 Oblique Whistler waves with anisotropic cairns dis-

tribution

The kinetic relation for right and left handed circularly polarized Oblique whistler modes is

1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

ω2
pα

ω

∫
d3v

v⊥ (J ′n (a))2(
k‖v‖ − ω − nωc

) ((1−
k‖v‖
ω

)
∂fo
∂v⊥

+
k‖v⊥
ω

∂fo
∂v‖

)
= 0 (4.1)

As Cairns distribution function is,

fo = A

(
1 + Λ

(
v4
⊥
v4
t⊥
−
v4
‖

v4
t‖

))
exp

(
− v

2
⊥
v2
t⊥
−
v2
‖

v2
t‖

)

Where as,

A =
1

(π)3/2 (1 + 11
4

Λ
)
v2
t⊥vt‖

Now taking the derivative of fo w.r.t v⊥ as,

∂fo
∂v⊥

= A

[
4Λ
v3
⊥
v4
t

−

(
1 + Λ

{
v4
⊥
v4
t⊥

+
v4
‖

v4
t‖

})(
2
v⊥
v2
t⊥

)]
exp

(
− v

2
⊥
v2
t⊥
−
v2
‖

v2
t‖

)

∂fo
∂v⊥

= A

[
v⊥

(
− 2

v2
t⊥
− 2Λ

v4
‖

v2
t⊥v

4
t‖

)
+ 4Λ

v3
⊥
v4
t⊥
− 2Λ

v5
⊥
v6
t⊥

]
exp

(
− v

2
⊥
v2
t⊥
−
v2
‖

v2
t‖

)
Similarly taking the derivative of fo w.r.t v‖ as,

∂fo
∂v‖

= A

[
4Λ

v3
‖

v4
t‖
− 2

v‖
v2
t‖
− 2Λ

v‖v
4
⊥

v2
t‖v

4
t⊥
− 2Λ

v5
‖

v6
t‖

]
exp

(
− v

2
⊥
v2
t⊥
−
v2
‖

v2
t‖

)

∂fo
∂v‖

= A

[
v‖

(
− 2

v2
t‖
− 2Λ

v4
⊥

v2
t‖v

4
t⊥

)
+ 4Λ

v3
‖

v4
t‖
− 2Λ

v5
‖

v6
t‖

]
exp

(
− v

2
⊥
v2
t⊥
−
v2
‖

v2
t‖

)

Now putting the values of ∂fo
∂v⊥

and ∂fo
∂v‖

in Eq (4.1) we get,
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1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω
A

∫
d3v

v⊥ (J ′n (a))2 exp

(
− v2⊥
v2t⊥
−

v2‖
v2
t‖

)
(
k‖v‖ − ω − nωc

) × (4.2)
(

1− k‖v‖
ω

) v⊥

(
− 2
v2t⊥
− 2Λ

v4‖
v2t⊥v

4
t‖

)
+

4Λ
v3⊥
v4t⊥
− 2Λ

v5⊥
v6t⊥

+

k‖v⊥
ω

[
4Λ

v3‖
v4
t‖
− 2

v‖
v2
t‖
− 2Λ

v‖v
4
⊥

v2
t‖v

4
t⊥
− 2Λ

v5‖
v6
t‖

]


= 0

Simplifying the last terms of above equation and separating the v⊥,v3
⊥,v5
⊥ terms we have,

(
1− k‖v‖

ω

)[
v⊥

(
− 2
v2t⊥
− 2Λ

v4‖
v2t⊥v

4
t‖

)
+ 4Λ

v3⊥
v4t⊥
− 2Λ

v5⊥
v6t⊥

]
+

k‖v⊥
ω

[
4Λ

v3‖
v4
t‖
− 2

v‖
v2
t‖
− 2Λ

v‖v
4
⊥

v2
t‖v

4
t⊥
− 2Λ

v5‖
v6
t‖

]


= v⊥

[
− 2

v2
t⊥
− 2Λ

v4
‖

v2
t⊥v

4
t‖
−
k‖v‖
ω

(
− 2

v2
t⊥
− 2Λ

v4
‖

v2
t⊥v

4
t‖

)
+
k‖
ω

(
4Λ

v3
‖

v4
t‖
− 2

v‖
v2
t‖
− 2Λ

v5
‖

v6
t‖

)]
+

v3
⊥

[
4Λ

1

v4
t⊥
−
k‖v‖
ω

(
4Λ

1

v4
t⊥

)]
+ v5

⊥

[
−2Λ

1

v6
t⊥

+
k‖v‖
ω

(
2Λ

1

v6
t⊥
− 2Λ

1

v2
t‖v

4
t⊥

)]

Let defining some terms,

a1 =

[
− 2

v2
t⊥
− 2Λ

v4
‖

v2
t⊥v

4
t‖
−
k‖v‖
ω

(
− 2

v2
t⊥
− 2Λ

v4
‖

v2
t⊥v

4
t‖

)
+
k‖
ω

(
4Λ

v3
‖

v4
t‖
− 2

v‖
v2
t‖
− 2Λ

v5
‖

v6
t‖

)]

a2 =

[
4Λ

1

v4
t⊥
−
k‖v‖
ω

(
4Λ

1

v4
t⊥

)]

a3 =

[
−2Λ

1

v6
t⊥

+
k‖v‖
ω

(
2Λ

1

v6
t⊥
− 2Λ

1

v2
t‖v

4
t⊥

)]
So the above equation becomes,

= v⊥a1 + v3
⊥a2 + v5

⊥a3

Putting this in Eq (4.2) we have,
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1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω
A

∫
d3v

v⊥ (J ′n (a))2 exp

(
− v2⊥
v2t⊥
−

v2‖
v2
t‖

)
(
k‖v‖ − ω − nωc

) (
v⊥c1 + v3

⊥c2 + v5
⊥c3

)
= 0

Here
∫
d3v =

∫
v⊥dv⊥dv‖dθ, and their limits are taken as dv⊥ is from 0 → ∞, dv‖ is from

−∞→∞ and for dθ, 0→ 2π, so

1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω
A

∫
2πv⊥dv⊥dv‖

v⊥ (J ′n (a))2 exp

(
− v2⊥
v2t⊥
−

v2‖
v2
t‖

)
(
k‖v‖ − ω − nωc

) (
v⊥c1 + v3

⊥c2 + v5
⊥c3

)
= 0

(4.3)

