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Abstract

Topological defects — remnants of the early universe — are produced during

the spontaneous symmetry breaking of a gauge field theory. These relics have

a significant role in explaining many cosmic phenomena. Magnetic monopoles

are, in particular, intriguing as they preserve electromagnetic symmetry. The

mass and structure of monopoles are model-dependent factors, varying from

grand unified scale to electroweak scale. Therefore, we will try to develop

thorough understanding of the magnetic monopoles starting from Dirac’s

prediction to considering them as topological solitons. Afterwards, we will

discuss different theories that provide an insight into monopoles of TeV range;

they can be detected through the current energy range colliders and help to

verify the complete correctness of the standard model. While the discov-

ery of these particles remains elusive, we will still look into experimental

bounds that are placed on their flux, masses, and charges. The existence of

monopoles cannot be ruled out, as there are systems in which they appear

as emergent particles. So, we will try to shed some light on these condensed

matter systems. However, the prediction of monopoles in the standard model

poses a problem as they don’t remain topologically stable during the elec-

troweak symmetry breaking. Hence, our prime focus in this manuscript is to

achieve homotopically stable, finite-energy light monopoles for their immense

importance.
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Chapter 1

Introduction

In winter, with every decline in temperature, the surface of a pond swiftly

turns into ice. The fact is that this surface layer will not evolve in a uniform or

featureless fashion. Instead, the icy plates formed independently at multiple

locations(as seen in figure 1.1) join up and create zig-zag borders between

them due to random merging. Physicists refer to these erratic boundaries as

“Topological Defects.” The reason for calling it a defect is that these are

remnants of the creation of uncorrelated domains during phase transition,

which thenceforth merges [1]. Since topological factors are the basis of their

existence and their proper explanation entails symmetry concepts found in

topology (a branch of Mathematics in which smooth deformations do not

affect a particular property of a system), they are termed topological.

Figure 1.1: Formation of ice plates on the surface of a pond[2].
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The study of these classical, non-dissipative solutions (defects) dates back

to the 1830s when J. Scott Russell gave us the concept of ”Solitary Wave”

which he spotted in a small canal as a wave having quite different prop-

erties from other known waves. These waves were later named solitons by

mathematical physicists. What is more interesting is that particle physicists

regarded them as potential new ”particles” in the spectrum of non-linear

field theories. And recently, condensed matter physicists probing supercon-

ductivity and astro-physicists researching galaxy formation have also delved

into them [3].

One might wonder what significance may cosmology derive from

such solutions . The response is that many theories in particle physics

inevitably lead to the conclusion that the early universe underwent several

phase transitions. Nevertheless, it is conceivable that these cosmic phase

transitions might have resulted in topological defects that are possibly still

roving in our universe. But, still they are only speculative in the early cosmos

although widespread in condensed matter physics. Therefore, the discovery

of these fossils from the early universe not only proves the universe’s tem-

perature history but also gives crucial knowledge about particle physics and

insight into cosmic phenomena. And the absence of these undiscovered topo-

logical defects places significant limitations on our particle physics knowledge

and may infer novel cosmology.

1.1 Motivation for research in Monopoles

From now on, among all other topological defects, our prime focus will be

magnetic monopoles. The credit of first written account of magnetism is ac-

tually given to Thales of Miletus (a Greek Mathematician) because he noticed
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the odd properties of lodestone (the natural form of magnetite). And about

a millennium ago, the Chinese made the first compass by observing that it

always points south or north. Over time, our knowledge about electricity and

magnetism started building up e.g. quite contrary to electric charges, mag-

netic charges do not exist, changing electric field produces a magnetic field,

etc. Eventually, in 1846, James Clerk Maxwell unified electricity and mag-

netism and epitomized classical electrodynamics in his famous four equations

as,

∇⃗.E⃗ = ρe.

∇⃗.B⃗ = 0.

∇⃗ × E⃗ = −∂oB⃗.

∇⃗ × B⃗ = j⃗e + ∂oE⃗.

(1.1)

The covariant form of above equation in terms of field tensor is given as

∂νF
µν = jµ. (1.2)

∂νG
µν = 0. (1.3)

where jµ is electric current density 4-vector and is given as jµ = (ρe , jx ,

jy , jz). Apart from the inclusion of electric source terms, there is a clear

symmetry between roles played by electricity and magnetism in above equa-

tions. This becomes immediately visible in case of free Maxwell’s equations

10



if we put ρe = j⃗e = 0 as shown below

∇⃗.E⃗ = 0.

∇⃗.B⃗ = 0.

∇⃗ × E⃗ = −∂oB⃗.

∇⃗ × B⃗ = ∂oE⃗.

(1.4)

In tensor form, current density 4-vector (jµ) will be zero so,

∂νF
µν = 0. (1.5)

∂νG
µν = 0. (1.6)

From above equations, it is obvious that the electromagnetic (EM) symmetry

remains intact in vacuum. Even if we switches the role of E⃗ and B⃗ under

the following duality transformation, (known as electromagnetic duality)

E⃗ → B⃗ , B⃗ → −E⃗

there will be no effect on equations mentioned above. However, EM sym-

metry is broken if electric source terms are not zero and as a result, the

invariance of Maxwell’s equations no longer persists. For symmetry restora-

tion, we have to consider magnetic source terms (ρg , j⃗g) as

∇⃗.E⃗ = ρe.

∇⃗.B⃗ = ρg.

∇⃗ × E⃗ = −j⃗g − ∂oB⃗.

∇⃗ × B⃗ = j⃗e + ∂oE⃗.

(1.7)
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which will be symmetric under the action of following duality transformation

E⃗ → B⃗ , (ρe, j⃗e)→ (ρg, j⃗g)

B⃗ → −E⃗ , (ρe, j⃗e)→ (−ρg,−j⃗g)

In tensorial form

∂νF
µν = jµ. (1.8)

∂νG
µν = −kµ. (1.9)

which remains invariant under the following duality transformation,

jµ → kµ , kµ → −jµ (1.10)

Here kµ represents magnetic current density 4-vector and is given as kµ =

(ρg , kx , ky , kz).Hence, it becomes evident that magnetic monopoles cannot

be ruled out for the EM symmetry to remain intact when we include source

terms.

Okay, for the time being, let’s set the debate over the existence of monopoles

aside and think for a while, why do we have to exclude the magnetic

monopoles? Do they violate any fundamental laws? Will they be the

cause of breaking any symmetry? Does their existence result in any instabil-

ity in the universe? The answer to all these questions is indeed, no. Infact,

many Grand Unified Theories (GUTs) predict their formation during phase

transition. Not only this, but they also play an essential role in catalyzing

proton decay, are a candidate for dark matter, etc. Therefore, the existence

of monopoles, whenever detected, will not only be the gateway to new era of
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physics, but will also be a hallmark for GUTs. And thus, eventually leads to

glory.

In chapter 2, first there will be discussion about different types of topolog-

ical defects. Then, a brief description of GUTs specifically SU(5) and SO(10)

will be given. Afterwards, homotopy theory will be discussed because when-

ever a symmetry breaks, the topology of vacuum manifold is determined by

using this theory. In the end, we will apply homotopy theory to the GUT

group SO(10) in order to find which types of defects are possible.

Chapter 3 encapsulates the scientific quest to bridge the gap between

electric and magnetic forces. In bottom-up approach, a through description of

Dirac’s Theory of magnetic monopoles will be provided and the quantization

condition given by Dirac will be proven from both classical and quantum

mechanical approaches. After this, we will jump to the soliton theory as

monopoles have topological characteristics.

Chapter 4 comprises on detailed discussion of monopoles from every as-

pect: Theoretical, experimental and in condensed matter systems. In top-

down approach, a theoretical overview of magnetic monopoles will be pro-

vided in detail based on following monopole theories:

1. ’t Hooft-Polyakov Theory

2. Nambu Theory

Afterwards, the experimental work that have been done yet will be discussed

briefly covering all three known possibilities to dectect magnetic monopoles.

To crunch this chapter, light will be shed on condensed matter systems in

which monopoles appear as emergent particles, not as elementary particles.

Lastly, in chapter 5, our focus will be on monopoles with electroweak

scale mass due to their immense importance. For this, a brief description
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of electroweak scale right-handed neutrino model will be given to under-

stand, how this model leads to non-trivial topology required for monopole

production. Validating it through Dirac quantization, we will jump to pre-

dict topological charge and structure of monopoles in this model. It is worth

mentioning here that throughout the manuscript, we will proceed in natural

units h = c = ϵ0 = µ0 = 1

14



Chapter 2

Topological Defects: A Gauge

Twist

Topological defects — the hidden threads of gauge theories — are enigmatic,

elusive and intriguing fundamental structures, arising from the fundamental

forces and symmetries of the cosmos, leaving a profound impact on the fabric

of space-time. They are fingerprints of fundamental processes that occurred

during the early stages of the universe or during phase transitions in con-

densed matter systems. From cosmic strings that span billions of light-years

to cosmic textures that shape the distribution of matter, all the defects are of

immense importance because of their ability to reveal profound insights into

the underlying symmetries and dynamics of the universe and matter. So, the

thought that occurs to mind is, How do these defects form at a cosmic scale?

But before jumping into it, let’s first explore cosmic phase transitions which

will ultimately enable us to comprehend how defects originate.
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2.1 Cosmological Phase Transitions

A basic symmetry breaks spontaneously to cause cosmological phase transi-

tions. They are known to happen in the early cosmos when a large symmetry

group breaks into a subgroup, further to the Standard Model(SM). Every

time a phase transition takes place, a portion of this symmetry is lost, which

causes the symmetry group to alter. This can be mathematically expressed

as:

G→ H→ SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)EM .

Phase transitions might have had a significant impact on how our universe

evolved and what is its content including the gravitational wave background,

defect formation, baryogenesis, production of primordial magnetic fields, etc.

Nevertheless, particle physicists still assess their quantum properties like ef-

fective mass, effective coupling and finite temperature effects that control all

physical behaviors like the order parameter, the latent heat, the amount of

super-cooling, etc[4]. The nature of phase transitions is of two kinds:

1. 1st order phase transition(dramatic): This phase transition occurs

through bubble nucleation in which new phase’s bubble nucleate until

the old phase or false vacuum completely vanishes, signaling the end

of the phase transition as shown in Figure 2.1. Its everyday analogy is

the formation of ice on the surface of a pond.

Figure 2.1: In 1st order phase transition, new phase’s bubble(true vacuum)
nucleate until the old phase(false vacuum) completely vanishes[5].
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(a) (b)

Figure 2.2: Comparison of the evolution of potential with temperature for
phase transitions, mediated by Higgs field (2.2a) 1st order phase transition
(2.2b) 2nd order phase transition

2. 2nd order phase transition: In this phase transition, the old phase

continually changes into the new phase just like magnetization of the

ferromagnetic materials e.g. iron.[3]

The graphical representations of both the phase transitions can be seen in

Figure 2.2 where the phase transition mediated by Higgs field is plotted

against the temperature dependent potential. In Figure 2.2a, it can be ob-

served that between a local minimum and the ground state, there is a barrier

in the event of 1st order phase transition which occurs due to quantum tun-

neling. While in Figure 2.2b for 2nd order phase transition, the evolution of

ground state is smooth.

The nature of a particular phase transition influences the observable rem-

nant traces and their utility. For instance, it may be a hint that the elec-

troweak phase transition caused baryonic asymmetry in the universe if a fossil

of gravitational background signals that it happened through bubble nucle-

ation. Similarly, the production of primordial magnetic fields is attributed

to the turbulence stage of the plasma undergoing bubble nucleation, etc[4].

The examples of cosmic phase transitions include the GUTs phase tran-

sition at 10−16GeV (and the age of universe was around 10−37s), the elec-
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Figure 2.3: A 2D illustration of Kibble mechanism. Here ξ represents corre-
lation length.

troweak phase transition at approximately 250GeV (occurred when our uni-

verse’s age was 10−12) and the quark-hadron confinement predicted by QCD

at around 1GeV (when our universe was about a 10−6s old) along with many

others [1].

2.2 Mechanism of Defect Formation

In 1976, T.W.B. Kibble became the first to explain the mechanism behind the

defect formation in the early universe, later known as Kibble mechanism after

him. He claimed that with every decline in the universe’s temperature, the

Higgs field, which permeates all of space, may have taken different vacuum

states or ground states. By the way, this is how symmetry is often broken.

An everyday analogy of it would be domains in ferromagnetic materials that

got randomly oriented as soon as the magnetic field vanished. Note that

the Higgs field is constant far and wide in a symmetrical ground state. And
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when the Higgs field attains a finite value, the symmetry is broken. All

orientations are equally likely because distanced points cannot interact during

the transition as information cannot move faster than the speed of light.

Consequently, it is reasonable to assume that distinct areas ultimately had

varied Higgs field alignments, and when they amalgamated, it was difficult

for domains with drastically different preferred orientations to amend and fit

seamlessly. So, defects arose at the interface of these areas [6].

2.3 Classification of Topological Defects

Depending on the pattern of symmetry breaking and topology of coset space,

topological defects are of four types whose details are as follows:

1. Monopoles: Magnetic Monopole(MM) is point defect generated by

the spontaneous breaking of a spherical symmetry. Almost in every nat-

ural GUT model, they are ineluctable. The key idea is that monopole

production is associated with U(1) symmetry which must constantly

be intact in any symmetry breaking transition. This, coupled with the

selection of any simpler GUT model (SU(5), SO(10), etc) inevitably

leads to MMs production. Interestingly, MMs are stable defects having

a well-defined core and their winding number is also quantized. Fur-

thermore,the monopole field necessarily has hedgehog configuration of

the field which means that is directed radially outward from the core

as visualized in Figure 2.4. And the mass of the MMs is of the order of

symmetry breaking scale, represented by ‘Mmon’. For the GUT scale,

Mmon =MG = 1016GeV.
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Figure 2.4: Configuration of field for monopole(left) and for vacuum(right)[5].

The Kibble mechanism predicts that per Hubble volume, the proba-

bility of the emergence of MMs is the order of unity since the number

density of monopole is given as

nmon ≃ H3 ≃
(
T 2
c

mp

)3

.

where‘mp’ is mass at Planck scale and is equal to 1019GeV while Tc

where ‘mp’ is mass at Planck scale and is equal to 1019GeV while ‘Tc’

is critical temperature of the phase transition whose typical value is

approximately 1014GeV . Since entropy density is given as

S = T 3
c .

Thus, the ratio of monopole number density and entropy density is

nmon

S
=

T 6
c /m

3
p

T 3
c

,

nmon

S
= 100

(
Tc
mp

)3

,
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Putting values, we get

nmon

S
= 10−13GeV. (2.1)

The mass density of monopole is given as

ρmon =Mmonnmon

(
T0
Tc

)2

. (2.2)

Since Mmon =MG, then by simplifying above equation, we get

ρmon = MG

(
T 2
c

mp

)3(
T0
Tc

)2

,

= MG

(
TcT0
mp

)3

,

∼ MG. (2.3)

Hence, MMs are superheavy. The energy density can be calculated as

Ωmon =
ρmon

ρc
. (2.4)

here ‘Ωmon’ denotes the energy density of the MM, ‘ρc’ represents the

critical density of the universe, the value of which is equal to 10−5GeV .

Thus, we have

Ωmon ≃
MG

ρc
=

1016

105
,

Ωmon ∼ 1011. (2.5)

This is not acceptable as it indicates that the universe’s matter is dom-

inated by monopoles which is disastrous. We call this monopole over-

abundance problem. The primary driver behind the notion of the infla-
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tionary universe, where monopoles are eliminated by the exponential

growth, was this monopole dilemma. Other approaches to prevent the

monopole issue include:

� Langacker-Pi Mechanism:

� It has also been proposed in 1998 by Dvali and others that monopoles

melt during their encounter with domain walls if the transition

generates both defects. In the end, domain walls deteriorate be-

cause of slight asymmetries and hence, sweep MMs away [7].

Keep in mind that global monopoles are an exception to above mention

rules since they have long-range forces that reduce their number density

in the absence of gauge fields. There is a substantial likelihood of an-

nihilation due to the strong attraction force between global monopoles

and antimonopoles which indicates that there is no over-abundance

problem in case of global monopoles. Hence, global monopoles are not

cosmologically disastrous but may be a seed of matter clustering [1].

2. Cosmic Strings: When axial symmetry is broken, line-like defects

called cosmic strings are produced. Cosmic strings are related to models

where the vacuum manifold includes holes or where the minima are not

simply connected and will only form strings when results in a circle as

seen in Figure 2.5. Extensive researches have been done on cosmic

strings not only in cosmology but also in solid state physics. Though

cosmologically intriguing, cosmic strings have not yet been found and

are subject to strong constraints from the millisecond pulsar and other

observations. Cosmic strings are stable defects having a well-defined

core and quantized winding number. The mass density of cosmic strings
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Figure 2.5: Cosmics strings’ formation via Kibble mechanism[5].

is given as

ρs = η2t−2. (2.6)

Thus, mass per unit length of GUT scale strings is 1016tons/cm. And

the energy density can be calculated as

Ωs ∼
ρs
ρc
,

=

(
η

mp

)2

,

= 10−6. (2.7)

Hence, strings are not cosmologically disastrous and due to gravita-

tional accretion, can seed structure formation [1]. Following processes

make them loose their energy due to which they do not dominate the

matter of the universe.

(a) String inter-commutation: In this process, two strings can switch

partners at the point of intersection while they are crossing. This

causes a loop to be chopped off when a string folds back on it-

self. Also, due to repeated inter-commutation, strings lose their

straightness and form wavy structures as shown in Fig. 2.6 which
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Figure 2.6: Wiggly structure of cosmics strings[1].

attract matter to them but straight strings do not.

(b) Oscillating loops gradually dissipate after emitting radiation, mostly

gravitational radiation for gauge strings.

The above mentioned reasons lead strings to continue deteriorating.

The ultimate result is a scaling solution where a fixed amount of loops

and long strings are present at any time in a Hubble volume [8]. Sim-

ulations reveal that around 80% energy is composed of infinite strings

in the string network.

3. Domain Walls: Domain walls(DWs) are result of spontaneous break-

ing of discrete symmetry. The disconnection of the vacuum manifold

causes these 2-D defects to appear as shown in figure 2.7. Note that it is

impossible to gauge discrete symmetries since they are not continuous.

Therefore, domain walls are invariably global defects. Because of their

enormous mass, domain walls are often catastrophic for cosmology at

GUT scale as,

MDW = 1046tons/cm2

while

Mgalaxy = 1039tonnes
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Figure 2.7: Domain walls’ generation via the Kibble mechanism [5].

Therefore, a domain wall of 10−6 m size has a mass equivalent to that

of a galaxy. However, inflation can solve the domain wall problem

produced at GUT scale. As a result of the horizon providing an upper

bound on any associated domain, the Kibble mechanism predicts one

domain wall per horizon. Thus, at GUT scale,

Ωdw

Ωc

=
m3

GUT × t−1

m2
p × t−2

= 1051 (2.8)

where ”mGUT” is mass at GUT scale and is equal to 1016GeV while

”mp” is mass at Planck scale and is equal to 1019GeV .

