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Abstract

A novel mechanism is introduced for the generation of ultralight dark photon dark matter

in the early stages of the Universe using a dilatonlike scalar field, which is coupled to the

kinetic term of the dark photon. In this framework, energy is primarily contained in the

dilaton’s condensate. As this condensate begins its oscillatory motion during the Universe’s

early stages, it resonantly produces dark photons. Distinct from axion-dark-photon coupling

scenarios that necessitate large coupling coefficients to saturate the dark photon, the dila-

tonic coupling in our model exhibits a special condition where the dark photon’s mass is half

of the dilaton’s. In this regime, significant dark photon production is achievable even with

minimal dilaton oscillations. this model, compatible with cosmic microwave background

observations, opens the door to ultralight vector dark matter candidates, potentially having

masses as minuscule as 10−20 eV.
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Chapter 1

Introduction

The concept of dark matter has presented an enduring enigma within the realm of theo-

retical physics and cosmology, ever since its deduction from astrophysical evidence. This

issue remains unresolved to this day. Comprising nearly 85% of the matter content in the

cosmos, the mysterious nature of this entity [1] has stimulated numerous theoretical frame-

works, each striving to offer a coherent and verifiable explanation of its characteristics and

beginnings.

Throughout history, the prevailing framework for dark matter candidates has been the

WIMP (Weakly Interacting Massive Particles) paradigm [2]. The aforementioned candi-

dates were hypothesized to be particles with substantial mass and weak interaction, sim-

ilar to neutrinos but with a substantially greater mass. Nevertheless, with the increasing

focus on terrestrial and astronomical investigations for Weakly Interacting Massive Par-

ticles (WIMPs) yielding inconclusive results, it has become evident that a comprehensive

analysis of the wider range of potential dark matter viable candidates is necessary.

Ultralight scalar and vector fields have recently emerged as potentially viable candidates

for dark matter[3]. The wave-like characteristics shown by these entities at the galactic

level can give rise to unique cosmological and astrophysical indications. These indications

have the ability to address observational irregularities that cannot be explained by the

WIMP paradigm[4]. Researchers have been captivated by dark photons, which are a vec-

torial counterpart to conventional photons, due to their exquisite simplicity and extensive

phenomenology, among the options available for ultralight candidates.

Nevertheless, a perplexing dilemma persists. In order for dark photons to possess the requi-

site cosmic abundance to function as dark matter, it is vital to have an effective generating

1



mechanism during the early stages of the Universe. Axions, along with their axion-like

counterparts, have conventionally served as precursors for the generation of dark photons

[5]. The oscillations present in the early Universe have the potential to act as generators

for dark photons. However, recent research has indicated that this scenario requires sub-

stantial coupling coefficients between the axion and dark photon, which may conflict with

current observational limitations.

In this inquiry, we venture onto an alternative trajectory, drawing inspiration from the

domain of string theory and its diverse scalar fields. The primary area of interest lies in the

dilaton, which is a scalar field that exhibits universal coupling with all types of matter and

radiation. The utilization of a dilaton as an intermediate in the generation of dark photons

is a relatively unexplored research direction.

Through the establishment of a theoretical framework that establishes a direct coupling

between the dilaton and the kinetic term of the dark photon[6], a multitude of intricate pro-

cesses inside the early Universe are revealed. One noteworthy finding from our research

is the identification of a certain scenario wherein the dark photon’s mass is halved com-

pared to the dilaton’s . This configuration results in a significant increase in the creation of

dark photons, even when the dilaton exhibits minor amplitude oscillations. This particular

scenario not only facilitates the production of ultralight vector dark matter, which can po-

tentially have masses as low as 10−20 eV, but also accomplishes this feat while effectively

addressing the challenges posed by cosmic microwave background restrictions.

The parts that follow will examine the mathematical foundations of this mechanism, an-

alyze its implications for the cosmological development of the Universe, and examine the

possible observational indicators that can confirm or question this paradigm. By undertak-

ing this endeavor, our aim is to broaden our comprehension of dark matter and its intricate

interactions within the early Universe.

In this thesis, we embark on a comprehensive exploration of the enigmatic realm of dark

matter, employing a structured approach to dissect and understand its various facets. The

foundational groundwork begins with an introduction that outlines the overarching re-

search question and its significance. We then establish a robust theoretical framework, elu-

cidating the fundamental concepts and equations that underpin our investigation. Within

this framework, we delve into the Ultralight Bosonic Dark Matter (UBDM) theory, a pivotal

theoretical construct, and lay the groundwork for our subsequent analysis.
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The heart of this thesis revolves around the meticulous investigation of dark photon dark
matter, a promising yet elusive aspect of the broader dark matter puzzle. We examine the
nature and relevance of dark photon dark matter, intertwining it with the concept of an
oscillating dilaton. This exploration is conducted through an in-depth analysis, unveiling
the results obtained through meticulous methodology, data collection, and computational
models. These findings are then synthesized in the conclusion, offering a concise summary
of our contributions to the field and proposing avenues for future research. throughout the
chapters we have used natural units i.e h , c and G equal to one.
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Chapter 2

Theortical framework.

2.1 Background

Numerous discoveries throughout the history of sciencehave already disclosed unknown

types of matter, like the moons of Jupiter glimpsed by Galileo along with the neutron dis-

covered by Chadwick. Scientists including Kelvin, Poincaré, Opik, Kapteyn, and Oort made

early attempts that laid the foundation for the concept of "dark matter" as we know it today.

They sought to determine the proportion of the Milky Way’s visible matter mass (stars) to

its overall mass [7]. These preliminary calculations demonstrated that stars greatly con-

tributed to the mass in our immediate area.

Zwicky’s study [8] of galaxy clusters contributed to our knowledge of dark matter. He found

that there appeared to be a sizable amount of "dark matter" that was not generating light

on bigger scales, beyond individual galaxies. He concentrated on the Coma cluster, which

was made up of about a thousand galaxies and had a radius of R approximately 106 light-

years. The virial theorem is used to compute the anticipated velocity dispersion of galaxies,

which predicts the distribution of galaxies’ velocities inside a cluster.

v ≈
√
GMtot

R
. (2.1)

He discovered a sizable mismatch between the predicted and observed velocity dispersion.

Despite taking into account the fact that the galaxy cluster contains hot gas.The moons of

Jupiter identified by Galileo and the neutron discovered by Chadwick are only two examples

of discoveries throughout the history of science that have revealed previously unrecognized

forms of matter. They sought to calculate the mass of visible matter (stars) in relation to
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the total mass of the Milky Way. These preliminary calculations demonstrated that stars

played a considerable role in the mass of our neighborhood.

Galaxy cluster observations by Zwicky led to his contribution to the knowledge of dark mat-

ter. Beyond individual galaxies, he observed that there appeared to be a sizable amount of

"dark matter" that was not generating light on bigger scales. He concentrated on the Coma

cluster, which had roughly 1,000 galaxies in a sphere with a radius of R approximately

106 light-years. The discrepancy persisted after calculating the galaxies’ expected veloc-

ity dispersion using the virial theorem, which predicts the velocity dispersion of galaxies

in a cluster. This suggested the existence of extra invisible mass, which he called "dunkle

Materie" or "dark matter."

Galaxies’ rotational velocities were investigated depending on how far the galaxy is from

its center by astronomers including Vera Rubin and Kent Ford [9]. They discovered that

the rotation curves remained flat at greater distances from the center, defying expectations

based solely on observable matter. In other words, stars at this distances were moving more

quickly than would be expected based on their apparent mass. This difference suggested

that there was a significant discrepancy with the observed velocity dispersion. This discrep-

ancy indicated the presence of more mass than what was accounted for by visible matter.

Theoretical predictions based solely on visible matter didn’t match the observed behavior,

which led to the idea of an invisible mass component or dark matter.

2.1.1 Gravitational lensing

Einstein’s theory of general relativity predicts phenomena called gravitational lensing, in

which the light is bent by large objects. The distribution of mass throughout the universe

has been studied using this effect. Dark matter was strongly supported by the Bullet Clus-

ter (1E0657-558) [fig. 1] [10]. The visible matter, which is dominated by hot gas, clashed

and heated up during a galaxy cluster merger, but the dark matter scarcely interacted be-

cause of its weak interaction. Studies using gravitational lensing revealed that the Bullet

Cluster’s mass distribution did not match that of visible matter, supporting the idea that

dark matter exists as a separate substance in the universe.
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Figure 2.1: Image of the Bullet Cluster (1E0657-558), adapted from Ref. [11], comparing x-
ray emission from hot gas [the bakground color map with increasing x-ray intensity scaling
from blue (low) to yellow/white (high)] to the mass distribution deduced from gravitational
lensing (green contour plot, where the outermost contour represents low mass density and
the innermost contours are highest density). The white horizontal line in the lower right
represents a distance of 200 kpc at the position of the Bullet Cluster. The mass distribution
is clearly different from the gas distribution.

6



2.1.2 Cosmic Microwave Background (CMB)

Radiation from the early cosmos is still present in the cosmic microwave background (CMB).

In a time when the universe was much denser and hotter, it offers a glimpse of the world.

The CMB’s consistency across the sky baffles me. If just visible stuff were taken into ac-

count, density fluctuations would increase as the cosmos grew.

δρm
ρm

∝ a. (2.2)

Due to the fact that baryonic matter density variations would have been too slight to ac-

count for galaxies forming, it would not be able to explain the observed uniformity. How-

ever, the existence of cold dark matter, which gathered in large quantities early in the

history of the universe, can account for these variations and the galaxies’ observable pat-

terns.Since recombination, density variations have multiplied by an order of magnitude of

. δρm

ρm
≈ 103[11].

The presence of cold dark matter with significant density variations explains uniform CMB

and galaxy formation.CDM fluctuations > Baryonic fluctuations .Galaxy clusters, galactic

rotation curves, with studies from gravitational lensing and the cosmic microwave back-

ground observations all provide evidence for the presence of dark matter. These findings

imply the existence of a sizeable invisible mass that doesn’t emit light and interacts with

the cosmos through gravity to influence its structure and behavior.

2.2 Ultralight Bosonic Dark Matter

Dark matter particles are very different from Ultralight Bosonic Dark Matter (UBDM),

which has a completely different nature. While the masses of WIMPs and sterile neutrinos

are much more than 10 eV, with detection techniques designed to record individual interac-

tions of these particles, UBDM uses bosons with masses much lower than 10 eV (therefore

categorized as ultralight). The method for detecting UBDM differs because coherent effects

caused by UBDM waves are the main emphasis.

This discrepancy in detection methods results from a critical factor: ultralight bosons typ-

ically have high numbers of modes occupied [12], which is necessary In order to align re-

ported density of dark matter. As a result, treating UBDM as a classical field and taking use
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of its coherent wavelike characteristics becomes the obvious choice. Using radio waves as

an example, It is clear that a more efficient detection method than single photon detection

entails coherent monitoring of the current of electrons induced by radio waves employing an

antenna. The frequency of oscillation of the UBDM field is in alignment with the Compton

frequency when observed from the UBDM reference frame [13].

ωc = m. (2.3)

The standard halo model (SHM), postulates that dark matter particles in the Milky Way are

virilized within the galaxy’s gravitational potential well. This results in a random distri-

bution of boson velocity. This distribution has a characteristic width throughout the Milky

Way of about triangle △v ≈ 10−3c, which is roughly comparable to the speed of the so-

lar system relative to the galactic rest frame. The observable UBDM field comes from the

interference of a huge number of bosons with different velocities, which causes frequency

dispersion due to the variable boson velocities.

The visible UBDM field develops from the interaction of bosons with random velocities, as-

suming that ultralight bosonic dark matter (UBDM) follow the standard halo model (SHM).

As a result, this field’s properties show stochastic changes with the recognizable τcoh time

scale and Lcoh length scale.

Figure 2.2 illustrates a simulated virialized UBDM field evolving over multiple coherence

times. While amplitude of the UBDM field remains in comparison constant for time inter-

vals △t≪ τcoh

it undergoes random fluctuations on longer time scales. The Rayleigh distribution well

describes the random variation in this amplitude, which also characterizes the statistical

behavior of thermal (chaotic) light.

For experiments conducted over a time span △t ≫ τcoh On the basis of typical dark mat-

ter characteristics, the results may be understood. But for extremely small mass bosons,

measuring over durations longer than τcoh

becomes impractical. Consider "fuzzy dark matter," for instance, characterized by a boson

mass mbc
2 ≈ 10−22eV , resulting in τcoh ≫ 1013s . In such scenarios, experimental interpre-

tations must incorporate the stochastic nature of UBDM.

It is crucial to acknowledge that the spatial arrangement of (UBDM) within the Milky Way
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Figure 2.2: Simulated virialized UBDM field ϕ (t). The inset shows the coherent oscillations
of the UDM field over a time scale ≪ τcoh.

galaxy may exhibit deviations based on projections of the standard halo model (SHM) in

multiple respects. The occurrence of local variations in density can be attributed to the

emergence of clusters or currents. Likewise, the UBDM field’s self-interactions or topolog-

ical characteristics may give rise to the emergence of larger composite objects like conden-

sates, clusters, and boson stars or domain barriers. It can be reasonably assumed that the

motion and distribution of such structures conform to (SHM). On the other hand, it is pos-

sible for a portion of (UBDM) to be gravitationally bound by the Earth or Sun, resulting

in the formation of a localized halo characterized by an increased density of UBDM. The

ambiguity pertaining to the quantity of dark matter at the local level constitutes a pivotal

element in the interpretation of terrestrial studies aimed at detecting (UBDM).

