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Abstract

The decays governed by the flavor-changing-neutral-current-transitions (FCNC), such as

b→ sl+l−, provide an important tool to test the physics in and beyond the Standard Model

(SM). In this dissertation, we study the B → Sl+l− , where S = a0, f 0 represent the scalar

mesons. Being an exclusive process, the matrix elements of inital and final state meson in-

volve the form factors (a non-perturbtive quantity). Using the Light-cone-sum-rules (LCSRs)

approach, we calculate the corresponding form factors (FFs). In comparison to other models,

i.e., Light cone quark model and Shifman-Vainshtein-Zakharov (SVZ) sum rules approach,

the calculated value of FFs is approximately twice in the magnitude to that of the corre-

sponding B meson decaying to pseudoscalar. Using these FFs, we calculate the Branching

ratios, lepton’s forward-backward asymmetry and the various lepton polarization asymme-

tries in the SM. Recently, a Bayesian analysis of the lepton-flavor universalities RK and RK∗

is done in a model independent approach and it puts several constraints on the different Wil-

son coefficients. Using these constraints, we explore their imprints on the above mentioned

observables and see if they show any deviations from the corresponding SM predictions.

xi



Chapter 1

Introduction

There are five fundamental forces of nature; electric, magnetic, weak nuclear, strong

nuclear, and gravitational. Among these, the gravitational force is the weakest one. It

was Scottish Physicist James Clark Maxwell and Dutch Physicist Lorentz who proposed the

concept of unification of forces and light is the result of this marvelous idea. So after the

unification of the two forces, the number of forces was reduced to four. If a comparison is

made between them, then gravitational force is the weakest one and its range is infinite. The

range of the weak force is 10−18 m which is about 0.1% of the diameter of the proton. Force

carrier particles of the electromagnetic, weak and strong forces are the bosons with (S = 1)

and the mediator of the gravitational force that is a graviton (S = 2), is not yet found but

exists hypothetically.

1.1 Standard Model

Interaction of fundamental particles is governed by the gauge theory which is known as

the Standard Model (SM). It has enough strength to predict the new particles that are not

even found. Based on the spin, particles can be classified into two classes:

• Bosons, which are integer spin particles (S = 0,±1,±2, ...) .

• Fermions, which carry half integer spins
(
S = ±1

2
,±3

2
, ...
)
.

In SM, the classification of the particles is as follows:

1
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• There are total six quarks and six anti-quarks and each quark can carry only one

of three colors red, green and blue. They are grouped in three generations. In first

generation up and down quarks are placed, charm and strange are placed in the second

generation and top and bottom are placed in third generation. Each quark carries a

fractional electric and a color charge. Up, charm and top quarks carries +2e/3, whereas

down, strange and bottom quarks carries −e/3 electric charge. Under SU (2) gauge

symmetry, they are left-handed (L) doublet and right-handed (R) singlet, i.e.,

u
d


L

,

c
s


L

,

t
b


L

, (1.1.1)

uR, dR,cR, sR, tR,bR.

• There are total six leptons; electron, muon and tau with their related neutrinos. Just

like quarks, leptons also have three generations. Neutrinos are charge-less and massless

in the SM. Again, under SU (2), they are classified as left-handed doublets and right-

handed singlets, i.e., e−
νe


L

,

µ−

νµ


L

,

τ−
ντ


L

, (1.1.2)

eR, µR, τR,

where right-handed neutrinos are forbidden in the SM.

• Each force carrier is a boson. Photon is the mediator of the electromagnetic force and

carries spin S = 1.

• Strong force is mediated by the eight gluons that have non-zero color charge and zero

electric charge.

• Weak force carries three mediators W±, Z. W+ and W− were discovered at the CERN

in 1983 and their mass is 80.379 ± 0.012 GeV/c2 and Z-boson was discovered in the

same year with a mass 91.1876± 0.0021 GeV/c2.
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• As Higgs mechanism is well known because each particle acquire mass by this mech-

anism. After the discovery of Higgs boson in 2012 at the LHC, with mass 125.18 ±

0.16 GeV/c2 , the SM is complete.

Free quarks cannot exist in nature due to “Quark confinement” so they can only exist

in bound states called Hadrons. Based on the spin configurations, there are two classes of

hadrons; mesons and baryons. Quark and anti-quark constitutes mesons whereas baryons

are constituted by only three quarks or three anti-quarks. Due to color confinement, hadrons

exist only in colorless forms. Short range of strong force is the consequence of the quark

confinement. Dissimilar to photons, gluons can interact with each other as they carry color

charge that results into the “asymptotic freedom”. Transparency of leptons to strong

nuclear force is due to colorless nature. The Gauge symmetry of the Standard model is

SU(3)C × SU(2)L × U(1)Y ,

where SU(3)C represents the three color group of QCD whereas SU(2)L × U(1)Y represents

the weak isospin and weak hypercharge groups of the electroweak theory. Symmetry breaking

gives:

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)EM .

In SU(2)L representation, the Dirac fields is given in Eq. (1.1.1). In the same representation,

the Higgs doublet is

ϕ =

ϕ+

ϕ0

→
 0

1√
2
(ν + h)

 , (1.1.3)

where c = v is the vacuum expectation value. It has total four degrees of freedom and three

of them are responsible for the masses of W± and Z bosons and forth one is responsible for

the physical Higgs boson. Electroweak force is the unification of electromagnetic and the

weak forces.
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1.1.1 SM Lagrangian

In SM, Lagrangian equations are used to describe the fundamental interactions. This

Lagrangian has local gauge invariance, and contains all the information of the theory and it

is function of fields and their derivatives. The SM Lagrangian is

LSM = LQCD + LEW , (1.1.4)

where

LQCD = LfreeQCD + LintQCD + LgaugeQCD , (1.1.5)

LfreeQCD =
∑
f=q

q̄f (ιγ
µ∂µ −m)qf , (1.1.6)

LintQCD =
∑
f=q

−gS q̄fγµ
λa
2
qfG

a
µ, (1.1.7)

LgaugeQCD = −1

4
Gµν
a Gaµν , (1.1.8)

with

Gµν
a = ∂µGν

a − ∂νGµ
a − gSfabcG

µ
bG

ν
c , (1.1.9)

Ga
µν = ∂µG

a
ν − ∂νGa

µ. (1.1.10)

The electroweak part of the Lagrangian is

LEW = LfreeEW + LintEW + LgaugeEW + LϕEW + LY ukEW , (1.1.11)

whereas,

LfreeEW =
∑
f

L̄ι��∂L+ ψ̄Rι��∂ψR + ψ̄′
Rι��∂ψ

′
R, (1.1.12)

LintEW = −
∑
f

gW√
2
ψLγ

µV ψ′
LW

+
µ +

gW√
2
ψ′
Lγ

µV †ψLW
−
µ + e

(
ψγµQψ + ψ′γµQψ′)Aµ+
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gW
cos θW

[
ψγµ

1

2

(
cfV − c

f
Aγ

5
)
ψ + ψ′γµ

1

2

(
cf

′

V − c
f ′

Aγ
5
)
ψ′
]
Zµ, (1.1.13)

where V = VCKM is for the quarks and it is one for leptons.

LgaugeEW = −1

4
F a
µνF

µν
a −

1

4
BµνB

µν , (1.1.14)

LϕEW = (Dαϕ)
†Dαϕ−

(
µ2ϕ†ϕ+ λ(ϕ†ϕ)2

)
,
(
µ2 < 0, λ > 0

)
(1.1.15)

LY ukEW =
∑
f

−mfψψ

(
1 +

h

ν

)
+
∑
f ′

−mf ′ψ′ψ′
(
1 +

h

ν

)
. (1.1.16)

with D = ∂µ + ιgSG
a
µ
Ta

2
.

1.1.2 Strength of the Gauge theory

The SM has successfully predicted the masses of W±, Z bosons and they were found to

be in the same mass range. Also, the top quark mass was found to be mt = 178±8+17
−20

GeV/c2.

Systematic related to the mass of Higgs was the main uncertainty [1] gives

mt = 172.9± 0.6± 0.9 GeV.

This proved to be a marvelous success. Theory of Standard model is renormalized which

implies that calculations can be performed at any scale. Top quark is the only quark which

decays before the process of “Hadronization”. There are total 19 free parameters in Stan-

dard model that are worth mentioning here

• Six masses of quarks

• Three masses of charged leptons

• Three coupling constants gW , g, gS

• Weak mixing angle θW

• Higgs potential parameters λ,µ
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• Four independent VCKM elements (three angles and a phase).

Due to neutrinos, there are three masses and four parameters of VPMNS leading the total

number of free parameters to 26.

1.1.3 Problems in Gauge theory

Any dynamical mechanism does not lead to the Higgs potential. Vacuum potential energy

density due to Higgs potential is

ρH = V (ϕ) = µ2

(
0,

ν√
2

) 0

ν√
2

+ λ

[(
0,

ν√
2

) 0

ν√
2

]= λ

(
µ2

λ

ν2

2
+
ν4

4

)
, (1.1.17)

= −λν
4

4
= −m

2
Hν

2

8
, (1.1.18)

as mH = 126 GeV and ν= 246 GeV so ρH ≃ −1.2×108 GeV 4. In general relativity, Vacuum

energy density couples to gravity. ρH relation with cosmological constant is

ΛH = κρH , with κ =
8πGN

c2
≃ 1.86× 10−27cmgr−1, (1.1.19)

GN being the Gravitational constant. In unit of grcm−3

ΛH =
(
1.86× 10−27cmgr−1

) −1.2× 108GeV 4

(1.97× 10−14GeV.cm)3︸ ︷︷ ︸
�hc

× 1.7827× 10−24︸ ︷︷ ︸
grGeV −1

= −5.2× 10−2cm−2.

Whereas, the measured value of the cosmological constant is

Λmeas = κρcriticalΩtot, (1.1.20)

=
(
1.86× 10−27cmgr−1

) (
1.88× 10−29 × 0.6732gcm−3

)
× 1,

= 1.6× 10−56cm−2. (1.1.21)

So this value exceeds the measured value by the order of 54 in magnitude. That is a very

challenging problem in theory. There are some other problems too due to which Physicists

are not satisfied with the theory as “why the electric charges are quantized?” Why quarks
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and leptons are spin half particles?. Why the neutrinos have very small mass? Why top

quark is so heavy compared to other family members?.

1.1.4 Tests of the Electroweak theory

Electroweak model has been tested numerously and there are (almost) no significant

deviations found between experimental and theoretical results. Using Z0 production, very

large precisions has been achieved. In order to measure Z0−line shape, data were taken

around Z0 peak. At LEP collider, following cross-section is obtained as in Fig. 1.1.1

Figure 1.1.1: At various colliders, Hadronic cross-section’s measurements [2].

Resonance Z0 is clearly visible at 91 GeV. Constraints on number of light neutrinos are

the consequence of the Z0 line shape and this number is Nν = 2.9840 ± 0.0082. This is

represented in the Fig. 1.1.3. Invisible partial decay width is used to find this number. It

can be measured by subtracting several quantities

Γinv = Γtotal − Γee − Γµµ − Γττ − Γhad, (1.1.22)
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as, it is assumed that only number of neutrinos contribute so

Nν =
Γinv
Γνν

=
Γinv
Γll

(
Γll
Γνν

)SM , (1.1.23)

Figure 1.1.2: Around Z0mass, Hadronic cross-section measurement [2].

Figure 1.1.3: Constraints on number of light neutrinos [2].
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by assuming Lepton universality, Γinv

Γll
is taken and

(
Γll

Γνν

)
SM

is taken from the predictive

power of SM.

As it is well known that
cfV
cfA

= 1− 4 sin2 θW |Q|. (1.1.24)

Several channels f = µ, τ, c, b give estimation of sin2 θW . As masses of virtual particles start

to contribute so indirect sensitivity to Higgs mass is shown in following Fig. 1.1.4.

Figure 1.1.4: Indirect sensitivity to Higgs mass and estimation of sin2 θW [2].

1.2 B-meson Physics

In the last generation of quarks, bottom quark is the lighter one and top-quark, its

doublet partner is the heaviest one. In 1973, Kobayashi and Maskawa proposed top and

bottom quark [3] and their existence was proved in 1977 [4]. Through generation changing

process, light particles can decay and same applies for bottom quark. CKMmatrix (explained

below) govern flavor changing decays and shows some important characteristics such as loop
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and box Feynman diagrams, CP asymmetries and flavor oscillations. Bound states in which

b quark participate are b̄u called B+, b̄d called B0, b̄s called B0
s , b̄c called B+

c . Among

previously described bound states, B+
c is the heaviest one. It was first time produced by

CDF collaboration in 1998 and its mass was discovered in 2007 from the decay B+
c −→ J/

ψπ+ [5, 6]. LHCb made the accurate determination of mass of B+
c by using the following

decay B+
c → J/ψD0K+ and its mass came to be mB+

c
= 6274.28± 1.40± 0.32 MeV/c2. Top

quarks before “Hadronization” decays so b− baryons are the only heaviest bound observed

states. The Tevatron accelerator has measured a cross-section of 30 µb for the process where

protons collide to produce particles containing bottom quarks (pp → bX) in the collision

energy regime of
√
s = 1.96 TeV, limited to particles with pseudo-rapidity values less than

1. On the other hand, the LHCb experiment at the Large Hadron Collider has observed a

cross-section of approximately 72 µb in the collision energy regime of 7 TeV and around 144

µb at 13 TeV for the same process, but restricted to particles with pseudo-rapidity values

between 2 and 5.

To measure CKM matrix element, both inclusive and exclusive processes can be used

but in both processes, uncertainties have to be faced. From the experimental perspective,

Exclusive processes are simpler because Branching fractions can be used to calculate CKM

matrix element whereas the form factors calculations can be done by Lattice QCD or QCDSR

(QCD sum rules). The averages for inclusive and exclusive B-decays branching fractions are

provided by Semi-leptonic B-decays subgroup (subgroup of Heavy Flavor Averaging Group

(HFAG)) and so, the methods to calculate the |Vcb| and |Vub|.

In Υ (4S) decays , there is pair of two least massive lightest B-mesons. Branching fractions

are the following:

f1 = Γ(Υ(4S)→B+B−)/Γtot(Υ), (1.2.1)

f2 = Γ(Υ(4S)→B+B−)/Γtot(Υ), (1.2.2)

f 00 = Γ(Υ(4S)→B0B̄0)/Γtot(Υ), (1.2.3)

Their ratio measured in most experimental analysis is
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R1/00 =
f1
f 00

=
Γ (Υ (4S)→ B+B−)

Γ
(
Υ(4S)→ B0B̄0

) ,
R2/00 =

f2
f 00

=
Γ (Υ (4S)→ B+B−)

Γ
(
Υ(4S)→ B0B̄0

) (1.2.4)

and their experimental measurements by various groups are given in Table 1.1.

Table 1.2.1: B+/B0production ratios in Υ (4S).
Exp. Decay modes Published value of R1,2/00 Assumed value ofτ+/τ 0

CLEO-Collab.[7] J/ψK∗ 1.04± 0.07± 0.04 1.066± 0.024
BABAR-Collab.[8] (cc̄)K∗ 1.10± 0.06± 0.05 1.062± 0.029
CLEO-Collab.[9] D∗lν 1.058± 0.084± 0.136 1.074± 0.028
Belle-Collab.[10] dilepton events 1.01± 0.03± 0.09 1.083± 0.017

BABAR-Collab.[11] J/ψK 1.006± 0.036± 0.031 1.083± 0.017
BABAR-Collab.[12] (cc̄)K∗ 1.06± 0.02± 0.03 1.086± 0.017

Exp. Ave. 1.059± 0.027(tot) 1.076± 0.004

From this we can extract

|Vub|2

|Vcb|2
=

B (Λ0
b → pµ−ν̄µ)

B (Λ0
b → Λ+

c µ
−ν̄µ)

RFF . (1.2.5)

where RFF can be calculated by using sum rules in the light-front framework. Using RFF

= 0.68 ± 0.07 the above ratio results to be 0.083 ± 0.004 ± 0.004. Radiative b → sγ decay

mode have photon that is highly polarized in SM. To maximum polarization, small mass of

s quark produces small corrections, but there would be clues pointing towards New Physics

if there is induced CP violation.

1.3 B-factories

The Standard Model describes fermions in three distinct generations, and the investiga-

tion of interactions that differentiate between these generations is referred as flavor physics.

Fermions can undergo two types of interactions: coupling with a scalar particle results in

Yukawa interaction, while coupling with a gauge boson results in gauge interaction. Gauge

couplings are determined by a single coupling constant, and there is no gauge coupling be-
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tween interaction eigenstates of different generations. Flavor physics is of crucial importance

because it can predict New Physics. In recent years, several of its predictions were true

such as

• Ratio of decay width of KL → µ+µ− to K+ → µ+ν predicted charm quark.

• In neutral kaon mixing, third generation of SM was predicted.

• Mass of the charm quark was predicted by the ∆mK = mKL
−mKS

and mass of the

heaviest quark, top quark was predicted by ∆mB.

• Masses of the neutrinos.

These processes occur very rarely in nature and do not occur at tree level. The principle

behind these rare processes is GIM mechanism [13].

The small branching ratio of K0 → µ+µ− caused perplexion in the physics community in

1970. This decay is represented by the box diagram in the following Figure 1.5.2. At that

time, only two families were known, Glashow, Maiani and Iliopoulos gave a postulate about

the existence of charm quark so instead of u quark in the box diagram, another diagram with

c quark can be considered too. Therefore, to define s′ state

d′
s′

 =

 cθc sθc

−sθc cθc

d
s

 , (1.3.1)

c→s′ and u→ d′ quarks are coupled by W boson.

Figure 1.3.1: K0 → µ+µ− box diagram.
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 c

s′

 ,

u
d′

 ,

So the c−quark participation is shown in Fig. 1.5.3. In first diagram, the amplitude is

proportional to g4w cos θ sin θ and in the second diagram to−g4w cos θ sin θ. These two diagrams

can be canceled out if both quarks had the same mass, but mc >> mu so the second diagram

is strongly suppressed and this is called GIM (Glashow, Iliopoulos and Maiani) mechanism.

After four years, c−quark was discovered in the state J/ψ in 1974. Mass of the charm quark

is 1.3 GeV.

Figure 1.3.2: New box diagram for K0 → µ+µ−.

The CKM matrix is further responsible for the suppression of these processes. This is an

extended form of the GIM matrix to the three generations, i.e.,
d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d

s

b

 , (1.3.2)

where d′, s′, b′ corresponds to the weak eigenstates and d, s, b represent the mass eigenstates.

Following relations hold for CKM matrix

∑
k

∣∣Vik∣∣2 =∑
i

|Vik|2 = 1,
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∑
k

VikV
∗
jk =

∑
k

VkiV
∗
kj = 0(i ̸= j),

with three families, charge rising current is

jµcc+ =
gw√
2

(
ū, c̄, t̄

)
γµ

1

2

(
1− γ5

)
VCKM


d

s

b

 . (1.3.3)

The Hermition conjugate of jµcc+ gives charge lowering weak current, i.e.,

jµcc− =
(
jµcc+

)†
=

gw√
2

(
d̄, s̄, b̄

)
γµ

1

2

(
1− γ5

)
V †
CKM


u

c

t

 , (1.3.4)

where

V †
CKM =


V ∗
ud V ∗

cd V ∗
td

V ∗
us V ∗

cs V ∗
ts

V ∗
ub V ∗

cb V ∗
tb

 . (1.3.5)

How many free parameters are there in CKM matrix? Decomposition of unitary matrix can

be made as product of three rotations plus one parameter that is complex can be termed as

phase δ. Therefore,

VCKM =


1 0 0

0 c(23) s(23)

0 −s(23) c(23)




c(13) 0 s(13)e
−ιδ

0 1 0

−s(13)eιδ 0 c(13)




c(12) s(12) 0

−s(12) c(12) 0

0 0 1

 , (1.3.6)

VCKM =


c(12)c(13) s(12)c(13) s(13)e

−ιδ

−s(12)c(23) − c(12)s(23)s(13)eιδ c(12)c(23) − s(12)s(23)s(13)eιδ s(23)c(13)

s(12)c(23) − c(12)c(23)s(13)eιδ −c(12)c(23) − s(12)c(23)s(13)eιδ c(23)c(13)

 ,

(1.3.7)

where c(ij) represents cos θ(ij) and s(ij) represents sin θ(ij). Angle θ(ij) depend on the mixing

of the quarks as θ(12) would be exactly θc if there is no mixing between the third and the first
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generation of quarks. VCKM matrix can be computed only experimentally by constraining

and using the Unitarity principle |Vub|2+ |Vcb|2+ |Vtb|2 = 1. The current measurements stand

at

|V exp
CKM | =


0.97428(15) 0.2253(7) 3.47(16)× 10−3

0.2252(7) 0.97345(16) 41(1)× 10−3

8.62(26)× 10−3 40.3(1.1)× 10−3 0.999152(45)

 . (1.3.8)

For the decays within the family, u ↔ d, c ↔ s, t ↔ b, matrix becomes diagonal. Helicity

suppression is large for dielectron and dimuon pairs as they have small masses. Due to their

suppression in the SM, weak and Higgs-mediated processes are unlikely to exhibit flavor-

changing-neutral-current (FCNC) processes. However, since FCNC can occur at higher levels

only in Electroweak interactions, these interactions are promising candidates in the search of

New Physics.