Domain walls at GUT scale are, therefore, excluded. The only walls

that are acceptable are those that may emerge very late in the universe’s

history. Interestingly, constricting axion models have proven to be the

most successful application of the domain wall constraint.[8]

4. Textures: A higher, more complex, non-abelian global symmetry breaks

entirely and spontaneously to produce textures. Note that the partial

breaking of this global symmetry gives rise to other defects rather than

global textures like global monopoles or non-topological textures. They

are delocalized defects because, in contrast to other defects, the field
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Figure 2.8: Textures (a) in 1-D and (b) in 2-D [5].

is not limited only to the defect core, as all the energy is in the form

of spatial gradients as seen in figure 2.8. Even if gauge fields Aν try

to redirect for a local theory, then Dνϕ = 0. Thus they only exist in

theories having global symmetry.

Textures’ susceptibility to collapsing is another intriguing phenomenon.

Because of this instability, the defect gradually collapses in on itself as

its actual size shrinks over the passage of time to the order of the

horizon. Up until the magnitude of it reaches the scale 1
η
, the collapse

persists. By this time, the core will have accumulated enough energy

to induce the field to quit this vacuum state. It asserts that textures

unwind, leaving a trivial configuration of the field in their wake, and

the winding number is not quantized. In light of all this, it is logical

to consider them as peculiar topological defects[1].

Two terminologies, local and global defects, are frequently used in the

above description and are based on whether the gauge symmetry is involved

or not. As far as local defects are concerned, the gauge fields offset gradients

thus, there is little gradient energy. It has two significant repercussions i.e.

local defects do not interact across large distances after they form and have

a well-defined core where the energy is confined. Contrary to it in global

defects, no gauge fields are involved and the gradient energy which is ev-
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Topological defect Widely acceptable Reason

Monopoles
Global Local leads to

over-abundance issue

Cosmic string Both local and global -

Domain walls
Both are not acceptable Cosmologically

disastrous

Textures Only global textures exist Rapid disappearance

Table 2.1: Classification of topological defects on the basis of gauge symme-
try.

erywhere throughout the horizon scale, dominates. The interaction among

defects is quite powerful and meager defects per horizon scale will be present

due to the annihilation of opposing-charge defects. Since we know that

Ωdefect = η2 × t−2

Therefore
Ωdefect

Ωmatter

= 4πG = E (2.9)

Thus, the defect’s energy represents a stable, negligible portion of the uni-

verse’s overall energy density and this is referred as scaling. Only strings un-

dergo scaling among local defects. And if we talk about global defects,they

cause geometrical perturbations due to gradient energy. Hence, global defects

and local strings can seed formation of large scale structure [9].

2.4 Grand Unified Theory

As physicists continue to explore the mysteries of the cosmos, GUTs remain

a captivating avenue for unraveling the complexities of particle physics and
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the fundamental nature of our universe. GUT groups are attempts to unify

the three fundamental forces of the Standard Model(SM) into a single, larger

unified force at high energy scales. These GUT groups aim to describe the

interactions of elementary particles beyond the energy range that current

particle accelerators can probe. There are many GUT models like SU(5),

Pati-Salam, Trinification, SO(10), E6, etc. However, here we will discuss

SU(5) and SO(10). To comprehend the gauge unification, we need to under-

stand unitary group and special unitary groups which are briefly described

in appendix A.

2.4.1 Insight into SU(3)c × SU(2)L × U(1)Y

The story begin with fermions, collection of quarks and leptoons, as the

building blocks of matter existing in our universe are fermions i.e. protons,

neutrons, and electrons. Deeper analysis shows that proton comprises of two

up quarks and a down quark(d), and the neutron made up of two down quarks

and an up quark(u). A down quark within a neutron undergoes β-decay(weak

interaction), converting it to u, e−1, and antielectron-neutrino(v̄e). In order

to yield the well-known and adored electromagnetic interaction, the photon

couples to different fermions, leaving the v̄e alone.

Further studies by Gell-Mann unveiled that quarks have a quantum num-

ber known as color quantum number. The three color variants for each quarks

are represented by red(r), blue(b), and green(g) which explains the gluing

of quarks within proton and neutron. And due to strong interaction, these

quarks can scatter off each other i.e. ur +db → ub +dr. So, in a way, strong

interaction is responsible for the formation of the universe.

Later on, physicists discovered that the universe is actually composed

of three generations of fermions with u, d, e, and νe constituting the 1st
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generation of fermions. With the discovery of the charm quark(c), strange

quark(s), muon(µ), and muon-neutrino(vµ) — the 2nd generation of fermions

— scientists were astounded and incredulous. Even more unexpected was

the 3rd generation, which included top quark(t), bottom quark(b), tau(τ),

and tau-neutrino(vτ ) [10].

Since fermions are spin 1
2
particles so, two Weyl fields are used to describe

them— the Left-Handed(LH) field and Right-Handed(RH) field. Parity con-

servation ensures that both fields are placed in the same representation(R) of

the gauge group(G). For instance, the three color variants of up quark having

two sets of fields(urL, u
b
L, u

g
L;u

r
R, u

b
R, u

g
R) are put into the fundamental repre-

sentation 3 of SU(3). As is well-known that a conjugate LH field translates

like a RH field, making it convenient for grand unified theorists to recast all

RH fields as conjugate of the LH fields in the gauge theory(ΨR → Ψc
L). This

enables us to describe how gauge bosons interact with fermions, explaining

the coupling of eight gauge bosons Aa
µ (a = 1, ..., 8) to the generators T a of

the representation R to which the fermions belong. This can be expressed

in the form of Lagrangian using the up quark as

L = gAa
µ(ūλaγ

µ u+ ūcλ∗aγ
µ uc). (2.10)

Here λa represents the Gell-Mann matrices. Have a pause here. One might

think that, Why are we using SU(3) gauge group, not any other one? So,

the recipe to construct a gauge group is

� Choose a compact Lie group G. Just focus on SU(N) for the sake of

our goals.

� The 1
2
N(N − 1) gauge bosons Aa

µ transform like the adjoint represen-

tation.
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� Different representations R of G are used to represent fermions with a

dR-dimensional representation being able to include dR fermion fields.

Following that, the representation to which each fermion belongs fixes

the interactions between the gauge bosons and the fermions.

Strong Interaction

Alright, now our aim is to allocate 1st generations’s fermion fields— given

below

ur, ub, ug, ucr, ucb, ucg, dr, db, dg, dcr, dcb, dcg, e−, e+, ve (2.11)

to various SU(3) representations used to describe the strong interaction. The

15 Weyl fields mention above have representations

u ∼ 3 , uc ∼ 3̄ , d ∼ 3 , dc ∼ 3̄ , e− ∼ 1 , e+ ∼ 1 , ve ∼ 1 (2.12)

Note that the singlet representation of SU(3), which does not undergo trans-

formation under the group, is home to the leptons, electrons, anti-electrons,

and neutrinos. These leptons receive the cold shoulder from the gluons,

who disregard them. In Lagrangian, the symbol for the term representing

electron-gluon coupling(λa) is a 0 for the singlet representation.

In conclusion, identifying the non-trivial irreducible representations of

SU(3)

(ur, ub, ug), (ucr, ucb, ucg), (dr, db, dg), (dcr, dcb, dcg) (2.13)

allows one to specify the strong interaction. In simpler words, the three fields

contained inside each set of parenthesis are transferred into one another by

the gluons. Beware, e−, e+, and ve are not included and neutrino has no

conjugate partner. According to group theory, the 1st generation of fermion

fields are attributed to the reducible representation 3⊕3∗⊕3⊕3∗⊕1⊕1⊕1
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of SU(3) [11].

Inclusion of Weak interaction

Let’s move on to the weak interaction now, denoted by SU(2) gauge theory,

which explains the transformation of u and d as doublet ∼

 u

d

. In the

SU(2) gauge theory, there are three gauge bosons(N2 − 1 = 22 − 1 = 3)

denoted by Wa
µ which couple to the SU(2) generators T a(replaced by Pauli

matrices τa). Thus, the linear combinationW1±ι2
µ which got coupled to τ∓ =

1
2
(τ1∓ ιτ2), result in the transformation of the up quark into the down quark

and vice versa. The same gauge bosons are responsible for the transformation

of the neutrino and electron as a doublet, schematically ∼

 ve

e−

.

Surprisingly, the neutrino has no conjugate partner. So, the neutrino’s

left-handed nature requires a left-handed e− field in the doublet, while the

right-handed e− field lacks sharing the spotlight with the neutrino field.

Also, experiments done to study weak interaction, especially parity violation,

demonstrated that the right-handed up and down quarks fields have no other

to partner with. All this results in singlet representations that transforms

like 1 of SU(2). The lack of contact between the weak interaction bosons

and the color of the quarks suggests a direct product structure between the

strong and weak interactions as SU(3)× SU(2).

So the 15 Weyl field given in (2.11) are sorted into SU(3)× SU(2) as


 ur

dr

 ,

 ub

db

 ,

 ug

dg


 ,

 ve

e−

 , (ucr, ucb, ucg) , (dcr, dcb, dcg) , ec

(2.14)
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In simple words, 1st generation fields comprise of reducible representation

(3, 2)⊕(1, 2)⊕(3̄, 1)⊕(3̄, 1), (1, 1) summing up to 3.2+1.2+3.1+3.1+1.1 = 15

[11].

Inclusion of Electromagnetism

Now, let’s talk about the leftover W3
µ gauge boson. Because this gauge

boson — associated with T 3 generator — couples with neutrino, it can’t be

the photon. This gauge boson can also be coupled to both up quark and

neutrino with strength equal to 1
2
,to down quark and electron with strength

equal to −1
2
, and can’t be coupled to uc,dc,ec. Hence, at least one more gauge

boson must be introduced, as suggested by the Gell-Mann Nishijima formula

given below

Q = I3 +
1

2
Y.

In terms of T 3 generator, the above equation can be re-written as

Q = T 3 +
1

2
Y. (2.15)

The gauge group, which has the generator 1
2
Y , is U(1). By definition, the

total of T 3 generator for each of the fields in an SU(2) representation must

equal zero. Therefore, (2.15) informs us that the average electric charge Q

of all the fields in a representation is equal to 1
2
Y of the representation. For

example, for the fields

 u

d

 and

 ve

e−

, the hypercharge(Y ) is equal to

1
2

[
+2
3
+
(−1

3

)]
= 1

2

[
2
3
−
(
1
3

)]
= 1

6
and 1

2
[0 + (−1)] = −1

2
respectively. This

results in an extension of the gauge group underpinning the strong, weak,

and electromagnetic interactions to SU(3)× SU(2)× U(1). The irreducible
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representation of the 15 Weyl field is as follows

(
3, 2,

1

6

)
⊕
(
3̄, 1,−2

3

)
⊕
(
3̄, 1,

1

3

)
⊕
(
1, 2,−1

2

)
⊕ (1, 1, 1). (2.16)

The gauge bosons’s interaction with U(1) is denoted as Bµ. The photon turns

out to be a specific linear combination of theW3
µ and Bµ, coupling to electric

charge. The Z is the name for the linear combination that is perpendicular

to the photon. Particle physicists have a great deal of faith in the validity

of the Standard model gauge theory after the finding of a gauge boson with

the anticipated features of Z [11].

2.4.2 From SM to SU(5)

A great many clues point to the need for further unification, at least in the

light of retrospect. One is that the hypercharges(1
2
Y ) of 15 weyl fields of 1st

generation add up to zero i.e. 3.1.− 2
3
+ 3.2.1

6
+ 3.1.1

3
+ 1.1.1 + 1.2.− 1

2
= 0

and the fact is that U(1) is a part of Lie algebra. So, it follows that Y must

be traceless which is the generator of U(1)(sum of Y should be zero). And

the list goes on... Therefore, it is the need of the hour to embed the SM into

a larger gauge group to rule out known discrepancies [11].

But note that the candidates for the larger gauge group must be at least

of rank ≥ 4 since the rank of the standard model is 4. Hence, the simple and

smallest larger gauge group embedding SM is SU(5) whose rank is 4 and has

N2− 1 = 52− 1 = 24 gauge bosons twice the usual gauge bosons. The extra

gauge bosons having both flavor and color— known as X and Y — defy the

baryon and lepton number while preserving B − L conservation [12].

The fundamental representation of SU(5) is formed by the 24 5 by 5

hermitian traceless matrices operating on the 5 objects designated by ψα
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with α = 1, 2, ..., 5. Now divide ψα into two sets: one set is ψi with i = 1, 2, 3

and the other is ψj with j = 4, 5. The SU(5) matrices that operates on ψi and

ψj define an SU(3) and SU(2) respectively. In fact, 8 of the 24 hermitian

traceless matrices are Gell-Mann matrices producing an SU(3), and 3 are

Pauli matrices yielding an SU(2). This describes the fitting of SU(3) and

SU(2) into SU(5). The 5 by 5 hermitian traceless matrix of SU(5) is

S =
1

2
Y =



−1
3

−1
3

−1
3

1
2

1
2


(2.17)

called the hypercharge 1
2
Y which is the generator of U(1). Why Nature felt

the need to include an additional U(1) in SU(3)×SU(2)×U(1)? We can now

see that the cause may be grand unification: SU(5) decomposes naturally

into SU(3)× SU(2)× U(1), not into SU(3)× SU(2) [11].

How Embedding is Done?

It is apparent that the fundamental representation of SU(5) has dimension

5. This gauge group is complex and, therefore, has a complex conjugate

representation 5̄ also, referred as anti-fundamental representation. Finding

a SM subgroup of SU(5) is necessary to embed the SU(3), SU(2), and U(1)

gauge groups in SU(5). So, as a starting point, let’s try to fit the LH fields

given in (2.16). There are two options in (2.16), each with a total of 5

dimensions: (
3̄, 1,

1

3

)
⊕
(
1, 2,−1

2

)
(2.18)
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as 3.1 + 1.2 = 5 and (
3̄, 1,−2

3

)
⊕
(
1, 2,−1

2

)
(2.19)

in view of the fact that 3.1 + 1.2 = 5. Catch on the fact that the option

in (2.19) is prohibited because the hypercharge S is not traceless i.e. 3.1.−
2
3
+ 1.2.1

2
= −1 ̸= 0. Consequently, this group can’t be embedded in SU(5).

Anyway, the possibility in (2.18) is allowed as 3.1.1
3
+1.2.− 1

2
= 0(traceless).

Thus, it can be embedded into SU(5) as shown below

5̄ →
(
3̄, 1,

1

3

)
⊕
(
1, 2,−1

2

)
(2.20)

By taking conjugate of above representation, we get the fundamental repre-

sentaion of SU(5)

5 →
(
3, 1,−1

3

)
⊕
(
1, 2,

1

2

)
(2.21)

Heading in right direction, indeed! The content of the left-handed fields in

representation 5̄ is 

dcr

dcg

dcb

e−

ve


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and for the right-handed fields in representation 5

ucr

ucg

ucb

ec

vce


However, this explains 5 of the fields in (2.16) while the remaining 10 fields(
3, 2, 1

6

)
⊕
(
3̄, 1,−2

3

)
⊕ (1, 1, 1) must still be researched. For this, the next

representation of SU(5) has dimension N(N−1)
2

= 5(4)
2

= 10 and is known

as antisymmetric tensorial representation. This representation uses antisym-

metric product technique to embed the remaining fields in 10 and 1̄0. To

determine the mechanism, we see that 10 = 5⊗A 5. Due to this, we may cre-

ate these representations by multiplying the 5-dimensional left-handed fields

subset as shown below

10 = 5⊗A 5

10 →
[(

3, 1,−1

3

)
⊕
(
1, 2,

1

2

)]
⊗A

[(
3, 1,−1

3

)
⊕
(
1, 2,

1

2

)]
10 →

(
3, 1,−1

3

)
⊗A

(
3, 1,−1

3

)
⊕
(
3, 1,−1

3

)
⊗A

(
1, 2,

1

2

)
⊕
(
1, 2,

1

2

)
⊗A

(
1, 2,

1

2

)
10 →

(
3⊗A 3, 1,−1

3
− 1

3

)
⊕
(
3, 2,−1

3
+

1

2

)
⊕
(
1, 2⊗A 2,

1

2
+

1

2

)
10 →

(
3⊗A 3, 1,−2

3

)
⊕
(
3, 2,

1

6

)
⊕ (1, 2⊗A 2, 1)

We know that

3⊗ 3 = 3̄a ⊕ 6s (2.22)
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and

2⊗ 2 = 1a ⊕ 3s (2.23)

Therefore, the antisymmetric representation 10 is given as

10 →
(
3̄, 1,−2

3

)
⊕
(
3, 2,

1

6

)
⊕ (1, 1, 1) (2.24)

The content of this representation is

0 ucb −ucg dr ur

−ucb 0 ucr dg ug

ucg −ucr 0 db ub

−dr −dg −db 0 ec

−ur −ug −ub −ec 0


We can get the respresentation of right-handed fields by taking the conjugate

of 10

1̄0 →
(
3, 1,

2

3

)
⊕
(
3̄, 2,−1

6

)
⊕ (1, 1,−1) (2.25)

Lo and behold! The 5̄ and 10 representations of SU(5) are ideal fits for the

known fermion fields of a particular generation. With this, all the fermions

are embedded into SU(5) with respresentations: 5̄,10 for LH fields ,and 5,1̄0

for RH fields. It is evident now that the generator of SU(5) is hypercharge

which is traceless. That’s why sum of the hypercharges of the 15 Weyl fields

is 0(discussed at the start).
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2.4.3 Embedding SU(5) into SO(10)

We have witnessed that in the SU(5) theory, the 15 Weyl-fields containing all

the fermions are placed into 5̄ and 10 representations which are irreducible

and thus, signals flaw. Also, as per the principles of quantum field theory,

all theories must pass a ”health check” called freedom from anomaly, similar

to a disease screening. In the case of the SU(5) theory, the contributions of

the 5̄ and the 10 precisely cancel each other out, indicating that unification

must be continued to a larger gauge group(G).

It is generally agreed that U(N) naturally fits into SO(2N). It is worth

mentioning here that there is an essential difference between SO(2N) and

SO(N) that is the former has an extra complex representation knwon as

spinorial representation, which is a more generalized version of Lorentz spinors.

It can be understood implicitly by considering SO(2N) as a set of lin-

ear transformations in which the scalar product of two real vectors x =

x1, x2, x3, ..., xn and x′ = x′1, x
′
2,

′
3 , ..., x

′
n given as

xx′ =
n∑

i=1

(xix
′
i + yiy

′
i). (2.26)

remains invariant. (??)e can develop two n-dimensional complex vectors,

u = xi + ιyi and u′ = x′i + ιy′i, using these two real vectors where i =

1, 2, 3, ..., n. The group U(N) is a subset of transformations applied to the

complex vectors u and u′ whose scalar product represented as

u(u′)∗ =
n∑

i=1

(xix
′
i + yiy

′
i) + ι

n∑
i=1

(xix
′
i − yiy′i) (2.27)

is also invariant. By observing equations (2.26) and (2.27), we infer that

U(N) leaves not only the SO(2N) transformation invariant but also the
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∑n
i=1 (xix

′
i− yiy′i) one. Hence, There is no doubt that the coordinates xi and

yi rotate each other in the 2n-dimensional space [11].