2.3 Candidates

2.3.1 Spin 0 bosons

The axion is considered to be one of the most persuasive contenders for the (UBDM) the-

ory. Axions are a theoretical concept that originates from a proposed solution to the strong

CP problem, a theoretical issue pertaining to the existence of CP-violating terms within

the framework of quantum chromodynamics. Axions provide a potential resolution to this
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problem by their capacity to undergo dynamic evolution and naturally approach a value

close to zero. There exist numerous mechanisms that give rise to the production of axions

that are consistent with the observed abundance of dark matter. Furthermore, there is a

common occurrence of ultralight spin-0 bosons in numerous theories that extend outside

the framework of the Standard Model. Axion-like particles (ALPs) manifest in theoretical

frameworks that incorporate flavor symmetry breaking, chiral lepton symmetry breaking,

and even quantum gravity theories. Axions and Axion-Like Particles (ALPs) are theoret-

ical entities that arise within the framework of string theory. They manifest as quantum

field excitations that penetrate spatiotemporal dimensions that have been compactified.

The masses of these particles span a range from around mac
2 ≈ 10−33ev, to 10 ≈Mev.

Axions also have a significant function within an alternate theoretical framework associ-

ated with cold dark matter (CDM) [14]. This framework shows potential in elucidating

the source of dark matter and addressing several other unresolved mysteries. The enig-

mas encompass several intriguing phenomena within the field of cosmology, such as the

baryon asymmetry of the Universe, the approximate equivalency in abundance between

luminous and dark matter, and the abnormalities discovered in the abundance of lithium

throughout the process of big bang nucleosynthesis . According to this theoretical frame-

work, the composition of dark matter is postulated to consist of compact entities referred to

as "nuggets." These nuggets are comprised of an estimated quantity of around 1025 quarks,

which are densely arranged at nuclear densities. The binding force responsible for main-

taining the structural integrity of these nuggets is attributed to a "axion domain wall." The

axion-quark-nugget model postulates the coexistence of nuggets composed of quarks and

"anti-nuggets" composed of antiquarks. This configuration guarantees a near-equilibrium

state between the overall quantities of quarks and antiquarks in the cosmos, so efficiently

addressing the enigma surrounding the lack of symmetry between matter and antimat-

ter. The axion-quark nuggets has a characteristic radius of around 10−5 cm. In contrast

to numerous alternative dark matter models, the interactions between these nuggets and

ordinary matter are not characterized by weak strength. As an example, the cross-sectional

area for proton annihilation falls within the magnitude of 3 × 10−10 cm². The underlying

cause for the "darkness" observed in these nuggets can be attributed to their notably low

ratio of cross-sectional area to mass.
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2.3.2 Spin 1 boson

A distinct category of (UBDM) candidates is constituted by spin-1 bosons . The SM encom-

passes a collection of twelve fundamental spin-1 bosons, which comprise the photon, the W±

and Z bosons, as well as the eight gluons. The emergence of a massless spin-1 boson can

often be attributed to the presence of an unbroken U(1) gauge symmetry. Paraphotons, de-

noted as γ′, refer to newly discovered bosons with a spin of 1 and zero mass. These particles

are akin to photons, which arise from the U(1) gauge symmetry in the context of electro-

magnetism. Exotic spin-1 bosons with nonzero mass, similar to the Z boson in the Standard

Model, are particularly pertinent when considering potential candidates for dark matter.

The Z’ boson, in a hypothetical scenario, has the potential to get a non-zero mass by means

of the breakdown of a novel U(1) gauge symmetry. Numerous theoretical frameworks pos-

tulate the presence of novel Z´ bosons, with theoretical projections encompassing a broad

spectrum of mass values and interactions with quarks and leptons. The Z’ bosons, which

do not have direct interactions with particles in the Standard Model, are often referred to

as hidden photons due to their presence in the hidden sector. Similar to axions and axion-

like particles (ALPs), it is plausible that The production of boson ultralight spin-1 may be

sufficient to explain the presence of dark matter.

2.4 Connection to SM

Ultralight bosons demonstrate associations with particles and fields within the Standard

Model through multiple unique paths. A bosonic field with spin-0, denoted as ϕ, has the abil-

ity to form direct connections with fermions through two conceivable mechanisms:either a

pseudoscalar vertex or a scalar vertex .When it comes to nonrelativistic physics, which

deals with circumstances in which fermions have little momentum transfer and velocity, ,

the interaction between a fermion and the field ϕ can be described by a scalar vertex, which

exhibits monopole-like behavior. Alternatively, an interaction involving a pseudoscalar ver-

tex can be understood as a dipole-like phenomenon. The concept of differentiation may be

comprehended by considering that within the context of the particle’s center of mass frame

of reference, there are just two vectors that can be utilized to construct a scalar or pseu-

doscalar number. These vectors are the spin S as well as the momentum vector P, under

the assumption that the field ϕ is a scalar. As a result, the vertex can either remove the
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variable S, leading to monopole coupling, or include both S and P, indicating the presence

of a parity-odd, pseudoscalar term. As a result, the presence of the pseudoscalar interac-

tion related to the field ϕ gives rise to new dipole interactions, which manifest themselves

through spin-dependent changes in energy. Conversely, the scalar interaction is responsible

for generating observable oscillations in basic constants. It is possible for spin-0 fields to

establish linkages with the electromagnetic field .Many studies utilize this combination to

explore the phenomena of axion-to-photon conversion in the presence of strong magnetic

fields. The axion, which is grounded in the Peccei-Quinn resolution to the strong CP issue,

posits that axions exhibit interactions with the gluon field and have the capacity to induce

electric dipole moments (EDMs) that align with the direction of spin [15]. Spin-1 bosons,

like to photons, possess the capability to induce modifications in energy that are contingent

upon spin, and may possibly engage in interactions that involve the electromagnetic field

via mixing.

2.5 Dark photons (DPs)

Previos and upcoming Section delves into the examination of (UBDM) through the utiliza-

tion of axions, (ALPs), and hidden photons, focusing specifically on their electromagnetic

couplings. This section centers its attention on hidden photons, which are classified as ul-

tralight bosons.Hidden sectors, which are characterized by the presence of additional U(1)

symmetries beyond those seen in the Standard Model, are frequently observed in theoret-

ical frameworks such as string theory. Although they possess intricate characteristics, the

observable impacts of these entities can be elucidated through the utilization of effective

operators that establish connections between them and the particles as well fields of the

SM [16]. One methodology entails the utilization of direct couplings, wherein particles as

well as fields of the SM are linked to the concealed sector [17]. Another potentiality that

may be considered is the occurrence of kinematic mix between the recently introduced U(1)

symmetry along with electromagnetism, leading to the formation of a hidden photon.

The physics of the hidden photon may be described in a straightforward manner from a

conceptual standpoint.It possesses a non-zero mass, denoted as mγ′ .The primary mode of

interaction of the entity under consideration with charged particles is predominantly facil-

itated by its amalgamation with the "real" photon field, which is symbolized by the kinetic
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mixing factor κ.

2.5.1 Lagrangian

The Lagrangian that characterizes both photons and hidden photons is formulated in the

"mass basis" as shown:

L = −1

4
(FµνF

µν + FµνFµν) +
m2

γ′

2
XµX µ − Jµ(Aµ + κXµ). (2.4)

In this context, Aµ , Fµν represent the electromagnetic gauge potential with field strength

tensor respectively, which are associated with the ordinary photon field. On the other hand

both, Xµ, Fµν are related to the hidden photon’s potential along with field strength. The

symbol Jµ is employed to represent the electromagnetic current, with Gaussian (cgs) units

being utilized consistently. Significantly, in the case where the mass of the hidden photon,

denoted as mγ′ , tends towards zero (mγ′ → 0), The correspondence between the visible

photon and hidden photon fields should be taken into account. The consequence is that a

combination that is linear can be redefined. Aµ + κXµ. The aforementioned combination is

associated with the electromagnetic current Jµ, although the electromagnetically inactive

component Xµ − κAµ exists. In essence, this suggests that interactions involving hidden

photons experience a substantial suppression, specifically by a power of small limitations,

denoted as m2
γ′ . The act of suppressing these phenomena plays a crucial role in mitigating

a range of astrophysical limitations associated with concealed photons [18].

The wave equation governs the behavior of the hidden photon field in a vacuum.

(
∂2

∂t2
−∇2 +m2

γ′

)
Xµ = 0. (2.5)

and it is assumed that the constraint ∂µX µ = 0 is satisfied, which is analogous to the Lorenz

gauge condition.

2.5.2 Properties

The unique characteristics of hidden photons, which include having a non-zero mass and ex-

hibiting weak interactions with particles in the Standard Model due to their kinetic mixing

with photons, give rise to three noteworthy consequences:
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• The fact of nonzero mass allows hidden photons to potentially demonstrate attributes

that make them good candidates for acting as cold dark matter [19].

• The phenomenon of kinetic mixing between hidden photons and photons enables the

hidden photons to exert relatively mild impacts on electromagnetic systems, hence

eliciting tiny excitations.

• Due to their weak interaction with particles in the Standard Model and their compar-

atively long Compton wavelength at a macroscopic level, hidden photons possess the

ability to effectively permeate conductors and superconductors.

The aforementioned outcomes highlight the captivating characteristics of DPs and their

possible ramifications across diverse fields of physics.

2.5.3 Dark photon electrodynamics

In order to gain a comprehensive understanding of the impact of DPs on the field of electro-

dynamics, it is advantageous to reformulate the Lagrangian, as presented in Equation (2.5),

inside the framework sometimes referred to as the "interaction basis." The aforementioned

objective is accomplished by the implementation of substitutes.

Āµ = Aµ + κXµ , (2.6)

X̄µ = Xµ − κAµ , (2.7)

This result in a Lagrangian expressed as :

L = [−1

4

(
(F̄µν F̄

µν) + (F̄µνF̄µν)
)
+
m2

γ′

2
X̄µX̄ µ − JĀµ + κ

m2
γ′

2
X̄ µĀµ]. (2.8)

The influence of hidden photons on particles inside the SM may be deduced by examining
Equation (2.8), which reveals the existence of an effective current density.

J̄ µ = −κm2
γ′X̄ µ, (2.9)

This leads to :

L = −1

4

(
F̄µν F̄

µν + F̄µνF̄µν
)
+
m2

γ′

2
X̄µX̄ µ −

(
Jµ + J̄ µ

)
Āµ
. (2.10)

It is noteworthy , temporal component of the 4-potential, denoted as X0, exhibits a reduced
magnitude in contrast to the spatial component represented by vector potential X. The
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relation between the average value of X (denoted asX¯0) and X is a direct result of its
equivalence to Lorenz gauge condition.

∂X̄ 0

∂t
= {∇ ·X}. (2.11)

For a plane wave solution this goes as X̄ µ ∝ ei(k·r−ωt), Equation (2.11) leads to:

X̄ 0 = −k ·X
ω

. (2.12)

Utilizing the connection between the wave vector k and the hidden photon’s c velocity:

k = mγ′v. (2.13)

recognizing ω ≈ mγ′ , it follows that:

X̄ 0 ≈ −v ·X . (2.14)

As a result, the temporal part of the hidden photon’s 4-potential is squeezed by a factor of
approximately [v/c], which is approximately 10−3 in comparison to the spatial component.
Likewise, as a consequence of the identical factor, the spatial part of the concealed photon’s
4-current experiences a reduction of about v/c in comparison to the current density, J , of
the DP.

2.6 Hill’s equation
Hill’s equation is a second-order linear differential equation :

y′′(t) + p(t)y(t) = 0. (2.15)

where p(t)is a periodic function with period T , i.e.,p(t+ T ) = p(t).A classical example is the
Mathieu equation where

p(t) = 2λ+ 2µ cos(2t). (2.16)

2.6.0.1 Floquet Theory

Given the periodic coefficient p(t), According to Floquet theory, the solutions to Hill’s equa-
tion can be expressed as

y(t) = eiρtu(t). (2.17)

where ρ is a constant and u(t) is a function that shares the same period as p(t), mean-
ing u(t + T ) = u(t). The variable ρ represents the Floquet exponent, with its imaginary
component denoting the Bloch wave number.
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2.6.0.2 Floquet Transition Matrix

Given initial conditions for y(t) and y′(t)at t = 0, the values of y(t) and y′(t) at t = T can be
determined using a linear relationship:(

y(T )

y′(T )

)
=M

(
y(0)

y′(0)

)
.

M is a 2× 2 matrix called the Floquet transition matrix.

2.6.0.3 Eigenvalues and Stability

The Floquet multipliers, which are the eigenvalues of matrix M , play a crucial role in deter-
mining the stability of solutions to Hill’s equation. If the absolute value of both eigenvalues
is equal to 1, the solution can be considered stable. In the event when the magnitude of at
least one eigenvalue deviates from unity, the solution can be deemed as unstable.

2.7 The Mathieu Equation
d2y

dt2
+ (a− 2q cos(2t))y = 0. (2.18)

The solution of interest, denoted as y(t), is the subject under consideration.The variables a
and q are constants. The periodicity of the coefficient of y is π.

The aforementioned equation is prevalent across various domains of physics, including but
not limited to quantum mechanics and the examination of pendulum motion under specific
circumstances.

2.7.1 Floquet Theory Introduction
Floquet theory is a fundamental tool in the analysis of differential equations having periodic
coefficients. According to the given information, the solution to this particular differential
equation can be represented as the multiplication of an exponential function and a periodic
function.

The solution is provided in a formal manner as follows:

y(t) = eiµtP (t). (2.19)

The function P (t) is a periodic function that has the same period as the coefficient. The
symbol µ is commonly referred to as the Floquet exponent.

The utilization of Floquet Theory in the analysis of the Mathieu Equation

In order to examine the functionality of this solution form, we will proceed by substituting
it into the Mathieu equation.
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Starting with:

y(t) = eiµtP (t), (2.20)

Differentiating once:

y′(t) = iµeiµtP (t) + eiµtP ′(t), (2.21)

Differentiating again:

y′′(t) = −µ2eiµtP (t) + 2iµeiµtP ′(t) + eiµtP ′′(t), (2.22)

Now, substituting it into the Mathieu equation:

eiµt[−µ2P + 2iµP ′ + P ′′ + (a− 2q cos(2t))P ] = 0, (2.23)

For this to hold for all t, the term in the square brackets must be zero:

−µ2P + 2iµP ′ + P ′′ + (a− 2q cos(2t))P = 0. (2.24)

This is the governing equation forP (t) and µ. finding an explicit solution can is tough.

