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Abstract

The Szilard engine, which is evocative of Maxwell’s demon, offers an alluring method
of transforming information into energy while appearing to go against the second Law of
thermodynamics’s basic tenets. Originally designed as a conventional thought experiment,
Zurek later developed it and added a quantized treatment to the framework. This thesis
explores the quantum Szilard engine, an innovative and beautiful concept that replaces
the conventional rigid box (infinite potential well) with a harmonic potential. By using
this alternate strategy, the scope of this model is greatly widened, allowing for a thorough
analysis of its guiding principles and behaviors. The achievement of analytic calculations
of the quantum Szilard engine is a noteworthy aspect of this research.
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Chapter 1

Introduction

1.1 Historical Review

The second law of thermodynamics is a fundamental law of physics as it provides insights
into the behavior of entropy and the irreversibility of spontaneous or natural processes.
For example flow of heat from a hot body to a cold body, mixing of gas, the dissipation
of energy, the burning of a piece of paper and the breaking of glass are all irreversible
processes. Before second law of thermodynamics, there were no explanation that why
these processes are irreversible as the law of conservation of energy holds for all these
processes in the reverse direction. Second law of thermodynamics states that:

“In any spontaneous or natural process, the total entropy of an isolated
system always increases or remains constant”

∆S ≥ 0.

Many challenges to the second law of thermodynamics involve a device widely known as
a Maxwell’s demon. Maxwell’s demon is a hypothetical intelligent being (or a functionally
equivalent device) capable of detecting and reacting to the motions of individual molecules.
It has been about 150 years since Maxwell introduced the idea of this demon. The original
concept of Maxwell’s demon was conceived by James Clark Maxwell in 1867 to show the
apparent violation of the second law of thermodynamics. In 1867 Maxwell wrote about
his thought experiment for the first time in a letter to Peter Guthrie Tait. Before it was
presented publicly, he wrote again a letter to John William in 1871 to discuss his idea.
Finally, In 1872 Maxwell published his idea of “violating the second law by introducing
the intelligent being in thermodynamical system” in his book[1] “Theory of Heat”.

Maxwell assumed a container containing gas at a certain temperature. Corresponding
to this temperature, average velocity of molecules has a particular value. Some of the
molecules are moving at velocity greater than average velocity and some are moving at
lower than average velocity. Then a partition is inserted in the middle of box, separating
the box into container A and container B. A small size window is then constructed that
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could be closed or opened at will by a “being” to allow individual molecules of gas to
pass through. By passing only fast-moving molecules from container A to container B
and slow-moving molecules from B to A, the demon would bring about an effective flow
from A to B of molecular kinetic energy. Thus container B and A will become hot and
cold respectively. One can use this temperature difference to run an engine, when heat is
allowed to flow from hot container towards cold one.

Another possible scenario [2] is that, the demon opens the door only when molecules
are approaching the window from container B. In this way, all molecules will end up in
container A. Hence a pressure difference is produced without any expenditure of energy
or work. One can use this pressure difference to run an engine by hanging a load with a
piston and allows the gas to push the piston to obtain useful work.

Figure 1.1: Temperature Demon.

Notice that Maxwell did not use the term “demon” in his debate and writing. In 1874,
William Thomson (later Lord Kelvin) [3] gave this designation. This name “demon” has
been stuck with Maxwell’s imaginary character for about last 150 years. To be very
honest, Thomson called it “Maxwell’s intelligent demon”. The introduction to the idea of
Maxwell demon and all the above discussion happened at the end of 19th century, so there
was no plausible justification about this apparent violation of the second law. Secondly,
this experiment was beyond the ability of experiments at that time as there was no any
device that could make such crucial measurements on individual molecules
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1.2 Classical Szilard Engine

In 1929 [4], Leo Szilard gave a strong response to this apparent paradox. He was the first
who related physical entropy and information. Basic motive of Szilard was to investigate
the conditions that apparently violate the second law of thermodynamics and permit a
perpetual motion machine. This was when concept of classical Szilard engine was given
formally. Classical Szilard engine is a single molecule engine which consists of a single
molecule trapped in a container of volume V attached to a thermal bath at temperature
T . Molecule can move freely inside the container, partition is then inserted by the demon
and the container is divided into two halves. Classical particle is localized by inserting
the barrier. However, a measurement is performed to acquire the information whether
particle is in the left or right half. Once the particle is located, it pushes the barrier
towards the end of the container. Now if we connect a load with a wire and the other end
of wire is connected to the frictionless barrier then useful work can be obtained by lifting
the load when particle pushes the barrier.

Figure 1.2: Classical Szilard Engine.

Work done by Classical Szilard Engine:

W = kBln
Vf
Vi
,

Vf = V and Vi =
V

2

W = kBT ln2.

The ability to do work implies that entropy of system is decreasing.
Entropy Change:

3



dS =
dQ

T
,

for isothermal process dQ = −dW

dS = −dW
T
,

dS = −kBln2.

This decrease in entropy leads to the violation of second law of thermodynamics.
To rescue the second law, Leo Szilard concluded that in order to measure the speed

and position of molecule, demon needs to expend some energy. This simply means that
information is obtained at cost of energy. As a result of expenditure of energy, entropy
of demon will increase. Since demon is interacting with the gas, so the total entropy will
be considered as a combined entropy of gas and demon such that:

dStotal = dSdemon + dSgas ≥ 0.

Hence according to Leo Szilard, demon entropy increases in such a way that it com-
pensates the lowering of entropy of gas (entropic cost greater than thermodynamics profit)
and prevents the second law of thermodynamics from being violated.

1.3 Arguments and Discussion

In 1948, Claude Shannon [5] developed classical information theory which laid the foun-
dation for the study of information, data and communication. He introduced the concept
of Information entropy known as Shannon entropy H. This theory defines entropy as
the measure of randomness or uncertainty that can directly be related to the informa-
tion gain. Complete uncertainty means that we have no information about the system,
Shannon entropy will be zero in this case. Shannon entropy is defined as

Hs = −
∑
i

pilogpi,

where pi is the probability of an event i.
Many physicists have conducted calculations to show that the second law of thermody-

namics remains intact when a complete analysis of the entire system including the demon
is considered. The fundamental aspect of this physical argument involves performing cal-
culations which establish that any such demon must inherently produce a greater amount
of entropy while segregating molecules than the entropy it could possibly eliminate using
the proposed method. In simpler terms, the energy expended in measuring the molecules
velocities and selectively permitting their passage between points A and B is greater than
the energy gained through the resulting temperature difference.
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In 1961, Rolf Landauer [6] brought his deep insight to further resolve this paradox.
In order to operate the Szilard engine in a cyclic process, it is necessary to come back to
the initial state after each cycle. He realized that we need to erase information stored in
demon’s mind after each cycle to run the engine. When information is erased, Shannon
entropy decreases leading to an increase in thermodynamics entropy. Energy (heat) re-
quired to erase 1-bit of information is equal to kBln2. This is known as Landauer principle.
This minimum energy dissipated by erasing information was experimentally determined
by Eric Lutz et al. in 2012. Furthermore, Lutz et al confirmed that the system must
approach asymptotically zero processing speed in order to approach the Landauer’s limit.

In 1982, Charles Bennett [7] further extended the idea of Landauer and provided
further insight into the connection between information and thermodynamics. Actually
John Earman and John D. Norton raised objections to Landauer’s principle. In order to
clarify, Bennet discussed in detail in his paper titled” Thermodynamics of Computation—
a Review" that erasing information is associated with the dissipation of energy. Landauer
and Bennett had reached the same conclusion as Szilard’s 1929 paper, that the second
law cannot be violated by Maxwell demon because entropy would be created.

Thus, the Szilard engine converts information into useful mechanical work, which
shows that information can be used as a fuel. This prediction has been demonstrated by
various experiments, both in classical [8, 9, 10, 11, 12] and quantum [13, 14, 15] regimes.
Furthermore, a variety of molecular machines that act as Maxwell demons in living things
have identified by biophysicist. [16].

1.4 Quantum Szilard Engine

Classical Szilard engine is based on classical mechanics and classical information theory.
Barrier insertion localizes the particle, however measurement allows us to know where the
particle is located. Quantum version of Szilard engine is based on quantum mechanics
and quantum information theory. Quantum Szilard engine faces several challenges due to
principle of superposition and probabilistic nature of quantum mechanics.

As the particle is in a superposition state, so the barrier insertion alone cannot localize
the particle. To localize the particle, we need to perform quantum projective measure-
ments on the system. Once the particle is projected to one of the eigenstates, it becomes
localized and entropy reduces which leads to the apparent violation of second law. Quan-
tum version of Szilard engine was developed by Zurek [17] for a particle trapped in an
infinite potential well. His contribution to the understanding of the quantum Szilard en-
gine has had a significant impact on the fields of quantum information theory, quantum
thermodynamics, and quantum computation. A thorough investigation of the quantum
harmonic Szilard engine is the focus of this thesis and we will discuss it in the next chapter.
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Figure 1.3: Comparison of Quantum and Classical Szilard Engine.

1.5 Multiparticle Szilard Engine

Multiparticle [32] Szilard engine shown in Figure 1.4 is a further generalization of Szilard
engine. Instead of single particle trapped in a container, more than one particle is involved.
We can allow the particles to interact making it more complex. At high temperature
we don’t need to take care whether the particles are bosons or fermions, however, at
low temperature(especially close to zero Kelvin) nature(bosonic or fermionic) of particle
affects the efficiency of engine. At low temperature quantum nature of particles becomes
more significant which treats bosons and fermions differently.

6



Figure 1.4: Multiparticle Szilard Engine

Bosonic Szilard engine is more efficient than fermionic Szilard engine. It is also found
that classical Szilard engine is more efficient than fermionic Szilard engine, while the case
is different for bosonic Szilard engine because bosons clump together at zero Kelvin[33].
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Chapter 2

Fundamental Concepts

2.1 Density Operator

Density operator formalism is a mathematical framework which is used to describe the
state of a quantum system. It gives more general description of quantum system utilizing
the concept of mixed state. In quantum mechanics, state vectors are used to describe a
pure state. However, in many practical cases, quantum system is a statistical combination
of multiple pure states known as a mixed state. For mixed states, we use density operator
to represent the quantum system.

Density operator acts on the Hilbert space of the system and is represented by symbol
ρ̂ as

ρ̂ =
∞∑
n=0

pn|ψn〉〈ψn|, (2.1)

where |ψn〉 is a basis vector in Hilbert space and pn is the probability of the system
being in the state |ψn〉 such that:

∞∑
n=0

pn = 1.

2.1.1 Properties of Density Operator

Density operators satisfy following properties:
Hermiticity
It is a Hermitian operator which means that it is equal to its Hermitian conjugate.

ρ̂ = ρ̂†.

Normalization
It is normalized operator which means that trace of density operator is always equal

to 1.
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Tr [ρ̂] = 1.

Positivity
It is positive semi definite operator which means that all of its eigenvalues are non-zero.

ρ̂ ≥ 0.

2.2 Pure and Mixed States

Density matrix can be used to represent both pure and mixed states. Pure and mixed
state differ from one another.

2.2.1 Pure States

A quantum state is said to be a pure state if it can be represented by a single ket in a
Hilbert space.

|ψ〉 =
∑
m=1

bm|um〉.

Density operator for a pure state |ψ〉 can be written as

ρ̂ = |ψ〉〈ψ|. (2.2)

Here we can see that p = 1 which means that there is only one eigenvalue of density
operator if state is pure. Pure state has only quantum uncertainties.

Purity Test

Tr
[
ρ2
]
= 1.

This is because there is on only eigenstate state with probability p = 1.

2.2.2 Mixed States

State which represents the statistical mixture of pure states is known as mixed state. It
occurs when quantum system is in probabilistic or uncertain state. We cannot represent
the mixed state using a single ket vector, it is necessary to use the notion of density
operators to represent the mixed state. We can use the linear combination of pure states
to represent the mixed state.

ρ̂mix =
∑
n=0

pnρ̂
pure
n ,

9



where ρ̂puren = |ψn〉〈ψn|.
Therefore

ρ̂mix =
∑
n=0

pn|ψn〉〈ψn| (2.3)

such that:

∑
n=0

pn = 1

Purity Test

Tr
[
ρ2mix

]
< 1.

This is because there are more than one pure state with 0 ≤ pn < 1 that contribute
to form a mixed state.

2.3 Expectation Value

Average or expectation value of an operator Â for a given density operator can be written
as

〈Â〉 = Tr
[
ρ̂Â
]
.

Proof:
From the elementary quantum mechanics

〈Â〉 = 〈ψ|Â|ψ〉,

where

|ψ〉 =
∑
m=1

bm|um〉,

〈ψ| =
∑
m=1

b∗m〈um|,

so

〈Â〉 =
∑
n=1

b∗n〈un|Â
∑
m=1

bm|um〉,

〈Â〉 =
∑

n,m=1

bmb
∗
n〈un|Â|um〉.

Recall
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bm = 〈um|ψ〉,

b∗m = 〈ψ|um〉,

so

〈Â〉 =
∑

n,m=1

〈um|ψ〉〈ψ|un〉〈un|Â|um〉,

where from Eq. (2.2)

ρ̂ = |ψ〉〈ψ|,

so

〈Â〉 =
∑

n,m=1

〈um|ρ̂|un〉〈un|Â|um〉,

〈Â〉 =
∑
m=1

〈um|ρ̂

(∑
n=1

|un〉〈un|

)
Â|um〉,

using completeness relation i.e.

∑
n=1

|un〉〈un| = 1,

〈Â〉 =
∑
m=1

〈um|ρ̂Â|um, 〉

⇒ 〈Â〉 = Tr
[
ρ̂Â
]
. (2.4)

This relation is valid whether the state is mixed or pure, because the expectation value
of an operator Â for mixed state can be written as well i.e.

〈Â〉mix =
∑
n=1

pn〈ψn|Â|ψn〉. (2.5)

Proof:

〈Â〉mix = Tr
[

ˆρmixÂ
]
,

〈Â〉mix = Tr

[∑
n=1

pn|ψn〉〈ψn|Â

]
,
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〈Â〉mix =
∑
m

〈m|

(∑
n=1

pn|ψn〉〈ψn|Â

)
|m〉,

〈Â〉mix =
∑

m.n=1

pn〈m|ψn〉〈ψn|Â|m〉,

〈Â〉mix =
∑
n=1

pn〈ψn|Â|

(∑
m=1

|m〉〈m|

)
|ψn〉,

using completeness relation. i.e.

∑
m=1

|m〉〈m| = Î ,

〈Â〉mix=
∑
n=1

pn〈ψn|Â|ψn〉.

Hence, Eq. (2.5) has proved. So we can write Eq. (2.4) for mixed states as

〈Â〉mix = Tr
[

ˆρmixÂ
]
.

2.4 Time Evolution of Density Operator

Using the Schrodinger wave equation, we can find time evolution of density operator is
given by von Neumann-Liouville equation.

Schrodinger wave equation is

i
∂

∂t
|ψn〉 = Ĥ|ψn〉, (2.6)

and its complex conjugate is

−i ∂
∂t

〈ψn| = 〈ψn|Ĥ. (2.7)

Now let us differentiate Eq. (2.1) with respect to time

∂

∂t
ρ̂ =

∂

∂t

(
∞∑
n=0

pn|ψn〉〈ψn|

)
,

∂

∂t
ρ̂ =

∞∑
n=0

pn

(
∂

∂t
|ψn〉

)
〈ψn|+

∞∑
n=0

pn|ψn〉
(
∂

∂t
〈ψn|

)
,

from Eq. (2.6) and (2.7)

∂

∂t
ρ̂ =

∞∑
n=0

pn

(
−iĤ|ψn〉

)
〈ψn|+

∞∑
n=0

pn|ψn〉
(
i〈ψn|Ĥ

)
,

12



∂

∂t
ρ̂ = −i

(
Ĥ

∞∑
n=0

pn|ψn〉〈ψn|−
∞∑
n=0

pn|ψn〉〈ψn|Ĥ

)
,

from Eq. (2.1)

i
∂

∂t
ρ̂ =

(
Ĥρ̂− ρ̂Ĥ

)
,

i
∂

∂t
ρ̂ =

[
Ĥ, ρ̂

]
. (2.8)

This is the equation of motion of density operator known as von Neumann equation.
It gives us the time evolve state at a later time t if density operator is known to us at
earlier time to.

We can also evolve density operator over time by applying a unitary time-evolution
operator Û (t− to),

Û (t− to) = e−iĤ(t−to), (2.9)

where Ĥ is the time-independent Hamiltonian.

Û † (t− to) = e−iĤ(t−to),

Û Û † = I. (2.10)

Using this operator we can connect the density operator at time t to to:

ρ̂ (t) = Û (t− to) [ρ̂ (to)] Û
† (t− to) . (2.11)

Trace is preserved during unitary evolution.

Tr (ρ̂ (t)) = Tr
[
Û (t− to) [ρ̂ (to)] Û

† (t− to)
]
,

using cyclic properties of trace & Eq. (2.10)

Tr (ρ̂ (t)) = Tr
[
Û (t− to) Û

† (t− to) ρ̂ (to)
]
,

Tr [ρ̂ (t)] = Tr [ρ̂ (to)].

Purity is also preserved during unitary evolution.

Tr
[
ρ̂2 (t)

]
= Tr

[
Û (t− to) ρ̂Û

† (t− to) Û (t− to) ρ̂Û
† (t− to)

]
,

using cyclic properties of trace & Eq. (2.10)
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Tr
[
ρ̂2 (t)

]
= Tr

[
ρ̂Û † (t− to) Û (t− to) ρ̂Û

† (t− to) Û (t− to)
]
,

T r
[
ρ̂2 (t)

]
= Tr [ρ̂ρ̂] ,

Tr
[
ρ̂2 (t)

]
= Tr

[
ρ̂2
]
.

2.5 Composite System

In elementary quantum mechanics, we usually deal with single particle in isolation. In
many cases, it becomes necessary to deal with multiparticle state or composite system
which can be define as:

If our system is made up of two or more individual systems, then the entire
system is known as a composite system.

In order to construct the state of composite system mathematically in quantum me-
chanics, first we need to develop the composite Hilbert Space H.

H = H1 ⊗H2,

H is the Hilbert space of composite system with N the dimensions of space such that

N = N1 ×N2

H1is the Hilbert space of subsystem-1 with N1 dimensions of space.
H2 is the Hilbert space of subsystem-2 with N2 dimensions of space.
⊗ represents the Kronecker product or tensor product.
Let |φ〉 belong to H1 and |χ〉 belong to H2. We can construct |ψ〉 that belongs to H

using tensor product:

|ψ〉 = |φ〉 ⊗ |χ〉,

where |ψ〉 is a composite state.
Example:
Let

|φ〉 =

(
1 0

0 1

)
,

|χ〉 =

(
1 1

1 1

)
,

Then
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|ψ〉 =

(
1 0

0 1

)
⊗

(
1 1

1 1

)
,

|ψ〉 =


1

(
1 1

1 1

)
0

(
1 1

1 1

)

0

(
1 1

1 1

)
1

(
1 1

1 1

)
 ,

|ψ〉 =


1 1

1 1

0 0

0 0

0 0

0 0

1 1

1 1

 .

Here, we can see that if |φ〉 and |χ〉 are 2× 2 matrices then |ψ〉 is a 4× 4 matrix.
Properties of Tensor product:
1. |φ〉 ⊗ (|χ1〉+ |χ2〉) = |φ〉 ⊗ |χ1〉+ |φ〉 ⊗ |χ2〉
2. (|χ1〉+ |χ2〉)⊗ |φ〉 = |χ1〉 ⊗ |φ〉+ |χ2〉 ⊗ |φ〉
3. |φ〉 ⊗ (α|χ〉) = α|φ〉 ⊗ |χ〉
4. |φ〉 ⊗ 0 = 0⊗ |φ〉 = 0

5. (|φ〉 ⊗ |χ〉)† = |φ〉† ⊗ |χ〉†

Note: |φ〉 ⊗ |χ〉 = |φ〉|χ〉 = |φχ〉

2.6 Partial Trace

Basic idea behind the partial trace is to obtain the density operator for one of the subsys-
tem alone. If our system is made up of two or more individual systems,then the complete
system is known as a composite system. Density operator plays a crucial role in the
characterization of such system.

The density operator is an excellent tool for describing and manipulating the states of
subsystems. Let us considered a composite system where Bob has one part of the system
and Alice has other part of the system and they move in opposite direction. The complete
state of the system carries information about both subsystems, but Alice who is very far
away form Bob, can’t know about Bob’s state unless they contact each other. Let ρ̂ be
the density operator of composite system.

We need a way to take the density operator for the entire system and reduce it down
to a density operator that just carries information of Alice’s state. We can do this by
calculating the partial trace of entire density operator with respect to Bob, which will
give us Alice’s density operator called reduced density operator.

ρ̂Alice = TrBob [ρ̂] .
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Similarly

ρ̂Bob = TrAlice [ρ̂] .

Example:
Let us call Alice as Aand Bob as B for convenience.

|β10〉 =
1√
2
(|0A〉|0B〉 − |1A〉|1B〉) ,

ρ̂ = |β10〉〈β10|,

ρ̂ =
1

2
(|0A〉|0B〉〈0A|〈0B| − |0A〉|0B〉〈1A|〈1B| − |1A〉|1B〉〈0A|〈0B|+ |1A〉|1B〉〈1A|〈1B|) .

Now we are calculating partial trace with respect to Bob, this will give us the state of
Alice alone.

ρ̂A = TrB [ρ̂] ,

ρ̂A = 〈0B|ρ̂|0B〉+ 〈1B|ρ̂|1B〉,

ρ̂A =
1

2
(|0A〉|〈0A|+ |1A〉〈1A|) .

This ρ̂A is the state of Alice alone, it carries information only about Alice.
Where

Tr
[
ρ̂2A
]
=

1

2
< 1.

