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Abstract

This dissertation reviews the use of the helicity formalism for the Λ0
b → Λ0Z0 (3900) decay

to calculate the branching ratio of this process. This is an exclusive process and involve the

non-perturbative quantity, i.e., the form factors. The calculation of form factors Λb → Λ in

helicity amplitude are studied in the full quark model wave function. We described the decay

amplitudes for various processes using nonperturbative amplitudes, which parametrized in

terms of the SU(3) irreducible representations. By utilizing these results, we derive several

relations for the partial decay widths. These calculations allow us to estimate relevant partial

decay widths of b−baryons. The outcomes reviwed in this dissertation can be experimentally

tested at hadron colliders in the future. After the discovery of the charged and neutral

Zc(3900) particles, it is crucial to continue exploring di�erent ways to produce these exotic

states. In this study, we focus on investigating the potential to observe the Zc(3900) through

weak decays of b−baryons at the LHCb experiment.
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Chapter 1

Introduction

The four fundamental forces governing the basic laws of nature are the electromagnetic

force, the weak force, the strong force, and gravity. These forces vary signi�cantly in their

strength, with gravity being the least powerful. However, in the current particle physics

framework known as the Standard Model (SM), gravity's e�ects are not considered at the

quantum level. The SM is de�ned by the gauge group SU(3)C × SU(2)L × U(1)Y , where

C,L, and Y respectively correspond to color charge, left-handedness, and hypercharge. This

model encompasses two main categories of particles: fermions, characterized by half-integer

spin, and bosons, which have integer spin. Fermions can be further categorized into two

families: quarks and leptons. Gauge bosons, spin-1 particles, play a role in mediating the

fundamental forces as described by the SM. Additionally, the SM also includes the Higgs

boson, a fundamental spin-0 particle.

The journey towards formulating the Standard Model (SM) commenced with J. J. Thom-

son's 1897 revelation of the electron, marking the inaugural discovery of an elementary par-

ticle. Subsequently, in 1911, Rutherford and his team detected the atomic nucleus via ex-

periments with thin gold foil. Following this, in 1919, they pinpointed the proton. James

Chadwick's 1932 identi�cation of the neutron inaugurated the strong interaction concept,

revealing a force that holds nucleons together within nuclei. The realm of particle physics

emerged from cosmic ray investigations, yielding the revelation of further entities like muons,

pions, kaons, and Lambda particles, categorized into "Leptons," "Mesons," and "Baryons."

Leveraging advancements in detector technology and modern accelerators, a multitude of
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CHAPTER 1. INTRODUCTION 2

elementary particles were detected, a substantial portion of which proved transient. Conse-

quently, a systematic classi�cation system was imperative. In 1964, Gell-Mann and Zweig's

development of QCD laid the foundation for the SM model. Concurrently, experimental

�ndings related to neutral kaons validated CP violation, consequently paving the way for

electroweak theory. Independently, S. L. Glashow, A. Salam, and Steven Weinberg pos-

tulated the amalgamation of electromagnetism and the weak force in the 1960s [1]. This

formulation elucidated the electroweak force and the massless nature of gauge bosons like γ,

W+,W−, and Z0.

The �nite scope of the weak force implied that W and Z bosons were not without mass,

posing a conundrum. In 1964, Brout, Englert, and Higgs introduced a mechanism conferring

mass upon elementary particles, eventually clarifying this puzzle. Experimental veri�cation

of W and Z bosons materialized in 1983 at CERN. Another noteworthy triumph was the

2012 revelation of the Higgs boson, aligning with SM predictions. This particle was linked

to the Higgs �eld and represented a fundamental spin-zero entity. Its mass was empirically

determined to be 125.09± 0.21 GeV [2]. Furthermore, the mass of the top quark was gauged

at 173.34± 0.76 GeV [3].

While the Standard Model (SM) has proven adept at explaining a substantial portion

of experimental data, certain phenomena remain unaccounted for within its con�nes. These

enigmas encompass the presence of dark matter, dark energy, neutrino oscillations, the hier-

archy problem, strong CP problem, and the omission of gravitational forces from its purview.

Additionally, tensions persist between SM forecasts and empirical observations in scenarios

involving �avor-changing neutral current (FCNC) decays like b→ sℓ+ℓ− and charged current

b → cτν processes. Hence, the SM is acknowledged as an un�nished framework, prompting

ongoing endeavors to uncover extensions.

The pursuit of a Theory of Everything�encompassing all fundamental particles and

interactions�necessitates the integration of �avor physics. This captivating �eld antici-

pated the charm quark's existence and projected masses for both charm and top quarks even

before experimental veri�cation. It has the potential to shed light on fresh sources of CP vi-

olation, a pivotal quest given that baryogenesis implies the existence of CP violation beyond

the Kobayashi-Maskawa phase depicted in the SM. Advancing beyond the SM and encom-
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passing all observed phenomena mandates a search for divergences between experimental

outcomes and SM projections, speci�cally within �avor-changing charged currents (FCCC)

and �avor-changing neutral currents (FCNC) decays like b→ cτν and b→ sℓ+ℓ−.

This quest holds promise for glimpsing New Physics (NP), a notion forti�ed by the SM's

inadequacies in elucidating the universe's preference for matter over antimatter, neutrino

mass, dark matter, dark energy, the hierarchy problem, and gravity. Furthermore, collider

experiments stand as potent means to extend the theory and embrace all observed phenomena

through the discovery of new particles. Flavor physics contributes indirectly by prognosti-

cating particles through low-energy processes even before empirical detection, as exempli�ed

by the anticipation of the c−quark, W bosons, and the t−quark mass [4].

Explorations into the decays and interactions of s, c, and b quarks, alongside the rates

and angular distributions inherent in these processes, hold the potential to furnish crucial

insights into the e�ects exerted by NP mediators.

The discovery of the exotic state Z±
c (3900) by the BESIII collaboration in 2013 posed

a challenge to the traditional quark-antiquark and three-quark models of standard spec-

troscopy. This enigmatic state, containing a minimum of four quarks and exhibiting electric

charge interaction with charmonium, o�ers a distinctive avenue for probing QCD. The subse-

quent identi�cation of the neutral partner, Z0
c (3900), has intensi�ed the intrigue surrounding

these unconventional hadrons [5]. Several hypotheses have emerged, attempting to eluci-

date their internal quark-gluon structure and fathom the nature of the strong force. These

hypotheses encompass concepts like hadroquarkonia, hadronic molecules, tetraquark states,

and kinematic e�ects. Despite these e�orts, a consensus on the inherent dynamics of these

states remains elusive. Consequently, it becomes imperative to explore alternate production

modes for Zc(3900). Recent reports from the LHCb collaboration have unveiled the existence

of two additional exotic structures, designated as Pc(4380) and Pc(4450), initially observed

within the Λ0
b → Pc(→ J/ψp)K−decay process [6]. Investigating weak decays of b−baryons at

LHCb to uncover the Zc(3900) could hold substantial promise. While there's no universally

accepted factorization approach for handling Z ′
cs production mechanisms, the application of

�avor SU(3) symmetry enables us to establish correlations between decay modes in bottom-

quark decays. The diquark model predicts that the charged and neutral Zc(3900) states
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may belong to the same SU(3) octet multiplet, and the discovery of other states within this

multiplet would provide vital validation for this model [7].

This thesis is structured as follows: Chapter 2 o�ers a comprehensive review of the

Standard Model (SM), encompassing its Lagrangian and the CKMmatrix. The regularization

and renormalization procedures are discussed in Section 2.3, while the utilization of the

operator product expansion (OPE) in e�ective theories is presented in sections 2.4 and 2.5,

respectively. An introduction to �avor physics is provided in Section 2.7. Chapter 3 revolves

around a meticulous calculation of the Λb→ ΛZ(3900) process utilizing helicity formalism.

Section 3.1 delves into the process's kinematics, followed by a detailed derivation of the

amplitude.



Chapter 2

Standard Model

2.1 Introduction

The Standard Model stands as a triumphant framework in comprehending the nature

of matter and its interactions. Functioning as a gauge theory, it governs the behavior of

fundamental particles via quantum �elds. This theoretical underpinning encapsulates all

currently known elementary particle interactions, though it excludes the gravitational force.

Demonstrating remarkable success, the Standard Model not only elucidates a majority of

particle physics phenomena but also prognosticated the existence of particles that were then

undiscovered. In accordance with its depiction, the building blocks of visible matter in the

universe consist of elementary fermions, namely quarks and leptons.

Quarks and leptons, integral components of the elementary particles, are responsible

for constructing the diversity of matter. A pivotal distinction lies in the fact that quarks

are participants in all fundamental interactions due to their possession of color, weak, and

electromagnetic charges. On the contrary, leptons do not engage in strong interaction, as they

lack color charge. These divergent characteristics underscore their respective roles within the

particle realm. The constituents of the Standard Model are categorized into three distinct

classes, and an illustrative summary can be found in Figure 1. Below is a concise overview

of the constituents comprising the Standard Model.

� � Fermions: Within the framework of the Standard Model in particle physics, there

exist six distinct types of quarks, each with its own unique properties. These quark

5



CHAPTER 2. STANDARD MODEL 6

varieties are referred to as up (u), down (d), charm (c), strange (s), top (t), and bottom

(b) quarks. Each quark �avor is associated with a corresponding antiquark, and they

all possess three di�erent color charges. These quarks are grouped into three genera-

tions. The �rst generation includes up (u) and down (d) quarks, the second generation

comprises charm (c) and strange (s) quarks, while the third and �nal generation in-

volves top (t) and bottom (b) quarks. It's important to note that quarks have unique

features, such as fractional electric charges, which set them apart from more familiar

particles like electrons that have a charge of -1. Additionally, quarks exhibit speci�c

properties related to their color quantum characteristics, a concept that plays a cru-

cial role in quantum chromodynamics, the theory governing the strong nuclear force

responsible for binding quarks together within particles like protons and neutrons. Up-

type quarks (u, c, t) possess an electric charge of +2/3 elementary charge units, while

down-type quarks (d, s, b) carry a charge of −1/3 units. The quark masses range from

a few MeV/c² to 173 GeV/c², as indicated in Table 1. Leptons, another category of

fermions, also come in six variations: the electron, muon, tau, and their correspond-

ing neutrinos, along with their respective antiparticles. These leptons are distributed

across three generations, with each generation comprising a charged lepton (e−, µ−, τ−)

and its neutral partner, the neutrino (νe, νµ, ντ ).

� Gauge Bosons: Mediating the fundamental interactions are gauge bosons, which possess

a spin of 1 and do not adhere to the Pauli Exclusion Principle. The types of gauge

bosons include:

� The photon, a neutral and massless particle, mediates the electromagnetic force.

� The strong force is mediated by eight gluons, each with nonzero color charge and no

electromagnetic charge. Gluons are also massless.

� Weak interactions are facilitated by W and Z bosons. The W^± bosons, discovered

at CERN in 1983, have a mass of approximately 80.379 ± 0.012 GeV/c2 [8]. Shortly

afterward, the Z boson was discovered with a mass of approximately 91.187 ± 0.0021

GeV/c2 [9]. W± bosons interact primarily with left-handed particles, while the Z0
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Figure 2.1.1: Standard model[11]

boson engages both left- and right-handed particles.

� Higgs Boson: The Standard Model includes a solitary spin-0 particle known as the

Higgs boson. Its discovery in 2012 at the LHC marked a signi�cant milestone, with a

measured mass of around 125.18± 0.16GeV/c2[10]. The Higgs boson is responsible for

imparting mass to all fundamental particles through the Higgs mechanism.

All the matter in the universe is made up of three fundamental particles up, down quarks

and electron. The down and up quarks together from nucleons and with electron it group

up into atoms. The main goal of �avor physics is to �nd an answer why does Nature have

not one, but three generation of matter particle and also the search for di�erences between

matter and antimatter, as in particularly it is not clear, why all the Universe seem to be

made of the �rst generation of leptons and quarks.

