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Chapter 1

Introduction

1.1 Plasma, the fourth state of matter

The term plasma was �rst introduced by Tonk and Langmuir to describe the glowing discharge

which is produced in a electrical discharge tube. Plasma is a Greek word that means "moldable

material" or "jelly". The plasma is a quasi-neutral gas of charged and neutral particles which

exhibit collective behavior. It is believed that plasma makes up more than 99 percent of our

universe. Because of this, it is commonly referred to as the fourth state of matter. Its properties

di¤er signi�cantly from those of the other three states of matter.

Plasma is formed by ionizing neutral gases, which contain equal amounts of positive and

negative charges (electrons and ions), as well as neutral particles. Because the two �uids are at-

tempting to electrically neutralize each other on macroscopic length scales, plasma is referred to

as quasi-neutral (quasi means that there are minor departures from perfect neutrality). When

ions and electrons move together, they engage via long-range coulomb force, which is more

e¢ cient than short-range electrical interactions. Plasma is dominated by collective movements,

as more particles are subjected to the same long-range coulomb force. Rather than uncor-

rected interactions between nearby particles, it involves linked movements of a large number of

particulates.

Plasma exhibits several novel features that are not present in an ordinary gas. It is because

a plasma is a dynamical �uid and a good electrical conductor. As a result, plasma is de�ned

as an electrically neutral material. It includes a high number of free electrons and ions that
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interact and show collective behavior as a result of the long range interactions [1].

1.2 Criteria for Plasma

Unless it meets speci�c criteria, any ionized gas cannot be considered plasma. The plasma must

meet the following requirements:

1.2.1 Macroscopic Neutrality

A plasma system is macroscopically neutral in the absence of exogenous imbalance forces. This

means that in an equilibrium plasma system, there is a volume large enough to accommodate

a high number of particles yet too tiny in comparison to the typical length scale of plasma

parameter changes (temperature and density). The net electrical charge in the above mentioned

region is zero, thus the internal space charge �eld cancel each other, leaving the bulk of plasma

neutral. In the event of a charge imbalance, an electrostatic potential energy is generated to

restore the plasma�s quasi-neutrality across a speci�c length scale. We named the length of

plasma the Debye length [2].

1.2.2 Debye Shielding

In the characterization of plasma, the shielding e¤ect is critical. Due to an electrostatic �eld is

shielded out due to the plasma species collective reaction inside a Debye radius (�Dr) separation

of order that is

�Dr =

�
KBTe
4�nee2

�1=2
(1.1)

Where

KB =Boltzman constant

Te = Temperature of electrons

ne = Number density of electron

The Debye sphere is a sphere with a radius of �Dr within the plasma, in which

N is the number of particles,
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N =
4

3
�ne�

3
Dr (1.2)

Now the �rst condition of plasma if L shows the length of the plasma system

L� �Dr (1.3)

Plasma particles are Debye shielded as a result of collective activity, therefore the second

criterion for plasma is

N � 1 (1.4)

Or

ne�
3
Dr � 1 (1.5)

This shows that number of particles in Debye sphere should be very large.

1.2.3 Frequency of Plasma

Plasma�s macroscopic charge neutrality is an essential property. In the event that a plasma

particles are disturbed by a sort of external imbalance force tends to return plasma to its

initial charge neutrality. These people as a group the frequency of electrons in a plasma system

characterizes its behavior plasma frequency (!pe) is a natural frequency that is determined by

!pe =

�
4�nee

2

me

�1=2
(1.6)

This demonstrates that the plasma frequency is in�uenced by electron mass and density.

Collisions of electrons and neutrals tend to reduce plasma oscillation by a factor of two. Their

amplitude is progressively diminishing. In order for plasma oscillations to be observed, It

is required that the electron-plasma frequency (�pe) be somewhat damped higher than the

frequency of electron-neutral collisions �en
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�pe > �en (1.7)

where �pe =
!pe
2� :Otherwise, the collisions will drive the electrons to be in perfect equilibrium

with the neutrals, and the plasma will act like a neutral gas; consequently, the plasma�s third

criteria is

!� > 1 (1.8)

where � = 1=�en; denotes the average time an electron spends between collisions with neutrals,

while ! is angular frequency of typical plasma oscillations [2]. So an ionized gas will be termed

as plasma if it satisfy the above three conditions.

1.3 Dusty Plasma

A dusty plasma is a low-temperature multi-species fully or partially ionized gas containing

electrons, ions, dust grains (charged, massive, solid particles) and neutrals. The dust grains are

generally graphite, magnetite, silicates, and amorphous carbon. Grains may have di¤erent size

(micrometer or sub-micrometer size), nature and origin. Grains being massive (1010�1012 ions

mass) may be positively are negatively charged (103�105 elementary charge) depending on the

surrounding environments and charging mechanisms. In laboratory condition, thermal velocity

of electrons being higher than the ions gives usually negative charge to the dust grain. In

astrophysical conditions, dust grain may become positively charged due to photoionization and

secondary electron emission. The desirable feature of studying dusty plasmas in the laboratory

is that dust particles can be observed visually since dust particles are big enough and their

dynamics being slow enough due to their high inertia can be tracked and recorded using fast

video camera.

A plasma having dust particles may be termed as dusty plasma or dust in a plasma depend-

ing on three fundamental lengths: the dust grain size r, their average separation a and and the

Debye length �D:[2]

a) r << �D < a dust in plasma, where dust particles are considered isolated.
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b) r << a < �D; dusty plasma, in which the e¤ects of neighboring particles is signi�cant.

Dusty plasmas may be found in many astrophysical environments like Inter-stellar clouds,

Circumstellar clouds, Molecular clouds, Asteroid zones, Interplanetary dust, Earth�s magne-

tosphere, Comet tails, nebula and Planetary rings etc. [5; 6; 7]. Dusty plasmas have two distinct

characteristics that set them apart from regular plasmas.

1. The plasma frequency, as well as the cyclotron frequency of dust grains and ions, are

widely separated due to the vast size and mass of the dust grains, resulting in di¤erent frequency

modes arising from the dust and ions inertial e¤ects.

2. The grain charges are quite high and can change, resulting in novel phenomena in grain

plasma as well as grain interactions, i.e. the charge �uctuation of dust particles dampening

waves that would otherwise travel as regular frequency modes [3; 4].

Because of their importance in understanding the space environment, such as cometary

tails, planetary rings, asteroid zone, and lower ionosphere, there has been a growing interest in

the study of dusty plasmas[8; 9].

1.4 Characteristics of Dusty Plasma

A dusty plasma is formed by a combination of electrons, ions, neutrals, and charged dust grains

or macro-particles. The dust particles or grains come in a variety of forms and sizes, but they

are classi�ed as point particles based on their distinctive lengths. We can distinguish between

"dust in a plasma" and "dusty plasma" based on the characteristic lengths. Dust in a plasma

is referred to as a dusty plasma. when rD � �D < bm(The dust-charged grains are considered

as isolated protected particles), when if �D > bm � rD; This relates to "dusty plasma," which

indicates that the charged dust grains participate in collective activity. where �D is Debye

length of plasma, bm is mean inter grain distance and rD represent radius of dust particle[4].
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1.4.1 Macroscopic Neutrality in Dust

The dusty plasma is considered to be a quasi-neutral in the absence of an external imbalance

force, which implies that the net electrical charge in the dusty plasma disappears. The quasi-

neutrality criterion is met when the system is in equilibrium.

qinio = qeneo � qDnD0 (1.9)

where neo, nio and nD0 represent the number density of electrons,ions and dust respectively

and qD = �ZDe; (ZDe) indicate the dust charge, when the particle is positive(negative), where

ZD and ZD are the charge state of dust and charge state of ion respectively and qD = ZDe Ds

the charge ion.