Experimentally, CLEO in 1994 took the initiative and studied the rare radioactive decay

b → sγ [14]. In subsequent years, BaBar and Belle were able to significantly increase their

dataset of B0B̄0 pairs by collecting an impressive 467 million and 772 million pairs in 2008

and 2010, respectively. When these data sets were combined, they produced an astounding

integrated luminosity of 1ab−1 operating at Γ(4S), providing an unprecedented amount of

data for further analysis and investigation. bb̄ cross section measured at the most efficient

B- factory, large Hadron collider is 300µb at the center of mass energy
√
s= 7 TeV [15]. At

√
s= 14 TeV, the corresponding cross-section is 500µb. About 1011 hadrons are provided

that are produced in a dataset of 1fb−1. ATLAS, CMS and LHCb are the major experiments

of the LHC. Among these, LHCb is specifically focused on the study of production and

decay of c− and b−hadrons, while all three experiments contribute to the investigation

of rare b−Hadron decays. While the CMS and ATLAS experiments can generate a final

state containing a dimuon pair, the LHCb experiment is capable of producing final states

consisting of a photon, a dielectron pair, or only hadrons. In Semi-leptonic decays, B-factories

average over neutral and charged B-mesons. CDF and LHCb observed many b−Hadron

decays such as B → K∗l+l−, B → Kl+l−,Λ0
b → Λµ+µ−,Λ0

b → pK−µ+µ− and B0
s → ϕµ+ϕ−

[16, 17, 18, 19, 20].
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Branching fractions of some familiar B−meson decays are

B
(
B → Kl+l−

)
= (5.5± 0.7)× 10−7,

B
(
B → Kµ+µ−) = (4.43± 0.24)× 10−7,

B
(
B0 →K∗0(892)l+l−

)
=
(
1.03+0.19

−0.17

)
× 10−6,

B
(
B0 → K∗0µ−µ+

)
= (1.03± 0.06)× 10−6,

B
(
B0
s → ϕµ+µ−) = (8.3± 1.2)× 10−7,

B
(
Λ0
b → Λµ+µ−) = (1.08± 0.28)× 10−6. (1.3.9)

The operators of Semi-leptonic decays are more sensitive towards New Physics as compared

to Radiative decays. In the case of Semi-leptonic decays, Hadronic uncertainties tend to be

larger. This is because the lepton partners in the end state can sometimes originate from a

photon that is produced at a flavor-conserving QED vertex.

With this elaborated introduction, the remaining dissertation is organized as follows. In

second chapter, we present the Light Cone Sum Rules and their importance in flavor physics.

The technique is used to calculate the form factor for the Semi-leptonic B → K0∗ decay.

Using the recent constrains on various new physics (NP) Wilson coefficients, we compare the

results of SM in Chapter 3. Finally, in Chapter 4, we present our conclusions.



Chapter 2

Basic Concepts

This chapter will provide the introduction of the prime concerned terms that are essential for

the understanding of the partial leptonic decays of B-mesons into scalar mesons by using the

Light front QCD sum Rule approach. Different terms that are involved here are QCD sum

rules, Light front sum rules, light cone singularity, light cone limit, the underlying theory of

light cone, correlation function, dispersion relation, Operator product expansion, and general

technique involved to calculate Wilson coefficients, form factors would be introduced with

great and useful details.

2.1 QCD sum rules approach

2.1.1 Introduction

It was first developed in 1970s and is based on the intuition of relating properties of the

quark content to the properties of hadrons comprised of the respective quarks and gluons by

taking into account correlation functions of the currents in the Euclidean space (i.e., at space-

like distances). To extract the properties of hadrons, i.e., mass calculations and resonance

couplings, immense work has been done. Basic factors that provide the grounds for this

approach are [21]

• Spontaneous symmetry breaking,

• Quark-Hadron duality,

17



CHAPTER 2. BASIC CONCEPTS 18

• Asymptotic freedom.

Formalism of QCD approach can be used to calculate masses of light quarks too and the

method has been described by Gasser and Leutwyler [22]. Underlying idea of this approach

is to tackle the bound state problem by utilizing the property of asymptotic freedom. In

more clear words, at first solving by considering short distance and then moved to larger

distances where the effects of confinement become considerably important and asymptotic

freedom no more exists. The resonances appear implying that gluons and quarks comprise

hadrons and are not free at this scale. So, here actually an idea of separation between

long distance and short distance physics is introduced. This separation allows us to use

perturbative QCD for short distance physics and the properties of hadrons such as mass and

decay constants are parameterized in terms of non-perturbative long distance physics. Idea

of asymptotic freedom’s breakdown appears due to emergence of non-zero expectation values

of condensates i.e., quark and gluon condensate operators such as ⟨0|q̄q|0⟩ and ⟨0|Ga
µνG

a
µν |0⟩,

where q (x) is representing quark field and Ga
µν is representing gluon field tensor. These

condensates disappear when studied in basic perturbation theory. Hypothesis behind QCD

sum rules approach is the existence of gluon and quarks in vacuum field. Valence quarks and

gluons injected by external current sources has to develop in vacuum medium rather than

empty space.

2.1.1.1 Spontaneous Symmetry breaking

Spontaneous symmetry breaking occurs when there is symmetry in the dynamics of the

system that is not manifested in its ground state or equilibrium state. It occurs when the

Lagrangian of the system has certain symmetries but the ground state does not preserve it.

Spontaneous breaking of a continuous symmetry leads to the appearance of massless scalar

(spin-0) bosons. Goldstone model is the best model for it. In mass generating mechanism, a

new complex scalar field Φ is introduced. Specifically, it is characterized by the Lagrangian

density L.

L = D∗
µϕ

∗Dµϕ−
1

4
F µνFµν − V

(
ϕ
)
, (2.1.1)

where
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Dµϕ = ∂µϕ+ ieAµϕ,

and Fµν is defined as

Fµν = ∂µAν − ∂νAµ,

and V is some potential in Goldstone model. We can define a new field after transformation

as

Bµ = Aµ +
1

eη
∂µψ2,

as Fµν = ∂µBν−∂νBµ and expansion in ϕ field is taken in as 1√
2

(
η + ϕ1 + ϕ2

)
. From the cur-

vature of potential ϕ1 mode takes the mass as it is the Higgs boson and we find

L =
1

2
∂µϕ1∂

µϕ1−
1

4
F µνFµν−

1

2
λη2ϕ2

1+
1

2
e2η2BµB

µ+cubic terms and quartic terms. (2.1.2)

So, miraculously we are left with heavy scalar (Higgs boson) and heavy gauge vector boson.

2.1.1.2 Asymptotic freedom

Coupling constant g characterizes the strength of interaction between quarks and gluons.

g is characterized by a scale µ based on a normalization condition. One can define g(µ)

as a γσ−terms of the quark gluon vertex function that is defined as Γσ(q, p1, p2), which is

manifested by the normalization group equations. Most vital application of RG equation is

the dependence of the g on µ scale. In QCD, it can be described by the following equation

dG

dL
= β

(
G
)
= −

∞∑
k=0

bkG
k, (2.1.3)

where G = g2(
4π
)2 ,L = ln

(
µ
)2
, d
dL

= µ2 d
dµ2
. Integrating above equation one obtains

ln

(
µ2

µ′2

)
=

� G(µ)

G(µ′)

dx

β(x)
≡ Φ

(
G(µ)

)
− Φ

(
G(µ′)

)
. (2.1.4)
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Note that

ln

(
µ2

µ′2

)
+ Φ

(
G
(
µ′)) = Φ

(
G
(
µ
))

does not depend on µ′ so,

Φ
(
G
(
µ′)) = ln

(
µ′2

Λ2

)
, (2.1.5)

where the Λ corresponds to the mass dimension.

G
(
µ
)
= Φ−1ln

(
µ2

Λ2

)
, (2.1.6)

however, Φ→ Φϕ + 2ϕ′ and Λ→ Λϕ′ ≡ Λe−ϕ
′
. Under this transformation G

(
µ
)
becomes as

G
(
µ
)
= Φ−1

ϕ′

(
ln

(
µ2

Λ2
ϕ′

))
. (2.1.7)

Let’s consider for ϕ′ = ϕ′
0, G

(
µ
)
has the following form

G
(
µ
)
=

1

b0ln

(
µ2

Λ2
ϕ′

) , (2.1.8)

If ϕ′ is chosen as ϕ′ = ϕ′
0 + δϕ′ then G

(
µ
)
would be written as

G
(
µ
)
=

1

b0ln
(
µ2

Λ2

)[1 + ∞∑
n=1

( δϕ′

ln
(
µ2

Λ2
ϕ′

))n]. (2.1.9)

As beta function has been calculated up to 4 terms so

b0 = 11− 2

3
Nf , (2.1.10)

b1 = 102− 38

3
Nf , (2.1.11)

and

b2 =
2857

2
− 5033

18
Nf +

325

54
N2
f , (2.1.12)

where Nf is number of quark flavors. The value of b2 is known only in the MS-bar scheme.
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In lowest approximation we get

α
(
Q2
)
=
g2

4π
= 4πG

(
Q
)
=

4π(
11− 2

3
Nf

)
ln
(
Q2

Λ2

) . (2.1.13)

Equation (2.1.13) states that coupling constant disappears, i.e., g → 0 when Q2 → ∞ and

this is the property of QCD asymptotic freedom that is the cornerstone of all the perturbative

QCD theories.

2.1.1.3 Quark-Hadron duality approximation

Quark-Hadron duality occurs in those processes where one can consider two stage processes

that could occur at two distinct scales. These two stage processes are interaction between

quarks at short distances as well as at the long distances. The scale for the short distance

interaction of quarks is of the order of 1
Q
and for long distance interaction is of the order of

Q
Λ2 . The reason behind long distance interaction of quarks is the “passage of time”. Quark

Hadron duality violations are due to the following reasons

1. Quark transitions instead of shorter distances occur at longer distances.

2. Quarks produced at shorter distances but residual interactions are occurring at longer

distances.

In the first point, singularities are developed by the point functions at finite value of x2 and

in the second point x2 →∞.

2.1.2 History of QCD sum rules approach

Purpose of introducing the history is to mention about the historic time when theory of

hadrons was about to be introduced. It would be fair enough to say that QCD was introduced

after the talk of Gell-mann and Fritszch as the color octet gluons are introduced. Asymptotic

freedom was discovered in 1973 and that time, hard processes were the epicenter of everyone’s

attention in which short distance physics contribution plays vital role. In the very end

of 1960s, the very non-serious attitude of physicists towards field theory made M.Shifman

sick, Founder of this approach, M.Shifman was not able to publish his work due to long
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procedure of publishing according to GLAVILT. Upto 1974, Shifman got the intuition that

due to Landau work on zero charge property in QED, everyone has a deep rooted non-serious

attitude towards field theory so he started working on himself to solve the problem involving

short and long distance physics.

He started working on his idea as to begin from short distance physics where dynamics

of quarks and gluons is perturbative and then by considering some approximations, results

would be extrapolated to long distance physics to take into account non perturbative effects.

M. Shifman says it spectacular effort when he combined his work with V. Novikov, L. Okun

and M. Voloshin. It was the result of great amount of hardwork that in 1977, it turned

out that all parameters that can give all the information about hadrons can be obtained by

sum rules. The gluon condensate was introduced in 1977 and the underlying idea was that

“ vacuum is considered as a gluon medium and basic properties of the particles

come due to interaction of quarks with this medium so it can be parameterized

by condensates”. Shifman and his team were done with this work in 1978 with accurate

results[23]. QCD sum rules approach has been very vital for determination of parameters

of low-lying Hadronic states. For the problems associated with phenomenology of hadrons,

Shifman proposed method of QCD sum rules became a vital tool.

2.2 Operator product expansion (OPE)

2.2.1 Introduction

In this section, we discuss the general procedure involved to calculate all the Hadronic pa-

rameters by using sum rules. Correlation functions, dispersion relations and spectral density

would be introduced. Correlation function and its relation with all parameters of Hadron

would be discussed. Borel transform’s role is also explained to take into account the dom-

inance of low lying resonance states. In order to calculate expansion coefficients several

techniques developed but most convenient techniques are:

• Formalism utilizing abstract operators.

• A formalism build on the Fock-Schwinger gauge for the gluon field in the absence of
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particles.

2.2.1.1 Correlation function

Correlation functions are actually n−point functions that describe the correlation between

colorless external quark currents injected by electromagnetic sources. Correlation functions

are calculable by the simplest expansion (Ga
µν

1
q2
), where Ga

µν is the gluon field strength tensor

whereas every current has specific quantum numbers i.e., J, P and C numbers. Here, Ga
µν is

treated as an external field. Coefficients in front of these field strength operators are calcu-

lated by several techniques involving Feynman diagrams but soon it was realized that methods

were inconvenient in order to get non invariant gauge results. QCD sum rules approach en-

sures gauge invariant gluon field operators appearing in the expansions. The n−point Green

functions are determined by the asymptotic freedom formula. Power corrections are mani-

fested by the non-perturbative vacuum fluctuations. In vacuum fields everything is fixed by

the vacuum condensates. Vacuum condensates are ⟨0|ψ̄ψ|0⟩ and ⟨0|Ga
µνG

a
µν |0⟩. Some basic

steps are following:

• Some colorless currents are given.

• n−point Green functions are written in terms of these currents expressing the corre-

lations between different currents in vacuum fields where vacuum fields are actually

external fields induced by external quarks and gluons.

• Field considered in this procedure is weak. The weak field means average intensity of

field is weaker than the value of momentum.

Consider vector current of quark q (x). Then the ordered product of two currents is

Πµν(q) = ι

�
eιqxd4x⟨T

{
jµ
(
x
)
jν
(
0
)}
⟩, (2.2.1)

where jµ
(
x
)
is defined as

jµ
(
x
)
= q̄γµq,

this vector current is written for a single massless quark. For large momenta, the time

ordered (T -ordered) product of current can be written in the form of expansion of the type
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(
x2
)k

ln
(
x2
)
so the 2-point function takes the following form

Πµν

(
q
)
=
(
qµqν − q2gµν

)∑
n

Cn
(
Q2
)
⟨On⟩, (2.2.2)

where Q2 ≡ −q2 and q is the large exchange momenta. ⟨On⟩ are the condensates and are local

gauge invariant operators. C’s are the Wilson parameters. Local gauge invariant operators

can be written as 1, ψ̄ψ,Ga
µνG

a
µν , ... . The vacuum matrix elements ⟨On⟩ are of the order of

the magnitude of µdn , where dn corresponds the dimensions and n denotes normal. µ is of

the order of MeV as it relates to the Hadronic mass scale. For Q2 >> µ2, only first few

terms can be kept. Wilson coefficient expansion is proven in perturbation theory and beyond

perturbative regime effects can be included in it by extending it.

2.2.1.2 Status of OPE in QCD

Infrared renormalon problem arises due to the logarithmic growth of coupling constant αs (R)

at larger distances. These renormalons appear as singularities and these singularities are

responsible for the failure of an attempt to sum up series of perturbation theory expansion

(PTE). In the last decade, non-perturbative effects were considered crucial at larger distances.

NP effects are actually non-vanishing vacuum expectation values and these NP fields are

very large in vacuum i.e., ⟨GaGa⟩ ≈ (600MeV )4 >> Λ4
QCD. When larger distances are

approached or in other words when asymptotic region is ended then NP effects that are

coded as power corrections in OPE causes the major changing in the behavior of OPE

series. A new method has been introduced to solve these ambiguities in which gluon field is

splitted into the background field and perturbative gluon field. Background field is denoted

by Bµ and the perturbative gluon field is denoted by aµ and now the perturbative theory

expansion occurs in powers of gaµ. Propagators are Green functions denoted as Gµν in the

background field Bµ. Based on the Feynman Schwinger representation, new closed form

of Gµν is introduced. Explicit dependence on Bµ results through the parallel transporters

P exp
(
ιg
� y
x
Bµdzµ

)
. Now each term in perturbative expansion series contain dependence

on Bµ through the Wilson loops W (C,B) . Over largest values of NC , the averaging over

background fields are represented by the products of averaged Wilson loops ⟨W (C,B)⟩. This
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product obeys the area law at larger distances and hence it results in calculations of NP-

dynamical parameters [24].

2.2.1.3 Calculation of C1 by using Operator Schwinger method

In external non-abelian gauge field Aaµ, the eigenvalue product of the Dirac operator is defined

as Det |ιDµγµ −m| . This determinant in the vacuum to vacuum transition enters as a pre-

exponential factor. This |0⟩ to |0⟩ transition can be represented as

⟨O|O′⟩ =
�
DAµD̄ψ̄Dψ exp

[
ι

{
d4x
(−1

4
Ga
µνG

a
µν + ψ̄

(
γµϱµ −m

)
ψ
)}]

, (2.2.3)

with ϱ = iDµ. To incorporate all fermions degree of freedom, treating the Aaµ(x) as given

external field. Then

⟨O|O′⟩ =
�
DAµDet |γµϱµ −m| exp

{
−1
4

�
d4xGa

µνG
a
µν

}
, (2.2.4)

=

�
dAµ exp

{
−1
4

�
d4x

[
Ga
µνG

a
µν − ι lnDet |�ϱ−m|

]}
, (2.2.5)

where

⟨x|
(
�ϱ
ab
αβ

)
|y⟩ = (γµ)αβ

[
ιδab

∂

∂xµ
+ g
(
tc
)
ab
Acµ
(
x
)]
δ
(
x− y

)
, (2.2.6)

and (tc)ab stands for the generation of color group. A divergence is associated with the

determinant of free Dirac operator. To get rid of these divergences, one must take the ratio

Det |�ϱ−m|A
Det |�ϱ−m|A=0

.

In order to regularize this ratio, an auxiliary fermions Pauli Villars field is introduced. So,

final expression is written as

Dregularized = Det

∣∣∣∣∣
(
�ϱ−m

)
A

(�ϱ−m)A=0

(
�ϱ−mR

)
A=0

(�ϱ−mR)A

∣∣∣∣∣ . (2.2.7)

where mR is called regulator mass. After integration over fermions field, a spare term has to

be added in the action of vector field. So
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Seff = Scl +∆S,

∆S = −ι lnDregularized = −ιTr ln
∣∣∣∣ (�ϱ−m)A
(�ϱ−m)A=0

(�ϱ−mR)A=0

(�ϱ−mR)A

∣∣∣∣ , (2.2.8)

here a well known relation is used lnDet |A| = Tr ln |A|.

Expanding ∆S in powers of
(
G
m2

)n
assuming field strength tensor Ga

µν is less than m2,

where m is the mass of quark. As fermions loop for large masses can be found by short

distancesO (m−1), so the effective action can be written in the form of series of local operators

∆S =

�
d4x

[
C1g

2

(
ln
m2
R

m2

)
Ga
µνG

α
µν + C2

g3

m2
fabcGa

µαG
b
µβG

c
βµ + ...