2.2 Fundamental Interaction

The foundation of the Standard Model (SM), �rst proposed by Glashow, Salam, and

Weinberg [13, 14], is based on the idea of preserving gauge invariance when exposed to local
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symmetry group changes

SU(3)C × SU(2)L × U(1)Y , (2.2.1)

where C, L, and Y denote color charge, left-handed chirality, and weak hypercharge, re-

spectively. The SU(3)C gauge group is associated with strong interactions and Quantum

Chromodynamics (QCD). This group possesses eight generators, corresponding to the eight

gluons, which serve as the mediators of the strong force. These gluons themselves carry

color charge, enabling interactions among them, leading to the phenomena of "Con�nement"

and "asymptotic freedom." Perturbative techniques come into play for computing color in-

teractions, with the coupling constant αs of strong interactions becoming small at short

distances and large at longer distances. This behavior gives rise to quark con�nement within

color-neutral hadrons like mesons and baryons.

The combined group SU(2)L ×U(1)Y accounts for both weak and electromagnetic inter-

actions. The mediator for electromagnetic interaction is the massless, neutral, and colorless

photon (γ). Due to their lack of charge, photons do not interact with one another. As

distance increases, the coupling strength of electromagnetic interactions weakens. The medi-

ators for weak interactions are the massive W± and Z0 bosons. Their mass imparts a short

range to weak interactions.

In the context of the Standard Model, there exists a spin-zero particle known as the

Higgs boson. Its origin traces back to the phenomenon of spontaneous symmetry breaking

of SU(2)L × U(1)Y into U(1)QED through the non-zero vacuum expectation value (VEV) of

an isospin doublet scalar Higgs �eld [15], denoted as

ϕ =
(
ϕ+ ϕ0

)
(2.2.2)

This Higgs �eld encompasses four scalar degrees of freedom, three of which confer masses

to the W and Z0 bosons, while the fourth manifests as the Higgs boson itself.

2.2.1 SM Lagrangian

The SM interaction is described by the use of total Lagrangian density, all the information

contained in any theory is encoded in it. Lagrangian is the function of �elds and their
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derivatives containing the kinetic energy, interaction and coupling terms.

LSM = LQCD + LEW + LHiggs (2.2.3)

The Lagrangian for SU(3)C is

LQCD = −1

4
Ga
µνG

aµν +
∑
f

q̄f i��Dqf , (2.2.4)

with

Dµ = ∂µ + igsG
a
µ

T a

2
, Ga

µν = ∂µG
a
ν − ∂νG

a
µ − gsf

abcGb
µG

c
ν , (2.2.5)

where the covariant quark derivative is Dµ and Ga
µν is the gluon �eld strength tensor, re-

spectively. In Eq. (2.2.5), gs and f in summation is for strong coupling and quark �avor,

respectively and a, b, c = 1, . . . , 8 are the eight-bosons of SU(3)C . The structure constant

fabc are de�ned in terms of generators of SU(3) group

[T a, T b] = 4ifabcT c (2.2.6)

The SM combined weak and electromagnetic interaction for the electroweak sector, based

on SU(2)L × U(1)Y gauge symmetry group. Weinberg [16], Salam [17]and Gashow [18],

developed the theory of electroweak interaction. According to this theory , the fermions

comes with right-handed singlets and left-handed doublets, transform under symmetry group

SU(2)L × U(1)Y :

ΨL =

ψuL
ψdL

 =

(νe)L

eL

 ,

(νµ)L

µL

 ,

(ντ )L

τL

 ,

uL
dL

 ,

cL
sL

 ,

tL
bL

 (2.2.7)

where,

ψr = er, µr, τr, ur, dr, sr, cr, br, tr (2.2.8)

The representations of Eq. (2.2.7) and Eq. (2.2.8) can be ordered by the quantum numbers

of the weak isospin I, its third projection I3 and the weak hypercharge Y . The Gell-Mann-
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Nishijima relation relate I3 and Y with electric charge Q as

Q = I3 +
Y

2
, (2.2.9)

The electroweak Lagrangian is the divided in several parts, which include the portion for the

gauge boson, fermions, Higgs and Yukawa

LEW = Lgauge + LHiggs + Lfermions + LY ukawa. (2.2.10)

The kinetic energy term for gauge boson read as

Lgauge = −1

4
BµνB

µν − 1

4
W a
µνW

aµν , (2.2.11)

with

Bµν = ∂µBν − ∂νBµ, W a
µν = ∂µW

a
ν − ∂νW

a
µ − gϵabcW b

µW
c
ν , (2.2.12)

Bµ and W
a
µ represent the gauge �elds associated with the U(1) and SU(2) symmetry groups,

respectively. 'a' can take values 1, 2, or 3, and these gauge �elds correspond to the weak

force's gauge bosons. The parameters 'g' and 'εabc' are related to the coupling strength

and the structure constant of the SU(2)L symmetry. Initially, these bosons are considered

massless, a feature dictated by the SU(2)L × U(1)Y symmetry. However, they acquire mass

through a process known as spontaneous symmetry breaking, speci�cally when the SU(2)L×

U(1)Y symmetry breaks down into the electromagnetic U(1)em group. This mass generation

mechanism is achieved through the Higgs mechanism. The Lagrangian for the Higgs part

of this process can be formulated to mathematically describe how this symmetry breaking

occurs.

LHiggs = (Dµϕ)
†(Dµϕ)− V (ϕ), (2.2.13)

with
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Dµ = ∂µ + ig
τ iW i

µ

s
+ ig′Bµ. (2.2.14)

Here the scalar Higgs �eld ϕ is de�ne in Eq. (2.2.2) with hypercharge +1/2 and the term

V (ϕ) is the Higgs potential. The covariant derivative is Dµ with the EM gauge coupling

g′ and τ i are the Pauli spin matrices. The square of the covariant derivative represent the

three and four-point interactions between gauge bosons and the Higgs, for the spontaneous

symmetry breaking the mass term should be µ2 > 0 and λ > 0. Higgs potential is given as

V (ϕ) = −µ2ϕ†ϕ+
λ
(
ϕ†ϕ
)2

4
, (2.2.15)

the potential minimization leads to ϕ†
0ϕ0 = 2µ2/λ. The Higgs �eld doublet can be altered in

the subsequent manner by selecting the smallest value of the �elds.

ϕ0 ≡ ⟨ϕ0⟩ = 1/
√
2

0

v

 , (2.2.16)

With 'v' representing the vacuum expectation value (VEV) de�ned as v = 2µ/
√
λ, it's

important to note that the Higgs �eld is a complex doublet, which means it consists of

four independent components. However, through an appropriate gauge transformation, it's

possible to set three out of the four components to zero. i.e., the unitary gauge:

ϕ(x) = 1/
√
2

 0

v + h(x)

 , (2.2.17)

where the physical Higgs boson described by h(x). The ϕ̃ in the unitary gauge is the charge

conjugate of the Higgs �eld, is given as:

ϕ̃(x) ≡ iτ 2ϕ(x) = 1/
√
2

v + h(x)

0

 , (2.2.18)

By using Eq (2.2.17) to the Lagrangian (2.2.13) produces the mass of W± and Z0 boson,
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where mass of higgs boson is mh =
√
2µ . Fermion interaction term in Lagrangian is

Lfermion =
∑
Ψ

Ψ̄Li��DΨL +
∑
Ψ

Ψ̄Ri��DΨR, (2.2.19)

The summation over Ψ includes all the �avors of fermions, i.e., leptons and quarks. The Dµ

is represented as

(DL)µ = ig
τ iW i

µ

2
+ i

g

2

′
YLBµ + ∂µ, (DR)µ = ∂µ + i

g

2

′
YRBµ, (2.2.20)

L and R represent chiral projection operators, where they are de�ned as (1∓ γ5)/2. g is the

coupling constant for the U(1)Y group, and τ i(i = 1, 2, 3) are the Pauli matrices associated

with the SU(2)L group's generators, expressed as T i = τ i/2. The hypercharge values YL and

YR for doublets and singlets can be derived from Equation (2.2.9).

Y (νL) = Y (eL) = −1, Y (uL) = Y (dL) = +
1

3
, (2.2.21)

Y (eR) = −2, Y (dR) = −2

3
, Y (uR) = +

4

3
, (2.2.22)

the above values holds for second and third generation for fermions. The four gauge �elds

W i
µ, Bµ and Aµ represented physical �elds of W± and Z0 as

W µ(∗) = (W µ
1 ± iW µ

2 ) /
√
2, (2.2.23)

Zµ = c (θW )W µ
3 + s (θW )Bµ, (2.2.24)

Aµ = −s (θW )W µ
3 + c (θW )Bµ, (2.2.25)

here s (θW ) = sin θW and c (θW ) = cos θW and θW is the weak mixing angle, and can be

determined as

c (θW ) =
g√

q2 + g′2
(2.2.26)

Using the above expression of covariant derivatives and the de�nitions, one can obtain from
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Eq. (2.2.19) the boson-fermion interaction expressions of the Lagrangian:

LψA = −e
∑
ψ

Qψ(ψ̄γµψ)A
µ, (2.2.27)

LψW =
g√
2

∑
ψ

[(
ψ̄dLγµψ

u
L

)
W µ + h.c.

]
, (2.2.28)

LψZ =
g

4 cos θW

∑
ψ

[
ψ̄uγµ(au − γ5)ψ

u − ψ̄dγµ(ad − γ5)ψ
d
]
Zµ, (2.2.29)

where

au = 1− 4Qu sin
2 θW , (2.2.30)

ad = 1 + 4Qd sin
2 θW (2.2.31)

and the electromagnetic charge e is

e =
gg′√
g2 + g′2

= gs (θW ) = g′c (θW ) . (2.2.32)

The way that left and right-handed �elds transform in di�erent manner leads to parity

violation in the electroweak interaction. In the SM Lagrangian for Yukawa interaction is

split into two section

LY ukawa = LleptonsY + LquarksY . (2.2.33)

The Yukawa interaction for the lepton with Higgs boson is

LleptonsY = −Y (l)
ij

(
L̄iLϕ

)
liR + h.c. (2.2.34)

LiL is a doublet containing left-handed leptons, where li represents di�erent lepton �avors

(e, µ, τ). liR represents the right-handed lepton singlet. φ represents the Higgs doublet de�ned

in Equation (2.2.2). Yi
(l)
j is a 3x3 matrix describing the Yukawa coupling between leptons,

and it's a diagonal matrix denoted as Yi
(l)
j = δij ∗Yi(l)i . This diagonal structure arises because

lepton number conservation is maintained, and lepton mixing is not considered in the Stan-

dard Model. The right-handed neutrinos is not present in Eq. (2.2.22) as in SM framework
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neutrinos are massless.

2.3 The CKM matrix

Quark mixing comes about as a result of the Yukawa interaction between quark and Higgs

�elds. Within the framework of the Standard Model (SM), the Charge Conjugation-parity

(CP) symmetry is preserved for the kinetic energy component of quarks, leptons, and the

Higgs doublet. CP violation emerges from interaction terms, often mediated through Yukawa

couplings. When the Vacuum Expectation Value (VEV) of the Higgs doublet is zero, CP

violation does not occur. Beneath the VEV scale of the Higgs doublet, SM �elds acquire

masses, and CP phases are typically found in the left-handed currents that couple with the

W±
µ bosons. Within this arrangement, the couplings of charged currents are de�ned using

the Cabbibo-Kobayashi-Maskawa (CKM) matrix for quarks [19]. The Yukawa interaction is

characterized by the Lagrangian, which is as follows:

LquakrsY = −Y (d)
ij

(
Q̄i
Lϕ
)
djR − Y

(u)
ij

(
Q̄i
Lϕ̃
)
ujR + h.c. (2.3.1)

we have the SU(2) left-handed doublet of quark �elds represented by ui(i = u, c, t) and

di(i = d, s, b) within the Qi
L doublet. Additionally, there are up-type quark singlets ujR and

down-type quark singlets djR. The Higgs �elds, both the doublet φ and its conjugate, denoted

as φ�, are de�ned as described in Equations (2.2.17) and (2.2.18). The matrices Y (u) and

Y (d) are 3x3 complex matrices representing the Yukawa couplings for up-type and down-

type quarks, respectively. Mass terms are generated by substituting φ(x) with its vacuum

expectation value (VEV), φ→ ⟨φ⟩, as outlined in Equation (2.2.16).

