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Abstract

Studying non-Markovian open quantum systems coupled strongly with their

environments is essential for the development of future quantum technolo-

gies. Such systems are ubiquitous in real life but quite poorly understood.

Here we develop a numerical approach to solve open quantum system coupled

to a harmonic environment based on Feynman Vernon Influence Functional.

The history of the system evolution is stored in an augmented density tensor

(ADT) in order to study the non-Markovian behaviour. The ADT scheme,

however, cannot account for non-Markovian effects that go far back in time.

Here we represent the influence functional and the ADT as time-evolving ma-

trix product operators (TEMPO) and states (TEMPS), respectively. At each

time step, the matrix product operator and state are contracted to give the

time-evolved state which is decomposed using singular value decomposition

and truncation. This method is very efficient and works for different coupling

regimes. We demonstrate the robustness of the TEMPO algorithm by ex-

amining the phonon-induced damping of Rabi Oscillations in semiconductor

Quantum Dots coupled to a cavity for different phonon-exciton couplings.

The decay rates of Rabi Oscillations at different temperatures are also com-

pared.
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Chapter 1

Introduction

Quantum systems that interact with their environments are referred to as

open quantum systems (OQS). Their interaction with the environment re-

sults in phenomena such as decoherence and dissipation. These systems are

ubiquitous in nature. In plants, the phononic environment created by the

vibrations of proteins affects the rate of energy transfer in photosynthesis

[1, 2]. The problem of a quantum system interacting with its environment

has been long-studied in the area of molecular physics. Furthermore, exten-

sive research is being carried out in solid state physics and quantum optics

[3]. Semiconductor systems such as quantum dots not only possess rich and

interesting physics, but also have wide industrial applications [4]. Now, with

the rapid emergence of quantum technologies, it has become increasingly im-

portant to study the OQSs in order to further improve our understanding of

nature and accelerate the development in this industry.

The OQSs can be sub-divided as Markovian and non-Markovian sytems [5].

In situations where the coupling between the system and environment is

weak, we can assume that the environment is memoryless. This means that

after the interaction, the environment bounces back to its equilibrium state
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instantaneously, thus forgetting that it ever interacted with the system. This

is called Markov approximation. For this approximation to be valid, the re-

laxation time of the system must be long as compared to the bath correlation

time. Markovian systems can be solved exactly using Born-Markov master

equations.

As we go beyond the weak-coupling regime, the environment can no longer

be assumed to be memoryless and the system’s history must be taken into

account. In such situations, the system and bath timescales are of the same

order and information can back-flow from the environment into the system.

This results in interesting non-Markovian dynamics [6, 7]. Hence, it becomes

crucial to find an accurate description of OQS strongly coupled to their envi-

ronment in order to fully understand how quantum systems dissipate energy

and lose their coherence.

Several perturbative approaches using master equations exist for studying

non-Markovian dynamics [5, 6]. However, these methods are limited to strict

parameter regimes. We need more general methods to solve a larger variety

of problems. Here we introduce a non-pertubative method that uses Feyn-

man path integral formulation of OQS. To improve efficiency, the method is

then implemented using tensor networks, in particular, matrix product states

(MPS).

This scheme is primarily developed for a few level system linearly coupled

to a bath comprising of an infinite set of harmonic oscillators. Harmonic

baths can model a number of environments such as photonic and phononic

environments.

The method involves integrating out the bath degrees of freedom to obtain

a discretized Feynman influence functional that carries all the effects of the

bath on the system and acts only on the reduced system states. Further-
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more, in order to keep track of the system’s history, we use an augmented

density tensor (ADT) to represent the state of the system at time t. The

influence functional couples the current evolution to the history and captures

the non-Markovian dynamics.

As the system evolves, the history of the system lengthens and the ADT

quickly grows to the point where it becomes unphysical to store it. To over-

come this problem, we assume that the bath has a finite memory. This

approximation known as the finite memory approximation allows us to prop-

agate the ADT containing only previous K timesteps. For efficient imple-

mentation of the algorithm, the ADT is represented as Matrix Product States

(MPS) and the influence functional is represented as Matrix Product Oper-

ators (MPO). For this reason, the method is named “, called Time-Evolving

Matrix Product Operators (TEMPO)” [8, 7]. The ADT is then evolved using

standard MPS/MPO methods.

The layout of the thesis is as follows. In Chapter 2, we provide the necessary

background and discuss the TEMPO algorithm in detail. In Chapter 3, we

study the physics of a quantum dot coupled to a cavity using the method

developed in Chapter 2. In Chapter 4, we conclude the discussion with a

short summary of our results and a brief discussion on more applications of

the algorithm.
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Chapter 2

Method

Consider a system with a few degrees of freedom coupled linearly to a har-

monic bath. The Hamiltonian of the bath is

Hb =
∑
i

ωiâ
†
i âi, (2.1)

where ωi is the frequency and â†i (âi) is the creation (annihilation) operator

of the ith bath mode. For a spatially large environment, it is a good ap-

proximation to take system-bath coupling as linear in bath coordinates. The

Hamiltonian for the system-bath interaction reads

Hs−b =
∑
i

ŝ(giâi + g∗i â
†
i ), (2.2)

where ŝ is the system operator that couples to bath mode i with coupling

strength, gi.

The total Hamiltonian is written as

H = H0 +
∑
i

ŝ(giâi + g∗i â
†
i ) +

∑
i

ωiâ
†
i âi, (2.3)

= H0 +HB (2.4)

where H0 is the free system Hamiltonian and HB consists of the bath Hamil-

tonian and the system-bath interaction.
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2.1 Feynman-Vernon Influence Functional

In this section, we derive an analytic expression for the Feynman-Vernon

influence functional. It is based on Feynman’s path integral formalism (see

Appendix A for a brief introduction) [9, 10].

s {q}

Figure 2.1: Schematic diagram of a system s linearly coupled to the environ-

ment oscillators with coordinates q = {q1, q2, . . . }

For an open system with coordinates s coupled linearly to an infinite set

of harmonic oscillators q = {qi} = {q1, q2, . . . } as schematized in Fig. 2.1

[11], the total density matrix is given by

ρt(t) ≡ ρt(s, s
′,q,q′, t). (2.5)

We assume that the system and bath are initially uncorrelated.