From above discussion, we conclude that SO(10) model enables us to fit

all the fermions in single irreducible representation called spinor representa-

tion as shown below

16 = 10 ⊕ 5̄ ⊕ 1

Notably, it introduces a Weyl field that transforms as an SU(5) singlet called

the RH neutrino which is a much-needed feature in GUT models. The fact

that fermions may convert into spinors in both spacetime and in internal

symmetry space is another appealing aspect of SO(10). Last but not the

least, this model automatically exclude the anomaly.

2.5 Homotopy Theory

Homotopy theory is a fascinating branch of algebraic topology that explores

the relationship between topological spaces and their continuous deforma-

tions. Put simply, homotopy theory has an intimate connection with ge-

ometry and topology, and allows physicists to categorize topological defects

based on their unique characteristics.Homotopy theory and topological de-

fects, though rooted in different domains of mathematics and physics, con-

verge to illuminate the intricate topological tapestry of our universe. It

introduces powerful algebraic invariants, such as homotopy groups, that en-

capsulate the topological information of a space relevant to the study of

topological defects.

Using homotopy theory, we can not only analyze the type of defect that

would arise from the breaking of a particular symmetry, but also determine

whether the defect would be stable or not. The question here is, How?
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Homotopy group Defect Topology of M

Π0M ̸= 1 Domain walls Disconnected

Π1M ̸= 1 Cosmic string non-contractable loops

Π2M ̸= 1 Monopoles non-contractable 2-spheres

Π3M ̸= 1 Textures non-contractable 3-spheres

Table 2.2: Classification of topological defects on the basis of homotopy
groups.

Remember, Kibble mechanism advocated that defects are associated order

parameters or fields from one topological space — higher symmetry group G

— to another with smaller symmetry group H which are not correlated. It

is the topology of this coset space or vacuum manifoldM = G
H

that helps us

in the determination of type of defect. In simple words, we map the points

of symmetry group G to smaller group H which should be non-trivial for the

defect to produce. These mappings can be classified using homotopy classes

or groups, which represent equivalence classes of continuous deformations or

mappings and which correspond to distinct types of defects as described in

the following Table.

2.6 Insight into SO(10) Breaking

In this section, we will apply homotopy theory to the SO(10) model by

considering different symmetry breaking patterns and try to figure out which

defects are possible. The reason behind specifically considering the SO(10)

model out of all is that it is one of the largest and most inclusive grand

unified gauge group. Other reasons are

1. In SO(10), all the fermions of a single generation are embedded into a
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single representation, which is not the case in SU(5).

2. SO(10) allows for the inclusion of RH neutrinos, which are crucial

for explaining the phenomenon of neutrino oscillation and generating

neutrino masses through the seesaw mechanism.

3. The SO(10) GUT framework can provide a natural explanation for

proton decay, which is a crucial prediction of GUTs.

4. This model can solve the gauge hierarchy problem.

5. In this model, the Dimopoulos-Wilczek mechanism can lead to natural

doublet-triplet splitting.

6. Some versions of SO(10) GUT models offer a mechanism for explaining

the observed baryogenesis in the universe.

Thus, SO(10) is a captivating model for unraveling the complexities of par-

ticle physics and the fundamental nature of our universe.

Clap eyes on the fact that in the rest of the section, we will employ su-

persymmetric(SUSY) SO(10) model rather than a non-supersymmetric one.

The reasons are primary distinctions in symmetry breaking scale and the

selection of intermediate symmetry models. It means that to gain agreement

with the observed value of sin2 θw and the gauge coupling constants extrapo-

lated to high energies to reach roughly to 1015GeV , non-SUSY models must

undergo one intermediary symmetry breaking. As opposed to this, SUSY

SO(10) models may directly break to the standard model in which super-

symmetry breaks at 103GeV , anticipating the observed value of sin2 θw, and

uniting the gauge coupling constants in a single point at 2× 1016GeV .

It is quite natural to raise the issue that, Isn’t there any effect on the

formation of topological defects in non-SUSY theories by the presence of su-
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persymmetry? And the answer is negative. Because in non-SUSY theories,

the connection of the vacuum manifold G
H

is necessary for the topological

defects to generate after the SSB of a non-SUSY Lie group G to a non-SUSY

Lie group H. Now in the case of superalgebra of non-Lie nature, it is known

to us that the superalgebra is Lie admissible. Also, one may exponentiate

the superalgebra’s infinitesimal transformations to get a Lie superalgebra.

The Lie algebra has an algebraic covering known as the Lie admissible

algebra. Such a covering maintains the Lie group’s global structure while

facilitating a Lie admissible infinitesimal behavior. The graded Lie algebra

is Lie admissible, allowing for the extension of most of the Lie algebra theory

to it with the proper modification. A linked (super-)Lie group structure in

particular, preserves. Therefore, topological defects will emerge in SUSY

models in the same way that they do in non-SUSY ones [13].

Using no more than one intermediate breaking scale which in our case

will be SU(5), we enumerate every symmetry breaking pattern starting from

SUSY SO(10) down to the standard model(SM) without involving Z2 parity.

SO(10)→ SU(5)× U(1)χ → SU(3)c × SU(2)L × U(1)Y

SO(10)→ SU(5) → SU(3)c × SU(2)L × U(1)Y

SO(10)→ SU(5)× U(1)X → SU(3)c × SU(2)L × U(1)Y

SO(10)→ SU(3)c × SU(2)L × U(1)Y

(2.28)

while the breaking patterns involving Z2 symmetry are

SO(10)→ SU(5)× U(1)χ → SU(3)c × SU(2)L × U(1)Y × Z2

SO(10)→ SU(5)× Z2× → SU(3)c × SU(2)L × U(1)Y × Z2

SO(10)→ SU(5)× U(1)X → SU(3)c × SU(2)L × U(1)Y × Z2

SO(10)→ SU(3)c × SU(2)L × U(1)Y × Z2

(2.29)
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In all the models mentioned above, supersymmetry breaks at 103GeV —

without taking into account how it breaks — and the SM is broken to

SU(3)×U(1)em by the standard Higgs mechanism. However, the symmetry

breakings mentioned in (2.29), the Z2 symmetry functions as matter parity

and is unbroken all the way down to SM. It prohibits rapid proton decay

and stabilizes the lightest supersymmetric particle(LSP), making it an excel-

lent candidate for hot dark matter. For simplicity, we will use the following

notations

3c2L1Y ≡ SU(3)c × SU(2)L × U(1)Y

3c2L1Y (Z2) ≡ SU(3)c × SU(2)L × U(1)Y (×Z2)

Remember one thing, we will discuss defect formation in generic way only

and not give details about the possibility of different types of configurations.

However, the explanation about the stability of defects will be considered.

Lastly, in order to reduce SO(10) rank by one unit, a pair pf Higgs field

(φ + φ) must get a VEV that is in the order of the GUT scale, which can

occur in the 16 + 16 or 126 + 126 dimensional spinorial representations of

SO(10). And a pair of 126 + 126 dimensional Higgs representation must be

used to keep the Z2 matter parity intact down to low energy. Note that

the symmetry breaking caused by the (φ + φ) fields takes place at the end

of inflation, and any corresponding topological defects will not be inflated

away.
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Breaking via SU(5)× U(1)χ:

Consider the following symmetry breaking patterns of SO(10)

SO(10) → SU(5)× U(1)χ (2.30)

→ SU(3)c × SU(2)L × U(1)Y × U(1)χ (2.31)

→ SU(3)c × SU(2)L × U(1)Y (×Z2) (2.32)

During the first symmetry breaking, π2

(
SO(10)

SU(5)×U(1)χ

)
is non-trivial. Thus, a

monopole carrying U(1)χ magnetic charge will be produced. In second phase

transition achieved by the VEV of an SU(5) 24-plet Higgs in 45-plet SO(10),

a monopole-antimonopole pair having U(1)χ and U(1)Y charge is generated.

Due to the orthogonality of the χ and Y directions, the U(1)χ symmetry in

(2.32) breaks to unity (or to Z2 if SU(3)c×SU(2)L×U(1)Y ×U(1)χ is broken

using a pair of 126 + 126 Higgs fields). In this phase transition,

π1

(
SU(3)c × SU(2)L × U(1)Y × U(1)χ

3c2L1Y (Z2)

)
= π0(3c2L1Y (Z2)) = Z2

which indicates the formation of cosmic strings possessing mass per unit

length(µ) of 1032GeV 2 connecting monopole-antimonopole pair. The infla-

tionary scenario is unable to resolve the monopole problem because monopoles

emerging at both phase transitions are topologically stable. Therefore, these

two models aren’t consistent with the information on hand.
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Breaking via SU(5):

Consider SO(10) breaking via SU(5) as follows

SO(10) → SU(5) (2.33)

→ SU(3)c × SU(2)L × U(1)Y (2.34)

The initial step of symmetry breaking does not result in the formation of any

topological defects because both SO(10) and SU(5) are simply connected.

Monopoles form by the breaking of SU(5) to 3c2L1Y because

π2

(
SU(5)

3c2L1Y

)
= π1(3c2L1Y ) = Z

These monopoles will have Y charge, 1017GeV mass and is stable. Since

the rank is reduced by one unit during the second step; the monopoles are

produced at the end of inflation, dominating the energy density of universe.

Therefore, this model clashes with the standard cosmology and proton life-

time data and thus, is also inconsistent.

Breaking via SU(5)× U(1)X:

Consider the following breaking chain of SO(10) to flipped SU(5)

SO(10) → SU(5)× U(1)X

→ SU(3)c × SU(2)L × U(1)Y

→ SU(3)c × U(1)EM
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Here U(1)X contains part of U(1)Y and U(1)EM symmetries. Since

π2

(
SO(10)

SU(5)× U(1)X

)
= Z

therefore, first step symmetry breaking leads to monopole formation. Fur-

thermore, for the second phase transition

π2

(
SU(5)× U(1)X

3c2L1Y

)
= π1(3c2L1Y ) = Z

again resulting in the formation of monopole. The monopoles formed are

topologically stable, carry B−L charge and possess mass ≥ 5×1017GeV . In

the last stage of symmetry breaking, embedded cosmic strings are formed. A

hybrid inflationary scenario for supergravity models could cure the monopole

problem, as the inflaton field can couple to the Higgs needed to break SU(5)Ö

U(1) as rank of flipped DSU(5) is 5, forming embedded strings at the end of

inflation. Therefore, the above model is quite interesting.

However the problem occurs when this model favors rapid proton decay

and does not give mass to right handed neutrino. To address this issue, we

will use 126 + 126 Higgs field to break flipped SU(5) . During this phase

transition, first homotopy group will be non trivial — π1

(
SU(5)×U(1)X
3c2L1Y (Z2)

)
=

Z2 — resulting in the formation of stable Z2 cosmic strings also with µ ∼

1032GeV 2.

Breaking via SU(5)× Z2:

Consider the symmetry breaking patterns as given below

SO(10) → SU(5)× Z2

→ SU(3)c × SU(2)L × U(1)Y × Z2

46



Here the intact Z2 symmetry is a subgroup of Z4 centre of SO(10). Note, at

first step of breaking,

π1

(
SO(10)

SU(5)× Z2

)
= π0(SU(5)× Z2) = Z2

Hence, stable cosmic strings are generated with µ ∼ 1032GeV 2 − 1038GeV 2.

As the Z2 symmetry is kept intact down to SM, these cosmic strings are

topologically stable. Since SO(10) has rank 5 and the rank of SU(5) is 4,

stable monopoles with mass 10617GeV will be formed at the end of inflation

during the second symmetry breaking. Hence, this model conflicts with the

established perception.

Breaking via SU(3)c × SU(2)L × U(1)Y :

One may get the SM straight from the SUSY SO(10) as follows

SO(10) → SU(3)c × SU(2)L × U(1)Y

→ SU(3)c × U(1)EM

(2.35)

or

SO(10) → SU(3)c × SU(2)L × U(1)Y × Z2

→ SU(3)c × U(1)EM × Z2

(2.36)

In (2.35) model, both steps of symmetry breaking produces monopoles be-

cause the second homotpy group(π2) is non-trivial in both cases. They have

mass of about 1017GeV , meaning that they will dominate the universe. In

(2.36) model, fisrt phase transition produces cosmic strings as

π1

(
SO(10)

3c2L1Y (Z2)

)
= π0(3c2L1Y (Z2)) = Z2
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and they remain topologically stable even at low energy because Z2 symme-

try remains intact and have mass per unit length of 1032GeV 2. Monopoles

arise during the grand unified phase transition once again as a result of the

unbroken U(1)Y symmetry. They are topologically stable at low energy and

have Y topological charge which might switch from Y to EM .

The possible clash with the accepted big-bang cosmology is once more

not averted since monopoles emerge in both models at the end of inflation.

With a superpotential of the type φ + φ, one can attempt to inflate away

the monopoles, but this needs the introduction of an intermediate scale.

Therefore, the monopole overabundance problem remains unsolved or the

simplicity of this symmetry breaking scheme is lost.
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Chapter 3

Beyond Maxwell: The Quest

for MMs

Magnetic monopoles are enigmatic and elusive hypothetical particles that

acts as magnetic analog to an electric charge. Unlike ordinary magnets that

have both north and south poles connected in pairs, MMs are singular and

carry only one type of magnetic charge. Efforts to detect MMs have been on-

going for decades, and various theoretical and experimental approaches have

been pursued. These include investigations in particle physics, cosmology,

and condensed matter physics. Therefore, in this chapter, our prime focus

will be the theory which shed light on the existence of MMs — Dirac’s the-

ory — with a look into soliton theory for better understanding as MMs are

also referred as topological solitons.

3.1 Dirac’s Theory

In the realm of theoretical physics, few ideas have captivated the imagination

of scientists and researchers quite like the concept of MMs proposed by the

British Physicist Paul Adrien Maurice Dirac in 1931 [14]. This theory repre-
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sents an elegant and profound attempt to bridge the gap between EM forces

and the tantalizing possibility of isolated magnetic charges. At the core of

Dirac’s theory lies the enigmatic “Dirac Quantization Condition (DQC),”

a mathematical relationship that not only connects electric and magnetic

charges but also offers a window into the deeper symmetries of the universe.

Dirac, renowned for his contributions to Quantum Mechanics (QM) and

Quantum Field Theory (QFT), was struck by the apparent asymmetry —

which at the time was described by Maxwell’s equations — between electric

charges and magnetic charges. While electric charges exist as separate en-

tities, no isolated MMs had been observed. Dirac sought to reconcile this

imbalance by postulating the existence of MMs. Dirac’s groundbreaking in-

sight is encapsulated in a profound manner as

qg

4π
=

1

2
n. (3.1)

here ‘n’ is an integer identified as a winding number (a topological inter-

pretation). It goes without saying that DQC connects the electric charge

quantization and the possible existence of magnetic monopoles. Bear in

mind that DQC requires all magnetic charges to be integer multiples of the

Dirac charge, represented by ‘gD’ and is equal to

eg

4π
=

1

2
n,

g =
4π

2e2
en =

137

2
en,

= 68.5en = ngD. (3.2)

where α = 4π
e2

= 1
137

and is known as fine-structure constant. We can also

turn this argument around. Suppose there exists a MM of charge ‘gD’ then
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it is consistent for a particle with charge ‘q’ to exist only if

eιqgD = 1,

According to Euler’s formula

eιθ = cos θ + ι sin θ

Neglecting imaginary part due to the fact that MMs are real, we get

cos(qgD) = 1,

qgD = 2πn,

q =
2π

gD
n =

2π

e
.
2e2

4π
n,

q = en (3.3)

Therefore the existence of MM implies quantization of electric charge [15].

Unlike electric charges, magnetic charges are always paired, with one

being a north pole and the other being a south pole. And it is very hard to

pair-produce the MMs arising from the intricate relationship between electric

and magnetic charges dictated by the DQC. To have a deeper view to this,

imagine a universe where particles can only carry one of the two potential

charges — electric or magnetic — with possible values being ‘qj’ and ‘gk’

respectively. In such a case, the DQC has the form

qjgj
4π

=
1

2
njk. (3.4)

with njk being an integer. So, every electric charge ‘qj’ needs to be a multiple

of ‘ 4π
2gj

’ for any given magnetic charge ‘gj’ and vice versa. Assuming ‘q0’ and
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‘g0’ as smallest electric and magnetic charges respectively, we have

qj = nj qo , gj = n′
j g0 (3.5)

This implies that
q0 g0
4π

=
1

2
n0,

The interaction among two MMs can be calculated by squaring above equa-

tion
q20 g

2
0

16π2
=

1

4
n2
0,

g20 =
1

4
n2
0.
16π2

q20
= q20

(
4π

q20

)2
n2
0

4
,

= q20

(n0

2α

)2
. (3.6)

Equation (3.6) makes it clear that there exists very strong interaction among

MMs due to the fact that the charge coupling is very small. Thenceforth,

the magnetic monopoles will be significantly more challenging to pair-produce

than the electrically charged particles [16].

Note that DQC can be derived by using both classical mechanics and

quantum mechanics approaches. Following are the detailed, heuristic deriva-

tions of DQC from both aspects.

3.1.1 Semi-Classical Derivations

Lorentz Force Approach

Examining the motion of charged particle in a MM’s field is one heuristic

method for deriving the DQC. For this, consider a MM of strength ‘g’ is

located at the origin. The magnetic field generated by this monopole at a
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distance ’r’ is expressed as

B⃗ =
g

4πr2
r̂. (3.7)

where r̂ is radial unit vector. Now, let that a particle of charge ‘q’ possessing

mass ‘m’ is in motion due to the magnetic field as shown in Figure 3.1. The

motion of particle can be given by the following relation

F⃗ = q(v⃗ × B⃗),

m⃗̈r = q(⃗̇r × B⃗),

Pre-cross multiplying by r⃗

r⃗ ×m⃗̈r = q[r⃗ × (⃗̇r × B⃗)],

d

dt

(
r⃗ ×m⃗̇r

)
= q

[
r⃗ × (⃗̇r × g

4πr2
r̂)
]
=

qg

4πr3

[
r⃗ × (⃗̇r × r⃗

]
,

Since r⃗×(⃗̇r×r⃗)
r3

= dr̂
dt
, the above relation becomes

d

dt

(
r⃗ ×m⃗̇r

)
=

d

dt

( qg
4π
r̂
)
,

d

dt

(
r⃗ ×m⃗̇r

)
− d

dt

( qg
4π
r̂
)

= 0,

d

dt

(
r⃗ ×m⃗̇r − qg

4π
r̂
)

= 0. (3.8)

Hence, the total angular momentum is conserved and is given as

J⃗ = r⃗ ×m⃗̇r − qg

4π
r̂. (3.9)

Poincaré was the first to perceive that a vectorial integral of motion, arising
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Figure 3.1: Dynamics of an electrical charge in motion within a magnetic
monopole’s field. This indicates that the charge travels in a cone with an
angle θ along the axis J⃗ [17].

for a charge-MM system, is conserved and consists of a typical mechanical

angular momentum besides an additional radial contribution( qg
4π
r̂). But he

failed to recognize that the conserved quantity is actually the system’s total

angular momentum(J) [18].