1.4.2 Dusty Plasma Debye Shielding

Any external disturbance or electric �eld from any source with a non-zero potential is �ltered

by the plasma particles, which is one of the plasma system�s essential features. This plasma

phenomenon is known as Debye shielding, and it results in a distance termed the Debye length,

across which other charge particles in a plasma experience the in�uence of the charge particle�s

electric �eld For a dusty plasma, the Debye length is de�ned as

�D =
�De�Di

(�De + �Di)1=2
(1.10)

where �D shows the Debye length of dusty plasma, where �i = (TD=4�nD0e2)1=2 and �De =

(Te=4�ne0e
2)1=2 indicate the ion and electron Debye length, respectively. Dusty plasma contain

negatively charged dust particles have nD0 � ne0 and Te � TD for example �De � �De, so we

have, �D ' �Di. while in positive dust particles, we have, �D ' �De:

1.4.3 Dust Plasma Frequency

Every plasma system must have some degree of quasi-neutrality. When dusty plasma is tem-

porarily disrupted from equilibrium, the collective movements of charge particles in the plasma
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attempt to restore plasma quasi neutrality, which may be represented by the plasma frequency,

indicated by !p. The plasma frequency may be calculated in the following way.

i) Using the continuity equation for c-th species

rtnc +r � (ncvc) (1.11)

ii) equation of momentum is

@tvc + (vc � r) vc = �
qc
mc
r� (1.12)

iii) Poisson�s equation is given as

r2� = �4�
P
qcnc (1.13)

we assume small perturbation like we use nc = nc0+nc1 and assume nc1 � nc0;we obtained

the following equation by linearize and combine the above equation

@t2r2�+ 4�
P q2cnc0

mc
r2� = 0 (1.14)

By integrating the equation (1.14) twice w.r.t the region r(x,y,z) with the boundary condition

[� = 0 at equilibrium (r=0)]. We get the di¤erential form of equation which is

@2�

@t2
+ !2p� = 0 (1.15)

where the term !2p is equal to

!2p =
P
d

4�q2DnD0
mD

=
P
d

!2pc (1.16)

and !2pc =
q

4�q2cnc0
mc

shows the frequency of plasma related to plasma species d. It indicates

that due to di¤erent mass of plasma species i.e. dust, ions and electron. Their frequency of

oscillation are di¤erent.
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1.4.4 Coulomb Coupling Parameter

The electrostatic potential energy (together with the screening e¤ect) is derived by assuming

two dust grains, each with same charge q, separated at a distance of b is

Ec =
q2

b
exp

�
� b

�D

�
(1.17)

and the thermal energy of dust is KBT: So the Coulomb coupling parameter is given by

�c =
Z2De

2

bkbT
exp

�
� b

�D

�
(1.18)

If �c � 1; it shows that dust plasma is a strongly coupled system, when �c � 1; represents

weakly coupled dusty plasma. New phenomena, such as the creation of Coulomb crystals, may

arise in dusty plasma with high coupling (�c > 170) [4] :

1.5 Plasma Instabilities

If the disturbance given in the system grows in amplitude exponentially with time, the system

never returns to its original position thus we have what is called as instability where the free

energy of plasma gets converted into growing mode resulting in generation of different waves.

The plasma instabilities has an important role for controlled thermonu- clear fusion and in

laboratory experimental situations. classify plasma instabilities in two ways:[8]

Macro-Instabilities

The macro-instabilities are the result of coordinate space non equilibrium. Using z�uid theory or

MHD theory one can study macro-instabilities. Some familiar examples of macro-instabilies are

Jeans self-gravitational instability, Rayleigh-Taylor instability and Kelvin-Helmholtz instability.

Micro-Instabilities

The micro-instabilities, are usually driven by velocity space anisotropy, an inner process in

the plasma. The micro-instabilities can be treated theoretically by kinetic equations. Some
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familiar examples of micro-instabilies are Beam-driven instability, loss-cone instability, whistler

instability.

1.6 Self Gravitational Instability

Gravitational instability also known as Jeans instability, who �rst proposed it, has a great

interest in astrophysics as it is the most basic instability in astrophysical plasma. In astrophys-

ical objects, the collapse of an object is assigned to a gravitational force which is responsible

for the production of jeans instability. The gas pressure force (hydrostatic) gives a threshold

for the instability of jeans. The dynamics of large bodies like stars, planets, and satellites is

typically governed by the gravitational force, that is always attractive and cannot be shielded.

The possible explanation for formation of solar system lies in this instability. After the work of

jeans there has been a lot of interest in the study of this instability in astrophysics because of

the interest for the mechanism of the formation of stars. It has been suggested that the star is

formed by the condensation of gases. After the work of Jean for the gravitational instability of

a homogeneous in�nite medium several authors have tries to study this problem under various

assumptions and modi�cation. Chandrasekhar [9] has shown that the criterion of jeans remains

unchanged in the presence of magnetic �eld and rotation. The magnetic �eld�s direction has

a small E¤ect on the criterion of jeans. Larson [10] has made of numerical calculations of the

dynamics of a spherical collapse of a protostar solar mass with initial condition under its own

force of gravity. Krautschneider [11] has discussed the problem of the formation of stars via

the gravitational contraction of clouds of grains. Cadez [12] has studied the Jeans criterion

of a static self-gravitating cloud. Moreover many authors havestudied the self gravitational

instability of dusty plasma with various E¤ects i.e. Finite Larmor radius (FLR) E¤ect, Hall

E¤ect, Electron Inertia E¤ect, Thermal and Radiative E¤ects, Collisional E¤ects, Porosity and

Rotation E¤ects.

Moreover from the above discussion, we see that the analysis of the gravitational instability

of plasma is a current area of research. Also the study of gravitational instability is important

to understand the problems associated with the formation of stars, the formation of molecular

clouds and the formation of large-scale structures.
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We consider a neutral �uid in which quantities such as the �(x; t); P (x; t); T (x; t); and

v(x; t) can all de�ned at any point. We also include gravitational E¤ects with the gravitational

potential 	. The behavior of the �uid is governed by following fundamental equations.

@�

@t
+r: (�v) = 0 (1.19)

@v

@t
+ v:rv = �r	� rp

�
(1.20)

where the gravitational potential 	 satis�es Poisson�s equation.

r2	 = 4�G� (1.21)

describe the self-gravity of the �uid (G is constant of gravitation). We assume that initially

the �uid has uniform density �0 and pressure P0, and zero velocity. We introduce a small

perturbation such that

� = �0 + �1

P = P0 + P1

v = v1

	 = 	0 +	1

Using these in continuity, momentum and Poisson�s equation and upon linearization we

get

@�1
@t

+ �0r:v = 0 (1.22)
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�0
@v1
@t

= �r	1 � c2sr�1 = 0 (1.23)

We use the relation

P1 = c
2
s�1 (1.24)

r2	1 = 4�G�1 (1.25)

We take the time derivative of Equation (1.19) and the divergence of Equation (1.20) and

employing Equation (1.22) to eliminate r2	1, we arrive at

@�1
@t2

� c2sr2�1 = �4�G�0�1 (1.26)

We assume the perturbation to be proportional to expi(kx� !t) therefore

r ! ik

@

@t
! �i!

and we obtain relation between wave number and frequency given as

!2 = c2sk
2 � 4�G�0 (1.27)

Assuming a non-vanishing wave number k we can distinguish two di¤erent cases:

1. If k is su¢ ciently large then: c2sk
2 � 4�G�0 > 0, The ! is real and equilibrium is stable

with respect to this perturbation (amplitude does not increase with time).
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2. If c2sk
2 � 4�G�0 < 0 then ! is in the form of i� where � is real. The equilibrium is

unstable, therefore there exist perturbations which grow exponentially with time.

3. And for c2sk
2 � 4�G�0 = 0 we get the critical wave number

kj =

�
4�G�0
c2s

� 1
2

(1.28)

or a critical wavelength (jeans wavelength) (� = 2�
k )

�j =

�
�

G�0

�1=2
cs (1.29)

Therefore the perturbation with wavelength � > �j (i:e:k <kj) is unstable. This condition

is called the Jeans criterion after James Jeans who derived it in 1902.

1.7 Dust Particles in Space

A complicated system of electrons, numerous types of ions, and negatively or positively charged

dust particles can be described as the dusty plasma. The dusty plasma covers the great part

of space and has a long history. We�ll talk about the important role of dusty plasma in space.

1.7.1 Interplanetary space

It is full of dust called as �interplanetary dust�. Its existence was known from zodiacal light.

Which is a band of light in the night sky that is considered to represent re�ected sunlight from

cometary dust concentrated in the zodiac plane, or ecliptic. The light is seen in the tropics,

where the ecliptic is almost vertical, in the west after dusk and in the east before dawn.

1.7.2 Comets

A brilliant comet serves as an excellent cosmic laboratory for studying dusty plasma interactions

and their physical and dynamic consequences. Comets are formed up of grains of non-volatile

dust particles and frozen gases and are tiny, fragile, and irregular in shape. It has distinct and
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dynamic features, such as a coma, which is a cloud of diluting components that expands in size

and brighter as the comet approaches the Sun. A dust tail is formed by the sun�s radiation

pressure and solar wind, resulting in a long white tail of dust particles propelled away from the

sun, as shown in Figure (1.1) below.

1.7.3 Planetary Rings

The presence of dust particles in the ring of our solar system�s big planets (Jupiter, Saturn, and

Neptune) is widely known. Since Galilee discovered the ring of Saturn in 1610, astronomers

Fig(1.1). Two di¤erent tails,one is thin blue plasma tail and second is broad white dust tail. Fig

(1.2); The radial spokes in Ring B is showed by Saturn�s ring have struggled to fully comprehend

it. A, B, and C are the names of the three major rings as shown in �gure (1.2).

Figure 1-1: Figure 1.1: Hale-Bopp comet showing two di¤erent tails.

16



Figure 1-2: Figure 1.2: Saturn�s ring showing the radial spokes in ring B.