ρt(ti) = ρ(ti)⊗ ρB(ti) (2.6)

Drawing from the expression derived in Eq. (A.7) and the initial condition

Eq. (2.6), we write the matrix element of the time-evolved total density

matrix as

⟨sf ,qf | ρt(tf ) |s′f ,q′
f⟩ =

∫
dsids

′
idqidq

′
iJ(sf , s

′
f ,qf ,q

′
f , tf ; si, s

′
i,qi,q

′
i, ti)

× ⟨si| ρ(ti) |s′i⟩ ⟨qi| ρB(ti) |q′
i⟩ . (2.7)

For clarity, we write the above expression compactly as

⟨ρt(tf )⟩ =
∫
dsids

′
idqidq

′
iJ(tf |ti)⟨ρ(ti)⟩⟨ρB(ti)⟩, (2.8)
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where

J(ti; tf ) =

∫ f

i

D[s]D[s′]D[q]D[q′] exp (iS[s,q]− iS[s′,q′]). (2.9)

Here, S[s,q] is the total action which can be written as

S[s,q] = S0[s] + SB[s,q], (2.10)

where S0[s] is the action for the open system and SB[s,q] is the action for the

bath and the system-bath interaction. Inserting these in the above expression

and separating out the system and bath terms, we get

J(ti; tf ) =

∫ f

i

D[s]D[s′](iS0[s]− iS0[s
′])

∫ f

i

D[q]D[q′] exp (iSB[s,q]− iSB[s
′,q′]).

(2.11)

Defining the first integral in Eq. (2.11) as

F [s, s′] =
∫ f

i

D[s]D[s′] exp (iS0[s]− iS0[s
′]) (2.12)

The functional F constitutes the free part of the evolution. That is, it

contains the information about the evolution of the system as if there was

no environment present.

Now the propagator may be written as

J(ti; tf ) = F [s, s′]
∫ f

i

D[q]D[q′] exp (iSB[s,q]− iSB[s
′,q′]) (2.13)

Since we are only interested in the evolution of the open system, we trace

out the bath degrees of freedom to obtain an expression for the reduced

density matrix, ρ [11].

ρ(t) ≡ ρ(s, s′, t) =

∫
dq[ρt(t)]q=q′ (2.14)

The matrix element of the time-evolved reduced density matrix is given

by

⟨sf | ρ(t) |s′f⟩ =
∫
dqf [⟨sf ,qf | ρt(t) |s′f ,q′

f⟩]qf=q′
f

(2.15)

=

∫
dqf ⟨sf ,qf | ρt(t) |s′f ,qf⟩ (2.16)
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In path integral representation,

⟨ρ(tf )⟩ =
∫
dsids

′
iW(tf ; ti)⟨ρ(ti)⟩ (2.17)

where

W(tf ; ti) =

∫
dqfdqidq

′
iJ(tf ; ti)ρB(ti). (2.18)

Using the expression for J in Eq. (2.13) in the above equation and separating

out the system and bath terms, we get

W(sf , s
′
f , tf ; si, s

′
i, ti) = F [s, s′]I[s, s′] (2.19)

where

I[s, s′] =
∫ f

i

dqfdqidq
′
i

∫ f

i

D[q]D[q′] exp (iSB[s,q]− iSB[s
′,q′])ρB(ti).

(2.20)

Note that for I[s, s′] = 1,W describes the evolution of a free system. This

illustrates that the functional I[s, s′] contains complete information regard-

ing the influence of the bath on the system. I[s, s′] is the Feynman-Vernon

influence functional [12, 13].

Here we have assumed that the bath is harmonic, couples linearly to the

system and is, initially, in thermal equilibrium. Carrying out all the integra-

tions, we get the following expression for I,

I[s, s′] = Φ, (2.21)

where Φ, known as the phase influence functional is given by

Φ = −
∫ t

0

∫ t′

0

dt′′dt′
(
s(t′)− s′(t′)

)(
C(t′ − t′′)s(t′)−C(t− t′)s′(t′)

)
, (2.22)

where C is the bath autocorrelation function for the spectral density of

bath, J(ω) =
∑

i |gi|2 δ(ωi − ω) at temperature, T
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C(t) =
1

π

∫ ∞

0

J(ω)
(
coth

( ω
2T

)
cosωt− i sinωt

)
dω. (2.23)

Note that the bath Hamiltonian, HB is completely characterized by the sys-

tem operator, ŝ, coupling strength, g and bath mode frequency, ω.

In order to make the influence functional computable, we must discretize it.

This is achieved by discretizing the Feynman paths {s(t), s′(t)} by splitting

them into intervals of equal duration.

{s(t), s′(t)} = {s+k , s
−
k }

N
k=0, (2.24)

such that each s±k is constant w.r.t. time [14]. Here k is a timestep and N is

the total number of timesteps.

Now the phase influence functional reads

Φ[s, s′] = −
N∑
k=1

k∑
k′=1

(s+k − s
−
k )(ηk−k′ s

+
k′ − ηk−k′ s

−
k′), (2.25)

where the coefficients ηk−k′ are given by

ηk−k′ =


∫ tk
tk−1

∫ tk′
tk′−1

C(t′ − t′′)dt′′dt′ k ̸= k′∫ tk
tk−1

∫ t′

tk−1
C(t′ − t′′)dt′′dt′ k = k′

(2.26)

We may write the discretized influence functional as a product of influence

functions, Ik′ [8],

I[s, s′] =
N∏
k=1

k∏
k′=1

Ik′(s, s
′) (2.27)

where

Ik′(s, s
′) = exp (Φk′(s, s

′)) (2.28)
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2.2 Discretized Influence Functional in Liou-

ville Space

The state of a system is completely described by the density operator, ρ̂. In

a d-dimensional Hilbert space, the density operator is a d × d matrix. To

simplify our notation, we work in Liouville space. In this space, the density

operator is represented by a vector with d2 elements and written as |ρ⟩⟩.