2.7.2 Solutions and Periodicity
Step 1:

Formulating the Solution We begin by postulating the solution z(t) = eµtP (t). Substituting
this into the Floquet equation yields:

eµt
(
d2P

dt2
+ (a− 2q cos(2t)− ω2)P

)
= 0. (2.25)

Since eµt is non-zero, we obtain:

d2P

dt2
+ (a− 2q cos(2t)− ω2)P = 0. (2.26)

This ordinary differential equation characterizes the behavior of P (t) under the influence
of the periodic modulation.

Step 2:

Analyzing the Periodic Component , Solving the equation for P (t) requires capturing its
periodic characteristics. Let’s delve into the mathematical intricacies of this process.

The equation

d2P

dt2
+ (a− 2q cos(2t)− ω2)P = 0. (2.27)
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contains the term 2q cos(2t), which is periodic with a period of π. This prompts us to consider
solutions in the form of a Fourier series:

P (t) =
∞∑

n=−∞
cne

in(2t), (2.28)

where cn are complex coefficients to be determined. Substituting this series into the differ-
ential equation leads to:

∞∑
n=−∞

(
−cn(2n)2 + (a− ω2)cn

)
ein(2t) −

∞∑
n=−∞

2qcn
ei(n+1)2t + ei(n−1)2t

2
= 0, (2.29)

This results in a collection of equations, each corresponding to a different n :

−cn(2n)2 + (a− ω2)cn − qcn+1 − qcn−1 = 0. (2.30)

Solving this system of equations for the coefficients cn provides the periodic function P (t).

2.7.2.1 Floquet Exponent

After the resolution of the equation for P (t), the remaining equation reveals that the behav-
ior of the solution is determined by the complex constant \mu. This phenomenon reveals
the stability and resonance properties of the system.

The Floquet exponent, denoted as µ, is calculated based on the roots of the characteristic
equation that is linked to the differential equation governing the function P (t).

µ2 + (a− ω2)− 4q cos(2t) = 0. (2.31)

The roots, denoted as µ1 and µ2, are the real and imaginary components that elucidate
the system’s reaction to the periodic modulation. If the real components of these roots are
greater than zero, the system demonstrates exponential development.

2.7.2.2 Formulating the Resonance Condition

The resonance condition is

a− n2

2
= ±nq. (2.32)

The critical threshold is a significant factor in determining the resonance of the system
with the periodic modulation. This phenomenon offers valuable insights into the correlation
between resonance order, modulation strength (q), and the constant (ω).

By substituting the expression a = (n2)/2 + nq into the Floquet exponent equation, we
obtain:
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µ2 − n2 − 2nq − ω2 = 0. (2.33)

This equation encapsulates the intricate interplay between the parameters and reveals the
resonance-induced instability regime.

2.7.2.3 Evaluating the Floquet Exponent at Resonance

In order to examine the consequences of the resonance condition, it is necessary to assess

the Floquet exponent µ under said circumstance. The present study aims to investigate the

impact of the system’s response to periodic modulation on its stability.

Setting µ2 = n2 + 2nq + ω2, we attain the equation:

µ2 = n2 + 2nq + ω2. (2.34)

The real part of µ is crucial in determining the system’s behavior. If Re(µ) > 0, the system

exhibits a tendency for exponential growth, signifying instability. Conversely, if Re(µ) ≤ 0,

the system remains stable.

The dynamic connection between resonance and instability is revealed by the relationship

that exists between the resonance state and the Floquet exponent. By assessing the value

of µ under the resonance condition, we may determine if the system exhibits amplification

of disturbances, resulting in instability, or if it maintains stability.

2.7.2.4 Beyond Instability:

Once the system surpasses the crucial threshold of instability, the resonance condition and

the behavior of the variable μ provide insights into the intricate dynamics that unfold. The

elaborate patterns governing the system’s response are generated by the interaction of res-

onance orders, modulation strengths, and the constant ω.

By examining various permutations of a, q, and ω, it is possible to generate a stability chart,

commonly known as an Arnold tongue diagram. The presented chart provides a visual rep-

resentation of the regions characterized by stability and instability, effectively illustrating

the impact of resonance orders on the behavior of the system.

The Arnold tongue diagram exhibits complex patterns, wherein the presence of overlap-

ping tongues signifies the existence of places where different instabilities and stabilities
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compete with each other. Through the examination and analysis of these patterns, a more

profound understanding may be obtained of the complex and interconnected relationship

among resonance, stability, and the dynamics of the Hill’s equation.

2.7.2.5 Determining Regions of Stability:

It is a customary procedure to delineate regions of stability in the a − q plane while ana-

lyzing the Mathieu equation. The proposed "stability chart" will consist of distinct bands,

commonly referred to as "tongues," that represent stable zones, whereas areas of instability

will be observed between these bands.

The delineation of these zones can be ascertained through, Given a predetermined set of

values for variables a and q. The governing equation given above can be solved to obtain the

expressions for P (t) and µ. Examining the characteristics of solutions in order to ascertain

their boundedness. Iterating across a range of values in order to systematically delineate

stability areas.

2.8 Dilaton field

Role and Definition

The dilaton is a scalar field, which implies that it possesses a single value at every spatial

position, in contrast to vector or tensor fields that exhibit numerous components. The sub-

ject matter pertains to the dimensions that have been compactified in accordance with the

principles of string theory, specifically in relation to their size and shape.The dilaton field is

a scalar field that emerges in specific theoretical frameworks within the study of theoretical

physics, most notably in the context of string theory. The term "dilatation" is used to denote

its association with scaling transformations.

2.8.1 Dilaton in gravity

The dynamics of the cosmos in dilaton gravity are significantly influenced by the presence of

the dilaton field ϕ, which works in conjunction with the metric tensor. The cosmological im-

plications become apparent when attempting to reconcile the concepts derived from string

theory (or theories incorporating the dilaton) with the observed macroscopic arrangement

of the cosmos [20].
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The action. The expression for a common action in dilaton gravity, which is derived from

string theory, can be formulated as follows:

S =

∫
d4x

√
−ge−2ϕ

(
R+ 4(∇ϕ)2 − V (ϕ)

)
, (2.35)

Where as R is the Ricci scalar, g is the determinant of the metric tensor, and V (ϕ) is the

potential of the dilaton field. This action describes the dynamics of both the metric and the

dilaton field in the universe.

Given the Friedmann-Lemaître-Robertson-Walker (FLRW) metric:

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
, (2.36)

For a spatially flat universe, the Einstein tensor components are given as folow:

G00 = 3

(
ȧ

a

)2

, (2.37)

Gij = −

(
2
ä

a
+

(
ȧ

a

)2
)
gij , (2.38)

Varying the action gives the Einstein field equations (EFE):

3

(
ȧ

a

)2

= e2ϕ
(
2ϕ̇2 − 4ȧϕ̇/a

)
, (2.39)

The equation for the evolution of the dilaton in an expanding universe is:

ϕ̈+ 3
ȧ

a
ϕ̇ = 0, (2.40)

If we introduce a potential V (ϕ) for the dilaton, its dynamics will change with it

2.8.2 Field Equations
From the action, we can derive the field equations using the variation principle. The result-
ing equations are:

Rµν + 2∇µ∇νϕ = 0, (2.41)

∇2ϕ− 2(∇ϕ)2 + V (ϕ)

2
= 0, (2.42)

The determination of precise solutions for these equations is contingent upon the specific

functional form of the dilaton potential V (ϕ). Nevertheless, under certain constraints or

for particular potential forms, it is possible to obtain cosmological solutions that depict the
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dynamics of the cosmos while accounting for the existence of the dilaton field.

Dilaton cosmology gives rise to a multitude of observable repercussions. Certain solutions
propose the possibility of a time-dependent gravitational constant G or a time-dependent
fine-structure constant α as a consequence of the evolution of the dilaton field. By juxtapos-
ing these predictions with astronomical measurements, it is possible to establish limitations
on the characteristics and progression of the dilaton field within the cosmos.

2.9 Dilaton-like field coupled to Aµ

coupling a dilaton-like scalar field ϕ to a vector field Aµ introduces a rich structure to the
dynamics of the system. Let’s consider the action for this system:

S =

∫
d4x

√
−g
[
1

2
∇µϕ∇µϕ− 1

4
e−λϕFµνFµν − V (ϕ)

]
, (2.43)

In this instance,The initial term corresponds to the kinetic term associated with the scalar
field.

The second term in the equation reflects the kinetic term associated with the vector field
Aµ. Here,Fµν = ∇µAν−∇νAµ denotes the field strength tensor. The exponential factor e−λϕ

represents the interaction between the dilaton field and the vector field.

The third term, denoted as V (ϕ), corresponds to the potential energy associated with the
scalar field. The symbol λ represents a coupling constant in this context. The determinant
of the metric tensor is denoted by g.
2.9.1 Field Equations
To derive the field equations, we need to vary the action with respect to both the vector field
and the scalar field.

Varying with respect toAµ :

δS = −1

4

∫
d4x

√
−ge−λϕδFµνFµν , (2.44)

implies

δS = −1

2

∫
d4x

√
−ge−λϕ∇ν (F

µν) δAµ, (2.45)

From the above, we get the equation:

∇ν

(
e−λϕFµν

)
= 0, (2.46)

Varying with respect to ϕ:

δS =

∫
d4x

√
−g
[
∇µϕ∇µδϕ+

1

4
λe−λϕFµνFµνδϕ− V ′(ϕ)δϕ

]
. (2.47)

Combining the terms, we get:

∇2ϕ− 1

4
λe−λϕFµνFµν + V ′(ϕ) = 0. (2.48)
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2.9.2 Interpretation

The aforementioned equations provide the Euler-Lagrange equations corresponding to the

provided action, which provide insight into the system’s dynamics.

The equation resulting from the variation with respect to (Aµ) is the equation of motion

for the vector field, which is altered as a result of its interaction with the dilaton. The

equation derived by differentiating with respect to ϕ provides the dynamics of the scalar

field, commonly known as the dilaton. This dynamics is impacted not only by the potential

of the scalar field, but also by its coupling to the vector field Aµ.

2.9.2.1 Implications

The interaction between the dilaton-like field and the vector field implies that the dynamics

of one field can be influenced by the existence of the other. In specific circumstances, the

presence of a robust vector field can initiate changes in the scalar field, and conversely, the

scalar field can also influence the dynamics of the vector field.

This framework is frequently utilized in theories that aim to integrate several forces or in

situations that necessitate moduli stabilization. The inclusion of the coupling term can give

rise to complex dynamics and may have significant ramifications in the fields of cosmology,

particle physics, and black hole physics.

2.9.2.2 The Dilaton and Its Significance in Field Theory

The notion of a dilaton emerges from the framework of string theory and represents a scalar

field that is postulated to govern the magnitude of string interactions, analogous to the

role played by the Higgs field in determining particle masses within the standard model.

In non-string theory contexts, the dilaton can be seen as a scalar field possessing specific

characteristics.

The symbol ϕ represents the dilaton-like scalar field in our study. The symbol Aµ is used in

academic contexts to represent a mathematical quantity. The provided expression denotes a

four-vector, encompassing one temporal and three spatial components, which characterizes

the potential of a dark photon. This potential bears resemblance to the electromagnetic

potential found inside the standard model.

The Lagrangian density denoted as Lϕ that describes a scalar field is commonly expressed
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as:

Lϕ =
1

2
∂µϕ∂µϕ− V (ϕ). (2.49)

The Lagrangian density for the vector Aµ exhibits similarities to that of electromagnetism.
The Lagrangian density for a gauge field A is given by

LA = −1

4
FµνFµν , (2.50)

where Fµν represents the field strength tensor . The equation provided is the expression
for the electromagnetic field tensor, Fµν in terms of the vector potential, Aµ. The aforemen-
tioned phrase denotes the tensor that characterizes the strength of the field.

The introduction of the dilaton ϕ into the kinetic term of Aµ gives rise to the interaction
Lagrangian

Lint = −1

4
W (ϕ)FµνFµν . (2.51)

The function W (ϕ) denotes the scalar field’s coupling to the kinetic term of the vector field,
hence affecting the propagation and interactions of the vector field.

The Equations of Motion

In order to get the equations of motion for the fields, it is necessary to apply the E-L equa-
tions by taking the variation of the total Lagrangian with respect to each field.

The equation of motion obtained from the Euler-Lagrange equation is expressed as

∂L
∂ϕ

− ∂µ

(
∂L

∂(∂µϕ)

)
= 0. (2.52)

where L represents the Lagrangian density that is dependent on the field ϕ(x) and its
spacetime derivatives ∂µϕ(x).In the context of this discussion, the dilaton scalar field ϕ is of
primary interest.

The scalar Lagrangian, denoted as Lϕ, is expressed as follows:

Lϕ =
1

2
∂µϕ∂µϕ− V (ϕ). (2.53)

The Euler-Lagrange equation can be expressed as follows:

∂µ∂µϕ+
dV

dϕ
= 0. (2.54)

Regarding the vector field Aµ

Given the presence of the interaction term, the Lagrangian density denoted as LA can be
expressed as − 1

4W (ϕ)FµνFµν . The expression

Fµν = ∂µAν − ∂νAµ. (2.55)

represents the electromagnetic field tensor, where \(\partial^\mu\) denotes the partial
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derivative with respect to the coordinate µ and Aν represents the electromagnetic potential.
The equation governing Aµ, known as the Euler-Lagrange equation, can be expressed as
follows:

∂ν(W (ϕ)F νµ) = 0. (2.56)

The Process of Coupling to the Dark Photon:

The presence of the dark photon introduces a coupling between the dilaton and the vector
field, resulting in a modification of the equation of motion governing the behavior of the
dilaton.