1.7.4 Earth Atmosphere

Dust particles are prevalent in this region of the earth�s atmosphere during the polar summer

mesopause, which is detected at altitudes of 80 to 90 km. The presence of dust particles causes

noctilucent clouds (NLCs), polar mesospheric summer echoes (PMSE), and substantial radar

back scatter, all of which occur during the creation of the polar summer mesopause.

1.8 Fusion Plasma Devices

The dust grains are found in the fusion devices. The dust impurities are produced by arcing,

erosion and sputtering of wall of container. In fusion devices the dust particles are ranging

in size from 10nm to 100micrometer and some are also in millimeters. The dust particle in

fusion device may be radioactive for example tritium, the presence of such a type of dust may

also create hazard of explosion. At present time these challenges are overcome by employing

di¤erent type of technique.

17



1.9 Aspects of Dusty Plasmas

The physics of the dusty plasmas has gained more and more interest over the last few years

from academic point of the view as well as from view of its new aspects in the space and the

semiconductor technology, astrophysics, biophysics, crystal physics, plasma chemistry,magnetic

fusion devices etc. Due to its vital importance some of the application of dusty plasma are

given below.

1. Dusty plasma devices used to produced and study dusty plasma in laboratory.

2. By using technique of PECVD (plasma enhanced chemical vapor deposition) a thin �lm

layer is applied to material to enhanced the surface properties.

3. Plasma used in fabrication of microelectronics for example semiconductor chips, solar

cell and �at panel display.

1.10 Motivations

The physics of dusty plasma is rapidly growing subject of science. It is found that collective

process in a dusty plasma would have an excellent future perspective, because of its potential

applications in di¤erent plasma space environment such as in the astrophysical environment.

The main aim of early dusty plasma investigations was obtaining a good control of con-

tamination in plasma processing reactors, either by eliminating dust particles from gas phase

or by preventing them from getting in contact with the surface. This task has been accom-

plished and the knowledge got in the course of these elaborate studies can be utilized in research

directions. Applications of macroscopic grains is one of the recent developments in the mate-

rial science. Now dust particles in the plasma are not considered as unwanted pollutants.The

multicomponent dusty plasmas are usually found in many low temperature laboratory devices

and industrial processes. Besides the fundamental knowledge and industrial applications, the

increasing interest in dusty plasma has inducced the development of numerous experimental

diagnostics. All these applications make dusty plasma a rapidly expanding �eld of research,

which in the coming decade will provide a large amount of novel and exciting developments in

fundamental studies as well as in plasma technology.
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In this dissertation, we have investigated the propagation of electrostatic modes in self-

gravitating dusty plasma, which consist of extremely massive, negatively charged dust grains,

non-thermally distributions and Boltzmann distributed electrons. It has been observed that

self-gravitating �eld destabilize these low frequency dust electrostatic modes. It is stressed here

that these results may be useful for understanding the electrostatic disturbances in astrophysical

dusty plasma systems.

1.11 Layout of Dissertation

The present dissertation is related to self gravitational instability in magnetized dusty plasma.

The dissertation is organized as follow: In the �rst chapter, introduction to plasma, dusty

plasma, fundamental characteristics of the dusty plasma, occurrence of dusty plasma in space

and self-gravitational instability are brie�y described. At the end of this chapter, we have also

presented the motivations for studying electrostatic waves in self-gravitating dusty magneto-

plasma.

In the second chapter, we focus on electrostatic waves in nonuniform dusty magnetoplasma

and study the dispersion properties of long frequency electrostatic waves and Shukla-Varma

(SV) mode.

Chapter 3 focuses on a physical model, governing equations and the dispersion relation for

coupled dust ion-acoustic and Jeans modes are derived and a purely growing instability related

to an ion response is studied in self gravitating unmagnetized plasma.

In chapter 4, we have discussed susceptibility relations for electron and ion resulting from

kinetic or hydrodynamic theory with the detailed calculation of dust susceptibility relation.

Further, using these susceptibilities relations we obtained dispersion relation and the in�uence

of an external magnetic �eld in a self-gravitating dusty plasma in several interesting cases is

discussed.

In chapter 5 we derive the dispersion relation for the low frequency electrostatic modes

propagating parallel and perpendicular to the external magnetic �eld in cold magnetized self

gravitational dusty plasma.
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Chapter 2

Electrostatic Waves in Non-Uniform

Dusty Magnetoplasma

2.1 Introduction

In this chapter, we shall study linear properties of two dimensional convective cell motion in

a multi-component magnetoplasma composed of electrons, ions, and charged dust grain in the

presence of the equilibrium density gradients [13]. It is a well established fact that all the plasma

systems, especially the dusty plasma, always contain some region of the inhomogeneity which

cause the drift motions and waves associated with them in the magnetized dusty plasma. Thus,

a non-uniform dusty magnetoplasma is considered containing the immobile dust grains and the

equilibrium density gradient @ns0@x (the unperturbed plasma number densities ns0(x) are assumed

as non-uniform along the x-axis) and study the dispersion properties of low-frequency plasma

(in comparison with !ci), long-wavelength (in comparison with ion gyroradius) electrostatic

and electromagnetic waves. An external magnetic �eld is applied along z-axis.
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2.2 Basic Model Equations

The following basic equation are used to obtain dispersion relation of convective cell frequency.

2.2.1 Continuity equation

@n�
@t

+r� (n�v�) = 0 (2.1)

where n� = n�0 + n�1 is the number density, v� is the velocity of the (� = i; e) species,

represents ions and electrons.

2.2.2 Momentum Equation

m�n�
@v�
@t

+ (v�:r) v� = q�E �rP� (2.2)

Where m� is the mass of particle

2.2.3 Charge Conservation Equation

r � (eni0vi � eneove) = 0 (2.3)

2.2.4 Quasi-Neutrality Condition

The quasi-neutrality condition at equilibrium is given as.

qinio = qeneo � qdnd0 (2.4)
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2.3 Electrostatic Waves

In electric �eld (E? = �r?�) of low-frequency waves, perpendicular components of the electron

and the ion �uid velocities are given as [21].

V(e)? �
c

B0

ẑ �r?��
ckBTe

eB0ne0
ẑ �r?ne1 (2.5)

And

V(i)? t
c

B0

ẑ �r?��
ckBTi

eB0ni0
ẑ �r?ni1 �

c

B0!ci
(
@

@t
+ ui�� r)r?� (2.6)

where ui� = (cTi=eB0ni0)ẑ �rni0(x) is the unperturbed ion diamagnetic drift velocity.

2.3.1 Dispersion Relation

We �rst consider the propagation of the coupled convective cells and the dust drift-acoustic

waves. We substitute Eq. (2.5) into Eq. (2.1) for the electron continuity equation and yields.

@(ne0 + ne1)

@t
+ fr? � ne0V(e)?g+ ne0rzVez = 0 (2.7)

r? � ne0V(e)? = r? � ne0
�
(
c

B0

ẑ �r?�)�
ckBTe

eB0ne0
ẑ �r?ne1

�
Use the relation for this

r:(a ~A) = a (r: ~A) + ~A:ra (2.8)

ne0(r?:(
c

B0

ẑ �r?�) + (
c

B0

ẑ �r?�):r?neo
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as r?: c
B0
ẑ �r?� =

26664
@
@x

@
@x

@
@x

0 0 c
B0

@
@x

@
@x

@
@x

37775 = 0
Finally Eq. (2.7) becomes

@ne1
@t

+
c

B0
ẑ �r� � rne0 + ne0

@Vez
@z

= 0 (2.9)

Now using Eq. (2.2) momentum equation for electron, where we use parallel to z-component

of the velocity Vez as

mene(
@Vez

@t
) = �ene(E)�rPe (2.10)

where Pe = KBTene1

me(
@Vez
@t

) = �e(E)� KBTe
ne0

@

@z
ne

@Vez
@t

=
e

me
rz��

KBTe
mene0

@

@z
ne

where E = �r�

@Vez
@t

=
e

me
rz[��

KBTe
ene0

ne] (2.11)

Similarly equation of motion for ion is

@Viz
@t

= � e

mi
rz
�
�� 3KbTi

enio
ni1

�
(2.12)

Now we use Eq.(2.3) charge conservation for electrons and ions velocity and use some

approximation,
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r � [eni0(v?i + vzi)� eneo(v?e + vze)] = 0 (2.13)

r � (eni0v?i + eni0vzi)�r � (eneov?e + eneovze) = 0 (2.14)

Putting value of v?i and v?e,

r � ni0 c
B0
ẑ �r?��r � ni0 ckBTi

eB0
ni0
ẑ �r?ni1 �r � ni0 c

B0!ci
( @@t + ui � � r)r?�

+r � (ni0vzi)�r � neo
c

B0

ẑ �r?��r � neo
ckBTe

eB0ne0
ẑ �r?ne1 +r � neo (vze) = 0 (2.15)