LquarkY → LquarkY = − v√
2
Y

(d)
ij d̄iLd̄

j
R − v√

2
Y

(u)
ij ūiLū

j
R + h.c. (2.3.2)

The bilinear term involving quark �elds in Equation (2.3.2) can be made diagonal by using

four unitary 3x3 matrices, denoted as V u
L , V

u
R for up-type quarks, and V d

L , V
d
R for down-type
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quarks. This diagonalization process results in the emergence of mass eigenstates.

[ũL,R]
i =

[
V u
L,R

]ij
[uL,R]

j ,
[
d̃L,R

]i
=
[
V d
L,R

]ij
[dL,R]

j , (2.3.3)

and the diagonal mass matrices

Mq =
v√
2
V q
LY

(q)V q†
R , q = u, d. (2.3.4)

The process of transforming quarks into their mass eigenstates, as outlined in Equation

(2.3.3), preserves the diagonal components in the Lagrangian. This encompasses both the

kinetic terms and interaction terms involving neutral bosons, as presented in Equations

(2.2.27) and (2.2.29), respectively. The unitary nature of these transformations ensures this

preservation. The only change is encountered when dealing with the interaction between

charged W-bosons and quark �elds, as speci�ed in Equation (2.2.28). This modi�cation

results in the multiplication of unitary matrices. The 3Ö3 unitary matrix VCKM , governing

quark transitions while generating a virtual W-boson, can be expressed as follows:

V u
L V

d†
L ≡ VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.3.5)

The following formula may be used to represent the Lagrangian of the relationship between

the W-boson and the quark mass eigenstates:

LWq =
g√
2
(ūL, c̄L, t̄L) γ

µVCKM


dL

sL

bL

W †
µ + h.c. (2.3.6)

The Lagrangian in Eq. (2.3.6) allows the �avor-changing transition between di�erent gen-

erations of quarks, i.e., b → u. The ability to alter quark �avors in weak interactions is

highly signi�cant because it enables the decay of b-quarks into lighter quarks like u, d, s, and

c. This characteristic leads to a wide range of possible decay processes for B mesons that
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contain b-quarks.. The VCKM has many possible conventions, however a standard one is

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.3.7)

where sij = sin (θij) , cij = cos (θij) and the phase δ is responsible for the CP violation [20].

All θij lie in 1st quadrant and it is experimentally veri�ed that s13 << s23 << s12 << 1.

To demonstrate this hierarchy, it was deemed helpful to express the CKM matrix using four

parameters: A, λ, ρ, and η as [21]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, (2.3.8)

s23 = Aλ2 = λ
|Vcb|
|Vus|

, (2.3.9)

s13e
iδ = V ∗

ub = Aλ3(ρ+ iη), (2.3.10)

Here, λ is a small parameter, and when expanded to the order of λ4, the CKM matrix can

be formulated as

VCKM =


1− λ2

2
λ Aλ3 (ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1

+O
(
λ4
)
. (2.3.11)

Additionally, one de�nes ρ̄+ iη̄ = − (VudV
∗
ub) / (VcdV

∗
cb), where parameters ρ̄ and η̄ are related

with ρ and η as

ρ̄ = ρ

(
1− λ2

2
+O(λ4)

)
, (2.3.12)

η̄ = η

(
1− λ2

2
+O(λ4)

)
. (2.3.13)

The CKM matrix unitarity gives
(
V V † = V †V = I

)
∑
k

VikV
∗
jk = δij and

∑
k

VkjV
∗
ki = δij, (2.3.14)
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yielding in the particular the commonly used constraint

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (2.3.15)

From the relevant decays, CKM matrix elements Vij the values can be extracted from the

experimental data.

2.4 Regularization and Renormalization

Equation (4), representing the QCD Lagrangian density, o�ers a means to compute the

amplitude of a process within perturbative QCD. Nonetheless, at the tree level, the self-

interaction among particles can lead to ultraviolet divergences, introducing the challenge

of in�nite values. Tackling these ultraviolet in�nities stands as one of the most intricate

hurdles in relativistic quantum �eld theory. The resolution of these issues has only been sys-

tematically achieved in Quantum Electrodynamics (QED), wherein in�nities are consistently

absorbed into the bare quantities, rendering a physically meaningful outcome.

To remove these divergences and achieve physically interpretable results, a technique

called renormalization comes into play. This involves employing a regularization process to

modify the theory in such a way that observables like mass and charge remain well-de�ned

and �nite across all orders in perturbation theory. Two primary methods for applying the

regularization scheme are the momentum cut-o� and dimensional regularization.

The momentum cut-o� approach, while preserving all gauge symmetries and Ward iden-

tities, violates Lorentz invariance [22]. In contrast, the dimensional regularization method

maintains gauge symmetries and Ward identities to all orders of perturbation theory, ensuring

a more consistent treatment of the theory. The cut-o� regularization, introduced to regulate

�eld theory, e�ectively sets an energy scale. By assigning a �nite value to the cut-o�, initially

divergent integrals are transformed into convergent ones, albeit with a cut-o� dependence.

However, these terms cancel out with their cut-o� counterparts, ultimately yielding �nite

physical results when the cut-o� is allowed to approach in�nity.

Remarkably, even in cases where loop diagrams do not exhibit divergence in a quantum
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�eld theory, the renormalization of mass and �elds remains necessary. This arises from the

presence of a cloud of virtual particles surrounding a system of charged particles, which leads

to alterations in the original parameters that de�ne the system, such as its mass and charge.

m(0) = Zmm, q(0) = Z
1
2
q q, g(0) = Zggµ

ϵ, A(0)
µ = Z

1
2
3 Aµ. (2.4.1)

Here the quantities with superscript (0) are bare and m, q, g and Aµ are renormalized quark

mass, charge, QCD coupling and photon �eld, respectively. Zm, Zq, Zg and Z3 are the renor-

malized constants in which all divergence are absorbed up to all powers of perturbation.

A simpli�ed method to apply renormalization is a counter-term method, where QCD bare

Lagrangian L(0)
QCD can be written as

L(0)
QCD = LQCD + Lcounter, (2.4.2)

with LQCD given by Eq. (2.2.4) and the term Lcounter term is proportional to (Z − 1) that

acts as new interaction term contributing to Green's functions in the perturbation theory.

Renormaliztion constants Zm,q,g,3 are �xed in such as a way that this new term cancel the

contributions of divergence in Green's functions. But a sensible scheme for this cancellation

must be de�ned otherwise convergent terms are also canceled out along with divergent ones.

The two scheme designed for this purpose an MS and MS , where the MS scheme is one of

prime interest in which renormalization scale µ reads as

µMS → µeγE/2√
4π

. (2.4.3)

This scheme is used to proceed so that in 4π − γE terms are no more present and not only

the divergent part of radiative corrections is removed by counter terms but also the uni-

versal constant appeared in Feynman diagram calculations. In this scheme renormalization

constants take the from

Zm = 1− 3CF
αs
4πϵ

, Zg = 1− αs
4πϵ

(
11

6
Nc −

1

3
Nf

)
, (2.4.4)
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Zq = 1− CF
αs
4πϵ

, Z3 = 1− αs
4πϵ

(
2

3
Nc −

5

3
Nf

)
, (2.4.5)

where Nc and Nf are colors and �avors of quarks, respectively. Now the parameters of theory

depend on renormalization scale µ and it must be assigned a certain value to get renormalized

parameters from experiment; i.e., g = g (µ) ,m = m (µ) , and q = q (µ). By varying the value

of µ, one can get di�erent sets of parameters of theory m (µ) , q (µ) , g (µ) along with a set

of equations, which relates parameter set with di�erent values of µ and these are called the

renormalization group equations (RGE). Using Eq. (2.4.1) one can gets

dm (µ)

dln (µ)
= −m (µ) γm (g (µ)) ,

dg (µ)

dln (µ)
= β (g (µ, ϵ)) , (2.4.6)

where anomalous dimension of mass operator and β function are de�ne as

γm (g (µ)) =
1

Zm

dZm
dln(µ)

, β (g (µ, ϵ)) = −ϵg + β(g), (2.4.7)

with

β(g) = − 1

Zg

dZg
dln(µ)

. (2.4.8)

Up to two loop accuracy one gets

γm (αs) =
αs
4π
γ(0)m +

(αs
4π

)2
γ(1)m , β(g) = − g3

16π2
β0 −

g5

(16π2)2
β1, (2.4.9)

where

γ(0)m = 6CF , γ(1)m = CF (3CF +
97

3
Nc −

10

3
Nf ),

β0 =
11Nc − 2Nf

3
β1 =

34

3
N2
c −

10

3
NcNf − 2CFNf ,

αs(µ) =
g2(µ)

4π
, CF =

N2
c − 1

2Nc

. (2.4.10)

One gets the solutions for m(µ) and αs(µ) as

m(µ) = m(µ0)

[
αs(µ)

αs(µ0)

] γ
(0)
m
2β0

[
1 +

(
γ
(1)
m

2β0
− β1γ

(0)
m

2β2
0

)
αs(µ)− αs(µ0)

4π

]
, (2.4.11)
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αs(µ) =
4π

βoln
(

µ2

Λ2
MS

)
1− β1

β2
0

ln
(
ln
(

µ2

Λ2
MS

))
ln
(

µ2

Λ2
MS

)
 . (2.4.12)

The cut-o� ΛMS is a characteristics scale both for QCD and the usedMS scheme and depends

on the quark �avors present in the β0 and β1. β0 and γ
(0)
m are positive for six quark �avor

and three colors, which leads to the phenomenon of asymptotic freedom because coupling

(also mass) decrease as µ increase. Renormalization group has its advantages when we want

to sum large logarithms such as the one present in αs given in Eq. (2.4.12) which can be

represent in the form

αs(µ) =
αs(µ0)

v(µ)

[
1− β1

β0

αs(µ)

4π

lnv(µ)

v(µ)

]
, (2.4.13)

where v(µ) = 1− β0
αs

4π
lnµ

2
o

µ2
.

2.5 Operator Product Expansion

The dimensional regularization method, as discussed in Section 2.3, often encounters

logarithmic terms involving ratios of scales to the renormalization scale µ. These substantial

logarithms can be systematically summed using Renormalization Group Equations (RGEs).

However, challenges arise when considering energy scales around 1 GeV, particularly within

the realm of hadronic energy scales. In addition to these signi�cant logarithmic terms,

the strong coupling constant αs becomes too large for traditional perturbation theory to be

applicable. This necessitates the development of a theoretical framework capable of describing

the weak interaction of quarks. A robust approach to address this challenge involves the

utilization of a well-established tool known as the Operator Product Expansion (OPE) [25].

The OPE can be explained using an example of a quark level b→ csū transition with an

amplitude

A (b→ csū) = −GF√
2
VcbV

∗
us

M2
W

p2 −M2
W

[
s̄γα(1− γ5)u

] [
c̄γα(1− γ5)u

]
,

=
GF√
2
VcbV

∗
us

[
s̄γα(1− γ5)u

] [
c̄γα(1− γ5)u

]
+O

(
p2

M2
W

)
, (2.5.1)

where W -boson propagate the process and q1γµ(1 − γ5)q2 is the axial-vector currents. As
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Figure 2.5.1: Feynman diagram for the decayb → csū which can be replaced by four point
eective vertex.

momentum transfer p is signi�cantly less than MW therefore, one can safely ignore the terms

of order p2

M2
W

and the problem can be tackled by replacing the propagator with a four point

fermion interaction as shown in Fig. 2.5.1

The OPE in quantum �eld theory is a convergent expansion obtained from the product

of two �elds lying at di�erent point as a sum of local operators. Consider a state Ψ that is

characterized by N point functions

〈
OA1 (x1) , . . . ,OAN (xN)

〉
Ψ =

∑
B

CA1,...,AN

B (x1, . . . , xN) ⟨OB(xN)⟩Ψ,

where CA1,...,AN

B (x1, . . . , xN) are the OPE coe�cients that are independent of Ψ and covariant

functional of metric tensor gµν . For four dimensional free scalar �eld having action
∫
|∂ϕ|2,

the OPE reads

ϕ(x1)ϕ(x2) =
λ

|x1 − x2|2
+ ϕ2(x2) +

∑ (x1 − x2)
µ1 ....(x1 − x2)

µN

N !
ϕ∂µ1,....µNϕ(x2), (2.5.2)

where λ
|x1−x2|2

= CC
AB and for OA = OB = ϕ then OC = 1.
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2.6 E�ective Field Theory

The e�ective theory approach stands as a crucial method for investigating theories en-

compassing diverse energy scales. When various scales come into play, calculating decay

amplitudes using the complete theory's Lagrangian becomes intricate due to the presence of

signi�cant logarithms like ln
(

mW

ΛQCD

)
causing perturbation theory to break down. Speci�cally,

when dealing with processes occurring at energies below the masses of heavy quarks such as

charm, bottom, and top (with masses 1.4 GeV, 4.8 GeV, and 175 GeV respectively), it proves

advantageous to establish an e�ective theory. This involves integrating out the degrees of

freedom associated with heavy quarks from the Lagrangian of the comprehensive theory.