The conservation of J⃗ indicates that in the presence of q and g, the

angular momentum is transferred back and forth between particle and field.

By quantizing the above relation along radial direction, we get

Jr = J⃗ .r̂ = − qg
4π
. (3.10)

We know that the total angular momentum is quantized and have half inte-

gral eigenvalues. Thus above equation becomes

qg

4π
=

1

2
n (3.11)

here ‘n’ is an integer which absorbs the minus sign. Equation (3.11) repre-

sents the DQC [16].
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Figure 3.2: Thomson dipole configuration

Thomson Dipole Approach

In 1893, J.J. Thomson established that an electromagnetic field is related to

the momentum density(P⃗ ), which is propotional to a poynting vector. So,

we can write the EM angular moemntum as

L⃗EM =

∫
r⃗ × (E⃗ × B⃗)d3r. (3.12)

Here E⃗ is the elctric field produced by electric charge q, B⃗ is the magnetic

field produced by magnetic monopole g. Both the charges are at rest, and

are seperated by a finite distance denoted by d. This configuration, given in

figure 3.2, was first considered by J.J.Thomson in the year 1904 and is now

referred after his name as “Thomson dipole”. He also pointed out that the

mechanical and EM angular momenta are both conserved quantities, with

the mechanical angular momentum being equal to 0 [18]. We know that

E⃗ =
q

4πr2
r̂ =

q

4π

r⃗

r3
. (3.13)

and

B⃗ =
g

4πr′2
r̂′ =

g

4π

r⃗′

r′3
. (3.14)
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In this context, momentum density can be written as

P⃗ = E⃗ × B⃗,

=
q

4π

r⃗

r3
× g

4π

r⃗′

r′3
,

=
qg

(4π)2

(
r⃗ × r⃗′
r3r′3

)
,

From figure 3.2, we see that

r⃗′ = r⃗ − dẑ. (3.15)

We know that
1

r
=

1√
r2 + r′2 − 2rr′ cos θ

. (3.16)

This implies that

r′3 = (r2 + d2 − 2rd cos θ)
3
2 . (3.17)

Substituting equations (3.15) and (3.17) in momentum density relation, we

get

P⃗ =
qg

(4π)2

(
r⃗ × (r⃗ − dẑ)

r3(r2 + d2 − 2rd cos θ)
3
2

)
,

=
qg

(4π)2


=0︷ ︸︸ ︷

(r⃗ × r⃗)+(r⃗ × ẑ)(−d)
r3(r2 + d2 − 2rd cos θ)

3
2

 ,

= − qgd

(4π)2

(
(r⃗ × ẑ)

r3(r2 + d2 − 2rd cos θ)
3
2

)
. (3.18)
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Putting this value of P into equation (3.12)

L⃗EM = −
∫

qgd

(4π)2

(
r⃗ × (r⃗ × ẑ)

r3(r2 + d2 − 2rd cos θ)
3
2

)
d3r,

= − qgd

(4π)2

∫ (
r⃗ × (r⃗ × ẑ)

r3(r2 + d2 − 2rd cos θ)
3
2

)
d3r,

Since

r⃗ × (r⃗ × ẑ) = r⃗(r⃗.ẑ)− ẑ(r⃗.r⃗) = r2(cos2 θ − 1)ẑ.

Therefore

L⃗EM = − qgd

(4π)2
ẑ

∫ (
r2(cos2 θ − 1)

r3(r2 + d2 − 2rd cos θ)
3
2

)
d3r,

= − qgd

(4π)2
ẑ

∫ (
cos2 θ − 1

r(r2 + d2 − 2rd cos θ)
3
2

)
d3r,

We know that d3r = r2 sin θdrdθdφ, this implies that

L⃗EM = − qgd

(4π)2
ẑ

∫ (
cos2 θ − 1

r(r2 + d2 − 2rd cos θ)
3
2

)
r2 sin θdr dθ dφ,

= − qgd

(4π)2
ẑ

∫ (
r(cos2 θ − 1)

(r2 + d2 − 2rd cos θ)
3
2

)
sin θdr dθ dφ,

Let v = cos θ =⇒ dv = − sin θ dθ

This results in

L⃗EM =
qgd

(4π)2
ẑ

∫ (
r(v2 − 1)

(r2 + d2 − 2rdv)
3
2

)
dr dv dφ,

= −qgd
8π

ẑ

∫ 1

−1

∫ ∞

0

(
r(1− v2)

(r2 + d2 − 2rdv)
3
2

)
dr dv, (3.19)
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Solving the r integral, we get

∫ ∞

0

(
r

(r2 + d2 − 2rvd)
3
2

)
dr =

[
(rv − d)

d(1− v2)
√
r2 + d2 − 2rvd

]∞
0

,

=
r(v − d

∞)

d(1− v2)r
√

1 + d2

∞

− 0.v − d
d(1− v2)

√
0 + d2 − o

,

=
v

d(1− v2)
+

d

d2(1− v2)
,

=
1

d(1− v)
. (3.20)

Substituting this value in equation (3.19)

L⃗EM = −qgd
8π

ẑ

∫ 1

−1

(
1− v2

d(1− v) 3
2

)
dv,

= − qg
8π
ẑ

∫ 1

−1

(1 + v) dv = − qg
4π
ẑ. (3.21)

It is evident that quantization of the above EM angular momentum in radial

direction yields DQC.

Saha’s Approach

Using Thomson’s EM angular momentum, M.N. Saha obtained the Dirac

quantization condition in 1936 in a considerably rigorous way. In essence, he

contends that angular momentum of any form in a quantum system should

be a half integer, according to semi-classical theory. He genuinely thought

of a neutron model where the enormous mass obtained by neutron to elec-

tron ratio was linked to the fact that it is a system comprising monopole-

antimonopole pair [19].

Saha’s model foresaw later MMs models that were proposed by Schwinger

and others, despite the fact that it is not a plausible model for a neutron. To
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derive Dirac quantization by Saha’s approach, let’s start by re-writing the

Thomson’s EM angular momentum

L⃗EM =

∫
r⃗ × (E⃗ × B⃗) d3r.

Using BAC − CAB rule, we get

L⃗EM =

∫
E⃗(r⃗.B⃗) d3r −

∫
B⃗(r⃗.E⃗) d3r,

Putting value of B⃗ from equation (3.14)

L⃗EM =

∫
E⃗(r⃗.

g

4πr2
r̂) d3r −

∫
g

4πr2
r̂(r⃗.E⃗) d3r,

=

∫
E⃗(rr̂.

g

4πr2
r̂) d3r −

∫
g

4πr2
r̂(rr̂.E⃗) d3r,

=

∫
E⃗

g

4πr
(r̂.r̂) d3r −

∫
g

4πr
r̂(r̂.E⃗) d3r,

=

∫
E⃗

g

4πr
(1) d3r −

∫
g

4πr
r̂(r̂.E⃗) d3r,

In index notation,

L⃗EM =

∫
Ej g

4πr
δij d

3r −
∫

g

4πr
r̂i(r̂jEj) d3r,

=
g

4π

∫
Ej

(
δij − r̂ir̂j

r

)
d3r, (3.22)

Consider

∂

∂rj
r̂i =

∂

∂rj

(
ri

r

)
,

=
r
(

∂ri

∂rj

)
− ri

(
∂r
∂rj

)
r2

,
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∂

∂rj
r̂i =

rδij − ri
(

∂r
∂rj

)
r2

,

=
rδij − rr̂i

(
∂r
∂rj

)
r2

,

=⇒ =

(
δij − r̂ir̂j

r

)
. (3.23)

Thus equation (3.22) becomes

L⃗EM =
g

4π

∫
Ej

(
∂

∂rj

)
r̂i d3r, (3.24)

Let

∂

∂rj

(
Ej g

4π
r̂i
)

=
gr̂i

4π

∂Ej

∂rj
+ Ej ∂

∂rj

( g
4π
r̂i
)
,

Ej ∂

∂rj

( g
4π
r̂i
)

=
∂

∂rj

(
Ej g

4π
r̂i
)
− gr̂i

4π

∂Ej

∂rj

So above equation can be written as

L⃗EM =

∫
∂

∂rj

(
Ej g

4π
r̂i
)
d3r −

∫
gr̂i

4π

∂Ej

∂rj
d3r,

=

=0︷ ︸︸ ︷∫
∂

∂rj

(
Ej g

4π
r̂i
)
d3r−gr̂

i

4π

∫
∇.E⃗ d3r,

= −gr̂
i

4π

∫
∇.E⃗ d3r,

∵ ∇⃗.E⃗ = ρ = qδ3(r⃗),

∴ L⃗EM = −gr̂
i

4π

∫
qδ3(r⃗) d3r,
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L⃗EM = − qg
4π
r̂i
∫
δ3(r⃗) d3r︸ ︷︷ ︸

=1

,

= − qg
4π
r̂i. (3.25)

which, after quantization of radial component, leads to DQC.

Landau Theory Approach

In the annals of physics, the Landau Theory of Diamagnetism, conceived by

the Soviet Physicist Lev Landau in the 1930s, occupies a significant place.

This theoretical framework provides an elegant explanation for the intriguing

behavior of charged particles in the presence of external magnetic fields. A

crucial component of this theory is the concept of Landau levels — quantized

energy states that emerge due to the interplay of quantum mechanics and

magnetic fields — which provides a rigorous and elegant description of how

charged particles, such as electrons, navigate within a magnetic field.

Now, if MMs are real, it is quite natural to comprehend magnetic version

of Landau levels. Therefore, consider a parallel plate capacitor lying in the

xy-plane. The homogenous electric field produced by this capacitor can be

denoted as

E⃗ = Ek̂

Before proceeding further, let me mention here that in this particular topic,

we will start by not using natural units and substitute at the end. Suppose

a magnetic monopole of strength ‘g’ having mass ‘m’ is placed in the electric

field between the plates of the capacitor. What happens is that the MM

starts orbiting perpendicular to the electric field in a circle of radius ‘r’ with

some velocity given by ‘v’ under the influence of Lorentz force. This Lorentz
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Figure 3.3: Motion of MM between the plates of a parallel-plate capacitor
under the influence of electric field.

force is counterbalanced by the centrifugal force [20]. So,

FE = Fc,

gE
v

c
=

mv2

r
,

E =
mvc

gr
. (3.26)

According to Landau theory, the allowed energy levels for monopole are

En = ℏω
(
n+

1

2

)
= hν

(
n+

1

2

)
. (3.27)

here n = 0, 1, 2, 3, ... and ν can be derived by re-arranging (3.26) as

v

r
=
gE

mc
,

We know that

v = rω =⇒ ω =
v

r

Thus, above equation results

ω =
gE

mc
, (3.28)
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Sinec ω = 2πν, therefore

2πν =
gE

mc
,

ν =
gE

2πmc
. (3.29)

As the MM orbits due to Lorentz force, it possesses kinetic energy which can

equate the quantized energy of MM. Therefore

1

2
mv2 = hν

(
n+

1

2

)
,

1

2
mv2 = h

gE

2πmc

(
n+

1

2

)
,

1

2
mv2 = h

g

2πmc

mvc

gr

(
n+

1

2

)
,

mvr = ℏ(2n+ 1),

∵ J⃗ = r⃗ × p⃗ =⇒ Jz = mvr

=⇒ Jz = ℏ(2n+ 1) (3.30)

This equation represents quantization of angular momentum in the Z-direction.

If we write the elctric field relation given in (3.26) in terms of Jz, we will

have quantization condition for electric field as shown below

E =
mvc

gr
,

Multiplying and dividing by ‘r’

E =
mvrc

gr2
,

= Jz
c

gr2
=

ℏc
gr2

(2n+ 1).
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In natural units

E =
1

gr2
(2n+ 1). (3.31)

We know that the relation of electric field between the plates of a parallel

plate capacitor having charge density σ is

E = σ,

∵ σ =
q

A
=

q

πr2

∴ E =
q

πr2
(3.32)

Putting this value in (3.31)

q

πr2
=

1

gr2
(2n+ 1),

qg

π
= 2

(
n+

1

2

)
,

qg

4π
=

1

2

(
n+

1

2

)
,

Clap eyes on the aspect that there still remains some charge at n = 0 for

the reason that monopole has zero point energy. However, when radius ‘r’

approaches zero, both the area of the plate under consideration and the

charge must contract to zero. In order to enforce the requirement that the

lowest energy state have no charge, we subtract the vacuum effect as

qg

4π
=

1

2

(
n+

1

2
− 1

2

)
,

qg

4π
=

1

2
n. (3.33)

which is just the DQC.
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3.1.2 Quantum Mechanical Derivations

Analysis of the quantization of a particle’s motion in a certain EM field leads

to a thorough derivation of the DQC. When the EM field is quantized as is

customary when there is no MM present, the EM field tensor F µν is written

in the context of the four-vector potential as

F µν = ∂µAν − ∂νAµ. (3.34)

where Aµ = (φ, A⃗). Similarly, the electric and magnetic fields can also be

written in terms of Aµ as

E⃗ = −∇⃗φ− ∂A⃗

∂t
. (3.35)

and

B⃗ = ∇⃗ × A⃗. (3.36)

which in results satisfies the relation

∂µG
µν = 0

If a particle moves in an EM field, the Schrodinger’s equation is given by the

following relation [
1

2m
(p⃗− qA⃗)2 + qφ

]
Ψ = ι

∂Ψ

∂t
.

This Schrodinger’s equation for EM field remains invariant under the follow-

ing gauge transformation

A⃗(r⃗) −→ A⃗(r⃗) + ∇⃗χ(r⃗)

Ψ(r⃗) −→ eιqχΨ
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where χ(r⃗) is an arbitrary gauge function and eιqχ is element of gauge trans-

formation.. One fact worth mentioning here is that the parameter χ’s range

is small if charge(q) is quantized in terms of some basic quanta e, in which

case χ = 0 and χ = 2π produce the same gauge transformation. It is im-

portant to distinguish between the compact one-parameter group, denoted

by U(1), and the non-compact one-parameter group, denoted by R, which

appears when the parameter range spans the whole real line and q is not

quantized. Therefore, MM needs a small U(1) group. In contrast, MMs exist

in theories wherever there is a compact U(1) group [21].

This means that Aµ, which serves as the fundamental dynamical variable

in quantization, is extremely important. However, it is not possible for the

vector potential to exist everywhere in the presence of MM. By proposing the

idea of a string, Dirac overcomes this challenge. You are probably thinking,

“how? ”For this, let the magnetic field of a MM follows relation

B⃗ =
g

4πr2
r̂. (3.37)

In case of any closed surface including origin, we have

g =

∮
B⃗.dS⃗.

By Gauss’ divergence theorem

g =

∫
∇⃗.B⃗ dV,

g =

∫
∇⃗.∇⃗ × A⃗ dV,

g = 0.

It is obvious that B⃗ cannot be expressed everywhere as ∇⃗ × A⃗ since the
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above integral would be equal to zero in that case. On the other hand, we

may define the A⃗ such that, everywhere on the line that exists between the

origin and infinity, B is provided by ∇⃗ × A⃗ [16].

Jackson’s Treatment:

Think of a MM as either a single particle at the end of a string of dipoles

or the tip of a tightly wound solenoid that extends to infinity. The vector

potential of this magnetic dipole is given as

A⃗dip(⃗r) =
m⃗× r̂

r2
,

=
m⃗× r⃗

r3
. (3.38)

Note that r⃗ is the seperation vector given as

r⃗ = r⃗ − r⃗′. (3.39)

where r⃗ represents field point, r⃗′ is the source point and m⃗ denotes the mag-

netic dipole moment. Let an infinitesimally small magnetic dipole moments

‘dm⃗’ at a point r⃗′ create the line of dipoles, which is a string whose vector

potential is

dA⃗ =
dm⃗× r⃗

r3
,

∵
r⃗

r3
=

r̂

r2
= −∇⃗

(
1

r

)
,

∴ dA⃗ = −dm⃗× ∇⃗
(
1

r

)
. (3.40)

We know that

dm⃗ = g dl⃗′.
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with ‘g’ being the magnetic charge and ‘dl⃗′ be a line element. So,

dA⃗ = −g dl⃗′ × ∇⃗
(
1

r

)
,

=⇒ A⃗ = −g
∫
dl⃗′ × ∇⃗

(
1

r

)
,

Since

∇⃗ ×

(
dl⃗′

r

)
=

r(∇⃗ × dl⃗′)− dl⃗′
=0︷ ︸︸ ︷

(∇⃗ × r)

r2
,

=
1

r
(∇⃗ × dl⃗′),

∵ A⃗× B⃗ = −B⃗ × A⃗.

∴ ∇⃗ ×

(
dl⃗′

r

)
= −dl⃗′ × ∇⃗

(
1

r

)
.

Thus above equation becomes

A⃗ = g∇⃗ ×
∫
dl⃗′

r
. (3.41)

Keep in mind that this potential is already in Coulomb gauge(∇⃗.A⃗ = 0).

Thus the curl of this potential gives

∇⃗ × A⃗ = ∇⃗ ×

(
∇⃗ ×

∫
L

g dl⃗′

r

)
,

Using BAC − CAB rule

∇⃗ × A⃗ = ∇⃗

(
∇⃗.
∫
L

g dl⃗′

r

)
−
∫
L

g dl⃗′

r
(∇⃗.∇⃗),

= g∇⃗
∫
L

(
∇⃗.g dl⃗

′

r

)
− g

∫
L

∇2

(
1

r

)
. (3.42)
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Consider 1st integral

∫
L

∇⃗.

(
dl⃗′

r

)
=

∫
L

∇⃗
(
1

r
.dl⃗′
)
,

=

∫
L

r̂

r2
.dl⃗′,

=

∫
L

r−2 dr,

= −1

r
. (3.43)

Now consider the 2nd integral

−
∫
L

∇2

(
1

r

)
= 4π

∫
L

δ3(⃗r)dl⃗′. (3.44)

as ∇2
(
1
r

)
= −4πδ3(⃗r)

Substituting these values into equation (3.42)

∇⃗ × A⃗ = g∇⃗
(
−1

r

)
+ g4π

∫
L

δ3(⃗r)dl⃗′,

∇⃗ × A⃗ =
g

r2
r̂+ 4πg

∫
L

δ3(⃗r)dl⃗′, (3.45)

To have a clearer picture, it can be written as

g

r2
r̂ = ∇⃗ × A⃗− 4πg

∫
L

δ3(⃗r)dl⃗′,

B⃗Mon = ∇⃗ × A⃗− B⃗String. (3.46)

with

B⃗Mon = ∇⃗ × A⃗. (3.47)

B⃗String = 4πg

∫
L

δ3(⃗r)dl⃗′. (3.48)
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Figure 3.4: Pictorial representation of (3.49) [16].