∂Lint

∂ϕ
= −dW (ϕ)

dϕ
FµνFµν . (2.57)

There will be a term in the dilaton’s equation of motion which arises from the variation of
the interaction term with respect to ϕ.

The revised equation of motion for the dilaton incorporates the following term:

∂µ∂µϕ+
dV

dϕ
+
dW (ϕ)

dϕ
FµνFµν = 0. (2.58)

the solutions or consequences may vary depending on the precise mathematical forms of
V (ϕ) and W (ϕ)), as well as the beginning or boundary conditions.

2.10 Python code for numerical simulations
2.10.1 Essence

This script’s complexity and depth demonstrate a great deal of effort and knowledge in both

coding and physics. Let’s examine some of the initiatives presented:

Knowledge Integration: The incorporation of intricate mathematical operations and physi-

cal notions into a computer model is one of the first things that jumps out. This calls for a

thorough understanding of the underlying physics as well as the capacity to translate that

understanding into code, which is a difficult challenge in and of itself.

Numerical Techniques: The application of numerical techniques, particularly the method of

integrating differential equations (solve_ivp), highlights the difficulties in comprehending

and foreseeing dynamic systems. Mathematical problems that cannot be solved analytically

can sometimes be approximated using computing approaches known as numerical methods.

Understanding the mathematics behind them as well as the numerical idiosyncrasies that

come with approximating real-world phenomena are necessary for implementation.

Parameter Sweep:
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Figure 2.3: Python code used in the simulation of my graphs used in chapter 6
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In [I]: ~rt n,.py as np 
~rt litplotlib,pyplot as pIt 
~rt (~sn e r as (It 

froo scipy.integrote i.qort solve) vp 

' j ni ' 1.i 
H' 1.i 

del dil.ton[t): 
retum pniJ ' np ,(os ('j ni ' t) 

del dil.ton_deriVitive(t): 
retum 'pni_e' 'jni ' np,sin(.j ni ' t) 

del dilaton _double _ derivative (t) : 
retum 'pni_e' ' j W'l ' np ,CO\('j ni ' t) 

del floquet}ns)(t, x, k, ._g .. ajr~e ) : 

Ae,~,e , x 

pni_bar ' dilaton(t) 

d1A0 , ·(k"l t (.jalmajri""l) I np , e~ ( pni_bar I H)) ' Ae 

retum [die, d1Ae] 

del floquet}ns)(t, x, k, ' j .. ajr~e ) : 

Ae,~,e , x 

pni}ar ' dilaton(t) 
dpni_bar , dilaton_derivative(t) 
ddpni_bar , dilaton_double_d:rivative(t) 

d1Ae , ·(k"l t (.jalmajri""l) I np , e~ ( pni_ba r I H) . (ddpni_bar I (1' H)) . (dpni_bar I (1' H))"l) ' A,a 

In [11: iIJort n"'PY as np 
iIJort "tplotlib,pypl~ as pIt 
iIJort c~sner as (II 
1M scipy .integr.te .rt solve ) vp 

'yni ' l.9 
M' l.9 

d<f dilitOO[t): 
retum pni.0' np ,cos[.yni ' t) 

del dil.ton.deriVitive(t): 
retum 'pni} , 'yni ' np,sin(lyni ' t) 

del dil.ton. double. derivative (t) : 
retum ·pni.0' lyni" 1 ' np ,cos (lyni ' t) 

del floquet}ns)(t, x, k, I.g .... yr~e ): 

A0,~,0 ' X 

pni.bar ' dil.ton(t) 

retum [ ~0, d1A01 

del floq~t.~sJ( t, X, k, Ij ... yr~e ): 

A0,~.0 ' X 
pni.bar ' dil.ton(t) 
dpni}ar ' dil.ton.der ivative(t) 
ddpni.bar ' dil.ton.doubl,.deriVitive(t) 

d1A0 , -(k"1 t (' jalllOyril1"1) I np,e~(pni.bar I H)· (ddpni.bar I (1 ' H)) . (d~i}ar 1(1' H))"1) ' A0 



Figure 2.4: Python code used in the simulation of my graphs used in chapter 6
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~itvllues : rIp.linSpICe(9.el, 6, 536) 
t_vIllleS : ll.linspaCe(9.el, l, SJe) 

Re_IJ-,,~id) : ll.mos{(1en (~ig_value s ) , len(l_va:ues )) ) 
Re-'IJ-,,~id) : Il.reros( (len (~ie}alue s ) , len(l_va:ues )) ) 

IJma;rm: : e,s I lj1i 

T : 2 I np,pi I Ij1i 
t e'lal : Il ,linspace{e, Ie I T, Ieee) 

for i , ~i} in en~ate ( p/lie_values ): 

for j, I in en~ate ( t_va ltlfs ) : 
initialy,oditioos : (U , e,e) 

IOU : solveJvp( fl~JetrhU, (e, Ie I r:, itUtia!JOC'diticl1$, args:(t, 1.1~;rille ) , teva!:t_eval, retrod: 'PJ:45 ' ) 
fW' ).M) , "l).yl' iI·11 
~e-'IJ) : (I I (Ie I T)) I ll.log{ll,abs(fualj.eJ I initiatecOOitioos[e])) 
~eJIJ) : Il,maxi.u(e, R( IIl) ) 
~e-'IJjTid) ( i, ij : Re.IIlJ 

sol) : solve.ivp( fl~Jetrhs), (e, Ie I r:, itUtial.cOC'ditioos, args:(t, I.1Bajlfioe), t m!:t. eval, retrod: 'RK4S') 
final.AO : 1Ol),y[eJ[-I] 
~e_IIJ : (I I (Ie I T)) I ll.log{ll.abs(fuaU£J I initia!JcOOitioos[ej)) 
~e_IIJ : ll,maxiM{e, R(IIl) l 
~e_llurid)( i, ij : R(IIl) 

fig, axs : plt.sOOplctS{I, 2, figsire :(12, 6)) 

esl : axs[e).eootOll-f(U'l'id, p/lie.1rid, Re,lIlj ridJ, levels:\OO, caap:cl',G(ean.rl 
axs[e],letJitle('Real part (}f fllXjllft fxtJOO!llt ('SA}S')') 
axl[e], let :d~~l ( 'SKII j~j jS') 
axs[ eJ, letJ'l~~l ( I S\J*Ii. elm' ) 
(sl : axs[I].(oototri(t .. ~id, phiej rid, Re.llljrid), Imls:l00, (fIap:(I',omn.r) 
axs[lj,setJitle('Real part (}f fllXjllet extJOO!llt ('SA_t·r )') 
>II I J. set.xl,.)! ' 1~IJ\>I\i ll ' I 
axl!! J, setJ'la~l ( "\J*IiJM' ) 
pit. tightJI)'oot() 
p)t.,oo.1I 

retum (d:.e, dv.e] 

~itvlllJes : np.linspaCe(e.eI, 6, S36) 
~JallJts : np.linspaCe(Ul, 3, S3e) 

Re.IJ-,,~id) : np. 2eros((lffi(!hl(valufl ), len((.va:ues))) 
ae-,'J.iI' id) : l1l.mos((len(pIlieJllufs ), len((.va:ues))) 

IJ aIIa;rin: : e.s I l j1i 

T: 2 I np.pi l .jIli 
t~al : ~.lin,pm(e, 19 I T, 1001)) 

for i, pili} in entRrate(phie.values): 
for j, ! in e.rate(kJalues): 

initial.ciJlditions : (1.8, a.e] 

10l) : lolvUVll ( fl~Jet.rhU, (e, Ie IT:, initlal.coOOitiCl'il, args : ( ~, l.jaD".ajrw), t.m!:t.eval, metOOd: 'Rl:45 ') 
final ..• ) , .1),1[' 1I·1[ 
ReJIJ) : (1 / (Ia I T)) I np. !og(np.IDs(fwlJeJ I ii1itia1.cCl'Jditiom[e])) 
~e)lJ) : np. ldXiIUI(8, R( I:U) ) 
~e_I:UJri(l(i, jj : Re}II) 

I~U : solve.iVll (flC¢/et.rhl), (8, 18 IT: , initial.coroitiool, IJ'fI:(t, IJ Daj'l'W), t.ml:t. eval, rttOOd: 'i':K45 ') 
finalj.&J : SOl).Y!6j[-I] 
~e.IIJ : (1 1 (Ie t T)) , np.log(np.ab,(fita l),8J I initia1.eoojitioos[9j}) 
Re.IJJ : np.u'du(9, R(IIIJ ) 
Re.I!JJ rid)[i, j ] : R(".I) 

fi~, ill : plt.sltlplm(I, 2, figsize :(12, 6)) 

esl : aX) [9] _ eooto\rf( k-,,~id, phieJ rid, R(IIJJ ridJ, Imls:1OO, elolp:ca"oceanJ ) 
axs [e] .setJitle(' fteal part cf HCGllft e:qxooIt ('$...}$' )' ) 
ax5 [6] . set. :<lottel( 'Ski_ j \rlli)S' ) 
ax5[ eJ . setj'httel( 'S\Pri.eM') 
(52 : m[lj.eoototrf(kJl'id, phiejrid, R!.l.Ij rid), levels:lt'e1 coap0c.' .omnJ ) 
axS[lj .setJitle(' Real ~irt cf flo):ltJet e:¢'Mt ('$.\} -I' )') 
.'(1) , set.xl •• l( ' !~IJ~il!' I 
m! 1 j. setJ'I~Del (' SI,tt,jJIMS' ) 
pit. tigl1tJ1foot() 
plt.'lmli 



The scientific method’s foundation—a thorough research under various conditions to under-

stand a system’s behavior—is reflected in the nested loops, which are a brute force method

of evaluating a system over a variety of settings. This careful technique, however costly

computationally, guarantees a thorough grasp of the dynamics at work.

Data visualization:

The script’s culmination in the generation of contour plots indicates a desire to not only

comprehend but also to convey this comprehension. By itself, visualization is both an art

and a science. The selection of contour plots, levels, and colormaps reveals knowledge and

a comprehension of the value of transparent, perceptive depiction of complex data.

Working Theory:

The main focus of the story is on how a certain quantum field or wave changes as a result

of an oscillating dilaton field. Cosine functions are used to depict the dilaton’s behavior

in order to capture its oscillating nature over time.The Floquet theory, a mathematical

framework used to examine the behavior of differential equations with periodic coefficients,

is the important idea in this case. Simply said, Floquet theory aids in determining whether

and how solutions to a system’s equations can increase or deteriorate over time when it is

driven periodically (as is the case with the oscillating dilaton). This increase or decline is

measured by the Floquet exponent, which is computed in the script.

This script takes into account two separate sets of equations of motion (floquet_rhs_1 and

floquet_rhs_2), each of which incorporates the dilaton’s effect in a unique way. The script

creates a detailed picture of the system’s behavior in the presence of an oscillating dilaton

by solving these equations for a variety of initial conditions and constants.In conclusion,

the script’s main idea is to use the Floquet theory’s mathematical tools to comprehend how

an oscillating dilaton interacts with a quantum field while looking for patterns, stabilities,

or resonances in their interaction.

In retrospect, creating such a script—integrating complex mathematical ideas, computing

methods, and showing the results—is no easy task. It is evidence of the synergy between

sophisticated scientific investigation and the strength of computational techniques.

2.10.2 Breakdown of code

For two separate differential equations in the setting of dilaton physics, this code calculates

as well as shows the real part of the Floquet exponent. The stability of periodic solutions to
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the differential equations can be examined using the Floquet exponent. Here is a thorough

breakdown of the code:

Imports and Constants:

Imported are necessary libraries like matplot.lib, sci.py.integrate, and num.py. [21][22]

For sophisticated colormap usage, the cmasher library is imported. The variables m_phi

and M are established Dilaton Activities:

Dilation (t)

uses the cosine function to determine the value of the dilaton as a function of time t.

Dilaton_derivative(t),

calculates the dilaton’s first time derivative.

The function dilaton_double_derivative(t) calculates the dilaton’s second time deriva-

tive.

Right-side (RHS) functions

The right-hand sides of two differential equations are computed, respectively, using the

floquet_rhs_1 and floquet_rhs_2 functions. dX/dt = f(t, X, k, m_gamma_prime), where X =

[A0, dA0], is a function created for the system.

Parameter Room

The arrays phi0_values and k_values, respectively, show several values for phi_0 and k.

The computed real sections of the Floquet exponents of both of the differential equations

will be stored in Re_mu_grid_1 and Re_mu_grid_2, which have initialization values of zero.

Loop of Integration

The differential equations are solved across a time domain using SciPy’s solve_ivp function

and the Runge-Kutta method (’RK45’) for each combination of phi_0 and k values. The solu-

tion at the time domain’s end is used to compute the real part of the Floquet exponent, which

is then calculated and placed in the appropriate grid (Re_mu_grid_1 or Re_mu_grid_2).

Visualization:

The x and y axes for the contour plot are constructed from a meshgrid using the k_values

and phi0_values. Using the ocean_r colormap from cmasher, two contour plots are produced

for Re_mu_grids_1 and 2. Plots for both differential equations in the parameter space show

the real part of the Floquet exponent. For two differential equations involving the dilaton

function, this code essentially assesses how the real part of the Floquet exponent fluctuates
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with respect to various phi_0 and k values. The contour plots make it easier to see areas of

the parameter space where the system might be stable or unstable.
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Chapter 3

Theory of (UBDM)

3.1 Properties of dark matter

The concept of dark matter (DM) arose due to the inadequacy of the gravitational pull

from visible matter to explain the early-stage clustering of matter in universe. At that

time, scientists speculated whether this phenomenon was caused by an undiscovered parti-

cle or merely unobservable ordinary matter.One possible explanation considered was black

holes. These objects don’t emit light but exert gravitational attraction and are detectable

through gravitational lensing. Various types of Machos (massive compact halo objects),

such as brown dwarfs, were also contemplated [23]. These Machos, residing in a galaxy’s

halo, possess substantial mass but emit minimal light. However, the number of Machos

wasn’t sufficient to explain the required amount of dark matter.Neutrinos were deemed as

potential candidates. Similar to dark matter, neutrinos pass through matter without inter-

action[24]. However, they are too light to account for the gravitational effects of (DM) and

are excessively fast. Their velocity would have hindered the formation of cosmic structures,

resulting in collapsing density fluctuations on larger scales. According to the Top-Down

Scenario, galaxy clusters would have formed initially, followed by galaxies and stars.