The propagator that evolves these vectors is known as a superoperator and

is represented by a d2 × d2 matrix.

The reduced density operator for initially uncorrelated system and bath is

then written as

|ρ(t)⟩⟩ = TrB{|ρ(0)⟩⟩ |ρB(0)⟩⟩} (2.29)

For a generic reduced system with eigenvalue equations, ŝ |s+⟩ = s+ |s+⟩ and

ŝ |s−⟩ = s− |s−⟩, the density operator can be written as a linear combination

of system eigenstates

ρ̂ =
∑
S

ρS|S⟩⟩ ≡ |ρ⟩⟩, (2.30)

where |S⟩⟩ are the system eigenstates and the sum over S runs over the d2

pairs of {s+, s−}. Similarly, we can write the bath density operator in terms

of the bath eigenstates, |B⟩⟩.

The time evolution of the density operator is represented as

|ρ(t)⟩⟩ = eLt|ρ(0)⟩⟩, (2.31)

where L = 1
h̄
[H, ρ] is the Liouvillian and eLt is a superoperator. The evolution

generated by L = L0 + LB in Liouville space corresponds exactly with that

caused by H = H0 +HB in Hilbert space.

To obtain a discretized influence functional, we factorize the propagator eLt
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ρ̂ =

ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓



(a) In Hilbert space

|ρ⟩⟩ =


ρ↑↑

ρ↑↓

ρ↓↑

ρ↓↓


(b) In Liouville space

|ρ⟩⟩ = ρ↑↑| ↑↑⟩⟩+ρ↑↓| ↑↓⟩⟩+ρ↓↑| ↓↑⟩⟩+ρ↓↓| ↓↓⟩⟩

(c) Density operator written as a linear

combination of eigenstates

Figure 2.2: Vectorization of the density operator for a spin-1
2
system

as e(L∆t)N by slicing the time interval t into N equal intervals [14, 15]. Then,

using Trotter splitting (eL∆t ≈ eL0∆teLB∆t), we get

eLt = (e∆L0e∆LB)N , (2.32)

where we have written L∆t simply as ∆L for compactness.

Next we split the system path into N intervals of equal duration by inserting

12



resolutions of identity between each e∆L0e∆LB .

|ρt(t)⟩⟩ = (e∆L0e∆LB)N |ρ(0)⟩⟩ |ρB(0)⟩⟩

= e∆L0e∆LB 1̂e∆L0e∆LB 1̂ . . . 1̂e∆L0e∆LB 1̂|ρ(0)⟩⟩ |ρB(0)⟩⟩

=
∑

S0,..,SN−1

∑
B0,..,BN−1

e∆L0e∆LB |SN−1⟩⟩⟨⟨SN−1||BN−1⟩⟩⟨⟨BN−1|

× e∆L0e∆LB . . . |S1⟩⟩⟨⟨S1||B1⟩⟩⟨⟨B1|e∆L0e∆LB |S0⟩⟩⟨⟨S0|

× |B0⟩⟩⟨⟨B0|ρ(0)⟩⟩ ρB(0)⟩⟩

(2.33)

Since L0 is the free system Liouvillian, it acts only on the system states.

Whereas, LB contains the Liouvillian for bath as well as system-bath inter-

action. Hence, we can separate the system and bath terms.

|ρt(t)⟩⟩ =
∑

S0,..,SN−1

e∆L0|SN−1⟩⟩⟨⟨SN−1|e∆L0 . . . |S1⟩⟩⟨⟨S1|e∆L0|S0⟩⟩

× ⟨⟨S0|ρ(0)⟩⟩ ×
∑

B0,..,BN−1

e∆LB |BN−1⟩⟩⟨⟨BN−1|e∆LB . . . |B1⟩⟩

× ⟨⟨B1|e∆LB |B0⟩⟩⟨⟨B0||ρB(0)⟩⟩ (2.34)

The reduced density operator is obtained by taking a trace over the bath

degrees of freedom.

ρ(t) =
∑
BN

⟨⟨BN |ρt(t)⟩⟩ (2.35)
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The matrix element of the reduced density operator at time tN is

⟨⟨SN |ρ(t)⟩⟩ =
∑
BN

⟨⟨BN |⟨⟨SN |ρt(t)⟩⟩

=
∑

S0,..,SN−1

⟨⟨SN |e∆L0|SN−1⟩⟩⟨⟨SN−1|e∆L0 . . . |S1⟩⟩⟨⟨S1|e∆L0|S0⟩⟩

× ⟨⟨S0|ρ(0)⟩⟩
∑

B0,..,BN

⟨⟨BN |e∆LB |BN−1⟩⟩⟨⟨BN−1|e∆LB . . . |B1⟩⟩

× ⟨⟨B1e
∆LB |B0⟩⟩⟨⟨B0|ρB(0)⟩⟩

=
∑

S0,..,SN−1

F ({Sk}) I({Sk}) ⟨⟨S0|ρs(0)⟩⟩.