Let x = k⊥v⊥
ωc
⇒ v⊥ = xωc

k⊥
⇒ dv⊥ = ωc

k⊥
dx, b =

k2⊥v
2
t⊥

2ω2
c

and a = k⊥v⊥
ωc

So the perpendicular component becomes

∫ ∞
0

dv⊥ (J ′n (a))
2
v3
⊥ exp

(
− v

2
⊥
v2
t⊥

)
=

(
ωc
k⊥

)4 ∫ ∞
0

dx (J ′n (a))
2
x3 exp

(
−x

2

2b

)
∫ ∞

0

dv⊥ (J ′n (a))
2
v5
⊥ exp

(
− v

2
⊥
v2
t⊥

)
=

(
ωc
k⊥

)6 ∫ ∞
0

dx (J ′n (a))
2
x5 exp

(
−x

2

2b

)
∫ ∞

0

dv⊥ (J ′n (a))
2
v7
⊥ exp

(
− v

2
⊥
v2
t⊥

)
=

(
ωc
k⊥

)8 ∫ ∞
0

dx (J ′n (a))
2
x7 exp

(
−x

2

2b

)
Now integrating the perpendicular components we have,

1st component integration of perpendicular term,

(
ωc
k⊥

)4 ∫ ∞
0

dx (J ′n (a))
2
x3 exp

(
−x

2

2b

)
=

(
ωc
k⊥

)4

e−b

 b (2b2 − 2bn+ n2) In (b)−
2b3In+1 (b)



2nd component integration of perpendicular term,

(
ωc
k⊥

)6 ∫ ∞
0

dx (J ′n (a))
2
x5 exp

(
−x

2

2b

)
=

(
ωc
k⊥

)6 (
−2b2

)
e−b




4b3 − n2 (1 + n)−

2b2 (3 + 2n) +

bn (4 + 3n)

 In (b)−

b (4b2 − 4b+ n2) In+1 (b)


And 3rd component integration of perpendicular term,
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(
ωc
k⊥

)8 ∫ ∞
0

dx (J ′n (a))
2
x7 exp

(
−x

2

2b

)
=

(
ωc
k⊥

)8 (
4b3
)
e−b




8b4 − 2b3 (15 + 4n) +

n2 (2 + 3n+ n2)−
2bn (6 + 7n+ 2n2) +

b2 (24 + 26n+ 8n2)

 In (b) +

b

 26b2 − 8b3 + 3n2−
4b (3 + n2)

 In+1 (b)


Putting the values of integration of perpendicular components in Eq (4.3) we have,

1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω
A

∫
2πdv‖

exp

(
−

v2‖
v2
t‖

)
(
k‖v‖ − ω − nωc

) × (4.4)

a1

(
ωc
k⊥

)4

e−b

 b (2b2 − 2bn+ n2) In (b)−
2b3In+1 (b)

+

a2

(
ωc
k⊥

)6

(−2b2) e−b

 (4b3 − n2 (1 + n)− 2b2 (3 + 2n) + bn (4 + 3n)) In (b)−
b (4b2 − 4b+ n2) In+1 (b)

+

a3

(
ωc
k⊥

)8

(4b3) e−b


 8b4 − 2b3 (15 + 4n) + n2 (2 + 3n+ n2)−

2bn (6 + 7n+ 2n2) + b2 (24 + 26n+ 8n2)

 In (b) +

b (26b2 − 8b3 + 3n2 − 4b (3 + n2)) In+1 (b)




= 0

Simplifying the term we have,

a1

(
ωc
k⊥

)4

e−b

 b (2b2 − 2bn+ n2) In (b)−
2b3In+1 (b)

+

a2

(
ωc
k⊥

)6

(−2b2) e−b

 (4b3 − n2 (1 + n)− 2b2 (3 + 2n) + bn (4 + 3n)) In (b)−
b (4b2 − 4b+ n2) In+1 (b)

+

a3

(
ωc
k⊥

)8

(4b3) e−b


 8b4 − 2b3 (15 + 4n) + n2 (2 + 3n+ n2)−

2bn (6 + 7n+ 2n2) + b2 (24 + 26n+ 8n2)

 In (b) +

b (26b2 − 8b3 + 3n2 − 4b (3 + n2)) In+1 (b)




Now putting the values of a1, a2, a3 we have,
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

 2
v2t⊥

 −1− Λ
v4‖
v4
t‖
− k‖v‖

ω

(
−1− Λ

v4‖
v4
t‖

)
+

k‖v
2
t⊥
ω

(
2Λ

v3‖
v4
t‖
− v‖

v2
t‖
− Λ

v5‖
v6
t‖

)

( ωck⊥)4

be−b

 (2b2 − 2bn+ n2) In (b)−
2b2In+1 (b)

+

4Λ
v4t⊥

(
1− k‖v‖

ω

)(
ωc
k⊥

)6

(−2b2) e−b


 4b3 − n2 (1 + n)− 2b2 (3 + 2n) +

bn (4 + 3n)

 In (b)−

b (4b2 − 4b+ n2) In+1 (b)

+

2
v6t⊥

Λ

(
−1 +

k‖v‖
ω

(
1− v2t⊥

v2
t‖

))(
ωc
k⊥

)8

(4b3) e−b




8b4 − 2b3 (15 + 4n) +

n2 (2 + 3n+ n2)−
2bn (6 + 7n+ 2n2) +

b2 (24 + 26n+ 8n2)

 In (b) +

b (26b2 − 8b3 + 3n2 − 4b (3 + n2)) In+1 (b)




(4.5)

Simplifying,
2

v2
t⊥

(
ωc
k⊥

)4

b =
2

v2
t⊥

(
ωc
k⊥

)4
k2
⊥v

2
t⊥

2ω2
c

=
ω2
c

k2
⊥

=
v2
t⊥
2b

4

v4
t⊥

(
ωc
k⊥

)6
(
−2

(
k2
⊥v

2
t⊥

2ω2
c

)2
)

=
4

v4
t⊥

(
ωc
k⊥

)6
(
−2

(
k2
⊥v

2
t⊥

2ω2
c

)2
)

= −2
ω2
c

k2
⊥

= −v
2
t⊥
b

2

v6
t⊥

(
ωc
k⊥

)8 (
4b3
)

=
2

v6
t⊥

(
ωc
k⊥

)8
(

4

(
k2
⊥v

2
t⊥

2ω2
c

)3
)