Now, we solve this equation, we use again the relation

r � (a ~A) = a (r � ~A) + ~A � ra

r � eni0
c

B0

(ẑ �r?�) = eni0
c

B0

(r � ẑ �r?�) + (ẑ �r?�) � reni0
c

B0

(2.16)

Since r? � c
B0
ẑ �r?� =

26664
@
@x

@
@x

@
@x

0 0 c
B0

@
@x

@
@x

@
@x

37775 = 0
Eq. (2.16) becomes

(ẑ �reni0
c

B0

) � r?� (2.17)

r � (ckBTi
eB0ni0

ẑ �r?ni1) =
ckBTi

eB0ni0
(r � ẑ �r?ni1) (2.18)

r � eni0c
B0!ci

(
@

@t
)r?� =

eni0c

B0!ci

@

@t
r2?� (2.19)
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r � eni0c
B0!ci

(ui � � r)r?� =
eni0c

B0!ci
(r � ui � � r)r?� (2.20)

We neglect Eq. (2.20) by using approximation i.e., (Ti � Te)

r � eneo
c

B0

ẑ �r?� = ẑ � (reneo
c

B0

) � r?� (2.21)

r � ( ckBTe
eB0ne0

ẑ �r?ne1) =
ckBTe

eB0ne0
(r � ẑ �r?ne1) (2.22)

Substituting the Eqs. (2:17) ; (2:18) ; (2:19) ; (2:21) and (2:22) into Eq. (2.15) yields

(ẑ �reni0
c

B0

) � r?��
ckBTi

eB0ni0
(r � ẑ �r?ni1)�

eni0c

B0!ci

@

@t
r2?�

+r � (eni0vzi)� ẑ � (reneo
c

B0

) � r?�+
ckBTe

eB0ne0
(r � ẑ �r?ne1)�r � eneovze (2.23)

re-arranging the equation

(ẑ �reni0
c

B0

) � r?�� ẑ � (reneo
c

B0

) � r?��
ckBTi

eB0ni0
(r � ẑ �r?ni1)

+
ckBTe

eB0ne0
(r � ẑ �r?ne1)�

eni0c

B0!ci

@

@t
r2?�+r � (eni0vzi)�r � eneovze (2.24)

We impose the quasi-neutrality approximation (ne1 � ni1) on the above equation valid for

the dense plasma in which i.e. !pi >> !ci; The �rst two terms become in above equation

become

(ẑ �reni0
c

B0

) � r?�� ẑ � (reneo
c

B0

) =
c

B0

ẑ �rqd0nd0) � r?�

Similarly second and third term vanish by applying ne1 � ni1; Finally we get
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c

B0

(ẑ �rqd0nd0) � r?��
eni0c

B0!ci

@

@t
r2?�+r � (eni0vzi)�r � (eneovze) = 0 (2.25)

c

B0

(ẑ �rqd0nd0) � r?��
eni0c

B0!ci

@

@t
r2?�+ eni0r � (vzi �

neo
ni0
vze) = 0

Multiply the above by B0!ci
eni0c

and rearrange, we get the �nal equation

@r2?
@t

�+
!2ci
!2pi

4�c

B0
ẑ �r(qd0nd0) � r��

B0!ci
c

@

@z
(viz �

ne0
ni0
vez) = 0 (2.26)

Where

!pi =

s
4�e2ni0
mi

; !ci =

r
eB0
mic

Equations (2.9), (2.11), (2.12) and (2.26) are the equations for the convective cells and dust

drift-ion acoustic waves in non-uniform dusty magnetoplasma.

2.4 Limiting case

2.4.1 j@=@tj � VTej@=@zj

Using j@=@tj � VTe@=@z and ignoring parallel ion dynamics, we have from equations (2.11) and

(2.26)

@vez
@t

=
e

me

@�

@z
(2.27)

and

@r2?
@t

�+
!2ci
!2pi

4�c

B0
ẑ �r(qd0nd0)�r��

ne0B0!ci
ni0c

@vez
@z

) = 0 (2.28)
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Now we linearize the above equation as @
@t �! i! and r �! ik by assuming that vez and

� are proportional to exp(�i!t + ik:r),and obtaining linear dispersion relation for convective

cell frequency and shukla varma mode frequency [14; 15].

vez1 =
�ekz
me!

�1 (2.29)

!k2?i�1 +
!2ci
!2pi

4�c

B0
ẑ �rx(qd0nd0)ik�1 �

ne0B0!ci
ni0c

ikzvez1 = 0 (2.30)

Substitute vez1 in the above equation

!k2?i�1 +
!2ci
!2pi

4�c

B0
ẑ �rx(qd0nd0)ik�1 �

ne0B0!ci
ni0c

ikz

�
�ekz
me!

�1

�
= 0

!2 +
!2ci
!2pi

4�c

B0

ky
k2?

@

@x
(qd0nd0)! +

eB0!ci
mec

ne0
ni0

k2z
k2?

= 0 (2.31)

! =

�!2ci
!2pi

4�c
B0

ky
k2?

@
@x(qd0nd0)�

s�
!2ci
!2pi

4�c
B0

ky
k2?

@
@x(qd0nd0)

�2
� 4 (1) eB0!cimec

ne0
ni0

k2z
k2?

2

! = !sv �
1

2

p
(!2sv + 4!

2
cc) (2.32)

Where !sv is the Shukla Varma frequency which is equal to

!sv = �
4�c!2ciky@(qd0nd0)=@x

B0k2?!
2
pi

(2.33)

and

!cc =

r
ne0
ni0
(!ce!ci)

1=2 kz
k?

(2.34)

where !cc is the modi�ed convective cell frequency [16]. We note that in a homogeneous

plasma rx ! 0, the Shukla-Varma (SV) mode is disappeared, and have the following result
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! = �1
2

p
4!2cc

! = !cc

2.5 Result and Discussion

We have investigated the properties of convective cells in non-uniform multicomponent dusty

plasma which is embedded in a homogeneous magnetic �eld. It is found that presence of static

dust grains, produces periodic oscillations having real part of the frequency directly proportional

to the gradient of equilibrium dust number density (SV ). The result of our investigation would

be useful for understanding the properties of convective motion in dusty plasma. Although there

is some evidence of �nite frequency broadband electrostatic waves in a laboratory experiment,

we are not able to correlate the observations with frequency spectrum of the convective cell due

to incomplete information about the wave spectrum data. However, the present investigation

would stimulate more theoretical, numerical simulation and experimental studies in the area of

collective e¤ect in dusty plasma.
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Chapter 3

Jeans Criterion and A Purely

Growing Instability in Dusty Plasma

3.1 Introduction

Jeans instability a well known instability in self-gravitating systems is the result of an imbalance

between the incompressibility of the �uid and self-gravitating force. The charged dust grains

experience electrical and gravitational forces. Here, we consider that the self gravitational

instability of a dusty plasma accounting for the e¤ect of inertia of the ions as well as the whole

dynamic of the dust. Considering the frequency regime with phase velocity smaller (larger)

than thermal velocity (of electron,ion and dust), the non-static ion response results in a purely

growing instability [17]. The instability has a vital role in the understanding of the phenomenon

of the formation of galaxies and also levitation/condensation of charged grain in planetary rings.

3.2 Governing Equations

We consider three component plasma with the electrons, ions and negatively charged dust

grain. At equilibrium, the plasma is quasi-neutral as gravitational force balances the pressure

gradient. The multi�uid theory holds provided that distance between the grains of dust and the

dimensional (spatial) scales in the plasmas are larger than the size of the grains. The equations

are built using the magnetohydrodynamic model for dusty plasma. The dispersion relation
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and general criteria for instability of jeans are obtained using plane wave solutions of linearized

perturbed equations. We expect the instability of the balance (equilibrium) against electrostatic

disturbances including the phase velocity (vph = !=k) satisfying the condition: kvtd; kvti <

kvph < kvte. In the local approximation, for electrons and ions �uids, the perturbation in

number density are, respectively,

ne1 = ne0
e�

Te
(3.1)

and

@vi1
@t

= � e

mi
r�

along with ni1 = ni0
! kvi1 gives

ni1 = ni0
k2e�

mi!2
(3.2)

Using �uid theory, dynamics of dust is governed by following equations,

@nd1
@t

+r � (nd0vd1) = 0 (3.3)

@vd1
@t

= �qd0
md
r��r	1 (3.4)

and

r2	1 = 4�Gmdnd1 (3.5)

where nd1 and vd1 are perturbations in dust number density and dust z�uid velocity, re-

spectively, and 	1 is the perturbed gravitational potential. With Poisson�s equation

r2� = 4�e(ne1 � ni1) + 4�qd0nd1 (3.6)
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3.3 Dispersion Relation for Coupled Dust Ion-acoustic and Jeans

Modes

Rewriting Eq. (3.3) as

@nd1
@t

+ nd0(r � vd1) = 0

using r � ik and @
@t � �i! we have

�i!nd1 + nd0ik � vd1 = 0

nd1 =
nd0
!
kvd1 (3.7)

and Eq. (3.5) gives

�k2	1 = 4�Gmdnd1

	1 = �
4�Gmdnd1

k2
(3.8)

and Eq. (3.4) gives

�i!vd1 =
qd0
md
ik�� ik	1

using value of 	1 in Eq. (3.8) gives

�i!vd1 =
qd0
md
ik�+ ik

4�Gmdnd1
k2

vd1 = �
qd0k�

md!
� 4�Gmdnd1

!k
(3.9)

using Eq. (3.7) in Eq. (3.9)
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!nd1
knd0

= �qd0k�
md!