]
. (2.2.9)

The fundamental role of the gluon field Aaµ and the ln
(
m2

R

m2

)
has identical structure, so the

sum of these two terms would result in the following form

−g
2

4
Ga
µνG

a
µν

[
1

g2
− 4C1 ln

m2
R

m2

]
.

From the theory of renormalization, we know that the term in the bracket corresponds to

the renormalized charge 1
g2renormalized

, so the value of C1 is fixed by renormalization. Writing

1

g2REN
=

1

g2
− 1

16π2

(
11

3
Nc −

2

3
Nf

)
ln
m2
R

m2
, (2.2.10)

C1 = −
1

96π2
. (2.2.11)

Here, Nf represents the number of flavors, which is equal to one in our case. Upto the fourth

order, the expansion parameters can be determined [25], and the effective action takes the

following form[26]

∆Seffective = −
1

32π2

�
d4xTrC

{
2

3
g2G2

µν ln
m2
R

m2
− 2

45
ig3GµνGνγGγµ

1

m2
+
g4

18
(GµνGµν)

2
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− 7

10
{Gµα, Gαν}2+ +−29

70
[Gµα, Gαν ]

2
− +

8

35
[Gµν , Gαβ]

2
−

1

m4

}
. (2.2.12)

Here

Gµν = Ga
µνt

a,

T r
(
tatb
)
=

1

2
δab.

The subscripts −/+ are marked to avoid the confusion between commutators and anticom-

mutators. TrC is representing that the results are valid for any gauge group.

2.2.1.4 Two-point function for massive quarks

When the mass of quark is large, then the quark condensate does not correspond to an

independent parameter and problem is restricted to the motion in external field. The 2-point

function of vector current is written as

Πµν(q) = ι

�
d4x exp (ιqx) ⟨T [Jµ (x) , Jν (0)]⟩, (2.2.13)

where

Jµ (x) = Q̄ (x) γµQ (x) ,

Πµν (q) = ι

�
d4x exp (iqx)Tr {γµS (x, 0) γνS (0, x)} . (2.2.14)

Fourier transform of S (x, 0) and S (0, x) is defined as

S (p) =

�
S (x, 0) exp (ipx) d4x,

S̃ (p) =

�
S (0, x) exp (−ipx) d4x,

so the above polarization operator takes the following form in momentum space

Πµν (q) = ι

�
Tr
{
γµS (p) γνS̃ (p− q)

} d4p

(2π)4
. (2.2.15)
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Fourier transform of the vacuum field is written as

Aµ (k) =

�
Aµ (z) exp (ιkz) d

4z,

=
−ι (2π)4

2
−Gρµ (0)

∂

∂kρ
δ(4) (k) +

(−ι)2 (2π)4

3
(DαGρµ (0))

∂2

∂kρ∂kα
δ(4) (k) + ...,

(2.2.16)

where G2 correction in 2-point function can be written for only those terms in which the exter-

nal field appeared twice. Therefore, writing the expansion for external field and considering

only those terms that contribute in G2 correction, gives

Aα (k1) = −
ι (2π)4

2
Gρα (0)

∂

∂k1ρ
δ(4) (k1) ,

Aβ (k2) = −
ι (2π)4

2
Gσβ (0)

∂

∂k2σ
δ(4) (k2) .

As we know that

⟨Ga
µν (0)G

b
αβ (0)⟩ =

1

96
δab (gµαgνβ − gµβgνα) ⟨Gc

ρσG
ρσ,c⟩, (2.2.17)

therefore, taking the color trace we get the following form

[Πµν (q)]a = −
1

96
δab⟨g2Ga

µ′ν′G
µ′ν′,a⟩(gρσgαβ − gρβgσα)×

�
d4p

(2π)4
∂

∂k1ρ

∂

∂k2σ

TrL{γµ
1

�p−m
γα

1

�p−��k1 −m
γν ×

1

�p
′ +��k2 −m

γβ
1

�p
′ −m

}k1=0=k2 , (2.2.18)

[Πµν (q)]b = −
1

48
⟨g2Ga

µ′ν′G
µ′ν′,a⟩ (gρσgαβ − gρβgσα)×

�
d4p

(2π)4
∂

∂k1ρ

∂

∂k2σ

TrL

{
γµ

1

�p−m
γα

1

�p−��k1 −m
γβ ×

1

�p
′ +��k2 −m

γν
1

�p
′ −m

}
k1=0=k2

. (2.2.19)

The 2-point function is transverse due to current conservation. So

Πµν (q) =
(
qµqν − q2gµν

)
Π
(
q2
)
. (2.2.20)
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The indices can be contracted that results into the following form

[Πµµ (q)]a = −ι⟨g
2G2⟩

�
d4p

(2π)4
pp′

(p2 −m2)2 (p′2 −m2)2
, (2.2.21)

[Πµµ (q)]b = −ι4m
2⟨g2G2⟩

�
d4p

(2π)4
pp′ − 2p2

(p2 −m2)4 (p′2 −m2)
, (2.2.22)

by using Standard methods, the above integrals are calculated, and we get

ΠG
µν |hQ,1− =

(
qµqν − q2gµν

) 1

48
⟨αs
π
G2⟩ 1

Q4
×

{
3 (a+ 1) (a− 1)2

a2
1

2
√
a
ln

√
a+ 1√
a− 1

− 3a2 − 2a+ 3

a2

}
,

(2.2.23)

where a = 1 +
4m2

Q

Q2 . This is the G2 correction in case of vector current.

Figure 2.2.1: G2 correction in case of vector current [27].

Now, the G2 correction in the case of two point function for pseudo-current can be written

as

Π(G)|o− =
1

48
⟨αsG

2

π
⟩ 1

4m2
Q

×

{
3 (3a+ 1) (a− 1)2

a2
1

2
√
a
ln

√
a+ 1√
a− 1

− 9a2 + 4a+ 3

a2

}
. (2.2.24)

Similarly, the two point function for light quarks can be derived. For light quarks, the form

of 2-point function is

Π (q) |1− =
3

4π2
q2 lnQ2 − 1

16π2

1

q2
⟨g2G2⟩. (2.2.25)
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The correlation function for gluon current has the form

ι

�
exp (ιqx) d4x⟨T {j5 (x) j5 (0)}⟩ = −8α2

s

g

q2
⟨Ga

µνG
b
νβG

c
βµf

abc⟩+ other operators. (2.2.26)

2.2.2 Dispersion relation

It is well known that the correlation function has a dual nature. It represents short dis-

tance quark-antiquark fluctuations at large negative q2 and can be solved in the standard

perturbation theory, while at large positive q2, the correlation function represents the long

distance effects that are represented in the non-perturbation theory and are known as non-

perturbative effects. Unitarity relation lets to insert the Hadronic intermediate states in the

Πµν(q
2), and it results in the following expression

2ImΠµν (q) =
∑
n

⟨vac|jµ|b⟩⟨b|jν |vac⟩dυn (2π)4 δ(4) (q − pn) , (2.2.27)

where
∑

n means sum over all the possible Hadronic states and dυn denotes that the whole

phase space region is taken into the account. Above Eq. (2.2.27) is called Hadronic sum. In

the Hadronic sum Eq. (2.2.27), vector meson contribution can be taken as

1

π
ImΠV

µν

(
q2
)
=
(
qµqν − q2gµν

)
f 2
V δ
(
q2 −m2

V

)
, (2.2.28)

where the decay constant fV can be defined as

⟨V (q) |jµ|0⟩ = fVmV ϵ
(V )∗
µ , (2.2.29)

ϵVµ stands for the Helicity of vector mesons. mn corresponds to the sum of Hadronic masses.

At q2 > m2
n, each states contribution is represented by the continuous imaginary part. How-

ever, the Hadronic matrix elements corresponding to ⟨n|j|0⟩ depends on q2. Just for the

sake of convenience, we separate the ground state vector participation on the right side of

Hadronic sum, and a condensed notation is introduced for rest of the excited vector mesons.
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The continuum states represented as

ImΠ
(
q2
)
= π

(
f 2
V ectorδ

(
q2 −m2

V ector

)
+ ρhconti.

(
q2
)
θconti.

(
q2 − shconti.

))
, (2.2.30)

where shconti represents the threshold of the lowest continuum state. In the case of least

massive quark interactions, this threshold is lower than mV . For analytic function, Cauchy

formula is implied and the polarization operator takes the form

Π
(
q2
)
=

1

2πι

�

C

dz
Π(z)

z − q2
, (2.2.31)

=
1

2πι

�

|z|=R

dz
Π(z)

z − q2
+

1

2πι

� R

0

dz
Π(z + ιϵ)− Π(z − ιϵ)

z − q2
. (2.2.32)

Figure 2.2.2: Contour is shown in complex plane where complex variable is q2 = z. q2 < 0 is
shown by open points and crosses show the Hadronic thresholds [27].

Here we have used the fact that Π (q2) is real valued at q2 < tmin = min
{
m2
V , s

h
0

}
. Now,

invoking Schwartz reflection principle Π (q2 + ιϵ)−Π(q2 − ιϵ) = 2ιImΠ (q)2 at q2 > tmin, the
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dispersion relation takes the following form

Π
(
q2
)
=

1

π

� ∞

tmin

ds
ImΠ (s)

s− q2 − ιϵ
, (2.2.33)

ImΠ (s) does not disappear at s → ∞, so the dispersion integral does not converge. This

problem can be cured by the Taylor expansion of Π at q2 = 0 and then subtracting it from

Π (s) . Mathematical form of this is

Π̄ (q)2 = Π(q)2 − Π(0) . (2.2.34)

Eq. (2.2.33) takes the following form

Π̄ (q)2 =
q2

π

� ∞

tmin

ds
ImΠ (s)

s (s− q2)
, (2.2.35)

from Eq. (2.2.30), we get

Π (q)2 =
q2f 2

V ector

m2
V ector (m

2
V ector − q2)

+ q2
� ∞

shconti

ds
ρhconti (s)

s (s− q2)
+ Π (0) . (2.2.36)

As electromagnetic interactions used to be gauge invariant, so Π (0) = 0. Such relation es-

tablishes the sum rules, i.e., significant limitations on the total values of various Hadronic

parameters. This suggests that there are specific conditions or restrictions on how the pa-

rameters related to the behavior of subatomic particles called hadrons can be combined or

added together.

2.2.3 Borel Transformation

Dispersion relations connect physically observed quantities with n−point functions. After

applying the Borel transformation, expression converts into the sum rule with a weight func-

tion that corresponds to the low lying Hadronic states. Borel transformation of an arbitrary

function f(x) is written as

f̃ (λ) =
1

2πι

� c+ι∞

c−ι∞
exp

(
λ

x

)
f (x)xd

(
1

x

)
, (2.2.37)
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whereas the inverse transformation can be defined as

f (x) =

� ∞

0

f̃ (λ) exp

(
−λ
x

)
dλ/x, (2.2.38)

For analytic functions, the Borel transformation has the following form

B̂Π
(
Q2
)
= lim

Q2,n→∞

1

(n− 1)!

(
Q2
)n(− d

dQ2

)n
Π
(
Q2
)
, (2.2.39)

where Π (Q2) is the two point function. Two essential instances are

BM2 (
q2
)k

= 0, (2.2.40)

BM2

(
1

(m2 − q2)k

)
=

1

(k − 1)!

exp
(
−m2

M2

)
M2(k−1)

where k > 0. (2.2.41)

Borel transformation factorially suppresses the participation of excited resonances and con-

tinuum configuration. In case of heavy currents, following form is more convenient to apply

rather than applying Borel transformation

Mn

(
q20
)
≡ 1

n!

dn

dq2n
Π
(
q2
)
|q2=q20 =

f 2
V

(m2
V − q20)

n+1 +

� ∞

0

ds
ρh(s)

(s− q20)
n+1 . (2.2.42)

2.2.4 Scale invariance applied to OPE

For an ordinary product of two operators M (x1) and N (x2), there exists an expansion in

which the four-vector x1 approaches x2. This expansion has a specific form that can be

described mathematically

M (x1)N (x2) =
∑
n

Zn (x1 − x2)On (x1) , (2.2.43)

Zn (x1) involves powers of the (x1 − x2) rather than being a delta function. Zn can have

singularities of the following type
[
(x1 − x2)2 − ιϵ (x1,0 − x2,0)

]−p
,∀pϵR. Above expansion is

valid for any two points much close to each other, i.e., on the light cone. Intermediate states

have much higher energy, even larger than the energy regime of starting and ending state
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and to damp this energy, imaginary part is assigned to the temporal part of four vectors.

Two local fields, say ϕ (x1) and ξ (x2), has the following representation when x1 is near to x2

[ϕ (x1) , ξ (x2)] =
∑
n

En (x1 − x2)On (x1) , (2.2.44)

where En=0 (x1 − x2) has the following form

E0 (z) = E
[(
−z2 + ιϵz0

)−p − (−z2 − ιϵz0)−p] . (2.2.45)

The nature of singularities in Cn (z) is determined by using different types of theories having

different symmetries. If masses are non-zero then free scalar and spinor field theories are non-

invariant. Behavior of singular functions are governed by the scale invariance. Performing a

scale transformation on Eq. (2.2.43), we will get

sdϕ+dξϕ (sx1) ξ (sx2) =
∑
n

Zn (x1 − x2) sd(n)On (sx1) . (2.2.46)

Considering the left hand side and expanding it gives

sdϕ+dξ
∑
n

Zn (sx1 − sx2)On (sx1) =
∑
n

Zn (x1 − x2) sd(n)On (sx1) , (2.2.47)

where the local fields are linearly independent so

Zn (sx1 − sx2) = s−dϕ−dξ+d(n)Zn (x1 − x2) . (2.2.48)

If Zn (x1 − x2) is a scalar then behavior of Zn (x1 − x2) can be determined by the Lorentz

transformation. Dimension dϕ + dξ − d (n) determines the light cone singularity’s strength.

If ψ (x1) is a free scalar field then by invoking Wicks theorem On (x1), we can write

ψ (x1) ,∇ν∇µ∇πψ (x1) , : ψ (x1) :,∇ν∇µψ (x1))∇ψ (x1) , ...etc.

This ordering is very crucial while arranging fields because with the increase in dimensions,

the singularity of the coefficient decreases. ∇µψ (x1) and : ψ2 (x1) : carries 2 dimensions.
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For zero dimension of the free fields, the corresponding coefficient would be least singular.

Lets consider a product of two fields ψ (x1) and ψ (x2). By using Wicks theorem, we get the

following result

: ψ2 (x1) :: ψ
2 (x2) = 2 [D (x1 − x2)]2 I + 4D (x1 − x2) : ψ (x1)ψ (x2) : + : ψ2 (x1)ψ

2 (x2) :,

(2.2.49)

where D is denoting free field singular functions. The normal ordered field : ψ (x1)ψ (x2) :

can be expanded using Wick’s product expansion as

: ψ (x1)ψ (x2) :=: ψ2 (x1) : + (x2 − x1)µ : ψ (x1)∇µψ (x1) : +.... (2.2.50)

Similarly, the other products can be expanded too. Pure symmetry considerations help to

calculate the singularities in Zn (x1 − x2). If the fields ϕ (x1) and ξ (x2) are of high dimensions,

their commutator may contain singular functions. These singular functions can arise due to

the fact that the fields are defined at the same point in space-time, which leads to a divergence

when calculating the commutator. In particular, if the commutator is evaluated at equal

times (x0 = y0) , then the commutator may contain many derivatives of Delta functions

and many divergent constants. This is because the equal-time commutator involves the

difference of two operators evaluated at the same point in space and time, which can lead to

singularities. These singularities can be difficult to handle and require careful regularization

and renormalization techniques in order to make sense of the commutator. In particular, one

may need to introduce a regulator to remove the singularities and then take the regulator to

infinity to obtain a well-defined result. For a generator Q, there would be a field say ζ (x),

which satisfies

[ζ (x) , Q] = qζ (x) , (2.2.51)

where q is some scalar. Above equation would be invariant only if

U † (s)QU (s) = Q.

For the current J0 (x)
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U † (s) J0 (x)U (s) = s3J0 (sx) , (2.2.52)

and for x near y

[ζ (x) , J0 (y)] =
∑
n

knµ (x < y)On (x) , (2.2.53)

at equal times one has

[ζ (x) , J0 (y)] =
∑
n

knδ
3 (x < y)On (x) + ST,

where, ST means Schwinger term that involves derivatives of the Delta functions. So

qζ (x) =
∑
n

knOn (x) . (2.2.54)

This implies that On (x) has the same dimensions as the ζ (x).

2.3 Effective field theory:

2.3.1 Introduction

Effective theories allow to perform the calculations even when the exact details of the theory

is unknown or not fully understood. Effective field theories (EFTs) can be seen as approx-

imations of more fundamental theories, which themselves may also be EFTs. EFTs are

useful because they enable calculations of experimentally observable quantities with a lim-

ited amount of error. They rely on a small expansion parameter δ, which determines the

order of the expansion to a given degree of precision. The precision of the calculation is

directly related to the order of the expansion, with the error scaling as δ to the power of

n + 1 . A Power counting formula is used to determine the order of the expansion for

each diagram. EFTs are characterized by a systematic expansion approach, which permits

a well-defined methodology to determine higher order corrections in expansion parameter.

This means that it is possible to perform calculations to an arbitrary level of precision by

choosing the appropriate order of expansion. As a result, the theoretical error can be made



CHAPTER 2. BASIC CONCEPTS 37

arbitrarily small by selecting a sufficiently large value of n in the power counting formula.

The EFTs are not limited to perturbative dynamics and can be applied even in cases where

the dynamics are not perturbative. One well-known example of this is chiral perturbation

theory (χPT ) , which uses an expansion in the ratio p/Λχ , where Λχ is the scale at which

symmetry corresponding to chirality breaks and is roughly equal to 1 GeV. Despite its non-

perturbative nature, systematic computations using this expansion in powers of p/Λχ have

shown excellent agreement with experimental results.

Locality is a fundamental principle in the formulation of effective field theories (EFTs),

which permits the separation of scales into short- and beyond short-distance contributions.

This separation leads to a division of the field theory amplitudes into beyond long-distance

Lagrangian parameters and long-distance transition probabilities. The short-distance factors

are universal, meaning that they do not depend on the specific long-distance interaction

strengths being computed. Experimentally measurable quantities, denoted as Oi , are then

expressed as the product of these short-distance coefficients, denoted as C, and the long-

distance matrix elements.

In many cases, there are multiple Lagrangian coefficients and transition amplitudes in-

volved in the computation of experimentally measurable quantities, resulting in a expression

of the form Oi =
∑

ij CijMj. In certain situations, such as in deep-inelastic scattering, the

coefficients C and matrix elements M can depend on a parameter y instead of an index j ,

which leads to the use of convolution instead of a simple sum in the expression

O =

� 1

0

dy

y
C (y)M (y) . (2.3.1)

In the case of deep-inelastic scattering, the short-distance coefficient C (y) is referred to as

the large momentum transfer scattering cross section and can be calculated using perturba-

tion theory in Quantum Chromodynamics (QCD). The long-distance transition probabilities

are known as parton distribution functions, and are found from experimental data. While

the large momenta exchange-scattering cross-section is universal, the parton distribution

functions are specific to the particular Hadronic target being studied.
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2.3.2 Building EFTs: A Step-by-Step Guide

• Identify the relevant degrees of freedom:

To study the low energy properties, we only consider those parameters that are relevant

for the problem available right now. This means that we neglect the heavy particles

and only focus on the lighter ones. The heavy and light particles have distinct degrees

of freedom, but we only keep the relevant degrees of freedom that are necessary for

describing the low energy physics of the system. We integrate out the irrelevant degrees

of freedom, which allows us to simplify the equations and make the problem more

manageable. The goal is to build an effective field theory that captures the essential

features of the low energy physics, while neglecting the details that are not important

for the problem being studied. In particle physics, the relevant degrees of freedom

might include quarks, gluons, and other elementary particles. The goal is to find the

degrees of freedom that are important for describing the physics at the energy scale of

interest.