Following the exclusion of standard model particles as possible candidates, scientists spec-

ulate that dark matter is a novel, exotic particle possessing specific physical attributes[25]:

1. strong gravitational pull

2. Mild particle-to-particle interactions

31



3. Absence of electricity

4. For it to continue exist today, it must be stable on the cosmic time scale.

5. When combined, one or more candidates must possess the necessary relic density.

6. Given what we know, the baryonic type cannot make up a sizable portion of the mix-

ture of the dark matte.

7. There was no display of the color force

WIMPs (weakly interacting massive particles) are the focus of the current popular under-

standing of dark matter. The mass of these particles ranges from 10 GeV to a few TeV.

However, there are a number of opposing ideas regarding the makeup of dark matter parti-

cles, such as the Modified Newtonian Dynamics (MoND) [26]. For problems like the galactic

rotation issue, MoND suggests modifying Newton’s law of gravity.

3.2 UBD matter theory.

This section explores the hypothesis that the primary constituent of dark matter consists of

ultralight bosons. In this study, we examine the theoretical underpinnings of the (UBDM)

theory and the hypothesis that can be tested that arise from it. Throughout our analysis, we

provide relevant examples to support our arguments. At the outset, a number of inquiries

automatically emerge:

• if we were to postulate that DM is composed of a bosonic field, what theoretical ap-

proaches can be employed to gain a deeper understanding of this concept?

• What is the reasoning behind the concept that these bosons would possess a "ultra-

light" nature, with masses considerably less than 1eV/c2?

• In what manner could ultralight bosonic matter potentially form connections with the

established particles and fields inside the framework of the Standard Model?

• What factors contribute to the anticipation of the existence of bosons that have not yet

been discovered, in addition to those that have already been identified.
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• What are the potential mechanisms that could have resulted in the generation of ul-

tralight bosons during the early stages of the universe, with quantities significant

enough to compensate the measured density of DM in the present era?

The following inquiries function as initial prompts for our investigation into the idea sur-

rounding ultralight bosonic dark matter. Our aim is to explore into its theoretical under-

pinnings and its ramifications.

3.3 Bosonic Field Lagrangians

Both classical and quantum field theory often start by building the Lagrangian (or more

accurately, its Lagrangian density L) for the associated field in order to explain the physics

of a novel particle. The subsequent parts heavily rely on Quantum Field Theory (QFT)

textbooks, namely references [27] [28], which offer a more thorough understanding and

in-depth elucidation of the fundamental principles under consideration.

Let us commence by making the initial assumption that we are working with a scalar field

denoted as ϕ(r, t). In this context, it is understood that the quantum excitations of this

scalar field, represented by ϕ(r, t), possess the characteristic of being spin-0 bosons. The

primary motivation for including this particular excerpt is in its inherent simplicity. Addi-

tionally, it is worth noting that many noteworthy contenders for dark matter, namely axions

and axion-like particles (ALPs), are classified as spin-0 bosons. Additionally, the detection

of the Higgs boson (references 6 and 7) provides further impetus for the examination of

scalar fields, thereby confirming the presence of elementary spin-0 bosons in the physical

realm. [29]

The scalar field is defined by the Lagrangian L . comprises the temporal derivative of

ϕ, ∂0ϕ= ∂ϕ
∂t , as well as the spatial derivative of ϕ with space coordinates ∇ϕ. In order to

preserve Lorentz invariance, the Lagrangian is formulated by using the four-derivative of

the field variable, denoted as ϕ.

∂µϕ =
∂ϕ

∂xµ
=

(
∂

∂t
,∇
)
ϕ, (3.1)

∂µϕ =
∂ϕ

∂t
,
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z
, (3.2)

The preservation of Lorentz invariance is expressly maintained by this construction.
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In the subsequent discussion, we will utilize the standard Einstein summation norms,
which involves the use of repeating indices denoted by Greek letters such as µ, spanning
from 0 to 3. In this context, the number 0 represents the temporal component, and indices
1, 2, and 3 correspond to the spatially components. In the context of flat spacetime, the
metric tensor is defined by:

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 = diag [1,−1,−1,−1] , (3.3)

The connection between contravariant indices and covariant indices is established as xµ =

gµνxν.

In order to prioritize simplicity our objective is to find a formulation of Lwhich encompasses
the minimal number of derivatives. Given that L is a scalar and ∂µϕ is a 4-vector, it is
necessary to consider the scalar product of the 4-derivatives of ϕ as a minimal condition.
Therefore, our preliminary selection for the variable L is:

L =
1

2
∂µϕ∂µϕ =

1

2
(∂µϕ)

2
, (3.4)

=
1

2

∂2ϕ

∂t2
− 1

2
(∇ϕ)

2
, (3.5)

The incorporation of a factor of 1/2 is employed in order to streamline subsequent computa-

tions, and the metric for a flat spacetime is utilized. Similar to the L in classical mechanics

that characterizes particles. the expression [(1/2)(∂µϕ)
2
] is frequently linked to the "kinetic"

energy of the field.

Based on the given formulation of L , what conclusions can be derived regarding the features

of ϕ?

By substituting Equation (3.4) into the E-L equation,{
∂L
∂ϕ

− ∂µ

(
∂L

∂ (∂µϕ)

)
= 0,

}
(3.6)

considering this: [
∂L
∂ϕ

= 0

]
, (3.7)[

∂L
∂ (∂µϕ)

= ∂µϕ,

]
(3.8)

we deduce from Equation (3.6)

∂µ∂
µϕ =

∂2ϕ

∂t2
−∇2ϕ = 0 (3.9)
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The wave equation for the scalar field ϕ implies that the currentjµ = ∂µϕ is preserved as
a result of the equation [∂µj

µ = 0].The principle of current conservation arises from the
persistent shift symmetry exhibited by the Lagrangian subjected to transformations. ϕ →
ϕ+ constant, which is a direct outcome of Noether’s theorem [30].

The solution to eq (3.9) can be obtained by employing solutions in the form of:

[
ϕ(r, t) = φoe

i(k·r−ωt)
]
, (3.10)

The sign φ
0

represents the amplitude of a certain mode that corresponds to the scalar field

being studied. The variable ω represents frequency, while k represents wave vector. Within

the framework of natural units , symbol ω represents the energy E associated with the field

ϕ. Using the energy operator yields this energy .
(
Ê = i(∂/∂t)

)
to the function ϕ(r, t). In a

similar vein, the wave vector k can be associated with the momentum P of the field ϕ. This

association is established by using the momentum operator (P = −i∇) to the field ϕ(r, t).

Upon substitution, Eq (3.10) in Eq (3.9), dispersion relation can be obtained.

ω2 = |k|2, (3.11)

which is equivalent to:

E = |p|. (3.12)

Among the fundamental principles in Quantum Field Theory is the idea that quantum exci-
tations may be understood as particles originating from fields. According to the dispersion
relation (3.12), it can be observed that the field denoted as ϕ possesses both zero momentum
(|p| = 0) and zero energy (E = 0). This implies that the particles associated with ϕ possess
a rest mass of zero (m = 0). It is imperative to acknowledge that similar principles are
applicable to classical domains as well. The determination of the "mass" of a classical field
is established by the curvature of the dispersion relation in the vicinity of (|k| = 0) .

To conform toThe astrophysics observations that have been addressed in the previous chap-
ters, it is necessary for the particles associated with φ to exhibit characteristics of cold dark
matter, indicating that they cannot have zero mass. In order to develop a theoretical frame-
work that incorporates particles with mass, it becomes necessary to make adjustments to
the Lagrangian density (3.5) in order to incorporate an energy penalty associated with non-
vacuum field values. The inclusion of a potential energy term that is dependent on the
variable ϕ in the Lagrangian can lead to the attainment of this objective.

L =
1

2
(∂µϕ)

2 − 1

2
m2ϕ2, (3.13)

The factor m2/2 is selected to ensure suitable units and facilitate future outcomesThe ra-
tionale behind incorporating a negative sign in the potential energy component may be at-
tributed to the definition of the Lagrangian, which is established as the disparity between
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kinetic energy as well as potential energy. . Consequently, it follows that higher values of
the field correspond to an increase in potential energy. In order to establish the validity of
our theoretical framework in describing particles with significant mass, it is possible to re-
derive the dispersion relation by incorporating the variable L from Equation (2.13). From
this point forward:

∂L
∂ϕ

= −m2ϕ, (3.14)

the E–L eq (3.6) yields:

(
∂µ∂

µ +m2
)
ϕ = 0 (3.15)

known as the K–G equation. Solutions of the K–G eq (3.15) take the form as:

ϕ(r, t) = φ0e
−i(Et−p·r). (3.16)

The dispersion relation is expressed as:

E2 = |p|2 +m2. (3.17)

The eq (3.17) demonstrates that in the case when the field ϕ possesses zero momentum,
denoted as |p| = 0, it possesses energy that is of a similar magnitude to the rest mass of the
associated particle, represented as E = m. Therefore, the Lagrangian equation presented
in Eq (3.13) offers a straightforward framework for characterizing macroscopic particles,
which might possibly encompass DM.

In Figure 2.1, a comparison study is shown, showcasing the dispersion relation for without
mass particles as obtained from Eq (3.4), and the dispersion relation for large particles as
determined from Eq (3.13). . One notable characteristic of the scalar field, which will be fur-
ther discussed in this text, is its behavior as a nonrelativistic bosonic field. In this context,
when the magnitude of the momentum (|p|) is significantly smaller than the mass (m), the
field undergoes oscillations at a frequency known as the Compton frequency, approximately
denoted as ω ≈ m.

3.3.1 Origin of an Ultralight-Bosonic Field
We investigate the phenomena of the explicit and spontaneous breakdown of a complex
scalar field’s U(1) symmetry. . Through the presentation of an illustrative scenario, we
want to provide insights into the development of an ultralight bosonic field together with
these symmetry-breaking mechanisms . rather than taking into account two real scalar
fields, denoted as α , β, we will now focus on a single complex scalar field φ. This complex
scalar field can be related in the following manner:

φ = α+ iβ. (3.18)
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Figure 3.1: The dispersion relationship for a massless boson (red line) according to Eq.
(3.12), along with the one of a massive boson (blue curve) according on Eq. (3.17), are
plotted in comparison. The cost of energy for zero-momentum the excitations of the field,
which is indicated by the positive intercept of the curve of dispersion on the energy axis, is
a crucial characteristic of the massive boson.
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with Lagrangian of the form

L =
1

2
(∂µφ)

†
(∂µφ) +

µ2

2
φ†φ− λ

4!

(
φ†φ

)2, (3.19)

Subsequently, by utilizing polar coordinates to re-parameterize the complex field:

φ = ρeiθ, (3.20)

we arrive at an alternative Lagrangian form (3.19):

L =
1

2
(∂µρ)

2
+

1

2
ρ2(∂µθ)

2
+
µ2

2
ρ2 − λ

4!
ρ4 (3.21)

It is noteworthy to mention that the Lagrangian expressed in the above equations shows a
global U(1) symmetry with respect to the variable φ. The U(1) symmetry indicates that a
global transformation, where the field φ is replaced by φmultiplied by the complex exponen-
tial of θ′, does not affect the Lagrangian L. The notation U(1) denotes the one-dimensional
unitary group, which is a mathematical representation of complex numbers that have a
magnitude equal to 1. As a result, the U(1) symmetry can be interpreted as representing
rotations within the complex plane.

In a manner akin to the situation with the real valued fields α and β, the potential demon-
strates formation of minima that arrange themselves with a ring of a radius denoted as[
ρ = ρ0 =

√
6µ2/λ

]
. It is postulated that the U(1) symmetry undergoes spontaneous break-

ing, resulting in the transformation of ρ to ρ
0

and θ to 0.The Lagrangian is described in
terms of ρ = ρ−ρ0 and performing algebraic operations, we can derive the following expres-
sion:

L =
1

2
(∂µρ̄)

2
+

1

2
ρ20(∂µθ)

2 − µ2ρ̄2 − λ

6
ρ0ρ̄

3 − λ

24
ρ̄4 +

(
ρ̄2

2
+ ρ0ρ̄

)
(∂µθ)

2
, (3.22)

Here, we have omitted constant terms that do not influence the physics. In Equation (3.22),
terms that are free of dependence on θ and linearity in ρ¯ cancel out. Focusing on second-
order or lower terms in ρ¯ and θ, we approximate:

L ≈ 1

2
(∂µρ̄)

2
+

1

2
ρ20(∂µθ)

2 − µ2ρ̄2, (3.23)

This can be compared to Equation (3.32). The relationship between the variables θ, β, and
ρ0 in Equation 3.23) can be expressed as θ = β/ρ0 ≈ β/f, where f represents the scale of
spontaneous symmetry breaking as given in Equation (3.43).

proceeding to implement explicit symmetry breaking by introducing a tilt to the potential in
the Lagrangian (3.21) at an angle of ε towards the direction of θ = 0.The explicit symmetry
breakdown can be parametrized and clearly depicted in Figure 2.6. The introduction of a
tilt via the parameter ε introduces the reliance on the variable angle θ to the potential.
When considering the complex number φ = ρ0e

iθ, the real component of this field may be
expressed as Re(φ) = α = ρ0cosθ. The low of the tilted potential is observed at θ = 0,
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Figure 3.2: The accompanying figure presents a schematic representation of the impact
of explicit symmetry breaking resulting from a tilt, characterized by an angle ϵ, in the
quartic potential of the complex scalar field φ .In the given diagram, the solid purple radial
line represents a specific value of φ = ρ0e

(iθ), where α = Re(φ) , and the dashed red line
illustrates the approximate deviation δα ≈ ρ0(cosθ − 1). Additionally, the partial derivative
of V with respect to α, denoted as ∂V/∂α , is equal to −εµ2ρ0.

resulting in a shift in potential relative to the minimum.