� 4�Gmdnd1
!k

nd1 = �
qd0nd0k

2�

md!2
� 4�Gmdnd1

!2

using !2j = 4�Gmdnd1in above equation we get

nd1 = �
qd0nd0k

2�

md!2
�
!2j
!2
nd1

nd1
!2 + !2j
!2

= ��qd0nd0k
2�

md!2

nd1 = �
qd0nd0k

2�

md(!2 + !
2
j )

(3.10)

Using Eq. (3.1), Eq. (3.2) and Eq. (3.10) in Poisson�s equation

r2� = 4�e(ne1 � ni1) + 4�qd0nd1

We proceed as follows

�k2� = 4�e
�
ne0e�

Te
� ni0ek

2�

mi!2

�
� 4�q2d0nd0k

2�

md(!2 + !
2
j )

k2�+
4�ne0e

2�

Te
� 4�ni0e

2k2�

mi!2
� 4�q2d0nd0k

2�

md(!2 + !
2
j )
= 0

k2�+
�

�2De
� ne0Te
ne0Te

4�ni0e
2k2�

mi!2
�

!2pdk
2�

(!2 + !2j )
= 0

k2�+
�

�2De
� ni0Te
ne0mi

k2�

�2De!
2
�

!2pdk
2�

(!2 + !2j )
= 0

k2�

"
1 +

1

k2�2De
� ni0Te
ne0mi

1

�2De!
2
�

!2pd
(!2 + !2j )

#
= 0
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1 + k2�2De
k2�2De

� ni0Te
ne0mi

1

�2De!
2
�

!2pd
(!2 + !2j )

= 0

1 + k2�2De
k2�2De

"
1� ni0Te

ne0mi

k2�2De
(1 + k2�2De)�

2
De!

2
�

!2pdk
2�2De

(1 + k2�2De)(!
2 + !2j )

#
= 0

1� ni0Te
ne0mi

k2�2De
(1 + k2�2De)!

2
� C2dak

2

(1 + k2�2De)(!
2 + !2j )

= 0

1� C2ssk
2

(1 + k2�2De)!
2
� !2da
(1 + k2�2De)(!

2 + !2j )
= 0

1� !
2
ss

!2
� !2da
(!2 + !2j )

= 0 (3.11)

where Css = ( ni0Tene0mi
)
1
2 ,is modi�ed ion acoustic speed,Cda = !pd�De = ( Temd

Zd0nd0
ne0

)
1
2 is

the modi�ed dust acoustic speed. !2ss =
C2ssk

2

(1+k2�2De)
and !2da =

C2dak
2

(1+k2�2De)
are modi�ed ion and

dust acoustic frequencies respectively.

3.3.1 Some interesting limiting cases

Case 1:

Firstly for r	1 = 0, !j = 0 and from Eq. (3.11)we have

1� !
2
ss

!2
� !

2
da

!2
= 0

!2 � !2ss � !2da = 0

! = (!2ss + !
2
da)

1
2 (3.12)

that is the frequency of dust acoustic wave.
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Case 2:

From Eq. (3.11) we may proceed as

!2 � !2ss �
!2!2da

(!2 + !2j )
= 0

!2(!2 + !2j )� !2ss(!2 + !2j )� !2!2da = 0

!4 + !2!2j � !2!2ss � !2ss!2j � !2!2da = 0

!4 + !2(!2j � !2ss � !2da)� !2ss!2j = 0 (3.13)

!4 + !2A�B = 0 (3.14)

where A = (!2j � !2ss � !2da), and B = !2ss!2j ; The solution of Eq. (3.13) is

! = �1
2
A� 1

2

p
A2 +B (3.15)

For !2j � !2ss Eq. (3.13) gives

!4 + !2(�!2ss � !2da) = 0

!4 = !2(!2ss + !
2
da)

or

! = (!2ss + !
2
da)

1
2

The unstable root of Eq. (3.14) gives [15]
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 = Im! = (
1

2
A+

1

2

p
A2 +B)

1
2

and

maxt(!
2
j � !2ss)

1
2 w !j (3.16)

where maxis the maximum growth rate of instability.

3.4 Conclusion

We considered the Jeans instability of self-gravitating dusty plasma considering the response of

the ion dynamics. The possibility of an ion related purely growing instability in self-gravitating

unmagnetized dusty plasma is found. Thus, the current instability has a rate of growth much

faster than that found in Ref [18].Clearly, the instability examined is quite vigorous and,

therefore, might be one of the possible candidates to condensation in astrophysical objects

including interplanetary dust, circumstellar dust, planetary rings and galaxies.
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Chapter 4

Stability of Self Gravitating

Magnetized Dusty Plasma

4.1 Introduction

Most of the space and astrophysical systems( particularly, the ionosphere, protostars, circum-

stellar disks, suoernova remnants) are partially ionized and contain a signi�cant fraction of

dust particulates. The charged dust grains are held under the in�uence of electromagnetic and

gravitational forces, whereas the electrons and ions experience only electric force because their

masses are much smaller than that of the dust grains. As most of the astronomical objects

have strong magnetic �elds and density inhomogeneties, it is of practical interest to consider

the electrostatic instability of self-gravitating magnetized dusty plasma.

Here, we have studied the modi�cation of electrostatic waves in self-gravitating magnetized

dusty plasma in the presence of self-gravitating force and magnetic �elds. For this purpose,

the susceptibility relation for electrons, ions and dust grains are derived using hydrodynamic

equations. It is found that magnetic �elds contribute to the stability of self-gravitating dusty

plasma systems.
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4.2 General Dispersion Relation

The propagation of electrostatic waves in three-component, self-gravitating, magnetized dusty

plasmas whose constituents are electrons, ions and charged dust grains is considered. In the

equilibrium, the gravitational force on the grains is balanced by the gradient of the plasma

pressure, and also the plasma is assumed to be quas-ineutral, i.e., ni0=ne0+Zd0nd0 , where Zd0

is the number of charges residing on the negatively charged dust grains. Here, ne0 , ni0 and

nd0 are the equilibrium number densities of the electrons, ions and dust grains, respectively.

Dust grains are assumed as negatively charged point particles. The grain sizes and inter-grain

spacings are also assumed to be much smaller than dusty plasma Debye radius. Before discussing

a number of frequency regimes where self gravitation has an important role, we discuss and

derive the susceptibility relation for electrons, ions and dust.

4.2.1 Electron and ion susceptibility

The electron and the ion number density perturbations nj1 in the presence of wave potential �

is given as

nj1 = �
k2

4�qj
�j� (4.1)

where k is wave number, qe = �e and qi = �e, e being the magnitude charge on electron

and �j is the susceptibility of electrons and ions. The susceptibilities �j of the electrons and

the ions in magnetized plasma are obtained using following equations

@nj
@t

+ nj0r � vj = 0 (4.2)

@vj
@t

= � qj
mj
r�+ vj � !cj (4.3)

r2� = �4�
X

qjnj (4.4)

where !cj =
qjBS
mj

is cyclotron frequency, B is external static magnetic �eld. Solving mo-

mentum equation for parallel and perpendicular velocity components and using r s ik
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and @
@t s �i! we have

vk =
qjkk�

!mj
(4.5)

and

v? = �
iqj(k? � !cj)�
mj(!2cj � !2)

� iqjk?�
mj

!

(!2cj � !2)
(4.6)

Now using values of v? and vkin following continuity equation

nj1 =
nj0
!
(kk � vk + k? � v?) (4.7)

we get

nj1 =
k2kqjnj0�

!2mj
� k2?qjnj0�

mj(!2cj � !2)
(4.8)

Now comparing nj1 = � k2

4�qj
�j� and Eq. (4.8) we get

�j =
k2?
k2 (!2cj � !2)

�
k2k
k2
!2pj
!2

(4.9)

where !pj =
�
4�q2jnj0
mj

� 1
2

is the plasma frequency of electrons and ions.

4.2.2 Dust susceptibility

Many processes a¤ect the motion of dust particles. Most importantly, the dust particles provide

inertia to the wave. Furthermore, dust-neutral collisions results in wave damping. Here a

hydrodynamic approach is used to derive the dust susceptibility.