=
ω2
c

k2
⊥

=
v2
t⊥
2b

Putting it back in above Eq (4.5) we have,



v2t⊥
2

 −1− Λ
v4‖
v4
t‖
− k‖v‖

ω

(
−1− Λ

v4‖
v4
t‖

)
+

k‖v
2
t⊥
ω

(
2Λ

v3‖
v4
t‖
− v‖

v2
t‖
− Λ

v5‖
v6
t‖

)
 e−b

b

 (2b2 − 2bn+ n2) In (b)−
2b2In+1 (b)

+

−v2
t⊥Λ

(
1− k‖v‖

ω

)
e−b

b

 (4b3 − n2 (1 + n)− 2b2 (3 + 2n) + bn (4 + 3n)) In (b)−
b (4b2 − 4b+ n2) In+1 (b)

+

v2t⊥
2

Λ

(
−1 +

k‖v‖
ω

(
1− v2t⊥

v2
t‖

))
e−b

b


 8b4 − 2b3 (15 + 4n) + n2 (2 + 3n+ n2)−

2bn (6 + 7n+ 2n2) + b2 (24 + 26n+ 8n2)

 In (b) +

b (26b2 − 8b3 + 3n2 − 4b (3 + n2)) In+1 (b)




Let further defining,

I1 (nb) =
e−b

b

((
2b2 − 2bn+ n2

)
In (b)− 2b2In+1 (b)

)
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I2 (nb) =
e−b

b

 (4b3 − n2 (1 + n)− 2b2 (3 + 2n) + bn (4 + 3n)) In (b)−
b (4b2 − 4b+ n2) In+1 (b)



I3 (nb) =
e−b

b


 8b4 − 2b3 (15 + 4n) + n2 (2 + 3n+ n2)−

2bn (6 + 7n+ 2n2) + b2 (24 + 26n+ 8n2)

 In (b) +

b (26b2 − 8b3 + 3n2 − 4b (3 + n2)) In+1 (b)


So the above equation becomes,

= −v
2
t⊥
2


I1 (nb)

 1 + Λ
v4‖
v4
t‖
− k‖v‖

ω

(
1 + Λ

v4‖
v4
t‖

)
−

k‖v
2
t⊥
ω

(
2Λ

v3‖
v4
t‖
− v‖

v2
t‖
− Λ

v5‖
v6
t‖

)


+I2 (nb)
(

2Λ
(

1− k‖v‖
ω

))
− I3 (nb)

(
Λ

(
−1 +

k‖v‖
ω

(
1− v2t⊥

v2
t‖

)))


Rearranging with powers of v‖. Simplifying and put AT =

v2t⊥
v2
t‖
− 1 we have,

= −v
2
t⊥
2



(I1 (nb) + 2ΛI2 (nb) + ΛI3 (nb))

v‖

(
k‖
ω
{AT (I1 (nb) + ΛI3 (nb))− 2ΛI2 (nb)}

)
v3
‖

((
−k‖v

2
t⊥
ω

(
2Λ 1

v4
t‖

))
I1 (nb)

)
+ v4

‖

(
Λ 1
v4
t‖

)
I1 (nb)

v5
‖

(
Λ

k‖
ωv4
t‖
AT I1 (nb)

)


(4.6)

Further defining some terms we have,

d1 = (I1 (nb) + 2ΛI2 (nb) + ΛI3 (nb))

d2 =
k‖
ω
{AT (I1 (nb) + ΛI3 (nb))− 2ΛI2 (nb)}

d3 = −
k‖v

2
t⊥
ω

(
2Λ

1

v4
t‖

)
I1 (nb)

d4 = Λ
1

v4
t‖
I1 (nb)

d5 = Λ
k‖
ωv4

t‖
AT I1 (nb)

Equation (4.6) becomes,
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= −v
2
t⊥
2

(
d1 + d2v‖ + d3v

3
‖ + d4v

4
‖ + d5v

5
‖
)

Putting this value in Eq (4.4) we have,

1−

(
k2
⊥ + k2

‖

)
c2

ω2
+
∑
α

ω2
pα

ω
A

∫
2πdv‖

exp

(
−

v2‖
v2
t‖

)
(
k‖v‖ − ω − nωc

) (−v2
t⊥
2

)
×
(
d1 + d2v‖ + d3v

3
‖ + d4v

4
‖ + d5v

5
‖
)

= 0

After Simplifying it we have,

1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

πv2
t⊥ω

2
pα

ω
A

∫
dv‖

exp

(
−

v2‖
v2
t‖

)
(
k‖v‖ − ω − nωc

) × (d1 + d2v‖ + d3v
3
‖ + d4v

4
‖ + d5v

5
‖
)

= 0

(4.7)

Now we have to find the parallel component integration i-e

∫ ∞
−∞

dv‖

(
d1 + d2v‖ + d3v

3
‖ + d4v

4
‖ + d5v

5
‖

)
k‖v‖ − (ω ± ωc)

exp

(
−
v2
‖

v2
t‖

)

Let s =
v‖
vt‖
⇒ v‖ = svt‖ ⇒ dv‖ = vt‖ds and ξ = ωr±ωc

k‖vt‖
. So Eq (4.7) becomes,

1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

πv2
t⊥ω

2
pα

ω
A

1

k‖

∫ ∞
−∞

ds

(
d1 + d2vt‖s+ d3v

3
t‖s

3 + d4v
4
t‖s

4 + d5v
5
t‖s

5
)

s− ξ
exp

(
−s2

)
(4.8)

Expanding the plasma dispersion function for large argument we have,

Z(ξ) = i
√
πe−ξ

2 − 1

ξ

(
1 +

1

2ξ2
+

3

4ξ4
+

15

8ξ6

)
........

The derivative of the plasma dispersion function has the following form,

Z (ξ) =
1√
π

∫ ∞
−∞

dS
e−S

2

S − ξ

Ź(ξ) = −2i
√
πξe−ξ

2

+
1

ξ2

For n number of successive derivative

Z(n) (ξ) =
1√
π

∫ ∞
−∞

dS

d(n)
(
e−S

2
)

dS(n)

(S − ξ)
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Using Eq (4.8 ) we have,

1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

πv2
t⊥ω

2
pα

ω
A

√
π

k‖
×

Z (ξ) d1 − d2
2
vt‖Z

(1) (ξ) + d3v
3
t‖
(
−1

8

(
Z(3) (ξ) + 6Z(1) (ξ)

))
+

d4v
4
t‖

1
16

(
Z(4) (ξ) + 12Z (ξ) + 12Z(2) (ξ)

)
+

d5v
5
t‖

1
32

(
Z(5) (ξ) + 20Z(3) (ξ) + 60Z(1) (ξ)

)


Where as Z (ξ), Z(1) (ξ), Z(2) (ξ), Z(3) (ξ), Z(4) (ξ) and Z(5) (ξ) are the derivatives of the plasma

dispersion function.