δV (θ) =
∂V

∂α
δα = ϵµ2ρ20(1− cos θ), (3.24)

Incorporating this term into the Lagrangian (3.23), we arrive at:

L ≈ 1

2
(∂µρ̄)

2
+

1

2
ρ20(∂µθ)

2 − µ2ρ̄2 − ϵµ2ρ20(1− cos θ), (3.25)

using relations

∣∣V min
∣∣ ∼ µ4

λ2
∼ f4 , , |Vϵ| ≈ ϵλα4

0 ∼ ϵ
µ4

λ
∼ Λ4 .and m2

β ∼ ϵµ2 ∼
(
ϵ
µ4

λ

)
×
(
λ

µ2

)
∼ Λ4

f2
. ,

(3.26)

in to the previous approximation θ ≈ β/f, to express:

V (β) = m2
bf

2

[
1− cos

(
β

f

)]
= Λ4

[
1− cos

(
β

f

)]
, (3.27)

Expanding V (β) around β = 0 yields:

V (β) ≈ 1

2
m2

bβ
2 ≈ 1

2

Λ4

f2
β2. (3.28)

This demonstrates that the β field has obtained a minor mass ∝
√
ϵ as a result of explicit

symmetry breakdown.The symbol β is used to denote the ultralight bosonic field that is
being sought for. The quantum excitations of this field are usually referred to as pseudo-
Goldstone bosons or pseudo-Nambu-Goldstone bosons [31].

39



3.3.2 Relation of dark sector and SM
The primary inquiry we shall explore concerns the interaction among ultralight bosonic
fields and particles within the SM[32], as well as fields that extend outside the realm of
gravity. In order to enhance comprehension of these interactions, we will proceed to engage
with the basic model of an ultralight bosonic field that was initially presented in the pre-
vious Section . Interactions across distinct fields under the framework of Quantum Field
Theory (QFT) manifest themselves when the Lagrangian incorporates expressions that en-
compass both fields as multiplicative factors. This enables us to investigate the relation-
ships between the α (or a¯) and β fields that were previously mentioned. The coupling
constant "g" represents the constant coefficient before the terms. It serves as a measure of
the strength of the field interactions, or in a scenario of the ā3 term as self-interactions. The
coupling constant can be mathematically represented in relation to the scale of spontaneous
symmetry breaking denoted as ”f”.

g =
λα0

6
=

1√
6

µ2

f
∼ µ2

f
. (3.29)

Taking into account these interaction terms results in a new Lagrangian:

L ≈ 1

2
(∂µā)

2
+

1

2
(∂µβ)

2 − µ2ā2 − 3ϵµ2β2 +
1√
6

µ2

f
ā3 +

1√
6

µ2

f
β2ā. (3.30)

the above equations elucidate a noteworthy characteristic of ultralight bosonic fields, ren-
dering them appealing contenders for dark matter: their interactions with other parti-
cles and fields typically exhibit a scaling behavior of 1/f . When the symmetry break-
ing scale is chosen to be at a significantly high energy level, such as the (GUT) scale
(f ≈ 1025eV = 1016GeV ) or the Planck scale (f ≈ 1028eV = 1019GeV ), the non-gravitational
interactions involving ultralight bosons experience substantial suppression.

3.4 3.4 The Interplay of Ultralight Bosonic Fields and
SM

In the subsequent section, an exploration will be conducted on the interplay between ultra-

light bosonic fields and particles within the framework of the Standard Model. By includ-

ing terminology pertaining to particles, fields, and interactions inside the theory of the SM,

together with the addition of terms representing bosonic fields of extremely low mass, a va-

riety of interaction terms can be facilitated. The categorization of these interactions can be

delineated into distinct phenomenological "portals" connecting the SM and dark sector. This

classification is predicated on the observable consequences that would arise from the pres-

ence of (UBDM) in experimental settings. In order to gain a comprehensive understanding

of various portals, we shall undertake an analysis of multiple interaction scenarios. This

endeavor aims to offer valuable insights into the subject matter.
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3.4.1 Axion photon interactions

To commence our analysis, we shall direct our attention towards a notably well-researched

phenomenon pertaining to (UBDM), namely the interaction referred to as the axion-photon

coupling [33]. process of turning axions or Axion-Like Particles (ALPs) into photons is con-

sidered crucial in the presence of intense magnetic fields. This idea serves as the foundation

for several experimental methodologies, such as microwave cavity haloscopes, axion helio-

scopes that explore axion/ALP emissions originating from the Sun, "dark matter radios"

that utilize lumped-element resonators, and light-shining-through-walls studies . aFµν F̃µν ,

which showcases an operator that encompasses a pseudoscalar axion (also known as an

ALP) field denoted as "a," together with the electromagnetic field tensor (Faraday tensor)

denoted as ”Fµν , ”and the dual field tensor denoted as”F̃µν .”The Faraday tensor, denoted as

Fµv, is mathematically represented as:

Fµν = ∂µAν − ∂νAµ (3.31)

=


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 . (3.32)

where "Aµ" is the four-potential, "Ei" and "Bi” are the Cartesian components of the electric
and magnetic fields. The dual field tensor "Fαβ" is given by:

F̃αβ =
1

2
εαβµνF

µν . (3.33)

where "εαβµν" is the antisymmetric tensor. The operator responsible for the interaction be-
tween axions and photons demonstrates a distinct structure, characterized by the presence
of one instance of the ultralight bosonic field "a" and bi instances of photon field. The struc-
ture in question has resemblance to the interaction terms, a similarity that becomes more
evident when expressed in terms of the 4-potential ”Aµ”.

aFµν F̃µν = aϵµναβ(∂µAν∂αAβ). (3.34)

It is evident that the term denotes an exchange between an axion and two photons.

The Lagrangian includes a component that represents the interaction between the axion
and photon.

Laγγ =
gγ
4

α

π

a

fa
Fµν F̃µν =

gaγγ
4

aFµν F̃µν . (3.35)
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Figure 3.3: This feynman diagram depicts the inverse Primakoff effect, which showcases
the conversion of an axion particle (a) into a real photon (γ) by its interaction of a virtual
photon (γ*) generated by a magnetic field.

The symbol ”gγ” represents a dimensionless coupling factor that relies on the specific model
being considered. The variable "α" denotes the fine structure constant, while ”fa” repre-
sents the scale at which spontaneous symmetry breaking occurs for the axion or ALP field.
Additionally, the axion-photon coupling constant reads as ”gaγγ = gγα/(πfa)”. The inverse
proportionality between the axion and photon coupling and the parameter ”fa” is a notable
observation.The Lagrangian may be formulated in relation to the electric field "E" with
magnetic field "B" in the following manner.

Laγγ =

(
gγ
α

π

a

fa
E ·B ≈ gaγγaE ·B

)
. (3.36)

In experimental settings, the magnetic field denoted as "B" is commonly produced by tech-
niques such as the application of electric current through a superconducting coil. Electric
field denoted as "E" signifies the field that arises from the photons produced by the ax-
ion. The phenomenon in which axions are transformed into photons in the presence of a
magnetic field is often named as the inverse Primakoff effect[34] . This process can be
represented as Feynman diagram depicted in Figure 2.7.

In order to determine the measurable results arising from the interplay between axions and
photons, the Euler-Lagrange equation is utilized on the combined Lagrangian that charac-
terizes both electromagnetism and the axion-photon interaction, as described in Equation

L =

(
−1

4
FµνFµν

)
− (JµAµ) +

(gaγγ
4

aFµν F̃µν

)
. (3.37)

The symbol "Jµ" is used to denote the electromagnetic current, whereas "Aµ" symbolizes the
gauge potential. The inclusion of an axion field necessitates the modification of Maxwell’s
equations, leading to a revised formulation[35]

∇ ·E = ρ+ gaγγB ·∇a, (3.38)
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∇ ·B = 0 , (3.39)

∇×E = −∂B
∂t

, (3.40)

∇×B =
∂E

∂t
+ J + gaγγ

(
E ×∇a− ∂a

∂t
B

)
. (3.41)

where "ρ" and "J" has the chrage and electric density respectively.

In this analysis, we assume the spatial derivative of the axion field (∇a) could be omitted
(∇a ≈ 0). In the given circumstances, when distinguishing between the overall magnetic
field denoted as "B" and the induced fields "E" , "B" arising from the interplaybetween
axions and photons (i.e., "B = B0 +B”), and assuming that B0 is significantly greater than
B, the modified Maxwell’s equations can be simplified as follows:

∇ ·E = 0, (3.42)

∇×B = 0, (3.43)

∇×E = −∂B/∂t, (3.44)

∇×B =
∂E
∂t

− gaγγ
∂a

∂t
B0. (3.45)

By applying the curl operator to Equation 3.44 and utilizing the provided identity,

∇× (∇×B) = ∇(∇ ·B)−∇2B. (3.46)

along with Eq.(3.42) , (3.43), leads to:

−∇2B =
∂

∂t

(
−∂B
∂t

)
− gaγγ

∂a

∂t
(∇×B0) = −∂

2B
∂t2

, (3.47)

where∇×B0 = 0. A similar procedure leads:

−∇2E = −∂
2E
∂t2

+ gaγγ
∂2a

∂t2
B0, (3.48)

resulting in the wave equations:

(
∇2B − ∂2B

∂t2

)
= 0 , (3.49)

∇2E − ∂2E
∂t2

= −gaγγ
∂2a

∂t2
B0 . (3.50)
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axions as dark matter manifestation may be observed as a field that undergoes oscillations
at a Compton frequency denoted as ma. since they are nonrelativistic. Given the long
coherence time of the axion field, an appropriate initial model for the axion field is:

a(r, t) =
{
a0e

i(k·r−mat)
}
. (3.51)

using cylidrical symmetry with r = R and eq.3.48 and 3.49 leads to wave solutions as

E(r, t) =
{
gaγγa0e

−imatB0

(
1− J0(max)

J0(maX)

)}
, (3.52)

B(r, t) =

{
igaγγa0e

−imatB0ϕ̂

(
J1(max)

J1(maX)

)}
. (3.53)

where ”Jn(x)”is Bessel function . For ”max ≤ maX ≪ 1," it can approximated by taylor
expansion

E(r, t) ≈
[
gaγγa0e

−imatB0

(
m2

aR
2 −m2

ax
2
)]
, (3.54)

B(r, t) ≈
[
igaγγa0e

−imatB0ϕ̂(max)
]
. (3.55)

It is worth mentioning , in the given particular scenario, the magnitude of the induced E

field is significantly diminished in comparison to B field, with a factor of approximately
maX being much smaller than 1.

Upon careful examination of the study conducted, it becomes apparent that the axion field
possesses the potential to function as a source term with the ability to produce quantifiable
electromagnetic energy via the inverse Primakoff effect.
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Chapter 4

Dark photon production
mechanism

Dark Photon Production Mechanism

Dark photons, also known as DPs, provide a compelling opportunity to investigate novel

aspects of physics. They represent a minimal expansion of the Standard Model (SM) by

serving as the gauge boson associated with an extra U(1) symmetry [36]. The field of DP

dark matter (DPDM) has gained attention due to recent proposals introducing new mech-

anisms for its generation. These proposals specifically examine the extent of polarization

that these mechanisms can imprint on the remnant DPDM. The significance of this partic-

ular component, which is sometimes overlooked in scholarly works, holds great importance

in the prospective identification of these phenomena. It is crucial to acknowledge that the

polarization of dipole moments (DPs) exhibits variations in comparison to the isotropy of

the stress-energy tensor linked to the field. Moreover, these variations are dependent on

the particular production process utilized.

One of the most straightforward approaches to manufacture Dark Photon Dark Matter

(DPDM) involves the utilization of the misalignment mechanism [37], which has resem-

blance to the widely employed method employed for axion generation. In contrast to ax-

ions, the attainment of the appropriate relic abundance for dark photons necessitates the

inclusion of a nonminimal coupling to the Ricci scalar, in addition to the gravitational in-

teraction. The connection between variables, although it maintains the desired abundance,

leads to instability in the longitudinal mode of DPs. As a result, further theoretical con-

siderations are required to ensure consistency. The aforementioned situation, commonly
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known as the fixed polarization scenario, results in the presence of relic dark photon dark

matter (DPDM) with a persistent polarization confined within the cosmic horizon. Another

method that might be considered equivalent is the formation of Dark Photon Dark Matter

(DPDM) through quantum fluctuations that occur during the inflationary period[38]. This

mechanism exhibits a power spectrum that is concentrated at intermediate wavelengths,

thereby avoiding certain constraints.

Another fascinating situation arises from the occurrence of tachyonic instabilities. This phe-

nomenon occurs when dipole moments (DPs) interact with a misaligned axion,[39] leading

to the transfer of energy from the axion field to both transverse and longitudinal compo-

nents of the DPs. These methods primarily generate a distinct helicity in the produced DP,

which suggests that the relic DPs would also possess the same helicity, but there may be

a potential reduction due to scatterings. Additional scenarios propose even greater levels

of polarization, which may persist even after scatterings. However, further investigation of

these models requires the use of lattice simulations.

The phenomenon of (DPDM) may also arise as a result of the decay of topological defects,

such as a network composed of nearly-global, Abelian-Higgs cosmic strings[40]. The ob-

served scenario exhibits a preference for longitudinally polarized dipole moments (DPs) as

a result of the inhibition of interactions involving transversely polarized DPs. The growth

of the network encompasses both finite closed loops and infinite strings. It is possible that

there exists a tendency for polarization alignment to occur among extended strings, while

the convergence of smaller closed loops may eventually reduce this alignment. When dual-

polarized (DP) systems do not possess a singular polarization, this circumstance is com-

monly denoted as the random polarization situation.