This shows that state of Alice is completely mixed state.

2.7 Measurements

In classical mechanics, we can consider ideal measurements that have no effect on sys-
tem. However, in quantum mechanics, generic measurements have a non trivial effect
on systems - destroying its state in an irreversible way. When we perform a quantum
measurement, the state of quantum system collapses. It tells us what is the probability
of finding any state and what will be the post measurement state of system. Consider a
two state quantum system represented by

|ψ〉 = α|0〉+ β|1〉.
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Measurement will push the quantum system either into the state |0〉 with probability
|α|2 or state |1〉 with probability |β|2. This shows that after the measurements, original
state of system becomes lost permanently. These are what is known as projective, Strong
or von Neumann measurements.

2.7.1 Projective Measurement

The basic idea behind the projective measurement is that the state of a quantum system
is the superposition of mutually exclusive events (events which do not occur at the same
time) or states. We can think of an atom, it may have ground state |g〉 or excited state
|e〉 such that |g〉 and |e〉 are two mutually exclusive states. In this case, to know the state
of the system we can use projective measurements. For projective measurement, first we
need to construct operators called projectors.

We know, in quantum mechanics an observable is represented by Hermitian operator
and any Hermitian operator can be written as a sum of outer product of eigenstates
weighted with eigenvalues. This sum is known as spectral decomposition or eigenstate
decomposition of the operator. Let the observable be Ô:

Ô =
∑
i

λiP̂i,

where P̂i = |i〉|〈i| is the projector on ith state.
Properties of projectors:
Properties of projectors are as follows.
1. Projectors are Hermitian

P̂ †i = P̂i.

2. Projectors are orthogonal

P̂iP̂j = δijP̂i.

3. Projectors are idempotent

P̂ 2
i = P̂i.

4. Projectors obey completeness relation

∑
i

P̂i = Î .

• Sum of two projectors is projector if they are mutually orthogonal.

P̂ = P̂1 + P̂2.
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P is projector if

P̂1P̂2 = P̂2P̂1 = 0.

This condition ensures that P is idempotent.

• Product of two projectors is a projector if two projectors commute.

P̂ = P̂1P̂2.

P̂ is projector, if

P̂1P̂2 − P̂2P̂1 = 0.

This condition ensures that P is Hermitian.
Case 1
When state of quantum system is represented by a ket |ψ〉. Probability of finding any

state |m〉 will be

p (m) = 〈ψ|P̂m|ψ〉,

p (m) = 〈ψ|m〉〈m|ψ〉,

p (m) = |〈m|ψ〉|2.

Post measurement state will be

|ψ′〉 = P̂m|ψ〉√
p (m)

Post measurement state is always normalized.
Example 1
Let |ψ〉 be the state of quantum system such that:

|ψ〉 = α|0〉+ β|1〉,

here P̂1 and P̂2 are two projectors

P̂0 = |0〉〈0|,

P̂1 = |1〉〈1|.
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Probability of finding a quantum system in state |0〉 can be calculated as

p (0) = 〈ψ|P̂0|ψ〉 = |α|2.

Post measurement state is

|ψ′〉 = P̂0|ψ〉√
p (0)

= |0〉.

Example 2
Let us considered a composite system in state |β10〉

|β10〉 =
1√
2
(|0A〉|0B〉 − |1A〉|1B〉) .

Here P̂A
0 and P̂A

1 are two projectors to project the state of system A such that:

P̂A
0 = P̂0 ⊗ Î ,

P̂A
1 = P̂1 ⊗ Î .

Similarly P̂B
0 and P̂B

1 are two projectors to project the state of system B such that:

P̂B
0 = Î ⊗ P̂0,

P̂B
1 = Î ⊗ P̂1,

The probability of finding system A in state |0A〉 can be calculated as

p(0A) = 〈β10|P̂A
0 |β10〉,

p(0A) = 〈β10|P̂0 ⊗ Î

[
1√
2
(|0A〉|0B〉 − |1A〉|1B〉)

]
,

p(0A) = 〈β10|
1√
2
|0A〉|0B〉,

p(0A) =
1

2
.

Post measurement state is

|β′10〉 =
P̂A
0 |β10〉√
p(0A)

= |0A〉|0B〉.

Case 2
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When state of quantum system is represented by density operator ρ̂. Probability of
finding any state |m〉 will be

p (m) = Tr
[
P̂mρ̂P̂

†
m

]
.

Using cyclic property of trace

p (m) = Tr
[
P̂ †mP̂mρ̂

]
,

P̂mP̂
†
m = P̂mP̂m = P̂m,

p (m) = Tr
[
P̂mρ̂

]
.

Post measurement state will be

ρ̂′ =
P̂mρ̂P̂

†
m

Tr
[
P̂mρ̂

] .
Post measurement state is always normalized.
Example 1
Let |ψ〉 be the state of quantum system such that:

|ψ〉 = α|0〉+ β|1〉.

Density operator ρ̂ can be written as

ρ̂ = |ψ〉〈ψ|,

ρ̂ = |α|2|0〉〈0|+ |α∗β||1〉〈0|+ |αβ∗||0〉〈1|+ |β|2|1〉〈1|,

P̂1 and P̂2 are two projectors

P̂0 = |0〉〈0|,

P̂1 = |1〉〈1|.

Probability of finding state |0〉 will be

p (0) = Tr
[
P̂0ρ̂
]
,

p (0) = Tr
[
|0〉〈0|

(
|α|2|0〉〈0|+ |α∗β||1〉〈0|+ |αβ∗||0〉〈1|+ |β|2|1〉〈1|

)]
,
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p (0) = Tr
[
|α|2|0〉〈0|+ |αβ∗||0〉〈1|

]
,

p (0) = 〈0|
[
|α|2|0〉〈0|+ |αβ∗||0〉〈1|

]
|0〉+ 〈1|

[
|α|2|0〉〈0|+ |αβ∗||0〉〈1|

]
|1〉,

p (0) = |α|2,

Post measurement state is give by

ρ̂′ =
P̂0ρ̂P̂

†
0

Tr
[
P̂mρ̂

] .
Post measurement state will be

ρ̂′ =
|0〉〈0| (|α|2|0〉〈0|+ |α∗β||1〉〈0|+ |αβ∗||0〉〈1|+ |β|2|1〉〈1|) |0〉〈0|

|α|2
,

ρ̂′ =
|α|2|0〉〈0|

|α|2
,

ρ̂′ = |0〉〈0|,

Example 2
Let us considered a composite system |β10〉

|β10〉 =
1√
2
(|0A〉|0B〉 − |1A〉|1B〉) .

Density operator ρ̂AB can be written as

ρ̂AB =
1

2
(|0A〉|0B〉〈0A|〈0B| − |0A〉|0B〉〈1A|〈1B| − |1A〉|1B〉〈0A|〈0B|+ |1A〉|1B〉〈1A|〈1B|) .

Here P̂A
0 and P̂A

1 are two projectors to project the state of system A such that:

P̂A
0 = P̂0 ⊗ Î ,

P̂A
1 = P̂1 ⊗ Î .

Similarly P̂B
0 and P̂B

1 are two projectors to project the state of system B such that:

P̂B
0 = Î ⊗ P̂0,
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P̂B
1 = Î ⊗ P̂1.

Probability of finding state |0A〉 will be

p (0A) = Tr
[
P̂A
0 ρ̂AB

]

⇒ p (0A) = Tr

[
1

2
(|0A〉|0B〉〈0A|〈0B| − |0A〉|0B〉〈1A|〈1B|)

]

p (0A) =〈0A|〈0B|
[
1

2
(|0A〉|0B〉〈0A|〈0B| − |0A〉|0B〉〈1A|〈1B|)

]
|0A〉|0B〉

+〈0A|〈1B|
[
1

2
(|0A〉|0B〉〈0A|〈0B| − |0A〉|0B〉〈1A|〈1B|)

]
|0A〉|1B〉

+〈1A|〈0B|
[
1

2
(|0A〉|0B〉〈0A|〈0B| − |0A〉|0B〉〈1A|〈1B|)

]
|1A〉|0B〉

+〈1A|〈1B|
[
1

2
(|0A〉|0B〉〈0A|〈0B| − |0A〉|0B〉〈1A|〈1B|)

]
|1A〉|1B〉

p (0A) =
1

2

Post measurement state will be

ρ̂′AB =
P̂A
0 ρ̂ABP̂

A†
0

Tr
[
P̂A
0 ρ̂AB

] ,
because

P̂A†
0 =

(
P̂0 ⊗ Î

)†
= P̂ †0 ⊗ Î = P̂0 ⊗ Î ,

⇒ P̂A
0 ρ̂ABP̂

A†
0 =

1

2
|0A〉|0B〉〈0A|〈0B|,

so

ρ̂′AB =

1

2
|0A〉|0B〉〈0A|〈0B|

1

2

,

ρ̂′AB = |0A〉|0B〉〈0A|〈0B|.

Other than projective/strong measurements, we can also perform weak measurements
[30]. Weak measurements give more general results than projective measurements. In
many practicals situations, state of quantum system may not be orthogonal. In such situ-
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ation, we can use another technique of measurements known as generalized measurements.
We will not discuss in detail these measurement techniques here.

2.8 Partition Function

The partition function, denoted by Z plays the role of generating function in statistical
mechanics that provides a way to calculate thermodynamic properties of a system from its
microscopic (particle-level) description. It is defined as the sum of the Boltzmann weights
of all possible microstates of the system at a given temperature, and provides a bridge
between the microscopic and macroscopic descriptions of the system. Mathematically,
the partition function is defined as

Z =
∑
n

e−βEn ,

where β = 1/kBT , En is the energy of the nth microstate, kB is the Boltzmann constant,
and T is the temperature. The sum is taken over all possible microstates of the system,
and the Boltzmann weight for each microstate is given by the exponential term. The
partition function is an important tool for calculating thermodynamic quantities such as
the free energy, average energy, entropy, and heat capacity.

Using the partition function, thermodynamic quantities can be calculated without
considering the details of each individual microstate. This is particularly useful in many-
particle systems where the number of possible microstates can be very large, making a
direct calculation of thermodynamic properties difficult.

2.9 Thermodynamical Quantities

2.9.1 Free Energy

Energy available in a system to perform some useful work is know as free energy. There
are two common forms of free energy, Helmholtz free energy A and Gibbs free energy G.

Helmholtz free energy is defined as

A = U − TS,

where T is temperature, S is entropy and U is internal energy.
In term of partition function

A = −kBT lnZ. (2.12)
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2.9.2 Average Energy

From Eq. (2.4), average energy can be calculated as

Eavg = 〈Ĥ〉,

Eavg = Tr
[
ρ̂Ĥ
]
.

If the system is in contact with a thermal bath,

ρ̂ =
1

Z

∞∑
n=0

e−βEn|ψn〉〈ψn|,

therefore

Eavg = Tr

[
1

Z

∞∑
n=0

e−βEn|ψn〉〈ψn|Ĥ

]
.

Taking trace over the energy eigenstates |ψm〉

Eavg =
∞∑

m=0

〈ψm|

(
1

Z

∞∑
n=0

e−βEn|ψn〉〈ψn|Ĥ

)
|ψm〉,

Eavg =
1

Z

∞∑
m,n=0

e−βEn〈ψm|ψn〉〈ψn|Ĥ|ψm〉,

since

Ĥ|ψm〉 = Em|ψm〉,

⇒ Eavg =
1

Z

∞∑
m,n

e−βEn〈ψm|ψn〉〈ψn|Em|ψm〉,

Eavg =
1

Z

∞∑
m,n

Eme
−βEn〈ψm|ψn〉〈ψn|ψm〉,

using orthonormality condition,

Eavg =
1

Z

∞∑
n

Ene
−βEn .

But we know

Z =
∞∑
n

e−βEn ,
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∂

∂β
Z = −

∞∑
n

Ene
−βEn .

So Eavg will be

Eavg =
1

Z

(
− ∂

∂β
Z

)
,

⇒ Eavg = − ∂

∂β
(lnZ) . (2.13)

2.9.3 Entropy

Entropy is directly related to the number of ways to arrange the gas atoms (microstate)
without changing the macrostate. If Ω are the number of microstates,

S = kB lnΩ,

If we assume that all states are equally probable. Let pi be the probability of an ith

state then pi

pi =
1

Ω
,

S = kBln
1

pi
.

So we can write the above equation as

S = kB
∑
i

piln
1

pi

S = −kB
∑
i

pilnpi (2.14)

This is the formula for Gibbs entropy. In quantum mechanics, the counter part of
Gibbs entropy is von Neumann entropy.

Let density operator ρ̂ is diagonalized,

ρ̂ =
∞∑
n=0

pn|ψn〉〈ψn|,

if ρ̂ is diagonalized then ln (ρ̂) can be calculated as

ln (ρ̂) =
∞∑
n=0

lnpn|ψn〉〈ψn|,

we can write
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ρ̂ln (ρ̂) =
∞∑
n=0

pn|ψn〉〈ψn|
∞∑

m=0

lnpm|ψm〉〈ψm|,

ρ̂ln (ρ̂) =
∞∑

n,m=0

pnlnpm|ψn〉〈ψn|ψm〉〈ψm|,

using orthonormality condition

ρ̂ln (ρ̂) =
∞∑
n=0

pnlnpn|ψn〉〈ψn|.

Taking trace over the energy eigenstates |ψm〉,

T r [ρ̂ln (ρ̂)] =
∞∑

m=0

〈ψm|

(
∞∑
n=0

pnlnpn|ψn〉〈ψn|

)
|ψm〉,

T r [ρ̂ln (ρ̂)] =
∞∑

m,n=0

pnlnpn〈ψm|ψn〉〈ψn|ψm〉,

using orthonormality condition again

Tr [ρ̂ln (ρ̂)] =
∞∑
n=0

pnlnpn.

Using above in Eq. (2.14)

S = −kBTr [ρ̂lnρ̂] (2.15)

This is von Neumann entropy. If λi are the eigenvalues of density operator ρ̂, then
von Neumann can be written as

S = −kB
∑
i

λilnλi

If our system is in contact with a thermal bath, then

ρ̂ =
1

Z

∞∑
n=0

e−βEn|ψn〉〈ψn|,

⇒ S = −kBTr

[
1

Z

∞∑
n=0

e−βEn|ψn〉〈ψn|ln

(
1

Z

∞∑
m=0

e−βEm|ψm〉〈ψm|

)]
,

S = −kBTr

[
1

Z

∞∑
n=0

e−βEnln

(
1

Z

∞∑
m=0

e−βEm

)
|ψn〉〈ψn|ψm〉〈ψm|

]
,

using orthonormality condition
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S = −kBTr

[
1

Z

∞∑
n=0

e−βEnln

(
1

Z
e−βEn

)
|ψn〉〈ψn|

]
,

S = −kBTr

[
1

Z

∞∑
n=0

e−βEn
(
lne−βEn

)
|ψn〉〈ψn| − lnZ|ψn〉〈ψn|

]
,

S = −kBTr

[
1

Z

∞∑
n=0

e−βEnlne−βEn|ψn〉〈ψn| −
1

Z

∞∑
n=0

e−βEnlnZ|ψn〉〈ψn|

]
,

S = −βkBTr

[
1

Z

∞∑
n

e−βEn (−En) |ψn〉〈ψn|

]
+ kBTr

[
1

Z

∞∑
n

e−βEnlnZ|ψn〉〈ψn|

]
,

S = −βkBTr

[
1

Z

∞∑
n=0

∂

∂β

(
e−βEn

)
|ψn〉〈ψn|

]
+ kBTr

[
1

Z

∞∑
n=0

e−βEnlnZ|ψn〉〈ψn|

]
,

S =
−βkB
Z

∞∑
n=0

∂

∂β

(
e−βEn

)
+
kB
Z

∞∑
n=0

e−βEnlnZ,

S =
−βkB
Z

∂

∂β
Z +

kB
Z
ZlnZ,

S = −βkB
∂

∂β
lnZ + kBlnZ,

S = − 1

kBT
kB

∂

∂ (1/kBT)
lnZ + kBlnZ,

S =
T 2kB
T

∂

∂T
lnZ + kBlnZ,

S = kBT
∂

∂T
lnZ + kBlnZ.

Form Eq. (2.12)

A = −kBT lnZ,

∂A

∂T
= −kBT

∂

∂T
lnZ − kBlnZ.

Therefore, S will become

S = −∂A
∂T

. (2.16)
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Chapter 3

Quantum Analysis of Harmonic
Szilard Engine

The quantum Szilard engine is the extension of the classical version to quantum systems.
A quantum version of Szilard’s original atom-in-a-box model can be realized with 1-D
non-relativistic quantum particle of mass m confined by a symmetric potential V (q), q
being the position of particle , to a finite region of space. The quantum dynamics can be
describe by the Hamiltonian Ĥ

Ĥ =
p̂2

2m
+ V (q̂),

where V (±∞) = ∞.
Zurek studied quantum Szilard engine in detail for infinite square well potential [17].

By replacing the square well potential with harmonic oscillator potential, a more elegant
model can be obtained that captures the same physical processes. The particle is taken
to be in a thermal state bounded in the harmonic well. Then a thin barrier (modeled
by a time dependent potential) is inserted quasi-statically at the center of the well and
a strong projective measurement is performed on the particle to determine whether it is
located to the right or left side of the partition. Demon can extract work from the setup
with this information. We can consider the demon either as a quantum system itself with
internal states that couples to the atom or as an external “observer”. In both cases, the
measurement collapses the wave function in a irreversible way.

For a particle having angular frequency ω trapped in harmonic well, Hamiltonian can
be written as

Ĥin =
p̂2

2m
+

1

2
mω2q̂2, (3.1)

where V (q̂) = 1
2
mω2q̂2.

For the quantum harmonic Szilard engine, we can determined exactly the partition
function of the particle, and all the relevant thermodynamic quantities can be calculated
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analytically. In Section-3.1, an initial thermal state of particle is prepared bounded in a
harmonic well. In Section-3.2, a Dirac delta potential barrier is inserted quasi-statically
in the middle of the well, that modifies the quantum state of the particle. In Secton-3.3,
demon localizes the particle to either left or the right side of the barrier by performing
a quantum projective measurement [21] on the position of particle. In Secton-3.4, the
demon extracts useful work from the system, when one particle quantum gas expands
isothermally; second law of thermodynamics seems to violate. In chapter 4, we will
treat the demon itself as a part of the system and explain why this is, in fact, not the
case of the violation of the second law of thermodynamics.

3.1 Initial state

We have a particle of mass m bounded in a harmonic potential V (q), hence the initial
Hamiltonian from Eq. (3.1) can be written as

Ĥin =
p̂2

2m
+

1

2
mω2q̂2.

We want to calculate the energy eigenvalues and corresponding energy eigenstates of
the above Hamiltonian.

There are many standard books which present the diagonalization of the above Hamil-
tonian, given in Eq. (3.1), so we can use those results directly.

Energy eigenvalues are

En =

(
n+

1

2

)
~ω. (3.2)

Corresponding energy eigenstates in position space are

ψn(q) = Hn(αq)e
−αq2

2 , (3.3)

where α =

√
mω

~
and Hn(αq) are Hermite polynomials.

3.1.1 Density Operator

As the initial state is mixed state (a thermal state) , the density operator for a mixed
state from Eq. (2.1) can be written as

ρ̂in =
∞∑
n=0

pn|ψn〉〈ψn|.

As our system is coupled to a thermal bath, so our system is in a canonical ensemble.
The probability of nth state can be written as
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pn =
e−βEn

Zin

,

Initial State will be

ρ̂in =
1

Zin

∞∑
n=0

e−βEn|ψn〉〈ψn|.

From Eq. (3.2),

ρ̂in =
1

Zin

∞∑
n=0

e−β
(
n+ 1

2
~ω

)
|ψn〉〈ψn|. (3.4)

Here pn is the probability of nth pure state such that:

∞∑
n=0

pn = 1.

3.1.2 Partition Function

For a valid density operator, trace of density operator must be equal to one.

Tr [ρ̂in] = 1,

T r

[
∞∑
n=0

e−βEn

Zin

|ψn〉〈ψn|

]
= 1,

∞∑
m=0

〈ψm|

(
∞∑
n=0

e−βEn

Zin

|ψn〉〈ψn|

)
|ψm〉 = 1,

1

Zin

∞∑
m=0

∞∑
n=0

e−βEn〈ψm|ψn〉〈ψn|ψm〉 = 1,

using orthonormality condition

1

Zin

∞∑
n=0

e−βEn = 1,

Zin =
∞∑
n=0

e−βEn .

From Eq. (3.2),

En =

(
n+

1

2

)
~ω.
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⇒ Zin =
∞∑
n=0

e−β
(
n+ 1

2

)
~ω.

We can see this is the geometric series , with initial term a1 and common ratio r :

a1 = e−
β~ω
2 , r = e−β~ω.

Sum of geometric series can be written as

sum = a1
(1− rn)

(1− r)
,

when |r| << 1 then sum reduces to

sum = a1
1

(1− r)

Now we can write the partition function utilizing sum of geometric series

Zin =
e−

β~ω
2

1− e−β~ω
,

Zin =
1

2
cosech(

β~ω
2

). (3.5)

This is the partition function of our system in the initial state. Partition function acts
as a generating function. All thermodynamical quantities can be determined using this
function.

3.1.3 Thermodynamical Quantities

3.1.3.1 Helmholtz Free Energy

Let us denote the initial Helmholtz free energy by Ain. From Eq. (2.12),

Ain = −kBT lnZin,

using Eq. (3.5)

Ain = −kBT ln
[
1

2
cosech(

β~ω
2

)

]
,

Ain = kBT ln

[
2sinh(

β~ω
2

)

]
. (3.6)

3.1.3.2 Average Energy

Let us denote the initial average energy by Ein. From Eq. (2.13),
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Ein = − ∂

∂β
lnZin,

using Eq. (3.5)

Ein = − ∂

∂β
ln

[
1

2
sinh(

β~ω
2

)

]
,

Ein =
1

2
~ω
[
coth

(
β~ω
2

)]
. (3.7)

Low temperature Limit:
When T → 0 ⇒ β → ∞
then

Ein
T→∞

= lim
β→∞

[
1

2
~ωcoth

(
β~ω
2

)]
,

Ein
T→∞

=
1

2
~ω.