As a particular application, consider a field that results from an indefinitely

long, thin solenoid positioned along the negative Z-axis, with the positive

pole of strength ‘g’ at the origin. Thus, dl⃗′ = dz′k̂. So, equation (3.45) can

be modified as

∇⃗ × A⃗ =
g

r2
r̂+ 4πgδ(x)δ(y)

=Θ(−z)︷ ︸︸ ︷[∫ 0

−∞
δ(z − z′)dz′

]
k̂,

=
g

r2
r̂+ 4πgδ(x)δ(y)Θ(−z)k̂,

=⇒ ∇⃗× A⃗ =
g

4πr2
r̂+ gδ(x)δ(y)Θ(−z)k̂,

Thus the field due to MM is given as

B⃗Mon =
g

4πr2
r̂ = ∇⃗ × A⃗− gδ(x)δ(y)Θ(−z)k̂. (3.49)

Here Θ(z) is a step function that can’t be defined at z = 0. Note that Dirac

string is actually the line which solenoid occupies. Equation (3.49) means

that monopole field can be represented by a vector potential together with

a string as shown in Fig. 3.4. With the exception of string singularity on

the line θ = π, the solution is valid everywhere. It is evident that using

the standard definitions, the solenoid’s vector potential A⃗ may be written in
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terms of polar angle and azimuthal angle [16] in the following way

A⃗(r, θ, φ) =

∫
dm⃗× r⃗

r3
,

∵ dm⃗ = gdz⃗′.

∴ A⃗(r, θ, φ) = g

∫
dz⃗′ × r⃗

r3
,

= g

∫
dz′r sin θ

r3
φ̂,

= g

∫ 0

−∞

dz′ sin θ

r2
φ̂. (3.50)

According to law of cosines

r2 = r2 + z′2 − 2rz′ cos θ.

Thus above equation can be re-written as

A⃗(r, θ, φ) = g

∫ 0

−∞

dz′ sin θ

(r2 + z′2 − 2rz′ cos θ)
φ̂,

Multiplying and dividing by r, we get

A⃗(r, θ, φ) = g

∫ 0

−∞

r sin θ

(r2 + z′2 − 2rz′ cos θ)
3
2

dz′φ̂,

By solving the integral, we will get

A⃗ =
g

4πr

(
1− cos θ

sin θ

)
φ̂. (3.51)

which is singular along the negative Z-axis. Unambiguously, if we take the

curl of equation (3.51) subjected to condition sin θ ̸= 0, we will just have the
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MM field as shown

∇⃗ × A⃗ = ∇⃗ ×
[
g

4πr

(
1− cos θ

sin θ

)
φ̂

]
,

=
1

r2 sin θ

∣∣∣∣∣∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂

∂
∂r

∂
∂θ

∂
∂φ

0 0 g
4πr

(1− cos θ)

∣∣∣∣∣∣∣∣∣∣∣
,

=
1

r2 sin θ
.
g

4π

[
∂

∂θ
(1− cos θ)

]
r̂,

=
g

4πr2
r̂ = B⃗. (3.52)

This is true because the differentiation process avoids the singularity caused

by sin θ = 0. A MM and a magnetized string are the final two objects

with which an electric charge will interact if it interacts with this potential.

According to Dirac, the charge ‘q’ should never come into contact with the

singular field B⃗String since there can be no other interaction except with

the MM. In light of this, he hypothesized the dissipation of wave-function

down the string. However, this condition is undoubtedly debatable because

it would imply that the string doesn’t actually exist. This is often refferred

as “Dirac veto” hypothesizing the prohibition of contact between the electric

charge and the string.

Dirac himself stated, “You must have the monopoles and the electric

charges occupying distinct regions of space drawn anywhere subject to the

condition that they must not pass through a region where there is electric

charge present.” To put it simply, Dirac string is not observable and the

vector potential given in equation (3.51) is not specific to the solenoid field.

The ability of the string to be moved about can be demonstrated by employ-

ing an appropriate gauge transformation [17]. For this, consider the gauge
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Figure 3.5: Dirac veto configuration [17].

transformation

A⃗′ −→ A⃗+ ∇⃗χ. (3.53)

where χ is a non-singular, single-valued function of position. As a result,

both the Dirac string and the ∇⃗ × A⃗ terms in equation (??) must stay the

same. To show that the location of Dirac string is independent, re-write

equation (3.46) as

B⃗Mon = ∇⃗ × A⃗+ h⃗(C, r⃗).

where h⃗(C, r⃗) gives the contribution of string along some curve C going from

origin to infinity, having flux of strength ‘g’ as

h⃗(C, r⃗) = 4π g

∫
δ3(r⃗)dl⃗′. (3.54)

Consider an additional string C ′ that follows curve C from origin to infinity.

Let ζ represent the curve −C ′ which is drawn in the opposite direction of

C ′. By assuming that C ′ only deviates from C over a limited range, or by

applying the appropriate transformations to what happens at infinity, we

may regard this as a closed path. Let Ω(r⃗) represent the solid angle that a
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Figure 3.6: Representation of Dirac string connected with MM.

specific surface ζ occupies at r⃗ . Different selections for the spanning surface

will result in values of Ω(r⃗) that varied by multiples of 4π, but they will all

provide the same value for ∇⃗Ω [16].

For two different curves C and C ′, the respective vector potentials would

be A⃗ and A⃗′. Thus the extended gauge transformation can be calculated by

integrating equation (3.41) along the closed curve C = ζ − Cr as

A⃗′ − A⃗ = g ∇⃗
∮
C

dl⃗′

r
,

Using Stokes’ theorem

A⃗′ − A⃗ = ∇⃗ ×

[
∇⃗ ×

(∫
S

gda⃗′

r

)]
,
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By BAC − CAB rule

A⃗′ − A⃗ = ∇⃗

(
∇⃗.
∫
S

gda⃗′

r

)
− (∇⃗.∇⃗)

∫
S

gda⃗′

r
,

= g∇⃗
∫
S

∇⃗
(
1

r

)
.da⃗′ − g

∫
S

∇⃗2 1

r
da⃗′,

= g∇⃗
∫
S

r⃗

r3
.da⃗′ + 4πg

∫
S

δ3(⃗r)da⃗′,

The 1st term represents solid angle

Ω(r⃗) =

∫
S

r

r3
.da⃗′. (3.55)

Thus,

A⃗′ − A⃗ = g∇⃗Ω(r⃗) + 4πg

∫
S

δ3(r⃗)da⃗′,

=⇒ A⃗′ − A⃗ =
g

4π
∇⃗Ω(r⃗) + g

∫
S

δ3(r⃗)da⃗′, (3.56)

The contribution of delta integral vanishes at any point r⃗ , but not on the

surface S, so we can drop it off and have

A⃗′ − A⃗ =
g

4π
∇⃗Ω(r⃗),

A⃗′ = A⃗+
g

4π
∇⃗Ω(r⃗). (3.57)

The gauge transformation seen in equation (3.53), where χ = gΩ, is brought

to mind by the fact that A⃗′ and A⃗ are linked by a function’s gradient. The

important thing to remember in this situation is that the solid angle Ω experi-

ences a discontinuous fluctuation of 4π when the observation point(q) crosses

the surface S [17] . As a result, the gauge function χ on ζ is multi-valued
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and poorly defined for r⃗. Therefore

∇⃗ × A⃗′ = ∇⃗ × A⃗ = B⃗. (3.58)

except on the two strings. Think of a small loop that surrounds any point on

ζ. Using Stokes’ theorem, we can determine the flux of ∇⃗ × (A⃗′ − A⃗) along

ζ as

∫
S

∇⃗ × (A⃗′ − A⃗).da⃗′ =

∫
Cr
(A⃗′ − A⃗).dl⃗′,

=
g

4π

∫
Cr
dΩ = g. (3.59)

Using equation (3.54), we get

∇⃗ × (A⃗′ − A⃗) = h⃗(C, r⃗)− h⃗(C ′, r⃗),

=⇒ B⃗ = ∇⃗ × A⃗+ h⃗(C, r⃗) = ∇⃗ × A⃗′ + h⃗(C ′, r⃗).

It can be seen from this that the Dirac string is moved by the gauge transfor-

mation. The string’s random location proves it is not tangible or as said,“The

Dirac string is a gauge artifact [16].”

Aharonov Bohm Effect Approach:

For a long time, physicists believed that the vector potential A⃗ is a mathe-

matical object which is introduced just to reproduce a magnetic field. Until

1959 when Yakir Aharonov and David Bohm gave the famous Aharonov-

Bohm effect. It is a quantum interference phenomenon that demonstrates

how the EM vector potential, which is usually considered non-observable

in classical physics, can have measurable effects on the quantum phase of

charged particles. This effect highlights the significance of gauge potentials
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Figure 3.7: Aharanov-Bohm effect with Dirac string.

and their impact on the wave-functions of charged particles, even when those

particles do not directly interact with the EM fields i.e. B⃗ = 0.

It becomes apparent that DQC and Aharonov-Bohm effect exhibit com-

monalities. The Aharonov-Bohm effect involves a long solenoid, while the

DQC involves semi-infinite string. Henceforth, one may contemplate Dirac

string as a solenoid of Aharonov-Bohm effect and explore the plausibility of

confirming the ambiguity of Dirac string and can also derive DQC through

this approach [17].

For this, consider a source of electric charges. The rays of charges emitted

by source pass through a screen(S) with two slits S1 and S2. We designate

the wave-functions of the two rays of charges that pass through the slits

as ψ1 and ψ2. These rays of charges are then detected at point ‘P’ on the

viewing screen. Let a Dirac string is placed between the viewing screen and

the screen with slits such that it lies in between the two slits as shown in

Fig. 3.7. In the absence of the Dirac string, the wave-function of charges
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coherently combine, resulting in probability density(P) given by relation

P = |ψ1 + ψ2|2. (3.60)

However, in the presence of Dirac string, the string potential(A⃗String) causes

each of the wave-functions ψ1 and ψ2 to acquire a phase. In this case, the

wave-function of charges can be written as

ψ =
∣∣∣eιq ∫1 A⃗String .d⃗l ψ1 + eιq

∫
2 A⃗String .d⃗l ψ2

∣∣∣2 ,
= eιq

∫
c A⃗String .d⃗l|ψ1 + ψ2|2,

Using Stokes’ Theorem, we get

ψ = eιq
∫
c ∇⃗×A⃗String .ds⃗|ψ1 + ψ2|2,

= eιq
g
4π

∫
c

r̂
r2

.da⃗|ψ1 + ψ2|2,

By applying Gauss’ divergence theorem, we get

ψ = eιq
g
4π

.4π|ψ1 + ψ2|2,

= eιqg|ψ1 + ψ2|2. (3.61)

where

eιq
∫
c A⃗String .d⃗l = eιq

∫
1 A⃗String .d⃗l + eιq

∫
2 A⃗String .d⃗l.

If eιqg = 1 – which results in DQC – the Dirac string’s effect would not be

detectable. When this happens, the probability density will be the same

given in equation (3.60), which indicates that the Dirac string has no effect

on the interference pattern. In essence, if the DQC is satisfied, the Dirac

string is undetectable. Reversing the logic, we may say that the Dirac string
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is not observable if the DQC is true [17].

3.2 Solitons in Field Theory

After the development of QFT in early 1970s, the solutions of classical

field equations are regarded as candidate for new particles, later named

“Solitons.” They have finite energy, are localized in space, and do not emit

radiation during decay. This unusual stability is attributed to its topology.

It should be noted that their quantization results in the emergence of new

particle in QFT, not in perturbation theory.

What exactly does it imply to suggest that solitons resemble particles? We

find that the solutions of classical field equations have a classical energy in

terms of relativistic field theory. So, we can denote the soliton’s mass ‘m’ in

context of rest frame energy. Due to its relativistic nature, we can perform

a Lorentz boost to produce a moving soliton which establishes relationship

between energy and momentum in the form

E2 − p⃗.p⃗ = m2.

This corresponds to another characteristic of a soliton that is Lorentz invari-

ance. This provides support for considering solitons to be particles together

with the notion that they are localized.

Due to their distinct features, solitons are distinct from the particles that

appear in perturbative quantum fields. They, it turns out, have a topo-

logical nature distinct from the classical vacuum. Therefore, they cannot

be considered perturbatively, at least not naively. Examples are kinks(in

1D), vortices(in 2D), monopoles or skyrmions(in 3D), etc. Non-relativistic

solitons do exist as well, however they are often not classified as particles.
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Examples of their appearance include defects in solids and domain walls in

ferromagnetic materials, both of which are not of our concern [22].

Conclusively, a soliton is — in an explicit manner — non-trivial, non-

dissipative, finite energy solution of field equation and a subset of kinks.

The difference between solitons and kinks is that solitons don’t interfere in

response to collision with other solitons, but kinks do. The presence of at

least two degenerate minima in the potential energy is a prerequisite for both

soliton and kink solutions to a field equation due to which the energy of kinks

and solitons remain bounded [23].

You may ask, What’s the point of discussing solitons here? Answer is, “To

comprehend how the topology of space-time interacts with physical processes,

finite energy solutions are essential.” In simple words, in the framework of

gauge theories such as electromagnetism, MMs can be considered as solitonic

solutions to certain field equations. In this approach, the investigation of

solitons in field theories sheds light on the behavior of topological defect and

its consequences for particle physics.

Thus, a deeper knowledge of these types of solutions is crucial since it

might aid in the identification of novel physical phenomena. In this context,

two different scalar theories will be often examined:

1. λφ4 Theory

2. Sine-Gordon Theory

Note that for scalar field theories, the standard Lagrangian density is often

given as

L =
1

2
(∂νφ)

2 − U(φ).

We will describe here λφ4 theory in detail while the other one will be briefly
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discussed in appendix B.

3.2.1 λφ4 Theory

To talk about MMs in non-abelian gauge theory, we usually consider λφ4

theory in 1 + 1 dimensions. The Lagrangian density for λφ4 theory has the

relation

L =
1

2
(∂νφ)

2 +
1

2
µ2φ2 − λ

4
φ4. (3.62)

with λ being the dimensionless coupling constant, µ representing mass per

unit length – while both depend on temperature(T )– and U(φ) is potential

energy equivalent to

U(φ) = −1

2
µ2φ2 +

λ

4
φ4. (3.63)

There is a global Z2 symmetry in this Lagrangian density which will be

evident by mapping φ −→ −φ. The corresponding Lagrangian can be

expressed by the relation

L =

∫
Ldx =

∫ [
1

2
(∂νφ)

2 +
1

2
µ2φ2 − λ

4
φ4

]
dx. (3.64)

The Hamiltonian density can be written as

H =
1

2
(∂νφ)

2 + U(φ),

H =
1

2
(∂νφ)

2 − 1

2
µ2φ2 +

λ

4
φ4. (3.65)

and the Hamiltonian will be

H =

∫
Hdx =

∫ [
1

2
(∂νφ)

2 − 1

2
µ2φ2 +

λ

4
φ4

]
dx,

=

∫ [
1

2
(∂0φ)

2 +
1

2
(∂xφ)

2 − 1

2
µ2φ2 +

λ

4
φ4

]
dx. (3.66)
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We know that classically, the potential will be conserved and as a conse-

quence, the 1st term in above equation becomes zero. Thus, the classical

energy density could be described as

E =
1

2
(∂xφ)

2 + U(φ). (3.67)

with

U(φ) = −1

2
µ2φ2 +

λ

4
φ4,

=
λ

4

[(
(φ2)2 − 2

µ2

λ
φ2

)
−
(
µ2

λ

)2

+

(
µ2

λ

)2
]
,

U(φ) =
λ

4

[(
φ2 − µ2

λ

)2

−
(
µ2

λ

)2
]
, (3.68)

Since
(

µ2

λ

)2
is a constant which doesn’t play any role in potential and as

a result in Equation of Motion(EoM). Therefore, it can be neglected and the

above equation can be written as

U(φ) =
λ

4

φ2 −

(√
µ2

λ

)2
2

,

U(φ) =
λ

4
(φ2 − c2)2. (3.69)

where c = ±
√

µ2

λ
. Due to the fact that (∂xφ)

2 can’t be a negative term, the

condition for minimal energy density will be

∂xφ = 0 (3.70)

with the constant value of φ will be determined by directly minimizing U(φ)
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[16]. Since the coupling constant(λ) is positive, U(φ) has the following two

bounds:

Case-1: If µ2(T ) = c(T −Tc) then for µ2 > 0, the Lagrangian in equation (3.62)

describes an ordinary scalar field theory. The classical ground state

configuration in this case is given as

U(φ) = 0 =
λ

4
(φ2 − c2)2,

=⇒ φ = ±c = ±
√
µ2

λ
. (3.71)

Thus the ground state energy becomes

E =
1

2

=0︷ ︸︸ ︷
(∂xφ)

2+U(φ),

E =
λ

4
(φ2 − c2)2 = λ

4
(c2 − c2)2,

=⇒ E = 0. (3.72)

Case-2 If µ2(T ) = c(T−Tc) then for µ2 < 0 (replace µ2 by−µ2), the Lagrangian

in equation (3.62) becomes

L =
1

2
(∂νφ)

2 +
1

2
(−µ2)φ2 − λ

4
φ4,

L =
1

2
(∂νφ)

2 − 1

2
µ2φ2 − λ

4
φ4. (3.73)

with

U(φ) =
1

2
µ2φ2 +

λ

4
φ4 =

λ

4

(φ2 +
µ2

λ

)2

−
(
µ2

λ

)2

︸ ︷︷ ︸
=0

 , (3.74)
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Figure 3.8: Effective potential for both possible bounds.

U(φ) =
λ

4
(φ2 + c2)2 =

λ

4
[φ2 − (−c2)]2,

=⇒ φ = ±(−c) = ±
√
−µ2

λ
. (3.75)

Clearly, the ground state energy is non-vanishing and the two possible

values in (3.75) correspond to the two possible vacua.

From Fig. 3.8, we can infer that the extremum at φ = 0 is a local maxima

of the potential(instead of minima) and is unstable. This potential will be

minimized when φ has a constant, non-zero values which, in this case, is given

by equation (3.75). At either minima, the Z2 symmetry is spontaneously

broken. Hence, it is evident that this Lagrangian has an internal Z2 symmetry

under φ −→ −φ.