• Imposing Symmetries:

Symmetries are an essential aspect of field theory, which can simplify the equations

and help to identify the relevant degrees of freedom. In this step, we identify the

symmetries of the system being studied, such as translational invariance, rotational

invariance, gauge invariance, and so on. These symmetries can then be used to constrain

the possible forms of the EFT and can also help to identify the relevant degrees of

freedom. Symmetries are a fundamental aspect of constructing an EFT. By imposing

symmetries on the Lagrangian of the underlying problem, we can make predictions

about the behavior of the system, without having to solve the underlying equations

of motion. This is what makes EFT a powerful tool for studying complex physical

systems. There are different types of symmetries, such as continuous, discrete, and

global symmetries. In some cases, a problem may not have an inherent or apparent

symmetry, but by expanding the problem, we may discover an emerging symmetry. This

new symmetry can then be used to simplify the problem and make it more tractable.

It is worth noting that an EFT often has more symmetry than the original underlying
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theory. This is because the EFT is designed to describe the low energy behavior of

the system, which is typically more symmetric than the high energy behavior. By

neglecting the high energy modes and focusing on the low energy modes, we effectively

"integrate out" the complexity of the high energy physics, resulting in a simpler, more

symmetric description of the system.

• Perform power counting:

Power counting is a systematic way to organize the terms in the EFT, based on their

scaling behavior at different energy scales. In this step, we assign a power to each

coupling constant in the theory based on its dimension. This allows us to determine

which terms are relevant or irrelevant for a particular process, based on their scaling

behavior at different energy scales. The goal is to identify the terms that are most

important for describing the physics at the energy scale of interest and to neglect the

terms that are less important. In EFT, power counting is a helping tool for determining

the relative importance of different terms in the effective Lagrangian. This allows us

to identify the terms that are most relevant to the low energy regime physics of the

system and neglect the terms that have less impact. The power of a term in the effective

Lagrangian is determined by the number of fields and derivatives that it contains.

Terms with a higher power are considered to be more important, as they are expected

to have a greater influence on the behavior of the system. Conversely, terms with a

lower power are typically less important, and they can be neglected in calculations. By

performing power counting, we can systematically organize the different terms in the

effective Lagrangian and determine which terms should be included in our calculations.

These three steps are crucial for developing an effective field theory that accurately describes

the system being studied. By identifying the relevant degrees of freedom, imposing symme-

tries, and performing power counting, we can construct an EFT that captures the essential

features of the system at the energy scale of interest [28].

2.3.3 Examples of EFT

Followings are the some examples of Effective field theory
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• The theory of Weak Interactions: Insights from Fermi’s Model

• Heavy quark effective theory (HQET)

• Chiral perturbation theory

• Soft collinear effective field theory (SCET)

2.3.3.1 The Theory of Weak Interactions: Insights from Fermi’s Model

The Fermi theory of weak interactions, as described in [28], is an EFT that pertains to weak

interactions taking place at energies lower than the masses of the W and Z particles. It is

essentially a low-energy regime EFT that has been constructed based on the Standard Model

“SM”. The power counting parameter in EFT is δ = p
MW

, where p represents the momenta of

the particles involved in weak decay and is typically of the same size as the mass of the muon

in µ decay, or of the hadron or quark masses, or of size of the scale of QCD in Hadronic weak

decays. Additionally, the theory also has the customary perturbative expansions in αs/(4π)

and αe/(4π). Historically, Fermi’s theory has been used to calculate weak decay even when

the values of masses of weak bosons were not yet known [29].

2.3.3.2 Heavy Quark Effective Theory /Non-relativistic QCD

Heavy quark effective theory (HQET) and non-relativistic QCD (NRQCD) illustrates the

behavior of hadrons in low energy regime that contain a heavy quark, such as those with

bottom and charm quarks. In HQET, the expansion variables is Λ(QCD)/mQ, wheremQ = mb,

mc represents the mass of the massive quark. Additionally, the theory has a power expansion

in strong coupling constant. The matching process from QCD to HQET can be carried out in

perturbation theory, since range of strong interaction is small, with values such as αs (mb) ≈

0.22 and αs (mb) ≈ 0.22 × (4π). HQET calculations involve non-perturbative corrections,

which can be systematically incorporated into an expansion in Λ(QCD)/mQ. NRQCD, on the

other hand, is same as HQET but is applied to QQ bound states such as the Υ meson. The

heavy quarks move at very low speed in this case, and the expansion parameter is the velocity

v of the heavy quarks, which is typically of the order of the strong coupling constant.
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2.3.3.3 Chiral Lagrangian Approach

Chiral (χ) Lagrangian approach is an EFT used to illustrate the interactions between pions

and nucleons at low momentum exchanged regime. It was formed in the 1960s, and the most

modern method for calculating it was formed by Weinberg. The theory illustrates dynamics

of QCD in low energy domain, where the full theory is well-formed, but the matching onto the

EFT cannot be analytically computed due to its non-perturbative nature. However, latest

efforts are still in progress to compute the numerical data.

It should be noted that QCD and χ Lagrangian approach are not expressed in terms of

the identical fields. The QCD Lagrangian contains quark and gluon fields, while χPT has

meson and baryon fields. The factors of the χPT are typically fitted to experimental data.

Interestingly, investigations in χ Lagrangian theory, such as Weinberg’s calculation of

pion-pion scattering, were carried out using χ symmetry restoration theory before QCD was

even given the ground. This demonstrates that it is possible to perform computations in

an EFT without knowledge of its UV origin. The expansion parameter of χPT is p/Λ(χ),

where Λ(χ) 1GeV is the scale of chiral symmetry violation. Even though masses of baryons

are comparable to scale of chirality
(
λ(χ)

)
, χPT can still be applied to baryons because

baryon number is conserved. This allows baryons to be treated as massive particles, similar

to massive quarks in HQET, as long as the exchanged momentum is smaller than Λ(χ).

Additionally, there is an intriguing association between the large-Nc expansion of QCD and

baryon chiral dynamics [30].

2.3.3.4 Soft Collinear Effective Field Theory

Soft-collinear effective theory is an EFT that describes QCD processes lying in the domain of

high energy. In close association with the collision energy regime, the final states have small

invariant mass, such as when two highly energetic protons collide, then jets are produced.

SCET is built upon the underlying theory of QCD. The expansion parameters related to the

scale of SCET are

• ξ1 (Q)×Q =Λ(QCD),

• ξ2 (Q)×Q =MJ ,



CHAPTER 2. BASIC CONCEPTS 42

• αs (Q) = ξ3 (Q)× (4π),

where Q is the center-of-mass energy of the process representing to high momentum exchange,

and MJ is the invariant mass of the jet. Fundamentally developed for the decay of B mesons

to least massive particles, for instance B → Xsγ , SCET provides a powerful tool for un-

derstanding and calculating a wide range of high-energy domain’s QCD phenomena.(SCET

[31, 32, 33, 34])

2.3.3.5 Standard Model Effective Field Theory (SMEFT)

ESM, which stands for effective Standard model, is an EFT that utilizes SM fields to study

potential deviations from the SM and explore Beyond the Standard Model (BSM) physics.

The higher dimensional operators in SMEFT are produced at an unknown new physics scale,

Λ. Despite the lack of knowledge about Λ, systematic computations can still be carried out

within SMEFT.

2.3.4 Effective Hamiltonian for heavy meson decays

Three energy scales can be used to characterize weak decays of heavy mesons and that are

• ΛQCD, scale of QCD strong interactions.

• MW gives the scale of weak interactions.

• Characteristic energy of the process that is most commonly found by quark mass mQ .

These scales have the following magnitudes: O (ΛQCD) ≂ 0.2GeV, O (mQ) ≂ 5GeV, O (MW ) ≂90

GeV, whereas ΛQCD << mQ << MW so in order to study B-meson decay, effective theory

is considered rather than full theory that permits to calculate all physical phenomenon.

2.3.4.1 Effective Field Theory Approach to Weak Interactions in the Standard

Model

Weak meson decays occur only at short distances of the order of O
(

1
mW

)
because of the

massive weak bosons. For the given decay to define weak effective Hamiltonian, the dy-

namical degree of freedom that mediate interactions are removed out of the Standard model
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Lagrangian. Formally this leads to operator product expansion

Heff =
GF√
2

∑
n

Cn (µ)On, (2.3.2)

Where µ denotes renormalization scale and Ci are the Wilson coefficient functions. Amplitude

for any transition (X1 → X2) can be written as

A (X1 → X2) = ⟨X2 |Heff |X1⟩ =
GF√
2

∑
n

Cn (µ) ⟨X2 |On (µ)|X1⟩ ≡
GF√
2

∑
n

Cn (µ) ⟨On (µ)⟩.

(2.3.3)

The contributions from the physical scales that are higher than the renormalization scale are

contained in Wilson coefficients. Fluctuations that are integrated out are found in Wilson

coefficient Cn. Any heavy degrees of freedom would be integrated out. These Cn depends

on mt,mW ,mH and these dependencies can be calculated by taking into account box and

penguin diagrams where heavy mediators are taking part.

Any scale lower than µ will be dealt by the matrix elements ⟨On (µ)⟩ since these matrix

elements involve long distances so they can not be treated in perturbation theory, therefore

we have to consider non-perturbative effects.

Examples of non-perturbative tools are

• Lattice gauge theory

• Light cone sum rules

• QCD sum rules

• Chiral perturbation theory

Construction of effective Hamiltonian involves calculation of Wilson coefficients and local

operators. So the advantage of this process is the calculation of two parts separately (1)

Short distance part (2) Long distance part.

2.3.4.2 Effective Hamiltonian beyond Particle Physics Framework

In the effective Hamiltonian, the new physics operators are added that causes shifting in the

values of the Wilson coefficients from the SM values. It is essential since it is possible to
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determine numerical values for the coefficients associated with the Wilson operators from the

experiments and presence of NP can be tested. Infinite set of operators is present in this

effective Hamiltonian HNP
eff .

Relevant SM fields are the constructing elements of the operators required for the con-

struction of the Effective Hamiltonian in New Physics. These all operators are invariant

under SU(3)C × SU(2)L × U(1)Y . As there are infinite orders so to drop these operators,

high dimensional operators can be dropped. To the NP effective Hamiltonian, a suppression

factor ΛD−6
NP is added so when dimension gets larger, coupling constant becomes smaller

CD
i

ΛD−6
NP

so this suppression factor provide a constraint. So the most suitable form of the effective

Hamiltonian can be casted as

HNP
eff =

∞∑
D=7

∑
i

C[D]
i

ΛD−6
NP

O[D]
i . (2.3.4)

Still the large number of operators are involved here.

2.4 Light Cone Sum Rules: Introduction

The formalism of light-front sum rules (LCSR) is a powerful tool in QCD that combines

the Operator product expansion (OPE) with the theory of hard exclusive processes. The

fundamental idea behind LCSR is to calculate the correlation functions of hadrons using a

series expansion of currents near the light-cone.

The LCSR method is based on the operator product expansion (OPE), which allows us to

write down a series expansion of local operators in terms of their vacuum expectation values

and their derivatives. This expansion is valid in the limit of large spacetime separations, where

the participation of higher-dimensional operators become increasingly suppressed. However,

in the case of three-point sum rules, there are certain irregularities in the truncated OPE,

which can lead to uncertainties in the predictions.

To avoid these irregularities, the LCSR method expands the currents near the light-

cone, where the participation of higher-dimensional operators are more strongly suppressed.

This expansion involves a partial resummation of local operators, which allows us to include



CHAPTER 2. BASIC CONCEPTS 45

higher-order contributions that are not captured by the truncated OPE.

By combining the light-cone expansion with the OPE, the LCSR method provides a

systematic way to calculate Hadronic parameters such as decay widths, form factors, and

momentum distributions of partons. These calculations are particularly useful in studying

the properties of massive mesons and baryons, where the traditional methods of lattice QCD

are not yet fully developed [35, 36, 37]. By using these sum rules, one can calculate hard

scatterings and soft contributions.

Vacuum to vacuum correlation functions are employed in SVZ sum rules while starting

point of light cone sum rules is different. Here, correlation function is defined as a T-product

of currents wrapped between vacuum and on-shell state.

Here we take an example of the following interaction to understand the formalism of light

cone sum rules to calculate the required observable

e+e− → π0e+e−

The polarization operator for this would be written as

Wµν (p1, q) = ι

�
d4x exp (−ιq.x) ⟨π0 (p1)

∣∣T {jemµ (x) jem0 (x)
}∣∣ 0⟩, (2.4.1)

= ϵµναβp
α
1 q

βW
(
Q2, (p1 − q)2

)
, (2.4.2)

where p represents the momentum of pion and q represents exchanged momenta, Q2 = −q2.

jemµ (x) denotes the electromagnetic current and the dynamics of the process is corresponded

byW
(
Q2, (p1 − q)2

)
[38]. Graphically Eq. (2.4.1) can be represented by the following Figure

(2.4.1).

By putting the complete set of Hadronic states we get the following expression

Wµν (p1, q) = 2
⟨π0 (p1)

∣∣jemµ ∣∣ ρ0h (p1 − q)⟩⟨ρ0 (p1 − q) |jem0 | 0⟩
m2
ρ − (p1 − q)2

+
1

π

� ∞

sh0

ds
ImW (Q2, s)

s− (p− q)2
, (2.4.3)

whereas

⟨ρ0 (p1 − q) |jem0 | 0⟩ =
fρ√
2
mρϵ

(ρ)∗

ν .
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Figure 2.4.1: Expansion of the Correlation function in the light cone limit where p1 = p is
taken here [38].

The contribution of excited and continuum states is included by dispersion integral for

the limit s > sh0 . By applying SVZ technique and Borel transformation one can calculate

the amplitude in QCD.

2.4.1 Light cone variables

Before going into the detail of light cone expansion, we have to be convenient with the

statement that dominant part of the integral in Equation (2.4.3) originates from the light

cone expansion near x2 = 0. Therefore, defining a variable v = |q.p1| =
(
q2 − (p1 − q)2

)
1
2
,

that would be large enough

|v| ∼
∣∣(p− q)2∣∣ ∼ Q2 >> Λ2

QCD (2.4.4)

defining a ratio

ξ =
2v

Q2
, (2.4.5)



CHAPTER 2. BASIC CONCEPTS 47

considering a reference frame where momentum of pion is small and finite that is |−→p | ∼ µ,

|p0| ∼ µ, µ2 << Q2, v . Whereas in this frame, q0 ∼ Q2ξ
4µ

+ O (µ) and exponential function’s

argument can be expanded as

q.x = q0x0 − q3x3 ≃
Q2ξ

4µ
x0 −

(√
Q4ξ2

16µ2
+Q2

)
x3 ≃

Q2ξ

4µ
(x0 − x3)−

2µx3
ξ

, (2.4.6)

moreover, in order to avoid strong oscillations (x0 − x3) ∼ 4µ
Q2ξ

and at the same time, x3 ∼ ξ
2µ
.

These two conditions give the following expression

x20 ≃
(
x3 +

4µ

Q2ξ

)2

≃ x23 +
4

Q2
+O

(
µ2

Q4

)
(2.4.7)

and that is why, x2 ∼ 1
Q2 −→ 0 in region Eq. (2.4.4).

2.4.2 Light Cone OPE

Considering only u quark part of the current as in Eq. (2.4.3). Propagator of free massless

quark is defined as

iS0 (y, 0) = ⟨0|T {u (y) ū (0)} |0⟩ =
ι�y

2π2y4
, (2.4.8)

and after taking the transformation γµγαγν −→ −ιϵµανργργ5 + ..., we get the following ex-

pression

Wµν (p1, q) = −ιϵµανρ
�
d4y

yα exp (−ιq.y)
π2y4

⟨π0 (p1) |ū (y) γργ5u (0) |0⟩. (2.4.9)

To check out the non locality of quark-antiquark operator, expand it around y = 0. This

gives

ū (y) γργ5u (0) =
∑
k

1

k!
ū (0)

(←−
D.y

)k
γργ5d (0) , (2.4.10)

and the general splitting of the matrix elements of such operators is

⟨π0 (p1) |ū
←−
Dα1

←−
Dα2 ...

←−
Dαk

γργ5u|0⟩ = (−ι)k pα1pα2 ...pαk
pρMk + (−ι)k gα1α2pα3 ...pαk

pρM
′

k + ....

(2.4.11)
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Using Eq. (2.4.5)and Eq. (2.4.11), we get the following expression

Q2 ×W
(
Q2, (p1 − q)2

)
=

∞∑
k=0

ξkMk +
4

Q2

∞∑
k=2

ξk−2

k (k − 1)
M ′

k + ... (2.4.12)

Upon closer examination, it becomes apparent that the discrepancy between the regional

agents involved in the initial and subsequent phrases of Equation (2.4.12) lies in their level

of twist. The concept of "twist" pertains to the contrast between the dimension and spin of

a graceless and totally symmetric local operator. In the case of the operators that enter into

Eq. (2.4.11), their lowest level of twist is two. This is due to the fact that the operator devoid

of derivatives has a dimension of 3 and a Lorentz spin of 1. Additionally, once the matrix

elements are considered, the components with a twist of 2 for the operators only play a role

in the initial, symmetrical, and traceless term of Eq. (2.4.11), which includes the variable

Mr.

In the leading order the matrix element of Eq. (2.4.9) has the following parametric form

⟨π0 (p1) |ū (y) γργ5u (0) |0⟩|y2=0 = −ιpµ
fπ√
2

� 1

0

du exp (ιup.y)φπ (u, µ) , (2.4.13)

where φπ (u, µ) represents the distribution amplitude of pion of twist 2 and it is normalized,� 1

0
φ (u, µ) du = 1. After the expansion of Eq. (2.4.13) and comparing with Eq. (2.4.8) and

Eq. (2.4.9), we get relationship of moment of φπ(µ) with the distribution amplitude of twist

2

Mk = −ι
fπ√
2

� 1

0

duukφ (u, µ) . (2.4.14)

The behavior of the pion at large distances is encoded in the function φ (u, µ) multiplied by

fπ. Same procedure goes for d−quark part. Therefore

W (tw2)
(
Q2,

(
(p1 − q)2

))
=

√
2fπ
3

� 1

0

duφ (u, µ)

ū2Q2 − u (p1 − q)2
, (2.4.15)

where ū = 1− u. In the convolution form

W (tw2)
(
Q2, (p1 − q)2

)
=

√
2fπ
3

� 1

0

duφ (u, µ)W
(
Q2, (p1 − q)2 , µ, u

)
. (2.4.16)
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whereas at zeroth order in αs

W (0)
(
Q2, (p1 − q)2 , u

)
=

1

ū2Q2 − u (p1 − q)2
, (2.4.17)

by utilizing the dispersion relation (2.4.1) and equating it with the outcome of the light-cone

expansion, we can derive a summation principle. This involves defining the matrix element

⟨π0 (p1) |jemµ |ρ0 (p1 − q)⟩ = W ρπ
(
Q2
)
m−1
ρ ϵαβµνϵ

(ρ)νqαpβ1 , (2.4.18)
√
2fρW

ρπ (Q2)

m2
ρ − (p1 − q)

+

� ∞

sh0

ds
1
π
ImW (Q2, s)

s− (p1 − q)2
=

√
2fπ
3

� 1

0

duφπ (u)

ūQ2 − u (p1 − q)2
. (2.4.19)

Eq. (2.4.16) can be represented as

W (tw2)
(
Q2, (p1 − q)2

)
=

1

π

� ∞

0

ds
ImW (tw2) (Q2, s)

s− (p1 − q)2
, (2.4.20)

where ImW (tw2) (Q2, s) is defined as

ImW (tw2)
(
Q2, s

)
=

√
2fπ
3

� 1

0

duφπ (u) δ
(
ūQ2 − us

)
. (2.4.21)

By invoking duality approximation

� ∞

sh0

ds
1
π
ImW (Q2, s)

s− (p1 − q)2
=

� ∞

sρ0

ds
ImW (Q2, s)

s− (p1 − q)2
=

√
2fπ
3

� uρ0

0

duφπ (u)

ūQ2 − u (p1 − q)2
, (2.4.22)

with uρ0 =
Q2

(sρ0+Q2)
. Performing the Borel transformation we get the form factor

W ρπ
(
Q2
)
=

fπ
3fρ

� 1

uρ0

du

u
φπ (u, µ) exp

(
− ūQ

2

um2
+
m2
ρ

m2

)
. (2.4.23)
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2.4.3 Light Front QCD Sum Rules: An Overview

The goal of this section is to determine form factors for the Radiative B−meson transitions

B → V ′γ, where V ′ denotes the vector meson. The correlation function is

ι

�
dx exp (ιq.x) ⟨V ′ (p, α) |T

{
ξ̄ (x)σµνq

νb (x) b̄ (0) ιγ5ξ (0)
}
|vac⟩ = ιϵµνρσϵ

∗(α)νqρpσT (p+ q)2 .

