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Abstract

Recently, the measurement of the muon g − 2 at Fermilab has reconfirmed an earlier
result by Brookhaven and revealed a perplexing discrepancy between the prediction of the
Standard Model (SM) and the experimental results. The main factor contributing to the
discrepancy is the hadronic vacuum polarization (HVP), and resolving this difference is
crucial. However, the low-energy data from the cross-section of e+e− −→ hadrons, which
is used to calculate HVP, is in conflict with a recent result from the BMW collaboration
using lattice QCD. This conflict is referred to as the "new muon g−2 puzzle." In this thesis,
the suggestion is made that new physics (NP) could impact the cross-section of the process
e+e− −→ hadrons as a possible resolution to the new muon g− 2 puzzle. Nevertheless, we
demonstrate that this proposed solution is ruled out by several experimental limitations.
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Chapter 1

Introduction

The circulating and spinning charged particle produce a magnetic field like magnetic dipole
due to which it cause motion in a magnetic field to align with it called magnetic moment
of charged particle. The relation between the orbital angular momentum (L⃗ = m−→r × v⃗)
and orbital magnetic moment −→µl for a particle with mass m, charge q, and velocity −→v is
given by, µ⃗l = q

2mc
L⃗. The magnetic moment is also associated with particles have intrinsic

spin. the mathematical relation is given by, µ⃗s = g q
2mc

S⃗, The symbol ”g” represents the
gyromagnetic ratio. The gyromagnetic ratio ”g” was predicted by Dirac to be equal to 2 for
electrons and any other spin1/2 elementary particles in 1928 [1]. With the advancement of
quantum electrodynamics (QED), it was discovered that the gyromagnetic ratio ”g” differs
from 2 by an amount of 2al, where al is known as the magnetic moment anomaly, meaning
that g = 2(1 + al), and the anomaly can be represented as al = g−2

2 [1]. The cause of this
anomaly is the result of radiative corrections, where the connection between an elementary
particle and a photon is altered as a result of interactions with virtual particles. The value
of ”g” is effected by these quantum fluctuations, which increase the initial prediction of
g = 2, as a result of interactions with virtual particles. In 1948, J. Schwinger carried out
the initial calculation of the correction using quantum electrodynamics (QED) and found
that ”g” was increased by precisely α/π [17].

The SM in particle physics, which is based on a combination of the theory of relativ-
ity and quantum field theory with specific gauge symmetries SU(3)c ⊗ SU(2)L ⊗ U(1)Y

, has been very successful in explaining the interactions between all known fundamental
particles with regards to electromagnetism, weak, and strong forces. Recently, the Fermi
National Accelerator Laboratory’s gµ − 2 Collaboration published their results of a pre-
cise measurement of the aµ [2]. This measurement, in conjunction with a previous 2006
measurement from Brookhaven National Laboratory [3], shows a 4.2 standard deviation
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Figure 1.0.1: The difference between the experimental values and theoretical predictions
of aµ[1].

from the prediction made by the SM [4, 5].

∆aµ ≡ aExp
µ − aSM

µ = (251 ± 59) × 10−11. (1.0.1)

such a deviation will indicate the presence of NP beyond the SM. Numerous theoretical
papers have previously been published in an effort to explain this anomaly by NP.

The major source of uncertainty in the SM prediction for aµ (referred to as aSM
µ in

Eq. (1.0.1 ) in the hadronic sector. These effects have been extensively studied in recent
years. The aSM

µ value is determined using the contribution to the gµ − 2 from hadronic
vacuum polarization (HVP), obtained from the low-energy e+e− −→ hadrons data, which
is provided by the gµ − 2 theory initiative (TI) [6]. As an alternative, a first-principle
lattice QCD method has been used to calculate the HVP contribution [6][7]. The leading
HVP contribution to the gµ − 2 was recently calculated with sub-percent precision by the
BMW lattice QCD collaboration (BMWc), finding a value, (aHV P

µ )BMW , which is greater
then (aHV P

µ )T I
e+e− [8]. If the (aHV P

µ )BMW is utilized to calculate aSM
µ instead of (aHV P

µ )T I
e+e− ,
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the discrepancy with experimental results is reduced to 1.6σ. The results are as follows:

(aHV P
µ )T I

e+e− = 6931(40) × 10−11, (1.0.2)

(aHV P
µ )BMW = 7075(55) × 10−11. (1.0.3)

Figure 1.0.2: Comparison of the (aHV P
µ )T I

e+e− ,(aHV P
µ )BMW and (aHV P

µ )EXP [9].

Fig. 1.0.2 present an illustration of the current situation related to the leading HVP
to the gµ − 2, where (aHV P

µ )EXP match with aEXP
µ without assuming any NP. Hereafter, In

Fig. 1.0.2 the discrepancy between (aHV P
µ )T I

e+e− and (aHV P
µ )BMW will be referred to as the

new gµ − 2 puzzle.
Assuming that (aHV P

µ )T I
e+e− and (aHV P

µ )BMW both are correct, the new gµ −2 puzzle can
be resolved by the introduction of NP effects that reconcile (aHV P

µ )T I
e+e− and (aHV P

µ )BMW

without affecting the existing 1.6σ agreement between (aHV P
µ )BMW and (aHV P

µ )EXP . Note
that a direct NP contribution to △aµ will not solve the puzzle. To resolve the new gµ − 2
puzzle, we propose NP that modifies the cross-section σhad of the e+e− →hadrons process.
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Chapter 2

Standard Model of Particle Physics

2.1 Standard Model

All of nature arises from a few basic components called fundamental particles, These par-
ticles interact with each other in only a limited number of ways. Physicists in the seventies
developed a series of equations to describe these interactions and particles, resulting in a
succinct theory known as the standard model of particle physics. The hypothetical par-
ticles that make up dark matter, those that convey gravity, and an explanation for the
mass of neutrinos are noticeably absent from the standard model, yet it still provides a
very realistic picture of practically all other observed events. The common visualization
shows in Fig. 2.1.1.

Figure 2.1.1: Concluded summary of the SM of particle physics [61].
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Leptons and quarks are the two major types of matter particles. Keep in mind that
there is an antimatter particle for every type of matter particle seen in nature. These
particles have the same mass but are dissimilar in every other way [10].

2.1.1 Quarks

Let’s begin by discussing quarks, focusing on the two varieties that compose protons and
neutrons in atomic nuclei. These are the up quark, which has a charge of two-thirds of a
unit of electric charge on electron (same charge on the charm and top quarks), and the
down quark, which has a charge of -1/3 (same charge on the strange and bottom quarks).
There are total six quarks (u, d, c, s, t, b) there respective properties given in Fig. 2.1.1.
Additionally, quarks have a type of charge known as color. A quark’s color charge can be
either red, green, or blue. The quark is sensitive to the strong force because of its color.
Quarks change their color by absorbing or emitting gluons, which are the strong force’s
particle carriers [10].

2.1.2 Leptons

The other class of matter particles, known as leptons, are the electron, muon, and tau,
each of which has an electric charge of −1, and their corresponding neutrinos, which have
an electrical charge of zero. The issue is that each type of matter particle has three
successively heavier but otherwise similar counterparts that exist for unidentified reasons.
For instance, the charm and strange quarks are present alongside the up and down quarks,
while the top and bottom quarks are heavier still. The same is true of the leptons. The
muon and muon neutrino, as well as the tau and tau neutrino, are present in addition to
the electron and electron neutrino. Keep in mind that the neutrinos have tiny masses that
are unknown. Leptons appear in a table with their corresponding properties.

In the Fig. 2.1.1 the first column particle called the first generation particle, and second
called the second generation, and the third column particle called the third generation
particles.

2.1.3 Force Mediator and Higgs Boson

We are just talking about the fundamental bosons that operate as a force mediator be-
tween two particles. In fact, all matter particles—aside from neutrinos—have an electric
charge. The electromagnetic force can be sensed by these particles because they have
an electric charge. The electromagnetic force’s messengers, photons, are exchanged be-
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tween them in order to communicate. In our model, charged particles are connected by
wavy lines to depict electromagnetic interactions. Be aware that these interactions merely
cause the particles to experience a push or a pull rather than transforming them into one
another. The weak force is a little trickier than we first suggested. Other than the electri-
cally charged carriers of the weak force, the W+ and W− bosons, The Z boson, another
neutral carrier of the weak force, exists as well. Z bosons can be absorbed or emitted by
particles without causing identity changes. These "weak neutral interactions" just result
in energy and momentum loss or gain, similar to electromagnetic interactions. Orange
wavy lines serve as a visual representation of weak neutral interactions. It is no accident
that the electromagnetic interactions and weak neutral interactions are very similar. The
electroweak interaction, which was a single force in the early universe, is the source of both
the weak and electromagnetic forces. Quarks glue together to form mesons and baryons
due to strong force of madiater called gluon . There are eight different types of gluons.

It is thought that the Higgs boson, a subatomic particle, gives other particles mass [13].
Theorist Peter Higgs first put forward the idea in the 1960s, and tests at the Large Hadron
Collider at CERN, the European Organization for Nuclear Research, later proved it to be
true. Because it is a scalar boson, it has no electric charge and zero spin. In addition,
it differs from all other particles in the standard model of particle physics in that it is
the only one that has not been directly detected. Instead, the evidence for its existence
came from how it affected other particles. Particles gain mass through a process known
as the Higgs mechanism. It suggests that the entire cosmos is made up of a Higgs field, an
energy field that penetrates all of space. When interacting with this field, particles gain
mass. The particle connected to this field, the Higgs boson, is in charge of giving other
particles mass. It was a significant achievement in particle physics when the Higgs boson
was discovered since it proved the existence of the Higgs field and the process by which
particles gain mass.

It was a significant achievement in particle physics when the Higgs boson was discovered
since it proved the existence of the Higgs field and the process by which particles gain
mass. On July 4, 2012, CERN announced the discovery of the Higgs boson, which marked
a significant advancement in our knowledge of the universe [12].

2.2 Quantum Electrodynamics

Quantum Electrodynamics (QED) is the theory that describes the electromagnetic force,
which is responsible for the interaction between electrically charged particles. It is a funda-
mental theory of the electromagnetic interaction, one of the four fundamental interactions
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of nature. It is a Quantum Field Theory (QFT), which means that it describes the behav-
ior of particles and their interactions at the quantum level. In QED, the electromagnetic
force is mediated by virtual photons, which are particles that do not have a mass but have
energy and momentum. These photons are exchanged between charged particles, causing
them to interact. One of the most important predictions of QED is the phenomenon of
vacuum polarization, which occurs when virtual particles (such as photons) are created
and destroyed in the vacuum. This effect can cause the charge of a particle to be screened,
or reduced, when it is surrounded by other charges. QED also predicts the Lamb shift,
which is a small shift in the energy levels of hydrogen atoms caused by the interaction of
the electron with virtual photons. This effect was first observed experimentally in 1947,
and it provided strong evidence for the validity of QED.