By simplifying the terms we get,

1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

πv2
t⊥ω

2
pα

ω
A

√
π

k‖
× (4.9)

(
d1 + 3

4
d4v

4
t‖

)
Z (ξ) +

(
−d2

2
vt‖ − 3

4
d3v

3
t‖ + 15

8
d5v

5
t‖

)
Z(1) (ξ) +(

3
4
d4v

4
t‖

)
Z(2) (ξ) +

(
−1

8
d3v

3
t‖ + 5

8
d5v

5
t‖

)
Z(3) (ξ) +(

1
16
d4v

4
t‖

)
Z(4) (ξ) +

(
1
32
d5v

5
t‖

)
Z(5) (ξ)


Now expanding derivatives of dispersion function with respect to large argument, we have

Z(ξ) = i
√
πe−ξ

2 − 1

ξ

(
1 +

1

2ξ2
+

3

4ξ4
+

15

8ξ6
...........

)
Z(1)(ξ) = −2i

√
πξe−ξ

2 −
(
− 1

ξ2
− 3

2ξ4
− 15

4ξ6
− 105

8ξ8
........

)
Z(2)(ξ) = −2i

√
π
(
1− 2ξ2

)
e−ξ

2 −
(

2

ξ3
+

12

2ξ5
+

90

4ξ7
+

840

8ξ9
......

)
Z(3)(ξ) = −2i

√
π
(
4ξ3 − 6ξ

)
e−ξ

2 −
(
− 6

ξ4
− 60

2ξ6
− 630

4ξ8
− 7560

8ξ10
......

)
Z(4)(ξ) = −2i

√
π
[
24ξ2 − 6− 8ξ4

]
e−ξ

2 −
(

24

ξ5
+

360

2ξ7
+

5040

4ξ9
+

75600

8ξ11
......

)
Z(5)(ξ) = −2i

√
π
[
60ξ − 80ξ3 + 16ξ5

]
e−ξ

2 −
(
−120

ξ6
− 2520

2ξ8
− 45360

4ξ10
− 831600

8ξ12
......

)
Now putting the respective values in Eq (4.9) we have,
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1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

πv2
t⊥ω

2
pα

ω
A

√
π

k‖
×

(
d1 + 3

4
d4v

4
t‖

)(
i
√
πe−ξ

2 − 1
ξ

(
1 + 1

2ξ2
+ 3

4ξ4
+ 15

8ξ6
...........

))
+(

−d2
2
vt‖ − 3

4
d3v

3
t‖ + 15

8
d5v

5
t‖

)(
−2i
√
πξe−ξ

2 −
(
− 1
ξ2
− 3

2ξ4
− 15

4ξ6
− 105

8ξ8
........

))
+(

3
4
d4v

4
t‖

)(
−2i
√
π (1− 2ξ2) e−ξ

2 −
(

2
ξ3

+ 12
2ξ5

+ 90
4ξ7

+ 840
8ξ9
......

))
+(

−1
8
d3v

3
t‖ + 5

8
d5v

5
t‖

)(
−2i
√
π (4ξ3 − 6ξ) e−ξ

2 −
(
− 6
ξ4
− 60

2ξ6
− 630

4ξ8
− 7560

8ξ10
......

))
+(

1
16
d4v

4
t‖

)(
−2i
√
π [24ξ2 − 6− 8ξ4] e−ξ

2 −
(

24
ξ5

+ 360
2ξ7

+ 5040
4ξ9

+ 75600
8ξ11

......
))

+(
1
32
d5v

5
t‖

)(
−2i
√
π [60ξ − 80ξ3 + 16ξ5] e−ξ

2 −
(
−120

ξ6
− 2520

2ξ8
− 45360

4ξ10
− 831600

8ξ12
......

))


Separating the Real and Imaginary part respectively we have,

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

πv2
t⊥ω

2
pα

ω
A

√
π

k‖
×

(
d1 + 3

4
d4v

4
t‖

)(
−1
ξ

(
1 + 1

2ξ2
+ 3

4ξ4
+ 15

8ξ6
...........

))
+(

−d2
2
vt‖ − 3

4
d3v

3
t‖ + 15

8
d5v

5
t‖

)(
−
(
− 1
ξ2
− 3

2ξ4
− 15

4ξ6
− 105

8ξ8
........

))
+(

3
4
d4v

4
t‖

)(
−
(

2
ξ3

+ 12
2ξ5

+ 90
4ξ7

+ 840
8ξ9
......

))
+(

−1
8
d3v

3
t‖ + 5

8
d5v

5
t‖

)(
−
(
− 6
ξ4
− 60

2ξ6
− 630

4ξ8
− 7560

8ξ10
......

))
+(

1
16
d4v

4
t‖

)(
−
(

24
ξ5

+ 360
2ξ7

+ 5040
4ξ9

+ 75600
8ξ11

......
))

+(
1
32
d5v

5
t‖

)(
−
(
−120

ξ6
− 2520

2ξ8
− 45360

4ξ10
− 831600

8ξ12
......

))



Di (ω) =

√
π

k‖



(
d1 + 3

4
d4v

4
t‖

)(
i
√
πe−ξ

2
)

+(
−d2

2
vt‖ − 3

4
d3v

3
t‖ + 15

8
d5v

5
t‖

)(
−2i
√
πξe−ξ

2
)

+(
3
4
d4v

4
t‖

)(
−2i
√
π (1− 2ξ2) e−ξ

2
)

+(
−1

8
d3v

3
t‖ + 5

8
d5v

5
t‖

)(
−2i
√
π (4ξ3 − 6ξ) e−ξ

2
)

+(
1
16
d4v

4
t‖

)(
−2i
√
π [24ξ2 − 6− 8ξ4] e−ξ

2
)

+(
1
32
d5v

5
t‖

)(
−2i
√
π [60ξ − 80ξ3 + 16ξ5] e−ξ

2
)