From the above equation we can see that as temperature approaches zero Kelvin,
particle is in the ground state.

High Temperature Limit:
When T → ∞ ⇒ β → 0

then

Ein
T→∞

= lim
β→0

1

2
~ω
[
coth

(
β~ω
2

)]
,

here we can use the Taylor expansion of coth
(
β~ω
2

)
coth

(
β~ω
2

)
=

2

β~ω
+
β~ω
6

+ ...,

we will keep only the first term:

Ein
T→∞

=
1

2
~ω
(

2

β~ω
+ ...

)
,

Ein
T→∞

=
1

2
~ω

2

β~ω
,

Ein
T→∞

= kBT.

From the above equation we can see that this is consistent with equipartition energy
theorem. This simply means that if we give energy to N numbers of gas particle, then
each degree of freedom appearing quadratically in total energy has an equal contribution
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in total energy i.e. average energy of single quadratic degrees of freedom for each particle
will be

1

2
kBT.

Here, we have a quantum system of a single particle in one dimension with two degrees
of freedom i.e. position q and momentum p to describe the dynamics of the system. So,

En (q, p) = 2

(
1

2
kBT

)
= kBT,

hence in our case, when we have two degrees of freedom,

Ein = kBT.

3.1.3.3 Entropy

Since our system is in a mixed state, so we can represent it in terms of density operator
and the entropy of such a system can be written from Eq. (2.15) as

Sin = −Tr (ρ̂inlnρ̂in) .

But from Eq. (2.16), above relation can also be written as

Sin = − d

dT
Ain.

We can calculate the entropy using the relation of initial Helmholtz free energy from
Eq. (3.6)

Sin = − d

dT

{
kBT ln

[
2sinh

(
β~ω
2

)]}
,

Sin = − d

dT

{
kBT ln

[
2sinh

(
β~ω
2

)]}
,

Sin = −kBln
[
2sinh

(
β~ω
2

)]
− kBT

d

dT
ln

[
2sinh

(
β~ω
2

)]
,

Sin = −kBln
[
2sinh

(
β~ω
2

)]
− kBT

2cosh
(
β~ω
2

)
2sinh

(
β~ω
2

) (−β~ω
2T

)
,

Sin = −kBln
[
2sinh

(
β~ω
2

)]
+ kB

[
β~ω
2
coth

(
β~ω
2

)]
,

Sin = kB

{
β~ω
2
coth

(
β~ω
2

)
− ln

[
2sinh

(
β~ω
2

)]}
. (3.8)
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High Temperature Limit:
T → ∞ ⇒ β → 0,

Sin
T→∞

= lim
T→∞

kB

{
β~ω
2
coth

(
β~ω
2

)
− ln

[
2sinh

(
β~ω
2

)]}
,

Sin
T→∞

= lim
T→∞

kB

[
β~ω
2

cosh
(
β~ω
2

)
sinh

(
β~ω
2

)]− lim
T→∞

kBln

[
2sinh

(
β~ω
2

)]
,

Sin
T→∞

= kB [1]− lim
T→∞

kBln

[
2sinh

(
β~ω
2

)]
,

Sin
T→∞

= kB

{
1− lim

T→∞
ln

[
2sinh

(
β~ω
2

)]}
,

Sin
T→∞

≈ −kB
{
lim
T→∞

ln

[
2sinh

(
β~ω
2

)]}
,

As β~ω
2

→ 0 when T → ∞, we can use the Taylor expansion

Sin
T→∞

= −kB lim
T→∞

ln

[
2

(
β~ω
2

+ ...

)]
,

Sin
T→∞

= −kB lim
T→∞

[ln (β~ω)] ,

Sin
T→∞

= kB lim
T→∞

[
ln

(
1

β~ω

)]
,

we can write the above expression for high temperature as

Sin = kBln

(
kBT

~ω

)
. (3.9)

Low Temperature Limit:
T → 0 ⇒ β → ∞,

Sin
T→0

= lim
T→0

kB

{
β~ω
2
coth

(
β~ω
2

)
− ln

[
2sinh

(
β~ω
2

)]}
,

Sin
T→0

= lim
T→0

kB

(
β~ω
2

)[
coth

(
β~ω
2

)]
− kBln

(
2
e

β~ω
2 − e−

β~ω
2

2

)
,

Sin
T→0

= kB

(
lim
T→0

β~ω
2

)[
lim
T→0

coth

(
β~ω
2

)]
− kB lim

T→0

[
ln
(
e

β~ω
2 − e−

β~ω
2

)]
.

Since

lim
T→0

coth(
β~ω
2

) = 1,
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and

lim
T→0

[
ln
(
e

β~ω
2 − e−

β~ω
2

)]
= ln

(
lim
T→0

e
β~ω
2 − lim

T→0
e−

β~ω
2

)
,

lim
T→0

[
ln
(
e

β~ω
2 − e−

β~ω
2

)]
= ln

(
lim
T→0

e
β~ω
2

)
,

lim
T→0

[
ln
(
e

β~ω
2 − e−

β~ω
2

)]
= lim

T→0

[
ln
(
e

β~ω
2

)]
.

So,

Sin
T→0

= kB

(
lim
T→0

β~ω
2

)
− kB lim

T→0

[
ln
(
e

β~ω
2

)]
,

Sin
T→0

= kB

(
lim
T→0

β~ω
2

)
− kB lim

T→0

(
β~ω
2
lne

)
,

Sin
T→0

= kB

(
lim
T→0

β~ω
2

)
− kB lim

T→0

(
β~ω
2

)
,

Sin
T→0

= kB lim
T→0

(
β~ω
2

− β~ω
2

)
,

Sin
T→0

= kB lim
T→0

(0) .

So, we can write the above expression in the low temperature limit as

Sin = 0. (3.10)

Eq. (3.10) is consistent with the third law of thermodynamics as expected. This
law states that “for an isolated system entropy is always zero at absolute zero temperature,
if there is a unique ground state”.

3.2 Barrier Insertion

An infinite but thin potential barrier at q = 0 is inserted quasi-statically in order to localize
the particle to the right or left side of the harmonic potential. Hence, Hamiltonian will
change to Ĥ⊥

Ĥ⊥ =
p̂2

2m
+

1

2
mω2q̂2 + V̂⊥ (q) . (3.11)
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3.2.1 Shape of Barrier

Now we have to determine V̂ ⊥ (q) by keeping in mind that it is zero everywhere except at
q = 0. Also we must construct V̂⊥ (q) in such a way that its strength increases with time.

We choose ε to be a small number, and α is a parameter which may or may not be
time dependent in general. But we will take this as a time dependent parameter as we
need V̂ ⊥ to be time dependent. Although V̂ ⊥ is infinite at q = 0 but its integral from
−∞ to ∞ must be finite.

∞∫
−∞

V̂⊥(q)dq =

−ε∫
−∞

V̂⊥(q)dq+

+ε∫
−ε

V̂⊥(q)dq+

−∞∫
+ε

V̂⊥(q)dq,

∞∫
−∞

V̂⊥(q)dq =

�
�
�

�
�

��>
0

−ε∫
−∞

V̂⊥(q)dq+

+ε∫
−ε

V̂⊥(q)dq +

�
�
�

�
�
��>

0
−∞∫
+ε

V̂⊥(q)dq,

∞∫
−∞

V̂⊥(q)dq =

+ε∫
−ε

α(t)

ε
dq,

∞∫
−∞

V̂⊥(q)dq =
α(t)

ε

+ε∫
−ε

dq

 ,
∞∫
−∞

V̂⊥(q)dq =
α(t)

ε
[2ε] ,

∞∫
−∞

V̂⊥(q)dq = 2α(t).

By virtue of Dirac delta function , we can write V̂⊥ as

V̂⊥ = 2α(t)δ(q − 0),

at q = 0, above equation becomes

∞∫
−∞

V̂⊥(q)dq = 2α(t).

We can ignore the factor of 2 as it has no physical significance, so we can take V̂⊥
finally in the form given below:

V̂⊥ = α(t)δ(q − 0).

Hence, the Hamiltonian after barrier insertion at q = 0, we have called Ĥ⊥ can be
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written as

Ĥ⊥ =
p̂2

2m
+

1

2
mω2q̂2 + α(t)δ(q − 0).

We want to prevent the particle to tunnel through the barrier at later times, henceα(t) = 0 t→ −∞

α(t) = ∞ t→ +∞
.

We want to insert the barrier adiabatically, the slowness condition can be imposed as

| α̇
α
| << ω,

where ω is the frequency of particle’s oscillations in harmonic potential while| α̇
α

| is the
rate at which barrier is inserted.

This condition allows us to evaluate the wave function adiabatically, ensuring that
system is consistently in thermal equilibrium with the bath at temperature T .

3.2.2 Effect of Barrier Insertion

Let the eigenstates of Ĥ⊥ be |ψα
n〉, α in superscript represents that eigenstates are instanta-

neous. With the passage of time eignestates changes and their corresponding eigenvalues
Eα

n also change. We are not interested in the instantaneous values, our main focus is when
the barrier is fully inserted i.e t→ +∞

To compute the instantaneous eigenstates |ψα
n〉 and instantaneous eigenvalues Eα

n ,
Schrodinger wave equation can be written as

Ĥ⊥ψ
α
n(q) = Eα

nψ
α
n(q),

[
p̂2

2m
+

1

2
mω2q̂2 + α(t)δ(q − 0)

]
ψα
n(q) = Eα

nψ
α
n(q). (3.12)

Before the barrier insertion, some of the wave functions were odd and some were even.
ψ0, ψ2, ψ4, ψ6, ψ8... were even eigenstates.
ψ1, ψ3, ψ5, ψ7, ψ9... were odd eigenstates.
Let us check whether the barrier insertion affects the wave functions or not. Later we

will do analytical calculation if it is required.
For odd wave functions
We will integrate Eq. (3.12) from -ε to +ε to check the behavior of odd wave functions

near the barrier.
Note that ε is a small number such that ε→ 0
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+ε∫
−ε

[
p̂2

2m
+

1

2
mω2q̂2 + α(t)δ(q − 0)

]
ψα
2n+1(q)dq =

+ε∫
−ε

Eα
2n+1ψ

α
2n+1(q)dq,

+ε∫
−ε

[
− ~2

2m

d2

dq2
+

1

2
mω2q2 + α(t)δ(q − 0)

]
ψα
2n+1(q)dq =

+ε∫
−ε

Eα
2n+1ψ

α
2n+1(q)dq.

We know that if ψα
2n+1(q) is odd, then

+ε∫
−ε

ψα
2n+1(q) = 0,

and

+ε∫
−ε

1

2
mω2q2ψα

2n+1(q)dq = 0,

⇒ − ~2

2m

+ε∫
−ε

d2

dq2
ψα
2n+1(q)dq+

+ε∫
−ε

α(t)δ(q − 0)ψα
2n+1(q)dq = 0. (3.13)

Using the property of delta function

+ε∫
−ε

α(t)δ(q − 0)ψα
2n+1(q)dq = α(t)ψα

2n+1(0).

So we can write Eq. (3.13) as

− ~2

2m

+ε∫
−ε

d2

dq2
ψα
2n+1(q)dq + α(t)ψα

2n+1(0) = 0,

− ~2

2m

d

dq
ψα
2n+1(q)

+ε

|
−ε

+α(t)ψα
2n+1(0) = 0,

− ~2

2m

[
d

dq
ψα
2n+1(+ε)−

d

dq
ψα(−ε)

]
+ α(t)ψα

2n+1(0) = 0. (3.14)

But we know from the property that derivative of odd function is even function i.e.

d

dq
ψα
2n+1(−ε) =

d

dq
ψα
2n+1(+ε).

So Eq. (3.14) becomes

α(t)ψα
2n+1(0) = 0,
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⇒ ψα
2n+1(0) = 0. (3.15)

We can see that odd wave functions are not affected by barrier. They vanished before
barrier insertion and continue to do so after barrier insertion.

Even wave functions
Now we will do the same for even wave functions .

+ε∫
−ε

[
p̂2

2m
+

1

2
mω2q̂2 + α(t)δ(q − 0)

]
ψα
2n(q)dq =

+ε∫
−ε

Eα
2nψ

α
2n(q)dq,

+ε∫
−ε

[
− ~2

2m

d2

dq2
+

1

2
mω2q2 + α(t)δ(q − 0)

]
ψα
2n(q)dq =

+ε∫
−ε

Eα
2nψ

α
2n(q)dq,

−
+ε∫
−ε

~2

2m

d2

dq2
ψα
2n(q)dq+

+ε∫
−ε

1

2
mω2q2ψα

2n(q)dq+

+ε∫
−ε

α(t)δ(q − 0)ψα
2n(q)dq =

+ε∫
−ε

Eα
2nψ

α
2n(q)dq.

(3.16)
One of the necessary condition for the wave function is that it must be continuous

everywhere. This means that if we approach the even wave function form left, it would
give the same result as if we approach it form right.

lim
ε→0

+ε∫
−ε

ψα
2n(q)dq = 0,

and lim
ε→0

+ε∫
−ε
q2ψα

2n(q)dq goes to zero as

lim
ε→0

+ε∫
−ε

q2ψα
2n(q)dq = lim

ε→0

�
�

�
�

�
�
�
�>
0

q2
+ε∫
−ε

ψα
2n(q)dq − lim

ε→0
q2

+ε∫
−ε

+ε∫
−ε

ψα
2n(q).2qdq,

lim
ε→0

+ε∫
−ε

q2ψα
2n(q)dq = lim

ε→0

−q2 +ε∫
−ε

+ε∫
−ε

ψα
2n(q).2qdq

 ,

lim
ε→0

+ε∫
−ε

q2ψα
2n(q)dq = −2

��
���

���
���*

0

lim
ε→0

q

+ε∫
−ε

+ε∫
−ε

ψα
2n(q).dq + 2

�
���

���
���

��*
0+ε

lim
ε→0

+ε∫
−ε

−ε

+ε∫
−ε

+ε∫
−ε

ψα
2n(q).dq.

Eq. (3.16) will become
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− ~2

2m

+ε∫
−ε

d2

dq2
ψα
2n(q) + α(t)

+ε∫
−ε

δ(q − 0)ψα
2n(q)dq = 0,

− ~2

2m
lim
ε→0

d

dq
ψα
2n(q)

+ε

|
−ε

+α(t))ψα
2n(0) = 0,

− ~2

2m
lim
ε→0

[
d

dq
ψα
2n(q) |

+ε

− d

dq
ψα(q) |

−ε

]
+ α(t))ψα

2n(0) = 0.

As d

dq
ψα
2n(q) is odd

d

dq
ψα
2n(q) |

−ε
= − d

dq
ψα
2n(q) | .

+ε

So,

− ~2

2m
lim
ε→0

[
d

dq
ψα
2n(q) |

+ε

+
d

dq
ψα(q) |

+ε

]
+ α(t))ψα

2n(0) = 0,

− ~2

2m
lim
ε→0

[
2
d

dq
ψα
2n(q) |

+ε

]
+ α(t))ψα

2n(0) = 0,

⇒ d

dq
ψα
2n(q) |

q=0

=
m

~2
α(t)ψα

2n(0). (3.17)

This equation shows that, even function at q = 0 is affected by the presence of barrier.
This equation will give the quantization condition later. Hence we have to calculate
only even wave functions.

3.2.3 Eigenstates of Even Modes after the Barrier Insertion

For the even wave function we will considered only the right side (q > 0) because of
symmetry. For (q > 0) delta function does not take part and Eq. (3.12) becomes Weber
differential equation.

Eq. (3.12) for q > 0 (
p̂2

2m
+

1

2
mω2q̂2

)
ψα
2n(q) = Eα

2nψ
α
2n(q), (3.18)

− ~2

2m

d2

dq2
ψα
2n(q) +

1

2
mω2q2ψα

2n(q) = Eα
2nψ

α
2n(q)

dividing both sides by ~ω

− ~2

2m~ω
d2

dq2
ψα
2n(q) +

1

2

mω2q2

~ω
ψα
2n(q) =

Eα
2n

~ω
ψα
2n(q),
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− ~
2mω

d2

dq2
ψα
2n(q) +

1

4

2mωq2

~
ψα
2n(q) =

Eα
2n

~ω
ψα
2n(q).

Let
z2=2mωq2

~
⇒ q2 =

~z2

2mω
and v = −E

α
2n

~ω
, so

− ~
2mω

d2

d

(
~z2

2mω

)ψα
2n(q) +

1

4
z2ψα

2n(q) = −vψα
2n(q),

d2

dz2
ψα
2n(q)−

1

4
z2ψα

2n(q) = vψα
2n(q),

d2

dz2
ψα
2n(q)−

(
1

4
z2 + v

)
ψα
2n(q) = 0. (3.19)

This Eq. (3.19) is known as Weber [30] differential equation and its solutions are

ψα
2n(q) = Ae

−
(
z2

4
+v

)
+Be

(
z2

4
+v

)
,

ψα
2n(q) = Ae

−
(
z2

4
+v

)
+Be

(
z2

4
+v

)
.

The second term diverges when z → ±∞ so we keep only the first term

ψα
2n(q) = Ae

−
(
z2

4
+v

)
,

ψα
2n(q) = Ce−

z2

4 . (3.20)

C may have z dependence, so we can also write the above equation as

ψα
2n(q) = f (z) e−

z2

4 . (3.21)

To determine f (z), we take the derivatives and substitute the result in Eq. (3.19):

d

dz
ψα
2n(q) =

d

dz

(
f (z) e−

z2

4

)
,

d

dz
ψα
2n(q) =

[
f (z) ′e−

z2

4 − 1

2
zf (z) e−

z2

4

]
. (3.22)

d2

dz2
ψα
2n(q) =

[
f ′′ (z) e−

z2

4 − 1

2
zf ′ (z) e−

z2

4 − 1

2
f (z) e−

z2

4 − 1

2
zf ′ (z) e−

z2

4 +
1

4
z2f (z) e−

z2

4

]
,
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d2

dz2
ψα
2n(q) =

[
f ′′ (z) e−

z2

4 − zf ′ (z) e−
z2

4 − 1

2
f (z) e−

z2

4 +
1

4
z2f (z) e−

z2

4

]
,

d2

dz2
ψα
2n(q) =

[
f ′′ (z) e−

z2

4 − zf ′ (z) e−
z2

4 − 1

2
f (z) e−

z2

4 +
1

4
z2f (z) e−

z2

4

]
. (3.23)

Substituting Eq. (3.21) and (3.23) in Eq. (3.19) we obtain

[
f ′′ (z) e−

z2

4 − zf ′ (z) e−
z2

4 − 1

2
f (z) e−

z2

4 +
1

4
z2f (z) e−

z2

4

]
−
(
1

4
z2 + v2

)
f (z) e−

z2

4 = 0,

[
f ′′ (z)− zf ′ (z)− 1

2
f (z) +

1

4
z2f (z)−

(
1

4
z2 + v2

)
f (z)

]
= 0,

[
f ′′ (z)− zf ′ (z)− 1

2
f (z)− vf (z)

]
= 0,

[
f ′′ (z)− zf ′ (z)−

(
v +

1

2

)
f (z)

]
= 0. (3.24)

Let us define a parameter a for convenience

a = −
(
v +

1

2

)
, (3.25)

where v = −E
α
2n

~ω
.

As z = 0 is an ordinary point, so we can solve Eq. (3.24) by power series method.
Let the solution of Eq. (3.24) be

f (z) =
∞∑
n=0

cnz
n,

f (z) ′ =
∞∑
n=1

ncnz
n−1,

f (z) ′′ =
∞∑
n=2

n (n− 1) cnz
n−2.

Then Eq. (3.24) will become[
∞∑
n=2

n (n− 1) cnz
n−2 − z

∞∑
n=1

ncnz
n−1 + a

∞∑
n=0

cnz
n

]
= 0,

[
∞∑
n=0

(n+ 2) (n+ 1) cn+2z
n−

∞∑
n=0

ncnz
n + a

∞∑
n=0

cnz
n

]
= 0,
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∞∑
n=0

[(n+ 2) (n+ 1) cn+2 − ncn + acn] z
n = 0.

Comparing the coefficients:

(n+ 2) (n+ 1) cn+2 − ncn + acn = 0,

we obtain

cn+2 =
(n− a)

(n+ 2) (n+ 1)
cn.

Using the above recurrence relation, we can write the solution of Eq. (3.24) as

f (z) =co

[
1 +

−a
2!
z2 +

−a (2− a)

4!
z4 +

−a (2− a) (4− a)

6!
z6 + ...

]
+c1z

[
1 +

(1− a)

3!
z2 +

(1− a) (3− a)

5!
z4 +

(1− a) (3− a) (5− a)

7!
z6 + ...

]
, (3.26)

f (z) = coF1

(
−a
2
,
1

2
,
z2

2

)
+ c1zF1

(
−a− 1

2
,
3

2
,
z2

2

)
,

wherez2 = 2mωq2

~
and F1

(
−a
2
,
1

2
,
q2

2

(
2mω

~

))
and F1

(
−a− 1

2
,
3

2
,
q2

2

(
2mω

~

))
are confluent hyper-

geometric function [20] of the first kind. Hence Eq. (3.25) will become

ψα
2n(q) = coe

−mω
2~ q2F1

(
−a
2
,
1

2
,
q2

2

(
2mω

~

))
+c1

√
2mω

~
qe−

mω
2~ q2F1

(
−a− 1

2
,
3

2
,
q2

2

(
2mω

~

))
.

Using boundary conditions i.e.