QED predicts the aµ, which is a small deviation from the value predicted by classical
physics. This deviation is caused by the interaction of the muon with virtual photons in
the vacuum, which is known as vacuum polarization. The predictions of QED for the value
of aµ have been confirmed to a high degree of accuracy through experiments. However,
the measured value of the gµ − 2 is slightly different than the value predicted by QED,
which is known as the gµ −2 puzzle. This discrepancy could be due to NP beyond the SM.
Many theories have been proposed to explain this discrepancy, such as the presence of new
particles or new interactions. Currently, many experimental effort is going on to measure
the gµ − 2 value with higher precision and to understand the origin of the discrepancy,
such as Fermilab’s gµ − 2 experiment. Some theories that include new particles or new
interactions beyond the Standard Model, such as Super-symmetry, Grand Unification, and
extra dimensions, predict a value that is closer to the measured value, which could provide
a solution to the gµ − 2 puzzle [11].

2.3 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a fundamental theory that explains the strong nu-
clear force, which is responsible for binding protons and neutrons in the atomic nucleus.
This theory describes one of the four fundamental interactions of nature and is a non-
abelian gauge theory, where interactions are governed by non-abelian symmetry group
and mediated by gauge bosons that transmit the strong force. These bosons are called
gluons. Gluons are mass less, have zero charge and carry a color charge, which is a prop-
erty that allows them to interact with quarks and anti-quarks. QCD is based on the idea
that protons and neutrons are made up of smaller particles called quarks. These quarks
are held together by the strong force, which is carried by gluons. The strong force is a
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fundamental force of nature, and it is much stronger than the electromagnetic force or
the weak force. QCD predicts that protons and neutrons are composed of three quarks,
which are held together by the exchange of gluons. This is known as confinement, which is
the phenomenon that quarks and gluons are always confined within protons and neutrons,
and cannot be isolated as individual particles.

One of the most important predictions of QCD is asymptotic freedom, which states
that the strong force between quarks becomes weaker as their separation increases, this
allows for the existence of free quarks at high energy, but not at low energy. QCD also
predicts the existence of other particles, such as mesons and baryons, which are composed
of quarks and anti quarks or three quarks respectively [14].

2.4 Weak Interaction

The weak interaction, also known as the weak nuclear force, is one of the four fundamental
interactions of nature, and it’s responsible for certain types of radioactive decay, such as
beta decay, and it also plays a role in the process of nuclear fusion in stars. In the
standard model, it’s described as an exchange of intermediate vector bosons, specifically
the W and Z bosons. These bosons are responsible for the weak force, and they mediate
the interactions between particles such as quarks and leptons, it’s also responsible for
neutrino oscillations and plays a crucial role in electroweak symmetry breaking, which
gives particles mass through the Higgs mechanism [14].

2.5 Vector and Axial Coupling

Vector coupling occurs when two particles interact through the exchange of a force carrier,
such as a photon in electromagnetism or a gluon in the strong force. In the case of
the weak force, the force carrier is the Z particle. When two particles interact through
vector coupling, their properties such as spin, charge are conserved, meaning that the total
amount of these properties remains constant before and after the interaction. The weak
force has both vector and axial-vector couplings, which describe how the weak force acts
on particles with different spins. Vector coupling describes the interaction of particles with
spin−1/2 such as quarks and leptons, while axial-vector coupling describes the interaction
of particles with spin − 1 such as the intermediate vector bosons. Weak axial coupling
refers to the axial-vector coupling of the weak force, which describes how the weak force
acts on particles with spin − 1. The weak axial coupling is related to the weak charge of
a particle, which determines its sensitivity to the weak force. Particles with a non-zero
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weak charge can interact with the weak force through the exchange of intermediate vector
bosons, such as the W and Z particles.

2.6 Lattice QCD

Lattice QCD (Quantum Chromodynamics) is a theoretical and computational approach for
studying the strong interaction between quarks and gluons, which make up the protons and
neutrons in atomic nuclei. It is a non-perturbative method that involves discretizing space-
time into a lattice and using Monte Carlo simulations to calculate the properties of hadrons
and other bound states of quarks and gluons. The results of lattice QCD calculations are
compared with experimental data to validate and improve our understanding of the strong
nuclear force and the structure of matter.

In lattice QCD, spacetime is discretion into a four-dimensional grid or lattice, with
each point on the lattice representing a location in spacetime. The lattice is used as a
regularization of the continuous spacetime, allowing us to perform numerical computations
on a finite, discrete set of points.

2.7 Optical Theorem

The optical theorem in quantum field theory states that the imaginary part of the forward
scattering amplitude is equal to the total cross section for the incoming particles to scatter
into all possible final states. This theorem provides a relationship between the scattering
amplitude and the total cross section and is a fundamental result in the study of particle
interactions in high-energy physics. The theorem has applications in a variety of physical
processes, including deep inelastic scattering and the calculation of total cross sections in
particle colliders.

There are two matted to calculate theoretically the SM contribution to aµ one of them
is lattice QCD and the other is theory initiative (TI) matted, in theory initiative matted
we use the optical theorem.
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Chapter 3

Theoretical Calculation of Muon
Anomaly and Comparison with
Experimental Value

3.1 Magnet Moment of Muon due to Spin

Spin magnetic moment, also known as intrinsic magnetic moment, is a measure of the
magnetic field produced by an object’s intrinsic angular momentum or "spin." It arises
from the magnetic properties of an object’s constituent particles and is proportional to
the magnitude of its spin. The spin magnetic moment of an object is independent of its
orbital motion and is a fundamental property. The magnetic moment µ⃗ of an elementary
particle follows,

µ⃗ = g
q

2mS⃗. (3.1.1)

In this equation, the symbol "g" stands for the gyromagnetic ratio [1]. The main
challenge is to determine the accurate value of ”g”.

3.1.1 Theoretical Approach by Dirac for Determining the Gy-
romagnetic Ratio of Electron

Dirac’s theoretical approach to determining the gyromagnetic ratio of a lepton involved
using his theory of quantum mechanics to calculate the relationship between the magnetic
moment and the spin of the particle.
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Figure 3.1.1: Tree level interaction of electron with external magnetic field [16].

In this part, Gaussian units (also known as Gaussian system of units, are a system
of physical units based on the cgs system of units) are adopted. The Dirac equation is
a first-order derivative form of the Schrodinger equation that takes into account special
relativity and treats space and time symmetrically. The equation is derived from the
relativistic energy-momentum relationship: E2 = (pc)2 +(mc2)2, leading to the expression
of the Hamiltonian,

H =
(
(cp)2 +

(
mc2

)) 1
2 . (3.1.2)

Dirac discovered a representation using a set of matrices that fulfill the following condition:

H = c−→γ · −→p + γ0mc2, (3.1.3)

where,
−→γ =

 0 −→σ i

−→σ i 0

 , γ0 =
I 0

0 −I

 . (3.1.4)

The 2 × 2 identity matrix is denoted as I and the Pauli spin matrices are represented
byσi where i takes values 1, 2 and 3. The Dirac equation is obtained by representing the
variables E and −→p as operators: −→p →

−→
P = −iℏ

−→
∇ and E → iℏ ∂

∂t
,

iℏ
∂ψ(t)
∂t

=
(
c−→γ ·

−→
P + γ0mc2

)
ψ(t), (3.1.5)

where,

ψ(t) = ψe−iEt/ℏ. (3.1.6)
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Eq. (3.1.5) can be written more compactly as,

(
iℏγµ∂µ − γ0mc

)
ψ(t) = 0. (3.1.7)

where,
∂ = 1

c

∂

∂t
and ∂i = ∂

∂xi
. (3.1.8)

When there is a magnetic field described by the potential Aµ = (A0,
−→
A ), the Hamilto-

nian in Eq. (3.1.3) become,

H = c
(−→γ · (

(−→
P − q

−→
A/c

))
+ γ0mc2 + qA0. (3.1.9)

Eq. (3.1.5) implies,

iℏ
∂ψ(t)
∂t

=
(
c−→γ · −→π + γ0mc2 + qA0

)
ψ(t). (3.1.10)

using Eq. (3.1.6),

Eψ =
(
c−→γ · −→π + γ0mc2 + qA0

)
ψ(t), (3.1.11)

where −→π = −→
P − q

−→
A/c .

And, the object ψ is composed of four components and can be expressed using two
objects each having two components,

ψ =
χ
Φ

 , (3.1.12)

Eq. (3.1.11) becomes,
E −mc2 − qA0 −c−→σ · −→π

−c−→σ · −→π E +mc2 + qA0

χ
Φ

 =
0

0

 , (3.1.13)

which implies,χ(E −mc2 − qA0) − cΦ−→σ · −→π (E +mc2 + qA0)Φ− (c−→σ · −→π )χ

(E −mc2 − qA0)χ− c−→σ · −→π Φ = 0, (3.1.14)
(E +mc2 + qA0)Φ− (c−→σ · −→π )χ = 0. (3.1.15)
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Eq. (3.1.15) gives,

Φ =
(

c−→σ · −→π
(E +mc2 + qA0)

)
χ, (3.1.16)

When operating at slow speeds, the value of E+mc2 is approximately equal to 2mc2, and
as the energy from the field interaction is small compared to the rest mass, qA0 is less
than mc2. The outcome is that,

Φ ≈

 −→σ · −→π
2mc+ qA0

c

χ, (3.1.17)

≈ 1
2mc (−→σ · −→π )

(
1 − qA0

2mc

)
χ. (3.1.18)

Putting Eq. (3.1.18) in Eq. (3.1.14) the new equation is,

E ′χ =
{

1
2mc(−→σ .−→π )(−→σ .−→π )

(
1 − qA0

2mc

)
+ qA0

}
χ, (3.1.19)

where E ′ = E −mc2. As we know the identity, (−→σ · −→α )(−→σ ·
−→
β ) = −→α ·

−→
β + i−→σ · −→α ×

−→
β

and −→π × −→π = q
c
∇(−→A · −→p ) + q2

c2
−→
B = iqh

c

−→
B

This result can be obtained by using the left hand side to operate on a spinor Φ,
utilizing the definition of −→π , and remembering that −→

∇ ×
−→
A = −→

B ,


(−→
P − q

−→
A/c

)2

2m − qℏ
2mc

−→σ ·
−→
B + qA0

χ = E ′χ. (3.1.20)

The Hamiltonian is then,

H =

(−→
P − q

−→
A/c

)2

2m − qℏ
2mc

−→σ ·
−→
B + qA0. (3.1.21)

The term that describes the way in which the magnetic field and the magnetic moment
of the spin interact is,

H = −−→µ ·
−→
B = −g qℏ

2mc

−→σ ·
−→
B

2 , (3.1.22)

Comparing Eq. (3.1.21) to Eq. (3.1.22) leads to,

g = 2. (3.1.23)
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The above derivation follows sections of [16]. So, first, Dirac theoretically predicted g=2."