(2.36)

The functional F ({Sk}) is the free part of the evolution and is given as

F ({Sk}) =
∑

S0,..,SN−1

N∏
j=1

⟨⟨Sj|e∆L0|Sj−1⟩⟩. (2.37)

Whereas, the functional I({Sk}) is the discretized Feynman-Vernon influ-

ence functional. It contains the complete information regarding the bath’s

influence on the evolution of the system. It reads

I({Sk}) =
∑

B0,..,BN

N∏
j=1

⟨⟨Bj|e∆LB |Bj−1⟩⟩⟨⟨B0|ρB(0)⟩⟩ (2.38)

We assume that the bath is initially in thermal equilibrium at temperature T ,

ρB(0) =
1

ZB
exp

(
−HB

T

)
, where Z is the partition function, and carry out the

summations. This yields the following expression for the influence functional

I({Sk}) = exp

(
−

N∑
k=1

k∑
k′=1

(s+k − s
−
k )(ηk−k′ s

+
k′ − η

∗
k−k′ s

−
k′

)
(2.39)

The coefficients ηk−k′ that quantify the non-Markovian interaction between

the reduced system at different times tk and tk′ are as given in Eq. (2.26)

14



The time evolved system density operator then attains the following form

ρjN (tN) =
∑

j1,...,jN−1

(
N∏

n=1

n−1∏
k=0

Ĩk(jn, jn−k))ρj1 (2.40)

ρjk(tk) is the matrix element of the density operator at timestep k. Each

index j runs from 1 to d2.

Here we define the influence functions

Ĩk(Sl, Sl′) =

e
−ϕ(Sl,Sl′ ) l − l′ ̸= 1

⟨⟨S1|e∆L0|S0⟩⟩e−ϕ(Sl,Sl′ ) l − l′ = 1,

(2.41)

with

ϕ(Sl, Sl′) = (s+l − s
−
l )(ηl−l′ s

+
l′ − η∗l−l′ s

−
l′ ) (2.42)

2.3 ADT Scheme

Having derived the related mathematics, lets re-examine the time evolution of

the non-Markovian system in detail. Moreover, we introduce the Augmented

Density Tensor (ADT) scheme and the tensor network representation.

ρi

(e∆L)ji

ρj

Figure 2.3: Pictorial representation of the evolution of the Markovian system

We begin with the evolution of the Markovian system which reads,

ρj(t+∆) = [e∆L]ji ρi(t). (2.43)

In tensor network representation, a tensor is represented by an arbitrary

geometrical shape having multiple protruding legs. The number of legs is
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equal to the rank of the tensor and each leg has an n-dimensional local state

space called the bond dimension. For example, for Tijk, a tensor of rank 3,

drawn as shown in Fig. 2.4. The bond dimensions of i, j and k are 5, 4

and 3 respectively. In this notation, the density operator |ρ⟩⟩ is represented

by a circle with one leg whereas, the propagator e∆L is shown by a square

with two legs. The joining of legs in Fig. 2.3 represents tensor contraction

as described by Eq. (2.43).

T113 T123 T133 T143

T213 T223 T233 T243

T313 T323 T333 T343

T413 T423 T433 T443

T513 T523 T533 T543
T112 T122 T132 T142

T212 T222 T232 T242

T312 T322 T332 T342

T412 T422 T432 T442

T512 T522 T532 T542
T111 T121 T131 T141

T211 T221 T231 T241

T311 T321 T331 T341

T411 T421 T431 T441

T511 T521 T531 T541

(a) A rank-3 tensor, Tijk, of dimensions (5, 4, 3)

i j k

(b) Tensor network dia-

gram of Tijk

Figure 2.4: Tensor network representation

Unlike a Markovian system, the current state of a non-Markovian system

is affected by the previous states of the system. Due to this, it is necessary

to keep a record of the previous states. Lets see how this can be done for a

two-level system.

At time t1, the state of the reduced system is written as following

|ρ(t1)⟩⟩ =


ρ1(t1)

ρ2(t1)

ρ3(t1)

ρ4(t1)

 (2.44)
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To find the density operator at time t2, we must consider all the possible paths

the system can take to evolve from t1 to t2. The arrows in Fig. 2.5 show

all the possible correlations between the elements of the density operators at

the two times.


ρ1(t1)

ρ2(t1)

ρ3(t1)

ρ4(t1)




ρ1(t2)

ρ2(t2)

ρ3(t2)

ρ4(t2)




ρ1(t1)

ρ2(t1)

ρ3(t1)

ρ4(t1)




ρ1(t2)

ρ2(t2)

ρ3(t2)

ρ4(t2)



ρ1(t1)

ρ2(t1)

ρ3(t1)

ρ4(t1)




ρ1(t2)

ρ2(t2)

ρ3(t2)

ρ4(t2)




ρ1(t1)

ρ2(t1)

ρ3(t1)

ρ4(t1)




ρ1(t2)

ρ2(t2)

ρ3(t2)

ρ4(t2)


Figure 2.5: Correlations between the density operators at time t1 and t2

To record the probability amplitudes for all the possible trajectories, we

will need a d2 × d2 matrix. At the next step, we will need a tensor of rank 3

to store this information as shown in Fig. 2.6.

At each step, the size of the augmented density tensor (ADT) grows by

one rank [15]. The ADT stores the set of amplitudes weighting each of the

trajectories the reduced system could have taken through its Hilbert space

in the previous timesteps of the evolution. The reduced system state after

time tN is given by the N -rank tensor, Aj1,j2,...,jN . The ADT Scheme is based

on quasi-adiabatic path integral (QUAPI) approach originally proposed by

Makri and Makarov [16, 17].
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ρ1

ρ2

ρ3

ρ4

(a) Density operator at t1

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

ρ114 ρ124 ρ134 ρ144

ρ214 ρ224 ρ234 ρ244

ρ314 ρ324 ρ334 ρ344

ρ414 ρ424 ρ434 ρ444
ρ113 ρ123 ρ133 ρ143

ρ213 ρ223 ρ233 ρ243

ρ313 ρ323 ρ333 ρ343

ρ413 ρ423 ρ433 ρ443
ρ112 ρ122 ρ132 ρ142

ρ212 ρ222 ρ232 ρ242

ρ312 ρ322 ρ332 ρ342

ρ412 ρ422 ρ432 ρ442
ρ111 ρ121 ρ131 ρ141

ρ211 ρ221 ρ231 ρ241

ρ311 ρ321 ρ331 ρ341

ρ411 ρ421 ρ431 ρ441

(b) ADT of rank-3 at t3

Figure 2.6: Augmented Density Tensors

The products of the discretized influence functions in Eq. (2.40) give the

components of the ADT. Ĩk(jn, jn−k) connects the evolution of the state jn

to the amplitude of the state jn−k, k timesteps ago. For N = 2, Eq. (2.40)

reads

ρj2 =
∑
j1

(
Ĩ0(j1, j1) Ĩ0(j2, j2) Ĩ1(j2, j1)