(2.4.24)

By expressing the relation in (p+ q)2, it is possible to isolate the impact of the B−meson,

which manifests as the singularity contribution within the invariant function V
(
(p+ q)2

)
,

i.e.,

V
(
(p+ q)2

)
=

fBm
2
B

mb +mq

2F1 (0)

m2
B − (p+ q)2

+ ... (2.4.25)

B−meson decay constant can be defined as

⟨vac|ξ̄γµγ5b|B (p)⟩ = ιpµfB, (2.4.26)

where mB,mb,mq represents the mass of B−meson, light meson and quark mass. After the

perturbative expansion of propagator

�
dx exp (ιqx)

�
dk

(2π)4
exp (−ιkx) qν

m2
b − k2

⟨V ′ (p, α) |T
{
ξ̄ (x)σµν (mb +��k) ιγ5ξ (0)

}
|vac⟩,

(2.4.27)

the light cone meson wave function is defined by the above matrix element as

⟨vac|ξ̄ (0)σµνξ (x) |V ′ (p, α)⟩ = ι
(
e(α)µ pν − e(α)ν pµ

)
f⊥
V

� 1

0

exp (−ιupx)ϕ⊥
(
u, µ2

)
. (2.4.28)

Similarly

⟨0|ξ̄ (0) γµξ (x) |V ′ (p, α)⟩ = pµ
e(α)x

(px)
fVmV

� 1

0

du exp (−ιupx)ϕ∥
(
u, µ2

)
+(

e(α)µ − pµ
e(α)x

(px)

)
fVmV

� 1

0

du exp (−ιupx) g⊥ν
(
u, µ2

)
, (2.4.29)
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⟨0|ξ̄ (0) γ5ξ (x) |V ′ (p, α)⟩ = −1
4
ϵµνρσe

(α)νpρxσfVmV

� 1

0

du exp (−ιupx) g⊥(a)
(
u, µ2

)
/.

(2.4.30)

The dominant contributions to the fraction of overall momentum carried by quarks in mesons

with transverse and longitudinal polarization are described by the leading-twist distribu-

tions represented by the functions φ⊥ (u, µ2) and φ∥ (u, µ
2), respectively. By combining Eq.

(2.4.26) and Eq. (2.4.29), we get

V
(
(p+ q)2

)
=

� 1

0

du
1

m2
b + ūum2

K − u (p+ q)2

[
mbf

⊥
Kϕ⊥ (u) + umKfKg

(ν)
⊥ (u)+

1

4
mKfKg

(a)
⊥

]
+

1

4

� 1

0

du
m2
b − u2m2

K(
m2
b + ūum2

K − u (p+ q)2
)2mKfKg

(a)
⊥ (u) . (2.4.31)

After applying the Borel transformation, we get

fBm
2
B

mb +mq

2F1((0))e
−
(m2

B−m2
b)

t =

� 1

0

du
1

u
exp

[
ū

t

(
m2
b

u
+m2

K

)]
θ

[
s0 −

m2
b

u
− ūm2

K

]{
mb

f⊥
Kϕ⊥

(
u, µ2 = t

)
+ umKfKg

(ν)
⊥
(
u, µ2 = t

)
+
m2
b − u2m2

K + ut

4ut

mKfKg
(a)
⊥
(
u, µ2 = t

)}
, (2.4.32)

where the vector meson wave functions play a crucial role in this sum rule as they provide

important information about the dynamics at large distances. These wave functions contain

complex information about how the vector mesons behave over long distances [39].

2.4.4 Difference between QCD sum rules and LC sum rules

QCD sum rules and LC sum rules are two different approaches to analyze the properties of

hadrons in QCD, which is known as the “theory of strong interactions”. QCD sum rules are a

non-perturbative method for studying hadron properties, such as masses and decay constants,

based on the Operator product expansion (OPE) and the assumption of quark-hadron duality.

QCD sum rules use correlation functions of Hadronic currents, which can be related to

perturbative and non-perturbative contributions. The OPE is used to separate perturbative
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contributions from non-perturbative ones, which are then modeled using Hadronic spectral

functions. This allows for the extraction of hadron properties from the spectral functions

using sum rules.

LC sum rules, on the other hand, are based on the light-cone quantization of QCD. They

use a different framework to study hadron properties, specifically those related to the hadrons

light-cone wave function. LC sum rules are based on the Operator product expansion in the

light-cone limit, where one of the light-cone coordinates becomes large. This expansion is

used to separate the perturbative and non-perturbative contributions to the hadrons light-

cone wave function.

In summary, QCD sum rules and LC sum rules are different methods for studying hadron

properties in QCD. QCD sum rules are based on the OPE and the assumption of quark-

hadron duality, while LC sum rules use light-cone quantization of QCD. Both methods have

their advantages and limitations, and can provide complementary insights into the non-

perturbative structure of hadrons.

2.5 Form Factors

Matrix elements for the operator Oeffi≥6 can be described in terms of the form factors in

B → Sl+l− interaction whereas these form factors are the function of the squared exchange

momentum q2. Here we discuss them in the context of the scalar meson which is the topic

of this dissertation.

2.5.1 Calculation of form factors by using LCSR approach

Form factors are the Hadronic entities that gives us information about the internal structure

of partons. Hadronic matrix elements are defined in terms of form factors as

⟨S (p1) |q̄γµγ5b|B (p1 + q)⟩ = −i
[
f+
(
q2
)
p1µ + f− (q)2 qµ

]
, (2.5.1)

⟨S (p1) |q̄σµνγ5qνb|B (p1 + q)⟩ = − 1

mB +mS

[
(2p1 + q)µ q

2 − qµ
(
m2
B −m2

s

)]
fT
(
q2
)
.

(2.5.2)
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Distribution amplitudes that are the crucial for the derivation of form factors for theB−meson

transition are:

⟨S (p1) |q̄2β (z2) q1α|0⟩ =
1

4

� 1

0

exp [i (yp1.z2 + ȳp1.z1)] (2.5.3)

×
[
��p1ϕs (y) +ms

(
ϕsS (y)− σµνp

µ
1z

ν ϕ
σ
s (y)

6

)]
,

ϕs (y, µ) = fs (µ) 6y (1− y)

[
g0 (µ) +

∑
Gm=1

g1 (µ)G
3/2
GP (2y − 1)

]
, (2.5.4)

ϕss (y, µ) = fs (µ)

[
1 +

∑
Gm=1

aGm (µ)G
1
2
GP (2y − 1)

]
, (2.5.5)

ϕσs (y, µ) = fs (µ) 6y (1− y)

[
1 +

∑
Gm=1

bGm (µ)G
3/2
GP (2y − 1)

]
, (2.5.6)

where ϕs (y, µ) is a function of twist 2, ϕss (y, µ) and ϕ
σ
s (y, µ) are functions of twist 3. Due

to conservation of G-parity in SU(3) limit ϕs (y, µ) and ϕss (y, µ) , ϕ
σ
s (y, µ) are symmetric

and anti-symmetric that can be tested by replacing u −→ 1 − u. Normalization of these

distribution amplitudes can be written as

� 1

0

dyϕ (y, µ) = fS, (2.5.7)

� 1

0

dyϕsS (y, µ) =

� 1

0

dyϕσS (y, µ) = f̄S, (2.5.8)

where fS denotes vector current decay constant and f̄S denotes scalar density decay constant.

In terms of Hadronic matrix elements they can be defined as

⟨S (p1) |q̄2γµq1|0⟩ = p1µfS, (2.5.9)

⟨S (p1) |q̄2q1|0⟩ = mS f̄S, (2.5.10)

both densities can be related to each other through equation of motion

f̄S = µSfS, (2.5.11)
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B0 (µ) = µ−1
s =

m2 (µ)−m1 (µ)

ms

, (2.5.12)

where Eq. (2.5.12) has been solved by using normalization conditions given in Eq. (2.5.7) and

2.5.8. In Eq. (2.5.3, 2.5.4, 2.5.5, 2.5.6) where gGm denotes Gegenbauer moments and G
3/2
GP

denotes the Gegenbauer polynomials. As g0 term is either zero or small of order of difference

of down and up quark masses or difference of strange and down quark masses or mass of up

quark, so are other even Gegenbaur moments. As we know that µS >> 1, and Gegenbauer

coefficients are suppressed, so that odd Gegenabuer moments results in the domination of

LCDA of scalar mesons. Whereas, for the π and ρ mesons the odd Gegenbauer moments

disappear [40, 41].

When the three-particle participation are avoided, with the help of equation of motion

twist 3 two particle distribution amplitudes can be determined, that leads to

(1− 2y)ϕsS (y) =

(
ϕσS (y)

′)
6

. (2.5.13)

Asymptotic form of distribution amplitudes is

ϕsS (y) = f̄s, (2.5.14)

ϕσS (y) = f̄s6y (1− y) . (2.5.15)

The pseudo-scalar meson’s distribution amplitudes also have the same asymptotic form.

Therefore, to derive form factors, we first of all define a correlation function as the cur-

rents sandwiched between a vacuum and final scalar meson state. This can be expressed

mathematically as

Table 2.5.1: At the scale of µ = 1 GeV,twist-2 distribution amplitude’s decay constant and
Gegenbauer moments.

State f̄(MeV) g1 g3

a0[1450] 460±50 −0.58± 0.12 −0.49± 0.15
K∗

0 [1430] 445± 50 −0.57± 0.13 −0.42± 0.22
f0[1500] 490± 50 −0.48± 0.11 −0.37± 0.20
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Table 2.5.2: At the scale of µ = 1 GeV twist-3 distribution amplitude’s decay constant and
Gegenbauer moments.
State a1(×10−2) a2 a4 b1(×10−2) b2 b4

a0 0 −0.33 ∼ −0.18 −0.11 ∼ 0.39 0 0 ∼ 0.058 0.070 ∼ 0.20
K∗

0 1.8 ∼ 4.2 −0.33 ∼ −0.025 − 3.7 ∼ 5.5 0 ∼ 0.15 −
f0 0 −0.33 ∼ −0.18 0.28 ∼ 0.79 0 −0.15 ∼ −0.088 0.044 ∼ 0.16

Πµ (p1, q) = −
�
d4y exp (ιqy) ⟨S (p1) |T {j2µ (y) , j1 (0)} |0⟩, (2.5.16)

Πµ (p1, q) = −
�
d4y exp (iq.y) ⟨S (p1) |T {q̄2 (y) γµγ5b (y) , b (0) iγ5q1 (0)} |0⟩, (2.5.17)

where the currents j2µ (y) and j1 (0) are defined as q̄2 (y) γµγ5b (y),b1 (0) ιγ5q1 (0) . j2µ (y)

represents weak transition of b to q2 and j1 (0) represents Bq1 channel. For interpolating

current, vacuum to meson matrix element has the following form

⟨B (p1 + q) |b̄iγ5q|0⟩ = m2
B

fB
mb +mq

. (2.5.18)

By using Unitarity relation or in easy words, inserting all intermediate and continuum states

we get

Πµ (p1, q) = −
�
d4y exp (iq.y)

∑
λ

�
d4k

(2π)4
i exp[−i (k − p) .y]
k2 −m2

λ + iϵ
⟨S (p) q̄2 (0) γµγ5b (0) |λ⟩

⟨λ|b̄ (0) iγ5q1 (0) |0⟩, (2.5.19)

= −
�
d4y

∑
λ

�
d4k

(2π)4
exp[−i (k − p− q) .y]

k2 −m2
λ + iϵ

⟨S (p1) |q̄2 (0) γµγ5b (0) |λ⟩⟨λ|b̄ (0) iγ5q1 (0) |0⟩,

= −
�
d4k

δ4 (k − p1 − q)
k2 −m2

λ

⟨S (p1) |q̄2 (0) γµγ5b (0) |λ⟩⟨λ|b̄ (0) iγ5q1 (0) |0⟩,

=
−i

(p1 + q)2 −m2
B

⟨S (p1) |q̄2 (0) γµγ5b (0) |B (p1 + q)⟩⟨B (p1 + q) |b̄ (0) iγ5q1 (0) |0⟩

+
∑
h

⟨S (p1) |q̄2 (0) γµγ5b (0) |h (p1 + q)⟩⟨h (p1 + q) |b̄ (0) iγ5q1 (0) |0⟩
m2
h − (p1 + q)2

. (2.5.20)
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Now, using definitions of the matrix elements given in Eq. (2.5.1) and Eq. (2.5.2), we have

Πµ (p1, q) =
i

m2
B − (p1 + q)2

m2
BfB

mb +mq

(−i)
[
f+
(
q2
)
p1µ + f−

(
q2
)
qµ
]
+ ..., (2.5.21)

Πµ (p1, q) =
m2
BfB

(mb +mq)
(
m2
B − (p+ q)2

) [f+ (q2) p1µ + f−
(
q2
)
qµ
]
+

� ∞

sh
o

p+ (q2) p1µ + p− (q2) qµ

s− (p1 + q)2
ds.

(2.5.22)

The Correlation function can also be calculated if we insert a free quark propagator. Now

calculating to the primary order of strong coupling constant αs, the correlation function by

inserting free quark propagator and contracting b field

Πµ (p1, q) = −
�
d4y exp (iq.y) ⟨S (p1)

∣∣∣∣T {q̄2 (y) γµγ5iSF (y) iγ5q1 (0)}
∣∣∣∣0⟩. (2.5.23)

By transforming the above expression into k−space and inserting the value of free quark

propagator, we get the following expression

Πµ (p1, q) = −
�
d4y

�
d4k

(2π)4
exp (iq.y) exp (−ik.y) −i

m2
b − k2

[
mb⟨S (p1)

∣∣∣q̄2 (y) γµγ5 (��k +mb) iγ5

(2.5.24)

q1 (0)
∣∣∣0⟩],

= −
�
d4y

�
d4k

(2π)4
exp i {(q − k) .y} −i

m2
b − k2

[
mb⟨S(p1)

∣∣∣q̄2(y)γµq1(0)|0⟩ − kν⟨S(p1)∣∣∣q̄2(y)
γµγνq1 (0)

∣∣∣0⟩],
=

�
d4y

�
d4k

(2π)4
exp {(i (q − k) .y)} 1

m2
b − k2

[
mb⟨S (p1)

∣∣∣q̄2 (y) γµq1 (0)∣∣∣0⟩
− kνgµν⟨S (p1)

∣∣∣q̄2 (y) q1 (0) |0⟩+ ikνmb⟨S (p1)
∣∣∣q̄2 (y)σµνq1 (0)∣∣∣0⟩],

= −
�
d4y

�
d4k

(2π)4
exp {i (q − k) .y} 1

m2
b − k2

{
mbp

1
µ

� 1

0

du exp i (up1.y)ϕs (u)− kµms

� 1

0

du exp (iup1.y)ϕ
s
s (u)− ikνms

(
p1µXν − pνXµ

) � 1

0

du exp (iup1.y)ϕ
σ
s (u)

1

6

}
,

= −mbp
1
µ

� 1

0

du
1

m2
b − (q + up1)

2ϕs (u) +ms

� 1

0

du (q + up1)µ
1

m2
b − (q + up1)

2ϕ
s
s (u)
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+ms

(
p1µ

∂

∂qν
− p1ν

∂

∂qµ

)� 1

0

du
(q + up1)

ν

m2
b − (q + up1)

2

ϕσs (u)

6
. (2.5.25)

Solving the last term of the above expression we get

ms

(
p1µ

∂

∂qν
− p1ν

∂

∂qµ

)� 1

0

du
(q + up1)

ν

m2
b − (q + up1)

2

ϕσs (u)

6
= msp

1
µ

� 1

0

du
ϕσs (u)

6

[
4

m2
b − (q + up1)

2+

2 (q + up1)
2(

m2
b − (p1 + q)2

)]−msp
1
ν

� 1

0

du
ϕσs (u)

6(
gνµ

m2
b − (q + up1)

2 +
2 (q + up1)µ (q + up1)

ν[
m2
b − (q + up1)

2]2
)
,

= msp
1
µ

�
duϕσs (u)

1

m2
b − (q + up1)

2

[
2+

m2
b − u2p21 + q2

m2
b − (q + up1)

2

]
+msqµ

� 1

0

du
ϕσs (u)

6

1

m2
b − (q + up1)

2

[
1− m2

b − u2p21 + q2

m2
b − (q + up1)

2

]
.