3.2 Anomaly in the Gyromagnetic Ratio

As Quantum Electrodynamics (QED) evolved, scientists made a remarkable discovery: the
magnetic moment of fundamental particles, denoted by the symbol "g" does not precisely
equal 2, as initially expected. Instead, it deviates from this value by a certain amount,
symbolized as "2al," where "al" is termed the magnetic moment anomaly. In simpler terms,
”al” quantifies how much ”g” differs from the anticipated 2, and you can express this as
the equation: g = 2(1 + al). To calculate the anomaly, one can easily find it using the
formula al = (g− 2)/2 [2]. But why does this anomaly even occur? The root cause lies in
radiative corrections, which emerge due to interactions between elementary particles and
virtual particles, particularly photons, within the quantum vacuum. These interactions
cause changes in the way elementary particles relate to photons. Essentially, quantum
fluctuations induced by these virtual particles influence the value of "g" causing it to
deviate from the expected 2.

In 1948, physicist Julian Schwinger embarked on a groundbreaking journey by employ-
ing Quantum Electrodynamics to compute the magnitude of this correction. His work
unveiled a precise increase in "g" by a specific fraction, α/π, with α representing the fine-
structure constant. This finding underscores the profound impact of quantum fluctuations
resulting from interactions with virtual particles on the magnetic moment of particles [17].

3.3 Theoretical Calculations of aµ
The estimation of the aµ within the SM framework is determined by adding up all the
contributions from every component of the SM.

Figure 3.3.1: Different type of diagrams of SM particle contributions to aµ [1].
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aSM
µ = aQED

µ + aEW
µ + aHV P

µ + aHLBL
µ , (3.3.1)

The anomaly aµ include, aQED
µ from electromagnetic interactions, aEW

µ from electro-weak
interactions, aHV P

µ from hadronic vacuum polarization, and aHLBL
µ from hadronic light-

by-light (HLbL) scattering, Feynman diagram of such processes are shown in Fig. 3.3.1.

3.3.1 Quantum Electrodynamics Contributions

The anomaly aQED
µ include all contributions from photons and leptons.

3.3.1.1 The Anomaly of a Charged Lepton from QED Beyond the Tree Level

Consider the class of diagrams ,

Figure 3.3.2: The circle indicated the sum of all amputed lowest-order electron-positron
vertex corrections [18].

we will call this sum of vertex diagrams −ιeΓµ,

iM = ū(p′)Γµu(p)iη
µν

q2 ū(k′)ieγµu(k). (3.3.2)

Our goal is to find Γµ is a function of γµ, pµ, p′µ, �p, �p
′, p2, �p

2, where (�p, �p′, p2, �p
2), are Lorentz

scalar. Using Dirac equation �pu(p) = mu(p), so Γµ (γµ, pµ, p′µ,m, e).

Γµ = γµA(p, p′) + (pµ + p′µ)B(p, p′) + (p′µ − pµ)C(p, p′). (3.3.3)

Using ward identity qµΓµ = 0,

�q(p, p
′)A+ q(p, p′)B + q (p′ − pµ)C = 0, where q = p− p′, (3.3.4)
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q · (p+ p′) = (p− p′) (p+ p′) = p′2 − p2 = m2 −m2 = 0. (3.3.5)

it means that the coefficient of B is zero, and note that we will find all the values between
ū(p′) and u(p),

ū(p, p′) �q u(p, p′) = ū(p′) (p′ − p)u(p), (3.3.6)
ū(p, p′) �q u(p, p′) = ū(p′) (m−m)u(p), (3.3.7)
ū(p, p′) �q u(p, p′) = 0. (3.3.8)

So first and second term is zero in the Eq. (3.3.3) which implies,

q · (p− p′) = −q2 =⇒ p+ q = p′. (3.3.9)

by squaring,

p2 + q2 + 2pq = p′2 =⇒ q2 + 2pq = 0. (3.3.10)

if p, q is consider in rest frame of the incoming particle, then,

q2 + 2pq = 0 this implies C = 0, (3.3.11)

so,

Γµ = γµA+ (pµ + p′µ)B. (3.3.12)

Gordon identity,

ū(p′)γµ u(p) = ū(p′)
[
P µ + P ′µ

2m + i
∑µν qν

2m

]
u(p), (3.3.13)

the second term in R.H.S gives,

ū(p′) i
∑µν qν

2m u(p) = ū(p)
(
i

2m

)(
i

2

)
ū(p′) [γµ.γν ] (p′

ν − pν)u(p), (3.3.14)

= − 1
4mū(p′) ((γµγν − γνγµ) p′

ν − (γµγν − γνγµ) pν)u(p),

= − 1
4mū(p′) ((2ηµν − 2γνγµ) p′

ν − (2ηµν − 2γνγµ) pν)u(p),

Use identity to make ��p
′and �p because we can find ū(p′)�p , and �pu(p), when we use Dirac

16



equation,

ū(p′) i
∑µν qν

2m u(p) = − 2
4mū(p′) [p′µ −mγµ] − [mγµ − pµ]u(p), (3.3.15)

= − 2
4mū(p′) [(p′µ + pµ) − 2mγµ]u(p), (3.3.16)

From Eq. (3.3.14) and Eq. (3.3.16) we have,

p′µ + pµ = γµ − i
∑µν qν

2m , (3.3.17)

put Eq. (3.3.17) in Eq. (3.3.12) we have,

Γ µ(p′, p) = γµF1(q2) + i
∑µν qν

2m F2(q2), (3.3.18)

F1(q2) = A and F2(q2) = B are called form factors, where, F1(q2) = 1, and F2(q2) =
0, for least order, q → 0, lets start from the static potential, the external magnetic field,

∆Hint =
∫
d3x eAcl

µJ
µ, where Jµ = ψ̄(x)γµψ(x). (3.3.19)

The Feynman amplitude will be given for this process,

iM(2π) δ(p′
1 − p1) = −ieū(p′)γµu(p)Acl

µ (p′ − p), (3.3.20)

for all vertex convection γµ = Γµ, For static vector potential Acl
µ (x) = (0, A⃗),

iM =
[
ū(p′)

(
γiF1(q2)

)
+ i

∑iν qν

2m F2(q2)
]
u(P )A∼i

cl (q), (3.3.21)

u(k) = k +m√
2m (E +m)

u(0) =


√

(E+m)
2m

ϕ(0),
σ⃗.⃗k√

2m(E+m)
ϕ(0)

 , (3.3.22)

according to Dirac equation, ϕ(0) is a two component spinor, when p, p′ and q are so small
as compared to mass of the electron.

As V (x) = − < µ⃗ > ·B⃗(x). For static magnetic field the vector potential is, Acl
µ (x) =(

0, ⃗A(x)
)
,
(
where, Ãcl

µ (q⃗) is the fourier transform of Acl
µ (x)

)
,

iM = ieū(p′)
[
γiF1(q2) + i

σµν

2mqνF2(q2)
]
u(p)Ãcl

µ (q⃗), (3.3.23)
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u(k) = ��k +m√
2m (E +m)

u(0) =


√

(E+m)
2m

ϕ(0)
σ⃗.⃗k√

2m(E+m)
ϕ(0)

 , (3.3.24)

for spin 1/2, ϕ(0) =
1

0

 , and for spin −1/2, ϕ(0) =
0

1

, and as we know γ0 =
I 0

0 I

 , and γi = 0 σi

−σi 0

 , first of all we will compute the first term of Eq. (3.3.23),

ū(p′)γiu(p) = u†(p′)γ0γiu(p) = u†(p′)
 0 σi

−σi 0

u(p), (3.3.25)

u(p′)γ′u(p) =
 ϕ′(0)

√
E+m

2m
ϕ′(0)

−→σ .−→p ′√
2m

E+m

 0 σi

σj 0



√

E+m
2m

ϕ(0)
−→σ .

−→
k√

2m
E+m

ϕ(0)


= 1

2m

√E +m

E ′ +m
ϕ†′(0)−→σ .−→p ′σjϕ(0) +

√
E ′ +m

E +m
ϕ†′(0)σj−→σ .−→p ϕ(0)

 (3.3.26)

for E = E ′ in the non-relativistic term order of p2,

u(p′)γju(p) = 1
2m(ϕ†′(0)−→σ .−→p ′σjϕ(0) + ϕ†′(0)σj−→σ .−→p ϕ(0)), (3.3.27)

Using σiσi = δij + iϵijkσk,

ū(p′)γiu(p) = 1
2mϕ′†(0)

(
σiσip′j + σiσjpj

)
ϕ(0), (3.3.28)

= 1
2mϕ′†(0) (p+ p′)i + iϵijkσk

(
p′j − pj

)
ϕ(0), (3.3.29)

= ϕ′†(0)
(

− i

2mϵijkqiσk
)
ϕ(0) + · · · . (3.3.30)

Now compute the second term of Eq. (3.3.23),

ū(p′)σiνqνu(p) = ū(p′)Σiju(p) + · · · , where Σij = i

2
[
γi, γj

]
= ϵijk

σk 0
0 σk

 ,(3.3.31)
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i

2mū(p′)σiνqνu(p) = i

2mū(p′)Σijqju(p) + · · · , (3.3.32)

= i

2mu†(p′)
I 0

0 I

σk 0
0 σk

u(p)ϵijk + · · · . (3.3.33)

where,

u(p) =


√

(E+m)
2m

ϕ(0),
σ⃗.p⃗√

2m(E+m)
ϕ(0)

 , because the upper exponent is linear inq, and E = E ′ = m,

(3.3.34)
Eq. (3.3.33) implies,

i

2mū(p′)σiνqνu(p) = i

2mϕ′†(o)
√

(E +m)(E ′ +m)
2m σkϕ(0)ϵijk(−qj) + · · · , (3.3.35)

√
(E+m)(E′+m)

2m
=1,

ū(p′)σiνqνu(p) = −i
2mϕ′†(o)σkϕ(0)ϵijk(qj) + · · · . (3.3.36)

Now substituting Eq. (3.3.30) and Eq. (3.3.33) in Eq. (3.3.23) (in the Feynman amplitude
formula), which implies,

iM = −ie (2m)ϕ′†(o)
[
− 1

2mσk (F1(0) + F2(0))
] (
ϕ(0)

[
iϵijkqjÃ

i
cl(q⃗)

])
. (3.3.37)

If, B⃗(x) = ∇⃗ × A⃗(x), then the Fourier transform of B⃗(x), will be as,

Bk(q) = iϵijkqjÃ
i
cl(q), (3.3.38)

iM = −ie(2m)ϕ′†(0)
[
− 1

2mσk (F1(0) + F2(0))
] (
ϕ(0)B̃k(q)

)
, (3.3.39)

V (x) = − < µ̄ > ·B⃗(x), (3.3.40)

< µ̄ > = e

2m2 [F1(0) + F2(0)]ϕ′†(o)σ2ϕ(0), (3.3.41)

as we know that < µ̄ >= e
2m
gS⃗,where S⃗ = ϕ′†(o)σ

2ϕ(0), and g = 2 [F1(0) + F2(0)] , also
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we know that F1(0) = 1 so,

g = 2 [1 + F2(0)] , (3.3.42)

F (0) = g − 2
2 . (3.3.43)

This calculation is followed [18].