)
ρj1 . (2.45)

For N = 3, it reads

ρj3 =
∑
j1,j2

(
Ĩ0(j1, j1) Ĩ0(j2, j2) Ĩ1(j2, j1)Ĩ0(j3, j3) Ĩ1(j3, j2) Ĩ2(j3, j1)

)
ρj1

(2.46)

Fig. 2.7 shows a schematic representation of the action of the influence

functions on the density vector.
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ρj1

Ĩ0(j1,j1)

Ĩ1(j2,j1) ρj2

Ĩ0(j2,j2)

(a) Influence functions at t2

ρj1

Ĩ0(j1,j1)

Ĩ1(j2,j1) ρj2

Ĩ0(j2,j2)

Ĩ1(j3,j2) ρj3

Ĩ0(j3,j3)

Ĩ2(j3,j1)

(b) Influence functions at t3

Figure 2.7: Influence Functions

Next, we define our scheme in tensor network representation. The double

product in Eq. (2.40) can be defined as a (2n− 1)-index tensor,

B
jN ,jN−1,...,j1
in−1,...,i1

, (2.47)

and the 1-index initial ADT is defined as

Aj1 = Ĩ0(j1, j1)ρj1(t1). (2.48)

The ADT is evolved iteratively by the successive contraction with the prop-

agator tensor, B. The first contraction yields a 2-index ADT of the form

shown in Fig. 2.10. It describes the full state and history at t2.

Aj2,j1 = Bj2,j1
i1

Ai1 (2.49)

At the next step, the 3-index ADT is as shown in Fig. 2.10.

Aj3,j2,j1 = Bj3,j2,j1
i2,i1

Ai2,i1 (2.50)

The nth step reads

Ajn,jn−1,...,j1 = B
jn,jn−1,...,j1
in,in−1,...,i1

Ain,in−1,...,i1 (2.51)

The reduced density operator at time, tn can then be found by performing

summations over the ADT,

ρjn =
∑

jn−1,...,j1

Ajn,jn−1,...,j1 (2.52)
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At each timestep, the size of the ADT grows by one index in order to

record the growing system history. To store the ADT we need to store d2

numbers. If the ADT is allowed to grow indefinitely, the exponential storage

requirements quickly cause memory problems. To encounter this problem,

we assume that the bath has a finite memory. This is the finite memory

approximation. This approximation is justified since for an infinite bosonic

bath, the correlation function C(t) decays to zero in finite time. This means

that the influence functions Ĩ have no effect once tk = k∆t exceeds the bath

correlation time, τC . Therefore, we propagate the ADT containing only pre-

vious K = τC
k∆t

timesteps.

In the grow phase, by successive application of asymmetric B tensors as de-

scribed above, we allow the ADT to grow to a tensor of rank K, AjK ,jK−1,...,j1 .

The last step of the grow phase reads

AjK ,jK−1,...,j1 = B
jK ,jK−1,...,j1
iK−1,...,i1

AiK−1,...,i1 (2.53)

At the next timestep, we enter into the propagate phase. The correlations

due to the oldest timestep are left out. The ADT is then evolved by the

successive contraction with B tensors as shown in Fig. 2.11,

AjK+1,jK ,...,j2(t+∆t) = B
jK+1,jK ,...,j2
iK ,iK−1,...,i1

AiK ,iK−1,...,i1(t) (2.54)

AjK+2,jK+1,...,j3(t+∆t) = B
jK+2,jK+1,...,j3
iK+1,iK ,...,i2

AiK+1,iK ,...,i2(t) (2.55)

The nth step reads

Ajn,jn−1,...,jn−K+1(t+∆t) = B
jn,jn−1,...,jn−K+1

in−1,in−2,...,in−K
Ain−1,in−2,...,in−K (t) (2.56)

With the memory cutoff, the size of the ADT remains fixed. But it still

needs d2K numbers to be stored. For typical simulations, one can only go up

to K ∼ 20 before the storage capacity runs out. This is a limitation since

one can only include the correlations present in the near-history and cannot

keep the ones that go a little far back in time.
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2.4 Matrix Product States and Matrix Prod-

uct Operators

An efficient way to store and evaluate high-rank tensors is to decompose them

into products of low-rank tensors [18, 19]. The ADT is decomposed into Ma-

trix Product States (MPSs) and the propagator tensors B are decomposed

into Matrix Product Operators (MPOs). Using MPS/MPO representation,

we can grow and propagate the ADT up to K ∼ 102 [8]. This is an order of

magnitude improvement from the ADT scheme [15].

The ADT is decomposed by successively performing Singlar Value Decom-

positions (SVDs) and truncating the singular values [20]. Here, we illustrate

the method in detail. As a first step, we reshape the rank-K ADT, Aj1,j2,...,jK

with DK = d2K elements into a matrix Ψ of dimensions (D ×DK−1),

Aj1,j2,...,jK ≡ Ψj1,j2j3...jK (2.57)

An SVD of Ψ gives

Ψj1,j2j3...jK = Uj1,α1Sα1,α1V
†
α1,(j2j3...jK) (2.58)

Here, U and V are unitary matrices and S is a diagonal matrix whose non-

zero entries are the singular values of the matrix Ψ. Next, we discard the

singular values λα smaller than some cutoff λc and also discard the corre-

sponding columns and rows of U and V matrices respectively, thereby re-

ducing their sizes. The truncated S and V matrices are then multiplied to

obtain the matrix Ψα1,j2j3...jK and the U matrix is written as aj1α1
.