(2.5.26)

So by putting Eq. (2.5.26) in Eq. (2.5.25), we get

Πµ (p1, q) = p1µ

� 1

0

du
1

m2
b − (q + up1)

2

{
−mbϕs (u) + umsϕ

s
s (u) +

1

6
msϕ

σ
s (u)

[
2 +

m2
b − u2p21 + q2

m2
b − (q + up1)

2

]}

+ qµ

� 1

0

du
1

m2
b − (q + up1)

2

{
msϕ

s
s (u) +

msϕ
σ
s (u)

6u

[
1− m2

b − u2p21 + q2

m2
b − (q + up1)

2

]}
,

(2.5.27)

the imaginary part of the correlation function has the following form

� 1

0

duP (u)
1

m2
b − (q + up1)

2 =

� 1

0

duP (u)

�
ds

s− (p1 + q)2
δ
(
m2
b − (q + up1)

2) |(p1+q)2 ,
(2.5.28)

=

� 1

0

duP (u)

�
ds

s− (p1 + q)2
δ
(
m2
b − us+ uūp21 − ūq2

)
,
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=

� 1

u0

duP (u)
1

s− (p1 + q)2
,

� 1

0

duP (u)
1

m2
b − (q + up1)

2 =

� 1

u0

duP (u)
1

s− (p1 + q)2
. (2.5.29)

Where the positive solution of the equation

m2
b − us0 + u (1− u) p2 − ūq2 = 0, (2.5.30)

m2
b − u

(
s0 − p2 − q2

)
− u2p2 − q2 = 0,

−
(
s0 − p2 − q2

)
+
√

(s0 − p21 − q2) + 4p2 (m2
b − q2)

1

2p21
= u0.

m2
b + uūp21 − ūq2

u
= s. (2.5.31)

Now solving another term

� 1

0

duP (u)
1[

m2
b − (q + up1)

2]2 =

� 1

0

duP (u)
1

π

�
ds

s− (p1 + q)2
Im

1

(m2
b − us+ uūp21 − ūq2)

2 ,

(2.5.32)

=

� 1

0

duP (u)
1

π

�
ds

s− (p1 + q)2
1

u

d

ds
Im

1

(m2
b − us+ uūp21 − ūq2)

,

=

� 1

0

duP (u)
1

u

�
ds

s− (p1 + q)2
d

ds
δ
(
m2
b − us+ uūp21 − ūq2

)
,

=

� 1

0

duP (u)
1

u

1

s− (p1 + q)2
δ
(
m2
b − us+ uūp21 − ūq2

)
|s=s◦+

�
ds[

s− (p1 + q)2
]2 δ (m2

b − us+ uūp21 − ūq2
)
,

= P (u0)
1

u0

1

s0 − (p1 + q)2
1

s0 − (1− 2u) p21 − q2
+

� 1

u0

du
1

u2
P (u)[

s− ((p1 + q)2
]2 ,

= P (u0)
1

u0

1

s0 − (p1 + q)2
u◦

m2
b + u20p

2
1 − q2

+

� 1

u0

du
1

u2
P (u)[

s− (p1 + q)2
]2 ,

= P (u0)
1

s0 − (p1 + q)2
1

m2
b + u20p

2
1 − q2

+

� 1

u0

du
1

u2
P (u)[

s− (p1 + q)2
]2 . (2.5.33)

Finally, we get
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m2
BfBf+ (q)2

(mb +mq)
[
m2
B − (p1 + q)2

] = � 1

u0

du
1

u

1

s− (p1 + q)2

[
mbϕs (u) +ms

{
uϕss (u) +

1

3
ϕσs (u)

}]
+

� 1

u0

du
1

u2
1[

s− (p1 + q)2
]2 16msϕ

σ
s (u)

(
m2
b − u2p21 + q2

)
+
ms

6

ϕσs (u0)

s0 − (p1 + q)2
m2
b − u20p21 + q2

m2
b + u20p

2
1 − q2

. (2.5.34)

m2
BfBf− (q)2

(mb +mq) [[m2
B − ((p1 + q)2)]]

=

� 1

u0

du
1

u

1

s− (p1 + q)2
ms

[
ϕss (u) +

ϕσs (u)

6u

]
− ms

6u0

ϕσs (u0)

s0 − (p1 + q)2
−
� 1

u0

du
1

u2
1[

s− (p1 + q)2
]2 16msϕ

σ
s (u)

(
m2
b − u2p21 + q2

)
(2.5.35)

Now applying the Borel transformation

fi
(
q2
)
= (mb +mq1)

1

πfBq1
m2
Bq1

� s0

(mb+mBq )
2

ImΠQCD
i

(
s, q2

)
exp

(
m2
Bq1
− s

M2

)
ds, (2.5.36)

and putting i = +, fBq1
= fB, fi(q

2) = f+ (q2) and exp
(
m2

B

M2

)
is taken on other side of the

equation, we get

πfBm
2
Bf+ (q2)

(mb +mq)
exp

(
−m2

B

M2

)
=

� 1

u0

du
1

u
exp

(
−m2

b + uūp21 − ūq2

uM2

){
−mbϕs (u) +ms (uϕ

s
s (u))

+
1

3
ϕσs (u) +

1

uM2

ms

6
ϕσs (u)

(
m2
b − u2p21 + q2

)}
+
ms

6
ϕσs (u0)

exp

(
−s0
M2

)
m2
b − u20p21 + q2

m2
b + u20p

2
1 − q2

. (2.5.37)

Here 1
s−(p1+q)

2 = exp
{
−(s− (p1 + q)2

}
. Similarly for other factor (f−) , we can check

πfBm
2
Bf− (q2)

(mb +mq)
exp

(
−m2

B

M2

)
=

� 1

u◦

du
1

u
exp

(
−m2

b + uūp21 − ūq2

uM2

){
msϕ

s
s (u) +

ϕσs (u)

6u

− 1

u2M2

ms

6
ϕσs (u)

(
m2
b + u2p21 − q2

)}
− ms

6
ϕσs (u) exp

(
−so
M2

)
.

(2.5.38)
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Same method will be used to derive fT (q
2)

Πµ (p1, q) = −i
�
d4y⟨S (p1) |T

{
q̄2 (y)σµνγ5q

νb (y) , b̄ (0) iγ5q1 (0)
}
|0⟩. (2.5.39)

Again by using Unitarity relation in above expression, we get

Πµ (p1, q) = −i
�
d4y exp (iq.y)

∑
λ

�
d4k

(2π)4
i

k2 −m2
λ + iϵ

exp {−i (k − p) .y} ⟨S (p1) |q̄2 (0)σµν

γ5q
νb (0) |λ⟩⟨λ|b̄ (0) iγ5q1 (0) |0⟩,

=
1

(p1 + q)2 −m2
B

⟨S (p1) |q̄2 (0)σµνγ5qνb (0) |B (p1 + q)⟩⟨B (p1 + q) |b̄ (0) iγ5q1 (0) |0⟩+ ...

(2.5.40)

Just using the definitions of Hadronic matrix elements written in Eq. (2.5.1) and Eq. (2.5.2),

implies

Πµ (p1, q) =
1

m2
B − (p1 + q)2

m2
B

mb +mq

fB
1

mB +ms

[
(2p1 + q)µ q

2 − qµ
(
m2
B −m2

s

)]
fT (
(
q2
)
+...,

(2.5.41)

=
m2
BfB

mb +mq

1

mB +ms

[
(2p1 + q)µ q

2 − qµ
(
m2
B −m2

s

)]
fT
(
q2
)
+ ... (2.5.42)

Correlation function can also be derived by inserting free quark propagator in the Eq. (2.5.34)

Πµ (p1, q) = −i
�
d4y exp (iq.y)

�
d4k

(2π)4
exp (−ik.y) −i

m2
b − k2

⟨S (p1) |q̄2 (y)σµνγ5qν (��k +mb)

iγ5q1 (0) |0⟩, (2.5.43)

= −i
�
d4y exp {i (q − k) .y} 1

m2
b − k2

[
mb⟨S (p1) |q̄2 (y)σµνqνq1 (0) |0⟩

− kρ⟨S (p1) |q̄2 (y)σµνqνγρq1 (0) |0⟩
]

= −i
�
d4y exp {i (q − k) .y} 1

m2
b − k2

[
qνmb⟨S (p1) |q̄2 (y)σµνq1 (0) |0⟩ − kρqνigνρ⟨S (p1) |

q̄2 (y) γµq1 (0) |0⟩+ kρqνigµρ⟨S (p1) |q̄2 (y) γνq1 (0) |0⟩ − kρqνϵµνρτ ⟨S (p1) |q̄2 (y) γτq1 (0) |0⟩
]
.
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In deriving Eq. (2.5.35) following relation is used

σµνγρ = i (gνργµ − gµργnu) + ϵµνρτγ
τγ5, (2.5.44)

with ϵ0123 = 1. Now

Πµ (p1, q) = −i
�
d4y

�
d4k

(2π)4
exp {i (q − k) .y} 1

m2
b − k2

[
qνmb (−ms)

(
p1µχν − p1νχµ

) � 1

0

du

(exp (iup.y))
ϕσs (y)

6
− i (k.q) p1µ

� 1

0

du exp (iup1.y)ϕs (u) + ikµq
νp1ν

� 1

0

du

exp (iup1.y)ϕs (u) , (2.5.45)

=

� 1

0

du
1

m2
b − (q + up1)

2ϕs (u)
[
(p1.q) (up1 + q)µ − (up1 + q) qp1µ

]
+

mbmsq
ν

(
p1µ

∂

∂qν
− p1ν

∂

∂qµ

) � 1

0

du
1

m2
b − (q + up1)

2

ϕσs (y)

6︸ ︷︷ ︸
G

,

G = mbmsq
ν

(
p1µ

∂

∂qν
− p1ν

∂

∂qµ

) � 1

0

du
1

m2
b − (q + up1)

2

ϕσs (y)

6
, (2.5.46)

= mbmsq
νp1µ

� 1

0

du
ϕσs (y)

6

2 (q + up1)ν[
m2
b − (q + up1)

2]2 −mbms (q.p1)

� 1

0

du
ϕσs (y)

6

2 (q + up1)µ

[m2
b − ((q + up1)]

2 ,

= mbms

� 1

0

du
ϕσs (y)

6

2q (q + up1) p
1
µ − 2 (p1.q) (q + up1)µ[

m2
b − (q + up1)

2]2 ,

G = mbms

� 1

0

du
ϕσs (y)

6

1[
m2
b − (q + up1)

2]2 [2q2p1µ − 2p1.qqµ
]
. (2.5.47)

Finally combining all terms, we get

fT
(
q2
)
= p1µ

� 1

0

du
1[

m2
b − (q + up1)

2]{−q2ϕs (u) + mbms

3
ϕσs (u)

q2[
m2
b − (q + up1)

2]}+ qµ

� 1

0

du
1[

m2
b − (q + up1)

2] (p1.q)ϕs (u)−
mbms

3
ϕσs (u)

p1.q[
m2
b − (q + up1)

2] ,
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=
(
−p1µ.q2 + qµp1.q

) � 1

0

du
1[

m2
b − (q + up1)

2]
{
ϕs (u)−

mbms

3

ϕσs (u)
1[

m2
b − (q + up1)

2]
}
,

=
−1
2

[
(2p1 + q)µ q

2 − qµ
(
m2
B −m2

s

)] � 1

0

du
1[

m2
b − (q + up1)

2]{
ϕs (u)−

mbms

3
ϕσs (u)

1[
m2
b − (q + up1)

2]
}
,

m2
BfBfT (q

2)

(mb +mq)
(
m2
B − (p1 + q)2

)
(mB +ms)

=
−1
2

� 1

0

du
1[

m2
b − (q + up1)

2]
{
ϕs (u)−

mbms

3
ϕσs (u)

1[
m2
b − (q + up1)

2]
}
, (2.5.48)

m2
BfBfT (q

2)

(mb +mq)
(
m2
B − (p1 + q)2

)
(mB +ms)

=
−1
2

� 1

u0

du
1

u
(
s− (p1 + q)2

)ϕs (u) +mbms
1

6

� 1

u0

du

1

u2
(
s− (p1 + q)2

)ϕσs (u) +mbms
1

6
ϕσs (uo)

1(
s0 − (p1 + q)2

)
1

(m2
b + u20p

2
1 − q2)

. (2.5.49)

Now applying the Borel transformation, we get

m2
BfBfT (q

2)

(mb +mq) (mB +ms)
exp

(
−m2

B

M2

)
=
−1
2

� 1

u0

du
1

u
exp

(
−m2

b + uūp21 − ūq2

uM2

)
[
ϕs (u)−

mbms

3uM2
ϕσs (u)

]
+
mbms

6
ϕσs (u0) exp

(
− s0
M2

)
1

(m2
b + u20p

2
1 − q2)

. (2.5.50)

Finally, the relation between f+ and fT can be obtained by comparing Eq. (2.5.34) and Eq.

(2.5.50), i.e.,

2m2
BfBfT (q

2) exp (−m2
B/M2)

(mB +mq) (mB +ms)
=
mBf+ (q2) fB exp (−m2

B/M2)

(mB +mq)
. (2.5.51)

2mBfT (q
2)

(mB +ms)
= f+

(
q2
)
. (2.5.52)
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Similarly comparing Eq. (2.5.35) and Eq. (2.5.50), we get f− (q2) = 0. So sum rules for the

form factors f+ (q2), f− (q2) and fT (q
2) have been achieved.



Chapter 3

Introduction

In this chapter, we will derive the amplitude and calculate the numerical value by using QCD

light cone sum rules for the B-meson decays involving both leptons and hadrons. B −→

Sl+l−, where l denotes lepton (l = e, µ, τ) and S denotes scalar mesons, respectively. We

define the approximate range of squared momentum transfer, q2, within which the Operator

product expansion (OPE) for correlators remains valid. Within the effective range, we analyze

the behaviors of form factors and differential decay widths. Due to the increasing number

of experimentally discovered scalar meson states, significant efforts have been dedicated to

investigate their inner structures and classification. Regarding the classification of scalar

meson states, there are two well defined scenarios presented from the experimental data.

In scenario 1, two scalar nonets are formed by two-quark bound states. One contains the

lowest lying scalar states, such as the isoscalars, isodoublets and isovector. The other nonet

comprises the corresponding first excited states, such as the isoscalars, isodoublets , and

isovector. In scenario 2, the scalar states below 1 GeV are considered members of a four-quark

nonet, whereas f(1370), f0(1500), a0(1450), andK
∗
0(1430) are considered the lowest lying two-

quark resonances, and are arranged into another nonet with their corresponding first excited

states between 2.0 and 2.3 GeV. These two scenarios are intriguing because they provide us

grounds for the study of scalar meson decays [42]. Impact of NP on observables would be

discussed in this chapter. We will derive the precise mathematical formulas for the amplitudes

using the Wilson coefficients and Hadronic form factors obtained through the application

of the LCSR formalism and they are in good match with other models. Configuration of

64
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kinematic variables and the adopted convention for polarization for B−decay channel would

be highlighted. Numerical analysis would be presented with taking into account effects of

New Physics.

3.1 Effective Hamiltonian

The generic structure of weak effective Hamiltonian is

Heff =
GF√
2

∑
i

VCKMCi (µ)Oi (µ) , (3.1.1)

where GF represents the Fermi coupling constant, Oi(µ) represents to 4 quark propagator

and Ci(µ) are the Wilson coefficients. Amplitudes are written for an interaction of X1 and

X2 as following [43]

M(X1 → X2) = ⟨X1|Heff |X2⟩,

=
GF√
2

∑
n

V n
(CKM)Cn (µ) ⟨X1|Oi (µ) |X2⟩.

The explicit form of operators can be written as

O1 = (c̄µbν)V−A (s̄νcµ)V−A ,

O2 = (c̄b)V−A (s̄c)V−A ,

O3 = (s̄b)V−A

∑
q=f

(q̄q)V−A ,

O4 = (s̄µbν)V−A

∑
q=f

(q̄νqµ)V−A ,

O5 = ((s̄b))V−A
∑
q=f

((q̄q))V+A,

O6 = ((s̄µbν))V−A
∑
q=f

((q̄νqµ))V+A,
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O8 =
3

2
(s̄µbν)V−A

∑
q=f

(q̄νqµ)V+A ,

O7 =
3

2
(s̄b)V−A

∑
q=f

eq (q̄q)V+A ,

O9 =
3

2
(s̄b)V−A

∑
q=f

eq (q̄q)V−A ,

O10 =
3

2
(s̄µbν)V−A

∑
q=f

(q̄νqµ)V−A ,

O7γ =
e

8π2
mbs̄µσ

αβ
(
1 + γ5

)
bµFµν ,

O8g =
g

8π2
mbs̄µσ

αβ
(
1 + γ5

)
T aµνbνG

a
αβ,

O9 = (s̄b)V−A
(
l̄l
)
V
, O10 = (s̄b)V−A

(
l̄l
)
A
,

Oνν̄ = (s̄b)V−A (νν̄)V−A ,O
ll̄ = (s̄b)V−A

(
l̄l
)
V−A . (3.1.2)

We can also include the chirality flipped and the scalar type new operators as

O7 =
e

g2
mb (s̄σαβPRb) I

αβ,O7′ =
e

g2
mb (s̄σαβPLb) I

αβ,

O8 =
1

g
mb (s̄σαβT

aPRb)G
αβa,O8′ =

1

g
mb (s̄σαβT

aPLb)G
αβa,

O9 =
e2

g2
(s̄γµPLb) (µ̄γ

µµ) ,O9′ =
e2

g2
(s̄γµPRb) (µ̄γ

µµ) ,

O10 =
e2

g2
(s̄γµPLb) (µ̄γ

µγ5µ) ,O10′ =
e2

g2
(s̄γµPRb) (µ̄γ

µγ5µ) ,

OS =
e2

16π2
mb (s̄PRb) (µ̄µ) ,OS ′ =

e2

16π2
mb (s̄PLb) (µ̄µ) ,

OP =
e2

16π2
mb (s̄PRb) (µ̄γ5µ) ,OP ′ =

e2

16π2
mb (s̄PLb) (µ̄γ5µ) , (3.1.3)

where PL,R = 1∓γ5
2

and mb represents running mass in MS scheme.

As we are dealing with the b → s meson decays with hadrons in the final state, so our

required operators are O7γ,O9,O10 and the last two mentioned in Eq. (3.1.2). For b → u

the effective Hamiltonian has following form

Heff =
GF√
2
Vubūγµ (1− γ5) bl̄γµ (1− γ5) νl,
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Semi-leptonic decays B → Sl+l− in the Standard Model are induced by the following effective

Hamiltonian

Heff =
GFαV

∗
tbVts√
2π

[
Ceff

9 s̄γµ (1− γ5) bl̄γµl + C10s̄γµ (1− γ5) bl̄γµγ5l −
2mbC

eff
7 (mb)

q2

s̄ισµνq
ν (1 + γ5) bl̄γ

µl

]
, (3.1.4)

where Cabibbo-Kobayashi-Maskawa matrix element is represented by Vij, and C
eff
i rep-

resents the Wilson coefficients. C9,eff and C7,eff are represented by

C7,eff (µ) = C7 (µ) + Cb→sγ (µ) , (3.1.5)

C9,eff = C9 (µ) + Y pert (s′) + Y LD (s′) , (3.1.6)

where Cb→sγ (µ) results from the following interaction b→ scc̄→ sγ. Y pert (s′) and Y LD (s′)

represents the short and long distance contributions due to four quark propagators [44]

Y pert (s′) = h (z′, s′)− 4

2
h (1, s′)C3 −

4

2
h (z′, s′)C4 −

3

2
h (z′, s′)C5 −

1

2
h (z′, s′)C6 −

1

2
h (0, s′)C3−

(3.1.7)

3

2
h (0, s′)C4 +

2

3
C3 +

2

9
C4 +

2

3
C5 +

2

9
C6,

moreover, for y ≡ 4z′2

s′
< 1

h (z′, s′) = −8

9
ln z′ +

8

27
+

4

9
y − 2

9
(2 + y) |1− y|1/2

{
ln |
√
1− y + 1√
1− y − 1

| − ιπ
}
, (3.1.8)

and for y ≡ 4z′2

s′
> 1

h (z′, s′) = −8

9
ln z +

8

27
+

4

9
y − 2

9
(2 + y) |1− y|1/2

{
2 arctan

1√
y − 1

}
, (3.1.9)

h (0, s′) =
8

27
− 8

9
ln
mb

µ
− 4

9
ln s′ +

4

9
ιπ, (3.1.10)

where z′ ≡ mc

mb
and s′ ≡ q2

m2
b
. Wilson coefficients values in Standard model are written in the
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Table 3.1. The long-distance part is given as

Y LD (z′, s′) =
3π

α2
C(0)

∑
Vi=ψi

κi
mViΓ(Vi → l+l−)

m2
Vi
− s′m2

b − imViΓVi
, (3.1.11)

Table 3.1.1: Wilson Coefficients values in SM
C1 C2 C3 C4 C5 C6 C7 C9 C10

1.119 −0.270 0.013 −0.027 0.009 −0.033 −0.322 4.344 −4.669

Moreover,

Cb→sγ (µ) = ιαs

[
2

9
η

14/23 (G1 (yt)− 0.1687)− 0.03C2 (µ)

]
, (3.1.12)

G1 (y) =
y (y2 − 5y − 2)

8 (y − 1)3
+

3y2 ln2 y

4 (y − 1)4
, (3.1.13)

C0 = 3 (C1 + C3 + C5) + 1 (C2 + C4 + C6) ,

where η = αs(mW )
αs(µ)

, y =
m2

t

m2
W
. Short distance physics is encoded in Wilson coefficients and

any new physics effects would be included in these coefficients. In the definition of operators

Oi≥7, a factor 16π2

g2
is taken that allows a plain organization of expansion of the corresponding

Wilson coefficients in the perturbation theory. As C7,9 always appear in the form of other

Wilson coefficients so it would be more convenient to define effective Wilsonian coefficients

as [45]

Ceff
7 =

4π

αs
C7 −

1

3
C3 −

4

9
C4 −

20

3
C5 −

80

9
C6, (3.1.14)

Ceff
8 =

4π

αs
C8 + C3 −

1

6
C4 + 20C5 −

10

3
C7, (3.1.15)

Ceff
9 =

4π

αs
C9 + Y

(
q2
)
, (3.1.16)

Ceff
10 =

4π

αs
C10, (3.1.17)

C ′,eff
7,8,9,10 =

4π

αs
C ′

7,8,9,10, (3.1.18)



CHAPTER 3. INTRODUCTION 69

3.2 Kinematics

Decay B → Sl+l−can be prescribed the name as quasi-two body decay with B → SJeff ,

whereas Jeff denotes the di-leptons. Now defining the momenta of each particle in rest frame

of B−meson that is parent particle

p1 = p2 + p3 + p4, (3.2.1)

where p1 denotes the 4-momentum of B−meson, whereas p2, p3, p4 denotes the corresponding

momentum of final state scalar meson, electron and positron. Writing

p1 − p2 = p3 + p4, (3.2.2)

where

p1 = (mB, 0, 0, 0) , (3.2.3)

p1 − p2 = p3 + p4 = q2 ≡ s, (3.2.4)

with q defining the exchanged momenta or the momenta of di-leptons, and mB is the mass

of B−mesons. By definition of Mandelstam variable

t = (p3 + p4)
2 , (3.2.5)

= p23 + p24 + 2p3.p4

t = m2
e +m2

e + 2p3.p4, (3.2.6)

p3.p4 =
t− 2m2

e

2
. (3.2.7)

Similarly

(p1 − p2)2 = (p3 + p4)
2 = t, (3.2.8)

t = p21 + p22 − 2p1.p2,

p1.p2 =
m2
B +m2

S − t
2

. (3.2.9)
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Defining s−Mandelstam variable

s ≡ q2 = (p1 − p2)2 ,

or

p1 − q = p2,

squaring both sides

p22 = p21 + q2 − 2p1.q,

m2
S = m2

B + s− 2p1.q,

p1.q =
m2
B + s−m2

S

2
, (3.2.10)

while s/2 = p3.q and p4.q = p4/s . Now defining last Mandelstam variable u as

u = (p2 + p3)
2 , (3.2.11)

= p22 + p23 + 2p2.p3,

u = m2
S +m2

e + 2p2.p3,

p2.p3 =
u−m2

S −m2
e

2
. (3.2.12)

The different scalar products can be found as

p2.p4 = p2. (p1 − p2 − p3) , (3.2.13)

= p1.p2 − p22 − p2.p3,

=
m2
B +m2

S − t
2

−m2
S −

u−m2
S −m2

e

2
,

p2.p4 =
m2
B +m2

e − t− u
2

. (3.2.14)

p.q = (p1 + p2) (p1 − p2) , (3.2.15)



CHAPTER 3. INTRODUCTION 71

= p21 − p22,

p.q = m2
B −m2

S. (3.2.16)

So any combination of momentum can be evaluated with the help of Mandelstam variables,

i.e.,

t = (p3 + p4)
2 , (3.2.17)

s = (p1 − p2)2 , (3.2.18)

u = (p2 + p3)
2 , (3.2.19)

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4. (3.2.20)

Following visual is the rest frame of di-leptons where l+ can be seen making an angle θ

withz−axis.