The Electron Vertex Function: Evaluation

To calculate one-loop contribution to e− vertex function,

Figure 3.3.3: Feynman diagram of one-loop contribution to e− vertex function [18].

Applying the Feynman rules we find that Γµ = γµ + δΓ µ where,

ū(p′)δΓµu(p) =
∫
ū(p′)(ieγν) i (��k +m)

k′2 −m2 + iϵ
γµ (��k +m)
k2 −m2 + iϵ

(ieγρ)u(p) −iη
(k − p)2 + iϵ

d4k

(2π)4 ,

=
∫ (i)(ie)2(−i)u(p′)γν (��k +m) γµ (��k +m) γν u(p)

(k′2 −m2 + iϵ) (k2 −m2 + iϵ)
[
(k − p)2 + iϵ

] d4k

(2π)4 , (3.3.44)

= 2ie2
∫ d4k

(2π)4
u(p′) [��kγµ

��k′ +m2γµ − 2m (k + k′)µ]u(p)[
(k − p)2 + iϵ

]
(k′2 −m2 + iϵ) (k2 −m2 + iϵ)

, (3.3.45)

Feynman parametrization method to solve the integral,

1
AB

=
∫ 1

0

dx

[xA+ (1 − x)B]2
=
∫ 1

0

dx

[x (A−B) +B]2
, (3.3.46)
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let x(A−B) +B = t, then dt = (A−B) dx,

1
AB

= 1
A ·B

∫ B

A

dt

t2
=
∫ 1

0

dx dyδ(x+ y − 1)
[xA+ yB]2

, (3.3.47)

generally,

1
A1 · A2 · A3 · · ·An

=
∫ 1

0

dx1dx2dx3 · · · dxnδ (∑xi − 1) (n− 1)!
[x1A1 + x2A2 + x3A3 + · · · xnAn]n , (3.3.48)

which implies,

1[
(k − p)2 + iϵ

]
(k′2 −m2 + iϵ) (k2 −m2 + iϵ)

=
∫ 1

0
dxdydz δ(x+ y + z − 1) 1

D3 ,

where,

D = x
(
k2 −m2

)
+ y

(
k′2 −m2

)
+ z (k − p)2 + (x+ y + z) iϵ, (3.3.49)

as x+ y + z = 1, k′2 = k2 + q2 + 2k.q and (k − p)2 = k2 + p2 − 2k.p this implies,

D = xk2 − xm2 + y
(
k2 + q2 + 2k.q

)
− ym2 + z

(
k2 + p2 − 2k.p

)
+ iϵ, (3.3.50)

= k2 − 2k. (yq − zp) + yq2 + zp2 − (x+ y)m2 + iϵ, (3.3.51)

last expression depend on k2and k we introduce a variable l so make it complete square.
Let,

l = k + yq − zp, (3.3.52)

l2 = k2 + 2k · (yq − zp) + y2q2 + z2p2 − 2yzp · q, (3.3.53)
l2 −D = l2 −D = k2 + 2k · (yq − zp) + y2q2 + z2p2 − 2yzp · q (3.3.54)

−
(
k2 + 2k · (yq − zp)

)
+ yq2 + zp2 − (x− y)m2 + iϵ, (3.3.55)

= y (y − 1) q2 + z (z − 1) p2 − 2yzp · q − (x+ y)m2 + iϵ, (3.3.56)

as x+ y + z = 1 =⇒ x+ y = 1 − z and y − 1 = −(x+ z) implies,

l2 −D = −y (x+ z) q2 + z (z − 1))m2 + (1 − z)m2 − 2yzp · q + iϵ, (3.3.57)
= −y (x+ z) q2 + z2m2 − zm2 +m2 + zm2 − 2yzp · q + iϵ, (3.3.58)
= −y (x+ z) q2 + (1 − z)2 m2 − 2yzp · q + iϵ, (3.3.59)
= −yxq2 − yzq2 + ((1 − z)m2 − 2yzp · q + iϵ, (3.3.60)
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using q2 + 2p · q = 0 so p · q = −q2

2 which implies,

l2 −D = −yxq2 − yzq2 + (1 − z)2 m2 + yzq2 + iϵ, (3.3.61)
l2 −D = −yxq2 + ((1 − z)m2 + iϵ, (3.3.62)
l2 −D = −yxq2 + ((1 − z)m2 + iϵ, (3.3.63)

D = −l2 − yxq2 + ((1 − z)m2 + iϵ, (3.3.64)
D = l2 − ∆ + iϵ, (3.3.65)

where ∆ ≡ −xyq2 + (1 − z)2m2.
Since the denominator is even function of l any integration of the form

∫ d4l
(2π)4

lµ

D3 = 0,
if µ ̸= ν it is also symmetric under the axiom of µ and ν, then symmetry require it must
be proportional to ηµν ,

∫ d4l

(2π)4
lµlν

D3 = 0, if µ ̸= ν, (3.3.66)

this implies,

∫ d4l

(2π)4
lµlν

D3 =
∫ d4l

(2π)4
ηµν

D3 ρ =
∫ d4l

(2π)4
ηµν

D3 (1
4 l

2), (3.3.67)

we will use this formula ,to solve the integral of Eq. (3.3.45) we simplify the numerator
of Eq. (3.3.45) first,

nomerator = ū(p′)
[
��kγµ

��k′ +m2γµ − 2m(k + k′)µ
]
u(p), k′ = k + q, and l = k + yq − zp,

= ū(p′)
[
(��l − y�q + 2�p)γ

µ(��l + �q − y�q + z�p) +m2γµ − 2mqµ − 4m(l − yq + zp)µ
]
u(p),

= ū(p′)[��lγµlν + ��lγµ(��l − y�q − z�p) + (−y�q + z�p)γ
µ
��l((1 − y)�q + z�p) +m2γµ (3.3.68)

−2m(qµ − 2yqµ − 2lµ + 2pzµ]u(p), (3.3.69)

The second term is in the form
∫
dnl lµ

D3 = 0, at the end it will be vanish so put here zero,

= ū(p′)[��lγµlν + 0 + (−y�q + z�p)γ
µ
��l((1 − y)�q + z�p)

+m2γµ − 2m(qµ − 2yqµ + 2pzµ)]u(p), (3.3.70)
= ū(p′)[��lγµ

��l + (−y�q + z�p) γ
µ ((1 − y)�q + 2�p) +m2γµ

−2m(qµ − 2yqµ + 2zpµ]u(p), (3.3.71)

because of lengthy calculation we simplify very term of the of the upper equation individ-
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ually, the first term is,

��lγµ
��l = lαlβγ

αγµγβ,= lαlβγ
α(2ηµβ − γβγµ), (3.3.72)

= lαlβ
(
γα2ηµβ − γαγβγµ

)
,= 2lαlµγαl2 − l2γµ (3.3.73)

= 21
4η

µνγαl2 − l2γµ, as lµlν = 1
4η

µν ,= 1
2 l

2γµ − l2γµ,= −1
2 l

2γµ (3.3.74)

Thus we have, numerator,

= ū(p′){−1
2γ

µl2 + (−y�q + z�p) γ
µ ((1 − y)�q + z�p) (3.3.75)

+m2γµ − 2m(qµ − 2yqµ + 2zpµ]u(p),

lets take the second term of Eq. (3.3.75) and simplify it,

ū(p′) [(−yq′ + z�p) γ
µ ((1 − y)�q + z�p)]u(p) (3.3.76)

= ū(p′) [(−yq′ + z�p) γ
µ ((1 − y)�q +mz)]u(p), (3.3.77)

= ū(p′) ((−y − z) �q +mz) γµ ((1 − y)�q +mz)u(p), (3.3.78)
= ū(p′) ((x− 1) �q +mz) γµ ((1 − y) �q +mz)u(p), as x+y+z=1 (3.3.79)
= ū(p′)

(
(x− 1) (1 − y)�qγ

µ
�q +mz (x− 1) �qγ

µ +mz (1 − y) γµq +m2z2γµ
)
u(p),

�qγ
µ
�q = �

��* 0
2qλ

�q − γµq2, so,

ū(p′)[(−yq′ + z�p) γ
µ ((1 − y)�q + z�p)]u(p),

= ū(p′)[(x− 1) (1 − y)
(
−γµq2

)
+mz (x− 1) �q

γµ +mz (1 − y) γµq +m2z2γµ]u(p). (3.3.80)

Now we are simplifying the second term of the upper Eq. (3.3.80),

ū(p′) �qγ
µu(p) = ū(p′) q (p′ − �p) γ

µu(p), (3.3.81)
= ū(p′) (mγµ − �pγ

µ)u(p), (3.3.82)
= ū(p′) (mγµ − 2pµ + γµ

�p) u(p), �pγ
µ = 2pµ − γµ

�p (3.3.83)
= ū(p′) (2mγµ − 2pµ) u(p), (3.3.84)

which implies,

�qγ
µ = 2mγµ − 2pµ = 2 (mγµ − pµ) , (3.3.85)
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Eq. (3.3.80) follows,