In the presence of the ßelectrostatic, Lorentz and gravitational force the cold dust grain

dynamics is governed by the following equation[19]. Starting with the dust momentum equation

@vd
@t

= �qd0
md
r��r	1+vd � !cd (4.10)
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where B = B0 , 	1is perturbed gravitational potential. For motion along z- axis (parallel

motion)

@vdk
@t

= �qd0
md
rk��rk	1 (4.11)

using r s ik and @
@t s �i!

�i!vdk = �
qd0
md
ikk�� ikk	1 (4.12)

From the Poisson�s equation

r2	1 = 4�Gmdnd1

�k2	1 = 4�Gmdnd1

	1 = �
4�Gmdnd1

k2
(4.13)

Using value of 	1 in Eq. (4.12) we have

�i!vdk =
qd0
md
ikk�+ ikk

4�Gmdnd1
k2

vdk = �
qd0kk�

md!
� ikk

4�Gmdnd1
!k2

(4.14)

For perpendicular motion Eq. (4.11) gives

@vd?
@t

= �qd0
md
r?��r?	1+vd? � !cd

Fourier transforming above equation, we get

�i!v? = �
qd0
md
ik?�� ik?	1+vd? � !cd (4.15)
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Taking right cross product of above Eq. (4.15) with !cd we have

�i!(vd? � !cd) = �
qd0�

md
(k? � !cd)� i(k? � !cd)	1 + (vd? � !cd)� !cd

�i!(vd? � !cd) = �
qd0�

md
(k? � !cd)� i(k? � !cd)	1 � !2cdvd?

�i!(vd? � !cd) = �
qd0�

md
(k? � !cd) + i(k? � !cd)

4�Gmdnd1
k2

� !2cdvd?

�i!(vd? � !cd) =
�
� iqd0�
md

+ i
4�Gmdnd1

k2

�
(k? � !cd)� !2cdvd?

�i!(vd? � !cd) = �(k? � !cd)� !2cdvd? (4.16)

where � = (� iqd0�
md

+ i4�Gmdnd1
k2

); Eq. (4.15) can be written as

�i!vd? =
�
� iqd0�
md

+ i
4�Gmdnd1

k2

�
k? + (vd? � !cd)

�i!vd? � �k? = vd? � !cd (4.17)

Using Eq. (4.16) in Eq. (4.15)

�i!(�i!vd? � �k?) = �(k? � !cd)� !2cdvd?

�!2vd? + i!�k? = �(k? � !cd)� !2cdvd?
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(!2cd � !2)vd? = �(k? � !cd)� i!�k?

vd? =
�(k? � !cd)� i!�k?

(!2cd � !2)
(4.18)

Now from equation of continuity

@nd1
@t

+ nd0r � vd = 0

�i!nd1 + nd0ik � vd = 0

we get

nd1 =
nd0
!
(kk � vdk + k? � vd?) (4.19)

Using Eq. (4.14) and Eq. (4.18) in Eq. (4.19) we have

nd1 =
nd0
!

�
kk � (

qd0
!md

kk�� ikk
4�Gmdnd1

k2!
) + k? � (

�(k? � !cd)� i!�k?
(!2cd � !2)

)

�

or

nd1 =
nqd0
!2md

k2k��
4�Gmdnd0
k2!2

k2knd1 �
ind0�k

2
?

(!2cd � !2)
(4.20)

using value of � in Eq.(4.20)

nd1 =
nqd0
!2md

k2k��
4�Gmdnd0
k2!2

k2knd1 �
ind0(� iqd0�

md
+ i4�Gmdnd1

k2
)k2?

(!2cd � !2)
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nd1 =
nd0qd0
!2md

k2k��
4�Gmdnd0
k2!2

k2knd1 �
qd0nd0�
md

k2? +
4�Gmdnd0

k2
nd1k

2
?

(!2cd � !2)

where !2j = 4�Gmdnd0

nd1 =
nd0qd0
!2md

k2k��
4�Gmdnd0
k2!2

k2knd1 �
qd0nd0�
md

k2? +
!2j
k2
nd1k

2
?

(!2cd � !2)

nd1 =

�
nd0qd0
!2md

k2k �
qd0nd0k

2
?

md(!
2
cd � !2)

�
�+

"
!2j

(!2cd � !2)
k2?
k2
�
!2j
!2

k2k
k2

#
nd1

nd1 =

h
nd0qd0
!2md

k2k �
qd0nd0k

2
?

md(!
2
cd�!2)

i
��

1� !2j
(!2cd�!2)

k2?
k2
+

!2j
!2

k2k
k2

� (4.21)

Now using value of nd1 = � k2�
4�qd0

�d in Eq. (4.21) we have

��dk
2�

4�qd0
�d =

h
ndoqdo
md!2

k2k �
qd0nd0k

2
?

md(!
2
cd�!2)

i
��

1� !2j
(!2cd�!2)

k2?
k2
+

!2j
!2

k2k
k2

�

�d =

1
k2
4�q2d0ndo
md

�
k2k
!2
� k2?

(!2cd�!2)

�
�
1� !2j

(!2cd�!2)
k2?
k2
+

!2j
!2

k2k
k2

�

�d =

1
k2!2

(�!2pd)
h

k2?!
2

(!2�!2cd)
+ k2k

i
�
1 +

!2j
(!2�!2cd)

k2?
k2
+

!2j
!2

k2k
k2

�

where !2pd =
4�q2d0ndo
md

or
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�d =
(�!2pd)

h
k2?!

2

(!2�!2cd)
+ k2k

i
�
k2!2 +

!2j!
2

(!2�!2cd)
k2?
k2
+ k2k!

2
j

� (4.22)

Above Eq. (4.22) is required dust susceptibility relation [20]. For unmagnetized plasma

(B0 = 0) we proceed as follow

@vd
@t

= �qd0
md
r��r	1 (4.23)

�i!vd = �
qd0
md
ik�� ik	1 (4.24)

with 	1 = �4�Gmdnd1
k2

above Eq. (4.24) gives

�i!vd = �
qd0
md
ik�+ ik

4�Gmdnd1
k2

vd =
qd0
md
ik�� ik4�Gmdnd1

k2!
(4.25)

nd1 =
nd0
!
(k � vd) (4.26)

Using Eq. (4.25) in Eq. (4.26) we have

nd1 =
ndoqdo
md!2

k2�� 4�Gmdnd0
k2!2

nd1k
2

nd1 =
ndoqdo
md!2

k2��
!2j
!2
nd1

!2 + !2j
!2

nd1 =
ndoqdo
md!2

k2�
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nd1 =
ndoqdo

md(!2 + !
2
j )
k2� (4.27)

now using nd1 = � k2�
4�qd0

�d in Eq. (4.27) we get

� k2�

4�qd0
�d =

ndoqdo
md(!2 + !

2
j )
k2�

�d =
4�ndoq

2
do

md

1

(!2 + !2j )

Finally we get [2]

�d = �
!2pd

(!2 + !2j )
(4.28)

The following dispersion relation

�(!; k) = 1 + �e + �i + �d = 0 (4.29)

gives frequencies of electrostatic modes in self gravitational dusty plasma.

4.3 Stability analysis

Below are several interesting cases giving a¤ect of external magnetic �eld on self gravitating

unmagnetized dusty plasma.

Case A: !cd � ! � !ci;k?�e;i;d � 1

Here we consider electron and ions to be strongly magnetized, and cold dust grain unmagnetized.

Under these approximation

�j =
k2?
k2

!2pj
(!2cj � !)

�
!2pj
!2

k2k
k2
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gives

�j =
k2?
k2
!2pj
!2cj

�
!2pj
!2

k2k
k2

(4.30)

Accordingly Eq. (4.29) gives

� = 1 +
k2?
k2

 
!2pi
!2ci

+
!2pe
!2ce

!
�

k2k
k2!2

(!2pi + !
2
pe)�

!2pd
(!2 + !2j )

= 0 (4.31)

For k2k = 0; k
2 � k above equation gives

1 +

 
!2pi
!2ci

+
!2pe
!2ce

!
�

!2pd
(!2 + !2j )

= 0 (4.32)

In the high density limit (!2pi � !2ci) we get

!2pi
!2ci

�
!2pd

(!2 + !2j )
= 0

!2 + !2j =
!2pd!

2
ci

!2pi

or

!2 = !2DLH � !2j (4.33)

Where dust lower-hybrid frequency is

!2DLH =
!2pd!

2
ci

!2pi

or

!2DLH =
eB

mi

ZdoeB

md

Zdondo
ni0
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!2DLH = !ci!cd
Zdondo
ni0

(4.34)

Clearly, the jeans instability is reduced by magnetic �eld. In the absence of gravitational

force, one gets the dust lower-hybrid oscillations which includes the ions and charge dust grains

dynamics. The dynamics of electrons is not important. When the magnetic �eld disappears,

we get the standard Jeans instability in dusty plasmas.