First simplifying the real part we have, and taking only 1

ξ2
up to terms we have,

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

πv2
t⊥ω

2
pα

ω
A

√
π

k‖

 (
d1 + 3

4
d4v

4
t‖

)(
−1
ξ

)
+(

−d2
2
vt‖ − 3

4
d3v

3
t‖ + 15

8
d5v

5
t‖

)(
−
(
− 1
ξ2

))
+


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Putting ξ = ωr−ωc
k‖vt‖

and Taking ωr >> ωc as we have taken ωr−ωc
k‖vt‖

>> 1 we have,

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

πv2
t⊥ω

2
pα

ω
A

√
π

k‖

 (
d1 + 3

4
d4v

4
t‖

)(
k‖vt‖
ωc

)
+(

−d2
2
vt‖ − 3

4
d3v

3
t‖ + 15

8
d5v

5
t‖

)(
k‖vt‖
ωc

)2


Now putting the values of d1, d2, d3, d4 and d5 in above equation and Simplifying we have,

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

πv2
t⊥ω

2
pα

ω
A

√
π

k‖

(
k‖vt‖
ωc

)


(
(I1 (nb) + 2ΛI2 (nb) + ΛI3 (nb)) + 3

4
ΛI1 (nb)

)
+ −1

2

k‖vt‖
ω
{AT (I1 (nb) + ΛI3 (nb))− 2ΛI2 (nb)}−

3
4

(
−k‖vt‖

ω

(
2Λ

v2t⊥
v2
t‖

)
I1 (nb)

)
+ 15

8
Λ
k‖vt‖
ω
AT I1 (nb)

(k‖vt‖ωc

)


Putting AT =
v2t⊥
v2
t‖
− 1 we have

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

πv2
t⊥ω

2
pα

ω
A

√
π

k‖

(
k‖vt‖
ωc

)


(
(I1 (nb) + 2ΛI2 (nb) + ΛI3 (nb)) + 3

4
ΛI1 (nb)

)
+ −1

2
{AT (I1 (nb) + ΛI3 (nb))− 2ΛI2 (nb)}+

3
2
Λ (AT + 1) I1 (nb) + 15

8
ΛAT I1 (nb)

(k‖vt‖
ωc

)(
k‖vt‖
ω

)


Separating the I1 (nb),I2 (nb),I3 (nb) terms and simplifying we have,

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

πv2
t⊥ω

2
pα

ω
A

√
π

k‖

(
k‖vt‖
ωc

)


I1 (nb)
(

1 + 3
4
Λ + 1

2

(
−AT + 3Λ + 27

4
ΛAT

) (k‖vt‖
ωc

)(
k‖vt‖
ω

))
+

I2 (nb) 2Λ
(

1 + 1
2

(
k‖vt‖
ωc

)(
k‖vt‖
ω

))
+

I3 (nb) Λ
(

1− 1
2
AT

(
k‖vt‖
ωc

)(
k‖vt‖
ω

))


Putting A = 1

(π)3/2(1+ 11
4

Λ)v2t⊥vt‖
in above equation we have,

52



1−

(
k2
⊥ + k2

‖

)
c2

ω2
−

∑
α

ω2
pα

ωωc

1(
1 + 11

4
Λ
) ×


I1 (nb)

(
1 + 3

4
Λ + 1

2

(
−AT + 3Λ + 27

4
ΛAT

) (k‖vt‖
ωc

)(
k‖vt‖
ω

))
+

I2 (nb) 2Λ
(

1 + 1
2

(
k‖vt‖
ωc

)(
k‖vt‖
ω

))
+

I3 (nb) Λ
(

1− 1
2
AT

(
k‖vt‖
ωc

)(
k‖vt‖
ω

))


= 0

Multiplying each term with ω2 and Taking ωr >> ωc as we have taken ωr−ωc
k‖vt‖

>> 1 we have,

−
(
k2
⊥ + k2

‖
)
c2−

∑
α

ωω2
pα

ωc

1(
1 + 11

4
Λ
) ×


I1 (nb)

1 + 3
4
Λ + 1

2

 −AT + 3Λ

+27
4

ΛAT

(k‖vt‖
ωc

)(
k‖vt‖
ω

)+

I2 (nb) 2Λ
(

1 + 1
2

(
k‖vt‖
ωc

)(
k‖vt‖
ω

))
+

I3 (nb) Λ
(

1− 1
2
AT

(
k‖vt‖
ωc

)(
k‖vt‖
ω

))


= 0

Splitting the summation term we have,

−
∑
α

ωω2
pα

ωc

1(
1 + 11

4
Λ
) ×


I1 (nb)

(
1 + 3

4
Λ
)

+

I2 (nb) (2Λ) +

I3 (nb) (Λ)

−

∑
α

ω2
pα(

1 + 11
4

Λ
) ×


I1 (nb)

(
1
2

(
−AT + 3Λ + 27

4
ΛAT

) (k‖vt‖
ωc

)2
)

+

I2 (nb) 2Λ

(
1
2

(
k‖vt‖
ωc

)2
)

+

I3 (nb) Λ

(
−1

2
AT

(
k‖vt‖
ωc

)2
)


Now putting the split terms into its original position,Simplifying and taking

(
k2
⊥ + k2

‖

)
c2 as

common we have,
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(
k2
⊥ + k2

‖
)
c2


1−
∑
α

ω2
pα(

1 + 11
4

Λ
) (
k2
⊥ + k2

‖

)
c2
×


I1 (nb)

1
2

 −AT + 3Λ+

27
4

ΛAT

(k‖vt‖
ωc

)2

+

I2 (nb) 2Λ

(
1
2

(
k‖vt‖
ωc

)2
)

+

I3 (nb) Λ

(
−1

2
AT

(
k‖vt‖
ωc

)2
)





=
∑
α

ωω2
pα

ωc

1(
1 + 11

4
Λ
) ×


I1 (nb)

(
1 + 3

4
Λ
)

+

I2 (nb) (2Λ) +

I3 (nb) (Λ)


Dividing B.H.S by

(
k2
⊥ + k2

‖

)
c2 we have,

1−
∑
α

ω2
pα(

1 + 11
4

Λ
) (
k2
⊥ + k2

‖

)
c2
×


I1 (nb)

(
1
2

(
−AT + 3Λ + 27

4
ΛAT

) (k‖vt‖
ωc

)2
)

+

I2 (nb) 2Λ

(
1
2

(
k‖vt‖
ωc

)2
)

+

I3 (nb) Λ

(
−1

2
AT

(
k‖vt‖
ωc

)2
)





=
∑
α

ωω2
pα

ωc

1(
1 + 11

4
Λ
) (
k2
⊥ + k2

‖

)
c2
×


I1 (nb)