ū(p′) [(−yq′ + z�p) γ
µ ((1 − y)�q + z�p)]u(p) = γµ

(
(1 − x) (1 − y) q2 +m2z2

)
+2mz (1 − y) qµγµ + (x+ y − z) �qγ

µ,

so,

ū(p′) [(−yq′ + z�p) γ
µ ((1 − y) �q + z�p)]u(p) (3.3.86)

= γµ
(
(1 − x) (1 − y) q2 +m2z2

)
+ 2mz (1 − y) qµγµ + (x+ y − z) �qγ

µ,(3.3.87)

x+ y + y = 1. The second and third term of Eq. (3.3.75),

ū(p′)
{
(−y�q + z�p) γ

µ ((1 − y) �q + z�p) +m2γµ
}
u(p), (3.3.88)

= ū(p′)
[
γµ
{
(1 − x) (1 − y) q2 +m2

(
−2z − z2

)}
+ 2mz (1 − y) qµ + 2mz (1 + z) pµ

]
u(p),

The first two simplification in the numerator is,

ū(p′)
[
−1

2γ
µl2 + (−y�q + z�p) γ

µ ((1 − y) �q + z�p) +m2γµ − 2m (qµ − 2yqµ + 2zpµ)
]
u(p),

(3.3.89)
After combining the last two terms and performing a little bit of simplification, the ex-
pression has been modified

numerator = ū(p′)[γµ
[
−1

2 l
2 + (1 + x) (1 − y))q2 +

(
1 − 2z − z2

)
m2
]

+mz (z − 1) (p′µ − pµ)

+m (2 − z) ((y − x) qµ]u(p), (3.3.90)

△ = −xyq2 +(1−z)2m2, is even under the exchange of x and y, and when we perform inte-
gral at last, the last term in the upper expression become zero because

∫
dxdy (x−y)

even funtion of (xy) =
0, so,

numerator = ū(p′
[
γµ
{

−1
2 l

2 + (1 + x) (1 − y) q2 +
(
1 − 2z − z2

)
m2
}

+mz (z − 1) (p′µ − pµ)
]
u(p),

use garden identity ū(q2)γµu(q1) = ū(q2)
{

p′µ−pµ

2m
+ ισµνqν

2m

}
u(q1),

numerator = ū(p′[γµ
{

−1
2 l

2 + (1 + x) (1 − y) q2 +
(
1 − 2z − z2

)
m2
}

+
ισµνqν

2m 2mz (z − 1)]u(p), (3.3.91)
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put the numerator in the following equation,

ū(p′)δ Γµu(p) = 2ιe2
∫ dl4

(2π)4

∫ 1

0
dxdydzδ(x+ y + z − 1) 1

D3 × numerator, (3.3.92)

= 2ιe2
∫ dl4

(2π)4

∫ 1

0
dxdydzδ(x+ y + z − 1) 1

D3

×ū(p′
[
γµ
{

−1
2 l

2 + (1 + x) (1 − y) q2 +
(
1 − 2z − z2

)
m2
}

+ ισµνqν

2m 2mz (z − 1)
]
,

as D = l2 + △ + iϵ , where △ = −xyq2(1 − z)2m2,as q2 < 0 implies △ > 0.
wick rotation l0 → lE = −il0, lE = (il0, lι)

Figure 3.3.4: The contour of the l0 integration can be rotated as shown [18].

ū(p′)δ Γµu(p) = 2ie2
∫ dl4

(2π)4

∫ 1

0
dxdydz

∫ d4lE
(4π)4 (− − − − −) , (3.3.93)

We need to evaluate integration of the kind
∫ dl4

(2π)4
1

(l2−△)m , and
∫ dl4

(2π)4
l2

(l2−△)m , by perform-
ing wick rotation,

∫ dl4

(2π)4
1

(l2 − △)m = ι

(−1)m

1
(2π)4

∫
d4lE

1
(l2E + △)m , (3.3.94)
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d4lE = dΩ3l
3dlE,

∫ dl4

(2π)4
1

(l2 − △)m = i (−1)m

(2π)4

∫
dΩ3

∫ ∞

0
dlE

l3

(l2E + △)m , (3.3.95)

∫
dΩ3is unit sphere equal to 2π2,

∫ dl4

(2π)4
1

(l2 − △)m = i (−1)
(2π)4

(
2π2

) ∫
dlE

l3

(l2E + △)m , (3.3.96)

= i (−1)m

8π2

∫
ldElE

l2E
(l2E + △)m ,=

i (−1)m

8π2

∫ ∞

0

2
2 lEdlE

l2E
(l2E + △)m ,

let α = l2E + △, =⇒ dα = 2lEdlE,

∫ dl4

(2π)4
1

(l2 − △)m = i (−1)m

2 (2π)4

∫ ∞

△

(α− △)
αm

dα, (3.3.97)

= 2i (−1)m

(2π)4
1

(m− 1) (m− 2)
1

△m−2 ,

and we can write the
∫ dl4

(2π)4
l2

(l2−△)m by performing wick rotation as,

∫ dl4

(2π)4
l2

((l2 − △) = i(−1)m−1

(2π)4

∫
dlE

l2E
(l2E + △)m , (3.3.98)

= i(−1)m−1

4π2
2

(m− 1) (m− 2) (m− 3)
1

△m−3 , (3.3.99)

the upper equation divergent at m = 3.
We have two form factors, one F1(q2)andother one F2(q2). it doesn’t give contribution

to F (q2
2) because F (q2) does not involve integration of

∫
d4l l2

(−−−−)type , so F (q2) is actually
divergent we will introduce a perturb in p. so that the last integration gives us a finite
answer. 1

(k−p)2+iϵ
, in this photon propagator K take all the value from 0 to . we will keep

up to some momentum k′, and ignore photons of higher momentum. so,

1
(k − p) + iϵ

−→
(

1
(k − p) + ιϵ

− 1
(k − p)2 − Λ2 + iϵ

)
, (3.3.100)

this implies that,

∫ dl4

(2π)4
1

(l2 − △)m =
∫ dl4

((2π)

(
1

(l2 − △)3 − 1
(l2 − △Λ)3

)
, (3.3.101)
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where △Λ = −xyq2 + (1 − z)2m2 + z△,

∫ dl4

(2π)4
1

(l2 − △)m = i

(2π)4 log

(
△Λ

△

)
+
(
Λ−2

)
· · · . (3.3.102)

The first term is the divergent term contribute to F1(q2).

δF1(q2) −→ δF1(q2) − δF (0), (3.3.103)

F1(0) = 1, when the photon momentum goes to ∞ the integration goes to become di-
vergent. Called ultraviolet divergent at low energy divergent also occur called infrared
divergent,

∫ 1

0
dxdydz

1 − 4z + z2

△(q2 = 0) δ(x+ y + z − 1), (3.3.104)

=
∫ 1

0
dxdydzδ(x+ y + z − 1)1 − 4z + z2

m2 (1 − z)2 , (3.3.105)

=
∫ 1

0
dz
∫ 1−z

0
dy
(∫ 1−z−y

0
dxδ(x+ y + z − 1)

) 1 − 4z − z2

m2 (1 − z)2 , (3.3.106)

=
∫ 1

0
dz
∫ 1−z

0
dy

1 − 4z − z2

m2 (1 − z) , (3.3.107)

=
∫ 1

0
dz
∫ 1−z

0
dy

−2 − (1 − z) (3 − z)
m2 (1 − z)2 , (3.3.108)

=
∫ 1

0
dz
∫ 1−z

0
dy

(
−2

m2((1 − z)

)
+ · · · · · · , (3.3.109)

because of (1 − z)2there is divergent all divergence appear in F1(q2) term. Our are entrust
in F2(q2) correction to the anomalous magnetic moment of electron(any leptons) which is
given by F2(q2) term, the first order correction yo F2(q2). let compute,

F2(q2) = α

2π

∫ 1

0
dxdydz

2m2z (1 − z)
m2 (1 − z)2 − xyq2

, (3.3.110)

F2(q2 = 0) = α

2π

∫ 1

0
dxdydz

2m2z (1 − z)
m2 (1 − z)2 , (3.3.111)
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F2(0) = α

2π

∫ 1

0
dx
∫ 1

0
dz
∫ 1−z

0
dy

2z
(1 − z) , (3.3.112)

= = α

2π

∫ 1

0
2zdz = α

2π

∫ 1

0
2zdz = α

2π , (3.3.113)

= α

2π = g − 2
2 = 0..0011614, (3.3.114)

F2(0) = 0.0011614 (3.3.115)

This outcome is referred to as the Schwinger term, which signifies the first order correction
in QED and is significantly the most substantial radiative correction.

so,

g = 2
(

1 + α

2π

)
= 2 (1 + aµ) (3.3.116)

aµ = 0.0011614, (3.3.117)

This is only the first order correction [18].The higher order correction also contributed
corresponding to the diagram given below.

Figure 3.3.5: 4th order vertex diagrams. There are a total of seven such diagrams, but the
reverse-time versions of diagrams (a) and (c) are not depicted [19].

Figure 3.3.6: : 6th order diagrams. total of 72 diagrams are present and they are catego-
rized into five sets that are gauge-invariant. Examples from each set are represented as
(a) to (e). [19].
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Figure 3.3.7: 8th order diagrams. There are total 891 diagrams [19].

Figure 3.3.8: 10th vertex diagrams. There are total 12672 diagrams [19].
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Figure 3.3.9: Contributions to gµ − 2 from QED units of 10−11 [19].

The total contribution from all possible QED diagrams is,

aQED
µ = 116584718.842(34) × 10−11. (3.3.118)

3.3.2 Electroweak Contribution

All possible one loop contribution are shown in the Fig. 3.3.10.

Figure 3.3.10: One-loop EW Feynman diagrams [19].

The masses bosons have a significant suppressive effect on the EW contributions to
aµ.The value for total aEW

µ is given as [4][20][21],

aEW
µ = 153.6(1.0) × 10−11. (3.3.119)

3.3.3 Hadronic Contribution

In general, data-driven methods can be used to determine the Hadronic vacuum polariza-
tion (HVP) contributions (shows in third diagram in Fig. 3.3.1). Using either data from
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e+ + e− → hadrons measurements or information obtained from Lattice QCD as an input
for dispersion relations.