Case B : !cd � ! � !ci; kkvte � !; k?�e � 1; 1� k?�d � k?�i;!; j ! � !cij � kkvti

In this case Eq.(4.29) takes form as

� = 1 +
1

k2�2De
� 2�i!

2
ci

k2�2Di(!
2 � !2ci)

�
!2pd

!2 + !2jd
= 0 (4.35)

or

1 + k2�2De
k2�2De

� 2�i!
2
ci

k2�2Di(!
2 � !2ci)

�
!2pd

!2 + !2Jd
= 0

1 + k2�2De
k2�2De

"
1� 2�i!

2
cik

2�2De
k2�2Di(!

2 � !2ci)(1 + k2�2De)
�

!2pdk
2�2De

(!2 + !2jd)(1 + k
2�2De)

#
= 0

1� 2�i!
2
ci�

2
De

�2Di(!
2 � !2ci)(1 + k2�2De)

� k2C2de
(!2 + !2jd)

= 0 (4.36)

where C2de =
!2pd�

2
De

(1+k2�2De)

(!2 � !2ci)�
k2C2de(!

2 � !2ci)
(!2 + !2Jd)

=
2�i!

2
ci�

2
De

�2Di(1 + k
2�2De)

(!2 � !2ci)(!2 + !2jd)� k2C2de(!2 � !2ci) =
2�i!

2
ci�

2
De(!

2 + !2jd)

�2Di(1 + k
2�2De)
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!4 + !2!2Jd � !2!2ci � !2ci!2Jd � k2C2de!2 + k2C2de!2ci =
2�i!

2
ci�

2
De!

2

�2Di(1 + k
2�2De)

+
2�i!

2
ci�

2
De!

2
Jd

�2Di(1 + k
2�2De)

!4 � !2
�
!2ci + k

2C2de � !2Jd +
2�i!

2
ci�

2
De

�2Di(1 + k
2�2De)

�
� !2ci!2Jd

�
1 +

2�i�
2
De

�2Di(1 + k
2�2De)

�
= 0

or

!4 �B3!2 � C3 = 0 (4.37)

whereB3 =
h
!2ci + k

2C2de � !2Jd +
2�i!

2
ci�

2
De

�2Di(1+k
2�2De)

i
; C3 = !

2
ci!

2
Jd

�
1 +

2�i�
2
De

�2Di(1+k
2�2De)

�
; ForB23 �

4C3

!2 ' +B3 �
p
B23

2A3

For A3 ' 1

!2 ' B3

!2 ' !2ci + k2C2de +
2�i!

2
ci�

2
De

�2Di(1 + k
2�2De)

� !2Jd (4.38)

Above Eq. (4.38) represents the electrostatic ion-cyclotron waves modi�ed by gravitational-

e¤ect.

Case C : !ci � ! � !ce; ! � kkvte;
!
!ce

kk
k?
;k?�e � 1� k?�i

Here Eq. (4.29) gives
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� = 1 +
1

k2�2De
+

1

k2�2Di
�

!2pd
!2 + !2Jd

= 0 (4.39)

1 +
1

k2

�
�2De + �

2
Di

�2De�
2
Di

�
�

!2pd
!2 + !2Jd

= 0

1 +
1

k2�2D
�

!2pd
!2 + !2Jd

= 0

1 + k2�2D
k2�2D

=
!2pd

!2 + !2Jd

!2 + !2Jd =
!2pdk

2�2D

1 + k2�2D

!2 =
!2pdk

2�2D

1 + k2�2D
� !2Jd (4.40)

Finally we get

!2 = k2C2d � !2Jd (4.41)

where C2d =
!2pd�

2
D

1+k2�2D
; Eq. (4.41) represents fast dust-acoustic waves in dusty magnetoplasma

modi�ed by gravitational force.

Case D:!cd; !ci � ! � !ce;kkvtj � !;k?�j � 1

Here Eq. (4.29) gives

� = 1 +
!2pe
!2ce

k2?
k2
�
!2pe
!2

k2k
k2
�
!2pi
!2

�
!2pd

!2 + !2Jd
= 0 (4.42)
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AL +
!2pe
!2

k2k
k2
�
!2pi
!2

�
!2pd

!2 + !2Jd
= 0 (4.43)

where AL = 1 +
!2pe
!2ce

k2?
k2

1 +
1

AL

!2pe
!2

k2k
k2
� 1

AL

!2pi
!2

� 1

AL

!2pd
!2 + !2Jd

= 0

1� 1

AL

!2pi
!2
(1 +

!2pe
!2pi

k2k
k2
)� 1

AL

!2pd
!2 + !2Jd

= 0

or

1� !
2
LH

!2
� 1

AL

!2pd
!2 + !2Jd

= 0 (4.44)

where !2LH =
!2pi
AL
(1 +

!2pe
!2pi

k2k
k2
)

!2 � !2LH �
1

AL

!2!2pd
!2 + !2Jd

= 0

!2(!2 + !2Jd)� !2LH(!2 + !2Jd)�
!2!2pd
AL

= 0

!4 + !2!2Jd � !2!2LH � !2LH!2Jd �
!2!2pd
AL

= 0

!4 + !2(!2Jd � !2LH �
!2pd
AL

)� !2LH!2Jd = 0

!4 + !2B3 � !2LH!2Jd = 0 (4.45)
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where B3 = (!2Jd � !2LH �
!2pd
AL
); The solution of Eq. (4.45) gives

!2 = �B3
2
� 1
2

q
B23 + 4!

2
LH!

2
Jd (4.46)

However for k2k!
2
pe � k2!2ce and !

2 � !2Jd Eq. (4.46) gives

1� !
2
LH

!2
� 1

AL

!2pd
!2

= 0

!2 � !2LH �
!2pd
AL

= 0

!2 = !2LH +
!2pd
AL

!2 =
!2pi
AL
(1 +

!2pe
!2pi

k2k
k2
) +

!2pd
AL

(4.47)

Putting value of AL in the above equation we have

!2 =
!2pi!

2
cek

2

!2pek
2
?
(1 +

!2pe
!2pi

k2k
k2
) +

!2pd!
2
cek

2

!2pek
2
?

!2 =
k2

k2?

!2pi
!2pe

!2ce(1 +
!2pe
!2pi

k2k
k2
) +

k2

k2?

!2pd!
2
ce

!2pe

!2 =
k2

k2?

eB
me

eB
mi
(
ni0
ne0

)(1 +
!2pe
!2pi

k2k
k2
) +

k2

k2?

nd0Z
2
d0e

2

�0md

�0me

ne0e2
e2B2

m2
e

!2 =
k2

k2?
!ce!ci(

ni0
ne0

)(1 +
!2pe
!2pi

k2k
k2
) +

k2

k2?

eB
me

Zd0eB

md
(
Zd0nd0
ne0

)
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Finally we get

!2 =
k2

k2?
!ce!ci(

ni0
ne0

)(1 +
!2pe
!2pi

k2k
k2
) +

k2

k2?
!ce!cd(

Zd0nd0
ne0

) (4.48)

Eq. (4.48) represents lower hybrid mode being modi�ed by dynamics of dust particles.

4.4 Conclusions

We studied the properties of dispersion relation of the self gravitational dusty plasmas in the

presence of an ambient magnetic �eld. To this end, we got general dispersion relations by

deriving new function of dielectric response, also the general dielectric constants for electrons

and ions that already exist in the literature. Our general dispersion relation, Eq. (4.29)

reproduces the earlier results of unmagnetized gravitating dusty plasmas, when the external

magnetic �eld is set zero. In the frequency regime !cd � ! � !ci and for kk = 0 (exactly

perpendicular propagation) we get a mode of constant frequency ! � p!cd!ci(ion-dust-hybrid

frequency). Here we also �nd that external magnetic �eld stabilizes the self gravitational (Jeans)

instability. The stabilization is due to Lorentz force that opposes the gravitational force. To

summarize, the present work has an important role to understanding the stability of magnetized

dusty clouds, dusty protostars where gravitational and electromagnetic forces are signi�cant.

When pressure gradients, Lorentz forces and electrostatic forces are not as much dominant as

gravitational forces the self gravitational collapse results fragmentation of dusty objects.
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Chapter 5

Electrostatic Modes in a

Self-Gravitating Dusty Plasma

5.1 Introduction

The theoretical investigations, where the gravitational force is neglected, are only valid in a

plasma regime in which the electrostatic force is much greater than the gravitational force.