ψα
2n(±∞) = 0

and
ψα
2n(0

+) = ψα
2n(0

−) = 0

Hence
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ψα
2n(q) =

√
π2a/2

Γ

(
−a
2
+

1

2

)e−mω
2~ q2F1

(
−a
2
,
1

2
,
q2

2

(
2mω

~

))

−
√
π2(a+1)/2

Γ
(
−a
2

) e−mω
2~ q2

√
2mω

~
qF1

(
−a− 1

2
,
3

2
,
q2

2

(
2mω

~

))
,

normalized wave function can be written as

ψα
2n(q) = NDa

(
q

√
2mω

~

)
, (3.27)

where Da

(
q

√
2mω

~

)
[19, 18] is a parabolic cylinder function and N is the normal-

ization constant

N =

[√
π~
4mω

φ
(
1−a
2

)
− φ

(−a
2

)
Γ (−a)

] 1
2

,

Da

(
q

√
2mω

~

)
=

√
π2a/2

Γ

(
−a
2
+

1

2

)e−mω
2~ q2F1

(
−a
2
,
1

2
,
q2

2

(
2mω

~

))
, (3.28)

−
√
π2(a+1)/2

Γ
(
−a
2

) e−mω
2~ q2q

√
2mω

~
F1

(
−a− 1

2
,
3

2
,
q2

2

(
2mω

~

))
,

Γ(x) is Gama function [22] and φ(x) is Digamma function [23].
Recall Eq. (3.17):

d

dq
ψα
2n(q) |

q=0

=
m

~2
α(t)ψα

2n(0).

We substitute ψα
2n(q) from Eq. (3.27) to obtain

d

dq
NDa

(
q

√
2mω

~

)
|

q=0

=
m

~2
α(t)NDa(0),

d

dq
Da

(
q

√
2mω

~

)
|

q=0

=
m

~2
α(t)Da(0),

D′a(0)

√
2mω

~
=
m

~2
α(t))Da(0),
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αDa(0) =

√
2~3ω
m

D′a(0),

α

√
m

2~3ω
=
D′a(0)

Da(0)
, (3.29)

Let us calculate D′a(0) and Da(0) [24] using Eq. (3.28)

Da (0) =

√
π2a/2

Γ

(
−a
2
+

1

2

)e−mω
2~ 02F1

(
−a
2
,
1

2
,
02

2

(
2mω

~

))
,

−
√
π2(a+1)/2

Γ
(
−a
2

) e−mω
2~ 02 (0)

√
2mω

~
F1

(
−a− 1

2
,
3

2
,
02

2

(
2mω

~

))
.

Since ( we can check these values directly from the series expansion (Eq. (3.26))

F1

(
−a
2
,
1

2
,
02

2

(
2mω

~

))
= 1,

F1

(
−a− 1

2
,
3

2
,
02

2

(
2mω

~

))
= 1.

Therefore

Da (0) =

√
π2a/2

Γ

(
−a
2
+

1

2

) .
Using a from Eq. (3.25) we obtain

Da(0) =

√
π2(2E

α
2n−~ω)/4~ω

Γ
[
1
2
− 2Eα

2n−~ω
4~ω

] . (3.30)

Now D′a(0) using Eq. (3.28)

D′a

(
q

√
2mω

~

)
=

d

dq

[
Da

(
q

√
2mω

~

)]
,
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D′a

(
q

√
2mω

~

)
=

√
π2a/2

Γ

(
−a
2
+

1

2

) (−mω
~
qe−

mω
2~ q2

)
F1

(
−a
2
,
1

2
,
q2

2

(
2mω

~

))

+

√
π2a/2

Γ

(
−a
2
+

1

2

) (e−mω
2~ q2

) d

dq
F1

(
−a
2
,
1

2
,
q2

2

(
2mω

~

))

−
√
π2(a+1)/2

Γ
(
−a
2

) (−mω
~
e−

mω
2~ q2

)
q

√
2mω

~
F1

(
−a− 1

2
,
3

2
,
q2

2

(
2mω

~

))

−
√
π2(a+1)/2

Γ
(
−a
2

) (e−mω
2~ q2

)√2mω

~
F1

(
−a− 1

2
,
3

2
,
q2

2

(
2mω

~

))

−
√
π2(a+1)/2

Γ
(
−a
2

) (e−mω
2~ q2

)
q

√
2mω

~
d

dq
F1

(
−a− 1

2
,
3

2
,
q2

2

(
2mω

~

))
.

Since (we can check these values directly from the series expansion (Eq. 3.26))

F1

(
−a
2
,
1

2
,
02

2

(
2mω

~

))
= 1,

F1

(
−a
2
,
1

2
,
0q

2

(
2mω

~

))
= 1.

and

d

dq
F1

(
−a
2
,
1

2
,
02

2

(
2mω

~

))
= 0,

d

dq
F1

(
−a− 1

2
,
3

2
,
02

2

(
2mω

~

))
= 0.

Therefore at q = 0, D′a

(
q

√
2mω

~

)
becomes

D′a(0) =

√
π2(a+1)/2

Γ
(
−a
2

) ,
D′a(0) = −

√
π2(2E

α
2n+~ω)/4~ω

Γ
[
−2Eα

2n−~ω
4~ω

] . (3.31)

Eq. (3.29) will become
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α

√
m

2~3ω
=

−2(2E
α
2n+~ω)/4~ω

Γ
[
−2Eα

2n−~ω
4~ω

]
2(2E

α
2n−~ω)/4~ω

Γ
[
1
2
− 2Eα

2n−~ω
4~ω

] ,

α

√
m

2~3ω
= −

Γ
[
1
2
− 2Eα

2n−~ω
4~ω

]
Γ
[
−2Eα

2n−~ω
4~ω

] × 2(2E
α
2n+~ω)/4~ω

2(2E
α
2n−~ω)/4~ω

,

α

√
m

2~3ω
= −21/2

Γ
[
1
2
− 2Eα

2n−~ω
4~ω

]
Γ
[
−2Eα

2n−~ω
4~ω

] ,

α

√
m

~3ω
= −2

Γ
[
3
4
− Eα

2n

2~ω

]
Γ
[
1
4
− Eα

2n

2~ω

] . (3.32)

This implicit equation cannot be solve analytically. However, we can solve this Eq.
(3.32) graphically (see Figure 3.1), noticing that α varies from 0 to ∞. When there is no
barrier α = 0, with increasing barrier strength α increases and at some later time when
the height of barrier becomes maximum then α → ∞. Graph of this implicit equation is
shown in Figure 3.1.

Figure 3.1: Graphical solution to the implicit equation (3.32) relating E and α; energy
levels of the even modes are represent by the solid blue curves for a given value of α.
While the energy levels of the odd modes are represented by solid blue lines(alternative
lines).

For even eigenstates, we can see from Figure 3.1
At α = 0
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E2n =

(
2n+

1

2

)
~ω, (3.33)

where n = 0, 1, 2, 3... .
When α (strength of barrier) increases, E2n(energy eigenvalues of even modes) also

increase and shifted to the E2n+1(energy eigenvalues of odd modes) when α→ ∞(barrier
is fully inserted).

At α → ∞

E2n →
(
2n+

1

2

)
~ω + ~ω

⇒ E2n →
(
2n+

3

2

)
~ω. (3.34)

or

E2n →
[
(2n+ 1) +

1

2
~ω
]
,

E2n → E2n+1.

From Eq. (3.34) we notice that energy eigenvalues of even modes are as same as
energy eigenvalues of odd modes (odd modes have same energy eigenvalues before and
after barrier insertion). Hence each energy eigenstate is now degenerate. These states
produce the energy spectrum similar to the harmonic oscillator with energy gap 2~ω, if
bottom of well is shifted upward by ~ω/2 as shown in Figure 3.2.

Figure 3.2: Left: Energy levels of the simple harmonic oscillator potential. Center: Energy
levels of the simple harmonic oscillator potential plus the delta function potential in the
limit α→ ∞. Double horizontal lines represent the energy levels with twofold degeneracy.
Right: The harmonic oscillator plus delta function potential has energy levels similar to
the harmonic oscillator with frequency 2ω, with two-fold degeneracy at each energy level
and shifted up by an energy ~ω/2.
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3.2.4 Density Operator

Now, we can construct ρ̂⊥ which represents the state of system after complete barrier
insertion. From Eq. (2.1)

ρ̂⊥ =
∞∑
n=0

pn|ψ∞n 〉〈ψ∞n |.

Note that each eigenstate of harmonic oscillator is now degenerate (see Fig. 3.2) with
two-fold degeneracy, so we can write the density operator ρ̂⊥as

ρ̂⊥ =
∞∑
n=0

pn
(
|ψ∞2n〉〈ψ∞2n|+ |ψ∞2n+1〉〈ψ∞2n+1|

)
. (3.35)

As our system is coupled to a thermal bath, we can consider our whole system as a
canonical ensemble. The probability of nth state can be written as

pn =
e−βEn

Z⊥
.

Energy eigenvalues of two consecutive even and odd modes are same (see Fig. 3.2),
such that:

En = E2n = E2n+1 =

(
2n+

3

2

)
~ω,

where n = 0, 1, 2, 3, 4...,

⇒ pn =
e
−β

(
2n+

3
2

)
~ω

Z⊥
.

Eq. (3.35) well become

ρ̂⊥ =
1

Z⊥

∞∑
n=

e
−β

(
2n+

3
2

)
~ω (|ψ∞2n〉〈ψ∞2n|+ |ψ∞2n+1〉〈ψ∞2n+1|

)
. (3.36)

3.2.5 Partition Function

To find the partition function, we use the following condition on the density operator.
For a valid density operator, trace of density operator must be equal to one:

Tr [ρ̂⊥] = 1,

T r

[
1

Z⊥

∞∑
n=0

e
−β

(
2n+

3
2

)
~ω (|ψ∞2n〉〈ψ∞2n|+ |ψ∞2n+1〉〈ψ∞2n+1|

)]
= 1,
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∞∑
m=0

〈ψ2m|

[
1

Z⊥

∞∑
0

e
−β

(
2n+

3
2

)
~ω (|ψ∞2n〉〈ψ∞2n|+ |ψ∞2n+1〉〈ψ∞2n+1|

)]
|ψ2m〉

+
∞∑

m=0

〈ψ2m+1|

[
1

Z⊥

∞∑
n=0

e
−β

(
2n+

3
2

)
~ω (|ψ∞2n〉〈ψ∞2n|+ |ψ∞2n+1〉〈ψ∞2n+1|

)]
|ψ2m+1〉 = 1,

1

Z⊥

∞∑
m=0

∞∑
n=0

e
−β

(
2n+

3
2

)
~ω〈ψ2m|ψ2n〉〈ψ2n|ψ2m〉

+
1

Z⊥

∞∑
m=0

∞∑
n=0

e
−β

(
2n+

3
2

)
~ω〈ψ2m|ψ2n+1〉〈ψ2n+1|ψ2m〉

+
1

Z⊥

∞∑
m=0

∞∑
n=0

e
−β

(
2n+

3
2

)
~ω〈ψ2m+1|ψ2n〉〈ψ2n|ψ2m+1〉

+
1

Z⊥

∞∑
m=0

∞∑
n=0

e
−β

(
2n+

3
2

)
~ω〈ψ2m+1|ψ2n+1〉〈ψ2n+1|ψ2m+1〉 = 1

using orthonormality condition

〈ψ2n|ψ2m〉 = δmn, 〈ψ2n+1|ψ2m+1〉 = δmn,

〈ψ2n+1|ψ2m〉 = 0, 〈ψ2n|ψ2m+1〉 = 0.

So

1

Z⊥

∞∑
m=0

∞∑
n=0

e
−β

(
2n+

3
2

)
~ω
δmn +

1

Z⊥

∞∑
m=0

∞∑
n=0

e
−β

(
2n+

3
2

)
~ω
δmn = 1.

For m = n

1

Z⊥

∞∑
n=0

e
−β

(
2n+

3
2

)
~ω

+
1

Z⊥

∞∑
n=0

e
−β

(
2n+

3
2

)
~ω

= 1.

Therefore, we obtain

Z⊥ = 2
∞∑
n=0

e−β
(
2n+ 3

2

)
~ω.

This is a geometric series , with the initial term a1 and common ratio r:

a1 = e−
3
2
β~ω, r = e−2β~ω.

⇒ Z⊥ =
2e−

3
2
β~ω

1− e−2β~ω
,
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Z⊥ =
e−

1
2
β~ω(

e−β~ω − e−β~ω

2

) ,

Z⊥ =
e−

1
2
β~ω

sinh (β~ω)
,

Z⊥ = e−
1
2
β~ωcosech (β~ω) . (3.37)

This is the partition function of our system when the barrier is fully inserted. Par-
tition function plays the role of generating function and it can be used to determine all
thermodynamical quantities.

3.2.6 Thermodynamical Quantities

3.2.6.1 Helmholtz Free Energy

Let us denote the Helmholtz free energy after the barrier insertion by A⊥

A⊥ = −kBT lnZ⊥.

From Eq. (3.37)

A⊥ = −kBT ln
[
e−

1
2
β~ωcosech (β~ω)

]
,

A⊥ = − 1

β
ln
(
e−

1
2
β~ω
)
+ ln [sinh (β~ω)] ,

A⊥ =
1

2
~ω +

1

β
ln [sinh (β~ω)] ,

A⊥ =
1

β
ln [sinh (β~ω)] +

1

2
~ω. (3.38)

From Eq. (3.6) and (3.38), we can determine the difference in Helmholtz free energy
between the initial state and the state after barrier insertion:

A⊥ − Ain =
1

β
ln [sinh (β~ω)] +

1

2
~ω − kBT ln

[
2sinh(

β~ω
2

)

]
,

A⊥ − Ain =
1

β
ln

[
2sinh

(
β~ω
2

)
cosh

(
β~ω
2

)]
+

1

2
~ω − kBT ln

[
2sinh(

β~ω
2

)

]
,
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A⊥ − Ain =
1

β
ln

[
2sinh

(
β~ω
2

)]
+

1

β
ln

[
cosh

(
β~ω
2

)]
+

1

2
~ω − 1

β
ln

[
2sinh(

β~ω
2

)

]
,

A⊥ − Ain =
1

β
ln

[
cosh

(
β~ω
2

)]
+

1

2
~ω. (3.39)

High Temperature Limit:
T → ∞ ⇒ β → 0,

lim
T→0

(A⊥ − Ain) = lim
T→∞

[
1

β
ln

[
cosh

(
β~ω
2

)]
+

1

2
~ω
]
,

we can also write

lim
T→0

(A⊥ − Ain) = lim
β→0

[
1

β
ln

[
cosh

(
β~ω
2

)]
+

1

2
~ω
]
,

lim
T→0

(A⊥ − Ain) = lim
β→0

ln

[
cosh

(
β~ω
2

)]
β

+
1

2
~ω,

since lim
β→0

ln

[
cosh

(
β~ω
2

)]
β

is 0

0
form , so we can apply L’Hopital’s rule

lim
T→0

(A⊥ − Ain) = lim
β→0

[
tanh

(
β~ω
2

)
1

2
~ω
]
+

1

2
~ω,

because lim
β→0

[
tanh

(
β~ω
2

)
1

2
~ω
]
= 0,therefore

lim
T→0

(A⊥ − Ain) =
1

2
~ω, (3.40)

Low Temperature Limit:
T → 0 ⇒ β → ∞,

lim
T→0

(A⊥ − Ain) = lim
T→∞

{
1

β
ln

[
cosh

(
β~ω
2

)]
+

1

2
~ω
}
,

lim
T→0

(A⊥ − Ain) = lim
T→0

1

β
ln

lim
T→0

eβ~ω2 + e−
β~ω
2

2

+
1

2
~ω,

since lim
T→0

e
β~ω
2 + e−

β~ω
2

2
= lim

T→0

1

2
e
β~ω
2 , therefore

lim
T→0

(A⊥ − Ain) = lim
T→0

1

β
ln

[
1

2
lim
T→0

e
β~ω
2

]
+

1

2
~ω,
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lim
T→0

(A⊥ − Ain) = lim
T→0

[
1

β
ln

(
1

2
e
β~ω
2

)]
+

1

2
~ω,

lim
T→0

(A⊥ − Ain) = lim
T→0

[
1

β

(
β~ω
2

− ln2

)]
+

1

2
~ω,

lim
T→0

(A⊥ − Ain) = lim
T→0

(
~ω
2

− ln2

β

)
+

1

2
~ω,

lim
T→0

(A⊥ − Ain) = lim
T→0

(
~ω
2

− kBT ln2

)
+

1

2
~ω,

lim
T→0

(A⊥ − Ain) =
1

2
~ω +

1

2
~ω = ~ω, (3.41)

Hence from eq (3.40) and (3.41) we can write in general as

(A⊥ − Ain) ' ~ω (3.42)

This implies that demon has to do work on the system during barrier insertion.

3.2.6.2 Average Energy:

Let us denote the average energy after the barrier insertion by E⊥

E⊥ = − ∂

∂β
lnZ⊥.

From Eq. (3.37)

E⊥ = − ∂

∂β
ln
[
e−

1
2
β~ωcosech (β~ω)

]
,

E⊥ = − 1

e−
1
2
β~ωcosech (β~ω)

∂

∂β

[
e−

1
2
β~ωcosech (β~ω)

]
,

E⊥ =− 1

e−
1
2
β~ωcosech (β~ω)

e−
1
2
β~ω [−cosech (β~ω) coth (β~ω)] ~ω

− 1

e−
1
2
β~ωcosech (β~ω)

e−
1
2
β~ω
(
−1

2
~ω
)
cosech (β~ω) ,

E⊥ =
e−

1
2
β~ωcoth(β~ω)cosech (β~ω)
e−

1
2
β~ωcosech (β~ω)

~ω +
e−

1
2
β~ωcosech (β~ω)

2e−
1
2
β~ωcosech (β~ω)

~ω,

E⊥ = ~ω [coth (β~ω)] +
1

2
~ω. (3.43)
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From the classical analysis of Szilard engine [4], we can assume that barrier insertion
can be done at the cost of zero energy. However, quantum mechanically the situation is
not the same.

From Eq. (3.7) and (3.43), we can determine the difference in average energy between
the initial state and the state after barrier insertion:

E⊥ − Ein = ~ω [coth (β~ω)] +
1

2
~ω − 1

2
~ω
[
coth

(
β~ω
2

)]
,

E⊥ − Ein = ~ω [coth (β~ω)] +
1

2
~ω − 1

2
~ω
[
coth

(
β~ω
2

)]
,

E⊥ − Ein =
1

2
~ω
{
[2coth (β~ω)] + 1− 1

2
~ω
[
coth

(
β~ω
2

)]}
,

⇒ E⊥ − Ein��=0.

This implies that average energy of system increases after barrier insertion. Now the
question arises, from where does this energy come? The only source of energy increase is
the demon action (barrier insertion).

3.2.6.3 Entropy

When our quantum system is in a mixed state then it is represented in terms of a density
operator and the entropy of a such system can be written (from Eq. (2.15)) as

S⊥ = −Tr [ρ̂⊥lnρ̂⊥] .

But from Eq. (2.16), above relation can also be written as;

S⊥ = − d

dT
A⊥,

from Eq. (3.38)

S⊥ = − d

dT

[
1

β
ln {sinh (β~ω)}+ 1

2
~ω
]
,

S⊥ = − d

dT

{
kBT ln

[
sinh

(
~ω
kBT

)]
+

1

2
~ω
}
,

S⊥ = −kBln
[
sinh

(
~ω
kBT

)]
− kBT

cosh

(
~ω
kBT

)
sinh

(
~ω
kBT

) (− ~ω
kBT 2

)
,

S⊥ = −kBln [sinh (β~ω)] + kBβ [coth (β~ω)] ~ω,
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S⊥ = kB {β~ω [coth (β~ω)]− ln [sinh (β~ω)]} . (3.44)

High Temperature Limit:
T → ∞ ⇒ β → 0,

S⊥
T→∞

= lim
T→∞

S⊥ = kB {β~ω [coth (β~ω)]− ln [sinh (β~ω)]} ,

S⊥
T→∞

= lim
T→∞

kB [β~ω.coth (β~ω)]− lim
T→∞

kBln [sinh (β~ω)] ,

S⊥
T→∞

= kB [1]− lim
T→∞

kBln [sinh (β~ω)] ,

S⊥
T→∞

= kB

{
1− lim

T→∞
ln [sinh (β~ω)]

}

S⊥
T→∞

≈ −kB
{
lim
T→∞

ln [sinh (β~ω)]
}

As β → 0 when T → ∞, we can use the Taylor expansion

S⊥
T→∞

= −kB lim
T→∞

[ln (β~ω + ...)] ,

S⊥
T→∞

= −kB lim
T→∞

ln (β~ω) ,

S⊥
T→∞

= kB lim
T→∞

ln

(
1

β~ω

)
.

We can write the above expression for T → ∞as

S⊥ = kBln

(
kBT

~ω

)
. (3.45)

From Eq. (3.9)

S⊥ = Sin. (3.46)

In high temperature limit we can see that entropy of the system before (Sin) and after
barrier insertion (S⊥) is same. Hence the effect of barrier insertion is considered negligible
in this limit.

Low Temperature Limit:
T → 0 ⇒ β → ∞,

S⊥
T→0

= lim
T→0

kB {β~ω [coth (β~ω)]− ln [sinh (β~ω)]} ,

55



S⊥
T→0

= kB

(
lim
T→0

β~ω
) [
lim
T→0

coth (β~ω)
]
− kBln

(
eβ~ω − e−β~ω

2

)
,

S⊥
T→0

= kB

(
lim
T→0

β~ω
) [
lim
T→0

coth (β~ω)
]
− kB lim

T→0

[
ln
(
eβ~ω − e−β~ω

)
+ kln2

]
.