This simpli�cation streamlines analysis and facilitates the extraction of relevant outcomes.

Exploring weak decays of hadrons necessitates a meticulous consideration of strong in-

teractions. Flavor-changing weak interactions are governed by the electroweak scale, �xed

at mW=80 GeV. In contrast, the strong interactions governing the fundamental forces of

�nal hadronic states operate at the scale ΛQCD = 0.2GeV (associated with non-perturbative

QCD). The b-quark mass, lying between the weak and QCD scales, characterizes intermediate

states.

To manage Flavor-Changing Neutral Current (FCNC) interactions, dimension-six op-

erators are introduced in the theory, involving gluons, photons, quarks excluding the top

quark, and leptons. These operators are in�uenced by Wilson Coe�cients (WCs). The QCD

corrections to weak processes can be computed through a perturbative approach. It is an-

ticipated that newly added �elds within the theory would possess masses surpassing that of

the b-quark, and New Physics (NP) could enter the theory by introducing new operators or

modifying existing Wilson Coe�cients.

E�ective theory can be obtained by adopting following steps :

1. Select a cuto� scale Λ and split the �eld ϕ in high and low energy components ϕH and

ϕL, respectively; i.e., ϕ = ϕH + ϕL. Low energy mode ϕL can be written as

⟨0 |T (ϕL(x1)....ϕL(xn))| 0⟩ =
1

Z[0]

(
− iδ

δjL(x1)

)
....

(
− iδ

δjL(xn)

)
Z[jL]|jL=0, (2.6.1)
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with the generating functional

Z[jL] =

∫
DϕLDϕHei

∫
ddxL(x)+i

∫
ddxjL(x)ϕL(x). (2.6.2)

2. Integrate high energy modes above the scale Λ

Z[jL] =

∫
DϕL

(∫
DϕHei

∫
ddxL(x)

)
ei

∫
ddxjL(x)ϕL(x), (2.6.3)

where
∫
DϕHei

∫
ddxL(x) is called the Wilsonian e�ective action, which is non-local at

∆xµ sin(1/Λ) is dependent on the selection of cuto� Λ. After integrating on ϕH , Eq.

(2.6.2) is independent of �elds ϕH for which E > Λ.

3. Apply OPE on non-local action in low energy regime to expand it in terms of non-local

operators comprising of �elds for which E << Λ

SΛ(ϕL) =

∫
ddxLeffΛ (x), (2.6.4)

where

LeffΛ (x) =
∑
i

ciOi(ϕL(x)). (2.6.5)

The above procedure allows us to get the Lagrangian corresponding to speci�c scale.

The matrix elements do not involve perturbative QCD, where as the WC's are calculated

in perturbation theory at a weak scale µo = mW . The WC's are evaluated using Feynman

diagrams of Fig. 2.6.1 and then matching the computed results onto the e�ective theory.

The matched calculation �x the initial conditions at high scale ∼ µW,t.

The RGE
d

d lnµ
Ci(µ) = γji(µ)Cj(µ), (2.6.6)

is solved which de�nes the mixing of operators and the evolution at a low scale. In Eq.

(2.6.6) anomalous dimension matrix is de�ne as

γji(µ) = Z−1
ik

dZkj
dlnµ

. (2.6.7)



CHAPTER 2. STANDARD MODEL 24

Figure 2.6.1: The quark level transition Feynman diagram in full theory.

It can expand in terms of power of strong coupling αs(µ). The initial conditions are known

at next-to-leading order (NLO) for electroweak interaction and next-to-next-to-leading order

(NNLO) for QCD for all the WC's. To solve Eq. (2.6.6), the procedure follow in section 2.3

can be used. It seems straight forward to leading accuracy but quite di�cult beyond the

leading order as perturbation expansion for γij gives

γij = γ
(0)
ij

αs
4π

+ γ
(1)
ij

(αs
4π

)2
+O(α3

s), (2.6.8)

where γ
(0)
ij do not commute with γ

(1)
ij . Therefore, in order to solve Eq. (2.6.6) we de�ne an

evolution operator such that

Ci(µ) = Uij(µ, µ0)Cj(µ0), (2.6.9)

and a leading order (LO) one can write

U (0)(µ, µ0) =

[
α(µ)

α(µ0)

]− γ(0)T

2β0

= V

[α(µ0)

α(µ)

] γ(0)

2β0


D

V −1, (2.6.10)

where V diagonalizes the matrix γ(0)T (matrix comprising of eigenvalues of γ(0)) such that
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γ
(0)
D = V −1γ(0)TV . To obtain the solution at the NLO

U(µ, µ0) =

[
1 +

αs(µ)

4π
J

]
U (0)(µ, µ0)

[
1 +

αs(µ0)

4π
J

]
, (2.6.11)

and if J = V HV −1 then Eq (2.6.11) promises the solution of Eq (2.6.7). The elements of

matrix H can be written as

Hij = δijγ
(0)
i

β1
2β0

− Gij

2β0 + γ
(0)
i − γ

(0)
j

, (2.6.12)

with the property that G = V −1γ(1)TV .

The WC's Ceff
7,8 are generally used instead of C7,8 that include not only C7,8 but also the

contribution of C1 · · ·C6 and these can be expressed as

Ceff
7 = C7(µ) +

6∑
i=1

yiCi(µ), Ceff
8 = C8(µ) +

6∑
i=1

ziCi(µ). (2.6.13)

In the NDR scheme y = (0, 0,−1/3,−4/9,−20/3,−8/9) and z = (0, 0, 1,−1/6, 20,−10/3).

At the LO, Ceff
7,8 depend on regularization scheme. The e�ective Hamiltonian in this case

will be expressed in the following form

Heff (b→ s) =
4GF√

2

(
λus

2∑
i=1

CiOu
i + λcs

2∑
i=1

CiOc
i − λts

10∑
i=8

CiOi + h.c

)
. (2.6.14)

Here λqs = VqbV
∗
qs and the quark operators are de�ne as,

O1 = (s̄LγµT
aqL) (q̄Lγ

µT abL) , O2 = (s̄LγµqL) (q̄Lγ
µbL) ,

O3 = (s̄LγµbL)
∑
q

(q̄γµq) , O4 = (s̄LγµT
abL)

∑
q

(q̄γµT aq) ,
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O5 = (s̄LγµγνγαbL)
∑
q

(q̄γµγνγαq) , O6 = (s̄LγµγνγαT
abL)

∑
q

(q̄γµγνγαT aq) ,

O7 =
e

16π2
mb(s̄Lσ

µνbR)Fµν , O8 =
gs

16π2
mb(s̄Lσ

µνT abR)G
a
µν , (2.6.15)

O9 =
e2

16π2
(s̄Lγ

µbL)
∑
l

(l̄γµl), O9 =
e2

16π2
(s̄Lγ

µbL)
∑
l

(l̄γµγ5l),

Here O1 and O2 are the current- currents operators, O3−6 are the QCD penguin operators,

O7 is the EM dipole operator, O8 is a chromomagnetic dipole operator, O9 and O10 are

semileptonic operators and the light quarks are denoted by q. The letter R and L means

right and left-handed chiralities of the fermions. Some of the above operators get signi�cant

shares from renormalisation group mixing with O2 generated at tree level and this decrease

the NP e�ects. Hence it is considered su�cient to modify dipole and semileptonic operators

in most of the NP scenarios. The chirality �ipped counterparts of these SM operators are

O′
7 =

e

16π2
mb (s̄Rσ

µνbL)Fµν , O′
8 =

gs
16π2

mb (s̄Rσ
µνT abL)G

a
µν ,

O′
9 =

e2

16π2
(s̄Rγ

µbR)
(
l̄γµl

)
, O′

10 =
e2

16π2
(s̄Rγ

µbR)
(
l̄γµγ5l

)
. (2.6.16)

The semileptonic unprimed and primed operators with di�erent lepton �avors are

O(′)
9 = e2

16π2 (s̄L,Rγ
µbL,R)

(
l̄1γµl2

)
, O(′)

10 = e2

16π2 (s̄L,Rγ
µbL,R)

(
l̄1γµγ5l2

)
. (2.6.17)

The corresponding WC's of four-quark operators hold some symmetry relations such as Min-

imal �avor violation (MFV) of quarks give (Ci)d = (Ci)s and C
′
i ≈ 0. Lepton �avor violation

(LFV) gives (C ′
i)
e
q = (C ′

i)
µ
q = (C ′

i)
τ
q and lepton �avor conservation gives (C

′
k)
l1l2
q . The unitarity

of CKM matrix leads to λus+λcs+λts = 0 which further implies that λcs,ts ∼ λ2 ≫ λus ∼ λ4.

Its consequence is that current-current operators Ou
1 and Ou

2 can be neglected and also

λts ∼ −λcs can be predicted which leads to small CP asymmetries in the SM. Including

electroweak corrections, the generalized e�ective Hamiltonian can be written as

Heff =
GF√
2

∑
V i
CKMCi(µ)Oi(µ), (2.6.18)
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where V i
CKM are the elements of CKM matrix. Decay amplitude for Hadron H is

A(Hi → X) = ⟨X |Heff |Hi⟩ =
GF√
2

∑
V i
CKMCi(µ) ⟨X |Oi(µ)|Hi⟩ , (2.6.19)

where X is the possible �nal state and Ci(µ) and Oi(µ) are the functions of MW , coupling

constant αs and renormalization scale µ. One can get the WC's by matching the results of

full theory with an e�ective theory.

2.7 Hadrons

The bottom quark belong to the third generation of quarks and is a weak doublet partner

of top quark. Kobayashi and Maskawa in 1973 [26] introduced bottom and top quarks, which

experimentally con�rmed in 1977 by the production of bb̄ state. Meson containing light quark

(i.e. u, d, s, c) with b-quark are called B+, B0, B0
s and B

+
c , respectively. B

+
c contain both b and

c-quark is the heaviest one in all of the bound states and its di�cult to produce. It was �rst

produced in 1998 by CDF collaborator [27] and from the decay B+
c → J/ψπ+ its mass was

determined by the CDF collaboration in 2006 [28]. However, the LHCb published its most

accurate mass of mB+
c
= 6274.28± 1.40± 0.32MeV/c2 through the decay B+

c → J/ψD0K+

[29]. The Λb baryon is one of the b-quark bound state containing u, d, b quarks has its prime

importance.

The FCNC decays governed by b → sl+l− are studied as a function of dilepton mass

squared s ≡ q2. In the measurements, the regions J/ψ and ψ(2s) are usually not included

due to dominance of b → c transitions. Hence, the most reliable measurements are at low

and high s regions and in these regions one can compare the experimental measurements

with the theoretical predictions.

High energy pp collision at the LHC and pp̄ collision at the Tevatron produce all kinds of b-

hadrons. Tevatron produces cross-section of 30µb for (pp̄→ bX) with pseudorapidity η < 1 at
√
s = 1.96 TeV where as LHCb produces about 72µb at 7 TeV and about 144µb at 13 TeV with

pseudorapidity 2 < η < 5. Among the weak decays of b-hadrons, the dominant decay process

is b → cW ∗+ as b → c decay is suppressed by the factor of |Vub|/|Vuss| ∼ (0.1)2 as compared
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to the decay b→ c. Due to color suppression, the decay modes in which the spectator quark

combines with the virtual W boson to form bound hadronic state are suppressed by a factor

of (1/3)2 because color of both quarks has to be the same. Decay mode B → Xclν for

Vub as �nal state with two leptons make the study of strong interactions to be much easier.