The low frequency dust acoustic modes for which the dust particles mass provides the inertia

and the presence of intertialess ions and electrons provide the restoring force has been studied

by number of the authors [22,23]. When the e¤ect of the fast particles, dust temperature,

external magnetic �eld are taken into account, these e¤ect dractically modify the electrostatic

modes in self-gravitating dusty plasma. Now we are considering the three components dusty

plasma which consist of extremely massive dust grains, ions and electrons in the presence of

external magnetic �eld. It turns out that the self-gravitational force and free electrons drives the

electrostatic mode unstable, whereas, the non-thermal ions and magnetic �eld plays a stabilizing

role. In this section, we are going to derive the dispersion relation for the electrostatic mode in

cold magnetized dusty plasma [24].
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5.2 Cold Magnetized Dusty Plasma

5.2.1 Governing Equations

We are considering three component dusty plasma which consists of extremely massive, nega-

tively charged inertial cold dust grains, non-thermally distributed ions and Boltzmann distrib-

uted electrons in the presence of an external static magnetic �eld B0 = �zB0; where �z is a unit

vector along z-direction. At equilibrium we have ni0 =Znd0 + ne0; where ni0; ne0; nd0 are the

unperturbed ions, electrons and dust number densities, respectively and Zd is the number of

elecrons residing on the dust grain surface. The basic linearized governing equations are

@nd1
@t

+r: (nd0ud1) = 0 (5.1)

@ud1
@t

=
Zde

md
r�1 �r	G � !cd (ud1 � ẑ) (5.2)

r2�1 = �4�e (ni1 � ne1 � Zdnd1) (5.3)

r2	1 = �4�eGmdnd1 (5.4)

ne1 = ne0 exp

�
e�1
Te

�
(5.5)

ni1 = ni0

�
1 +

�e�1
Ti

+
�e2�21
T 2i

�
exp

�
�e�1
Ti

�
(5.6)

Where !cd =
ZdeB0
cmd

is dust cyclotron frequency, � = 4�=(1 + 3�) with being a parame-

ter determining the number of non-thermal ions, here � is describing fast particle i.e., non-

thermalions. Ti(Te) is the ion (electron) temperature expressed in the energy units.
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5.3 Dispersion Relation

From Eqs. (5.3), (5.5) and (5.6), we get

r2�1 = �4�eZdnd1 +
1

�2De
�1 +

1

�2Di
(1� �) �1 (5.7)

Where �De=
p
Te=4�e2ne0 , �Di=

p
Ti=4�e2ni0 are the electron and ion Debye lengths.

Separating Eq. (5.2) inti its components, we have

@ud1x
@t

=
Zde

md

@

@x
�1 �

@

@x
	G1 � !cdud1y (5.8)

@ud1y
@t

=
Zde

md

@

@y
�1 �

@

@y
	G1 � !cdud1x (5.9)

@ud1z
@t

=
Zde

md

@

@z
�1 �

@

@x
	G1 (5.10)

Assuming plane-wave approximation i.e. all the perturbed quantities are behaving sinu-

soidally, we have 	G1 , ud1; �1 � exp (ik:r � i!t) ; Eqs. (5.8), (5.9) and (5.10) yields

�i!ud1x =
Zde

md
ikx�1 � ikx	G1 � !cdud1y (5.11)

�i!ud1y =
Zde

md
iky�1 � iky	G1 � !cdud1x (5.12)

�i!ud1z =
Zde

md
ikz�1 � ikz	G1 (5.13)
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Substitute Eq. (5.11) into Eq. (5.12), we get

�
!2 � !2cd

�
ud1x = (!kx � iky!cd)	G1 +

Zde

md
(iky!cd � !kx) �1 (5.14)

Similarly

�
!2 � !2cd

�
ud1y = (!ky � ikx!cd)	G1 +

Zde

md
(ikx!cd � !ky) �1 (5.15)

From Eq. (5.13), we have

!ud1x = kz	G1 �
Zde

md
kz�1 (5.16)

To derive the dispersion relation for an obliquely propagating electrostatic mode in a grav-

itating magnetized dusty plasma, the Fourier transform of Eqs. (5:1) ; (5:4) and (5:7) give

!nd1 = nd0 (kxud1x � kyud1y � kzud1z) (5.17)

	1 = �
4�eGmdnd1

k2
(5.18)

�1 =
4�eZdnd1�

i2k2 � ��2De � (1� �)�
�2
De

� (5.19)

From Eqs. (5.14) to (5.19), we obtain

!2
�
!2 � !2cd

�
k2 + !2jd

�
!2k2 � !2cdk2k

�
=

!2pd

�
!2k2 � !2cdk2k

�
k2 + ��2De + (1� �)�

�2
Di

(5.20)
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This is the desired dispersion relation for an obliquely propagating electrostatics mode

in a gravitating magnetized dusty plasma with fast ions (�) and free electrons. If the time

and space variables are in units of the dust plasma period !�1jd =
�
md=4�eZ

2
dnd0e

2
�1=2 and

the Debye length �Dd =
�
Ti=4�eZ

2
dnd0e

2
�1=2

; respectively, !cd = ZdB0e=mdc!pd is the dust

cyclotron frequency normalized to !pd in which c is the speed of light in vacuum, �i = Ti=Te

where Ti and Te are in energy units. � = 4�= (1 + 3�) with � being a parameter determining

the number of non-thermal ions, �0 = �= (1� �) and �1 = 1= (1� �) with � = ne0=ni0; and

� = G (md=Zde)
2 with G being the universal gravitational constant. In normalized form we can

write Eq. (5.20) as

h
!2
�
!2 � !2cd

�
k2 + �

�
!2k2 � !2cdk2k

�i �
(1� �)�1 + �i�0k2

�
= k2

�
!2k2 � !2cdk2k

�
(5.21)

5.4 Limiting Cases

We shall consider two interesting limiting cases which are

5.4.1 Case 1. Parallel Propagation (k? = 0)

The dispersion relation for the low-frequency electrostatic mode which propagates along the

magnetic �eld B0 (k? = 0) ; can be expressed as

!2
�
!2 � !2cd

�
k2k + !

2
jd

�
!2 � !2cd

�
k2k =

!2pdk
4
k
�
!2 � !2cd

�
k2k + �

�2
De + (1� �)�

�2
Di

!2 =
!2pdk

2
k

k2k + �
�2
De + (1� �)�

�2
Di

� !2jd (5.22)
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It is evident from Eq. (5.22) that for parallel propagation case, the mode is independent

of B0 and it depends on the relative values of !2jd and k
2
k/
�
k2k + �

�2
De + (1� �)�

�2
Di

�
terms.

Therefore the condition for the mode to be unstable can be written as

!2jd >
!2pdk

2
k

k2k + �
�2
De + (1� �)�

�2
Di

and the growth rate  of this unstable mode is given by

 = Im! =

vuut!2jd � !2pdk
2
k

k2k + �
�2
De + (1� �)�

�2
Di

(5.23)

In normalized form we have the above equation

 = Im! =

vuut� � k2k
k2k + �i�0 + (1� �)�1

(5.24)

This equation implies that in the presence of non-thermal ions the mode is stable, whereas

the e¤ect of gravitational force (!jd) and free electrons destabilize the mode.

5.4.2 Case 2. Perpendicular propagation
�
kk = 0

�
From Eq. (5.20), we can write

!2
�
!2 � !2cd

�
k2? + !

2
jd!

2k2? =
!2pdk

4
?!

2

k2? + �
�2
De + (1� �)�

�2
Di
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! =

vuut !2cd + !2pdk
2
?

k2? + �
�2
De + (1� �)�

�2
Di

!
� !2jd (5.25)

Condition for mode to be unstable will be

!2jd >

 
!2cd +

!2pdk
2
?

k2? + �
�2
De + (1� �)�

�2
Di

!
(5.26)

The growth rate  of this unstable mode is given by

 = Im! =

vuut!2jd �
 
!2cd +

!2pdk
2
?

k2? + �
�2
De + (1� �)�

�2
Di

!
(5.27)

In normalized form we have the above equation

 = Im! =

s
� �

�
!2cd +

k2?
k2? + �i�0 + (1� �)�1

�
(5.28)

It is evident that the growth rate depend on gravitational force term (�) ; free electrons

(�; ) ; cyclotron frequency of dust (!cd) and the fast particles (�) : It is seen that the magnitude

of the magnetic �eld and presence of non-thermal ions decreases the growth rate  while the

gravitational force term enhances the growth rate.
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5.5 Result and Discussion

To summarize, we have considered multicomponent magnetized plasma whose constituents are

electrons, ions, dust and neutrals. In this chapter, the dispersion relation for the low-frequency

electrostatic modes propagating parallel and perpendicular to the external magnetic �eld in

self-gravitating dusty plasma with non-thermal ions are derived in cold dusty plasma. When

the gravitational force is taken into account, these modes become unstable. The e¤ect of

gravitational force, number of free electrons and ion temperature make these modes unstable.

Fast ions, dust temperature and external magnetic �eld try to stabilize the modes. The growth

rate  for these instabilities decreases with the magnitude of magnetic �eld, number of non-

thermal ions and the dust temperature and increase with the ratio of grain mass to grain

charge (md=Zde) with the ratio of ion temperature to electron temperature and with number

of free electrons. These results are useful to explain gravitational condensation of dust grain in

planetary system and to understand features of electrostatic disturbances in space plasmas.
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