Since

lim
T→0

coth(β~ω) = 1,

and

lim
T→0

ln
(
eβ~ω − e−β~ω

)
= ln

(
lim
T→0

eβ~ω − lim
T→0

e−β~ω
)
,

lim
T→0

ln
(
eβ~ω − e−β~ω

)
= ln

(
lim
T→0

eβ~ω
)
,

lim
T→0

ln
(
eβ~ω − e−β~ω

)
= lim

T→0
ln
(
eβ~ω

)
.

So,

S⊥
T→0

= kB

(
lim
T→0

β~ω
)
− kB lim

T→0

[
ln
(
eβ~ω

)
+ kBln2

]
,

S⊥
T→0

= kB

(
lim
T→0

β~ω
)
− kB lim

T→0
(β~ω) + kBln2,

S⊥
T→0

= kB

(
lim
T→0

β~ω
)
− kB lim

T→0
(β~ω) + kBln2,

S⊥
T→0

= kB lim
T→0

(β~ω − β~ω) + kBln2.

S⊥
T→0

= kB lim
T→0

(0) + kBln2,

so we can write the above relation in low temperature limit as

S⊥
T→0

= kBln2. (3.47)

Eq. (3.47) shows that particle occupies a doubly degenerate ground state at absolute
zero temperature.
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3.3 Quantum Measurement

In this section we are interested in projective(strong) measurements. We will use the
state of system that we have prepared in the previous section. Before the quantum
measurements on the system [25], we will define Left and Right eigenstates. We can write
the “Left” and “Right” eigenstates as linear combination of even (|ψ∞2n〉) and odd (|ψ∞2n+1〉)
eigenstates.

Left eigenstate can be written as

|L〉 = 1√
2

(
|ψ∞2n〉 − |ψ∞2n+1〉

)
. (3.48)

Right eigenstate can be written as

|R〉 = 1√
2

(
|ψ∞2n〉+ |ψ∞2n+1〉

)
. (3.49)

Here we can see that

〈Ln|Ln〉 = 1, 〈Rn|Rn〉 = 1,

〈Ln|Rn〉 = 0, 〈Rn|Ln〉 = 0.

3.3.1 Density Operator

Now let us try to write ρ̂⊥in term of |Ln〉 and |Rn〉

ρ̂⊥ =
1

Z⊥

∞∑
n=0

e−β~ω
(
2n+ 3

2

) (
|ψ∞2n〉〈ψ∞2n|+ |ψ∞2n+1〉〈ψ∞2n+1|

)
.

As

|Ln〉〈Ln| =
1√
2

(
|ψ∞2n〉 − |ψ∞2n+1〉

) 1√
2

(
〈ψ∞2n| − 〈ψ∞2n+1|

)
,

|Ln〉〈Ln| =
1

2

(
|ψ∞2n〉〈ψ∞2n| − |ψ∞2n+1〉〈ψ∞2n| − |ψ∞2n〉〈ψ∞2n+1|+ |ψ∞2n+1〉〈ψ∞2n+1|

)
.

Similarly

|Rn〉〈Rn| =
1√
2

(
|ψ∞2n〉+ |ψ∞2n+1〉

) 1√
2

(
〈ψ∞2n|+ 〈ψ∞2n+1|

)
,

|Rn〉〈Rn| =
1

2

(
|ψ∞2n〉〈ψ∞2n|+ |ψ∞2n+1〉〈ψ∞2n|+ |ψ∞2n〉〈ψ∞2n+1|+ |ψ∞2n+1〉〈ψ∞2n+1|

)
.

Then |Ln〉〈Ln|+ |Rn〉〈Rn| will be
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|Ln〉〈Ln|+ |Rn〉〈Rn| =
1

2

(
|ψ∞2n〉〈ψ∞2n| − |ψ∞2n+1〉〈ψ∞2n| − |ψ∞2n〉〈ψ∞2n+1|+ |ψ∞2n+1〉〈ψ∞2n+1|

)
+
1

2

(
|ψ∞2n〉〈ψ∞2n|+ |ψ∞2n+1〉〈ψ∞2n|+ |ψ∞2n〉〈ψ∞2n+1|+ |ψ∞2n+1〉〈ψ∞2n+1|

)
,

|Ln〉〈Ln|+ |Rn〉〈Rn| =
1

2

(
2|ψ∞2n〉〈ψ∞2n|+ 2|ψ∞2n+1〉〈ψ∞2n+1|

)
,

|Ln〉〈Ln|+ |Rn〉〈Rn| = |ψ∞2n〉〈ψ∞2n|+ |ψ∞2n+1〉〈ψ∞2n+1|.

Using this relation we can write ρ̂⊥ as

ρ̂⊥ =
1

Z⊥

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Ln〉〈Ln|+ |Rn〉〈Rn|) . (3.50)

|Ln〉: Describes the state of quantum particle when it is located on the left side of
partition.

|Rn〉: Describes the state of quantum particle when it is located on the right side of
partition.

3.3.2 Projectors

By quantum measurements we can find whether the particle is located on the right or left
side of the barrier. Since we are doing projective measurements so we need to construct
the corresponding projection operators [17].

The associated projection operators are

P̂L =
∞∑
n=0

|Ln〉〈Ln|, (3.51)

P̂R =
∞∑
n=0

|Rn〉〈Rn|. (3.52)

Let us define the left and right density operators.
ρ̂L : Left density operator represent the state of particle when it is located on the left

side of partition.
ρ̂R : Right density operator represent the state of particle when it is located on the

right side of partition.

3.3.3 Projective Measurements

When we do projective measurements, one of the eigenstate is projected with some prob-
ability. Let us first determined the left eigenstate associated with P̂L.
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For this we have to evaluate

ρ̂L =
P̂L (ρ̂⊥) P̂

†
L

Tr
[
P̂Lρ̂⊥

] .
Consider P̂L (ρ̂⊥) P̂

†
L

P̂L (ρ̂⊥) P̂
†
L =

∞∑
k=0

|Lk〉〈Lk|

(
1

Z⊥

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Ln〉〈Ln|+ |Rn〉〈Rn|)

)
∞∑

k′=0

|Lk′〉〈Lk′|,

P̂L (ρ̂⊥) P̂
†
L =

1

Z⊥

∞∑
k=0

|Lk〉〈Lk|

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Ln〉〈Ln|

]
∞∑

k′=0

|Lk′〉〈Lk′|

+
1

Z⊥

∞∑
k=0

|Lk〉〈Lk|

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rn〉〈Rn|

]
∞∑

k′=0

|Lk′〉〈Lk′|,

P̂L (ρ̂⊥) P̂
†
L =

1

Z⊥

∞∑
k=0

∞∑
k′=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Lk〉〈Lk| (|Ln〉〈Ln|) |Lk′〉〈Lk′ |

+
∞∑
k=0

∞∑
k′=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Lk〉〈Lk| (|Rn〉〈Rn|) |Lk′〉〈Lk′|,

P̂L (ρ̂⊥) P̂
†
L =

1

Z⊥

[
∞∑
k=0

∞∑
k′=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Lk〉 (〈Lk|Ln〉) (〈Ln|Lk′〉) 〈Lk′ |

]

+
1

Z⊥

[
∞∑
k=0

∞∑
k′=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Lk〉 (〈Lk|Rn〉) (〈Rn|Lk′〉) 〈Lk′ |

]
.

From the orthonormality condition of quantum states:

〈Lk|Rn〉 = 0, 〈Rn|Lk′〉 = 0,

〈Lk|Ln〉 = δk,n, 〈Ln|Lk′〉 = δn,k′ ,

we obtain

P̂L (ρ̂⊥) P̂
†
L =

1

Z⊥

[
∞∑
k=0

∞∑
k′=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Lk〉δk,nδn,k′〈Lk′ |

]

+
1

Z⊥

[
∞∑
k=0

∞∑
k′=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Lk〉 (0) 〈Lk′ |

]
,
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for n = k and n = k′

P̂L (ρ̂⊥) P̂
†
L =

1

Z⊥

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Ln〉〈Ln|

]
.

Now consider Tr
[
P̂Lρ̂⊥

]

Tr
[
P̂Lρ̂⊥

]
= Tr

[
∞∑
k=0

|Lk〉〈Lk|
1

Z⊥

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Ln〉〈Ln|+ |Rn〉〈Rn|)

]
,

T r
[
P̂Lρ̂⊥

]
= Tr

[
1

Z⊥

∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Lk〉〈Lk|Ln〉〈Ln|+ |Lk〉〈Lk|Rn〉〈Rn|)

]
,

T r
[
P̂Lρ̂⊥

]
= Tr

[
1

Z⊥

∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Lk〉δk,n〈Ln|+ |Lk〉 (0) 〈Rn|)

]
,

for k = n

Tr
[
P̂Lρ̂⊥

]
= Tr

[
1

Z⊥

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Ln〉〈Ln|)

]
,

T r
[
P̂Lρ̂⊥

]
=

1

Z⊥

∞∑
k=0

〈Lk|

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Ln〉〉〈Ln|)

]
|Lk〉

+
1

Z⊥

∞∑
k=0

〈Rk|

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Ln〉〈Ln|)

]
|Rk〉,

T r
[
P̂Lρ̂⊥

]
=

1

Z⊥

∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
〈Lk| (|Ln〉〈Ln|) |Lk〉

+
1

Z⊥

∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
〈Rk| (|Ln〉〈Ln|) |Rk〉,

T r
[
P̂Lρ̂⊥

]
=

1

Z⊥

∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
〈Lk|Ln〉〈Ln|Lk〉

+
1

Z⊥

∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
〈Rk|Ln〉〈Ln|Rk〉,

using the orthonormality conditions
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Tr
[
P̂Lρ̂⊥

]
=

1

Z⊥

∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
δk,nδn,k +

1

Z⊥

∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(0) ,

for k = n

Tr
[
P̂Lρ̂⊥

]
=

1

Z⊥

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
.

Since (from Eq. (3.37))

Z⊥ = e−
β~ω
2 cosech (β~ω) ,

and
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
is a geometric series:

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
=
e−

β~ω
2 cosech (β~ω)

2
.

So,

Tr
[
P̂Lρ̂⊥

]
=

1

e−
β~ω
2 cosech (β~ω)

e−
β~ω
2 cosech (β~ω)

2
,

which yields

Tr
(
P̂Lρ̂⊥

)
=

1

2
.

ρ̂L finally will become

ρ̂L =

1
Z⊥

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Ln〉〈Ln|

]
1
2

,

ρ̂L =
2

Z⊥

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Ln〉〈Ln|

]
. (3.53)

Here we define Z⊥
2

= ZL (we will calculate it later in a proper way)

ρ̂L =
1

ZL

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Ln〉〈Ln| (3.54)

Similarly ρ̂R can be determined

ρ̂R =
P̂L (ρ̂⊥) P̂

†
L

Tr
[
P̂Lρ̂⊥

] .
First we consider P̂R (ρ̂⊥) P̂

†
R
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P̂R (ρ̂⊥) P̂
†
R =

∞∑
k=0

|Rk〉〈Rk|

[
1

Z⊥

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Ln〉〈Ln|+ |Rn〉〈Rn|)

]
∞∑

k′=0

|Rk′〉〈Rk′|,

P̂R (ρ̂⊥) P̂
†
R =

1

Z⊥

∞∑
k=0

|Rk〉〈Rk|

(
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Ln〉〈Ln|

)
∞∑

k′=0

|Rk′〉〈Rk′|

+
1

Z⊥

∞∑
k=0

|Rk〉〈Rk|

(
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rn〉〈Rn|

)
∞∑

k′=0

|Rk′〉〈Rk′|,

P̂R (ρ̂⊥) P̂
†
R =

1

Z⊥

∞∑
k=0

∞∑
k′=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rk〉〈Rk| (|Ln〉〈Ln|) |Rk′〉〈Rk′|

+
∞∑
k=0

∞∑
k′=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rk〉〈Rk| (|Rn〉〈Rn|) |Rk′〉〈Rk′ |,

P̂R (ρ̂⊥) P̂
†
R =

1

Z⊥

[
∞∑
k=0

∞∑
k′=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rk〉 (〈Rk|Ln〉) (〈Ln|Rk′〉) 〈Rk′|

]

+
1

Z⊥

[
∞∑
k=0

∞∑
k′=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rk〉 (〈Rk|Rn〉) (〈Rn|Rk′〉) 〈Rk′|

]
,

from the orthonormality condition of quantum states, we obtain

P̂R (ρ̂⊥) P̂
†
R =

1

Z⊥

[
∞∑
k=0

∞∑
k′=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rk〉 (0) 〈Rk′|

]

+
1

Z⊥

[
∞∑
k=0

∞∑
k′=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rk〉δk,nδn,k′〉〈Rk′ |

]
,

for k = n and k = n′

P̂R (ρ̂⊥) P̂
†
R =

1

Z⊥

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rn〉〈Rn|

]
. (3.55)

Now consider Tr
[
P̂Rρ̂⊥

]

Tr
[
P̂Rρ̂⊥

]
= Tr

[
∞∑
k=0

|Rk〉〈Rk|
1

Z⊥

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Ln〉〈Ln|+ |Rn〉〈Rn|)

]
,
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Tr
[
P̂Lρ̂⊥

]
= Tr

[
1

Z⊥

∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Rk〉〈Rk|Ln〉〈Ln|+ |Rk〉〈Rk|Rn〉〈Rn|)

]
,

for k = n , using orthonormality condition of quantum states:

Tr
[
P̂Rρ̂⊥

]
= Tr

[
1

Z⊥

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Rn〉〈Rn|)

]
,

T r
[
P̂Rρ̂⊥

]
=

1

Z⊥

∞∑
k=0

〈Lk|

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Rn〉〈Rn|)

]
|Lk〉

+
1

Z⊥

∞∑
k=0

〈Rk|

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Rn〉〈Rn|)

]
|Rk〉,

T r
[
P̂Rρ̂⊥

]
=

1

Z⊥

∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
〈Lk| (|Rn〉〈Rn|) |Lk〉

+
1

Z⊥

∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
〈Rk| (|Rn〉〈Rn|) |Rk〉.

using the orthonormality condition of quantum states:

Tr
[
P̂Rρ̂⊥

]
=

1

Z⊥

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
.

Since (from Eq. (3.37))

Z⊥ = e−
β~ω
2 cosech (β~ω)

and
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
is a geometric series:

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
=
e−

β~ω
2 cosech (β~ω)

2
.

So,

Tr
[
P̂Rρ̂⊥

]
=

1

e−
β~ω
2 cosech (β~ω)

e−
β~ω
2 cosech (β~ω)

2
,

which yields

Tr
(
P̂Rρ̂⊥

)
=

1

2
.
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ρ̂R finally will become

ρ̂R =

1
Z⊥

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rn〉〈Rn|

]
1
2

,

ρ̂R =
2

Z⊥

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rn〉〈Rn|

]
. (3.56)

Here, we define Z⊥
2

= ZR (we will calculate it later in a proper way)

ρ̂R =
1

ZR

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rn〉〈Rn|

]
. (3.57)

From Eq. (3.54) and (3.57), complete density matrix after barrier insertion can be
written as

ρ̂⊥ =
1

2
(ρ̂L + ρ̂R) (3.58)

3.3.4 Partition Function

Partition function plays the role of generating function in statistical mechanics. Here we
have two partition functions ZL and ZR.

Left Partition Function
ZL is defined as partial trace over the Hilbert space spanned by the left eigenstates.

It can be obtained from

Tr [ρ̂L] = 1.

From Eq. (3.54)

Tr

[
1

ZL

(
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Ln〉〈Ln|

)]
= 1,

1

ZL

Tr

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Ln〉〈Ln|

]
= 1.

Carrying out the trace:

ZL =
∞∑
k=0

〈Lk|

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Ln〉〈Ln|

]
|Lk〉

+
∞∑
k=0

〈Rk|

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Ln〉〈Ln|

]
|Rk〉,
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ZL =
∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
〈Lk|Ln〉〈Ln|Lk〉

+
∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
〈Rk|Ln〉〈Ln|Rk〉,

using the orthonormality conditions

ZL =
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
. (3.59)

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
is a geometric series, we can evaluate the sum:

ZL =
e−

β~ω
2 cosech (β~ω)

2
(3.60)

but Z⊥ = e−
β~ω
2 cosech (β~ω)

⇒ ZL =
Z⊥
2

(3.61)

Right Partition Function
ZR is defined as partial trace over the Hilbert space spanned by the right eigenstates.

It can be obtained from

Tr [ρ̂R] = 1.

From Eq. (3.57)

Tr

[
1

ZR

(
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rn〉〈Rn|

)]
= 1,

1

ZR

Tr

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rn〉〈Rn|

]
= 1.

Carrying out the trace:

ZR =
∞∑
k=0

〈Lk|

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rn〉〈Rn|

]
|Lk〉

+
∞∑
k=0

〈Rk|

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rn〉〈Rn|

]
|Rk〉,
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ZR =
∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
〈Lk|Rn〉〈Rn|Lk〉

+
∞∑
k=0

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
〈Rk|Rn〉〈Rn|Rk〉,

using the orthonormality condition

ZR =
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
. (3.62)

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
is a geometric series, we can evaluate the sum:

ZR =
e−

β~ω
2 cosech (β~ω)

2
, (3.63)

but Z⊥ = e−
β~ω
2 cosech (β~ω)

ZR =
Z⊥
2
. (3.64)

From Eq. (3.61) and (3.64), we can see that the partition function of complete system
can be obtained by adding left and right partition function.

Z⊥ = ZL + ZR

3.3.5 Thermodynamical Quantities

We have partition function for both left and right states so we can calculate thermody-
namical quantities using the partition functions.

3.3.5.1 Helmholtz Free Energy

Let us denote the Helmholtz free energy after the projective measurement by AR and AL

when the particle is projected to right and left side of the barrier respectively.
Using ZL, Helmholtz free energy can be calculated as

AL = − 1

β
lnZL.

From Eq. (3.60)

AL = − 1

β
ln

[
e−

β~ω
2 cosech (β~ω)

2

]
,
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AL = − 1

β

(
−β~ω

2

)
+

1

β
ln2− 1

β
ln [cosech (β~ω)] ,

AL =
~ω
2

+
1

β
ln2 +

1

β
ln [sinh (β~ω)] .

Similarly from ZR

AR = − 1

β
lnZR.

From Eq. (3.63)

AR = − 1

β
ln

[
e−

β~ω
2 cosech (β~ω)

2

]
,

AR = − 1

β

(
−β~ω

2

)
+

1

β
ln2− 1

β
ln [cosech (β~ω)] ,

AR =
~ω
2

+
1

β
ln2 +

1

β
ln [sinh (β~ω)] .

Here we found

AL = AR =
~ω
2

+
1

β
ln2 +

1

β
ln [sinh (β~ω)] . (3.65)

3.3.5.2 Average Energy

Let us denote the average energy after the projective measurement by ER and EL when
the particle is projected to right and left side of the barrier respectively.

Using ZL, average energy can be calculated as

EL = − 1

ZL

d

dβ
ZL.

From Eq. (3.60)

EL = − 1

ZL

d

dβ

[
e−

β~ω
2 cosech (β~ω)

2

]
,

EL = − 1

2ZL

{
−~ω

2
e−

β~ω
2 cosech (β~ω) + e−

β~ω
2 ~ω [−cosech (β~ω)] coth (β~ω)

}
,

EL = − 1

2ZL

{
−~ω

2
e−

β~ω
2 cosech (β~ω)− e−

β~ω
2 ~ω [cosech (β~ω)] coth (β~ω)

}
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Since ZL = e−
β~ω
2 cosech (β~ω), we can write

EL = − 1

ZL

[
−~ω

2
ZL − ~ω.coth (β~ω)ZL

]
,

EL = ~ω [coth (β~ω)] +
1

2
~ω.

Similarly from ZR

ER = − 1

ZR

d

dβ
ZR.

From Eq. (3.63)

EL = − 1

ZR

d

dβ

[
e−

β~ω
2 cosech (β~ω)

2

]
,

ER = − 1

2ZR

{
−~ω

2
e−

β~ω
2 cosech (β~ω) + e−

β~ω
2 ~ω [−cosech (β~ω)] coth (β~ω)

}
,

ER = − 1

2ZR

{
−~ω

2
e−

β~ω
2 cosech (β~ω)− e−

β~ω
2 ~ωcosech (β~ω) coth (β~ω)

}
.

Since ZR = e−
β~ω
2 cosech (β~ω), we can write

ER = − 1

ZR

[
−~ω

2
ZR − ~ωcoth (β~ω)ZR

]
,

ER = ~ω [coth (β~ω)] +
1

2
~ω,

Here we found

EL = ER = ~ω [coth (β~ω)] +
1

2
~ω. (3.66)

3.3.5.3 Entropy

Let us denote the entropy after the projective measurement by SR and SL when the
particle is projected to right and left side of the barrier respectively.

If the particle is found on left side of the barrier, ρ̂L is the state of particle. Using this
density operator, we can calculate SL which is the entropy of particle if it is located on
the left side of barrier.

SL = −kBTr [ρ̂Llnρ̂L] .
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But we know from Eq. (2.16)

SL = − d

dT
(AL) ,

SL = − d

dT

(
− 1

β
lnZL

)
,

SL = − d

dT

{
− 1

β
ln

[
e−

β~ω
2 cosech (β~ω)

2

]}
,

SL = − d

dT

[
− 1

β

(
−β~ω

2

)
+

1

β
ln2− 1

β
cosech (β~ω)

]
,

SL = − d

dT

{
~ω
2

+ kBT ln2 + kBT ln [sinh (β~ω)]
}
,

SL = −kBln2− kBln [sinh (β~ω)] + kBcoth (β~ω) β~ω,

SL = kB {β~ω [coth (β~ω)]− ln [sinh (β~ω)]} − kBln2.

Similarly, if particle is located on the right side, the entropy will be

SR = −kBTr (ρ̂Rlnρ̂R) .