Aj1,j2,...,jK = Ψj1,j2j3...jK =

r1∑
α1

aj1α1
Ψα1,j2j3...jK (2.59)

where r1 is the number of singular values after truncation. It is the bond

dimension. α1 runs from 1 to r1 (r1 < D). Again, we reshape the Ψα1,j2j3...jK
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into a new matrix Ψα1j2,j3...jK An SVD is performed and the singular values

are truncated. This gives us

Ψ(α1j2),(j3j4) = U(α1j2),α2 Sα2,α2 V
†
α2,(j3j4)

≈
r1,r2∑
α1,α2

aj2α1,α2
Ψα2,(j3j4) (2.60)

This procedure is repeated iteratively to finally obtain the ADT in the form

of a Matrix Product State.

Aj1,j2,...jK =
∑

α1,...,αK−1

aj1α1
aj2α1,α2

aj3α2,α3
. . . ajK−1

αK−2,αK−1
ajKαK−1

(2.61)

Since we started the decomposition from the left, we obtained products of

left-normalized matrices. An MPS that contains only the left-normalized

matrices is called a left-canonical MPS.

Figure 2.8: Graphical representation of an iterative decomposition of a rank-

K ADT into MPS, starting from the left, for K = 9

This decomposition is represented graphically as shown in Fig. 2.8. The

ADT is represented by an ellipse. The physical indices j1 through jK stick out
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Figure 2.9: Graphical representation of an iterative decomposition of an

rank-K ADT into MPS, starting from the right, for K = 9

of the ellipse vertically. After the first decomposition we have a circle on the

left representing aj1α1
and an ellipse on the right representing Aα1,j2,...,jK . The

horizontal line represents the auxiliary bond, α1. As a rule, the connected

lines between adjacent matrices, called bonds, are always summed over. The

process of separating out a circle is repeated in the next step and thereafter

to obtain a train of circles representing the MPS.

Similarly, we can start decomposing from the right to obtain a right-canonical

MPS. This is shown in Fig. 2.9.

The propagator tensors B are decomposed into Matrix Product Operators

in a similar way [21]. The TEMPO algorithm is implemented by successive

contractions of MPSs and MPOs [20, 22]. The application of an MPO on

an MPS results in an ADT which is then decomposed into an MPS again

using SVDs and truncation. To find the most efficient MPS representation

of ADT, it is important to sweep from both left to right and then right to
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i1
i1

j1 j2

j1 j2 j1 j2

i1 i2
i1 i2

j1 j2 j3

j1 j2 j3 j1 j2 j3

i1 i2 iK−1

i1 i2 iK−1

j1 j2 jK−1 jK

j1 j2 jK j1 j2 jK

Figure 2.10: Grow phase

left as described above [23]. The grow phase as outlined in (2.49) through

(2.51) is illustrated in Fig. 2.10. The propagate phase as outlined in (2.54)

through (2.56) is illustrated in Fig. 2.11. In Fig. 2.11, the semi-circle

represents a vector whose elements are all equal to 1. The MPS of the

oldest timestep is contracted with this vector in order to realize the finite

memory approximation. In this way, we can study the time evolution of

non-Markovian systems upto very large values of K.
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i1 i2 iK
i1 i2 iK

j2 jK jK+1

j2 j3 jK+1 j2 j3 jK+1

i2 i3 iK+1

i2 i3 iK+1

j3 jK+1 jK+2

j3 j4 jK+2 j3 j4 jK+2

in−1 in−2 in−K

in−1 in−2 in−K

jn−K+1 jn−1 jn

jn−K+1 jn jn−K+1 jn

Figure 2.11: Propagate phase
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Chapter 3

Results

In this chapter, the method developed in the previous chapter is applied to

study the dynamics of a quantum dot (QD) coupled to a cavity. The method

was primarily developed to study the non-Markovian dynamics of open quan-

tum systems. It has been applied to demonstrate the phase transitions in the

Spin-Boson Model, which has long been the testing ground for open quan-

tum systems, and the environment mediated interactions in the model of two

spins in a common environment, for which the non-Markovian dynamics are

not accessible using the existing methods [8].

Here, we demonstrate the flexibility of TEMPO by applying it to a more

complicated example, that of a two-level system coupled to both a single

harmonic oscillator and a bath. As a prototype for such a system, we con-

sider a quantum dot with exciton-phonon interactions placed in a cavity

[24, 7]. We use TEMPO to model the phonon bath but treat the cavity

mode as part of the reduced system. We show the phonon-induced damping

of Rabi oscillations in higher excitation spaces. Our work demonstrates the

utility of TEMPO in easily handling a model with a relatively large Hilbert

space of the reduced system. We will start by demonstrating the damping
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of Rabi oscillations in a single excitation space and its relation with the dif-

ferent coupling strengths and temperature. Then, we will go on to apply the

method in higher excitation spaces and see whether the same effect can also

be observed there.

A quantum dot is a nanometer-sized region of a semiconductor material on

which a thin layer of another semiconductor material is deposited, e.g. in In-

GaAs quantum dots, GaAs substrate is coated with a thin layer of InAs. Due

to the difference in lattice constants, the layer of InAs experiences a strain

and begins to form ‘dome-shaped’ islands [25, 4]. This also leads to creation

of a band-gap which confines the charge carriers in the dot in all three di-

mensions. The resulting electronic and optical properties of the quantum dot

are quite similar to that of an atom. For this reason, they are often referred

to as ‘artificial atoms’.

Quantum dots are a hot topic of research nowadays due to their applications

in a plethora of emerging quantum technologies [26, 27]. By manufactur-

ing quantum dots of different sizes, the energy difference in quantized lev-

els can be controlled to obtain the emission of light of desired frequencies.