Both inclusive and exclusive analysis can be used for this purpose but both are accompanied

by uncertainties. Inclusive analysis include uncertainties that belong to extrapolation of

restricted phase-space to full phase where as exclusive decays have uncertainties belonging

to hadronic Form Factors. For inclusive analysis, di�erential decays rates of all the B-meson

decays governed by the transition b → ulν give |Vub| = (4.41 ± 0.15+0.15
−0.17) × 10−3, where

the uncertainties correspond to both the experimental measurements and the theoretical

calculations [30]. The analysis of exclusive decays is comparatively simple from experimental

point of view in which the branching ratio of a particular decay is used to calculate the CKM

matrix element under consideration by using Form Factors calculated in LQCD or QCD sum

rules (QCDSR) approach. The world average of this analysis gives |Vub| = (3.28 ± 0.29) ×

10−3, which is the average obtained from the semileptonic B decays, An expected result was

obtained in 2015 when LHCb measured CKM matrix element Vub by the ratio [31]

|Vub|2

|Vcb|2
=

Br(Λ0
b → pµ−ν̄µ)

Br(Λ0
b → Λ+

c µ
−ν̄µ)

RFF , (2.7.1)

where RFF is the ratio of relevant Form Factors calculated using LQCD approach. Using

RFF = 0.68±0.07 the above ratio comes out to be 0.083±0.004±0.004 where the experimental

uncertainty �rst and the second one belongs to LQCD prediction. The world average for

|Vcb| = (39.5± 0.8)× 10−3, |Vub| = (3.27± 0.15± 0.16± 0.06)× 10−3 where third uncertainty

belongs to Vcb normalization.

According to world average presented in [31]

Vcs = 0.9746± 0.0026, Vcd = 0.2140± 0.0097, (2.7.2)

which are compatible with unitary of CKM matrix.
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2.8 Flavor Physics

Within the Standard Model (SM), fermions are organized into three distinct generations,

and �avor physics involves the study of interactions that di�erentiate between these gener-

ations. Fermions can interact through two main mechanisms: Yukawa couplings, where two

fermions couple with a scalar, and gauge interactions, where fermions couple through gauge

bosons. Interactions between di�erent generations of fermions lack gauge couplings in the

interaction eigenstate, and each type of gauge coupling is de�ned by a single coupling con-

stant. Consequently, gauge interactions are diagonal and universal when considered in the

interaction basis. On the other hand, Yukawa couplings involve interactions between di�erent

fermion generations, and their interaction eigenstates do not possess de�nite masses. How-

ever, once transformed into the mass eigenstate basis, Yukawa interactions become diagonal

but non-universal, and the fermions acquire de�nite masses.

Flavor physics holds unique signi�cance in both the quark and lepton sectors, as it o�ers

signi�cant potential for predicting New Physics (NP) indirectly, even before direct experi-

mental observations. The success of past �avor physics predictions is evident, such as the

prediction of the charm quark through the small ratio of decay widths of KL → µ+µ− to

K+ → µ+ν the anticipation of the third generation via neutral kaon mixing involving CP

violation, the determination of the masses of charm and top quarks, and the observation of

�avor transitions in neutrinos that implies the existence of massive neutrinos.

The investigation of rare processes like BS → µ+µ− has been conducted extensively

and their measurements are well established. In the SM, these rare processes are forbidden

at the tree level and only arise through loop diagrams via mechanisms like the Glashow-

Iliopoulos-Maiani (GIM) mechanism [32]. These rare processes are further suppressed by the

small o�-diagonal entries in the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Additionally,

decays involving leptons in the �nal states, such as muons and electrons, are subject to helicity

suppression due to the emission of two spin-1/2 leptons from a pseudoscalar B-meson. Several

predictions for B decays within the SM are available, o�ering insights into various rare decay
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modes.

B
(
B̄s → l+l−

)
= (8.34± 0.36)× 10−14, B(B0 → l+l−) = (2.63± 0.32)× 10−15,

B(B̄s → µ+µ−) = (3.52± 0.15)× 10−9, B(B0 → µ+µ−) = (1.12± 0.12)× 10−10,

B(B̄s → τ+τ−) = (7.46± 0.30)× 10−7, B(B0 → τ+τ−) = (2.35± 0.24)× 10−8.

(2.8.1)

During the Run 1 of LHC, the combined results of CMS and LHCb datesets performed in

2014 comes out to be [33]

B̄ (Bs → µ+µ−) =
(
2.8+0.7

−0.6

)
× 10−9,

B (B0 → µ+µ−) =
(
3.9+1.6

−1.4

)
× 10−10.

(2.8.2)

Since weak and Higgs mediated processes are strongly suppressed in the SM, the FCNCs can

take place at higher levels only in electroweak interactions, thus they are good candidates to

search for the NP.

The CELO experiments in 1994 studied the rare radiative decays process b → sγ [34] .

Later in 2008 and 2010, BaBar and Belle collected a dataset of 467M and 772M B0B̄0 pairs

and theirs combined dataset produced an integrated luminosity of 1ab−1 operating at Γ(4S).

At LHC , bb̄ cross-section is about 300µb at center of mass energy
√
s = 7 TeV [35] and

500µb at
√
s = 14 TeV , providing 1011 hadrons produced in a dateset of 1fb−1. At LHC, the

experiments contributing to rare b-hadron decays are the LHCb, CMS and the ATLAS . The

CMS and ATLAS experiments are able to produce dimuon pair in the �nal states, whereas

LHCb can generate photon, dilepton pair and only hadrons as �nal states. In semileptonic

decays, initially B factories used to average over neutral and charged B-mesons and also

between µ̄µ and l̄l �nal states. The LHCb, CMS, ATLAS and CDF experiments measure the

decays with µ+µ− and l+l− �nal states mostly instead of l+l− �nal states. In last two decades,

the processes B → K∗(892)0l+l− and B → K+l+l− have been widely studied. The CDF and

LHCb also observed other b-hadron decays such as Λ0
b → Λµ+µ−[36] , Λ0

b → pKµ+µ−[37] and

B0
s → ϕµ+µ− [38]. The measured branching fractions of some commonly studied b-hadron

decays are

B(B+ → K+l+l−) = (5.5± 0.7)× 10−7,



CHAPTER 2. STANDARD MODEL 31

B(B+ → K+µ+µ−) = (4.43± 0.24)× 10−7,

B(B0 → K∗(892)0l+l−) = (1.03+0.19
−0.17)× 10−6,

B(B0 → K∗(892)0µ+µ−) = (1.03± 0.06)× 10−6,

B(B0
s → ϕµ+µ−) = (8.3± 1.2)× 10−7,

B(Λ0
b → Λµ+µ−) = (1.08± 0.28)× 10−6, (2.8.3)

Compared to the leptonic and radiative decays of B-meson the semileptonic one are quite

rich in the phenomenology. The next chapters discuss the rare Λb → Λγ and Λb → Λµ+µ−

decays in the SM.



Chapter 3

Helicity Formalism of decay

Λ0b → Λ0Z0
c (3900) in SM

3.1 Introduction

The Λb baryon, which consists of a bottom quark and two light quarks (up and down),

serves as an isospin singlet ground state within the b-baryon family. Studying its decays

provides valuable insights into the underlying physics of QCD and contributes to model

development. Similar to B-mesons, the decays of Λb allow for measurements of various prop-

erties, including masses, lifetimes, and branching fractions. In 2011, the CDF collaboration

made the initial measurement of the Λb baryon decay Λb → Λµ+µ− [39] . The Tevatron

experiments determined the characteristic properties (mass and lifetime) of the Λb baryon

through two decay modes: Λb → ΛJ/ψ and Λb → Λ+
c π

− [40]. Since December 2009, the

LHCb experiment has been dedicated to studying the production of b-hadrons, with a pro-

duction ratio of B0 : Λ0
b : B

0
c = 4 : 2 : 1. The high rate of b-hadron production at LHCb allows

for the observation of Cabibbo-suppressed decay modes of Λb baryons, such as Λb → DpK−,

Λb → Λ+
c K

−[41] , Λb → Λ+
c D

−, Λb → Λ+
c D

−
s [41] , and Λb → J/ψpπ− [42] . LHCb has also

measured multi-body decays of Λb, including Λb → ΛK+π−, Λb → ΛK+K−, Λb → pK−π+π−,

Λb → pK−K+K−, Λb → ψ(2S)pK−, and Λb → J/ψπ+π−pK− [43] . LHCb achieved the most

precise measurement of the Λb mass, obtaining a value of 5620± 0.31 (stats)± 0.47 (sys).

BESIII Collaboration in 2013 analyzed the process e+e− → π+π−J/ψ at
√
s = 4.26GeV

32
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[44]. With the analysis of invariant mass spectrum of π±J/ψ suggest that there exist inter-

esting substructure as which latter known as Z±
c (3900)and its con�rmation came by Belle

and CLEO-c experiments [45, 46] along with it's neutral partner Z0
c (3900). This chapter is

dedicated to study the helicity formalism of the semileptonic four body Λ0
b → Λ0Z0

c (3900)

decay.

3.1.1 Generation of Tetraquark States via Weak Decays of B-Baryons

Here, we commence by constructing the representations for hadron multiplets using the

framework of the �avor SU(3) group. Our speci�c focus lies on b-baryons, which are cate-

gorized into antitriplet and sextet multiplets denoted as B and C, respectively. Comprising

three light quarks, light baryons exhibit the following structure:

T8 =


1√
2
Σ0 + 1√

6
Λ0 Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ0 n

Ξ− Ξ0 −
√

2
3
Λ0

 , (3.1.1)

which can be derived as Baryon has baryon number B = 1 and they are made up of three

quarks so

qjqk =
1

2
(qjqk + qkqj) +

1

2
(qjqk − qkqj) (3.1.2)

=
1√
2
Sjk +

1√
2
Ajk.

Here the symmetric tensor has six independent components

Sjk =
1√
2
(qjqk + qkqj) .

Similarly, the anti-symmetric tensor is written as following, having three independent com-

ponents.

Ajk =
1√
2
(qjqk − qkqj) ,
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where i , j denotes the indices and qj and qkare the �eld operators. Let's de�ne

qj =


q1

q2

q3

 =


ū

d̄

c̄


as the �eld operator which creates a u−quark, a d−quark or a s−quark

ū
∣∣∣0⟩ =∣∣∣u⟩, d̄∣∣∣0⟩ =∣∣∣d⟩, s̄∣∣∣0⟩ =∣∣∣s⟩.

The �eld operator belong to the representation 3̄ of SU(3), whereas the �eld operator

qj =


q1

q2

q3

 =


u

d

s


pertains to the 3̄ representation in the context of SU(3), distinct from the 3 representation due

to its transformation behavior. Speci�cally, the matrix notation employs qj and q
j to denote

the �eld operator as a column matrix and row matrix respectively. It's important to note

that qj either creates an anti-quark or annihilates quarks, while the 3̄ representation's unique

attribute is rooted in the distinction between quarks and anti-quarks. This di�erentiation is

characterized by the hypercharge, and it is imperative to recognize that the 3̄ representation's

transformation property is such that qj = qj.

.

q̄ =
(
ū d̄ s̄

)

q =


u

d

s


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Now a vector F ibelonging to the representation 3̄ can be written as

F i = ϵilmAlm (3.1.3)

Ajk =
1

2
ϵijkF

i.

We have the results

3⊗ 3⊗ 3 = (6⊗ 3)⊕ (3̄⊗ 3) .