But we know from Eq. (2.16)

SR = − d

dT

(
− 1

β
lnZR

)
,

SR = − d

dT

{
− 1

β
ln

[
e−

β~ω
2 cosech (β~ω)

2

]}
,

SR = − d

dT

[
− 1

β

(
−β~ω

2

)
+

1

β
ln2− 1

β
cosech (β~ω)

]
,

SR = − d

dT

{
~ω
2

+ kBT ln2 + kBT ln [sinh (β~ω)]
}
,

SR = −kBln2− kBln [sinh (β~ω)] + kBcoth (β~ω) β~ω,

SR = kB {β~ω [coth (β~ω)]− ln [sinh (β~ω)]} − kBln2.

Here we found
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SL = SR = kB {β~ω [coth (β~ω)]− ln [sinh (β~ω)]} − kBln2. (3.67)

3.3.6 Comparison of Thermodynamical Quantities

From the above calculations, we can see that measurements alter many quantities such
as density operator, partition function and some thermodynamical quantities. In this
section we will do a comparison of some of the thermodynamical quantities.

3.3.6.1 Average Energy

From Eq. (3.66) and (3.43)

4E = EL,R − E⊥,

4E =

{
~ω [coth (β~ω)] +

1

2
~ω
}
−
{
~ω [coth (β~ω)] +

1

2
~ω
}
,

4E = 0. (3.68)

Here we found that measurements leave the average energy of quantum system un-
changed.

3.3.6.2 Helmholtz Free Energy

We have seen that measurements cast some effects on Helmholtz free energy. From Eq.
(3.38) Helmholtz free energy of the system before measurements is

A⊥ =
1

β
ln [sinh (β~ω)] +

~ω
2
.

As a results of quantum measurement the Helmholtz free energy becomes (from Eq.
(3.65))

AL,R =
~ω
2

+
1

β
ln2 +

1

β
ln [sinh (β~ω)] .

Change in Helmholtz free energy can be calculate as

4A = AL,R − A⊥,

4A =

{
~ω
2

+
1

β
ln2 +

1

β
ln [sinh (β~ω)]

}
−
{
1

β
ln [sinh (β~ω)] +

~ω
2

}
,

4A =
1

β
ln2,
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4A = kBT ln2. (3.69)

This equation shows that free energy of the particle increases by an amount of kBT ln2.
So we conclude that particle has some energy available to perform a useful work.

3.3.6.3 Entropy

From the above calculations we have seen that entropy also changes after the quantum
measurements. Here we will see it quantitatively. Entropy of the particle before the
quantum measurement is (from Eq. (3.44))

S⊥ = kB {β~ [coth (β~ω)]} − ln [sinh (β~ω)] .

As a result of quantum measurements entropy of particle becomes (from Eq. (3.67))

SL,R = kB {β~ω [coth (β~ω)]− ln [sinh (β~ω)]} − kBln2.

Change can be calculated as

4S = SL,R − S⊥,

4S = −kBln2. (3.70)

This equation shows that entropy of particle decreases by an amount of −kBln2, which
leads to the apparent violation of the second law of thermodynamics.

3.4 Quantum Isothermal Expansion

Once the measurement is performed, the particle is projected onto one side of the partition
either left or right side. Let us say that particle is located on the right side of the barrier.
The density operator of the particle is ρ̂R (from Eq. (3.57)) and can be written as

ρ̂R =
1

ZR

[
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rn〉〈Rn|

]
.

Once the particle location is ensured, it pushes the barrier towards left with some
force F . Initially when barrier is at origin, then the delta function is δ (q − 0). When
particle pushes the barrier towards left then delta function is displaced and it becomes
the function of qo (t) such that:

δ (q) −→ δ (q − qo(t)) ,

where
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q0(t) =

0 t −→ 0

−∞ t −→ ∞
.

But during the expansion the barrier is moved slowly such that adiabatic condition
for expansion is satisfied i.e.

| q̇o
qo

|6 ω

3.4.1 Energy Eigenstates

As the barrier is pushed towards left, instantaneous Hamiltonian will be

Ĥ←(t) =
p̂2

2m
+

1

2
mω2q̂2 + αδ (q̂ − qo(t)) . (3.71)

Similarly if the particle is located on the left side of barrier, then it pushes the barrier
towards left with some force F . Density matrix will be ρ̂L;

Ĥ←(t) changes with the barrier position qo(t), so our wave function will also change
with changing qo(t).

Ĥ←(t) (ψ
qo(q)) = Eqoψqo(q),

[
−~2

2m

d2

dq2
+

1

2
mω2q̂2 + αδ (q̂ − qo(t))

]
ψqo(q) = Eqoψqo(q). (3.72)

Recall α(t) = ∞, therefore wave function ψqo(q) exists on the right side of the barrier
only and it satisfies the boundary condition:

ψqo(qo) = 0. (3.73)

For the right side of barrier, Dirac delta function does not take part and Eq. (3.72)
will become [

−~2

2m

d2

dq2
+

1

2
mω2q̂2

]
ψqo(q) = Eqoψqo(q.)

This equation is solved in the same way as we have solved Eq. (3.18) in the section
Barrier Insertion, from Eq. (3.27) the solution of the above equation can be written as
for varying qo

ψqo(q) = NDa

(
q

√
2mω

~

)
.

Where N is the normalization constant and can be found by orthonormality condition.
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3.4.2 Energy Eigenvalues

When particle becomes localized to the right side of barrier, its wave function vanishes
near the barrier. Using the boundary condition (Eq. (3.73))

ψqo(qo) = 0.

This equation gives the energy eigenvalues for all values of qo : 0 → −∞

Da

(
q

√
2mω

~

)
|q=qo= 0,

√
π2a/2

Γ

(
−a
2
+

1

2

)F1

(
−a
2
,
1

2
,
q2o
2

2mω

~

)
−

√
π2(a+1)/2

Γ
(
−a
2

) qo√2mω

~
F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

)
= 0,

2a/2

Γ

(
−a
2
+

1

2

)F1

(
−a
2
,
1

2
,
q2o
2

2mω

~

)
− 2(a+1)/2

Γ
(
−a
2

)qo√2mω

~
F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

)
= 0.

Rearranging

Γ
(
−a
2

)
Γ

(
−a
2
+

1

2

) =

F1

(
−a− 1

2
,
3

2
,
q2

2

2mω

~

)√
mω

~

F1

(
−a
2
,
1

2
,
q2

2

2mω

~

) 2qo. (3.74)

This implicit equation cannot be solved analytically for each value of q. However, we
can solve this equation (Eq. (3.74)) graphically (see Figure 3.3), noticing that qo varies
from 0 to −∞.
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Figure 3.3: Graphical solution to the implicit equation (Eq. 3.74): Energy levels of the
right modes |Rn〉 are represented by dashed blue curve for a given value of qo. Energy
levels of the harmonic oscillator without the barrier are represented by solid blue lines.

From the Figure (3.3)
At qo = 0 (barrier is not displaced)

En =

(
2n+

3

2

)
~ω. (3.75)

Eo =
3
2
~ω, E1 =

7
2
~ω, E2 =

11
2
~ω, E3 =

15
2
~ω... ,

This is the energy eigenvalue of particle when particle is on the right side and barrier
is fully inserted at qo = 0. Gap between two consecutive energy levels is 2~ω. This is the
energy eigenvalue of particle when particle is on the right side and barrier is fully inserted
at qo = 0.

When barrier is displaced towards −∞, qo varies and En is shifted to lower value.
At qo = ∞

En =

(
n+

1

2

)
~ω. (3.76)

These are the energy eigenvalues of particle when the particle is on the right side and
barrier is fully inserted at q = ∞, Infact this is the case of no barrier insertion.

Figure 3.3 also shows that when qo varies from 0 to −∞, the states |Rn〉 shift towards
the eigenstates |ψn〉 of the simple harmonic oscillator. As a result in this isothermal
expansion, system finally returns back to its initial state ρ̂in.
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As system is returned to it initial state, let us check the net change in free energy in
a complete cycle. From Eq. (3.65) and (3.6)

AR − Ain =

{
~ω
2

+
1

β
ln2 +

1

β
ln [sinh (β~ω)]

}
−
{
kBT ln

[
2sinh

(
β~ω
2

)]}
,

AR − Ain =
~ω
2

+
1

β
ln2 +

1

β
ln

[
2sinh

(
β~ω
2

)
cosh

(
β~ω
2

)]
− kBT ln

[
2sinh

(
β~ω
2

)]
,

AR − Ain =
~ω
2

+ kBT ln2 + kBT ln

[
2sinh

(
β~ω
2

)]
+ kBT ln

[
cosh

(
β~ω
2

)]
−kBT ln

[
2sinh

(
β~ω
2

)]
,

AR − Ain =
~ω
2

+ kBTn

[
cosh

(
β~ω
2

)]
+ kBT ln2. (3.77)

Eq. (3.77) above shows the amount of free energy available in a system to perform
useful mechanical work. The first two terms arise due to the work done by the demon
during barrier insertion (from Eq. (3.39) ). However, the last term quantifies the amount
of energy (this term is responsible for the violation of second law) that can be extracted
from thermal bath. This is the net available energy during each cycle[26] .

3.4.3 Force Exerted on the Barrier

Now, using semi-classical methods, the force applied to the barrier may be calculated from
the infinitesimal variation of the system’s free energy under an infinitesimal movement of
the barrier. The first law of thermodynamics states that the mechanical work performed
by the system must be opposite to the change in free energy for an isothermal process.

F = −dA
dqo

.

As our particle is projected to the right side of the barrier so we will use AR

F = −dAR

dqo
,

where

AR = − 1

β
lnZR.

This is the same result that we obtained in the quantum measurement section, however
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we are expressing AR here in term of En.The reason is that we want to see the change of
free energy with varying qo.

AR = − 1

β
ln

∞∑
n=0

e−βEn ,

so

F = − d

dqo

(
− 1

β
lnZR

)
,

F =
1

β

d

dqo
(lnZR) ,

F =
1

βZR

d

dqo
ZR,

F =
1

βZR

d

dqo

(
∞∑
n=0

e−βEn

)
,

F =
1

ZR

∞∑
n=0

e−βEn
dEn

dqo
. (3.78)

Now, we have to calculate dEn

dqo
.

The force might theoretically be calculated at each point during the expansion, but
this would necessitate a more comprehensive numerical calculations. Let us calculate this
force analytically just at the beginning of expansion to see its behavior.

From Eq. (3.73)

ψqo(qo) = 0,

Da

(
qo

√
2mω

~

)
= 0.

We expand this function about qo = 0 by Taylor series (Taylor series for two dependent
variable)

Da

(
qo

√
2mω

~

)
|qo=0 +

d

dqo
Da

(
qo

√
2mω

~

)
|qo=0 δqo

+
d

da
Da

(
qo

√
2mω

~

)
|qo=0

da

dqo
δqo + (O) δq20 = 0
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Da

(
qo

√
2mω

~

)
|qo=0 +

d

dqo
Da

(
qo

√
2mω

~

)
|qo=0 δqo (3.79)

+
d

da
Da

(
qo

√
2mω

~

)
|qo=0

da

dqo
δqo = 0. (3.80)

Term-1
From Eq. (3.73)

Da

(
qo

√
2mω

~

)
|qo=0= 0.

Term-2

d

dqo
Da

(
qo

√
2mω

~

)
=

d

dqo

 √
π2a/2

Γ

(
−a
2
+

1

2

)F1

(
−a
2
,
1

2
,
q20
2

2mω

~

)
− d

dqo

√π2(a+1)/2

Γ
(
−a
2

) qo√2mω

~
F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

) ,

d

dqo
Da

(
qo

√
2mω

~

)
=

√
π2a/2

Γ

(
−a
2
+

1

2

) d

dqo
F1

(
−a
2
,
1

2
,
q2o
2

2mω

~

)

−
√
π2(a+1)/2

Γ
(
−a
2

) d

dqo

[
qo

√
2mω

~
F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

)]
,

d

dqo
Da

(
qo

√
2mω

~

)
=

√
π2a/2

Γ

(
−a
2
+

1

2

) d

dqo
F1

(
−a
2
,
1

2
,
q2o
2

2mω

~

)

−
√
π2(a+1)/2

Γ
(
−a
2

) qo√2mω

~
d

dqo
F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

)

−
√
π2(a+1)/2

Γ
(
−a
2

) √2mω

~
F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

)
.

At qo = 0

F1

(
−a
2
,
1

2
,
q2o
2

2mω

~

)
|qo=0= 1,
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d

dqo
F1

(
−a
2
,
1

2
,
q2o
2
(
2mω

~

)
|qo=0= 0,

F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

)
|qo=0= 1,

d

dqo
F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

)
|qo=0= 0.

Therefore

d

dqo
Da

(
qo

√
2mω

~

)
|qo=0= −2(a+1)/2

√
π

Γ
(
−a
2

) √2mω

~
.

Term-3

d

da
Da

(
qo

√
2mω

~

)
|qo=0=

d

da

 2a/2
√
π

Γ

(
−a
2
+

1

2

)F1

(
−a
2
,
1

2
,
q20
2

2mω

~

)
− d

da

2(a+1)/2
√
π

Γ
(
−a
2

) qo√2mω

~
F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

) ,

d

da
Da

(
qo

√
2mω

~

)
|qo=0=

2a/2 1
2
ln2

√
π

Γ

(
−a
2
+

1

2

)F1

(
−a
2
,
1

2
,
q20
2

2mω

~

)

− 2
a/2
√
π

−1

2

d

da
Γ

(
−a
2
+

1

2

)
[
Γ

(
−a
2
+

1

2

)]2 F1

(
−a
2
,
1

2
,
q20
2

2mω

~

)

+ 2
a/2
√
π

2a/2
√
π

Γ

(
−a
2
+

1

2

) d

da
F1

(
−a
2
,
1

2
,
q20
2

2mω

~

)

−
21/22a/2 1

2
ln2

√
π

Γ
(
−a
2

) qo

√
2mω

~
F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

)

− 2
(a+1)/2

√
π


− d

da
Γ
(
−a
2

)
[
Γ
(
−a
2

)]2
 qo

√
2mω

~
F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

)

− 2(a+1)/2
√
π

Γ
(
−a
2

) qo√2mω

~
d

da
F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

)
.
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At qo = 0

F1

(
−a
2
,
1

2
,
q20
2

2mω

~

)
= 1,

F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

)
= 1,

d

da
F1

(
−a
2
,
1

2
,
q20
2

2mω

~
)

)
= 0,

d

da
F1

(
−a− 1

2
,
3

2
,
q2o
2

2mω

~

)
= 0.

Therefore

d

da
Da

(
qo

√
2mω

~

)
|qo=0=

2a/2 1
2
ln2

√
π

Γ

(
−a
2
+

1

2

) + 2
a/2
√
π
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−1

2

d

da
Γ

(
−a
2
+

1

2

)
[
Γ

(
−a
2
+

1

2

)]2
 ,

d

da
Da

(
qo

√
2mω

~

)
|qo=0=

2(a−2)/2ln2
√
π

Γ

(
−a
2
+

1

2

) +
2(a−2)/2

√
π

Γ

(
−a
2
+

1

2

)

d
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Γ

(
−a
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+

1

2

)
Γ

(
−a
2
+

1

2

)
 ,

d

da
Da

(
qo

√
2mω

~

)
|qo=0=

2(a−2)/2
√
π

Γ

(
−a
2
+

1

2

)
ln2 +

d

da
Γ

(
−a
2
+

1

2

)
Γ

(
−a
2
+

1

2

)
 .

We know the Digamma[23] function is

Ψ

(
−a
2
+

1

2

)
=

d

da
Γ

(
−a
2
+

1

2

)
Γ

(
−a
2
+

1

2

) .

Therefore

d

da
Da

(
qo

√
2mω

~

)
|qo=0=

2(a−2)/2
√
π

Γ

(
−a
2
+

1

2

) [ln2 + Ψ

(
−a
2
+

1

2
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.

2nd part of Term-3
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da

dqo
=

d

dqo

(
En

~ω
− 1

2

)
da

dqo
=

1

~ω
dE

dqo

Using all these terms in Eq. (3.79) we obtain

−2(a+1)/2
√
π

Γ
(
−a
2

) √2mω

~
δqo +

2(a−2)/2
√
π

Γ

(
−a
2
+

1
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) [ln2 + Ψ

(
−a
2
+

1

2
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1

~ω
dE

dqo
δqo = 0,
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√
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(
−a
2
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~
+
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√
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(
−a
2
+

1

2

) [ln2 + Ψ

(
−a
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(
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) √2mω

~
+
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√
π
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√
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(
−a
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~ω
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dqo
=
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√
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Γ
(
−a
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~
,
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dqo
=
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√
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Γ
(
−a
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) √2mω

~
Γ

(
−a
2
+

1

2

)
~ω

2(a−2)/2
√
π

[
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−a
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dqo
=
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√
π

Γ
(
−a
2

) √2mω

~
Γ

(
−a
2
+

1

2

)
~ω

2(a−2)/2
√
π

[
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(
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dE

dqo
=

22
√
mω3~Γ

(
−a
2
+

1

2

)
Γ
(
−a
2

)[
ln2 + Ψ

(
−a
2
+

1

2

)] ,
from Eq. (3.25)

a =
En

~ω
− 1

2
,
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dE

dqo
=

4
√
mω3~Γ

(
−1

2

(
En

~ω
− 1

2

)
+

1

2

)
Γ

(
−1

2

(
En

~ω
− 1

2

))(
ln2 + Ψ

(
−1

2

(
En

~ω
− 1

2

)
+

1

2

)) ,

dE

dqo
=

4
√
mω3~Γ

(
3~ω − 2En

4~ω

)
Γ

(
~ω − 2En

4~ω

)[
ln2 + Ψ

(
3~ω − 2En

4~ω
− 1

2

)] .
Now we replace (assuming particle to be on the right side of partition when barrier is

at qo = 0)

En →
(
2n+

3

2

)
~ω.

Then the denominator and numerator diverge in the above equation, so we have to
consider the limiting value.

En →
(
2n+

3

2

)
~ω + σ.

where σ → 0, In this limit our desired equation reduces to

dE

dqo
=

√
mω3~
π

(2n+ 2)!

4nn! (n+ 1)!
.

Using this relation in Eq. (3.78)

F = − 1

ZR

∞∑
n=0

e−βEn

√
mω3~
π

(2n+ 2)!

4nn! (n+ 1)!
,

F = −
√
mω3~
π

1

ZR

∞∑
n=0

(2n+ 2)!

4nn! (n+ 1)!
e−βEn .

At q = qo = 0 and En =

(
2n+

3

2

)
~ω, we obtain

F = −
√
mω3~
π

1

ZR

∞∑
n=0

(2n+ 2)!

4nn! (n+ 1)!
e−β

(
2n+ 3

2

)
~ω,

F = −
√
mω3~
π

1

ZR

∞∑
n=0

(2n+ 2)!

4nn! (n+ 1)!
e−2βn~ωe−

3
2
β~ω,

F = −
√
mω3~
π

e−
3
2
β~ω

ZR

∞∑
n=0

(2n+ 2)!

4nn! (n+ 1)!

(
e−2β~ω

)n
. (3.81)
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Here

∞∑
n=0

(2n+ 2)!

4nn! (n+ 1)!

(
e−2β~ω

)n
= 2 +

4!

4.2!
e−2β~ω +

6!

42.3!.2!

(
e−2β~ω

)2
+

8!

43.3!.4!

(
e−2β~ω

)3
...,

∞∑
n=0

(2n+ 2)!

4nn! (n+ 1)!

(
e−2β~ω

)n
= 2 + 3e−2β~ω +

15

2.2!

(
e−2β~ω

)2
+

105

4.3!

(
e−2β~ω

)3
....,

∞∑
n=0

(2n+ 2)!

4nn! (n+ 1)!

(
e−2β~ω

)n
= 2

[
1 +

3

2
e−2β~ω +

15

4.2!

(
e−2β~ω

)2
+

105

8.3!

(
e−2β~ω

)3
...

]
.

(3.82)
From binomial series

1

(1− x)3/2
= 1 +

3

2
x+

15

4.2!
x2 +

105

8.3!
x3....,

for x = e−2β~ω

1

(1− e−2β~ω)3/2
= 1 +

3

4.2!
e−2β~ω +

15

42.3!.2!

(
e−2β~ω

)2
+ ...,

so (3.82)

∞∑
n=0

(2n+ 2)!

4nn! (n+ 1)!

(
e−2β~ω

)n
=

2

(1− e−2β~ω)3/2
.

Using this in Eq. (3.81)

F = −
√
mω3~
π

e−
3
2
β~ω

ZR

2

(1− e−2β~ω)3/2
,

where
ZR=

∞∑
n=0

e−βEn ,

from Eq. (3.75)

ZR =
∞∑
n=0

e
−β

(
2n+

3
2

)
~ω
.

∞∑
n=0

e
−β

(
2n+

3
2

)
is a geometric series with initial term a1 =

3

2
and common ratio r = 2~ω,

we can evaluate the sum:
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ZR =
e−

3
2
β~ω

1− e−2β~ω
.

Finally,

F = −
√
mω3~
π

e−
3
2
β~ω

e−
3
2
β~ω

1− e−2β~ω

2

(1− e−2β~ω)3/2
,

F = −2

√
mω3~
π

(
1− e−2β~ω

)−1/2
.

This is the force that pushes the barrier towards left when barrier is at q = qo = 0.
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Chapter 4

Full Quantum Analysis

In the previous chapter , we have seen that Second law of thermodynamics is ap-
parently violated. Now we will see that in fact it is not violated when demon is treated
dynamically during the quantum analysis.

4.1 Ready State of Demon

Let us consider the demon to be a two state quantum pointer variable.
|DL〉: This state corresponds to demon when he is present on the left side of the

partition.
|DR〉: This state corresponds to demon when he is present on the right side of the

partition.
Neutral or Ready state of Demon(pointer variable) can be written as:

|Do〉 =
1√
2
(|DL〉+ |DR〉) .