3.3.4 Data-driven HVP

3.3.4.1 Data-driven Calculation aHV P
µ

The contribution of the hadronic vacuum polarization to the muon magnetic moment can
be estimated using the data on the hadronic cross-section (σhad) and the optical theorem,
at the leading order [4] [22],

aLOHV P = 1
4π

∫ ∞

4m2
π

dsK(s)σhad(s), (3.3.120)

σhad is the bare e+e− → γ∗ → hadrons(γ) cross-section, and the kernel function reads,

K(s) = x2

2
(
2 − x3

)
+ 1 + x

1 − x
x2logx+ (1 + x2) (1 + x)2

x2

(
log(1 + x) − x+ x2

2

)
,

where x = (1 − βµ)/(1 + β)µand βµ = (1 − 4m2
µ/s)1/2. The gµ − 2 Theory Initiative has

suggested the numerical value based on the analyses in Refs [23][24][25],

aLO,HV P
µ = 693.1 ± 4.0 × 10−10. (3.3.121)

There are several data-driven evaluations of aHV P
µ that vary in their handling of the

data and the functional forms of the cross section assumptions made. The DHMZ [26] and
KNT [27] groups utilize the raw cross section directly, while the CHHKS group utilizes a
different approach by evaluating the contributions from the π0γ, 2π, and 3π channels with
additional restrictions from analyticity and unitarity [28]. The results from these groups
have been combined to account for differences among the groups and tensions between data
sets. This results in aLOHV P

µ = 6931(40) × 10−11 [4], aNLOHV P
µ = −98.3(7) × 10−11[24],

and aNLOHV P
µ = 12.4(1) × 10−11 [29], yielding the total HVP contribution of [4],

aHV P
µ = 6845 (40) × 10−11. (3.3.122)

3.3.4.2 HVP from Lattice QCD

The findings of the distinct flavor contributions from different lattice groups and the
overall estimation of aLOHV P

µ are illustrated in Figure 3.3.11. A conservative method
is used to combined the results from the ETM18/19 [30], [31] Mainz/CLS − 19 [32],
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FHM−19 [33] ,[34], PACS−19 [35], RBC/UKQCD−18 [36], and BMW −17 [37] into
an average obtained from the lattice results in reference [36], with a value of aLOHV P

µ =
711.6(18.4) × 10−10blue band show in Fig. 3.3.11. The range between the data-driven
approaches and the no-NP scenario is represented by the green band on these results.
However, the errors are typically too big to draw any firm conclusions. Recently, the
results of two analyses, LM − 20 and BMW − 20, found the values of aLOHV P

µ to be
714(30) × 10−10 [36] and 707.5(5.5) × 10−10 respectively [37]. The latter is the first sub-
percent precision lattice result for aLOHV P

µ . It is below 1.3σ from the no-NP scenario and
higher then 2.1σ from data-driven result.

Figure 3.3.11: The yellow band signifies a scenario with no new physics. The red squares
represent the results obtained from data-driven calculations of aLOHV P

µ . The grey band in
the middle represents the estimated uncertainty from the Fermilab gµ −2 experiment. The
dark blue filled circles show the results from lattice calculations, which are represented by
the light-blue band [2].
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3.3.5 Data-driven and Dispersive HLbL

There have been many important advancements in the calculations of sub-leading contribu-
tions in a model-dependent manner using up-to-date data-driven and dispersive methods
to find aHLbL

µ [39, 40, 41, 42]. Whenever feasible, hadronic insertions utilize experimental
data as input, but if not available, theoretical calculations of amplitudes are utilized as
an alternative. The HLbL tensor can be expressed as the sum of all intermediate states,
both direct and crossed, such as. Πµνλσ = Ππ0−pole

µνλσ + Ππ−box
µνλσ + Πππ

µνλσ + ... As a result,

aHLbL
µ = aπ0−pole

µ + aπ−box
µ + aππ

µ + ... (3.3.123)

The numbers from the various contributions are added up to create a data-driven, disper-
sive estimate for the total aHLbL

µ is,

aHLbL
µ = 92 (19) × 10−11. (3.3.124)

The result of the NLO HLbL contribution is aNLOHLbL = 2(1) × 10−11[4].

3.4 Comparing Experimental and Theoretical Results

The Brokheven E821 result is [43],

aBNL
µ = 116592091 (63) × 10−11. (3.4.1)

The combined result of Fermilab and BNL is [44],

aExp
µ = aBNL+F NAL

µ = 116592061 (41) × 10−11, (3.4.2)

The SM contribution,

aQED
µ = 116584718.9 (1) × 10−11, (3.4.3)
aEW

µ = 153.6 (1) × 10−11, (3.4.4)
aHV P,LO = 6931 (40) × 10−11, (3.4.5)

aHV P,NNLO
µ = 12.4 (1) × 10−11, (3.4.6)

aHLBL
µ + aHLBL,NLO

µ = 92 (18) × 10−11, (3.4.7)
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The total SM contribution is,

aSM
µ = 116591810 (43) × 10−11, (3.4.8)

Where the hadronic contributions in HVP and HLBL are the predominant sources of
uncertainty. The deviation experimental and SM is,

aExp
µ − aSM

µ = 251 (59) × 10−11. (3.4.9)

which is 4.2σ. As an alternative, a first-principle lattice QCD method has been used to
calculate the HVP contribution [4][45]. Recently, the BMWc calculated the dominant HVP
contribution to the gµ − 2 with high precision, achieving sub-percent accuracy, yielding a
value, (aHV P

µ )BMW , which is larger than (aHV P
µ )T I

e+e− [46]. If we had utilized (aHV P
µ )BMW

instead of (aHV P
µ )T I

e+e− , the difference with aExp
µ would have been reduced to 1.6 standard

deviation. The outcome would be accordingly,

(
aHV P

µ

)
T I
e+e− = 6931 (40) × 10−11. (3.4.10)(

aHV P
µ

)
BMW = 7075 (50) × 10−11. (3.4.11)

1.6σ discrepancy means there is no NP. We called difference between (aHV P
µ )BMW and

(aHV P
µ )T I

e+e− as the new gµ − 2 puzzle, and our work of next chapter is to solve this new
puzzle.
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Chapter 4

Solution of the New Muon g − 2
Puzzle

Here we are going to study how to solve the new muon g−2 puzzle, when (aHV P
µ )T I

e+e− and
(aHV P

µ )BMW are assume to be correct, then we can ask what is missing due to which these
both are differ by 2.1σ from each other, thanks to NP effects, the discrepancy between
(aHV P

µ )T I
e+e− and (aHV P

µ )BMW is expected to be resolved without disrupting the existing
1.6σ discrepancy between (aHV P

µ )BMW and (aHV P
µ )EXP . We don’t consider a direct NP

contribution to ∆aµin this case. In reality, this may only resolve the old gµ − 2 puzzle ,
not the new one. To address the new gµ − 2 puzzle, it is necessary to consider NP that
modifies the e+e− → σhad.

A suggestion has already been made to raise σhad due to an unforeseen missing contri-
bution , in order to improve (aHV P

µ )T I
e+e− and resolve ∆aµ [47, 48, 49, 50, 51]. However, the

required shift in σhad is is not supported by the electroweak fit if
√
s > 1GeV [49]. There-

fore, NP modification of σhad′ will be consider below the GeV scale. While the origin of the
shift in σhad was not specified in [47, 48, 49, 50, 51] . Here we assumed that it was caused
by NP. For the first time, we examine the significant impact of NP on the results of e+e−

and BMWc lattice after categorizing its general characteristics in a model-independent
way.

The dispersion relation is crucial for our analysis to determine (aHV P
µ )T I

e+e− through
σhad. It will be shown that new gµ −2 puzzle cannot be solved in situations where NP only
couples to hadrons. In this case, the value that should be used in the dispersion relation
to calculate the HVP contribution is not the experimental σhad, but rather σhad − ∆σNP

had .
Therefore, by causing negative interference between NP and SM, the discrepancy between
(aHV P

µ )T I
e+e−and (aHV P

µ )BMW might be resolved, that is ∆σNP
had < 0. As we will show later,

the picture shown selects a specific scenario for NP that requires light particles with a
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Figure 4.0.1: possibilities of NP contributions to σhad through FSR ( 1st and 2nd diagrams)
and through a NP tree-level intermediary that is connected to both hadrons and electrons
(3rd diagram).

mass around or less than 1 GeV to interact with SM fermions through a vector current.

Model-independent Analysis

Here we solve the new gµ − 2 puzzle through NP models for this we modify σhad. With
this objective in mind, we present the concept of the dispersion relation,

(aHV P
µ )e+e− = α

π2

∫ ∞

m2
π

ds

s
K(s)ImΠhad(s), (4.0.1)

where K(s) is the kernel function, for
√
s ≫ mµ, K(s) ≈ m2

µ/3s. Photon HVP, Πhad,
includes NP effects Eq. (4.0.1). If NP does not interact with electrons and is not included
in the σhad at the tree-level, Eq. (4.0.1) can be expressed as,

(aHV P
µ )e+e− = 1

4π3

∫ ∞

m2
π0

dsK(s)σhad(s), (4.0.2)

where the impact of vacuum polarization and initial-state radiation is removed, but the
hadronic cross section includes final-state radiation (FSR). Our focus will be on the region
where the hadronic cross section is experimentally established, i.e. where

√
s is greater

than 0.3 GeV. This region makes a larger contribution to the integral in Eq. (4.0.2).
We display in Fig. 4.0.1 how NP can enter σhad. The FSR , first and second diagram

in Fig. 4.0.1 also effects the photon HVP at NLO The NP contaminations in ISR (Initial
State Radiation) are ignored due to the strong limits on the NP coupling to electrons.

Restriction on NP couple to electron are quite strict therefor we ignore NP contami-
nations in ISR. In last diagram in Fig. 4.0.1 NP enter the σhad coupling to electrons and
hadrons at tree-level, at NLO photon HVP is also modifies due to the NP. However, it is
crucial to note that its main contribution to gµ −2 emerges through tree-level shift of σhad.
Therefore, there are two possibilities whether NP couple to both electrons and hadrons or
to electrons alone. We examine these possibilities and there potential to resole the new
gµ − 2 puzzle.
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1. NP Coupled to Hadron Only

The first and second diagrams of Fig. 4.0.1 represent this scenario. Since the scalar QED
estimate for the full photon FSR effect is only 50 × 10−11 [4] [53], well below the difference
between E.q (3.4.10) and E.q (3.4.11), in addition the fact that SM particles couplings
with NP are tightly constrained, in FSR new gµ − 2 puzzle cannot solve through NP
contributions.