First consider 3̄⊗ 3

F iqj =

(
F iqj −

1

3
δijT

kqk

)
+

1

3
δijF

kqk (3.1.4)

3̄⊗ 3= 8⊕ 1. The octet operator for the baryons can be written as

T̄ ij =
1

2

(
F iqj −

1

3
δijT

kqk

)
, (3.1.5)

where

F i = ϵilmAlm =
1

2
√
6
ϵilm (qlqm − qmql) . (3.1.6)

Now lets consider 6⊗ 3 . It is given by

Sijqkl = Sijqk + Sjkqi + Skiqj − Sjkqi − Skiqj

= F̃{i,j,k} − Sjkqi − Skiqj, (3.1.7)

with

F̃{i,j,k} = Sijqk + Sjkqi + Skiqj (3.1.8)

is completely symmetric tensor and has 10 independent components. So we have 6⊗3 = 10⊕8

. We write the decouplet representation

F̃{i,j,k} =
√
3F̃{i,j,k}

=
1√
3
[Sijqk + Sjkqi + Skiqj] (3.1.9)



CHAPTER 3. HELICITY FORMALISM OF DECAY Λ0
B → Λ0Z0

C (3900) IN SM 36

and the octet representation

T̃ lγ =
1√
3
ϵlmnSγnqm (3.1.10)

T̃ ll = 0

so the �nal representation has the form

3⊗ 3⊗ 3 = (6⊗ 3̄)⊗ 3 = (6⊗ 3)⊕ (3̄⊗ 3) (3.1.11)

= 10⊕ 8⊕ 8
′ ⊕ 1.

This gives

T̄ ij

∣∣∣0⟩ =∣∣∣T ij ⟩ (3.1.12)

=
1

2
√
2

[
ϵilm (qlqm − qmql) qj −

1

3
δijϵ

klm (qlqm − qmql) qk

]∣∣∣0⟩.
By considering state 8,

∣∣∣p⟩ = B̄3
1

∣∣∣0⟩, the quark content is 1√
2

∣∣∣ [u, d]u⟩. Similarly the quark

content of
∣∣∣n⟩ = B̄3

2

∣∣∣0⟩ is 1√
2

∣∣∣ [u, d] d⟩. The quark content of
∣∣∣Σ+⟩=B̄2

1

∣∣∣0⟩ is 1√
2

∣∣∣ [u, s]u⟩. The
quark content of

∣∣∣Σ0⟩ = 1√
2

(
B̄1

1

∣∣∣0⟩ − B̄2
2

∣∣∣0⟩) is 1√
2

∣∣∣ [s, d]u + [u, s] d⟩. The quark content of∣∣∣Σ−⟩=B̄1
2

∣∣∣0⟩ is 1√
2

∣∣∣ [d, s] d⟩. The quark content of
∣∣∣Λ0⟩ = −3√

6
B̄3

3

∣∣∣0⟩ is 1√
2

∣∣∣2 [u, d] s⟩ − [d, s]u−

[s, u] d. Similarly the quark content of
∣∣∣Ξ−⟩ = B̄1

3

∣∣∣0⟩is 1√
2

∣∣∣ [d, s] s⟩ and of the Ξ0 is 1√
2

∣∣∣ [s, u] s⟩.
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Figure 3.1.1: Octet representing arrangement of n, p,Σ−,Σ0,Σ+,Ξ−,Ξ0,Λ0[55]

Similarly the state 8′ has the quark content as following:

B̄′3
1

∣∣∣0⟩ : 1√
6

∣∣∣ ([u, d]+u− 2uud)⟩

B̄′2
1

∣∣∣0⟩ : 1√
6

∣∣∣ ([u, s]+ u− 2uus
)
⟩

1√
2

(
B̄′1

1 − B̄′2
2

)∣∣∣0⟩ : 1√
12

∣∣∣ (−2 [u, d]+ s+ [u, s]+ d+ [d, s]+ u
)
⟩

B̄′2
1 :

1√
6

∣∣∣ ([d, s]+ d− 2dds
)

−3√
6
B̄′3

3

∣∣∣0⟩ : −1

2

∣∣∣ ([s, d]+ u− [s, u]+ d
)
⟩

B̄′1
3

∣∣∣0⟩ : 1√
6

∣∣∣ (2ssd− [d, s]+ s
)
⟩

B̄′2
3

∣∣∣0⟩ : 1√
6

∣∣∣ ([s, u]+ s− 2ssu
)
⟩

For the representation of 8′, we can de�ne
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T̄ ij

∣∣∣0⟩ =∣∣∣T ij ⟩ = 1

2
√
3
ϵiklSjlqk

∣∣∣0⟩ (3.1.13)

So we see that 3× 3 matrices can be represented as

T8 = T ij =


1√
2
Σ0 + 1√

6
Λ0 Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ0 n

Ξ− Ξ0 −
√

2
3
Λ0



T̄ ij =


1√
2
Σ̄0 + 1√

6
Λ0 Σ̄+ p̄

Σ̄− − 1√
2
Σ̄0 + 1√

6
Λ̄0 n̄

Ξ̄− Ξ̄0 −
√

2
3
Λ̄0

 . (3.1.14)

Note that

T̄ ij = γ0T ∗i
j .

Note that, the matrix notation for row is represented by (i) and for column is represented

by (j), with complex conjugation (∗), in the context of SU(3) and �eld operators. Similarly

we can also calculate the Bij and Cij as

Bij =


0 Λ0

b Ξ0
b

−Λ0
b 0 Ξ−

b

−Ξ0
b −Ξ−

b 0

 , (3.1.15)

Cij =


Σ+
b

Σ0
b√
2

Ξ
′0
b√
2

Σ0
b√
2

Σ−
b

Ξ
′
b√
2

Ξ
′0
b√
2

Ξ
′−
b√
2

Ω

 . (3.1.16)

In the same way, components of tetraoctet are

(Zc)ij =


Zcπ0√

2
+

Zcη8√
6

Zcπ+ ZcK+

Zcπ− −Zcπ0√
2
+

Zcη8√
6

ZcK0

ZcK− ZcK̄0 −2
Zcη8√

6

 . (3.1.17)
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Figure 3.1.2: Feynman Diagram Depicting the Octet Tetraquark and Light Baryon Formation
from the Decay of a b-Baryon[56]

The Hamiltonian governing the weak decay process ofb−baryons into an octet tetraquark

and a light baryon may be mathematically represented as follows:

Heff (b→ qcc̄) =
GF√
2

(
VcbV

∗
cq (C1O1 + C2O2)

)
, (3.1.18)

with

O1 = (c̄αbβ)V−A(q̄βcα)V−A, O2 = (c̄αbα)V−A(q̄αcα)V−A,

where q denotes d or s. GF stands for the Fermi coupling constant and Vij denotes the CKM

matrix element. Oi is the low energy operator and Ci denotes the Wilson coe�cients.

When considering a b-baryon from the anti-triplet multiplet, its decay entails the transfor-

mation into an octet tetraquark and a light baryon, the e�ective Hamiltonian can be written

as

Heff = a1(B)ij(H3)ij(Zc)
l
k(T

8)kl + a2(B)ij(H3)ik(Zc)
l
k(T

8)lj + a3(B)ij(H3)il(Zc)
k
j (T

8)lk+

a4(B)ij(H3)kl(Zc)
k
i (T

8)lj, (3.1.19)

In the case of a b-baryon existing within the sextet multiplet, the e�ective Hamiltonian is
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expressed as follows:

Heff = b1(C)ij(H3)ik(Zc)
l
k(T

8)lj+b2(C)ij(H3)il(Zc)
k
j (T

8)lk+b3(C)ij(H3)kl(Zc)
k
i (T

8)lj, (3.1.20)

where aiand bi stands for the amplitudes. Numerous characteristics related to the weak

decay processes of b-baryons into a tetraquark and a light baryon can be inferred from these

outcomes. By performing sum over Hamiltonian and then expanding it, we get the amplitudes

A =
∑
ijk

Heff ,

where i, j, k is from 1 to 3. Exercising all the indices, we can write di�erent amplitudes as:

A
(
Λ0
b → Zcπ+Σ−) = (2a1 + a2 + a3 − a4)× V ∗

cs

A
(
Λ0
b → ZcK−p

)
= (2a1 + a2)× V ∗

cs

A
(
Λ0
b → Zcπ0Σ0

)
= (2a1 + a2 + a3 − a4)× V ∗

cs

A
(
Λ0
b → ZcK̄0n

)
= (2a1 + a2)× V ∗

cs

A
(
Λ0
b → Zcη8Λ

0
)
=

1

3
(6a1 + a2 + a3 + a4)× V ∗

cs

A
(
Ξ0
b → ZcK−Σ+

)
= (a3 − a4)× V ∗

cs

A
(
Ξ0
b → ZcK̄0Σ0

)
=

1√
2
(−a3 + a4)× V ∗

cs

A
(
Ξ0
b → ZcK̄0Λ0

)
=

(−2a2 + a3 + a4)√
6

× V ∗
cs

A
(
Ξ0
b → ZcK−Σ0

)
=

1√
2
(−a3 + a4)× V ∗

cs

A
(
Ξ0
b → ZcK−Λ0

)
=

(−2a2 + a3 + a4)√
6

× V ∗
cs

A
(
Ξ0
b → ZcK̄0Σ−) = (−a3 + a4)× V ∗

cs (3.1.21)
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For c→ d , we have following amplitudes corresponding to each channel as

A
(
Λ0
b → Zcπ0n

)
=

(a3 − a4)√
2

V ∗‘
cd

A
(
Λ0
b → Zcπ−p

)
= (a3 − a4)V

∗
cd

A
(
Λ0
b → ZcK+Σ−) = (a4 − a2)V

∗
cd

A
(
Λ0
b → ZcK0Σ0

)
=

1√
2
(a4 − a2)V

∗
cd

A
(
Λ0
b → ZcK0Λ0

)
=

1√
6
(−a4 + a2 − 2a3)V

∗
cd

A
(
Λ0
b → Zcη8n

)
=

1√
6
(−a4 + 2a2 − a3)V

∗
cd

A
(
Ξ0
b → Zcπ0Λ0

)
=

1

2
√
3
(−2a4 + a2 + a3)V

∗
cd

A
(
Ξ0
b → Zcπ−Σ+

)
= − (2a1 + a2)V

∗
cd

A
(
Ξ0
b → Zcπ0Σ0

)
= −1

2
(4a1 + a2 + a3)× V ∗

cd

A
(
Ξ0
b → ZcK̄0n

)
= − (2a1 + a3)V

∗
cd

A
(
Ξ0
b → Zcη8Σ

0
)
= −(a2 + a3 − 2a4)

2
√
3

× V ∗
cd

A
(
Ξ0
b → ZcK−p

)
= − (2a1 + a2 + a3)× V ∗

cd

A
(
Ξ0
b → ZcK−n

)
= (a4 − a2)× V ∗

cd

A
(
Ξ0
b → Zcη8Σ

−) = −(a2 + a3 − 2a4)√
6

× V ∗
cd.