Density operator of the ready state of demon will be

ρ̂D = |Do〉〈Do|,

ρ̂D =
1√
2
(|DL〉+ |DR〉)

1√
2
(〈DL|+ 〈DR|) ,

ρ̂D =
1

2
(|DL〉〈DL|+ |DR〉〈DR|+ |DR〉〈DL|+ |DL〉〈DR|) . (4.1)

Here we can see that the initially state of the demon is a pure state:

Tr
(
ρ̂2D
)
= 1. (4.2)
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4.2 Initial Composite State of System

At this stage, we can write the composite state [27] of demon and particle.

ρ̂in,s = ρ̂in ⊗ ρ̂D, (4.3)

where ρ̂in is calculated already given in Eq. (3.4).

4.3 Composite State of System after Barrier Inser-
tion

Now, if we insert the barrier quasi-statically at q = qo neglecting the dynamical effects of
pointer variable i.e. the demon state, full Hamiltonian will be

Ĥα,s = Ĥα ⊗ ÎD.

α represents the strength or height of the barrier.
Ĥα represents the Hamiltonian acting on the particle after barrier insertion.
ÎD represents the identity operator acting on the demon’s Hilbert space [28] after

barrier insertion.
Now, we will construct the time evolution unitary operator Û for the above Hamilto-

nian Ĥα,s.

Û = e−iĤα,sδt,

Û = e
−i

(
Ĥα

⊗
ÎD

)
δt
,

Û = Îα ⊗ ÎD − i
(
Ĥα ⊗ ÎD

)
δt−

(
Ĥα ⊗ ÎD

)2
δt2 + ....

∵
(
Ĥα ⊗ ÎD

)2
= Ĥ2

α ⊗ Î2D.

⇒ Û =
(
Îα − iĤαδt− Ĥ2

αδt
2 + ...

)
⊗ ÎD,

Û = e−iĤαδt ⊗ ÎD,

and

Û † = eiĤαδt ⊗ ÎD.
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Applying this unitary operator on the composite state given in Eq. (4.3)

ρ̂⊥,s = Û (ρ̂in ⊗ ρ̂D) Û
†,

ρ̂⊥,s = e−iĤαδt ⊗ ÎD (ρ̂in ⊗ ρ̂D) e
iĤαδt ⊗ ÎD,

ρ̂⊥,s = e−iĤαδtρ̂ine
iĤαδt ⊗ ÎDρ̂DÎD,

ρ̂⊥,s = e−iĤαδtρ̂ine
iĤαδt ⊗ ρ̂D.

From Eq. (2.11)

ρ̂(t) = ρ̂⊥ = e−iĤαδtρ̂ine
iĤαδt

Therefore

ρ̂⊥,s = ρ̂⊥ ⊗ ρ̂D. (4.4)

This is the composite state of system after the barrier insertion, where ρ̂⊥is already
calculated given in Eq (3.50).

4.4 Composite State of System After Measurements

For measurements, we need to introduce interaction between demon (Pointer variable)
and particle. We can now construct the interaction Hamiltonian.

Recall Eq. (3.51) and (3.52)

P̂L =
∞∑
n=0

|Ln〉〈Ln|,

P̂R =
∞∑
n=0

|R〉〈Rn|.

We define

Π̂ = P̂L − P̂R,

Π̂ =
∞∑
n=0

(|Ln〉〈Ln| − |Rn〉〈Rn|) .

For the demon contribution
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|DL〉〈DR| − |DR〉〈DL|.

Note:
We can also choose (|DL〉〈DL| − |DR〉〈DR|), it will give the same results.
Finally, we can write the interaction Hamiltonian as

Ĥint = iλΠ̂⊗ (|DL〉〈DR| − |DR〉〈DL|) .

λ represent the interaction strength between particle and demon. Interaction is intro-
duced for a very short interval of time δt. As the interaction Hamiltonian is independent
of time, so the evolution operator can simply be written as;

Ûint = e−iĤintδt,

Ûint = e
−i

(
iλΠ̂⊗(|DL〉〈DR|−|DR〉〈DL|)

)
δt
,

Ûint = eλΠ̂⊗(|DL〉〈DR|−|DR〉〈DL|)δt,

Ûint =ÎP ⊗ ÎD + Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|)λδt

+

(
Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|)

)2
2!

(λδt)3

+

(
Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|)

)3
3!

(λδt)3 + ...,

where
ÎP is the identity operator on particle Hilbert space.
ÎD is the identity operator on demon Hilbert space.

Ûint =ÎP ⊗ ÎD + Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|)λδt

+
Π̂2 ⊗ (|DL〉〈DR| − |DR〉〈DL|)2

2!
(λδt)2

+
Π̂3 ⊗ (|DL〉〈DR| − |DR〉〈DL|)3

3!
(λδt)3 + ....

but

Π̂2 =
∞∑
n=0

(|Ln〉〈Ln| − |Rn〉〈Rn|)
∞∑

m=0

(|Lm〉〈Lm| − |Rm〉〈Rm|) ,
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Π̂2 =
∞∑
n=0

∞∑
m=0

(|Ln〉〈Ln| − |Rn〉〈Rn|) (|Lm〉〈Lm| − |Rm〉〈Rm|) ,

Π̂2+
∞∑
n=0

∞∑
m=0

(
|Ln〉〈Ln|Lm〉〈Lm| − |Rn〉��������:0

〈Rn|Lm〉〈Lm|

)

+
∞∑
n=0

∞∑
m=0

(
|Rn〉〈Rn|Rm〉〈Rm| − |Ln〉��������:0

〈Ln|Rm〉〈Rm|

)
,

for m = n

Π̂2 =
∞∑
n=0

(|Ln〉〈Ln|+Rn〉〈Rn|) = ÎP ,

⇒ Π̂2 = ÎP .

Furthermore,

(|DL〉〈DR| − |DR〉〈DL|)2 = (|DL〉〈DR| − |DR〉〈DL|) (|DL〉〈DR| − |DR〉〈DL|) ,

(|DL〉〈DR| − |DR〉〈DL|)2 = (|DL〉〈DR|DL〉〈DR| − |DR〉〈DL|DL〉〈DR|)

+ (|DR〉〈DL|DR〉〈DL| − |DL〉〈DR|DR〉〈DL|) ,

(|DL〉〈DR| − |DR〉〈DL|)2 = − (|DL〈DL|+ |DR〉〈DR|) .

∵ |DL〈DL|+ |DR〉〈DR| = ÎD.

Therefore

(|DL〉〈DR| − |DR〉〈DL|)2 = −ÎD.

Hence

Ûint =ÎP ⊗ ÎD + Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|)λδt−
ÎP ⊗ ÎD

2!
(λδt)2

−Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|)
3!

(λδt)3 + ...
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We know that projective measurement is a special case of generalized measurements.
For projective measurement, we can take

δt =
π~
4λ
,⇒ λδt =

π

4
.

⇒ Ûint =ÎP ⊗ ÎD + Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|)
π

4
− ÎP ⊗ ÎD

2!

(π
4

)2
−Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|)

3!

(π
4

)3
+ ...,

Ûint =ÎP ⊗ ÎD

[
1− 1

2!

(π
4

)2
+

1

4!

(π
4

)4
+ ...

]
+Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|)

[
π

4
− 1

3!

(π
4

)3
+ ...

]
.

But we know

cos
(π
4

)
= 1− 1

2!

(π
4

)2
+

1

4!

(π
4

)4
+ ... =

1√
2
,

sin
(π
4

)
=
π

4
− 1

3!

(π
4

)3
+

1

5!

(π
4

)5
... =

1√
2
.

So,

Ûint =
1√
2
ÎP ⊗ ÎD +

1√
2
Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|) ,

Ûint =
1√
2

(
ÎP ⊗ ÎD + Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|)

)
, (4.5)

Û †int =
1√
2

[
ÎP ⊗ ÎD − Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|)

]
.

Now, we can calculate the time evolve state ρ̂evolved,s of composite system using this
unitary operator. From Eq. (4.4) and (4.5), composite state of system after time evolution
can be obtained as

ρ̂evolved,s = Ûintρ̂⊥,sÛ
†
int,

ρ̂evolved,s = Ûint (ρ̂⊥ ⊗ ρ̂D) Û
†
int,

89



ρ̂evolved,s =
1√
2

[
ÎP ⊗ ÎD + Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|)

]
ρ̂⊥

⊗ρ̂D
1√
2

[
ÎP ⊗ ÎD − Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|)

]
,

ρ̂evolved,s =
1

2

[
ÎP ρ̂⊥ÎP ⊗ ÎDρ̂DÎD

]
+
1

2

[
Π̂ρ̂⊥ÎP ⊗ (|DL〉〈DR| − |DR〉〈DL|) ρ̂DÎD

]
(4.6)

−1

2

[
ÎP ρ̂⊥Π̂⊗ ÎDρ̂D (|DL〉〈DR| − |DR〉〈DL|)

]
−1

2

[
Π̂ρ̂⊥Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|) ρ̂D (|DL〉〈DR| − |DR〉〈DL|)

]
,

Now, we will solve each term of Eq. (4.6) separately,
Term-1

(
ÎP ρ̂⊥ÎP ⊗ ÎDρ̂DÎD

)
= ρ̂⊥ ⊗ ρ̂D,

ÎP ρ̂⊥ÎP ⊗ ÎDρ̂DÎD = ρ̂⊥ ⊗ ρ̂D. (4.7)

Using Eq. (4.1) and (3.58)

ÎP ρ̂⊥ÎP ⊗ ÎDρ̂DÎD =
1

2
(ρ̂L + ρ̂R)⊗

1

2
(|DL〉〈DL|+ |DR〉〈DR|+ |DL〉〈DR|+ |DR〉〈DL|) .

(4.8)
Term-2

λ
[
Π̂ρ̂⊥ÎP ⊗ (|DL〉〈DR| − |DR〉〈DL|) ρ̂DÎD

]
.

Considered Π̂ρ̂⊥ÎP

Π̂ρ̂⊥ÎP =
∞∑
n=0

(|Ln〉〈Ln| − |Rn〉〈Rn|) ρ̂⊥
∞∑
k=0

(|Lk〉〈Lk|+ |Rk〉〈Rk|) .

Form Eq. (3.51) and (3.52)

Π̂ρ̂⊥ÎP =
(
P̂L − P̂R

)
ρ̂⊥

(
P̂L + P̂R

)
,

Π̂ρ̂⊥ÎP =
(
P̂Lρ̂⊥P̂L − P̂Rρ̂⊥P̂L + P̂Lρ̂⊥P̂R − P̂Rρ̂⊥P̂R

)
.

But from Eq. (3.53) and (3.56)
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P̂Lρ̂⊥P̂L =
ρ̂R
2
,

P̂Rρ̂⊥P̂R =
ρ̂L
2
.

Where as

P̂Lρ̂⊥P̂R = 0,

P̂Rρ̂⊥P̂L = 0.

Hence

Π̂ρ̂⊥ÎP =
1

2
(ρ̂L − ρ̂R) .

Now we consider (|DL〉〈DR| − |DR〉〈DL|) ρ̂DÎD:

(|DL〉〈DR| − |DR〉〈DL|) ρ̂DÎD =|DL〉〈DR|
1

2
(|DL〉〈DL|+ |DR〉〈DR|+ |DL〉〈DR|+ |DR〉〈DL|)

−|DR〉〈DL|
1

2
(|DL〉〈DL|+ |DR〉〈DR|+ |DL〉〈DR|+ |DR〉〈DL|) ,

(|DL〉〈DR| − |DR〉〈DL|) ρ̂DÎD =
1

2
(|DL〉〈DR|DR〉〈DL|+ |DL〉〈DR|DR〉〈DR|)

−1

2
(|DR〉〈DL|DL〉〈DL|+ |DR〉〈DL|DL〉〈DR|) ,

(|DL〉〈DR| − |DR〉〈DL|) ρ̂DÎD =
1

2
(|DL〉〈DL| − |DR〉〈DR|+ |DL〉〈DR| − |DR〉〈DL|) ,

Term-2 becomes

(
Π̂ρ̂⊥ÎP ⊗ (|DL〉〈DR| − |DR〉〈DL|) ρ̂DÎD

)
=
1

2
(ρ̂L − ρ̂R)⊗

1

2
(|DL〉〈DL|+ |DL〉〈DR|

(4.9)

−|DR〉〈DL| − |DR〉〈DR|).

Term-3

ÎP ρ̂⊥Π̂⊗ ÎDρ̂D (|DL〉〈DR| − |DR〉〈DL|) .
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Consider ÎP ρ̂⊥Π̂ first

ÎP ρ̂⊥Π̂ =
(
P̂L + P̂R

)
ρ̂⊥

(
P̂L − P̂R

)
,

ÎP ρ̂⊥Π̂ =
(
P̂Lρ̂⊥P̂L − P̂Rρ̂⊥P̂L − P̂Lρ̂⊥P̂R − P̂Rρ̂⊥P̂R

)
.

But from Eq. (3.53) and (3.56)

P̂Lρ̂⊥P̂L =
ρ̂R
2
,

P̂Rρ̂⊥P̂R =
ρ̂L
2
.

Where as

P̂Lρ̂⊥P̂R = 0,

P̂Rρ̂⊥P̂L = 0. (4.10)

Hence

ÎP ρ̂⊥Π̂ =
1

2
(ρ̂L − ρ̂R) .

Now we consider ÎDρ̂D (|DL〉〈DR| − |DR〉〈DL|):

ÎDρ̂D (|DL〉〈DR| − |DR〉〈DL|) =
1

2
(|DL〉〈DL|+ |DL〉〈DR|+ |DR〉〈DL|+ |DR〉〈DR|) |DL〉〈DR|

−1

2
(|DL〉〈DL|+ |DL〉〈DR|+ |DR〉〈DL|+ |DR〉〈DR|) |DR〉〈DL|,

ÎDρ̂D (|DL〉〈DR| − |DR〉〈DL|) =
1

2
(|DL〉〈DL|DL〉〈DR|+ |DR〉〈DL|DL〉〈DR|)

−1

2
(|DL〉〈DR|DL〉〈DL|+ |DR〉〈DR|DR〉〈DL|) ,

ÎDρ̂D (|DL〉〈DR| − |DR〉〈DL|) =
1

2
(|DL〉〈DR|+ |DR〉〈DR| − |DL〉〈DL| − |DR〉〈DL|) .

Term-3 becomes
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ÎP ρ̂⊥Π̂⊗ ÎDρ̂D (|DL〉〈DR| − |DR〉〈DL|) (4.11)

=
1

2
(ρ̂L − ρ̂R)⊗

1

2
(|DL〉〈DR|+ |DR〉〈DR| − |DL〉〈DL| − |DR〉〈DL|).

Term-4

Π̂ρ̂⊥Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|) ρ̂D (|DL〉〈DR| − |DR〉〈DL|) .

Consider Π̂ρ̂⊥Π̂ first

Π̂ρ̂⊥Π̂ =
∞∑

m=0

(|Lm〉〈Lm| − |Rm〉〈Rm|) ρ̂⊥
∞∑
k=0

(|Lk〉〈Lk| − |Rk〉〈Rk|) ,

Π̂ρ̂⊥Π̂ =
(
P̂L − P̂R

)
ρ̂⊥

(
P̂L − P̂R

)
,

Π̂ρ̂⊥Π̂ =
(
P̂Lρ̂⊥P̂L − P̂Rρ̂⊥P̂L − P̂Lρ̂⊥P̂R + P̂Rρ̂⊥P̂R

)
.

Using Eq. (4.10)

Π̂ρ̂⊥Π̂ =
1

2
(ρ̂L + ρ̂R) .

Now we consider (|DL〉〈DR| − |DR〉〈DL|) ρ̂D (|DL〉〈DR| − |DR〉〈DL|):

(|DL〉〈DR| − |DR〉〈DL|) ρ̂D (|DL〉〈DR| − |DR〉〈DL|)

= |DL〉〈DR|ρ̂D|DL〉〈DR| − |DR〉〈DL |̂ρD|DL〉〈DR|

−|DL〉〈DR|ρ̂D|DR〉〈DL|+ |DR〉〈DL|ρ̂D|DR〉〈DL|.

|DL〉〈DR|ρ̂D|DL〉〈DR|

=|DL〉〈DR|
(
1

2
(|DL〉〈DL|+ |DR〉〈DL|+ |DL〉〈DR|+ |DR〉〈DR|)

)
|DL〉〈DR|.

|DL〉〈DR|ρ̂D|DL〉〈DR| =1

2
|DL〉〈DR|DL〉〈DL|DL〉〈DR|+1

2
|DL〉〈DR|DR〉〈DL|DL〉〈DR|

+
1

2
|DL〉〈DR|DL〉〈DR|DL〉〈DR|+

1

2
|DL〉〈DR|DR〉〈DR|DL〉〈DR|,

using orthonormality conditions
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|DL〉〈DR|ρ̂D|DL〉〈DR| =1

2
|DL〉������:0

〈DR|DL〉〈DL|DL〉〈DR|+
1

2
|DL〉〈DR|DR〉〈DL|DL〉〈DR|

+
1

2
|DL〉������:0

〈DR|DL〉������:0
〈DR|DL〉〈DR|+

1

2
|DL〉〈DR|DR〉������:0

〈DR|DL〉〈DR|,

|DL〉〈DR|ρ̂D|DL〉〈DR| = 1

2
|DL〉������:1

〈DR|DR〉�����:1
〈DL|DL〉〈DR|

⇒ |DL〉〈DR|ρ̂D|DL〉〈DR| = 1

2
|DL〉〈DR|,

similarly

|DR〉〈DL|ρ̂D|DL〉〈DR| = 1

2
|DR〉〈DR|,

|DL〉〈DR|ρ̂D|DR〉〈DL| = 1

2
|DL〉〈DL|,

|DR〉〈DL|ρ̂D|DR〉〈DL| = 1

2
|DR〉〈DL|.

Hence

(|DL〉〈DR| − |DR〉〈DL|) ρ̂D (|DL〉〈DR| − |DR〉〈DL|)

=
1

2
(|DL〉〈DR| − |DR〉〈DR| − |DL〉〈DL|+ |DR〉〈DL|)

Term-4 becomes

Π̂ρ̂⊥Π̂⊗ (|DL〉〈DR| − |DR〉〈DL|) ρ̂D (|DL〉〈DR| − |DR〉〈DL|) (4.12)

=
1

2
(ρ̂L + ρ̂R)⊗

1

2
(|DL〉〈DR| − |DR〉〈DR| − |DL〉〈DL|+ |DR〉〈DL|).

Using Eq. (4.8), (4.9), (4.11), (4.12) in Eq. (4.6), we obtain
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ρ̂evolved,s =
1

2

[
1

2
(ρ̂L + ρ̂R)⊗

1

2
(|DL〉〈DL|+ |DL〉〈DR|+ |DR〉〈DL|+ |DR〉〈DR|)

]
+
1

2

[
1

2
(ρ̂L − ρ̂R)⊗

1

2
(|DL〉〈DL|+ |DL〉〈DR| − |DR〉〈DL| − |DR〉〈DR|)

]
−1

2

[
1

2
(ρ̂L − ρ̂R)⊗

1

2
(|DL〉〈DR|+ |DR〉〈DR| − |DL〉〈DL| − |DR〉〈DL|)

]
−1

2

[
1

2
(ρ̂L + ρ̂R)⊗

1

2
(|DL〉〈DR| − |DR〉〈DR| − |DL〉〈DL|+ |DR〉〈DL|)

]
,

for convenience, we will add Term-1 to Term-2 and Term-3 to Term-4

ρ̂evolved,s =
1

2

[
1

2
(ρ̂L + ρ̂R)⊗

1

2
(|DL〉〈DL|+ |DL〉〈DR|+ |DR〉〈DL|+ |DR〉〈DR|)

]
−1

2

[
1

2
(ρ̂L + ρ̂R)⊗

1

2
(|DL〉〈DR| − |DR〉〈DR| − |DL〉〈DL|+ |DR〉〈DL|)

]
+
1

2

[
1

2
(ρ̂L − ρ̂R)⊗

1

2
(|DL〉〈DL|+ |DL〉〈DR| − |DR〉〈DL| − |DR〉〈DR|)

]
−1

2

[
1

2
(ρ̂L − ρ̂R)⊗

1

2
(|DL〉〈DR|+ |DR〉〈DR| − |DL〉〈DL| − |DR〉〈DL|)

]
,

ρ̂evolved,s =
1

4
(ρ̂L + ρ̂R)⊗ (|DL〉〈DL|+ |DR〉〈DR|)

+
1

4
(ρ̂L − ρ̂R)⊗

1

2
(|DL〉〈DL| − |DR〉〈DR|) ,

ρ̂evolved,s =
1

4
ρ̂L ⊗ |DL〉〈DL|+ ρ̂R ⊗ |DL〉〈DL|

+
1

4
ρ̂L ⊗ |DR〉〈DR|+ ρ̂R ⊗ |DR〉〈DR|

+
1

4
ρ̂L ⊗ |DL〉〈DL| − ρ̂R ⊗ |DL〉〈DL|

−1

4
ρ̂L ⊗ |DR〉〈DR|+ ρ̂R ⊗ |DR〉〈DR|.

Above equation can be simplified as

ρ̂evolved,s =
1

2
(ρ̂L ⊗ |DL〉〈DL|+ ρ̂R ⊗ |DR〉〈DR|) . (4.13)

Here, we can see that particle and demon become correlated as a result of interaction.
If particle is located on the left side of partition then the state of demon is necessarily
|DL〉 and if particle is located on the right side of partition then the state of demon is
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|DR〉. This corresponds to exactly what we were expecting from strong or projective
measurements.

4.5 Entropy

Let us calculate the entropy of both the particle and the demon before and after mea-
surement. This, we can do with the help of partial trace.

4.5.1 Entropy of Demon before Interaction

From Eq. (4.1), density operator of demon before interaction can be written as

ρ̂D =
1

2
(|DL〉〈DL|+ |DR〉〈DR|+ |DR〉〈DL|+ |DL〉〈DR|) .