We are interested in the time independent finite energy solution of EoM

that can be derived by using variational principle as

δL = δ

∫ 
=0︷ ︸︸ ︷

1

2
(∂0φ)

2+
1

2
(∂xφ)

2 − U(φ)

 dx = 0,
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Replacing φ by x and x by t, we have

δL = δ

∫ [
1

2

(
dx

dt

)2

− U(x)

]
dx = 0, (3.76)

Classical Mechanics tells us that the energy of moving particle is conserved

which means that
1

2

(
dx

dt

)2

+ [−U(x)] = 0, (3.77)

which is related to explicit static solution of field theory as

1

2

(
dφ

dx

)2

+ [−U(φ)] = 0,

1

2

(
dφ

dx

)2

= U(φ),

x = ±
∫ φ

φ0

dφ√
2U(φ)

. (3.78)

where ± sign indicates kink and anti-kink solutions, φ0 is the value of φ

at x = o and can be any number between c and −c. The presence of this

arbitrary parameter φ0 is credited to translational invariance. Putting value

of U(φ) in above equation, we get

x = ±
∫ φ

φ0=0

dφ√
2λ
4
(φ2 − c2)2

, (3.79)

= ±
√

2

λ

∫ φ

0

dφ

(φ2 − c2)
, (3.80)

By using method of partial fractions, we get

1

(φ2 − c2)
=

1
2c

(φ− c)
+
− 1

2c

(φ+ c)
,

=
1

2c

[
1

(φ− c)
− 1

(φ+ c)

]
.
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Substituting this value in equation (3.80)

x = ±
√

2

λ

∫ φ

0

dφ

[
1

2c

(
1

(φ− c)
− 1

(φ+ c)

)]
,

x = ±
√
2

2c
√
λ

[∫ φ

0

dφ

φ− c
−
∫ φ

φ0

dφ

φ+ c

]
,

x = ±
√
2

2c
√
λ
ln

(
φ− c
φ+ c

)
,

c
√
2λx = ln

(
φ− c
φ+ c

)
,

Since c =
√

µ2

λ
, this implies that

√
2µx = ln

(
φ− c
φ+ c

)
,

=⇒ e±
√
2µx =

φ− c
φ+ c

,

e±(
1
2

√
2µx+ 1

2

√
2µx) =

φ− c
φ+ c

,

(φ+ c)e
± µ√

2x = (φ− c)e∓
µ√
2x,

c
(φ
c
+ 1
)
e
± µ√

2 = c
(φ
c
− 1
)
e
∓ µ√

2 ,

Let ± µ√
2
x = a =⇒ ∓ µ√

2
x = −a, then

φ

c
ea + ea =

φ

c
e−ae−a,

φ

c
(ea − e−a) = −(ea + e−a),

Taking reciprocal on both sides

c

φ
(e−a − ea) = −(e−a + ea), (3.81)
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φ = c
(ea − e−a)

(e−a + ea)
= c tanh a,

= c tanh

(
± µ√

2
x

)
. (3.82)

Thus, the finite energy solutions are

φ+ = c tanh

(
µ√
2
x

)
. (3.83)

and

φ− = c tanh

(
− µ√

2
x

)
= −c tanh

(
µ√
2
x

)
. (3.84)

where φ+ represents kink while φ− represents anti-kink. Now, let’s calculate

the energy possessed by a single kink(or anti-kink). For this, we begin with

the relation of energy density

E =
1

2
(∂xφ)

2 + U(φ),

=⇒ E = 2U(φ) =
λ

2
(φ2 − c2)2.

The total energy has thus the relation

E =

∫
Edx =

∫
[2U(φ)]dx,

From equation (3.78)

E =

∫ φ

φ0

[2U(φ)]
dφ√
2U(φ)

= 2

∫ ±c

0

[2U(φ)]
1
2 dφ,

= 2

∫ ±c

0

[
λ

2
(φ2 − c2)2

] 1
2

dφ =
2
√
λ√
2
.
c

c

∫ ±c

0

(φ2 − c2) dφ,
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Figure 3.9: Demonstration of finiteness of energy.

E =
2
√
λ√
2
.
c
√
λ

µ

[∫ ±c

0

φ2 dφ− c2
∫ ±c

0

dφ

]
=

4λ

3
√
2µ
.c4,

=
2
√
2µ3

3λ
. (3.85)

which is actually finite. It is quite apparent that when x approaches to

±∞, the kink solutions(φ+) or anti-kink solution(φ−) goes to zero of U(φ).

Mathematically,

φ → ±c as x → ±∞

which is demonstrated in Fig. 3.9. Despite the fact that these solutions(φ±)

are not the absolute minima of the potential energy, it can be demonstrated

that they are stable with regard to petite perturbations. These finite-energy

solutions to the EoM are interesting physically because they share certain

characteristics with particles that have structure which are listed below:

1. A small, finite area of space contains all of its energy because these

solutions(φ±) slightly diverge from the ground-state only in a small

region near the origin.

2. Any velocity lower than unity can be used to move it. This is so because
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the EoM is Lorentz invariant and we may use a Lorentz boost to get a

solution with a velocity that is not zero [16].

3.2.2 Topological Conservation Laws

Physics comprises many conservation laws, Some of them are commonly

known as topological or homotopic conservation laws. These laws are origi-

nated from well-defined SSB patterns discovered in the topology of the field

manifold of solutions to a particular EoM rather than any symmetries pos-

sessed by a Lagrangian. Despite this, the symmetry properties of the La-

grangian are still crucial in theories with SSB, just as much as the symmetry

characteristics of the ground-state configuration. It’s worth noting that topo-

logical currents will also exist in any theory with degenerate minima [24].

The primary query at hand is, What is the significance of homotopic

conservation laws? The answer is rooted in the observation that the stability

of the finite energy solutions with respect to petite perturbations is attributed

to its topological characteristics. Furthermore, this feature greatly assist in

searching for stable finite-energy solutions to a specific EoM. Lastly, it can be

easily adapted to more complex theories in higher dimensions, where explicit

solutions are arduous to obtain [16].

So, now let’s dig into the detail of topological property linked with finite

energy solutions of λφ4 theory in one space and time dimensions. Finiteness

of energy infer that

φ(∞)− φ(−∞) = N(2c),

=⇒
∫ +∞

−∞
∂xφdx = N(2c). (3.86)

where N is an integer and is a conserved quantum number which specify the
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state of the system. Meaning that for ground state, it’s value is 0. Similarly,

N = +1 represents kink state while N = −1 corresponds to anti-kink state.

For this conserved quantity, one can define a corresponding current as

Jµ(x) = ϵµν(∂
νφ). (3.87)

where Jµ(x) is called topological current which is different from Noether

current and ϵµν is an anti-symmetric tensor having following properties

ϵµν = −ϵνµ , ϵ0 1 = 1

This implies that

∂µJµ(x) = ∂µ[ϵµν(∂
νφ)] = 0 (3.88)

which means that topological current is a conserved quantity. According

to the Noether theorem, if topological current is conserved, the conserved

topological charge will be an integral of motion of the conserved current [23].

Mathematically,

Q =

∫ +∞

−∞
J0(x) =

∫ +∞

−∞
∂xφdx,

Q = N(2c) (3.89)

This conservation speaks about the stability of kink solution or anti-kink so-

lution. Meaning that kink, anti-kink and ground-state configurations cannot

undergo transition into each other. In contrast to the typical Noether con-

servation laws, which derive from the theory’s symmetry, this conservation

law – referred as the topological conservation law – has a distinct origin since

it holds independent of the EoM. This conservation law may be understood

intuitively by imaging that an infinite amount of energy is required to trans-
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late the kink or anti-kink configuration into the ground-state configuration

because we have to penetrate the barrier around φ = 0 across an infinite

range of x.

In the context of (1 + 1) dimensions, there exist two unique points, +∞

and −∞, that make up the spatial infinities represented by set S. When it

comes to λφ4 theory, the minima of the potential provided in equation (3.75)

in also comprised of two distinct points which can be designated by setM0

as

M0 = {φ : U(φ) = 0} (3.90)

In order to map points in S to M0, The requirement is that the asymtotic

vacuum values of φ must go to zeroes of U(φ) to ensure that the EoM has

solutions possessing finite energy. Mathematically,

lim
x→±∞

φ(x) = φ ∈M0 (3.91)

For instance, the ground-state configuration maps both ±∞ to either c or

−c. However, when it comes to kink configuration, +∞ is mapped to c

while −∞ is mapped to −c. These mappings are important topologically,

meaning that we cannot continuously transform one mapping into the other.

This concept lies at the heart of topological conservation law. In short, we

can conclude that for the topological solitons to exist, the theory under scope

must contain degenerate minima and non-trivial topological features in order

for these solitons to be topologically stable and of finite energy [16].

91



Chapter 4

A Comprehensive Overview of

MMs

4.1 Theoretical Overview of MMs

There are various theoretical frameworks that had a significant impact on the

field of physics and has inspired ongoing research into the possible existence

of these elusive particles. Some scientists believe that magnetic monopoles

could help explain certain phenomena, such as the quantization of electric

charge and the behavior of cosmic rays, gravitational waves, etc. A number

of theoretical models helps us in grasping the concept, structure and other

information about MMs.

4.1.1 t’Hooft-Polyakov Monopoles

Dirac’s theory on MMs proved that their existence do not preclude by quan-

tum mechanics, which implies the quantization of electric charge. Infact,

Dirac stated, “one would be surprised if Nature had made no use of it.”

Today we understand that the charge would still be quantized if the gauge
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group U(1)EM is compact, which is possible by incorporating U(1)EM into a

non-Abelian GUT group. This means that any GUTs with quantized charge

include MMs. Also, though Dirac’s theory is widely accepted, but it doesn’t

provide complete information about the characteristics of MM like mass,

topology, structure, etc [15].

Motivated by this, two physicists Gerard ’t Hooft and Alexander Polyakov

— in 1974 — independently demonstrated that MMs arise in GUTs as solu-

tions to the classical field equations. For this, they considered SO(3) model,

developed by Georgi and Glashow in 1972, due to its simplicity though exper-

imental evidence rendered this model invalid due to the discovery of neutral-

current phenomena. Remember that SO(3) is isomorphic to SU(2)L and

the symmetry breaking pattern is SU(2)L ∼ SO(3) → SO(2) = U(1)EM

[25, 26]. Thus, in the context of SU(2)L with isovector Higgs doublet φ⃗, the

Lagrangian density can be written as

L = −1

4
FiµνF

µν
i +

1

2
Dµφ⃗Dµφ⃗− U(φ⃗). (4.1)

where Fµν is the field tensor, Dµ denotes covariant derivative and U(φ⃗) rep-

resents potential energy whose relations are as follows

F i
µν = ∂µA

i
ν − ∂νAi

µ − eϵijkAj
µA

k
ν . (4.2)

(Dµφ)
i = ∂µφ

i − eϵijkAj
µφ

k. (4.3)

U(φ⃗) =
λ

4
(φ2 − c2). (4.4)

where i = 1, 2, 3. The corresponding EoMs w.r.t Fµν and φ are

(DνFµν)
i = −eϵijkφj(Dµφ)

k. (4.5)

(DµDµφ)
i = −λφi(φ2 − c2). (4.6)
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The minimum of the potential provided in equation (4.4) can be designates

as

M0 = {φ⃗ = η , η2 = c2}. (4.7)

For simplicity, we can write it as

φ⃗ = {0, 0, c}. (4.8)

Equation (4.8) is invariant under rotation around the SO(2) transformation,

pointing towards spherical symmetry. The unbroken U(1)EM symmetry cor-

responds to the EM interaction, with the massless gauge bosons representing

the photon. In order to obtain a finite-energy solution, it is necessary that

φ⃗(r⃗) ϵM0 as r⃗ →∞

=⇒ φ∞
i = ηi = cr̂i. (4.9)

The mapping provided in equation (4.9) is topologically stable and cannot

be transformed continuously into the vacuum configuration [16]. To find out

the explicit finite-energy solution for the spherically symmetric classical field

equation mentioned above, we use the following ansatz

φa =
ra

er2
H(cer).

Ai
a = ϵiak

rk

er2
[1−K(cer)].

A0
a = 0.

(4.10)

with H and K being the dimensionless functions. By using this ansatz, we
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obtain the following relation for the energy

E =
4πc

e

∫ ∞

0

dϕ

ϕ2

[
ϕ2

(
dK

dϕ

)2

+
1

2

(
ϕ
dH

dϕ
−H

)2

+
1

2
(K2 − 1)2 +K2H2 +

λ

4e
(H2 − ϕ2)2

]
. (4.11)

where ϕ = cer. The prerequisites for energy to be stationarity with regard

to perturbations in H and K are

ϕ2d
2K

dϕ2
= KH2 +K(K2 − 1). (4.12)

ϕ2d
2H

dϕ2
= 2K2H +

λ

e2
H(H2 − ϕ2). (4.13)

Following boundary conditions will be observed to derive the finite-energy

solution

H = 0, K = 1 as r → 0

H = 1, K = 0 as r → ∞
(4.14)

By using these boundary conditions, one can get the solutions of H and K

which do exist [15]. Thus, inference can be drawn that ’t Hooft-Polyakov(’tHP)

monopoles naturally arise in GUTs. Salient features of the ’tHP solutions

are:

1. It is observed that at large distances K = 0 as r →∞, so we have from

equation (4.3)

F i
ab ∼ ϵabc

rcri

er4
,

∼ − r⃗

er3
∼ B⃗. (4.15)
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which indicates that the ’tHP solution behaves like a MM and for this

reason, it is termed as “’tHP monopole.” By comparing this relation

with B⃗ = gr⃗
4πr3

, we obtain the magnetic charge on ’tHP monopole which

is equal to

g =
4π

e
. (4.16)

To crunch up, we can say that ’tHP monopole carries two units of Dirac

charge.

2. ’tHP theory gives a formula to calculate the mass of the MM

MMon =
4πc

e
f(λ/e2). (4.17)

which can be derived by solving equation (4.11). Here f(λ/e2) repre-

sented the value in the integral whose numerically calculated value is

of the order of unity and c denotes the VEV of Higgs field. So, we can

conclude that the mass of MM is of the order of SSB scale.

3. ’tHP monopole has a well-defined core unlike the point monopoles pre-

dicted by Dirac. This is due to the fact that when ϕ is large

K → 0 , H → ϕ (4.18)

This implies that

K ∼ e−ϕ ∼= e−Mr. (4.19)

H − ϕ ∼= e−µr. (4.20)

which are obtained by substituting the above mentioned boundary con-

ditions in equations (4.13) and (4.13). Note that µ = c
√
2λ andM ≃ ec
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which represents the masses of scalar bosons and gauge bosons respec-

tively. This suggests that the masses of the associated particles govern

how close a field approaches its asymptotic form. Since these masses

dictate the ’tHP monopole’s size, we may consider it to have a finite

size.

4. Another interesting feature of ’tHP monopole can be shown by writing

Ai
a as

Ai
a =

1

c2e
ϵabcφb∂iφc.

Using this we can write the magnetic field tensor as

Fij = ∂iAj − ∂jAi − e(AiAj − AjAi),

= ∂iAj − ∂jAi − (additional terms). (4.21)

which indicates that ’tHP monopole has no singularity, resulting in no

requirement of Dirac string [16].

4.1.2 Nambu Monopoles

The MMs resulting from ’tHP theory are superheavy as they arise in GUTs.

There was not a single theory that could explain the formation of mnopoles

due to EW symmetry breaking until 1977 when Yoichiro Nambu has under-

taken the task of describing monopole formation in Weinberg-Salam model.

He got inspiration from Abrikosov-Neilsen-Olesen vortices found in Abelian

Higgs model. In his study of the electroweak theory, Nambu observed that

the theory contains vortex solutions that closely resemble the Abrikosov-

Nielsen-Olesen vortices.

However, there is a significant difference between the two: the electroweak
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string can terminate by placing an anti-monopole at the other end.. When

the termination occurs, the magnetic flux that was previously trapped within

the vortex is released through the termination point and then spreads out into

space. This process gives the illusion of a MM. Furthermore, the magnetic

flux is not the only physical quantity that is released during the termination;

the energy density of the Higgs field is also released. For this, Nambu used

the ”isospinor” φ for the Higgs field given as

φ ∼

 cos θ
2

sin ϕ
2
eιϕ

 . (4.22)

From above expression. we can infer that along the negative z-axis, φ be-

comes ill-defined due to the absence of a limit for θ → π. To address this

concern, Nambu introduced an assumption that the amplitude φ equates to

zero when θ = π. As a result, a semi-infinite string arises, spanning across

the negative z-axis and culminating at the monopole placed at origin. This

creates a striking resemblance to the meson string model.

To visualize it mathematically, consider the classical solutions in which

the presence of a gauge field with a non-zero value of φ signifies that the

system is in a state of minimum total energy. It means that potential energy

U(φ) is minimal resulting in

Dµφ = 0. (4.23)

For the case of isovector φ⃗ and gauge potential Aµ

Dµφ⃗ = ∂µφ⃗− g Aµφ⃗ = 0.
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This tells us that φ⃗.φ⃗ is a constant. Thus above equation can be written as

∂µφ⃗− g Aµφ⃗ = aµ,

∂µφ⃗× φ⃗− g Aµ(φ⃗× φ⃗) = aµφ⃗,

g Aµ = φ⃗× ∂µφ⃗+ aµφ⃗. (4.24)

where aµ is an arbitrary constant. We know that the field tensor has the

relation

F⃗µν = ∂µAν − ∂nuAµ + gAµ × Aν .

Substituting equation (4.24), we have

F⃗µν = ∂µ

[
1

g
φ⃗× ∂νφ⃗+ aνφ⃗

]
− ∂ν

[
1

g
φ⃗× ∂µφ⃗+ aµφ⃗

]
+ (φ⃗× ∂µφ⃗+ aµφ⃗)×

1

g
(φ⃗× ∂νφ⃗+ aνφ⃗),

=⇒ =
1

g
[(∂µφ⃗× ∂nuφ⃗) + (∂µaν − ∂νaµ)φ⃗],

=
1

g
[(∂µφ⃗× ∂νφ⃗) + fµνφ⃗. (4.25)

where fµν = ∂µaν − ∂νaµ. From this, we can have the value of Fµν as

Fµν = φ⃗.F⃗µν ,

=
1

g
(φ⃗.∂µφ⃗× ∂νφ⃗+ fµν). (4.26)

In case of SU(2)L × U(1)Y model, we have Higgs iso-doublet φ. Thus, we

will use scaled gauge fields given as

Aµ = ι
τa

2
A⃗a

µ. (4.27)
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where a = 1, 2, 3. Thus, equation (4.1.2) can be re-written as

Dµφ = ∂µφ− g Aµφ = 0,

0 = (∂µ − gι
τ i

2
A⃗i

µ −
ι

2
g′A0

µ)φ,

=⇒ −ι∂µφ = (gτ iAi
µ + g′A0

µ)φ.

Multiplying by φ†, we have

−ιφ†∂µφ = gAi
µ(φ

†τ iφ) + g′A0
µ(φ

†φ). (4.28)

Note that φ†φ = 1. Furthermore, the series of Fierz identities are given in

appendix C. By implying these relations, equation (4.28) takes the form

gAi
µ + g′A0

µ(φ
†τ iφ) = −ϵijk(φ†τ iφ)∂µ(φ

†τ kφ)− ι(φ†τ iφ)(φ†←−→∂µφ). (4.29)

We can divide this equation into two equations

gAi
⊥µ = −ϵijk(φ†τ iφ)∂µ(φ

†τ kφ).

gAi
∥µ + g′A0

µ = −ι(φ†←→∂µφ).
(4.30)

with A∥ and A⊥ denoting, respectively, the parts that are parallel to φ†τ iφ

and perpendicular to it. These general solutions can be parametrized as

gAi
⊥µ = −ϵijk(φ†τ iφ)∂µ(φ

†τ kφ).

gAi
∥µ = ιξ(φ†τ iφ)(φ†←→∂µφ).

g′A0
µ = −ιη(φ†←→∂µφ).