A
(
Ξ0
b → Zcπ0Σ−) = (a3 − a2)√

2
× V ∗

cd

A
(
Ξ0
b → Zcπ−Λ0

)
=

− (a2 + a3 − 2a4)√
6

× V ∗
cd

A
(
Ξ0
b → Zcπ0Σ0

)
=

(−a3 + a2)√
2

× V ∗
cd (3.1.22)

The c → s transition is roughly proportional to |Vcs|, which is approximately 1, while the

c→ d transition involves a CKM matrix element |Vcd|, which is approximately 0.2.
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A
(
Σ+
b → Zcπ+Λ0

)
=

(b1 + b2 − b3)√
6

× V ∗
cs

A
(
Σ+
b → Zcπ+Σ0

)
=

(b1 − b2 − b3)√
2

× V ∗
cs

A
(
Σ+
b → Zcπ0Σ+

)
=

(−b1 + b2 − b3)√
2

× V ∗
cs

A
(
Σ+
b → Zcη8Σ

+
)
=

(b1 + b2 + b3)√
6

× V ∗
cs

A
(
Σ+
b → ZcK̄0p

)
= b1 × V ∗

cs

A
(
Σ0
b → Zcπ+Σ−) = (b1 − b2 − b3)√

2
× V ∗

cs

A
(
Σ0
b → Zcπ0Λ0

)
= −(b1 + b2 − b3)√

6
× V ∗

cs

A
(
Σ0
b → Zcπ−Σ+

)
=

(−b1 + b2 + b3)√
2

× V ∗
cs

A
(
Σ0
b → Zcπ+Σ−) = (b1 − b2 − b3)√

2
× V ∗

cs

A
(
Σ0
b → Zcπ0Λ0

)
=

(−b1 − b2 − b3)√
2

× V ∗
cs

A
(
Σ0
b → Zcπ−Σ+

)
=

(−b1 + b2 + b3)√
2

× V ∗
cs

A
(
Σ−
b → ZcK−p

)
=

−b1√
2
× V ∗

cs

A
(
Σ−
b → Zcπ0Σ−) = (−b1 + b2 + b3)√

2
× V ∗

cs

A
(
Σ−
b → Zcπ−Σ0

)
=

(−b1 − b2 − b3)√
2

× V ∗
cs

A
(
Σ−
b → ZcK−n

)
= −b1 × V ∗

cs

A
(
Σ−
b → Zcη8Σ

−) = − (b1 + b2 + b3)√
6

× V ∗
cs

A
(
Ξ0
b → ZcK̄0Σ0

)
= −1

2
(b2 + b3)V

∗
cs

A
(
Ξ0
b → ZcK̄0Λ0

)
= −(2b1 − b2 + b3)

2
√
3

× V ∗
cs

A
(
Ξ0
b → ZcK−Σ+

)
=

(b2 + b3)√
2

V ∗
cs
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A
(
Ξ0
b → ZcK−Λ0

)
=

(2b1 − b2 + b3)

2
√
3

× V ∗
cs

A
(
Ξ0
b → ZcK̄0Σ−) = −(b2 + b3)√

2
× V ∗

cs

A
(
Ξ0
b → ZcK−Σ0

)
= −(b2 + b3)

2
V ∗
cs. (3.1.23)

Similarly, we can write

A
(
Σ+
b → Zcπ0p

)
= −(b2 + b3)√

2
× V ∗

cd

A
(
Σ+
b → ZcK+Σ0

)
= −(b1 + b3)√

2
× V ∗

cd

A
(
Σ+
b → ZcK+Λ0

)
=

((−b1 + b2 + b3))√
6

× V ∗
cd

A
(
Σ+
b → ZcK+Σ+

)
= −b1 × V ∗

cd

A
(
Σ+
b → Zcη8p

)
=

(2b1 + b2 + b3)√
6

× V ∗
cd

A
(
Σ+
b → Zcπ+n

)
= −b2 × V ∗

cd

A
(
Σ0
b → Zcπ0n

)
=

1

2
(b2 − b3)× V ∗

cd

A
(
Σ0
b → Zcπ−p

)
=

1√
2
(b2 − b3)× V ∗

cd

A
(
Σ0
b → ZcK0Λ0

)
=

(−b1 + 2b2 + b3)

2
√
3

× V ∗
cd

A
(
Σ0
b → ZcK0Σ0

)
=

1

2
(b2 + b3)× V ∗

cd

A
(
Σ0
b → Zcη8n

)
=

(2b1 − b2 − b3)

2
√
3

× V ∗
cd

A
(
Σ0
b → ZcK+Σ−) = (b3 − b1)√

2
× V ∗

cd

A
(
Σ−
b → Zcπ−n

)
= −b3 × V ∗

cd

A
(
Ξ0
b → Zcπ0Σ0

)
=

(b1 + b2)

2
√
2

× V ∗
cd

A
(
Ξ0
b → Zcπ0Λ0

)
=

(b1 + b2 + b3)

2
√
6

× V ∗
cd

A
(
Ξ0
b → Zcπ−Σ+

)
=

b1√
2
× V ∗

cd
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A
(
Ξ0
b → ZcK̄0n

)
=

−b2√
2
× V ∗

cd

A
(
Ξ0
b → ZcK−p

)
=

(b1 − b2 − b3)√
2

× V ∗
cd

A
(
Ξ0
b → Zcη8Λ

0
)
= −(b1 + b2)

2
√
2

× V ∗
cd

A
(
Ξ0
b → Zcη8Σ

0
)
=

(b1 + b2 − 2b3)

2
√
6

× V ∗
cd

A
(
Ξ0
b → Zcπ+Σ−) = b2√

2
× V ∗

cd

A
(
Ξ−
b → Zcπ−Σ0

)
=

1

2
(b2 − b1)× V ∗

cd

A
(
Ξ−
b → ZcK−n

)
=

(b1 − b3)√
2

× V ∗
cd

A
(
Ξ−
b → Zcπ0Σ−) = (b1 − b3)√

2
× V ∗

cd

A
(
Ξ−
b → Zcη8Σ

−) = (b1 − b3 + b2)√
2

× V ∗
cd

A
(
Ξ−
b → Zcπ−Λ0

)
=

(b1 + b2 + b3)

2
√
3

× V ∗
cd

A
(
Ω−
b → ZcK−Λ0

)
=

(−2b1 + b2 + b3)√
6

× V ∗
cd

A
(
Ω−
b → ZcK̄0Σ−) = b2 × V ∗

cd

A
(
Ω−
b → ZcK−Σ0

)
=

1√
2
b2 × V ∗

cd (3.1.24)

As we are considering the SU (3) �avor symmetry, therefore, the particles in the same multi-

plet have the same mass. Hence, they do not make any di�erence to the phase space, allowing

us to equate the decay rate of the prcesses with same amplitude for a particular initial state

baryon. Hence, the decay rates deduced from the Eqs. (3.1.21) and (3.1.22) are following

Γ
(
Ξ−
b → Zcπ0Σ−) = Γ

(
Ξ−
b → Zcπ−Σ+

)
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Γ
(
Λ0 → ZcK̄0n

)
= Γ

(
Λ0 → ZcK−p

)
Γ
(
Ξ0
b → Zcπ0n

)
=

1

2
Γ
(
Ξ− → Zcπ−p

)
Γ
(
Ξ0
b → Zcπ+Σ−) = Γ

(
Ξ0
b → ZcK0n

)
,Γ
(
Ξ0
b → ZcK̄0Λ0

)
= Γ

(
Ξ−
b → ZcK−Λ0

)
Γ
(
Λ0
b → Zcπ+Σ−) = Γ

(
Λ0
b → Zcπ0Σ0

)
= Γ

(
Λ0
b → Zcπ−Σ+

)
Γ
(
Λ0
b → ZcK+Σ−) = Γ

(
Λ0
b → ZcK0Σ0

)
= Γ

(
Ξ0
b → ZcK−n

)
Γ
(
Ξ0
b → Zcπ0Λ0

)
= Γ

(
Ξ0
b → Zcη8Σ

0
)
=

1

2
Γ
(
Ξ−
b → Zcπ−Λ0

)
=

1

2
Γ
(
Ξ−
b → Zcη8Σ

−)
Γ
(
Ξ0
b → ZcK̄0Σ0

)
=

1

2
Γ
(
Ξ0
b → ZcK−Σ+

)
=

1

2
Γ
(
Ξ−
b → ZcK−Σ0

)
=

1

2
Γ
(
Ξ−
b → ZcK̄0Σ0

)
.

(3.1.25)

Similarly relations evaluated from Eqs.(3.1.23) and (3.1.24) are

Γ
(
Ξ0
b → ZcK̄0Λ0

)
= Γ

(
Ξ−
b → ZcK−Λ0

)
Γ
(
Ξ0
b → Zcη8Σ

0
)
=

1

2
Γ
(
Ξ−
b → Zcη8Σ

−) ,Γ (Ξ−
b → Zcπ0Σ−) = Γ

(
Ξ−
b → Zcπ−Σ0

)
Γ
(
Σ+ → Zcπ0p

)
= Γ

(
Σ−
b → Zcπ−p

)
,Γ
(
Σ+ → Zcπ0Λ0

)
= 2Γ

(
Σ−
b → Zcπ−p

)
Γ
(
Σ+ → Zcη8p

)
= 2Γ

(
Σ0 → Zcη8n

)
,Γ
(
Σ− → Zcπ−n

)
= Γ

(
Σ− → ZcK0Σ−)

Γ
(
Ξ0
b → Zcπ0Λ0

)
=

1

2
Γ
(
Ξ−
b → Zcπ−Λ0

)
,Γ
(
Ξ0
b → Zcπ+Λ0

)
= Γ

(
Ξ0
b → Zcη8Λ

0
)

Γ
(
Σ+
b → Zcπ+Λ0

)
= Γ

(
Σ0
b → Zcπ0Λ0

)
= Γ

(
Σ−
b → Zcπ−Λ0

)
Γ
(
Σ+
b → ZcK+Σ0

)
= Γ

(
Σ0
b → ZcK+Σ−) = Γ

(
Ξ0
b → Zcη8Σ−

)
Γ
(
Σ+
b → Zcη8Σ

+
)
= Γ

(
Σ0
b → Zcη8Σ

0
)
= Γ

(
Σ−
b → Zcη8Σ

−)
Γ
(
Σ+
b → ZcK̄0p

)
= Γ

(
Σ+
b → ZcK̄0n

)
= Γ

(
Σ0
b → ZcK−p

)
= Γ

(
Σ−
b → ZcK−n

)
Γ
(
Ξ → ZcK̄0Σ0

)
=

1

2
Γ
(
Ξ → ZcK−Σ+

)
= Γ

(
Ξ → ZcK̄0Σ−) = Γ

(
Ξ → ZcK−Σ0

)

Γ
(
Σ+
b → Zcπ+Σ0

)
=

1

2
Γ
(
Σ+
b → Zcπ0Σ+

)
= Γ

(
Σ0
b → Zcπ+Σ−) = Γ

(
Σ0
b → Zcπ−Σ+

)
= Γ

(
Σ−
b → Zcπ0Σ−) = Γ

(
Σ−
b → Zcπ−Σ0

)
(3.1.26)
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3.2 E�ective Hamiltonian

The utilization of helicity amplitude approach proves to be quite advantageous when it

comes to describing a wide range of observable variables in the context of heavy quark decays.

It is well established that integrating out the heavy degree of freedoms from a full theory i.e.,

top quark, W and Z bosons at electroweak scale in the SM , a low energy e�ective theory can

be constructed. The weak e�ective Lagrangian consist of six-dimensional local operators of

the light SM �elds (fermions, photons and gluons) suppressed by inverse powers of mW . The

amplitude M (Λ0
b → Λ0Z0

c (3900)) is induced by the quark level transition b → sc̄c whose

e�ective Hamiltonian can be written as

Heff =
GF√
2
VcbV

∗
cq (C1O1 + C2O2) (3.2.1)

where

O1 = (c̄α (1− γ5) γµbβ) (q̄β (1− γ5) γµcα)

O2 = (c̄α (1− γ5) γµbα) (q̄β (1− γ5) γµcβ) (3.2.2)

where q = d or s, GF is Fermi constant, Vij are corresponding CKM matrix elements, Oiare

low-energy e�ective operators, together with their related Wilson coe�cients Ci, are obtained

through the process of integrating out high-energy contributions.

3.3 Helicity amplitudes and Form Factors for Λb → Λ

transitions

In Λb → Λ transition, the matrix elements di�erent currents are parameterized in terms

of Form Factors. Helicity formalism provide useful way to describe these transitions. The

amplitude is

M
(
Λ0
b → Λ0Z0

c (3900)
)
=
GF√
2
VcbV

∗
cqa2fZcMZcH

j (sΛb
, sΛ, sZc) (3.3.1)
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Figure 3.3.1: Feynman diagrams for the Λ0
b → K−Pc and for the Λ0

b → Λ0Zc[57]

where a2 = C1 + C2/Nc, C1 = −0.248 and C2 = 1.107 [47, 48], fZc = 0.0051 GeV [49] is the

decay constant and MZc = 3.901MeV [50] are the mass of Z0
c (3900).