4.1 UBDM from Extra Dimensions

The framework of string theory, which seeks to unite fundamental forces and provide a

comprehensive description of the universe’s structure, holds significant implications for our

comprehension of physics, particularly in relation to scenarios involving ultralight bosonic

dark matter (UBDM). In the present context, string theory postulates the existence of a uni-

verse that surpasses the conventional four dimensions of spacetime, including a total of ten

dimensions. The deviation from the normal four-dimensional spatial framework presents
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both challenges and opportunities in the realm of physics, particularly in the exploration of

exotic phenomena such as candidates for Beyond the Standard Model (UBDM).

Within the theoretical framework of string theory, it is postulated that the geometry of

additional dimensions should be described by unique functions embedded within the metric

tensor [41]. These functions, in turn, are influenced by both spatial and temporal factors.

In addition, the gravitational significance of the curvature in these additional dimensions

plays a role in contributing to the overall energy content of the cosmos. In order to ensure

the compatibility of the theory with empirical facts, it is imperative that these additional

dimensions possess a level of compactness that has hitherto evaded detection. Nevertheless,

the possible gravitational impact of differences in the curvature of these dimensions over

space cannot be disregarded. This mechanism facilitates the emergence of UBDM (Ultra-

light Bosonic Dark Matter) from string theory, resulting in the production of scalar moduli

and pseudoscalar axions.

In order to elucidate this concept, we shall analyze a straightforward illustration that

emerges not alone in the realm of string theory, but also in theories encompassing sup-

plementary dimensions of spacetime, Kaluza-Klein theory, Randall-Sundrum theory, and

theories of supergravity in higher-dimensions [42] [43]. Let us examine a spacetime char-

acterized by D dimensions, consisting of (3 + 1) dimensions of flat Minkowski space labeled

as M4, which possesses the customary coordinates, together with an additional compact

dimension represented by the manifold S1. The manifold S1 is topologically similar to a

circle, and its coordinate θ wraps around it. Within the context of general relativity, the

metric corresponding to the present circumstance is expressed as follows:

ds2 =
(
−dt2 + dx2 + ρ(x, θ, t)2L2dθ2

)
. (4.1)

The value of ρ is subject to variation when θ traverses the circumference of the circle. Fur-

thermore, its determination is contingent upon the spatial and temporal dimensions within

the framework of Minkowski space that we are accustomed to. The scalar field denoted by

ρ is commonly referred to as the radion in academic literature.

In order to enhance comprehension of this notion, one may employ a metaphorical visual-

ization wherein space is likened to a unidimensional tightrope, while ρ serves as a means

to characterize the alterations in the tightrope’s cross-sectional area along its longitudinal

extent. Although the changes in ρ may not be readily apparent to human observers while
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traversing the tightrope, it is plausible that a diminutive organism such as an ant may dis-

cern these variations by circumnavigating the rope. Although direct detection of changes in

ρ may not be possible, it is conceivable that alterations in attributes such as the thickness

or texture of the rope could be observed indirectly.

Within the given framework, the physics of the theory is elucidated by the Einsteins-Hilbert

action.

S =
MD−2

D

2

∫ (
dtd3xLdθ

√
−gDRD

)
. (4.2)

In the above setting, the symbol D denotes the overall count of dimensions in spacetime.M

represents the reduced Planck mass in a D-dimensional space, while gD signifies the de-

terminant of the metric in D dimensions. Lastly, RD denotes the Ricci scalar in a D-

dimensional spacetime.

The procedure of integrating over the compact coordinate θ gives rise to a phenomenon

referred to as "dimensional reduction," wherein the outcome is an action which exhibits

2nd-order derivatives of scalar fields ρn. The introduction of θ derivatives the Ricci scalar

results in the inclusion of terms that are proportional to n2. These terms effectively confer

mass properties to the scalar fields ρn. The significance of these components increases when

we consider higher modes inside the Kaluza-Klein tower, characterized by bigger values of

n. However, in the context of low-energy physics, it is common practice to neglect higher

modes and instead concentrate on the lowest mode, represented by n = 0. In this particular

state, the scalar field denoted as ρ0 demonstrates characteristics of a massless scalar field,

serving as a representation of our perception of the variation in the size of the additional

dimension as we traverse across spacetime.

Moreover, by adopting additional principles from physics, it is possible for the scalar field ρ0

to gain a slight mass. This can occur due to causes that are analogous to the ones outlined

in the context of tiny "explicit symmetry breaking." [44]The current configuration creates

a conducive atmosphere for the formation of UBDM candidates. In more complex situa-

tions, it is conceivable to imagine additional dimensions exhibiting varied topologies that

extend beyond the elementary S1 circle. In instances of this nature, a diverse array of fields

denoted as ρ are important for characterizing the compact space, and these fields are com-

monly known as moduli. By including other principles from physics, such as various string

theory phenomena and symmetries, the theoretical framework is broadened to incorporate
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not just scalar particles but also pseudoscalar axion-like particles (ALPs) and a diverse

range of other unconventional fields.

String theory provides a rich platform for investigating ultra-high energy cosmic ray can-

didates. It showcases how these candidates might emerge organically from the study of

higher-dimensional spacetime and the interplay of diverse fields within this theoretical

framework.

4.2 Non-thermal Production of UBDM

the ultralight bosonic dark matter (UBDM) candidates’ having incredibly low masses, break-

ing out of thermal equilibrium is necessary to produce cold populations that can fully ac-

count for the universe’s dark matter component. The kinetic energy of these particles, if

they were created thermally [45], would be too great for them to be considered cold dark

matter. A technique known as "vacuum misalignment" is used to produce cold UBDM pop-

ulations [46]. This mechanism acts outside of equilibrium and has the potential to produce

populations of UBDM that are subzero.

For vacuum misalignment, particular circumstances are needed. The UBDM field within

our visible horizon is homogeneous during inflation. During this time, vacuum misalign-

ment takes over as the main process producing UBDM particles. An additional factor comes

into play, though, if the UBDM candidate develops as a result of a phase shift that takes

place after the inflationary epoch. It is also necessary to consider how cosmic strings and

domain walls can produce UBDM particles. This scenario basically comprises a different

manifestation of the vacuum misalignment phenomenon, but this time with respect to the

UBDM field as a whole. It is theoretically connected to vacuum misalignment.

4.2.1 Vacuum Misalignment

The difference between a field’s initial value and the minimum of its potential, also known

as its vacuum expectation value, is the core idea of the vacuum misalignment mechanism.

This mechanism, which causes the field to fluctuate around the lowest of the potential, re-

sults in the energy density associated with the oscillatory field, which in the case of (UBDM)

is the dark matter itself. . Vacuum misalignment is the phrase used to describe this process

since the field’s initial value is not aligned with the potential’s lowest point.The isotropy,
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homogeneity, and expansion of the Universe on huge cosmic scales can all be characterized

by the (FLRW) metric. The EOM can be obtained for a scalar field denoted by and having

an effective potential V (ϕ) by building Lagrangian L employing the FLRW metric rather

than the flat spacetime metric. This produces the following equation, which represents a

harmonic oscillator operating in a FLRW metric:

(
∂2

∂t2
+ 3

Ṙ(t)

R(t)

∂

∂t
− 1

R2(t)
∇2

)
ϕ(t,x) +

∂V

∂ϕ
= 0. (4.3)

When examining potential candidates for dark matter, such as the hidden photon, it be-

comes evident that the spatial components of the vector boson field adhere to an equation of

this nature. the above eq. 4.3 provides a concise representation of the dynamics exhibited

by a harmonic oscillator embedded in an expanding Universe. In scenarios characterized

by a homogenous field across the pertinent scale, the spatial derivative in the equation can

be disregarded. By introducing the H(t) = Ṙ(t)/R(t), which is linked to the energy density

of radiation during the early stages of the Universe, this can be rendered in a simpler form.

(
∂2

∂t2
+ 3H(t)

∂

∂t

)
ϕ(t,x) +

∂V

∂ϕ
= 0. (4.4)

The field’s behavior depends on whether specific conditions are met. as the following:

(
3

2

)
H(t) ≫

√(
1

ϕ

∂V

∂ϕ

)
. (4.5)

When the system reaches a state of satisfaction, the field undergoes overdamping and

ceases to exhibit oscillatory behavior. Put simply, the field is unable to oscillate because

its wavelength is too large to fit within the observed horizon, causing it to become "frozen."

Nevertheless, when the potential satisfies the specified criterion:

(
3

2

)
H(t) ≃

√(
1

ϕ

∂V

∂ϕ

)
. (4.6)

The wavelength of the field is such that it is able to fit within the confines of the horizon,

thereby enabling it to undergo unrestricted oscillations. The energy associated with these

oscillations is contingent upon the starting condition, which is indicative of misalignment of

the field relative to the potential minima. with the angle denoted as θi in this context rep-

resents the starting angle, which is associated with a certain field value ϕi. Over a period of
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time, the field has the ability to undergo relaxation, resulting in the gradual reduction of the

root-mean-square value towards zero. This process ultimately leads to the reestablishment

of the vacuum state.

4.2.2 Vector Field Misalignment

The generation of a cold population of hidden photons is a significant outcome in the context

of a vector ultralight bosonic dark matter (UBDM) candidate resulting from kinetic mixing.

This outcome is mostly attributed to the process of vacuum misalignment. The present

analysis will commence by examining the scenario of concealed photons, which is chosen as

a simpler instance, despite the initial discussion of this mechanism being centered around

the axion. The earliest presentation of the concept that the spatial aspect of a low-mass vec-

tor boson can also fulfill the equation of motion as specified by given Equations , resulting

in the creation of a cold population, was documented in Reference [19].

We can examine the hidden photon field, represented as Xµ, which is anticipated to exhibit

uniformity at the scale of the observable horizon subsequent to the inflationary epoch. This

field commences with an initial random value. The EOM can be obtained by supposing the

spatial derivative term ∂iXµ to be negligibly small, owing to its spatial homogeneity.

(
∂2

∂t2
+ 3H(t)

∂

∂t

)
Xi(x) +m2

γ′Xi(x) = 0. (4.7)

The inclusion of the mass term m2
γ′ in the equation creates an effective potential, which

becomes significant when mγ′ ̸= 0. When the requirement specified in Eq. 4.6 is met and

the magnitude of H(t) is about equal to mγ′ , the field undergoes oscillations, resulting in its

behavior resembling that of cold dark matter.

One can obtain a direct limitation on the value of mγ′ by imposing the condition that the
Compton wavelength of the particle permits the creation of structures on kiloparsec scales
[47]. The given condition, expressed as 1kpc < /(mγ′vesc), and vesc represents the escape
velocity , establishes a minimum value for the quantity mγ′c2 ≥ 1.7 × 10−24 eV. Further
limitations can be derived by taking into account decay processes, interactions involving
the DP and other particles, and empirical data.
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Chapter 5

Dark photon in inflationary era

Production of Dark Photons during inflation
This section presents a description of experimental setup, which involves the inclusion of
a dark photon with a significant mass [48]. The dark photon is observed to have a cou-
pling with the inflaton and operates within the framework of an inflationary background.
The primary aim of this research is to examine the manufacturing process of a light dark
photon dark matter (DPDM) within the context of the inflationary period. To disrupt the
conformal invariance of a non-massive DPs and amplify its generation, we investigate a di-
rect approach that effectively produces low-mass vector bosons through a kinetic interaction
with the inflaton field, denoted as φ.

5.1 DP and the inflaton field
The action of particular interest is as follows:

S =

∫
d4x

√
−g

[
M2

P

2
R− 1

2
∇µφ∇µφ− V (φ)− I2(φ)

4
F ′
µνF

′µν −
m2

γ′

2
A′

µA
′µ

]
. (5.1)

In the context of the metric convention (−+++), the symbol MPl, R and ∇µ these quantities
are defined in a manner that is consistent with the metric gµν . The symbol V (φ) represents
the potential of the inflaton. The coupling between the DP field, written as A′

µ, and the
field, φ, occurs through the kinetic term of the DP field, which involves a function of φ. The
field-strength tensor of the DP field is represented as,

F ′
µν ≡ ∂µA

′
ν − ∂νA

′
µ. (5.2)

The incorporation of the Stueckelberg/Proca mass (mγ′) into the DP enables its recognition
as non-relativistic dark matter in the current era. While it is theoretically possible for
mγ′ to depend on φ, we choose to disregard this reliance for the purposes of our current
study. The essential component of our DP production mechanism is the modification of the
kinetic term, or the dark U(1) charge, under the influence of (φ) field. The modulation is
represented by the function I(φ).
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in the inflationary period, it is assumed that the vacuum expectation values (VEVs) for
the φ and the DP field are as follows: the inflaton VEV is denoted as (⟨φ⟩) and is defined
as ϕ(t) ̸= 0, while the dark photon field VEV is denoted as

〈
A′

µ

〉
and is equal to zero.

the generation of dark photons within proposed this mechanism yields a spectrum that
exhibits a pronounced concentration at scales beyond the horizon. This suggests that, when
observed by those within the sub-horizon, it can be perceived as a uniform "background,"
although not necessarily exhibiting isotropy. It is crucial to acknowledge that we must
maintain the insignificance of the energy density of the generated DP in relation to that
of the inflaton φ . This ensures the coherence and validity of our perturbative approach in
studying the dark photon field in proximity to its null state.