2. NP Coupled Both to Electrons and Hadrons

Only subtracted cross-section σhad − ∆σNP
had should be include in Eq. (4.0.2) If NP con-

tributes to hadronic cross-section at the tree-level (last diagram in Fig. 4.0.1). We point
out that if ∆σNP

had < 0, the latter can be larger than σhad, requiring that that negative inter-
ference with the SM is the main factor that causes the NP effect to be substantial. Using
σhad , (aHV P

µ )T I
e+e− has been calculated rather rather than σhad − ∆σNP

had , the theoretical
prediction of aHV P

µ Eq. (4.0.2) is,

(
aHV P

µ

)
e+e−

=
(
aHV P

µ

)T I

e+e−
+
(
aHV P

µ

)
NP

. (4.0.3)

(aHV P
µ )NP describes NP effects at LO and NLO as a result of the NP mediator’s tree-level

exchange see last in Fig.4.0.1 . Instead, only NLO NP effects should cause (aHV P
µ )BMW

to shift. Surprisingly, this scenario might make it possible to match Eq. (4.0.3) with
(aHV P

µ )EXP while maintaining agreement with the BMWc conclusion.

Light New Physics Analysis

We are looking into the possibility of accurately and effectively representing the second
scenario discussed earlier in a clear NP model. Due to the scaling of K(s) to 1/s and the
fact that changes to hadronic cross-section above 1 GeV are not supported by electroweak
precision tests [49], we are focusing on the energy region below 1 GeV, where the e+e− →
π+π− channel makes up the majority of the contribution to hadronic cross-section. This
channel contributes more than 70% to the gµ − 2 value in the SM, which is generated
by hadrons. Scalar couplings interference with the SM vector current is suppressed by
the mass of electron, while pseudo-scalar and axial couplings are not. With this in mind,
our focus is on the exchange of Z ′ “light boson”, which has vector interactions with both
electrons and first-generation quarks, at the tree-level,

LZ′ ⊃ (ge
V ēγ

µe+ gq
V q̄γ

µq)Z ′
µ, (4.0.4)
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where mz′ ≲ 1GeV and q = u, d. The vector form factor of pion can serve as a rep-
resentation of the matrix element associated with the intermediate state involving two
pions,

< π±(p′)|Jµ
em(0)|π±(p) >= ± (p′ + p)µ

F V
π (q2 = (p′ − p)2). (4.0.5)

where Jµ
em = 2

3 ūγ
µu − 1

3 d̄γ
µd is the electromagnetic current. In the limit where ISO-spin

symmetry is present, by taking use of the charge conjugation in-variance, we find,

< π∓|Jµ
em|π± >= − < π±|d̄ γµ d|π∓ >=< π∓|ū γµ u|π± >, (4.0.6)

Consequently, the Z ′ quark current’s matrix element, Jµ
Z′ = gu

V ūγ
µu+ gd

V d̄γ
µd,

< π±(p′)|Jµ
Z′(0)|π∓(p) >= ±(p′ + p)µ × F V

π (q2) × (gu
V − gd

V ), (4.0.7)

contribution to the π+π− amplitude vanishes if the Z ′ interactions in the limit where
ISO-spin symmetry is present , as shown by the equations gu

V = gd
V .

The amplitude when e−e+ → π−π+ through SM particle photon is,

MSM = −ιe2ūγµu
1
q2 · ± (p′ + p)µ

F V
π (q2). (4.0.8)

And the amplitude of the interaction e−e+ → π−π+ through Z ′ NP,

MNP = −ιge
V ūγ

µu
1

q2 −m2
Z′ + imZ′ΓZ′

· ± (p′ + p)µ
F V

π (q2)
(
gu

V − gd
V

)
. (4.0.9)

The combined amplitude,

MSM+NP = MSM +MNP , (4.0.10)

= −ie2ūγµu
1
q2 · ± (p′ + p)µ

F V
π (q2) − ige

V ūγ
µu

1
q2 −m2

Z′ + imZ′ΓZ′
×

± (p′ + p)µ
F V

π (q2)
(
gu

V − gd
V

)
, (4.0.11)

= −iūγµu · ± (p′ + p)µ
F V

π (q2)
e2

q2 +
ge

V

(
gu

V − gd
V

)
q2 −m2

Z′ + imZ′ΓZ′

 , (4.0.12)

lets define K ≡ −ιūγµu · ± (p′ + p)µ F V
π (q2) then,

MSM+Np = K

e2

q2 +
ge

V

(
gu

V − gd
V

)
q2 −m2

Z′ + imZ′ΓZ′

 . (4.0.13)
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and Eq. (4.0.8) =⇒ MSM = K e2

q2 , as cross-section σ is proportional to |M |2,

σSM = K2
∣∣∣∣∣e2

q2

∣∣∣∣∣
2

, (4.0.14)

defining σSM+NP = σSM
ππ + △σNP

ππ , is also proportional to the total amplitude square,

σSM+NP =
∣∣∣MSM+NP

∣∣∣2 , (4.0.15)

σSM+NP = K2

∣∣∣∣∣∣e
2

q2 +
ge

V

(
gu

V − gd
V

)
q2 −m2

Z′ + imZ′ΓZ′

∣∣∣∣∣∣
2

, (4.0.16)

σSM+NP

σSM
= K2

K2

∣∣∣∣∣∣∣∣
e2

q2 + ge
V (gu

V −gd
V )

q2−m2
Z′ +imZ′ ΓZ′

e2

q2

∣∣∣∣∣∣∣∣
2

, (4.0.17)

σSM+NP

σSM
=

∣∣∣∣∣∣1 +
ge

V

(
gu

V − gd
V

)
e2

q2

q2 −m2
Z′ + imZ′ΓZ′

∣∣∣∣∣∣
2

, (4.0.18)

σSM+NP

σSM
=

∣∣∣∣∣∣1 +
ge

V

(
gu

V − gd
V

)
e2

s

s−m2
Z′ + imZ′ΓZ′

∣∣∣∣∣∣
2

, as q2 = s, (4.0.19)

The expression σhad − △σNP
had can be utilized to determine gµ − 2 from both the SM

and NP as described in Eq. (4.0.2). If it is assumed that the discrepancy in the hadronic
cross-section, represented by ∆aµ, is resolved by NP, the result would be,

△aµ = 1
4π3

∫ ∞

sexp

dsK(s)
(
−△σNP

had(0)
)
, (4.0.20)

where sexp ≈ (0.3GeV )2, that is, for the ππ channel, the integration is performed within
the data-driven region.

Now we are going to calculate △σNP
had from Eq. (4.0.19),

σSM+NP
ππ

σSM
ππ

=
∣∣∣∣∣∣1 +

ge
V

(
gu

V − gd
V

)
e2

s

s−m2
Z′ + imZ′ΓZ′

∣∣∣∣∣∣
2

, (4.0.21)

let define and introduce the effective coupling constant ϵ,

ϵ ≡
ge

V

(
gu

V − gd
V

)
e2 , and T ≡ s

s−m2
Z′ + imZ′ΓZ′

, (4.0.22)
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σSM+NP
ππ

σSM
ππ

= |1 + ϵT |2 = (1)2 + (ϵT )2 + 2ϵT,= 1 + ϵ2T 2 + 2ϵT, (4.0.23)

put the value of T,

σSM+NP
ππ

σSM
ππ

= 1 + ϵ2 s2

(s−m2
Z′ + imZ′ΓZ′)2 + 2ϵs

s−m2
Z′ + imZ′ΓZ′

, (4.0.24)

σSM+NP
ππ

σSM
ππ

= 1 + ϵ2s2 + 2ϵs (s−m2
Z′ + imZ′ΓZ′)

(s−m2
Z′ + imZ′ΓZ′) , (4.0.25)

σSM
ππ + △σNP

ππ

σSM
ππ

= 1 + ϵ2s2 + 2ϵs (s−m2
Z′ + imZ′ΓZ′)

(s−m2
Z′ + imZ′ΓZ′)2 , (4.0.26)

σSM
ππ

σSM
ππ

+ △σNP
ππ

σSM
ππ

= 1 + ϵ2s2 + 2ϵs (s−m2
Z′ + imZ′ΓZ′)

(s−m2
Z′ + imZ′ΓZ′)2 , (4.0.27)

1 + △σNP
ππ

σSM
ππ

= 1 + ϵ2s2 + 2ϵs (s−m2
Z′ + imZ′ΓZ′)

(s−m2
Z′ + imZ′ΓZ′)2 , (4.0.28)

△σNP
ππ

σSM
ππ

= ϵ2s2 + 2ϵs (s−m2
Z′ + imZ′ΓZ′)

(s−m2
Z′ + imZ′ΓZ′)2 , (4.0.29)

approximating △σNP
had ≈ △σNP

ππ we find,

△σNP
had(s) ≈ σSM

ππ (s) × 2ϵs (s−mZ′) + ϵ2s2

(s−m2
Z′)2 +m4

Z′γ2
, (4.0.30)

where we introduce the parameter γ ≡ ΓZ′/mZ′ . If channels (Z ′ −→ e+e− and Z ′ −→
π+π−) both are kinematically allowed, then we want to fined γee = ΓZ′→ee

mZ′
and γππ =

ΓZ′→ππ

mZ′
.

γee ≈ (ge
V )2

12π = 2.7 × 10−10
(
ge

V

10−4

)2
, (4.0.31)

up to (me/mZ0)4corrections,
Now we are to going find γππ, as we know decay rate formula is given by,

Γ = S |P |
8πmZ′

|M |2 , (4.0.32)

where S is the statistical factor that correct for double counting for example if a →
b + b + b + c + c S = 1

3!
1
2! = 1

12 , and P is the magnitude of either outgoing momentum,
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but here S=1 (no identical particle). The amplitude of the decay is,

M = < π±(p′)|Jµ
Z′(0)|π∓(p) > εµ, (4.0.33)

M = ± (p′ + p)µ
F V

π (q2)
(
gu

V − gd
V

)
ϵµ, (4.0.34)

|M |2 =
∣∣∣± (p′ + p)µ

F V
π (q2)

(
gu

V − gd
V

)
ϵµ
∣∣∣2 , (4.0.35)

|M |2 =
(
gu

V − gd
V

)2 ∣∣∣F V
π (q2)

∣∣∣2 (p′ + p)µ (p′ + p)ν
ϵµϵν , (4.0.36)

|M |2 =
(
gu

V − gd
V

)2 ∣∣∣F V
π (q2)

∣∣∣ (p′ + p)µ (p′ + p)ν 1
3δij, (4.0.37)

|M |2 = 1
3
(
gu

V − gd
V

)2 ∣∣∣F V
π (q2)

∣∣∣2 (p′ + p)µ (p′ + p)ν
δij, (4.0.38)

(p′ + p)µ (p′ + p)ν
δij = 4P 2, (4.0.39)

|M |2 = 1
3
(
gu

V − gd
V

)2 ∣∣∣F V
π (q2)