The helicity amplitudes Hj(s1, s2) with j for di�erent currents, i.e., vector (V ) or axial-

vector (A) are given as [51]:

HV (sΛb
, sΛ, sZc) ≡ ϵµ∗ (sZc) ⟨Λ (kΛ, sΛ) |s̄γµb|Λb (pΛb

, sΛb
)⟩ ,

HA (sΛb
, sΛ, sZc) ≡ ϵµ∗ (sZc) ⟨Λ (kΛ, sΛ) |s̄γµγ5b|Λb (pΛb

, sΛb
)⟩ , (3.3.2)

In component form, the matrix element can be described using weak transition form factors

⟨Λ (kΛ, sΛ) |s̄γµb|Λb (pΛb
, sΛb

)⟩ = ū (kΛ, sΛ)

(
γµf1 +

pµΛb

mΛb

f2 +
kµΛ
mΛ

f3

)
u (pΛb

, sΛb
) , (3.3.3)

⟨Λ (kΛ, sΛ) |s̄γµγ5b|Λb (pΛb
, sΛb

)⟩ = ū (kΛ, sΛ)

(
γµg1 +

pµΛb

mΛb

g2 +
kµΛ
mΛ

g3

)
u (pΛb

, sΛb
) , (3.3.4)

Here sΛb
(pΛb

) and sΛ (kΛ) are the spin and momenta of parent baryon (Λb) and daughter

baryon Λ, respectively. The non-perturbative quantities i.e., FFs, need to be calculated in

some model. Λb → Λ Helicity amplitudes are examined in the context of the complete quark

model wave function (MCN) to investigate the form factors as [52]

f
(
q2
)
=
(
a0 + a2p

2
Λ + a4p

4
Λ

)
exp

−
6m2

qp
2
Λ

2m̃2
Λ

(
α2
Λ0
b
+ α2

Λ

)
 (3.3.5)
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Table 3.3.1: Input parameters for spin-1/2 baryon Λ in MCN quark model. [53]
Λ0

form factor a0 a2 a4
f+
1 1.21 0.319 −0.0177
f+
2 −0.202 −0.219 −0.0103
f+
3 −0.0615 0.0102 −0.00139
g+1 0.927 0.104 −0.00552
g+2 −0.236 −0.233 0.011
g+3 0.0756 0.0195 −0.00115

αΛ = 0.387 αΛb
= 0.443

pΛ =
m0

Λb

2

[(
1− m2

Λ

m2
Λb

)2

− 2

(
1 +

m2
Λ

m2
Λb

)
q2

m2
Λb

+

(
q2

m2
Λb

)2
]
. (3.3.6)

with m̃ = mu +md +ms. The values for FF's are given in table [2].

3.4 Kinematics of Hadronic part

In Λb rest frame , the momentum of Λ and Zc is de�ne as

pµΛb
= (mΛb

, 0, 0, 0)

kµΛ = (EΛ, 0, 0,−|q⃗|)

qµ = (mΛb
− EΛ, 0, 0,+|q⃗|), (3.4.1)

Lets de�ne

s± ≡ (mΛb
±mΛ)

2 − q2 and s ≡ q2.

The polarization vectors of the Zc are written as

ϵµ(t) =
1√
s
(q0, 0, 0, |q⃗|)

ϵµ(0) =
1

s
(|q⃗|, 0, 0, q0)

ϵµ(±) =
1√
2
(0,∓1,−i, 0), (3.4.2)

The spinor for Λb → Λ case are constructed with the help of four vectors de�ned above in
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Λb−rest frame

u (p, s) = �p+m√
p0 +m

χ(s)

0



ū2

(
±1

2
, p2

)
=
√
E2 −M2

(
χ†
±

∓|q⃗|
E2+M2

χ†
±

)

u1

(
±1

2
, p1

)
=
√

2M1


χ±

0

0


ū1

(
±1

2
, p1

)
=
√

2M1

(
χ†
± 0 0

)

u2

(
±1

2
, p2

)
=
√
E2 −M2

 χ±

∓|q⃗|
E2+M2

χ±

 , (3.4.3)

χ+ =

 1

0

 , χ− =

 0

1

 , (3.4.4)

with

χ+ 1
2 =

 cos
(
θ
2

)
sin
(
θ
2

)
eiϕ

 , χ− 1
2 =

−sin
(
θ
2

)
eiϕ

cos
(
θ
2

)
 ,

η+
1
2 = χ− 1

2 , η−
1
2 = −χ+ 1

2 (3.4.5)

3.5 Hadronic Helicity amplitudes

Using the spinor matrix elements for given combination of spin orientation in Eq. (3.4.5),
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we get the following helicity amplitude in terms of Λb → Λ transition FFs [50]:

HV
1

(
+
1

2
,+

1

2
, 0

)
= HV

(
−1

2
,−1

2
, 0

)
=

√
s−
s

[
(mΛb

+mΛ) f1 (s)−
s

mΛb

f2 (s)

]
,

HV
2

(
−1

2
,+

1

2
, 1

)
= HV

(
+
1

2
,−1

2
,−1

)
=
√

2s−

[
f1 (s)−

mΛb
+mΛ

mΛb

f2 (s)

]
,

HA
1

(
+
1

2
,+

1

2
, 0

)
= −HA

(
−1

2
,−1

2
, 0

)
=

√
s+
s

[
(mΛb

−mΛ) g1 (s) +
s

mΛb

g2 (s)

]
,

HA
2

(
−1

2
,+

1

2
, 1

)
= −HA

(
+
1

2
,−1

2
,−1

)
=
√

2s+

[
g1 (s) +

mΛb
−mΛ

mΛb

g2 (s)

]
. (3.5.1)

One can write the total helicity amplitude as H = HV −HA. By using all above parameters,

after the two body phase space integration by using Mathematica 12.1, we get the following

expression of the decay width

Γ
(
Λ0
b → Λ0Z0

c (3900)
)
=
∑
s
Λ0
b
,sΛ

|p̄Λ|
8πm2

Λ0
b

1

2

∣∣M (
Λ0
b → Λ0Z0

c (3900)
)∣∣2 . (3.5.2)

By putting all the Helicity amplitudes in the Eq. (3.5.2) and performing sum over all the

Helicity amplitudes, we get following expression

Γ
(
Λ0
b → Λ0Z0

c (3900)
)
=

|p̄Λ|
8πm2

Λ0
b

1

2

∣∣HV
1 +HV

2 +HA
1 +HA

2

∣∣2 . (3.5.3)

Using Eq. (3.3.1) , in the above expression, we get the following expression

=
∑
s
Λ0
b
,sΛ

|p̄Λ|
8πm2

Λ0
b

∣∣∣∣GF√
2
VcbV

∗
cqa2fZcMZcH

j (sΛb
, sΛ, sZc)

∣∣∣∣2 , (3.5.4)

and after inserting numerical inputs in the above expression, we get the following numerical

values with the help of Mathematica 12.1

Γ
(
Λ0
b → Λ0Z0

c (3900)
)
= 8.61× 10−20GeV.

The corresponding branching ratio comes to be of the order of 10−7, while the exact calculated
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Decays decay rates

Γ
(
Ξ−
b → Zcπ0Σ−) 8.40× 10−21

Γ
(
Ξ−
b → Zcπ−Σ0

)
8.40× 10−21

Table 3.5.1: Decay rates

decays decay rates(GeV )

Ξ0
b → Zcπ0Λ0 2.64× 10−21

Ξ0
b → Zcη8Σ

0 2.64× 10−21

Ξ−
b → Zcπ−Λ0 2×2.64× 10−21

Ξ−
b → Zcη8Σ

− 2× 2.64× 10−21

Table 3.5.2: Decay rates

value is

B
(
Λ0
b → Λ0Z0

c (3900)
)
= 1.93× 10−7.

Similarly, one obtains the estimation of partial decay widths and branching fractions

Γ(Ξ−
b → Σ−Z0

c (3900)) = 8.40× 10−21GeV,Γ(Ξ0
b → Λ0Z0

c (3900)) = 2.64× 10−21GeV,

B(Ξ−
b → Σ−Z0

c (3900)) = 2.01× 10−8,B(Ξ0
b → Λ0Z0

c (3900)) = 5.94× 10−8.

The calculation of branching fractions for the decay of b-baryons, where the tetraquark is

present in the �nal states, is as follows for various channels. For Ξ−
b → Σ−Z0

c ,the branching

ratio is 2.01×10−8. Similarly for Ξ−
b → Λ0Zc has the branching ratio value 1.26 × 10−8.

Ξ0
b → Λ0Zc has the branching ratio 5.94 × 10−8.. Λ0

b → Λ0Z0
c has the branching ratio

1.93×10−8. Ξ0
b → Σ0Z−

c has the value 2,01×10−8. Ξ−
b → Σ−Z−

cη8
has the branching ratio

value 1.26×10−8. Similarly, Ξ0
b → Σ0Z−

cη8
has the value 5.94×10−9.

From above table

Γ
(
Ξ−
b → Zcπ0Σ−) = Γ

(
Ξ−
b → Zcπ−Σ0

)
.

which is in best match with the experimental measurements. According to the mea-

sured results of BESIII, the cascade decay form of this transition is Λ0
b → Λ0Z0

c (3900) →

pJ/ρπ−π+. If Λb particle is replaced with the (Ξ) cascade particle then the branching frac-

tion's magnitude would be small due to
∣∣∣V ∗

cs

V ∗
cd

∣∣∣2 as it will serve as suppression factor. As

amplitudes here are represented in the SU(3) symmetry so this symmetry is best to �nd the
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exotic states like Z0.



Chapter 4

Results And Discussion

In this dissertation we have worked in the Helicity formalism to express the decay rate of

b-baryon decay Λb → Λ0Z0 (3900) in the SM. The main advantage of the helicity formalism

is that any obervables of the problem can be expressed in terms of bi-linear forms of hadronic

helicity matrix. The numerical results obtained for Λb → Λ transitions are de�ned in chapter

3. As experimentally, exotic states of Z0 have been observed by LHCb, several works are being

performed in search of more modes of these states and for this purpose, b → s transitions

have been of profound help. Decay amplitudes are parametrized in SU(3) 's representations

that are irreducible. In this dissertation, we have reviewed the calculation for the decay

width of Λ0
b → Λ0Z0

c (3900) that helps in the estimation of the partial decay width of b-

baryons. Weak decay of b-baryon to exotic states and lighter baryon is studied with greater

details. By using Helicity amplitude technique, partial decay widths are calculated to get

more information about tetraquarks. However, four quarks forming the bound states could

not be studied since we don't have any perfect landscape for quark states. Moreover, it is

expected in future to be found as LHCb has found the pentaquarks too. Form factors used in

the calculation have been taken from MCN model and the remaining results are calculated by

the use of Mathematica 12.1 and the numerical values obtained came to be in perfect match

with the experimental results as the partial decay width is 8.61×10−20GeV and the estimated

branching fraction is of the order of the magnitude 10−7 for the transition Λ0
b → Λ0Z0

c (3900)

. This motivates the exploration of Z0
c properties and production mechanisms through weak

decays of b-baryons like the Λ0
b . Our research �ndings not only demonstrate the success of our

53
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theoretical framework but also contribute to the understanding of hadronic matter and the

exploration of exotic hadronic states. The agreement with experimental results highlights the

importance of future investigations in this �eld, which could provide further insights into the

nature of these elusive particles and advance our knowledge of the fundamental constituents

of matter.
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Dirac Spinor Representation

One has to de�ne the Dirac spinors in term of helicity operator's eigenstate for the cal-

culation of helicity amplitude for Λ0
b → Λ0Z0(3900) decay.

u (p, s) = �p+m√
p0 +m

χ(s)

0


with

χ+ 1
2 =

 cos
(
θ
2

)
sin
(
θ
2

)
eiϕ

 , χ− 1
2 =

−sin
(
θ
2

)
eiϕ

cos
(
θ
2

)
 ,

The spinor for Λb → Λ case are constructed with the help of four vectors de�ned in section

[put section number] in Λb-rest frame. The non-zero components for the Λb → Λ transition

with the vector or axial vector currents. [54]

ū

(
kΛ,±

1

2

)
γµu

(
pΛb

,±1

2

)
= (

√
s+, 0, 0,

√
s−) ,

ū

(
kΛ,±

1

2

)
γµγ5u

(
pΛb

,±1

2

)
= ± (

√
s−, 0, 0,

√
s+) ,

and

ū

(
kΛ,±

1

2

)
γµu

(
pΛb

,∓1

2

)
=
√
2s−ϵ

µ(±),

ū

(
kΛ,±

1

2

)
γµγ5u

(
pΛb

,∓1

2

)
= ∓

√
2s+ϵ

µ(±),