Figure 3.2.1: Kinematics of B-decay channel [46].
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3.3 Amplitude calculation within Standard model

Effective Hamiltonian responsible for b→ s transition has the following structure

Heff =
GF√
2
Vubūγµ(1− γ5)bl̄γµ(1− γ5)νl + h.c., (3.3.1)

where l stands for electron, muon, and tau. Vub stands for the CKMmatrix element. Similarly

for FCNC transition b→ s, Hamiltonian has the following representation

Heff =
GF√
2
VtbV

∗
ts

[
Ceff

9 (µ) (s̄γµ (1− γ5) b)
(
l̄γµl

)
+ C10 (s̄γµ (1− γ5))b)

(
l̄γµγ5l

)
−

2mbC
eff
7 (µ)

q2
(s̄σµν((1 + γ5))q

νb)
(
l̄γµl

) ]
+h.c., (3.3.2)

as |VubV
∗
us

VtbV
∗
ts
| < 0.02 so the term proportional to VubV

∗
ts is neglected. Wilson coefficients expres-

sions are given in the Appendix. As it is well known that

M(b→ sll̄) = ⟨S|Heff |B⟩,

= ⟨S|GF√
2
VtbV

∗
ts

[
Ceff

9 (µ) s̄γµ (1− γ5) b
(
l̄γµl

)
+ C10s̄γµ (1− γ5) b

(
l̄γµγ5l

)
−

2mbC
eff
7 (µ)

q2
s̄σµν (1− γ5) qνb

(
l̄γµl

) ]
|B⟩, (3.3.3)

=
GF√
2
VtbV

∗
ts

{
⟨S|Ceff

9 (µ) [s̄γµLb]
[
l̄γµl

]
+ C10 [s̄γµLb]

[
l̄γµγ5l

]
− (3.3.4)

2mbC
eff
7 (µ)

q2
[s̄ισµνq

νR]
[
l̄γµl

]
|B⟩

}
, (3.3.5)

where CQ1and CQ2 are zero in the expression of effective Hamiltonian. Now

ŝ =
s

m2
B

, s = q2, (3.3.6)

Ceff
7 = C7 − C5/3 − C6, (3.3.7)

Ceff
9 = C9 (µ) + Y (u, ŝ) +

3π

α2
C (µ)

∑
Vi=ψ(1s)...ψ(6s)

KiΓ(Vi −→ l+l−)mVi

m2
Vi
− ŝm2

B − ιmViΓVi
, (3.3.8)
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where the long distance effects due to cc̄ resonance are encoded in Ceff
9 and short distance

contributions too. While intermediate states are represented by the last term in above

expression of Ceff
9 . One loop contribution of 4-quark operators represented by the Y (u, ŝ)

and its explicit expression can be found in [47]. By using following definitions of Hadronic

transition probabilities, amplitude can be found in terms of Hadronic entities that are form

factors so

⟨S (p) |s̄γµγ5b|B (p+ q)⟩ = −ι
[
f+
(
q2
)
pµ + f−

(
q2
)
qµ
]
, (3.3.9)

⟨S (p) |s̄σµνγ5qνb|B (p+ q)⟩ = −1
mB +mS

[
(2p+ q)µ q

2 − qµ
(
m2
B −m2

S

)]
fT
(
q2
)
. (3.3.10)

These can also be written as

⟨S (p) |s̄γµLb|B (p+ q)⟩ = f+
(
q2
)
pµ + f−

(
q2
)
qµ, (3.3.11)

⟨S (p) |s̄σµνLqνb|B (p+ q)⟩ = ι
{
pµq

2 − qµ
(
m2
B −m2

S

)} fT (q
2)

mB +mS

, (3.3.12)

⟨S (p) |s̄b|B (p+ q)⟩ = m2
B −m2

S

ms −mb

fT
(
q2
)
. (3.3.13)

By using these definitions, we get the following form of amplitude

M(B −→ Sll̄) =
−GFα

2
√
2π

VtbV
∗
ts

{
T 1
µ

[
l̄γµl

]
] + T 2

µ

[
l̄γµγ5l

]
+ T 3

[
l̄l
]}
, (3.3.14)

where T 1
µ , T

2
µ and T 3 are the auxiliary functions defined as

T 1
µ = ι

(
Ceff

9 − C ′eff
9

)
f+
(
q2
)
pµ +

4ιmb

mB +mS

(
Ceff

7 − C ′eff
7

)
, (3.3.15)

T 2
µ = ι (C10 − C ′

10)
{
f+
(
q2
)
pµ + f−

(
q2
)
qµ
}
− ι

2ml (mb +ms)

(
CQ2 − C ′

Q2

)
(3.3.16){

f+
(
q2
)
p.q + f−

(
q2
)
q2
}
qµ,

T 3 = ι
(
CQ1 − C ′

Q1

) 1

mb +ms

(
f+
(
q2
)
p.q + f−

(
q2
)
q2
)
, (3.3.17)

whereas C ′
i = 0 and T 3 = 0 because f− (q2) doesn’t contribute at large recoils. Now taking

complex conjugate of Eq. (3.3.14)
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M†(B −→ Sll̄) =

[
−GFα

2
√
2π

VtbV
∗
ts

{
T 1
µ

[
l̄γµl

]
+ T 2

µ

[
l̄γµγ5l

]
+ T 3

[
l̄l
]}]†

, (3.3.18)

M† =
−GFαV

∗
tbVts

2
√
2π

{
T 1∗
µ

[
l̄γµl

]†
+ T 2∗

µ

[
l̄γµγ5l

]†
+ T 3∗ [l̄l]†} . (3.3.19)

Now to calculate the mod square of amplitude

∣∣M2
∣∣ = ∣∣MM†∣∣ ,

|M2| =

∣∣∣∣∣
{
−GFα

2
√
2π

VtbV
∗
ts

[
T 1
µ

[
l̄γµl

]
+ T 2

µ

[
l̄γµγ5l

]
+ T 3

[
l̄l
]]}
×

{
−GFαV

∗
tbVts

2
√
2π

(3.3.20)

(
T 1∗
µ

[
l̄γµl

]†
+ T 2∗

µ

[
l̄γµγ5l

]†
+ T 3∗ [l̄l]†)}∣∣∣∣∣,

=

(
−GFα

2
√
2π

VtbV
∗
ts

)(
−GFαV

∗
tbVts

2
√
2π

)[
T 1
µ

[
l̄γµl

]
× T 1∗

µ

[
l̄γµl

]†
+ T 2

µ

[
l̄γµγ5l

]
× T 2∗

µ

[
l̄γµγ5l

]†
+ T 3

[
l̄l
]
× T 3∗ [l̄l]† + T 1

µ

[
l̄γµl

]
× T 2∗

µ

[
l̄γµγ5l

]†
+ T 1

µ

[
l̄γµl

]
× T 3∗ [l̄l]† + T 2

µ

[
l̄γµγ5l

]
× T 1∗

µ[
l̄γµl

]†
+ T 2

µ

[
l̄γµγ5l

]
× T 3∗ [l̄l]† + T 3

[
l̄l
]
× T 1∗

µ

[
l̄γµl

]†
+ T 3

[
l̄l
]
× T 2∗

µ

[
l̄γµγ5l

]†]
,

(3.3.21)

giving each term a name and solving one by one by using Casimir trick here for leptonic part

∣∣M2
∣∣ = (−GFα

2
√
2π

VtbV
∗
ts

−GFαV
∗
tbVts

2
√
2π

)[
M1M†

1 +M2M†
2 +M3M†

3 +M1M†
2 +M1M†

3 + ...
]
,

(3.3.22)

M1M†
1 = T 1

µ

[
l̄γµl

]
× T 1∗

µ

[
l̄γµl

]†
, (3.3.23)

= T 1
µ × T 1∗

µ {Tr [(�p3 +m3) γ
µ (�p4 −m4) γ

µ′]} ,

M2M†
2 = T 2

µ

[
l̄γµγ5l

]
× T 2∗

µ

[
l̄γµγ5l

]†
, (3.3.24)

= T 2
µ × T 2∗

µ {Tr [(�p3 +m3) γ
µγ5 (�p4 −m4) γ

µ′γ5]} ,

M3M†
3 = 0, (3.3.25)
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Now solving for cross terms

M1M†
2 = T 1

µ

[
l̄γµl

]
× T 2∗

µ

[
l̄γµγ5l

]†
, (3.3.26)

= T 1
µ × T 2∗

µ {Tr [(�p3 +m3) γ
µ (�p4 −m4) γ

µ′γ5]} ,

M1M†
3 = 0, (3.3.27)

M2M†
1 = T 2

µ

[
l̄γµγ5l

]
× T 1∗

µ

[
l̄γµl

]†
, (3.3.28)

= T 2
µ × T 1∗

µ {Tr [(�p3 +m3) γ
µγ5 (�p4 −m4) γ

µ′]} ,

M2M†
3 = 0. (3.3.29)

Now summing up all the terms, we get the total amplitude square as

∣∣M2
∣∣ = G2

Fα
2

8π
|VtbVts|2

[
T 1
µ × T 1∗

µ {Tr [(�p3 +m3) γ
µ (�p4 −m4) γ

µ′]}+ T 2
µ×

T 2∗
µ {Tr [(�p3 +m3) γ

µγ5 (�p4 −m4) γ
µ′γ5]}+ T 1

µ × T 2∗
µ {Tr [(�p3 +m3) γ

µ (�p4 −m4) γ
µ′γ5]}

+ T 2
µ × T 1∗

µ {Tr [(�p3 +m3) γ
µγ5 (�p4 −m4) γ

µ′]}

]
, (3.3.30)

3.4 Numerical analysis of form factors

Form factors are usually parameterized in single pole or double pole forms

fi
(
q2
)
=

fi (0)

1− aiq2/m2
Bq1

, (3.4.1)

fi
(
q2
)
=

fi (0)

1− aiq2/m2
Bq1

+
biq

4

m4
Bq1

, (3.4.2)

where the kinematic region is defined as 0 < q2 <
(
mBq1

−mS

)2
. Here, ai and bi correspond

to intrinsic properties beyond perturbation and can be designed by changing the values of

momentum transfer that would change the values of form factors.



CHAPTER 3. INTRODUCTION 76

Table 3.4.1: Numerical values of fj(0), aj and bj involved in calculations of B decay
channels[48].

fj(0) aj

f+ 0.97+0.20
−0.20 0.86+0.19

−0.18

0.52 1.36
0.62± 0.16 0.81

f− 0.073+0.02
−0.02 2.50+0.44

−0.47

fT 0.60+0.14
−0.13 0.69+0.26

−0.27

0.34 1.64
0.26± 0.07 0.41

bj

0.86
−0.21

1.82+0.69
−0.76

-
1.72
−0.32

Here, the coefficients ai and bi can be calculated by the first and second derivative of

F (q2) at q2 = 0.

3.5 Decay rate

In the rest frame of the parent particle i.e., B−meson, the differential decay width for the

semi leptonic B → S transition can be written as

dΓ(B −→ Sll̄)

dq2
=

1

(2π)3
1

32mB

� umax

umin

|M|2 du, (3.5.1)

where u ≡ (pS + pl)
2 and q2 = (p3 + p4)

2. The limits of integration are

umax = (E∗
S + E∗

l )
2 −

(√
E∗2
S −m2

S −
√
E∗2
l −m2

l

)2

, (3.5.2)

umin = (E∗
S + E∗

l )
2 −

(√
E∗2
S −m2

S +
√
E∗2
l −m2

l

)2

, (3.5.3)

where E∗
S and E∗

l are the energies of the scalar particle (S) and the lepton (l), respectively,

in the rest frame of leptons [49]. These can be calculated as

E∗
S =

m2
B −m2

S − q2

2
√
q2

, (3.5.4)

E∗
l =

√
q2

2
. (3.5.5)
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Assembling everything, in Eq. (3.5.1), the final result will read as

dΓ(B −→ Sll̄)

dq2
=
G2
F |VtbVts|

2m5
Bα

2

1536π5

(
1− 4rl

s′

)1/2

φ
1/2
S

[(
1 +

2rl
s′

)
αS + rlδS

]
, (3.5.6)

where

s′ = q2/m2
B, r = m2

l/m2
B, rs = m2

S/m2
B

φS = (1− rS)2 − 2s (1 + rS) + s2

αS = φS

(∣∣∣∣Ceff
9

f+ (q2)

2
− 2

C7fT (q
2)

1 +
√
rS
|2 + |C10

f+ (q2)

2

∣∣∣∣2
)

δS = 6 |C10|2
{
[2 {1 + rS} − s]

∣∣∣∣f+ (q2)

2

∣∣∣∣2 + (1− rS) Re
[
f+
(
q2
)(

f−
(
q2
)
− f+ (q2)

2

)]

+ s

∣∣∣∣f− (q2)− f+ (q2)

2

∣∣∣∣2
}
.

The numerical values of various input parameters are given in Table 3.3. Using these values,

the decay rate becomes

Table 3.5.1: Numerical inputs
GF 1.166× 10−2GeV−2 |Vtb| 0.9991

mb (4.68± 0.03)GeV ms(1GeV ) 142MeV
mB0 5.279GeV mBs 142MeV
fB0 (0.19± 0.02)GeV fBs (0.23± 0.02)GeV
αem

1
137

mt 174GeV
mW 80.42GeV ΛQCD 225MeV

Γ(B −→ Sll̄) = 4.00573× 10−7GeV. (3.5.7)

This value is well in the range of some ongoing and future B−factories. Graphically, the

profile of the decay rate with square of momentum transfer q2 is shown in Fig. 3.5.1.
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Figure 3.5.1: Branching ratio calculated within SM

3.6 New Physics imprints in the semi leptonic B → S

decays

The exclusive processes involving quark level transitions b → sll̄ have been measured by

several experiments, showing deviations from the SM in the branching ratios of B → K∗µ+µ−

[50, 51, 52], Bs → ϕµ+µ− [53] and in the optimized observables of B → K∗µ+µ− [54, 55].

the measurements of the Lepton Flavor Universality (LFU) RK and RK∗ , which is the ratio

of the B → K(∗)µ+µ− to B → K(∗)e+e−, in different bins of dilepton invariant mass (q2)

provide the signatures of the NP[56, 57, 58].

To accommodate the various discrepancies, let us consider the following weak effective

Hamiltonian [59]

Heff =
−4GF√

2
VtbV

∗
ts

[
6∑
i=1

CiOi +
8∑
i=7

(CiOi + C ′
iO

′
i) +

∑
i=9,10

[(
Ci + CNP

il

)
Oi + C ′NP

il O′
i

]]
,

(3.6.1)

=
−4GF√

2
VtbV

∗
ts

[(
Ceff

7 O7 + C ′eff
7 O′

7

)
+
(
C9 + CNP

9l

)
O9 + C ′NP

9l O′
9 +

(
C10 + CNP

10l

)
O10

(3.6.2)
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+C ′NP
10l O

′
10

]
, (3.6.3)

where the different operators are defined as

O7 =
e

6π2
mb (s̄σµνq

νPRb)F
µν , O′

7 =
e

16π2
mb (s̄σµνPLb)F

µν ,

O8 =
gs

16π2
mb (s̄σµνT

aPRb)G
µνa, O′

8 =
gs

16π2
mb (s̄σµνT

aPLb)G
µνa,

O9 =
e

16π2
(s̄γµPLb)

(
l̄γµl

)
, O′

9 =
e

16π2
(s̄γµPRb)

(
l̄γµl

)
,

O10 =
e

16π2
(s̄γµPLb)

(
l̄γµγ5l

)
, O′

10 =
e

16π2
(s̄γµPRb)

(
l̄γµγ5l

)
. (3.6.4)

Here, gs stands for the strong coupling constant and mb represents the running mass of

b-quark in the MS technique. By using the same definitions of the matrix elements as

mentioned above we get the following expression

M = ⟨S (p) |Heff |B (p+ q)⟩, (3.6.5)

= ⟨S (p) |−4GF√
2
VtbV

∗
ts

[(
Ceff

7 O7 + C ′eff
7 O′

7

)
+
(
Ceff

9 + CNP
9l

)
O9 + C ′NP

9l O′
9+

(
C10 + CNP

10l

)
O10 + C ′NP

10l O
′
10

]
|B (p+ q)⟩,

=
−GF

2π
√
2
VtbV

∗
ts

{
⟨S (p)Ceff

7

[
−ιs̄σµνmbPRb

1

s

] (
l̄γµl

)
+ C ′eff

7

[
−ιs̄σµνqνPLb

1

s

] (
l̄γµl

)
+(

Ceff
9 + CNP

9l

)
(s̄γµPLb)

(
l̄γµl

)
+ C ′NP

9l (s̄γµPRb)
(
l̄γµl

)
+
(
C10 + CNP

10l

)
(s̄γµPLb)

(
l̄γµγ5l

)
+ C ′NP

10l (s̄γµPRb)
(
l̄γµγ5l)

)}
,

=
GF

2π
√
2
VtbV

∗
ts

{(
Ceff

9 + CNP
9l

)
⟨S (p) |s̄γµ (1− γ5) b

(
l̄γµl

)
|B (p+ q)⟩+ CNP

9′l ⟨S (p) |s̄γµ

(1 + γ5) b
(
l̄γµl

)
|B (p+ q)⟩ − 2mb

q2
Ceff

7 ⟨S (p) |s̄ισµνqν (1 + γ5) b|B (p+ q)⟩
(
l̄γµl

)
+(

C10 + CNP
10l

)
⟨S (p) |s̄γµ (1− γ5) b

(
l̄γµγ5l

)
|B (p+ q)⟩+ CNP

10′l ⟨S (p) |s̄γµ (1 + γ5) b
(
l̄γµγ5l

)
|B (p+ q)⟩

}
. (3.6.6)
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By using the Hadronic matrix elements definitions in terms of form factors as mentioned in

previous Eq. (3.3.9) and Eq. (3.3.10)

⟨S (p) |s̄γµγ5b|B (p+ q)⟩ = −ι
[
f+
(
q2
)
pµ + f−

(
q2
)
qµ
]
, (3.6.7)

and contracting above equation with qµ gives

qµ⟨S (p) |s̄γµγ5b|B (p+ q)⟩ = −ι
[
f+
(
q2
)
pµqµ + f−

(
q2
)
q2
]
. (3.6.8)

At large recoil, there is no contribution of f−(q
2) term so above expression reduces into the

following form

qµ⟨S (p) |s̄γµγ5b|B (p+ q)⟩ = −ι
[
f+
(
q2
)
pµqµ

]
, (3.6.9)

⟨S (p) |s̄γµγ5b|B (p+ q)⟩ = −ιf+
(
q2
)
pµ, (3.6.10)

⟨S (p) |s̄σµνγ5qνb|B (p+ q)⟩ = −1
mB +mS

[
(2p+ q)µ q

2 − qµ
(
m2
B −m2

S

)]
fT
(
q2
)
, (3.6.11)

giving

qµ⟨S (p) |s̄σµνγ5qνb|B (p+ q)⟩ = −qµ

mB +mS

[
(2p+ q)µ q

2 − qµ
(
m2
B −m2

S

)]
fT
(
q2
)
, (3.6.12)

qµ⟨S (p) |s̄σµνγ5qνb|B (p+ q)⟩ = −1
mB +mS

[(
2p.q + q2

)
q2 − q2

(
m2
B −m2

S

)]
fT
(
q2
)
.