From Light-Emitting Diodes (LEDs), solar cells [28] and phototransistors

[29] to their uses in biosensing and biomedicine, these efficient semiconduc-

tor nanocrystals are proving to be of immense industrial value. They are

also a strong candidate for their use in quantum hardware as single photon

sources [30, 31, 32].

Besides these industrial applications, a single quantum dot also serves well as

a typical open quantum system. The phononic degrees of freedom act as an

environment to the excitonic levels. This makes it an ideal system to apply

and test new methods developed for open quantum systems.

Many interesting phenomena result due to phonon bath coupling with cavity-
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QD system. One of these phenomena namely the phonon-induced damping

of Rabi oscillations is demonstrated here [33, 34]. The model considered here

consists of a two-level system, ground state and a single excitonic state, with

an energy splitting ϵ0 coupled to both a single cavity mode and a phonon

bath. The two-level system is represented using the Pauli spin operators.

The phonon bath is assumed to be a harmonic bath i.e. it is assumed to

be composed of an infinite number of harmonic oscillators. The two-level

system and the cavity mode are treated as the reduced system. We use the

number conserving Jaynes-Cummings Hamiltonian to model the dot-cavity

interaction, and TEMPO to model the phonon bath.

The Jaynes-Cummings Hamiltonian for dot-cavity is then given by

H0 = ϵ0σn + g
(
â†σ+ + âσ−) + ωcavâ†â (3.1)

where ωcav is the frequency of the cavity mode. The operator σn gives the

occupation number of the excitonic state. The ladder operators (σ+ and σ−)

drive the transitions between the ground and the excited state of the two-

level system. The creation and annihilation operators (â and â†) create and

annihilate a single photon in the cavity mode, respectively.

The behaviour of the phonon bath is characterized by the superohmic spectral

density with Gaussian decay,

J(ω) = αω3 exp

(
−
(
ω

2ωc

)2
)

(3.2)

where the α is the coupling strength and the cutoff frequency, ωc depends on

the spatial dimensions of the quantum dot. The bath coupling operator is

taken to be the Pauli Spin Operator, σz.
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When the excited and ground states of the quantum dot are defined as follows

|e⟩ =

1

0

 and |g⟩ =

0

1

 ,

the operator that gives the population of the excited state of the quantum

dot is defined as

σn =

1 0

0 0

 .

Consider the simplest case in our model where there is only one excitation

in the reduced system. Initially, the cavity is taken to be in ground state

whereas the quantum dot is in excited state. The effective combined Hilbert

space of the reduced system is then defined by the given states:

|0, e⟩ and |1, g⟩

In the absence of a phonon bath i.e. α = 0, we observe undamped Rabi

oscillations as expected. The population of the cavity is inverted into that of

the quantum dot. However, as α is increased, the phonon effects start taking

over. The interaction with the phonon bath dampens the Rabi oscillations.

For larger coupling strengths, the damping is stronger and the oscillations

die out quickly. This can be seen in Fig. 3.1. Another interesting thing to

note is, for larger coupling strengths, we see that the repeated measurements

of the operator σn leads to the population getting shifted to the excited state

of the quantum dot. This is the Quantum Zeno Effect. The Quantum Zeno

Effect is a feature of the quantum-mechanical systems allowing a particle’s

evolution to be arrested by measuring it frequently enough with respect to

some chosen measurement setting.

Furthermore, it can be observed that there is an increase in the decay rate

of the oscillations with a rise in temperature. As the temperature is increased,
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Figure 3.1: QD exciton occupation, ⟨σn⟩, for different coupling strengths, α

the oscillators in the phonon bath have increased vibrational energy. The

damping effect of the phonon bath becomes stronger and the Rabi oscillations

decay more rapidly. This increase in the decay rate of Rabi oscillations with

increase in temperature can be seen in Fig. 3.2. The damping of these

oscillations is a general phenomenon. It can be observed for all temperatures

and coupling strengths. These results were obtained by propagating the

system for 300 timesteps without any memory cutoff.

To further prove the robustness of the method, consider a more complicated

problem that explores the higher excitation spaces of the reduced system.
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Figure 3.2: QD exciton occupation, ⟨σn⟩, for coupling strength, α = 0.01 at

different temperatures, T

The maximum number of allowed excitations in cavity is 3. Initially, the

quantum dot is in excited state and the cavity is in a superposition state,

|ψcav⟩ = 1√
3
|1⟩ + 1√

3
|2⟩ + 1√

3
|3⟩. The Hilbert space of the reduced system
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then, constitutes of the following states:

Nex = 0 : |0, g⟩

Nex = 1 : |0, e⟩ and |1, g⟩

Nex = 2 : |1, e⟩ and |2, g⟩

Nex = 3 : |2, e⟩ and |3, g⟩

Nex = 4 : |3, e⟩

To observe the populations in these excitation spaces, we define the pop-

ulation operators as follows.

For Nex = 1,

σn1 = |0, e⟩ ⟨0, e|

= |0⟩ ⟨0| ⊗ |e⟩ ⟨e|

=


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⊗
1 0

0 0



Similarly, for higher excitation spaces, these operators are given as

σn2 = |1, e⟩ ⟨1, e| σn3 = |1, e⟩ ⟨1, e| σn4 = |3, e⟩ ⟨3, e|

Fig. 3.3 shows the population of excited state of quantum dot in all

excitation spaces for α = 0.1. For Nex = 0 and Nex = 1, the populations are

zero throughout as they were zero initially. The line for Nex = 0 has been

omitted from Fig. 3.3 for clarity. For Nex = 2, the oscillations occur between

|1, e⟩ ←→ |2, g⟩, and for Nex = 3, they occur between |2, e⟩ ←→ |3, g⟩.

Independent damped Rabi oscillations are observed in each excitation space.
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Figure 3.3: QD exciton occupation in all excitation spaces for α = 0.1

For Nex = 4, no oscillations are observed because the higher states for cavity

such as |4, g⟩ are not accessible.