From Eq. (4.13) we know this is a pure state having only one eigenvalue, so entropy
will be zero.

S (ρ̂D) = 0. (4.14)

4.5.2 Entropy of Demon after Interaction

First we need to determine the density operator of demon after interaction. Taking partial
trace of Eq. (4.13) with respect to particle, we will get the reduce density operator of
demon.

ρ̂D,evolved is the state of demon after evolution which can be obtained as

ρ̂D,evolved = Trp [ρ̂evolved,s] ,

ρ̂D,evolved = Trp

(
1

2
(ρ̂L ⊗ |DL〉〈DL|+ ρ̂R ⊗ |DR〉〈DR|)

)
.

Carrying out the trace

ρ̂D,evolved =
∞∑

m=0

〈Lm|
(
1

2
(ρ̂L ⊗ |DL〉〈DL|+ ρ̂R ⊗ |DR〉〈DR|)

)
|Lm〉

+
∞∑

m=0

〈Rm|
(
1

2
(ρ̂L ⊗ |DL〉〈DL|+ ρ̂R ⊗ |DR〉〈DR|)

)
|Rm〉,
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ρ̂D,evolved =
1

2

∞∑
m=0

〈Lm|ρ̂L|Lm〉 ⊗ |DL〉〈DL| (4.15)

+
1

2

∞∑
m=0

〈Lm|ρ̂R|Lm〉 ⊗ |DR〉〈DR|

+
1

2

∞∑
m=0

〈Rm|ρ̂L|Rm〉 ⊗ |DL〉〈DL|

+
1

2

∞∑
m=0

〈Rm|ρ̂R|Rm〉 ⊗ |DR〉〈DR|.

Taking one term at time:
Term-1

∞∑
m=0

〈Lm|ρ̂L|Lm〉 =
∞∑

m=0

〈Lm|
1

ZL

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Ln〉〈Ln|Lm〉,

∞∑
m=0

〈Lm|ρ̂L|Lm〉 =
∞∑

m=0

∞∑
n=0

1

ZL

e−β~ω
(
2n+ 3

2

)
〈Lm|Ln〉〈Ln|Lm〉,

for m = n

∞∑
m=0

〈Lm|ρ̂L|Lm〉 =
∞∑
n=0

1

ZL

e−β~ω
(
2n+ 3

2

)
. (4.16)

Term-2

∞∑
m=0

〈Lm|ρ̂R|Lm〉 =
∞∑

m=0

〈Lm|
1

ZR

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Rn〉〈Rn|Lm〉,

∞∑
m=0

〈Lm|ρ̂R|Lm〉 =
∞∑

m=0

∞∑
n=0

1

ZR

e−β~ω
(
2n+ 3

2

)
〈Lm|Rn〉〈Rn|Lm〉,

for m = n

∞∑
m=0

〈Lm|ρ̂R|Lm〉 = 0. (4.17)

Term-3

∞∑
m=0

〈Rm|ρ̂L|Rm〉 ⊗ |DL〉〈DL| =
∞∑

m=0

〈Rm|
1

ZL

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Ln〉〈Ln|Rm〉,

∞∑
m=0

〈Rm|ρ̂L|Rm〉 ⊗ |DL〉〈DL| =
∞∑

m=0

∞∑
n=0

1

ZL

e−β~ω
(
2n+ 3

2

)
〈Rm|Ln〉〈Ln|Rm〉,

for m = n
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∞∑
m=0

〈Rm|ρ̂L|Rm〉 ⊗ |DL〉〈DL| = 0. (4.18)

Term-4

∞∑
m=0

〈Rm|ρ̂R|Rm〉 =
∞∑

m=0

〈Rm|
1

ZR

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
|Ln〉〈Ln|Rm〉,

∞∑
m=0

〈Rm|ρ̂R|Rm〉 =
∞∑

m=0

∞∑
n=0

1

ZR

e−β~ω
(
2n+ 3

2

)
〈Rm|Rn〉〈Rn|Rm〉,

for m = n

∞∑
m=0

〈Rm|ρ̂R
∞∑
k=0

|Rk〉 =
∞∑
n=0

1

ZR

e−β~ω
(
2n+ 3

2

)
. (4.19)

Using Eq. (4.16), (4.17), (4.18), (4.19) in Eq. (4.15)

ρ̂D,evolved =
1

2

∞∑
n=0

1

ZL

e−β~ω
(
2n+ 3

2

)
⊗ |DL〉〈DL|

+
1

2

∞∑
n=0

1

ZR

e−β~ω
(
2n+ 3

2

)
⊗ |DR〉〈DR|.

Form Eq. (3.59) and (3.62)

ZL =
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
,

ZR =
∞∑
n=0

e−β~ω
(
2n+ 3

2

)
.

Hence

ρ̂D,evolved =
1

2

1

ZL

ZL ⊗ |DL〉〈DL|+
1

2

1

ZR

ZR ⊗ |DR〉〈DR|.

Therefore demon’s evolved state is

ρ̂D,evolved =
1

2
(|DL〉〈DL|+ |DR〉〈DR|) .

Now let us check ρ̂D,evolved is a mixed state or not;

ρ̂2D,evolved =
1

4
(|DL〉〈DL|+ |DR〉〈DR|) ,
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Tr
(
ρ̂2D,evolved

)
=〈DL|

(
1

4
(|DL〉〈DL|+ |DR〉〈DR|)

)
|DL〉

+〈DR|
(
1

4
(|DL〉〈DL|+ |DR〉〈DR|)

)
|DR〉,

T r
[
ρ̂2D,evolved

]
=

1

4
+

1

4
,

T r
[
ρ̂2D,evolved

]
=

1

2
< 1.

Hence the state of demon is a maximally mixed state. Its entanglement entropy can
be calculated as

S (ρ̂D,evolved) = −kBTr [(ρ̂D,evolvedlnρ̂D,evolved)] .

For convenience, we can represent ρ̂D,evolved in matrix form using basis {|DL〉, |DR〉},
matrix elements are

〈DL|ρ̂D,evolved |DL〉=〈DL|1
2
(|DL〉〈DL|+ |DR〉〈DR|)|DL〉=

1

2
,

〈DL|ρ̂D,evolved |DR〉=〈DL|1
2
(|DL〉〈DL|+ |DR〉〈DR|)|DR〉=0,

〈DR|ρ̂D,evolved |DR〉=〈DL|1
2
(|DL〉〈DL|+ |DR〉〈DR|)|DR〉=

1

2
,

〈DR|ρ̂D,evolved |DL〉=〈DL|1
2
(|DL〉〈DL|+ |DR〉〈DR|)|DR〉=0.

ρ̂D,evolved in matrix form will become

ρ̂D,evolved =

(
1/2 0

0 1/2

)
.

Therefore

S (ρ̂D,evolved) = −kBTr

[(
1/2 0

0 1/2

)
ln

(
1/2 0

0 1/2

)]
,

S (ρ̂D,evolved) = −kBTr

[(
1/2 0

0 1/2

)(
ln (1/2) 0

0 ln (1/2)

)]
,

S (ρ̂D,evolved) = −kBTr

(
1/2ln (1/2) 0

0 1/2ln (1/2)

)
,
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S (ρ̂D,evolved) = −kB
[
1

2
ln

(
1

2

)
+

1

2
ln

(
1

2

)]
,

S (ρ̂D,evolved) = kBln2 (4.20)

This is the maximum entropy of demon as it is a two state quantum pointer vari-
able. On the other hand, we can also calculate the entropy of particle before and after
interaction.

4.5.3 Entropy of Particle Before Interaction

From Eq. (3.50), we can write the density operator of particle before measurement as

ρ̂⊥ =
1

Z⊥

∞∑
n=0

e−β~ω
(
2n+ 3

2

)
(|Ln〉〈Ln|+ |Rn〉〈Rn|) ,

we can also calculate the above equation by taking the partial trace of Eq. (4.4) with
respect to demon i.e.

TrD [ρ̂⊥,s] = TrD [ρ̂⊥ ⊗ ρ̂D] = ρ̂⊥.

From Eq. (3.44) (we have already calculated)

S (ρ̂⊥) = kB {β~ωln [coth (β~ω)]− ln [sinh (β~ω)]} .

4.5.4 Entropy of Particle After Interaction

We can write density operator of particle after interaction by taking the partial trace of
the evolved composite density operator ρ̂evolved (Eq. (4.13)) with respect to demon.

ρ̂p,evolved is the state of particle after evolution which can be obtained from partial
trace:

ρ̂p,evolved = TrD [ρ̂evolved] ,

ρ̂evolved,p = TrD

[
1

2
(ρ̂L ⊗ |DL〉〈DL|+ ρ̂R ⊗ |DR〉〈DR|)

]
,

ρ̂evolved,p =〈DL|
[
1

2
(ρ̂L ⊗ |DL〉〈DL|+ ρ̂R ⊗ |DR〉〈DR|)

]
|DL〉

+〈DR|
[
1

2
(ρ̂L ⊗ |DL〉〈DL|+ ρ̂R ⊗ |DR〉〈DR|)

]
|DR〉,
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ρ̂evolved,p =
1

2
ρ̂L ⊗ 〈DL|DL〉〈DL|DL〉+

1

2
ρ̂R ⊗ 〈DL|DR〉〈DR|DL〉

+
1

2
ρ̂L ⊗ 〈DR|DL〉〈DL|DR〉+

1

2
ρ̂R ⊗ 〈DR|DR〉〈DR|DR〉,

using orthonormality conditions

ρ̂evolved,p =
1

2
ρ̂L ⊗ 1 +

1

2
ρ̂R ⊗ 1,

ρ̂evolved,p =
1

2
(ρ̂L + ρ̂R) ,

using Eq. (3.58)

ρ̂evolved,p = ρ̂⊥.

Now , entropy of particle after interaction will be

S(ρ̂evolved,p) = S (ρ̂⊥) = kB {β~ωln [coth (β~ω)]− ln [sinh (β~ω)]} .

So, we can see that entanglement entropy of particle does not change as a result of
interaction.

4.6 Evolution as a Result of Expansion

As a result of interaction, the states of particle and demon become correlated. If demon
is in state |DL〉 then particle is located on the left side of partition and if the demon is in
state |DR〉 then the particle is located on the right side of partition. Once the particle is
projected onto one side of barrier then particle pushes the barrier either to left or right side
depending upon the location of particle. When particle pushes the barrier then system
evolves with time. For this evolution, we need a Hamiltonian.

4.6.1 Total Hamiltonian for Evolution

From Eq. (4.13) we can see that states of particle and demon are correlated. When
particle is located on the right side of partition, the state of demon must be |DR〉and
particle pushes the barrier towards left side. In this situation Hamiltonian can be written
as

Ĥ← � |DR〉〈DR|. (4.21)

Ĥ← represents the Hamiltonian for the barrier translated towards left side if the state
of demon is |DR〉. Once the particle is projected onto the right side of barrier then Ĥ←
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acts on particle.
From Eq. (3.71)

Ĥ←(t) =
p̂2

2m
+

1

2
mω2q̂2 + αδ (q̂ − qo(t)) ,

qo : 0 → −∞.

When particle is located on the left side of partition, state of demon must be |DL〉
and particle pushes the barrier towards right side. In this situation Hamiltonian can be
written as

Ĥ→ � |DL〉〈DL|. (4.22)

Ĥ→ represents the Hamiltonian for the barrier translated towards right side if state of
demon is |DL〉. Once particle is projected onto the left side of barrier then Ĥ→ acts on
particle.

Ĥ→(t) =
p̂2

2m
+

1

2
mω2q̂2 + αδ (q̂ − qo(t)) ,

qo : 0 → ∞.

From Eq. (4.22) and (4.21), we can construct the total Hamiltonian ĤT .

ĤT = Ĥ→ � |DL〉〈DL|+ Ĥ← � |DR〉〈DR|. (4.23)

4.6.2 Unitary Operator for Evolution

Let us construct unitary operator ÛT corresponding to Hamiltonian ĤT

ÛT = e−iĤT δt,

ÛT = e
−i

(
Ĥ→�|DL〉〈DL|+Ĥ←�|DR〉〈DR|

)
δt
,

ÛT = e−iĤ→�|DL〉〈DL|δte−iĤ←�|DR〉〈DR|δt. (4.24)

Let us consider each exponential separately:

e−iĤ→�|DL〉〈DL|δt =ÎP � ÎD +−iĤ→ � |DL〉〈DL|δt

+
(
−iĤ→ � |DL〉〈DL|δt

)2
+ ...
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Using

ÎD = |DL〉〈DL|+ |DR〉〈DR|.

we obtain

e−iĤ→�|DL〉〈DL|δt =ÎP � (|DL〉〈DL|+ |DR〉〈DR|) +
(
−iĤ→

)
� |DL〉〈DL|δt

+
1

2!

(
−iĤ→

)2
� (|DL〉〈DL|)2 (δt)2 + ...,

e−iĤ→�|DL〉〈DL|δt =ÎP � |DL〉〈DL|+ ÎP � |DR〉〈DR|+
(
−iĤ→δt

)
� |DL〉〈DL|

+
1

2!

(
−iĤ→δt

)2
� |DL〉〈DL|+ ...,

e−iĤ→�|DL〉〈DL|δt = ÎP � |DR〉〈DR|+
(
ÎP +

(
−iĤ→δt

)
+

1

2!

(
−iĤ→δt

)2
+ ...

)
� |DL〉〈DL|,

since

e−iĤ→δt = ÎP +
(
−iĤ→δt

)
+

1

2!

(
−iĤ→δt

)2
+ ... ≡ Û→

therefore

e−iĤ→�|DL〉〈DL|δt = ÎP � |DR〉〈DR|+ Û→ � |DL〉〈DL|. (4.25)

Û→ only acts on the particle.
Similarly 2nd exponential can be written as

e−iĤ→�|DR〉〈DR|δt=ÎP�|DL〉〈DL|+Û←�|DR〉〈DR|. (4.26)

Using Eq. (4.25) and (4.26) in Eq. (4.24)

ÛT =
(
ÎP � |DR〉〈DR|+ Û→ � |DL〉〈DL|

)
×
(
ÎP � |DL〉〈DL|+ Û← � |DR〉〈DR|

)
,

ÛT =ÎP ÎP � |DR〉〈DR|DL〉〈DL|+ Û→ÎP � |DL〉〈DL|DL〉〈DL|

+ÎP Û← � |DR〉〈DR|DR〉〈DR|+ Û→Û← � |DL〉〈DL|DR〉〈DR|,
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using orthonormality conditions

ÛT = Û→ � |DL〉〈DL|+ Û← � |DR〉〈DR|,

Û †T = Û †→ � |DL〉〈DL|+ Û †← � |DR〉〈DR|. (4.27)

Now we can use the unitary operator ÛT to determine the evolved state during expan-
sion.

4.6.3 Evolution during Expansion

ρ̂evolved,s is the state of composite system after evolution (from Eq. (4.13) )

ρ̂evolved,s =
1

2
(ρ̂L ⊗ |DL〉〈DL|+ ρ̂R ⊗ |DR〉〈DR|) .

Let us call the state during expansion ρ̂′evolved,s

ρ̂′evolved,s = ÛT ρ̂evolved,sÛ
†
T ,

ρ̂′evolved,s = ÛT

(
1

2
(ρ̂L ⊗ |DL〉〈DL|+ ρ̂R ⊗ |DR〉〈DR|)

)
Û †T ,

ρ̂′evolved,s =
1

2
ÛT (ρ̂L ⊗ |DL〉〈DL|) Û †T +

1

2
ÛT (ρ̂R ⊗ |DR〉〈DR|) Û †T . (4.28)

Let us consider each term of the above equation separately:
Term-1

ÛT (ρ̂L ⊗ |DL〉〈DL|) Û †T ,

using Eq. (3.54) and (4.27)

ÛT (ρ̂L ⊗ |DL〉〈DL|) =
(
Û→ � |DL〉〈DL|+ Û← � |DR〉〈DR|

)
ρ̂L ⊗ |DL〉〈DL|,

ÛT (ρ̂L ⊗ |DL〉〈DL|) =
(
Û→ρ̂L � |DL〉〈DL|DL〉〈DL|+ Û←ρ̂L � |DR〉〈DR|DL〉〈DL|

)
,

using orthonormality conditions

ÛT (ρ̂L ⊗ |DL〉〈DL|) = Û→ρ̂L � |DL〉〈DL|.

Now applying Û †T from the left
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ÛT (ρ̂L ⊗ |DL〉〈DL|) Û †T = Û→ρ̂L � |DL〉〈DL|Û †T ,

ÛT (ρ̂L ⊗ |DL〉〈DL|) Û †T = Û→ρ̂L � |DL〉〈DL|
(
Û †→ � |DL〉〈DL|+ Û †← � |DR〉〈DR|

)
,

ÛT (ρ̂L ⊗ |DL〉〈DL|) Û †T =Û→ρ̂LÛ
†
→ � |DL〉〈DL|DL〉〈DL|

+Û→ρ̂LÛ
†
← � |DL〉〈DL|DR〉〈DR|,

using orthonormality conditions

ÛT (ρ̂L ⊗ |DL〉〈DL|) Û †T = Û→ρ̂LÛ
†
→ � |DL〉〈DL|. (4.29)

Similarly,
Term-2

ÛT (ρ̂R ⊗ |DR〉〈DR|) Û †T = Û←ρ̂RÛ
†
← � |DR〉〈DR|. (4.30)

Finally using Eq. (4.29) and (4.30) in Eq. (4.28)

ρ̂′evolved,s =
1

2

(
Û→ρ̂LÛ

†
→ � |DL〉〈DL|

)
+

1

2

(
Û←ρ̂RÛ

†
← � |DR〉〈DR|

)
.

Once the barrier is pushed all the way to infinity, we are back to the initial state:

Û→ρ̂LÛ
†
→ = ρ̂in,

Û←ρ̂RÛ
†
← = ρ̂in,

⇒ ρ̂′evolved,s =
1

2
(ρ̂in � |DL〉〈DL|) +

1

2
(ρ̂in � |DR〉〈DR|) ,

ρ̂′evolved,s = ρ̂in �
1

2
(|DL〉〈DL|+ |DR〉〈DR|) . (4.31)

This is the state of system at the end of cycle. We can see that quantum particle
returns to its initial state but demon is in a mixed state at the end of cycle. However, it
was in a pure state initially. So in order to restart the cycle, it is necessary to reset the
demon to its initial or ready state |Do〉.

105



4.7 Resetting Demon’s State

This means that we need to reset the final state of demon to initial state ρ̂D .

|DL〉〈DL|+ |DR〉〈DR| −→ ρ̂D.

From Eq. (4.1)

1

2
(|DL〉〈DL|+ |DR〉〈DR|) −→

1

2
(|DL〉〈DL|+ |DR〉〈DR|+ |DR〉〈DL|+ |DR〉〈DL|) .

We know that demon is a two state system {|DL〉, |DR〉} having maximum entropy
kBln2.

From Eq. (4.14) and (4.20)

• 1

2
(|DL〉〈DL|+ |DR〉〈DR|) has entropy kBln2 which is the maximum value, so it has

no free energy available.

• 1

2
(|DL〉〈DL|+ |DR〉〈DL|+ |DR〉〈DL|+ |DR〉〈DR|) has entropy 0, so it has kBln2 free

energy available.

So, if we want to go from final state of demon to initial state i.e. from mixed state to
pure state, we have to provide kBln2 energy during each cycle. By this transformation of
mixed state to pure state, entropy of demon becomes zero. This decrease in entropy of
demon balances the thermodynamical entropy of particle [29].

Hence for the complete (particle + demon) closed system

4S = 0.

This result negates the apparent violation of 2nd Law of thermodynamics
during the complete cycle of quantum Szilard engine. Hence, we can say that second law
of thermodynamics is valid for the quantum Szilard engine as expected.
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Chapter 5

Discussion and Conclusions

The detailed analysis of quantum harmonic Szilard engine shows that all thermodynamics
functions shown in Figure 5.1 can be calculated analytically at the end of each stage of
the cycle.

Figure 5.1: Thermodynamic functions calculated at the end of each stage for a cycle.

This analysis shows that average energy of system increases which implies that barrier
insertion cannot be done quantum mechanically at zero energy cost. The effects of barrier
insertion can be observed significantly at low temperature i.e. increase in entropy etc.,
however, entropy remains same before and after barrier insertion in the high temperature
limit. We then perform a projective measurement, assuming Maxwell’s demon operating
the engine is not treated dynamically that results in the localization of particle either on
the left or right side of harmonic well. The entropy of system decreases by an amount
kBln2; an amount of useful work kBT ln2 can be extracted from the thermal bath that
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leads to the violation of second law of thermodynamics.
In full quantum analysis, demon is treated dynamically to show explicitly that he can-

not operate the engine for more than one cycle. During a cycle, the entropy(information
entropy) of demon increases by an amount kBln2 in obtaining the information whether
the particle is located on the left or right side of harmonic well. At the end of each cycle,
it can be seen from the quantum analysis that particle returns to its initial state, however
demon remains in a mixed state. For a cyclic process, initial and final state of system
must be same. So in order to continue the cycle, demon needs to reset its final state to
initial state which leads to lowering the entropy. To erase this 1-bit of information, at
least kBT ln2 amount of energy is required according to Landaure’s principle [6], which is
as same as obtained from single cycle of engine.

Thus, we conclude that the second law of thermodynamics is apparently violated
when demon is not treated dynamically. However, second law of thermodynamics is not
violated when a more complete analysis is carried out with the demon operating the engine
treated dynamically because decrease in the thermodynamics entropy is compensated by
increase in the information entropy of demon. Work extracted from thermal bath is used
to reset the state of demon in order to run the engine in a cyclic manner which negates
the extraction of net useful work. Hence, second law of thermodynamics remains intact
throughout.
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