(
1 + 3

4
Λ
)

+

I2 (nb) (2Λ) +

I3 (nb) (Λ)


So we have,

ω

ωc
=

(
1 + 11

4
Λ
) (
k2
⊥ + k2

‖

)
c2

ω2
pα ×


I1 (nb)

(
1 + 3

4
Λ
)

+

I2 (nb) (2Λ) +

I3 (nb) (Λ)


×



1−
∑

α

ω2
pα

(1+ 11
4

Λ)
(
k2⊥+k2‖

)
c2
×

I1 (nb)

(
1
2

(
−AT + 3Λ + 27

4
ΛAT

) (k‖vt‖
ωc

)2
)

+

I2 (nb) 2Λ

(
1
2

(
k‖vt‖
ωc

)2
)

+

I3 (nb) Λ

(
−1

2
AT

(
k‖vt‖
ωc

)2
)




This is the required dispersion relation for oblique Whistlers using cairns distribution function.

Now for the growth rate we have,

γ = −Di (ω)
∂Dr(ω)
∂ωr

(4.10)
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Putting the value of A = 1

(π)3/2(1+ 11
4

Λ)v2t⊥vt‖
in Dr (ω) we have,

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

ω2
pα

ω

1(
1 + 11

4
Λ
)
k‖vt‖


(
d1 + 3

4
d4v

4
t‖

)(
−1
ξ

(
1 + 1

2ξ2

))
+(

−d2
2
vt‖ − 3

4
d3v

3
t‖ + 15

8
d5v

5
t‖

)(
−
(
− 1
ξ2

))
+(

3
4
d4v

4
t‖

)(
−
(

2
ξ3

))


Let defining some terms as,

e1 =

(
d1 +

3

4
d4v

4
t‖

)
e2 =

(
−d2

2
vt‖ −

3

4
d3v

3
t‖ +

15

8
d5v

5
t‖

)
e3 =

(
3

4
d4v

4
t‖

)
Than we have,

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

ω2
pα

ω

1(
1 + 11

4
Λ
)
k‖vt‖

(
−e1

1

ξ
+ e2

1

ξ2
−
(

2e3 +
1

2
e1

)
1

ξ3

)

Putting the value of ξ we have,

Dr (ω) = 1−

(
k2
⊥ + k2

‖

)
c2

ω2
−
∑
α

ω2
pα

ω

1(
1 + 11

4
Λ
)
 −e1

(
1

ω−|ωc|

)
+ e2k‖vt‖

(
1

ω−|ωc|

)2

−(
2e3 + 1

2
e1

) (
k‖vt‖

)2
(

1
ω−|ωc|

)3


Take the derivative of Dr (ω) by extracting the 1

ω
term from d2, d3, d4 which is present in e2 .

∂Dr (ω)

∂ωr
= +2

(
k2
⊥ + k2

‖

)
c2

ω3
−

∑
α

ω2
pα(

1 + 11
4

Λ
)
 −e1

(
(2ω−|ωc|)

(ω(ω−|ωc|))2

)
+ e2k‖vt‖

(4ω3−6ω2|ωc|+2ω|ωc|2)
(ω2(ω−|ωc|)2)

2 −(
2e3 + 1

2
e1

) (
k‖vt‖

)2 (4ω3−9ω2|ωc|+6ω|ωc|2−|ωc|3)
(ω(ω−|ωc|)3)

2



As we have ωr−ωc
k‖vt‖

>> 1 therefore ωr >> ωc and simplifying we have,
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∂Dr (ω)

∂ωr
= +2

(
k2
⊥ + k2

‖

)
c2

ω3
−
∑
α

ω2
pα(

1 + 11
4

Λ
) 1

(ω2 |ωc|)

(
e1 +

2e2k‖vt‖
ω |ωc|

+

(
2e3 + 1

2
e1

) (
k‖vt‖

)2

|ωc|2

)

Now putting the values of e1,e2,e3 back we have,

∂Dr (ω)

∂ωr
= +2

(
k2
⊥ + k2

‖

)
c2

ω3
−
∑
α

ω2
pα(

1 + 11
4

Λ
) 1

(ω2 |ωc|)
×

(
d1 + 3

4
d4v

4
t‖

)
+(

−d2
2
vt‖ − 3

4
d3v

3
t‖ + 15

8
d5v

5
t‖

)
2k‖vt‖
ω|ωc| +

(2( 3
4
d4v4t‖)+ 1

2(d1+ 3
4
d4v4t‖))(k‖vt‖)

2

|ωc|2


And now putting the values of d1 ,d2,d3,d4,d5 we have,

∂Dr (ω)

∂ωr
= +2

(
k2
⊥ + k2

‖

)
c2

ω3
−
∑
α

ω2
pα(

1 + 11
4

Λ
) 1

(ω2 |ωc|)
×

(
(I1 (nb) + 2ΛI2 (nb) + ΛI3 (nb)) + 3

4
Λ 1
v4
t‖
I1 (nb) v4

t‖

)
+

−k‖
2
{AT (I1 (nb) + ΛI3 (nb))− 2ΛI2 (nb)} vt‖−

3
4

(
−k‖v

2
t⊥

1

(
2Λ 1

v4
t‖

)
I1 (nb)

)
v3
t‖+

15
8

Λ
k‖
v4
t‖
AT I1 (nb) v5

t‖

 2k‖vt‖
ω|ωc| +


2

(
3
4
Λ 1
v4
t‖
I1 (nb) v4

t‖

)
+

1
2

(
(I1 (nb) + 2ΛI2 (nb) + ΛI3 (nb)) + 3

4
Λ 1
v4
t‖
I1 (nb) v4

t‖

)
(k‖vt‖)

2

|ωc|2


Simplifying by putting AT =

v2t⊥
v2
t‖
− 1 we have,

∂Dr (ω)

∂ωr
= +2

(
k2
⊥ + k2

‖

)
c2

ω3
−
∑
α

ω2
pα(

1 + 11
4

Λ
) 1

(ω2 |ωc|)
×

(
(I1 (nb) + 2ΛI2 (nb) + ΛI3 (nb)) + 3

4
ΛI1 (nb)

)
+ −{AT (I1 (nb) + ΛI3 (nb))− 2ΛI2 (nb)}+

3Λ (AT + 1) I1 (nb) + 15
4

ΛAT I1 (nb)