In Fig. 3.4, the increased damping of oscillations due to stronger cou-

pling with bath can be seen independently in the Nex = 3 excitation space.

Furthermore, the Quantum Zeno Effect is very prominent for larger coupling

strengths i.e. α = 0.7 and α = 1.5.

The system was propagated for 100 timesteps. Again, these calculations were

performed without a memory cutoff.
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Figure 3.4: QD exciton occupation, ⟨σn3⟩, in Nex = 3 for different coupling

strengths, α
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Chapter 4

Conclusion

The rapid advancements in computer hardware have brought us to the brink

of a new technological revolution, the Quantum Computing era. However,

the realization of such a revolution needs a sound understanding of how quan-

tum systems interact with their environments, and how to control them to

retain coherence for long times. The technological advancements have also

allowed us to probe and control these systems with increasing precision. The

study of open quantum systems (OQSs) has, thus, become far important than

ever. The methods for solving Markovian OQSs are extensively studied and

well-developed. The general physical principles of the non-Markovian OQSs,

however, are not well-established and the methods developed so far, to solve

the dynamics of these systems are limited to certain parameter regimes.

An efficient method to study the non-Markovian dynamics, called Time-

Evolving Matrix Product Operators (TEMPO), has been developed by Strat-

hearn et. al. [8]. The method uses ADT to store the system’s history, and

uses Feynman Vernon Influence Functional to model bath. It can be used to

solve for the dynamics of OQSs up to very large memory times. The key to

the efficiency of the method is the use of Matrix Product States (MPSs) and
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Matrix Product Operators (MPOs), which are a natural tool to represent

very large tensor networks.

Our work demonstrates how TEMPO can solve for the dynamics of an OQS

retaining the correlations for a long period of time. It also shows the way

TEMPO can easily deal with a relatively large reduced system (8 states)

without needing a memory cutoff. This is impossible to do using standard

QUAPI techniques [16]. The robustness and efficiency of TEMPO is a huge

improvement over the existing methods. This makes it an ideal technique

to be used for more complicated problems in the theory of open quantum

systems.

Despite being the best method available to solve non-Markovian dynamics,

there are still some areas which can be improved. The method works rel-

atively slowly for higher excitation spaces as the density matrix is larger,

and larger ADT is propagated. It is also observed that the execution takes

more time for larger values of coupling strengths because the correlations are

stronger. As a result, the ADT is densely populated, so SVD and trunca-

tion are not as effective as they are for weak coupling regimes. SVD and

truncation can be optimized by finding better ways to implement SVD and

introduce an optimum cutoff for singular values.

The method involves solving a lot of integrals which are time-consuming. A

double integral in η function as given in Eq. (2.26) is calculated at each

timestep. The current implementation uses scipy.integrate.quad to com-

pute these integrals. A huge improvement in this regard can be achieved

by using pathos.multiprocessing.Pool to compute the integrals in parallel.

Moreover, the current implementation TEMPO is in Python language, which

is an interpreter language. The overall code can be made more efficient by

implementing it in a compiler language such as C++ or Fortran.
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In our work, we have examined a relatively simple phenomenon in quantum

dots in order to focus on the details of the development and the working of

the TEMPO method. However, the method is very powerful and the subject

of exciton-phonon coupling is a rich and interesting one. More interesting

phenomena such as the resonance fluorescence spectrum of a quantum dot

can be studied using TEMPO. This will be the subject of future work.
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Appendix A

Path integral formalism

Here we briefly introduce the path integral formalism for the evolution of a

pure state, ψ and then, for the more general, density matrix, ρ.

For a time-independent Hamiltonian H, the time evolution of the wavefunc-

tion is given by

|ψ(t)⟩ = e−iHt |ψ(0)⟩ . (A.1)

Inserting a resolution of identity, we can write the above expression in coor-

dinate representation as follows

⟨xf |ψ(t)⟩ =
∫
dxi ⟨xf | e−iHt |xi⟩ ⟨xi|ψ(0)⟩ . (A.2)

The complex amplitude, ⟨xf | e−iHt |xi⟩ is known as propagator, K(xf , t|xi, 0).

It is the probability amplitude for the particle to go from point xi to point

xf in time t. The path integral representation of the propagator is

K(xf , t;xi, 0) =

∫
D[x(t)]eiS[x(t)], (A.3)

where D[x(t)] denotes integration over all possible paths with endpoints

x(0) = xi and x(t) = xf . The phase factor S is the classical action,

S =
∫ t

0
L(ẋ(t), x(t))dt where L is the Lagrangian of the classical particle.
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Now we proceed to find the time evolution of the density matrix. In Heisen-

berg picture, we have

ρ(t) = e−iHtρ(0)eiHt (A.4)

The matrix element of the time-evolved density matrix is

⟨xf | ρ(t) |x′f⟩ = ⟨xf | e−iHtρ(0)eiHt |x′f⟩ (A.5)

Inserting resolution of identities twice, we get

⟨xf | ρ(t) |x′f⟩ =
∫
dxidx

′
i ⟨xf | e−iHt |xi⟩ ⟨xi| ρ(0) |x′i⟩ ⟨x′i| eiHt |x′f⟩ (A.6)

⟨xf | ρ(t) |x′f⟩ =
∫
dxidx

′
iJ(xf , x

′
f , t;xi, x

′
i, 0)ρ(xi, x

′
i, 0) (A.7)

where J(xf , x
′
f , t;xi, x

′
i, 0) = ⟨xf | e−iHt |xi⟩ ⟨x′i| eiHt |x′f⟩ is the propagator for

the density matrix. Its path integral representation is given by

J(t; 0) =

∫ b

a

D[x] exp (iS[x])
∫ b

a

D[x′] exp (−iS[x′]) (A.8)

=

∫ b

a

D[x]D[x′] exp (iS[x]− iS[x′]). (A.9)

For clarity, we have omitted x coordinates in the argument of J.
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