This could be further reduced to

qµ⟨S (p) |s̄σµνγ5qνb|B (p+ q)⟩ = −1
mB +mS

2p.qfT
(
q2
)
, (3.6.13)

and by equation of motion

fT
(
q2
)
= − mb −ms

mB −mS

f+
(
q2
)
, (3.6.14)
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we get

⟨S (p) |s̄σµνγ5qνb|B (p+ q)⟩ = 2pµf+ (q2)

mB +mS

. (3.6.15)

By putting all these equations in Eq. (3.6.6), we get the following form of amplitude

M =
GF

2π
√
2
VtbV

∗
ts

{[
ι
(
Ceff

9 + CNP
9l − CNP

9′l

)
f+
(
q2
)
pµ +

4ιmb

mB +mS

(
Ceff

7 − Ceff
7′

)
pµ

] [
l̄γµl

]
+

ι
(
C10 + CNP

10l − CNP
10′l

) (
f+
(
q2
)
pµ + f−

(
q2
)
qµ
) [
l̄γµγ5l

]}
, (3.6.16)

=
GF

2π
√
2
VtbV

∗
ts

{
T 1′

µ

[
l̄γµl

]
+ T 2′

µ

[
l̄γµγ5l

]}
, (3.6.17)

|M|2 = G2
Fα

2

8π
|VtbVts|2

[
T 1′

µ × T 1′∗
µ {Tr (�p3 +m3) γ

µ (�p4 −m4) γ
µ′}+ T 2′

µ ×

T 2′∗
µ {Tr (�p3 +m3) γ

µγ5 (�p4 −m4) γ
µ′γ5}+ T 1′

µ × T 2′∗
µ {Tr (�p3 +m3) γ

µ (�p4 −m4) γ
µ′γ5}

+ T 2′

µ × T 1′∗
µ {Tr (�p3 +m3) γ

µγ5 (�p4 −m4) γ
µ′}

]
, (3.6.18)

where

T 1′

µ = ι

[(
Ceff

9 + CNP
9l − CNP

9′l

)
f+
(
q2
)
pµ +

4ιmb

mB +mS

(
Ceff

7 − Ceff
7′

)
pµ

]
, (3.6.19)

T 2′

µ = ι
[(
C10 + CNP

10l − CNP
10′l

) (
f+
(
q2
)
pµ + f−

(
q2
)
qµ
)]
, (3.6.20)

T 1′∗
µ = −ι

[(
Ceff

9 + CNP
9l − CNP

9′l

)
f+
(
q2
)
pµ +

4ιmb

mB +mS

(
Ceff

7 − Ceff
7′

)
pµ

]∗
, (3.6.21)

T 2′∗
µ = −ι

[(
C10 + CNP

10l − CNP
10′l

) (
f+
(
q2
)
pµ + f−

(
q2
)
qµ
)]∗

. (3.6.22)

This equation is quite involved and to solve it we used the Mathematica 12.1. In order to see

if everything is correct, by considering all the NP Wilson coefficients to be zero, the result is

Γ = 4.00573× 10−7GeV. (3.6.23)
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i.e., reproducing correctly the SM result. The Plot for above result is represented in the

Figure 3.6.1. To fit the data of different B mesons decays, the LHCb collaboration released

an unprecedented accuracy of the Branching ratios using the whole Run 1 and 2 dataset. After

performing a global Bayesian analysis of New Physics in Semi-leptonic B decays the highest

probability density intervals [HPDI] are used to calculate the values of Wilson coefficients

of weak Hamiltonian at low energies that are in great fit to the observed dataset [60] and

these are summarized in Table 3.4. By taking different values of Wilson coefficients from

the HPDI, decay widths are calculated and graphs are plotted as shown in Figure 3.6.2 and

Figure 3.6.3. While to compare results, combine plots are shown in Figure 3.6.4.

Figure 3.6.1: Branching ratio of B → Sl+l− when all WC’s are taken zero
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Table 3.6.1: Highest probability density intervals [HPDI] used to calculate the values of
Wilson coefficients of weak Hamiltonian at low energies that are in great fit to the observed
dataset [60].

95%HDPI ∆IC

CNP
9,µ [−1.10,1.05][−1.25,−0.72] −1.1, 65

{CNP
9,µ , C

NP
10,µ} {[−0.88, 1.14], [−0.08, 0.44]} 0.3, 59

{[−1.24,−0.74], [−0.32, 0.03]}
{CNP

9,µ , C
NP
9′,µ} {[−1.22, 1.41], [−2.77, 1.46]}, −2.3, 64

{[−1.34,−0.80], [−0.04, 0.82]}
{CNP

9,µ , C
NP
10′,µ} {[−1.12, 1.34], [−0.28, 0.22], −2.2, 62

[−1.38,−0.79][−0.36, 0.06]}
{CNP

9,µ , C
NP
10,µ, C

NP
9′,µ , C

NP
10′,µ} {[−1.10, 1.40], [−0.18, 0.60], [−2.66, 1.32], −1.5, 62

[−0.40, 0.05], [−0.51, 0.77], [−0.43, 0.19]},
[−0.33, 0.47]}, {[−1.39,−0.81],

Using these constraints, the values of the decay rate is given in Table 3.5. We can see

that the results are close to the SM values leaving very small space for the NP.

Table 3.6.2: New Wilson coefficient values.
CNP

9 CNP
9′ CNP

10 CNP
10′ Γ(GeV)

0 0 0 0 4.00573×10−7

1.40 1.32 0.60 0.47 3.93788×10−7

1.32 1.32 0.47 0.47 4.00573×10−7

−1.10 −1.10 0.47 0.46 4.00573×10−7

−1.10 −0.18 −2.66 −0.33 5.47519×10−7
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Figure 3.6.2: Differential Branching ratio calculated by taking WC values CNP
9,µ =

1.40, CNP
10,µ,= 0.60, CNP

9′,µ = 1.32, CNP
10′,µ = 0.47 .

Figure 3.6.3: Differential Branching ratio by taking WC values CNP
9,µ = −1.10, CNP

10,µ,=
−2.66, CNP

9′,µ = −0.18, CNP
10′,µ = −0.33.
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Figure 3.6.4: Combine graphs are plotted to compare SM and New Physics results.

3.7 Polarization Asymmetry

Another interesting parity violating observable that can be used to find the short distance

contributions dominated by top quark loops is the lepton polarization asymmetry. In recent

times, there has been a notable emphasis by Hewet about the importance of these asym-

metries [61]. In finding the expression of the lepton polarization asymmetry, we choose the

center of mass of dileptons as our reference frame. After taking into account the polarization

of the lepton, the amplitude becomes

M(B −→ Sll̄) =
−GFα

2
√
2π

VtbV
∗
tsϵβϵα

{
T 1
µ

[
l̄γµl

]
+ T 2

µ

[
l̄γµγ5l

]
+ T 3

[
l̄l
]}
, (3.7.1)

∣∣M2
∣∣ = G2

Fα
2

8π
|VtbVts|2

[
T 1
µ × T 1∗

µ

{
1 + γ5�s

2
Tr (�p3 +m3) γ

µ (�p4 −m4) γ
µ′
}
+ T 2

µ × T 2∗
µ{

1 + γ5�s

2
Tr (�p3 +m3) γ

µγ5 (�p4 −m4) γ
µ′γ5

}
+ T 1

µ × T 2∗
µ

{
1 + γ5�s

2
Tr (�p3 +m3) γ

µ

(�p4 −m4) γ
µ′γ5

}
+T 2

µ × T 1∗
µ

{
1 + γ5�s

2
Tr (�p3 +m3) γ

µγ5 (�p4 −m4) γ
µ′
}]

, (3.7.2)
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where T 3 = 0. Polarization asymmetry is a very interesting observable, because it helps to

calculate the momentum, spin and other factors of the colliding particle. In the rest frame

of a lepton, the four spin vector can be defined as

(sµ)r.s =
(
0, ξ̂
)
. (3.7.3)

Along the longitudinal direction of polarization of lepton, the unit vector is defined as

êL =
−→p l

|−→p l|
, (3.7.4)

and the remaining two components that are normal and traverse to the plane are

êN =
ps × pl
|ps × pl|

, (3.7.5)

êT = êN × êL. (3.7.6)

In this case, the two Mandelstam variables of the interest are s and u, i.e.,

s = (p3 + p4)
2 , (3.7.7)

u = (p1 − p4)2 − (p1 − p3)2 ,
[
4m2

l ≤ s ≤ (mb −ms)
2 ,−u (s) ≤ u ≤ u (s)

]
, (3.7.8)

u (s) =

√[
s− (mb ±ms)

2]2. (3.7.9)

In the dilepton frame, the variable u is related to the angle between momentum of B−meson

and l+, i.e.,

z ≡ cos θ = u/umax. (3.7.10)

We can calculate all the three polarization components - but here the emphasis is on longi-

tudinal polarization asymmetry, which is defined as

PL (s
′) =

dΓ
ds′

(
êLξ̂ = 1

)
− dΓ

ds′

(
êLξ̂ = −1

)
dΓ
ds′

(
êLξ̂ = 1

)
+ dΓ

ds′

(
êLξ̂ = −1

) , (3.7.11)
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where ξ̂ = ±1 denotes the right or left handed lepton in the end state and dΓ
ds′

means differ-

ential decay rate of B−meson. In SM, these symmetries arises due to interference of vector

or magnetic moment and axial vector operators. The expression of the longitudinal lepton

polarization asymmetry (PL) is found to be

PL (s
′) =

2
(
1− 4rl

s′

)1/2(
1 + 2rl

s′

)
αS + rlδS

Re

[
φS

(
Ceff

9 f+
(
q2
) 1
2
− 2

C7fT (q
2)

1 +
√
rS

)(
C10

f+ (q2)

2

)∗]
.

(3.7.12)

As the kinematic variable has the form s =
(
1− mS

mB

)2
and umax =

√
λB

√
1− 4m2

e

t
, where λ

is called Kallen function:

λB = m4
B +m4

S + t2 − 2m2
Bm

2
S − 2m2

Bt− 2m2
St, (3.7.13)

and tmax =
(
mB−mS

2

)2
and tmin = 4m2

e. Writing

u = umaxz, (3.7.14)

du = umaxdz,

Finally

dΓ(B −→ Sll̄)

dq2
=

1

(2π)3
1

32mB

� umax

umin

|M|2 du, (3.7.15)

=
1

(2π)3
1

32mB

� +1

−1

umax |M|2 dz, (3.7.16)

by using the Mathematica version 12.1, we plot the PL(s
′) that is given in Eq. (3.7.12) and

the plot is shown in Fig. 3.7.1. This result is calculated in SM, where PL(s
′) of dileptons is

around −0.92 for 2 ≤ q2 ≤ 14. Even if ml = 0, then still we get non-zero value of polarization

asymmetry at ŝ =
(
1− mS

mB

)2
. Away from the end points, we till have PL(s

′) = −0.92. Now

taking into account new Wilson coefficient values we get

M =
GF

2π
√
2
VtbV

∗
tsϵαϵβ

{
T 1′

µ

[
l̄γµl

]
+ T 2′

µ

[
l̄γµγ5l

]}
, (3.7.17)



CHAPTER 3. INTRODUCTION 88

∣∣M2
∣∣ = G2

Fα
2

8π
|VtbVts|2

[
T 1
µ × T 1∗

µ

{
1 + γ5�s

2
Tr (�p3 +m3) γ

µ (�p4 −m4) γ
µ′
}
+

T 2
µ × T 2∗

µ

{
1 + γ5�s

2
Tr (�p3 +m3) γ

µγ5 (�p4 −m4) γ
µ′γ5

}
+ T 1

µ × T 2∗
µ

{
1 + γ5�s

2

Tr (�p3 +m3) γ
µ (�p4 −m4) γ

µ′γ5

}
+T 2

µ × T 1∗
µ

{
1 + γ5�s

2
Tr (�p3 +m3) γ

µγ5 (�p4 −m4) γ
µ′
}]

.

(3.7.18)

By putting above amplitude into Eq. (3.7.16) and doing the standard way of calculation

we have

dΓ
(
B −→ Sll̄

)
dq2

=
G2
F |VtbVts|

2m5
Bα

2

1536π5

(
1− 4rl

s′

)1/2

φ
1/2
S

[(
1 +

2rl
s′

)
αS + rlδS

]
, (3.7.19)

where

Figure 3.7.1: Longitudinal Polarization asymmetry in Standard Model
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αS = φS

∣∣∣∣(Ceff
9 + CNP

9 + CNP
9′

) f+ (q2)

2
− 2

C7fT (q
2)

1 +
√
rS

∣∣∣∣2 + ∣∣∣∣(C10 + CNP
10′ + CNP

10

) f+ (q2)

2

∣∣∣∣2 ,
(3.7.20)

δS = 6
∣∣(C10 + CNP

10′ + CNP
10

)∣∣2 {(2 {1 + rS} − s)}
∣∣∣∣f+(q2)2

∣∣∣∣2 + (1− rS) Re

[
f+
(
q2
)
f−
(
q2
)

− f+ (q2)

2

]
+s

∣∣∣∣f− (q2)− f+ (q2)

2

∣∣∣∣
}
. (3.7.21)

Using Eq. (3.7.11) to calculate the polarization asymmetry, we have

PL(s
′) =

2(
(
1− 4rl

s′

)1/2(
1 + 2rl

s′

)
αS + rlδS

Re

[
φS

((
Ceff

9 + CNP
9 + CNP

9′

)
+ f+

(
q2
)) 1

2

− 2
C7fT (q

2)

1 +
√
rS

)(
C10 + CNP

10′ + CNP
10

) f+ (q2)

2

)∗]
. (3.7.22)

Using the value of the Wilson coefficients corresponding to NP, i.e., CNP
9 = 1.40, CNP

9′ =

1.32, CNP
10 = 0.60, CNP

10′ = 0.47, the result of the PL is displayed in Figure 3.7.2.

Figure 3.7.2: Longitudinal Polarization asymmetry by taking new values of WC as CNP
9 =

1.40, CNP
9′ = 1.32, CNP

10 = 0.60, CNP
10′ = 0.47

Here, PL(s
′) for dileptons is still−0.92 for 2 GeV 2 ≤ q2 ≤ 14 GeV 2, and hence the NP

does not give any encouraging results.
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In Fig. 3.7.3, we plotted the PL to compare the difference between the SM and NP results.

We can see that the current parametric space does not give any marked deviations from the

SM predictions.

Same lines go for the normal and transverse components. Normal component, however,

carries a novelty that it is T−odd observable because of the non-hermiticity of effective

Hamiltonian. Effective Hamiltonian is non-hermition due to intermediate cc states. For nor-

mal polarization asymmetry, results in SM and then results by taking into account non-zero

new Wilson coefficient values are plotted. Now by taking CNP
9 = 1.40, CNP

9′ = 1.32, CNP
10 =

0.60, CNP
10′ = 0.47 , values we plot the graph and acquire value of Normal polarization asym-

metry which is 0.30. Different plots are representing the behavior of Polarization asymmetry

with respect to Wilsonian values. Its clear from the graphs that no new physics has been

observed here if Wilson values are taken from the highest probability density intervals. Out-

side of these Intervals, we can’t be sure about the results until observed. Wilson coefficients

calculated at low energy effective Hamiltonian makes all observables in great match with the

results of observables of Standard model “SM”.

Figure 3.7.3: Combine plot of SM and NP longitudinal asymmetry.
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Figure 3.7.4: Normal Polarization in SM.

Figure 3.7.5: Normal Polarization by taking values CNP
9 = 1.40, CNP

9′ = 1.32, CNP
10 =

0.60, CNP
10′ = 0.47.

Now plotting all graphs combined to see if there is any NP.
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Figure 3.7.6: Combine plots of SM and NP are plotted to compare results for Normal polar-
ization.

These all plots are drawn by taking values of new Wilson coefficients from the Table 3.4.

Transverse polarization asymmetry does not contribute here. Average value of Longitudinal

polarization asymmetry is −0.92 and of the Normal polarization asymmetry is 0.30, for

almost all the values of the WCs.



Chapter 4

Summary and Conclusion

Several results from the last few decades have some (1− 3)σ disagreement with the Stan-

dard Model results and the FCNC decays involving b → s transitions are the pertinent

ones. As for the decay B̄0 → K∗
0 l

+l−decay, there were discrepancies in different physics ob-

servables, where the lepton flavor universality RK ≡ (B → Kµ+µ−) / (B → Ke+e−) is very

important. For SM predictions of different physical observables, the form factors, which are

non-perturbative quantity and the main source of uncertainties, are the model dependent

quantity. In this dissertation, first we reviewed the results of the form factors presented in

[49]. Using the framework of light-cone sum rules (LCSR), we calculated the form factors

for B̄0 → K∗
0 (1430) l

+l− decay using the leading Fock states up-to twist 3. Interesting, the

form factors associated with the scalar currents in B → S transitions are twice as large as

that for the B to pseudo-scalar (P ) case. The form factors f+,−,T (q
2 ≡ s) we calculated

here satisfy the heavy quark symmetry relations. Using these form factors, we verified that

the corresponding Branching ratio for B̄0 → K∗
0 l

+l− is of the order of 10−7 and the average

lepton polarization asymmetry is approximately 1 in the SM.

It is already mentioned that the SM predicts the lepton universality violation ratio to be

1 - but according to LHCb measured data in the bin q2 ranged from 1 ≤ q2 ( GeV 2) ≤ 6 , this

ratio was about 0.7450.090−0.074 that is 2.6σ deviating from the SM results. It was speculated that

NP- amplitudes must have destructive interference with the SM amplitude, that is why this

ratio is less than 1. Several research teams have conducted multiple analyses, yielding various

solutions to identify the Lorentz structure of the New Physics operators and their relevant

93
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Wilson coefficients that can be used to explore New Physics effects [60]. Here, LUV NP is

not found because of no contribution of Wilsonian coefficients C9. However, the NP can be

found if charm loop effects are taken into account. If long distance effects are considered too,

may be there would be physics beyond the SM as C9 would be giving information about NP.

In the last part of the dissertation, we studied the B̄0 → K∗
0 l

+l− decay using the model-

independent approach using the NP WCs calculated in [60]. The impact of these WCs

on the branching ratio, forward-backward asymmetry and the different lepton polarization

asymmetries is calculated. It was found that the results of these observables are consistent

with their corresponding Standard Model predictions [49], leaving very small space for the

NP in these decays.
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