 (k‖vt‖)
2

ω|ωc| +

( 3
2

ΛI1(nb)+ 1
2((I1(nb)+2ΛI2(nb)+ΛI3(nb))+ 3

4
ΛI1(nb)))(k‖vt‖)

2

|ωc|2


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Separating and simplifying the I1 (nb), I2 (nb) and I3 (nb) term we have,

∂Dr (ω)

∂ωr
= +2

(
k2
⊥ + k2

‖

)
c2

ω3
−
∑
α

ω2
pα(

1 + 11
4

Λ
) 1

(ω2 |ωc|)
× (4.11)

I1 (nb)


1 + 3

4
Λ+(

3Λ
(
1 + 9

4
AT
)
− AT

) (k‖vt‖)
2

ω|ωc| +(
1 + 15

4
Λ
) (k‖vt‖)

2

2|ωc|2

+

I2 (nb) 2Λ

(
1 +

(k‖vt‖)
2

ω|ωc| +
1
2(k‖vt‖)

2

|ωc|2

)
+

I3 (nb)

(
Λ + Λ

(k‖vt‖)
2

ω|ωc| +
( 1
2

(Λ))(k‖vt‖)
2

|ωc|2

)


Now as the imaginary part is,

Di (ω) = −
∑
α

ω2
pα

ω
(
1 + 11

4
Λ
)
k‖vt‖



(
d1 + 3

4
d4v

4
t‖

)(√
πe−ξ

2
)

+(
−d2

2
vt‖ − 3

4
d3v

3
t‖ + 15

8
d5v

5
t‖

)(
−2
√
πξe−ξ

2
)

+(
3
4
d4v

4
t‖

)(
−2
√
π (1− 2ξ2) e−ξ

2
)

+(
−1

8
d3v

3
t‖ + 5

8
d5v

5
t‖

)(
−2
√
π (4ξ3 − 6ξ) e−ξ

2
)

+(
1
16
d4v

4
t‖

)(
−2
√
π [24ξ2 − 6− 8ξ4] e−ξ

2
)

+(
1
32
d5v

5
t‖

)(
−2
√
π [60ξ − 80ξ3 + 16ξ5] e−ξ

2
)


Extracting the ξ, ξ2, ξ3, ξ4 and ξ5 and Simplifying it we have,

Di (ω) = −
∑
α

ω2
pα/ω
√
πe−ξ

2(
1 + 11

4
Λ
)
k‖vt‖

 d1 +
(
d2vt‖

)
ξ+(

d3v
3
t‖

)
ξ3 +

(
d4v

4
t‖

)
ξ4 −

(
d5v

5
t‖

)
ξ5


Putting the value of ξ and also putting (ωr − |ωc|) = − |ωc| as ωr >> ωc we have,

Di (ω) = −
∑
α

ω2
pα/ω
√
πe−ξ

2(
1 + 11

4
Λ
)
k‖vt‖

 d1 −
(
d2vt‖

) ( |ωc|
k‖vt‖

)
−
(
d3v

3
t‖

)(
|ωc|
k‖vt‖

)3

+(
d4v

4
t‖

)(
|ωc|
k‖vt‖

)4

+
(
d5v

5
t‖

)(
|ωc|
k‖vt‖

)5


Putting the values of d1 , d2, d3, d4, d5 and also putting AT =

v2t⊥
v2
t‖
− 1 we have,
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Di (ω) = −
∑
α

ω2
pα/ω
√
πe−ξ

2(
1 + 11

4
Λ
)
k‖vt‖


(I1 (nb) + 2ΛI2 (nb) + ΛI3 (nb))−

({AT (I1 (nb) + ΛI3 (nb))− 2ΛI2 (nb)})
(
|ωc|
ω

)
−

(− (AT + 1) (2Λ) I1 (nb))
(
|ωc|
k‖vt‖

)3 (k‖vt‖
ω

)
+

(ΛI1 (nb))
(
|ωc|
k‖vt‖

)4

+ (ΛAT I1 (nb))
k‖vt‖
ω

(
|ωc|
k‖vt‖

)5


Simplifying and separating the I1 (nb), I2 (nb) and I3 (nb) terms we have,

Di (ω) = −
ω2
pα/ω
√
πe−ξ

2(
1 + 11

4
Λ
)
k‖vt‖


I1 (nb)


1− AT

(
|ωc|
ω

)
+

(2Λ) (AT + 1)
(
|ωc|
k‖vt‖

)3 (k‖vt‖
ω

)
+

Λ
(
|ωc|
k‖vt‖

)4

+ ΛAT

(
k‖vt‖
ω

)(
|ωc|
k‖vt‖

)5


I2 (nb)

(
2Λ
(

1 +
(
|ωc|
ω

)))
+

I3 (nb)
(

Λ
(

1− AT
(
|ωc|
ω

)))


(4.12)

Putting the values of Eq (4.11) and Eq (4.12) in Eq(4.10) we have,

γ = −

− ω2
pα

√
πe−ξ

2

ω(1+ 11
4

Λ)k‖vt‖


I1 (nb)


1− AT

(
|ωc|
ω

)
+

(2Λ) (AT + 1)
(
|ωc|
k‖vt‖

)3 (k‖vt‖
ω

)
+

Λ
(
|ωc|
k‖vt‖

)4

+ ΛAT

(
k‖vt‖
ω

)(
|ωc|
k‖vt‖

)5


I2 (nb)

(
2Λ
(

1 +
(
|ωc|
ω

)))
+ I3 (nb)

(
Λ
(

1− AT
(
|ωc|
ω

)))



+2

(
k2⊥+k2‖

)
c2

ω3 −
∑

α

ω2
pα

(1+ 11
4

Λ)
1

(ω2|ωc|) ×



I1 (nb)


1 + 3

4
Λ+(

3Λ
(
1 + 9

4
AT
)
− AT

) (k‖vt‖)
2

ω|ωc| +(
1 + 15

4
Λ
) (k‖vt‖)

2

2|ωc|2

+

I2 (nb) 2Λ

(
1 +

(k‖vt‖)
2

ω|ωc| +
1
2(k‖vt‖)

2

|ωc|2

)
+

I3 (nb)

(
Λ + Λ

(k‖vt‖)
2

ω|ωc| +
( 1
2

(Λ))(k‖vt‖)
2

|ωc|2

)


Putting the value of ξ and simplifying it to get γ

|ωc| form we have,

58



γ

|ωc|
=

ω2
pα

√
πe

−

 ( ω
|ωc|
−1)(

k‖c
ωpα

)√
β‖


2



I1 (nb)