(4.31)

where η+ξ = 1. Same steps can be done for fields and the resultant equations
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are

fµν = −2ι(∂µφ†∂νφ− ∂νφ†∂µφ).

g′F 0
µν = ηfµν .

gF i
µν = −ηfµν(φ†τ iφ).

(4.32)

This implies that

gF i
µν(φ

†τ iφ) + g′F 0
µν ≡

√
g2 + g′2FZ

µν . (4.33)

This equation tells us that the flux of the string is due to the Z-boson and

can termed as Z-flux. By applying Gauss’ divergence theorem on EM fields

and Stoles’ theorem on gauge fields, we witness that the flux due to U(1)Y is

zero, while for SU(2)L, its value is −(4π/e) cos θW sin θW . It’s worth noting

that the long-range fields behave quite differently along the string, with the

U(1)Y portion exhibiting a return flux and the SU(2)L portion not. As a

result, the poles are considered genuine SU(2)L monopoles of charge 4π/g,

which maintain their structural integrity due to their topological quantum

number, provided they are spaced far enough apart

Q =
4πη

e
.

where η = sin2 θW . Therefore, the magnetic charge carried by SU(2)L

monopole is

Q =
4π

e
sin2 θW (4.34)

where θW represents electroweak mixing angle. It is evident that the magnetic

charge of the Nambu monopole has dependence on θW [27].
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4.2 Experimental Overview of MMs

The long theorized particles — MMs — continues to be a tantalizing mystery

in the realm of physics. The ongoing experimental explorations to unmask

the MMs fall into three catagories: production in accelerators, detecting them

in cosmic rays or materials where they may be trapped, observing indirect

signs astronomically.

4.2.1 Search at Colliders

Scientists around the globe have conducted many experiments using acceler-

ators in an attempt to produce MMs. Despite thorough efforts at Tevatron,

LEC, and HERA, no MMs have been found with masses less than 1TeV .

Therefore, several accelerators are currently trying to unveil the MMs at

higher energies which are:

Monopole and Exotics Detector at the LHC(MoEDAL)

MoEDAL is a unique and innovative project at Large Hadron Collider(LHC)

that aims to search for MMs which eluded us for decades. MoEDAL ex-

periment employs Schwinger mechanism to generate MMs which involes the

production of electrically charged-particles in a strong electric field via quan-

tum tunneling. If MMs exist, they could also be produced through this

mechanism in strong magnetic field due to EM duality. This approach has

several advantages: absence of exponential suppression for monopole pro-

duction, enhancement of production due to strong coupling and finite size of

MMs, and calculation of production rate employing semi-classical techniques.

MoEDAL’s strategy for finding MMs is its ingenious detectors. It employs

an array of innovative detectors, known as MM trappers(MMT) and nuclear
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track detectors. The strong magnetic field is produced by Pb-Pb heavy ion

collisions so that monopole-antimonopole pairs are produced via Schwinger

mechanism which get trapped in MMTs. Samples from the MMTs are sent

using a superconducting coil to Superconducting Quantum Interference De-

vice(SQUID), in which a signal triggers due to the magnetic charge of the

trapped MMs. A recent experiment involved exposing the MoEDAL MMTs

to 0.235nb−1 of Pb-Pb collisions and has established a new lower mass limit

for MMs by eliminating monopoles with Dirac charges between 1gD and 3gD

and masses up to 75GeV/c2 [28].

A Toroidal LHC ApparatuS(ATLAS)

ATLAS is an advanced particle detector that is one of the four major de-

tectors located at LHC. While the Higgs boson discovery remains one of

ATLAS’s most celebrated achievements, its pursuits extend far beyond a

single particle. The primary mission of ATLAS is to explore the subatomic

world in unprecedented detail. It does so by analyzing new partcles and phe-

nomena resulting from Drell-Yan mechanism or Photon Fusion mechanism

for pair-production beyond the SM of particle physics.

ATLAS comprises various sub-detectors: inner tracking detectors includ-

ing semiconductor detectors, transition radiation trackers, calorimeters of two

types known as EM calorimeter and hadron calorimeter, and muon spectrom-

eters, which work together to capture and record the properties of particles

produced in collisions. Particles produced at LHC via hadron-hadron colli-

sion or photon fusion pass through the inner tracking detectors where the

paths of charged particles is measured, while the calorimeters measure the

energy of particles that interact with matter. The muon spectrometers are

used to detect and measure the properties of muons, which are highly pene-
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Figure 4.1: Comparison of ATLAS lower mass bounds with other LHC ex-
periments [29].

trating particles that can travel through matter without being stopped. To

manage the vast amount of data produced, ATLAS employs two-level trig-

ger systme for the selection of events. In a recent run, for spin-0 and spin-1
2

MMs were examined with the aid of luminosity of 138 fb−1 of 13TeV proton-

proton collisions. Limitations were set on magnetic charges of 1 gD and 2 gD,

and also on high-electric-charge objects with charges ranging from 20 to 100,

and masses ranging from 200GeV to 4000GeV [29].

4.2.2 Indirect Astrophysical Imprints

The existence of MMs could have a significant impact on astrophysics, as they

provide a potential means for searching and limiting their flux. The most

notable impact would be on the galactic magnetic field, which currently has

a strength of 3 − 6 micro-gauss(µG). If there were an abundance of MMs

with high magnetic charges in the universe, it could lead to the acceleration

of proton decay, resulting energy depletion from the galactic field due to the
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production of magnetic currents. The rate of dissipation would depend on

the flux of the MMs, which could adversely effect the stability and energy

balance of galaxies and stars. This, however, conflicts with observations of

stable stars across the universe.

Thereby, the sustainability of the galactic field relies on the abundance

of MMs in the universe not exceeding a specific limit known as the Parker

bound, proposed by Eugene Parker. This limit is determined by the balance

between dissipation and regeneration. When the MMs possess a mass greater

than 1017GeV , the gravitational forces dominante their motion, rendering

their effect weaker. However, for lighter MMs around 1017GeV [30], the

Parker bound is equal to

ϕ ≤ 10−15cm−2sec−1sr−1. (4.35)

here sr represents the unit steradian. The extended Parker limit considers

the survival of a small galactic field(Mmon ≤ 1017GeV ) [31] and reduces the

flux bound to

ϕ ≤ 10−16(Mmon/10
17GeV )cm−2sec−1sr−1. (4.36)

While magnetic monopoles remain hypothetical and have not been observed

to date, the Parker Bound plays a crucial role in our understanding of the

potential impact of these exotic particles on astrophysical phenomena.

One possible method for estimating the upper limit involves examining

the overall mass of MMs present in the universe. Based on astronomical

observations, it appears that matter particles account for approximately 31%

of the total energy in the universe, and only 4.9% can be explained by known

particles. This suggests that some or all of the remaining dark matter may
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be MMs. If the mass of MMs is sufficiently low(< 1017GeV ), then they

would not be gravitationally bound to galaxies and would be distributed

evenly throughout space. By observing the density of dark matter, it may

be possible to estimate an upper limit for MMs equal to

ϕ ≤ 10−16(Mmon/10
16GeV )(10−3c/v)cm−2sec−1sr−1. (4.37)

where Mmon is the mass of a MM, v is their average speed, and c is the

speed of light. This bound is only significant for heavy MMs, like that of

GUT scale, due to the mass dependency. However, it is still competitive with

other bounds on them.

4.2.3 Direct Searches in Cosmic rays and Materials

The search MMs in cosmic rays is an intriguing field of experimental physics

which look for remnant GUT monopoles produced after SSB in the early

universe. High-energy cosmic rays, which include protons and atomic nuclei,

are continually bombarding Earth from various astrophysical sources like

supernovae, black holes, and other cosmic phenomena. There have been

several attempts to detect MMs in cosmic rays. A higher flux would increase

the chance of a monopole cosmic ray hitting a detector.

Physicists have been using SQUIDs, which are extremely sensitive to

changes in magnetic fields and can identify the passage of charged particles

that would be anticipated to follow MMs. One similar experiment for MM

detection was disclosed by Blas Cabrera in 1982. It took 151 days to track

the current flowing through a superconducting ring. There was just one

candidate detection found carrying 1gD charge [32].

A few years later, in a configuration with two superconducting loops,
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Figure 4.2: Flux bounds on MMs through different experiments [33].

Imperial College London observed yet another strange incident. However,

they are thought to have been induced by other effects since subsequent

tests were unable to duplicate them. However, they inspired physicists to

create larger experiments like MACRO, AMANDA, Baksan, etc. that could

place tighter bounds on the flux of MMs

shown in Fig. 4.2. These investigations also set the path for the present

dark matter studies by allowing us to hunt for other sorts of particles in

cosmic rays.

Monopoles may have been stuck in Earthly matter since the planet has

been exposed to cosmic radiation for billions of years. There have been unsuc-

cessful attempts to use SQUID to analyze samples of moon rock, meteorites,

seawater, and iron ores to detect MMs trapped inside them [34].

4.3 MMs in Condensed Matter Systems

Despite decades of scientific pursuit and ingenious experiments, the enigmatic

monopoles continue to evade direct detection, challenging our understanding

of EM and igniting curiosity in the minds of physicists and researchers alike.
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Figure 4.3: Pyrochlore lattice structure of spin ice [35].

As the quest for these elementary particles persists, an extraordinary narra-

tive unfolded — the concept of emergent monopoles. There are condensed

matter systems in which some particles mimics MMs. A thorough detail is

given below.

4.3.1 MMs in Spin Ice

Electrically charged particles like protons and electrons are very common in

nature. However, despite extensive research and experimentation, no ele-

mentary particles with a net magnetic charge have ever been observed. To

approach this problem from a different angle, scientists have been exploring

the possibility of realizing MMs as emergent particles rather than elementary

ones. This led to the discovery of spin ice — a class of exotic magnetic ma-

terials — whose behavior resembles with a free gas of MMs. Dy2Ti2O7 and

Ho2Ti2O7 are the examples of these magnetic materials, indicating certain

rare-earth elements in its composition. The defining feature of spin ice ma-

terials is their crystal lattice structure, which is referred to as the pyrochlore

lattice. In this lattice, the magnetic dipoles are arranged in a 3D network
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Figure 4.4: Dumbbell configuration of spins in the lattice [35].

of interconnected tetrahedra as seen in Fig. 4.3. Each corner-sharing tetra-

hedron is composed of four magnetic moments located at its vertices. These

moments can be represented as Ising spins [35].

The spins in spin ice materials follow a set of rules known as “ice rules,”

which are analogous to the rules governing the arrangement of hydrogen and

oxygen atoms in water ice. For this reason, these exotic magnets are termed

as spin ice. These rules dictate that for every tetrahedron in the pyrochlore

lattice, two spins must point into the tetrahedron, while the other two must

point out. It is so because this arrangement of spins helps to minimize energy

as Q = 0 and leads to correlated spin behavior. Therefore, spins at each

vertex can thought of as two pairs connected by a dumbbell as demonstrated

in Fig. 4.4. The length of the dumbbell is carefully chosen so that each

magnetic moment must be situated at the center of the lattice [36].

The ice rule will be violated when the system is excited due to the reason

that the flipping of a single spin causes one site in the pyrochlore lattice

to acquire a positive magnetic charge while a neighboring site acquires a

negative magnetic charge, thus Q = ±2µ
d
. This behavior is depicted in Fig.

4.5. By flipping the nearby spins, these magnetic charges can propagate
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Figure 4.5: Formation of positive and negative magnetic charges in the lattice
[35].

through the crystal lattice [35].

The result of these frustrations in the system in the emergence of monopole-

antimonopole pair, shown in Fig. 4.6b, which differs from the usual MMs

pair witnessed at the end of a tightly wound solenoid in the sense that its

motion is not constrained and can move freely inside the crystal lattice due to

the flipping of nearby spins as shown in Fig. 4.6a. This flipping results into

the creation of a string of flipped dipoles which is analogous to Dirac string.

Nevertheless, it is important to note that these Dirac strings are physical.

Thus, the MMs do not adhere to the DQC [36].

(a) (b)

Figure 4.6: Emergence of MMs in spin ice in (4.6a) 2D (4.6b) 3D [37, 35].

Scientists have been able to experimentally verify the existence of mag-

netic charge in spin ice. In a study conducted by Bramwell in 2009, MM
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current emerging from them was also detected using the magnetic material

Dy2Ti2O7. The study also revealed Coulomb-like 1
r2

interactions among the

MMs, along with measuring the magnetic conductivity of Dy2Ti2O7 and the

charge of these emergent quasi-particles [38].
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Chapter 5

Composite Monopole Structure

in SM

5.1 Background

The quest for MM is still ongoing, with scientists yet to find any solid evi-

dence. Various experiments have been conducted, and more are underway,

all in the pursuit of their elusive discovery. The absence of conclusive proof

for MMs doesn’t necessarily negate their existence. One of the key challenges

in experimental verification is the mass of the MMs. Because the mass of

the MM remains uncertain and varies depending on the model used, with

estimates ranging from the GUT scale to the electroweak(EW) scale. Hence,

there is the possibility that the masses of MMs exceed the capabilities of

current experiments or that they interact feebly with ordinary matter.

Theoretical advancements, specifically the development of new particle

physics models and a deeper comprehension of the early universe, may offer

guidance for future experimental searches and provide valuable insight into

the mass and characteristics of MMs. The best model will be the one in which
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the MMs are produced due to the breaking of EW symmetry, implying their

mass around the EW scale of roughly 250GeV , — in few TeV range — an

energy range that modern particle accelerators can currently reach.

It is mentioned before that in any theory, symmetry breaking in a particu-

lar way can produce MMs through Kibble mechanism, but only if the second

homotopy group is non-trivial. However, it is widely accepted that finite

energy MMs in the SM are not topologically stable. The problem is that in

EW symmetry breaking of the SM, the vacuum manifold in the gauge group

SU(2)L×U(1)Y
U(1)EM

is a three-sphere(Π2(S
3) = 0 ), not a two-sphere(Π2(S

2) ̸= 0 )

which is the requirement for the formation of MMs. Be aware that adding

more matter or scalar fields to the SM has no impact on this outcome. Nev-

ertheless, the SM and its extensions, such as GUTs, include intriguing com-

posite topological structures.

Scientists have been fascinated by the idea of MM since 1931, when Dirac

proposed a point-like Abelian U(1)Y monopole with a semi-infinite string —

a gauge artifact [14]. Later on, Wu-Yang extended the concept to non-

Abelian monopole by expanding the gauge group to SU(2)L. In 1974, A.

t’Hooft and G. Polyakov independently showed that SU(2)L Higgs doublet

offers a finite-energy MM solution to exist as a topological soliton [25, 26].

However, the electroweak sector of the SM fails to explain these t’Hooft-

Polyakov monopoles because it utilizes the Higgs field in the fundamental

representation rather than the adjoint representation [39].

Within the EW theory, Y. Nambu discovered another type of EWmonopoles

of a different type — vortex solutions — in the Abelian Higgs field model. In

this model, a monopole is attached to an anti-monopole via a neutral, phys-

ical string [27]. For this reason, the U(1) bundle would be trivial, implying

that MM configuration predicted by Nambu doesn’t has spherical symmetry
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[39].

Inference could be drawn that MMs just don’t exist in SM but the

reality is other way around. Since the EW unification still preserves

the U(1)EM validating the presence of Dirac monopoles, so it can infer that

they may not be stable in the EW theory and must be mutated to another

monopole. This is why, it is very reasonable to anticipate the existence of

EW monopoles to necessitates the correctness of SM. Although it is widely

believed that the discovery of Higgs particle is the final straw for testing the

correctness of SM. However, it’s not finished until the last whistle blows —

discovery of EW monopoles [40].

In 1997, the search of MMs entered into new phase when Y.M. Cho and

D. Maison have presented an overlooked topological scenario that provides

the justification for the occurrence of MMs in EW theory. They proposed

that the Weinberg-Salam model could well be interpreted as CP 1 model with

the normalized Higgs doublet field acting as the CP 1 field with additional

hypercharge U(1). As a result, the Higgs field is allowed to have non-trivial

second homotopy group(Π2(CP
1) = Z), opening up the possibility of non-

Abelian topological monopoles existence in EW theory [41].

Furthermore, within the SM, U(1)Y takes on a non-trivial form which

results in Abelian monopoles. This unique hybrid monopoles permits the

existence of EWmonpoles. However, the Cho-Maison EWmonopole is flawed

due to divergence at origin caused by U(1)Y point singularity, despite the

SU(2)L gauge field being completely regular. This singularity results in the

monopole carrying infinitely large energy at the classical scale, rendering its

mass arbitrary [40].
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5.2 Finite-energy MMs in SM

While the Cho-Maison solution is not inherently problematic, but predicting

finite-energy MMs in EW theory is desirable due to its experimental impli-

cations. Some proposed solutions involve modifying the Lagrangian, but this

may lead to the introduction of unknown physics at energies above the elec-

troweak scale and a non-negligible uncertainty in the monopole mass. In the

presence of unknown physics, MM solution arise from both the real Higgs

triplet and Higgs doublet [42, 43].

Utilizing current knowledge to elucidate the intricacies of MM in SM

until a breakthrough in physics is achieved is of utmost significance. In this

regard, the EW-right-handed neutrino(νR) model, postulated by P.Q. Hung,

is a physically-driven model that mandates the incorporation of a real triplet

to uphold the Custodial Symmetry. This model entails non-sterile νRs with

masses equivalent to the EW scale, which are involved in a seesaw mechanism

for light neutrinos that can be tested at colliders.

According to this model, νRs couple to a complex Higgs triplet(χ∗) and

gain Majorana masses(MR) proportional to EW scale which is approximately

246GeV . The neutrinos’ non-sterile nature requires a minimum MR of

46GeV to be consistent with the Z-boson width implying ⟨χ∗⟩ = νm ∝ ΛEW .

However, the presence of non-sterile νRs would significantly impact the W-

and Z-boson verified mass relationship in the SM. To solve this, a real Higgs

triplet(ξ̃) is introduced with ⟨ξ̃⟩ = ⟨χ∗⟩ = vm, creating a custodial symmetry

in the EW-νR model [44]. This ξ̃ with Y = 0 predicts finite-energy MM of

EW scale by solving the standard Euler-Lagrange equation.
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5.2.1 Prediction of MM in EW-νR Model

In order to achieve finite-energy monopole configuration, the Higgs field must

approach its minima, which take the form of a sphere in a 3D internal space

represented by S2. Essentially, this means that a 3-dimensional spatial sphere

is mapped to the sphere of the vacuum manifold(S2). In homotopy theory,

this process is depicted by the second homotopy group(Π2) for 3D space and

Π2(S
2) = Z, where Z = 0, 1, 2, .... The initial value of Z(n = 0) is the

winding number, which corresponds to the trivial vacuum manifold with no

monopole, whereas n = 1 leads to the first non-trivial solution, and so forth.