∣∣∣2 4P 2, (4.0.40)

|M |2 = 4
3
(
gu

V − gd
V

)2 ∣∣∣F V
π (q2)

∣∣∣2 P 2, (4.0.41)

put Eq. (4.0.41) in Eq. (4.0.32),

Γ = |P |
8πmZ′

4
3
(
gu

V − gd
V

)2 ∣∣∣F V
π (q2)

∣∣∣2 P 2, (4.0.42)

As P = 1
2mZ′

√
[m2

Z′ − (mπ+ +mπ−)2][m2
Z′ − (mπ+ −mπ−)2] but mπ+ = mπ− implies,

P = 1
2mZ′

√[
m2

Z′ − (2mπ)2
]

[m2
Z′ ] = 1

2mZ′

√
m4

Z′ − 4m2
πm

2
Z′ , (4.0.43)

= m2
Z′

2mZ′

√√√√1 − 4m2
π

m2
z′

= mZ′

2

√√√√1 − 4m2
π

m2
z′

(4.0.44)
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put Eq. (4.0.44) in Eq. (4.0.42),

Γ = 1
8πmZ′

4
3(gu

V − gd
V )2

∣∣∣F V
π (q2)

∣∣∣2 mZ′

2

√√√√1 − 4m2
π

m2
z′

mZ′

2

√√√√1 − 4m2
π

m2
z′

2

, (4.0.45)

Γ = 1
8πmZ′

4
3(gu

V − gd
V )2

∣∣∣F V
π (q2)

∣∣∣2 m2
Z′

2 × 4

√√√√1 − 4m2
π

m2
z′


√√√√1 − 4m2

π

m2
z′

2

, (4.0.46)

Γ = 1
8πmZ′

4
3(gu

V − gd
V )2

∣∣∣F V
π (q2)

∣∣∣2 m2
Z′

2 × 4


√√√√1 − 4m2

π

m2
z′

2+1

, (4.0.47)

Γ = (gu
V − gd

V )2mZ′

48π |F V
π (m2

Z0)|2
(

1 − 4m2
π

m2
z′

)3/2

, (4.0.48)

as γππ = ΓZ→ππ′
mZ′

so,

γππ = (gu
V − gd

V )2

48π |F V
π (m2

Z0)|2
(

1 − 4m2
π

m2
z′

)3/2

. (4.0.49)

ρ resonance can enhanced |F V
π (m2

Z0)|2 (normalized to F V
π (0) = 1) up to a factor of 45

[52]. For mZ0 < 2mπ+ ≈ 0.28GeV γ = γee, for mZ′ ∈ [0.3, 1] GeV , γ ≈ γππ. As the tight
bounds on ge

V allow for the safely neglecting of the e+e− channel. The note states that
if γ receives contributions from non-standard model final states, like decays into a dark
sector, it will result in a definite positive change in σhad since these contributions do not
interfere with the SM. As a result, there will be a negative change in ∆aµ, worsening the
discrepancy as indicated by Eq. (4.0.20).
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Figure 4.0.2: σSM
had and △σNP

had for some of the Z ′ model solving new puzzle .

Fig. 4.0.2 shows the profile of the non-standard model contribution (∆σNP
had) to hadronic

cross-section and its comparison with the standard model counter part taken from [54],
for selected values of the parameters in the Z ′ model aimed at resolving the discrepancy
in ∆aµ.The examination shows that Z ′ masses lower than the ρ resonance are indicated, a
negative value of ϵ is needed, while for Z ′ masses above it, a positive value of ϵ is required.

In order to get a positive value of ∆aµ, it is crucial that the interference term in
Eq. (4.0.30) dominates over the resonant effect. Our research shows that the parameters
necessary for the Z ′ model to explain the result can be separated into two regions: i) for
mZ′ values greater than or equal to 0.3 GeV, |ε| is approximately 10−2 and γ is greater
than or equal to 10−3, and ii) for mZ′ values less than or equal to 0.3GeV , |ε| is around
10−2 with no significant restrictions on γ.

Now the region of the Z ′ model’s parameter space that is required to explain ∆aµ will
be examined to see if experimental constraints allow it. For convenience, these can be
categorized into three classes: 1. Semi-leptonic, 2. Leptonic and 3. Hadronic processes,
iso-spin violating observables.
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1. Semi-leptonic Processes

The cross section, represented by σqq, for the reaction e+e− to produce two quarks, has
been accurately measured at LEP II with a precision of a few percent for

√
s ∈ [130, 207]

GeV [55]. Now we are going to find σSM+NP
qq

σSM
qq

for some discussion,

MSM = gegq

q2 v̄γµu qγν q̄, (4.0.50)

as gq = Qqg
ewhere Qq is charge on final state quark and ge = e this implies that gegq =

Qqe
2, photon is the propagator here,

MSM = Qqe
2

q2 v̄γµu qγν q̄, (4.0.51)

lets R ≡ v̄γuqγν q̄
q2 ,

MSM = Qqe
2R. (4.0.52)

For Z ′ the amplitude is,

MNP = ge
V g

q
V

q2 −mZ′ − ιmZ′ΓZ′
v̄γu qγν q̄, (4.0.53)

as q2 ≫ mZ′so the last equation becomes,

MNP = ge
V g

q
V

q2 v̄γu qγν q̄, (4.0.54)

MSM+NP = Qqe
2

q2 v̄γuqγν q̄ + ge
V g

q
V

q2 v̄γuqγν q̄, (4.0.55)

MSM+NP = v̄γuqγν q̄

q2

(
Qqe

2 + ge
V g

q
V

)
, (4.0.56)

MSM+NP = R
(
Qqe

2 + ge
V g

q
V

)
, as definedR ≡ v̄γuqγν q̄

q2 (4.0.57)

As cross-section σ is proportional to amplitude square,

σSM+NP =
∣∣∣R (Qqe

2 + ge
V g

q
V

)∣∣∣2 , (4.0.58)

σSM
qq =

∣∣∣Qqe
2R
∣∣∣2 . (4.0.59)
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Divide Eq. (4.0.57) by Eq.( 4.0.59) implies,

σSM+NP
qq

σSM
qq

=
∣∣∣∣∣R (Qqe

2 + ge
V g

q
V )

Qqe2R

∣∣∣∣∣
2

=
∣∣∣∣∣Qe2 + ge

V g
q
V

Qqe2

∣∣∣∣∣
2

=
∣∣∣∣∣1 + ge

V g
q
V

Qqe2

∣∣∣∣∣
2

, (4.0.60)

σSM+NP
qq

σSM
qq

= (1)2 +
(
ge

V g
q
V

Qqe2

)2

+ 2
(
ge

V g
q
V

Qqe2

)
, (4.0.61)

the factor ge
V gq

V

Qqe2 very small, this implies that,

σSM+NP
qq

σSM
qq

≈ 1 + 2g
e
V g

q
V

e2Qq

. (4.0.62)

The difference from unity in Eq. (4.0.62) must be smaller than 1% [55] leads to ge
V g

q
V >

4.6 × 10−4|Qq| this implies ϵ > 3.3 × 10−3 .

2. Leptonic Processes.

The coupling of electrons to Z ′ coupling is also tightly constrained. The absence of the
process where electrons and positrons collide to produce gamma rays and Z ′ particles
that then decay into electrons and positrons at BaBar has led to an estimation that
ge

V > 2 × 10−4 [56], if Z ′ mostly decays to electrons. This constraint only holds true for
Z ′ particles with a mass less than or equal to 0.3 GeV when the decay into pions is not
possible due to kinematics. The gµ −2 measurement provides another restriction, resulting
in a limit on |ge

V | > 10−2(mZ′/0.5 ) GeV for mZ′ ?MeV.

3. Iso-spin Breaking Observables.

The contribution of Z ′ to the change in the cross section of pions, denoted by∆σNP
ππ , has

an O(1) relationship with the difference in vector couplings between up and down quarks,
represented by the iso-spin breaking factor gu

V − gd
V . This is done to account for the

observed change in muon anomaly ∆aµ, for Z ′ masses greater than or equal to 0.3 GeV.
It is expected that there will be significant impacts on other hadronic observables that
violate iso-spin symmetry. A relevant example is the mass difference, ∆m2 = mπ+ −m2

π0 .
Like in the QED scenario, the loop contribution fromZ ′ has a quadratically divergent
results,

(∆m2)Z′ ∼

(
gu

V − gd
V

)2

(4π)2 Λ2
χ. (4.0.63)
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The mass of theZ ′ boson (mZ′) is much smaller than the cut-off scale (Λχ), which is
approximately set to 1 GeV. As the cut-off scale increases, the contribution of Z ′ to the
mass-squared difference (∆m2) decouples as Λ2

χ/m
2
Z′ ≪ 1. Re-scaling the prediction of SM

from lattice QCD is a more practical method in practice for obtaining the NP contribution
from a Z ′ [57] with (gu

V − gd
V )2/e2. Then by comparing the experimental value with the

SM prediction of ∆m2, we find the 95% C.L. bound |gu
V − gd

V | ≲ 0.06.
In Fig. 4.0.3 we display the interplay of −ge

V vs ge
V −gd

V for two representative scenarios
where mZ′ = 0.1 GeV and mZ′ = 0.5 GeV. The arrowhead directions represent the regions
that were excluded by the various experimental bounds. Instead, the area favored by the
explanation of the gµ − 2 discrepancy is the red band. Regardless of the Z ′ mass it is clear
from Fig. 4.0.3 that there are always at least two separate constraints that prevent the
resolution of the new gµ − 2 puzzle.
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Figure 4.0.3: The impact of Z ′ on the discrepancy (∆aµ) by changing the hadronic cross-
section (σhad), and the limitations imposed by Z ′ can be reevaluated.
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Chapter 5

Conclusion

The BMW collaboration’s recent results in lattice QCD show a discrepancy with the data
used to calculate the hadronic vacuum polarization contribution to the gµ − 2. This study
explored the possibility of resolving this tension, known as the new gµ − 2 puzzle, by sug-
gesting the involvement of new physics in the hadronic cross-section σhad. And propose
that a negative shift in the cross-section due to new physics could restore consistency. The
scenario requires the presence of a light mediator of new physics that affects the experimen-
tal cross-section σhad . However, this hypothesis is not supported by several experimental
findings. Additional confirmation is necessary to shed light on this puzzle, which could
come from additional lattice QCD calculations or direct experimental measurements, as
suggested by the MUonE experiment [58, 59, 60].
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