1
|ωc| − AT

(
|ωc|
ω

)
+

(2Λ) (AT + 1)
(
|ωc|
k‖vt‖

)2 (
1
ω

)
+

Λ |ωc|3
(

1
k‖vt‖

)4

+

ΛAT
(

1
ω

) ( |ωc|
k‖vt‖

)4


+

I2 (nb)
(

2Λ
(

1
|ωc| +

(
1
ω

)))
+

I3 (nb)
(

Λ
(

1
|ωc| − AT

(
1
ω

)))



(
1 + 11

4
Λ
)
k‖vt‖



2
(k2⊥+k2‖)c2

ω2 −
∑

α

ω2
pα

(1+ 11
4

Λ)
1

(ω|ωc|)×

I1 (nb)


1 + 3

4
Λ+ 3Λ

(
1 + 9

4
AT
)
−

AT

 (k‖vt‖)
2

ω|ωc| +

(
1 + 15

4
Λ
) (k‖vt‖)

2

2|ωc|2

+

I2 (nb) 2Λ

 1 +
(k‖vt‖)

2

ω|ωc| +
1
2(k‖vt‖)

2

|ωc|2

+

I3 (nb)

 Λ + Λ
(k‖vt‖)

2

ω|ωc| +

( 1
2

(Λ))(k‖vt‖)
2

|ωc|2






Further defying some terms i-e

M1 =

 1
|ωc| − AT

(
|ωc|
ω

)
+ (2Λ) (AT + 1)

(
|ωc|
k‖vt‖

)2 (
1
ω

)
+

Λ |ωc|3
(

1
k‖vt‖

)4

+ ΛAT
(

1
ω

) ( |ωc|
k‖vt‖

)4


M2 = 2Λ

(
1

|ωc|
+

(
1

ω

))

M3 = Λ

(
1

|ωc|
− AT

(
1

ω

))
And

N1 =

 1 + 3
4
Λ +

 3Λ
(
1 + 9

4
AT
)
−

AT

 (k‖vt‖)
2

ω|ωc| +

(
1 + 15

4
Λ
) (k‖vt‖)

2

2|ωc|2


N2 = 2Λ

(
1 +

(
k‖vt‖

)2

ω |ωc|
+

1
2

(
k‖vt‖

)2

|ωc|2

)
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N3 =

(
Λ + Λ

(
k‖vt‖

)2

ω |ωc|
+

(
1
2

(Λ)
) (
k‖vt‖

)2

|ωc|2

)
So we have,

γ

|ωc|
=
ω2
pα

√
πe

−

 ( ω
|ωc|
−1)(

k‖c
ωpα

)√
β‖


2

(I1 (nb)M1 + I2 (nb)M2 + I3 (nb)M3)

(
1 + 11

4
Λ
)
k‖vt‖

 2
(k2⊥+k2‖)c2

ω2 −
∑

α

ω2
pα

(1+ 11
4

Λ)
1

(ω|ωc|)×

(I1 (nb)N1 + I2 (nb)N2 + I3 (nb)N3)


This is the required growth rate for oblique whistler modes, using cairns distribution. Where Λ

is non-thermality parameter. In the limit, that Λ approaches 0, we get expression for growth rate of

Bi-Maxwellian distribution.
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Figure 4.1: :(a) Oblique Whistler mode dispersion relation for AT = 0.1, β∥ = 0.504,
Λ = 0.2 and for changing values of k⊥/k∥. (b) Oblique Whistler mode growth rate
for AT = 0.1, β∥ = 0.504, Λ = 0.2 and for changing values of k⊥/k∥. Here blue
solid curve represents k⊥/k∥ = 0.1, red dotted curve representsk⊥/k∥ = 0.2, brown
dot-dashed curve represents k⊥/k∥ = 0.3 , green small dashed curve represents
k⊥/k∥ = 0.4 and purple large dashed curve represents k⊥/k∥ = 0.5

Figure 4.2: :(a) Oblique Whistler mode dispersion relation for AT = 0.5, β∥ = 0.504,
Λ = 0.2 and for changing values of k⊥/k∥. (b) Oblique Whistler mode growth rate
for AT = 0.5, β∥ = 0.504, Λ = 0.2 and for changing values of k⊥/k∥. Here blue
solid curve represents k⊥/k∥ = 0.1, red dotted curve representsk⊥/k∥ = 0.2, brown
dot-dashed curve represents k⊥/k∥ = 0.3 , green small dashed curve represents
k⊥/k∥ = 0.4 and purple large dashed curve represents k⊥/k∥ = 0.5

7



Figure 4.3: :(a) Oblique Whistler mode dispersion relation for AT = 1.5, β∥ = 0.504,
Λ = 0.2 and for changing values of k⊥/k∥. (b) Oblique Whistler mode growth rate
for AT = 1.5, β∥ = 0.504, Λ = 0.2 and for changing values of k⊥/k∥. Here blue
solid curve represents k⊥/k∥ = 0.1, red dotted curve representsk⊥/k∥ = 0.2, brown
dot-dashed curve represents k⊥/k∥ = 0.3 , green small dashed curve represents
k⊥/k∥ = 0.4 and purple large dashed curve represents k⊥/k∥ = 0.5
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4.3 Discussion and Conclusion

We treat oblique whistler waves with different anisotropic velocity distributions.
First, we treat oblique whistler waves with anisotropic Bi-Maxwellian distribution
and find out the dispersion relation and growth rate of oblique whistler waves. It
was found that the growth rate of oblique whistler waves increases with increasing
electron temperature anisotropy. Next, we treat the oblique whistler waves with
Cairns distribution and find that the Non-Thermlity parameter Λ, electron temper-
ature anisotropy, plasma density, and magnetic field are all observed to influence the
actual frequency of Cairns scattered electrons. We investigated the plasma disper-
sion relation and growth rates for fixed values of β∥ and Λ while varying the values
of K⊥/K∥ and AT (electron temperature anisotropy) in this case. The growth rate
and dispersion relationship were found to be more sensitive to electron tempera-
ture anisotropy. The dispersion properties and growth rates of Cairns-distributed
electrons were compared to those of Maxwellian-distributed electrons, and it was
discovered that Cairns-distributed electrons had a higher growth rate than their
Maxwellian counterparts. The actual frequency with cairns scattered electrons is
also less than that obtained with Bi-Maxwellian distribution for β∥ < 1.
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