This results into topologically stable monopole because it requires an

infinite amount of energy to undergo transition from the configuration n = 1

to n = 0. In this case, the Higgs vacuum manifold takes the shape of S2

sphere. One specific example of this is the Georgi-Glashow model SO(3) ∼

SU(2) with a real Higgs triplet ξ̃ = (ξ̃0, ξ̃1, ξ̃2). In this model, the vacuum

manifold is ξ̃20 + ξ̃21 + ξ̃22 = v2Mon, corresponding to S2, and the model is able

to accommodate a topologically stable monopole.

In the context of EW-νR model, there are several types of Higgs fields.

These include a real triplet field(ξ̃), a complex triplet field(χ∗), four complex

doublet fields denoted by φSM
i and φM

i where i = 1, 2, which interact respec-

tively with the SM and mirror fermions. Additionally, there are Higgs singlet

fields represented by φS, which although important for various reasons, but

do not play any role in the MM solution. It’s worth noting that the proper

vacuum alignment ensures that the custodial symmetry is maintained, which

means that ⟨ξ̃⟩ = ⟨χ∗⟩ = vMon.

The vacuum manifold of the SM will be a 3-sphere if it’s composed of

solely a complex doublet defined by φ2
1 + φ2

2 + φ2
3 + φ2

4 = v2. This results

into Π2(S
3) = 0, indicating no monopole production in SM. However, if we
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introduce a complex triplet which contains six real components, the vacuum

manifold will be a 5-sphere, leading to Π2(S
5) = 0. While real SU(2)L triplet

has Π2(S
2) = 0, which enunciates that SM with real triplet predicts topo-

logically stable monopoles. Therefore, the vacuum manifold of the EW-νR

model has non-trivial second homotopy group as evident from the following

relation

Π2(Svac) = Π2(S
2)⊕ Π2(S

5)⊕ Π2(S
3
SMi,Mi

)i=1,2

Π2(Svac) = Π2(S
2) = Z (5.1)

which is typical topological justification for a ’tHP MM to exist. Therefore,

within the EW-νR model, a topologically stable MM solution arises and es-

tablishes an intriguing link between the MM solution and the masses of light

neutrino [45].

5.2.2 Charge Quantization via Topology

Let’s begin with writing the Lagrangian for SU(2) real triplet which is

L = −1

4
(W3

µν)
2 +

1

2
(Dµ ξ̃)

2 − U(ξ̃). (5.2)

where W3
µν represents the field strength of SU(2) gauge bosons and is given

as

W3
µν = ∂µW3

ν + ∂νW3
µ −

1

v3Mon g
ϵijkξ̃i∂µξ̃j∂ν ξ̃k.

By using topological argument, one can write the topological current as

kµ =
1

2
ϵµνσρ∂νW3

σρ. (5.3)
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This implies that

∂µ kµ = ∂µ
(
1

2
ϵµνσρ∂νW3

σρ

)
= 0.

is a conserved quantity. And according to Noether theorem, conserved topo-

logical current leads to conserved topological charge as

gMon =

∫
k0 d

3x =
1

g

∫ √
g⃗ d2σ =

4πn

g
.

where g⃗ = det (∂β ξ́i∂
γ ξ́i) with ξ́i = ξ̃i/vMon and g denotes the weak cou-

pling which has relation e = g sin θW . This equation gives us the charge

quantization by the analysis of topology which is

g gMon

4π
= n. (5.4)

If we put n = 1, we will have

g0Mon =
4π

g
=

4π

e
sin θW . (5.5)

the value of unit magnetic charge in which θW denotes the weak mixing angle.

This consideration point out that

gnMon = n g0Mon. (5.6)

which means that total number of MMs given by the SU(2) Higgs field will

be equal to or greater than 2. By squaring equation (5.5) and comparing

with the standard DQC, we get sin2 θW = 1
4
.

118



5.2.3 Mass and Size of MM

According to ’tHP theory, the mass of the monopole can be calculated by

using the relation

MMon =
4πvMon

g
f

(
λ

g2

)
. (5.7)

where λ represents ξ̃ self-coupling. The following bound for mass of the MM

is obtained

≃ 890GeV − 3TeV. (5.8)

by taking the lowest value, which corresponds to vMon ∼ 45.5GeV and f =

1(when λ = 0), and the highest value, which corresponds to vMon ∼ 87GeV

and f = 1.78(when λ =∞).

The monopole is characterized by a core with a radius ofRc approximately

10−16 cm, which is almost a thousand times smaller than the radius of a

proton. Inside the core, virtual W± and Z particles exist, while far from the

core, the monopole acts like a Dirac MM [45]. Moreover, the Z-magnetic

field, which is of short-range, becomes less significant compared to the long-

range magnetic field present inside the core having size (gvMon)
−1. In this

paradigm, there aren’t any long-range magnetic fluxes that would connect a

MM with an anti-MM; instead, just the long-range actual magnetic field is

observed beyond the core. This presumption suggests that the MMs aren’t

confined with their anti-MMs [36].

5.2.4 Ensuring Charge Quantization via Dirac’s crite-

rion

DQC is another litmus test, apart from topology, to check the validity of

a model. The typical method for determining the DQC is to observe an
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electron’s movement around the Dirac string attached to a point-like MM.

Note that the current solution of MM doesn’t propose any string. This may

lead some to believe that topological quantization arising from the homotopy

theory is more than enough to ensure the consistency of the model.

Nevertheless, it is important to keep in mind that the DQC is a universal

condition that can be derived from consistency conditions that extend beyond

the confines of the monopole center. It remains unaffected by the specifics

of the monopole solution and whether or not it features an attached string.

Consequently, the DQC must always be enforced to maintain the consistency

of a theory, even if it is already satisfied.

Since, there are several approaches to derive DQC, but we will use one

classical approach and one quantum approach to verify that the EW-νR

model is in conformity with the Dirac’s theory. For this, our first consid-

eration will be Thomson dipole configuration as shown in Fig. 5.1. We know

that the electric field of a charged particle ‘q’ is given by

E⃗ =
e

4πr2
r̂. (5.9)

and the relation of the magnetic field for the first step breaking(SU(2)L ×

U(1)Y → U(1)L × U(1)Y ), which is achieved by real Higgs triplet, can be

derived as[45]

Bi = −1

2
ϵijkW3

jk,

∵W3
bc = ϵijk

r̂k
gr2

,

=⇒ Bi =
1

gr2
r̂i =

gMon

4πr2
r̂i. (5.10)
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Figure 5.1: Charge and monopole configuration.

Hence, the EM angular momentum has the relation

L⃗EM =

∫
r⃗ × (E⃗ × B⃗)d3r,

=

∫
r⃗ ×

(
e

4πr′2
r̂′ × gM

4πr2i
r̂i

)
d3r,

=
egMon

(4π)2

∫ (
r⃗ × (r⃗ × r⃗i)

r3r3i

)
d3r,

It is evident from Fig. 5.1

r⃗i = r⃗ + dx̂. (5.11)

Also, we know that

1

r
=

1√
r2 + r′2 − 2rr′ cos θ

,

=⇒ r3i = (r2 + d2 − 2rd cos θ)
2
3 . (5.12)

Substituting these values in equation (5.11), we have

L⃗EM =
egMond

(4π)2

∫ (
r⃗ × (r⃗ × x̂

r3(r2 + d2 − 2rd cos θ)
2
3

)
d3r.
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By solving this integral, we get

L⃗EM =
egMon

4π
x̂. (5.13)

whose quantization along the radial direction leads us to DQC.

For the validation through quantum approach, we can draw an analogy

between this monopole solution and an Abelian Wu-Yang monopole, which

doesn’t require a Dirac string. The monopole solution is based on Higgs

breaking SU(2)L × U(1)Y → U(1)EM , which differs from the conventional

’tHP monopole that is based on a Higgs triplet breaking the simple group

SU(2)→ U(1) as in the Georgi-Glashow model.

To compute the DQC, we often assume a closed loop ‘l’ that resides com-

pletely in the “equator region,” which is the area where the two hemispheres

— North(N) and South(S) — overlap, in the 3-space around the Wu-Yang

monopole at the origin. The loop may be situated far away from the MM’s

center. If an electrically charged particle, like an electron with charge ‘e’,

circulates the loop, then its wave function gains a phase

eιe
∮
l A⃗S,N .d⃗l. (5.14)

where A⃗S,N denotes the EM potential in both hemispheres [36].

The flux in each hemisphere can be calculated by applying Stokes’ theo-

rem as

e

∮
l

A⃗N .d⃗l = e

∫
σN

(∇⃗ × A⃗N).dσ⃗, (5.15)

e

∮
l

A⃗S.d⃗l = −e
∫
σS

(∇⃗ × A⃗S).dσ⃗, (5.16)

=⇒ e

∫
σN∪σS

B⃗.dσ⃗ = e

∫
σN

(∇⃗ × A⃗N).dσ⃗ − e
∫
σS

(∇⃗ × A⃗S).dσ⃗. (5.17)
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From Gauss’ divergence theorem, we have

e

∫
σN∪σS

B⃗.dσ⃗ = e

∫
V

∇⃗.B⃗d3r,

=
egMon

4π

∫
V

(
∇⃗. r̂i
r2

)
r2 sin θ dr dθ dϕ,

=
egMon

4π
.4π = egMon. (5.18)

Irrespective of the topological argument, the requirement that the equation

(5.18) have no effect on any physical observables entails the DQC.

5.2.5 Charge and Structure of MMs in SM

To complete the analysis, our final task is to determine if a pure EMmonopole

configuration can be produced in the SM. Without the U(1)Y sector, this is

obviously impossible to happen. So, consider the complete EW breaking

SU(2)c × U(1)Y → U(1)Y × U(1)L

→ U(1)EM

The first breaking is done using the ξ̃, while the later breaking involves all the

other Higgs sectors(χ∗,φSM,M
i ) of EW-νR model. This gives rise to new mass

eigenstates Zµ and Aµ, not W3
µ due to the reason that W3

µ now comprises

of Z-boson and photon fields. One can write the corresponding SU(2)L and

U(1)Y gauge fields as

W3
µ = Aµ cos θW −Zµ sin θW .

Yµ = Zµ cos θW + Aµ sin θW .
(5.19)
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Due to the involvement of both Z-boson and photon, the MM can be termed

as “γ-Z magnetic monopole”. The magnetic field intensity, thus, takes the

form

BγZ
i = Bγ

i sin θW +BZ
i cos θW ,

=
sin θW
er2

r̂(sin θW + e−MZr cos θW),

=
4π

e
sin2 θW +

4π

e
sin θW cos θW . (5.20)

which signify that the MM has both EM and Z magnetic flux, with Z mag-

netic flux appearing in a flux tube.. Note that at short distances, both

Bγ
i = 1

gr2
r̂i and BZ

i = 1
gr2
r̂e−MZr magnetic fields will be present, while at

large distance from core, only the EM field dominates. The relation in equa-

tion (5.10) can be recovered by substituting MZ = 0 and θW = 0 which will

happen in the limit when VEVs of χ∗ and φSM,M
i diappear [45].

It is worth mentioning here that the relation in (5.5) should be indepen-

dent of the EW mixing angle for the MMs configuration in SM to possess

spherical symmetry. To do this and to calculate the total MMs present in a

configuration, we will consider Dirac monopole with charge

gY =
12π

g′
n. (5.21)

while the charge due to SU(2)L Nambu monopoles, in the context of equation

(5.5), is given as

gL =
4π

g
n′. (5.22)

For this reason, n′ monopoles coming from SU(2)L has the net magnetic

charge

gL = gLZ cos θW + gLA sin θW . (5.23)
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while for n U(1)Y monopoles, it has the relation

gY = gLA cos θW − gLZ sin θW (5.24)

The net magnetic charge on the MM configuration due to Z-boson and photon

can, thus, be wriiten as

gY+L, Z = −12π

g′
n sin θW +

4π

g
n′ cos θW . (5.25)

gY+L, A =
12π

g′
n cos θW +

4π

g
n′ sin θW . (5.26)

In order to guarantee the unhindered operation of the monopole configuration

and prevent the emergence of anti-monopole formation, it is crucial to ensure

that the configuration lacks any net Z magnetic charge. This is due to the

fact that Z magnetic fields tend to become confined subsequent to the EW

symmetry breaking, and a net Z flux would inevitably lead to the formation

of a string. Therefore,

−12π

g′
n sin θW +

4π

g
n′ cos θW = 0,

∵ sin θW =
g′√

g2 + g′2
, cos θW =

g√
g2 + g′2

=⇒ − 12π√
g2 + g′2

n+
4π√
g2 + g′2

n′ = 0,

This implies that

n′ = 3n. (5.27)

This equation tells us that there are three times more SU(2)L monopoles in

the configuration in comparison to U(1)Y monopoles.

Now, to find the pure EM charge on this configuration, we will put the
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Figure 5.2: Necklace configuration in SM.

values of n′ in equation (5.26),

gY+L,A =
12π

g′
n cos θW +

12π

g
n sin θW ,

∵ e = g sin θW = g′ cos θW ,

gY+L,A =
12π

e
n cos2 θW +

12π

e
n sin2 θW ,

=
12π

e
n. (5.28)

From above relation, we can conclude that the MM configuration in the SM

has minimum 6 unit of Dirac charge which has no dependence on the EW

mixing angle [46]. The arrangement of these three SU(2)L Nambu monopoles

and one U(1)Y Dirac monopoles in given in Fig. 5.2.

The magnetic charge on minimal SU(2)l Nambu monopole is 4π
g
sin θW =

4π
e
sin2 θW , while that of U(1)Y Dirac monopole is 12π

g′
cos θW = 12π

e
cos2 θW .

These monopoles are linked with each other through Z-string having 4π
g
cos θW

magnetic flux. From Fig. 5.2, we observed that this necklace configuration

of MMs has singularity.
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Conclusion

In the SM of particle physics, it is widely accepted that topologically stable

monopoles cannot exist since the second homotopy group becomes trivial.

Despite numerous proposed models attempting to address this issue, none

have thoroughly explained the existence of homotopically stable, finite energy

light monopoles. Recently, a model termed as “EW-νR model” has been

proposed by P.Q. Hung which actually explains the possible existence of

non-sterile RH neutrinos with EW scale masses.

Inspired by this, we have considered all the SU(2)L Higgs fields within the

EW-νR model and discovered that it predicts the emergence of homotopically

non-trivial monopole. We have also calculated the charge on this SU(2)L

monopole which comes out to be equal to 4π
e
sin θW , indicating dependence

on EW mixing angle which is not acclamatory due to the fact that θW → 0

for spherical symmetry to remain intact. Furthermore, this monopole is

particularly enticing due to their mass falling in the TeV range and has a

well-defined core.

It is important to emphasize that all of these explanations have been

made through topological perspective. Therefore, to move a step further,

we have validated the monopole generation in this model through the litmus

test — DQC — using both classical and quantum approach. After thorough

topological and theoretical validation, we tried to calculate the total number

of MMs produced during the EW breaking and found out that there will be
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three SU(2)L Nambu monopoles in the configuration alongside one U(1)Y

Dirac monopole which are connected via Z strings. We have also observed

that this configuration of composite monopoles has 12π
e

magnetic charge, with

no more dependence on θW , leading to a necklace configuration of MMs in

SM.
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Appendix A

Group Matrices

Any set of non-singular (invertible) N ×N matrices which includes the unit

matrix I and is closed under matrix multiplications, forms a group matrix.

A.1 Unitary Group U(N)

Unitary group is a set of complex matrices U satisfying,

UU † = I = U †U. (A.1)

The number of independent parameters in U(N) is

n =
N(N + 1)

2
+
N(N − 1)

2
= N2. (A.2)

Rank of unitary group is

Rank(U(N)) = N. (A.3)
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A.2 Special Unitary Group SU(N)

Special Unitary group is simply a unitary group with an additional condition

that is,

det(U) = 1. (A.4)

Number of independent parameters in SU(N) is

n = N2 − 1. (A.5)

while the rank is given as

Rank(SU(N)) = N − 1. (A.6)
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Appendix B

Sine-Gordon Theory

B.1 Time-independent Finite Energy Solution

The Lagrangian density for Sine-Gordon theory is

L =
1

2
(∂νφ)

2 − µ2

β2
(1− cos βφ). (B.1)

with

U(φ) =
µ2

β2
(1− cos βφ). (B.2)

Since

x =

∫
dx =

∫ φ

φ0

dφ√
µ2

β2 (1− cos βφ)
,

=
β

2µ

∫ φ

φ0

dφ

sin βφ
2

. (B.3)
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Let

t = sin
βφ

2
, (B.4)

dφ =
2

β

1√
1− t2

dt. (B.5)

Putting these values in equation (B.3)

x =
β

2µ

∫ t2

t1

1

t
.
2

β

1√
1− t2

dt,

=
1

µ

∫ t2

t1

dt

t
√
1− t2

. (B.6)

Also assume that

s =
√
1− t2. (B.7)

=⇒ dt =
−
√
1− t2
t

ds. (B.8)

Thus, equation (B.6) becomes

x =
1

µ

∫ s2

s1

1

t
√
1− t2

.
−
√
1− t2
t

ds =
1

µ

∫ s2

s1

− 1

t2
ds,

=
1

µ

∫ s2

s1

1

s2 − 1
ds,

=
1

µ

∫ s2

s1

1

(s+ 1)(s− 1)
ds.

This implies that

x =
1

2µ

∫ s2

s1

(
−1
s− 1

− 1

s+ 1

)
ds,

=
1

2µ
ln

∣∣∣∣1− s1 + s

∣∣∣∣s2
s1

,

=⇒ e±2µx =
1− s
1 + s

,
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As we know s =
√
1− t2 and t = sin βφ

2
. This implies that

s =

√
1− sin2 βφ

2
,

s = cos
βφ

2
.

Thus, above equation takes the form

e±2µx =
1− cos βφ

2

1 + cos βφ
2

,

∵ 2 sin2 θ

2
= 1− cos θ , 2 cos2

θ

2
= 1 + cos θ ∴ e±2µx =

2 sin2 βφ
4

2 cos2 βφ
4

,

φ =
4

β
tan−1 e±µx.(B.9)

B.2 Energy of a Soliton

The energy of a single soliton has the relation

E =

∫ ∞

∞

[
2µ2

β
(1− cos βφ)

] 1
2

,

=

√
2
√
2µ

β

∫ 2π
β

0

(
1− cos βφ

2

) 1
2

dφ,

=
2µ

β

∫ 2π
β

0

sin
βφ

2
dφ,

=
8µ

β2
. (B.10)

which is a particle-like solution with a mass increasing as β decreases.
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Appendix C

Fierz Identities

1.
∑

i(φ
†τ iφ)2 = φ†φ.

2.
∑

i(φ
†τ iφ)(φ†τ i∂µφ) = (φ†φ)(φ†←→∂µφ).

3. (φ†τ iφ)(φ†←→∂µφ)− (φ†φ)((φ†τ i
←→
∂µφ) = ιϵijk(φ†τ iφ)∂µ(φ

†τ kφ).
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