The vacuum expectation value (VEV) of the inflaton typically exhibits temporal variation.
The form of the flat (FLRW) metric is employed to describe the background spacetime dur-
ing inflation.

ds2 = a2(τ)
(
−dτ2 + δijdx

idxj
)
. (5.3)

In this context, the symbol τ is used to describe the conformal time, which is connected to
the physical time t by the equation (dτ = dt/a). Here ,a(τ) represents the scale factor, and i
takes on values of 1, 2, or 3 to represent the space index. In the context of the pure de-Sitter
background, the correlation between the scale factor a and the conformal time τ is expressed
as a = −1

Hτ , and H ≡
(
∂τa/a

2
)

represents the physical Hubble parameter, which remains
constant. As the temporal dimension advances, the phenomenon of inflation initiates at a
point where τ approaches negative infinity and subsequently evolves until a point where τ
approaches zero. In this study, we consider a conventional slow-roll inflation scenario, which
is a solution that exhibits attractor behavior when the slow-roll conditions, namely the
conditions of ϵV and ηV , are met. The aforementioned constraints pertain to the derivatives
of the inflaton potential, denoted as V (ϕ), and signify that the inflaton undergoes a gradual
evolution during the inflationary period.

ϵV ≡ M2
P1

2

(
Vφ
V

)2

≪ 1, η ≡M2
PI

Vφφ

V
≪ 1. (5.4)

The variation over time of the (VEV) of the inflaton field, denoted as ϕ(t), along the tra-
jectory of inflation leads to a changing value of the coupling between the dark photon and
the inflaton field, represented as ⟨I(φ)⟩ ≡ I(ϕ). In order to permit a rigorous analytical
analysis, it is necessary to provide an assumption regarding the temporal evolution of the
quantity I(ϕ) during the inflationary period. It is postulated that the coupling undergoes
modification within the range of ai < a < aend, where [ai (aend)] denotes the scale factor val-
ues at the initiation and termination of inflation. Although the coupling function I(ϕ) has
the potential to be dependent on either time or the scale factor a, we suggest a simplified
approach by considering the time dependency of the coupling during the inflationary period.

I(ϕ) =

(
a

aend

)n

≈
(τend

τ

)n
. (5.5)
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This assumption adequately encompasses the fluctuation in coupling that occurred over the
pertinent period of inflation. It is crucial to acknowledge that this approximate relationship
hold at the primary level in the slow-roll growth. The process of normalization for the
variable I guarantees that its numerical value reaches 1 upon the conclusion of inflation, so
reinstating the canonical kinetic term associated with the dark photon field.

In the interval (ai < a < aend ) , where ai and aend represent the scale factor values at start
and end of inflationtionary period . we make the assumption that the time-dependent cou-
pling I(ϕ) is a real number n. The symbol τend represents the conformal time at the conclu-
sion of the inflationary period, and it is calculated as the reciprocal of the negative value
of τend = − (Haend )

−1. The final approximation, denoted by the symbol ≈, is valid at the
leading order when considering the slow-roll expansion framework. In order to establish a
consistent approach to treatment, we employ a normalization procedure for the function I

that ensures it attains a value of 1 upon the conclusion of inflation and remains constant
thereafter. The process of normalizing guarantees the restoration of the canonical kinetic
term for the field of the DP. In the framework of the slow-roll approximation, the temporal
dependency of the function (I(ϕ)) could be generated by the specific functional form of the
coupling.

I(φ) ≈ e
− n

MM2
P1

∫ φ
φend

dφ′ V (φ′)
Vφ(φ′) . (5.6)

5.1.1 Modes
5.1.1.1 The transverse modes

The analysis will commence by investigating the transverse mode sector, which is sym-
bolically represented as ST . In order to get canonical normalization for the field A′T

i , we
introduce the definition Vi ≡ I(ϕ)AT

i , where I(ϕ) represents a classical quantity. By con-
sidering the dependence of the function φ simply on time, we may derive the expression for
ST.

ST =
1

2

∫
dτd3x

[
∂τVi∂τVi − Vi

(
−∂2 − ∂2τ I

I
+
a2m2

γ

I2

)
Vi

]
. (5.7)

where as ∂2 ≡ ∂i∂i. Next, we decompose V i into Fourier components and polarization modes
as follows:

Vi(τ,x) =
∑
σ

∫ (
d3k

(2π)3/2
eikxϵτi (k̂)V̂∗k(τ)

)
. (5.8)

whereeσi (k̂)The orthonormality of polarization vectors are defined as vectors that are or-
thogonal to the momentum path, denoted as k, which is equivalent to k divided by its mag-
nitude.The state of reality, denoted as Vi,

Pσeσi (k̂)V̂
†
σ,k = Pσeσi (−k̂)V̂σ,−k. (5.9)

which leads to
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ST =
1

2

∑
σ

∫
dτ d3k

[
∂τ V̂

†
σ,k∂τ V̂σ,k −

(
k2 − ∂2τ I

I
+
a2m2

γ

I2

)
V̂ †
σ,kV̂σ,k

]
. (5.10)

The system’s parity invariance guarantees that the mode functions of both polarizations
are equal. In addition, the background isotropy ensures that the mode function is only
dependent on the magnitude of the momentum, denoted as k ≡ |k|. As a result, it is possible
to represent the operator V̂σ,k in terms of creation and annihilation operators.

(
V̂σ,k(τ) = (Vk(τ)âσ,k) +

(
V ∗
k (τ)â

†
σ,−k

))
, (5.11)

[âσ,k, â
†
σ0,k0

] = δσσ0
δ(3)(k− k0). (5.12)

and we can also derive the EOM for the mode function as:

∂2τVk +

(
k2 − ∂2τ I

I
+
a2m2

γ

I2

)
Vk = 0. (5.13)

we solve this equation using the explicit form of I(τ) presented earlier, ultimately allowing
us to calculate the relic abundance of dark photon dark matter.
5.1.1.2 Longitudnal mode

The focus of our analysis now turns to the longitudinal mode sector, which is represented
by the symbol SL. In a manner akin to the preceding instance, a Fourier transform is
conducted on the longitudinal mode denoted as χ.as

χ(τ, x) =

∫
d3k

(2π)3/2
eik·xX̂k(τ).

The function X̂k satisfies the reality condition X̂k
ˆ= X−k. As a result, the quadratic action

pertaining to the longitudinal sector is transformed.

SL =
1

2

∫
dτ d3k a2m2

γ′

[
I2k2

I2k2 + a2m2
γ′

] [
∂τ X̂k∂τ ˆX−k − k2X̂k

ˆX−k

]
.

By canonical normalization X̂k as

X̂k(τ) = X̂k(τ)zk(τ),

zk(τ) ≡
amγ′Ik√

I2kk
2 + a2m2

γ′

, (5.14)

we get

SL =
1

2

∫
dτ d3k

[
∂τX

∧
k ∂τX

∧
−k − k2

(
zk
zk

)
X̂k

ˆX−k

]
, (5.15)
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We get the following expression for SL

SL =
1

2

∫
dτ d3k

[
∂τ X̂k∂τ X̂k −

(
k2 − ∂2τzk

zk
+

a2m2
γ′I2

I2kk
2 + a2m2

γ′

)
X̂kX̂k

]
. (5.16)

up to terms that are total derivatives. Similar to the transverse modes, the mode function
only depends on the magnitude of the momentum, k ≡ |k|. We further decompose X∧

k into
the creation and annihilation operators:

X̂k(τ) =
(
Xk(τ)âL,k +X∗

k(τ)â
†
L,−k

)
, (5.17)

[âL,k, â
†
L,k0

] = δ(3)(k− k0). (5.18)

We derive the EOM for the mode function Xk

∂2τXk +

(
k2 − ∂2τzk

zk
+

a2m2
γ′I2

I2kk
2 + a2m2

γ′

)
Xk = 0. (5.19)

using this equation we can also calculate the relic abundance.
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Chapter 6

Investigating the DPDM
through an oscillating Dilaton

6.1 Overview

Ultralight dark photons, characterized as spin-1 vector bosons, offer a compelling prospect

as a potential constituent of dark matter (DM) within our Universe [49] [50]. Comparable

to scalar fuzzy dark matter , these ultralight dark photons exhibit wave-like characteristics

on a broader range, reaching up to approximately 10 parsecs. This feature is particularly

prominent for masses above 10−21[51] . The existence of DPs has the potential to generate

vector solitonic cores that exhibit similarities to those reported in scalar fuzzy dark matter.

However, a noteworthy distinction can be observed in their intrinsic spin [52]. The inclusion

of vector fields in the composition of these condensates presents the potential for the emer-

gence of distinct high-energy solitonic structures like Proca stars, which are distinguished

by radially oriented vector fields. The presence of self-interactions [53]among these dark

photons gives rise to the formation of stable structures that bear resemblance to stars. The

vector form of dark matter has distinct characteristics on smaller scales in comparison to its

scalar counterpart, mostly due to its distinct mechanisms of formation. As a consequence, it

often manifests a highly pronounced power spectrum at these scales. The presence of such

a spectrum suggests the existence of complex, fine-grained structures, with a significant

proportion of the energy density attributed to boson stars [54].

The examination of dynamical heating impacts on ultrafaint dwarf galaxies, with a focus

on coherent fluctuations in fuzzy dark matter, has prompted a reevaluation of the mini-
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mum mass range. This reevaluation proposes a lower threshold of mfdm > 10−19eV. [55] It

is anticipated that the vector scenario will exhibit somewhat looser limitations due to the

diminished interference of numerous polarization states. According to existing research

[56], there is evidence supporting a minimum value of mfdm > 10−18eV as a universal

lower limit for dark matter when its origin is linked to a causal event occurring after the

inflationary period. The superradiance limits associated with solar-mass black holes im-

pose limitations on the mass ranges (10−13 − 10−11eV ) of both scalar and vector fields[57]

[58] . However, these limitations can be circumvented by incorporating vector field self-

interactions, thereby allowing for a wider range of feasible masses.

Nonetheless, the production of DPDM inside the realm of ultralight masses continues to

pose a significant obstacle. The initial models, which were initially inspired by the creation

mechanisms of scalar dark matter[59], subsequently indicated the necessity of incorporat-

ing nonstandard couplings with the Ricci scalar [60]. The graviton-photon interactions may

potentially violate unitarity at specific energy scales. During the slow-roll inflation phase,

dark photons that exhibit little coupling to Einstein gravity, while remaining independent

from other matter fields, are generated. However, the observed abundance of these dark

photons is consistent with dark matter only when the mass of the dark photon, denoted as

mγ
′
′
, is on the order of 10−5eV. [61] The synthesis of ultralight dark photons with the requi-

site abundance of dark matter can be achieved using production procedures that involve an

oscillating Higgs or an oscillating, misaligned axion [62]. Nevertheless, these models, which

are firmly rooted in robust theoretical foundations, prompt relevant inquiries regarding the

intrinsic naturalness and selection of couplings [63].

In this study, a novel methodology is presented centered around resonance phenomena to

generate dark photon dark matter (DPDM) without relying on excessively huge couplings.

In addition to the DP, this theoretical framework incorporates a scalar field, denoted as ϕ,

which is dynamically connected to the DP by an interacting term in the Lagrangian density

given by L ⊃ W (ϕ)FµνF
µν/4. Previous studies [64] have examined this particular form of

interaction, wherein the variable ϕ has been utilized as the inflaton. In order to accurately

determine the quantity of ultralight dark photons during slow-roll inflation, it is necessary

to consider the effective dependency of the coupling on the (FLRW) scale factor. This depen-

dence may be expressed as W (ϕ(a)) ∝ a−n, where the exponent n is approximately equal to

4. Previous studies [65] have examined the role of the scalar field, denoted as φ, as a pas-
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sive participant in the inflationary process, which subsequently resulted in the production

of dark photons with significant spatial scales. Nevertheless, this methodology considers ϕ

as a low-mass field that undergoes oscillations after the inflationary period, leading to the

generation of vector dark matter by resonance.

Efficient dark photon creation is observed when the dilaton exhibits strong oscillations, re-

sembling models incorporating axion couplings. Resonances of this nature tend to exhibit

limited efficacy when subjected to oscillation amplitudes of minuscule magnitudes. How-

ever, in the context of dilatonic coupling, a significant instability arises at low momenta

when the mass of the vector particle is equal to half the mass of the dilaton. This instability

is particularly pronounced during periods of small amplitude oscillations. In this model, the

function W (ϕ) is defined as the exponential of the ratio ϕ/M . However, principal findings

primarily pertain to oscillations of modest amplitude that bear resemblance to the small

amplitude oscillations ϕ/M ≤1 for which W (ϕ) ≈ 1 + ϕ/M + O (ϕ/M)
2 . this model is con-

sistent with ultralight vector dark matter scenarios, satisfying constraints from the cosmic

microwave background and inflation scales, with a mass scale of around 1017GeV. In con-

trast to other methods, the approach needs no significant connection between the DP and

scalar, but relies on precise tuning of their respective masses.

The subsequent analysis of this thesis delves into the mathematical equations that govern

the behavior of a massive vector when it is coupled to a dilaton. It further investigates the

resonant production of a dark photon caused by the oscillations of the dilaton[66]. Finally,

the study presents the resulting relic abundance and identifies the parameter space that

is considered viable, taking into account different cosmological constraints. In our calcula-

tions, we have utilized a FLRW metric and adopted natural units, in accordance with the

Einstein summation standard.

ds2 = −dt2 + a(t)2δijdx
idxj .

6.2 Model and dynamics
A scalar is explored that resembles a dilaton, represented by ϕ, linked to a vector Aµ

through the action given by:

S =

∫
d4x

√
−g

(
m2

PlR

2
− 1

2
∂µϕ∂

µϕ−
m2

ϕϕ
2

2
− W (ϕ)FµνF

µν

4
−
m2

γ′AµA
µ

2

)
. (6.1)

Here, Fµν is derived from Aµ . The kinetic term for the dark photon modulated by W (ϕ)

59



implies a dependency on ϕ for the dark U(1) coupling strength. Potential origins for the
dark photon mass term include the Stueckelberg and Higgs mechanisms. While in some
scenarios mγ′ might depend on ϕ, this work assumes mγ′ to be a constant.

1. Variation with respect to ϕ

For this variation, we’ll isolate the Lagrangian terms dependent on ϕ :

Lϕ = −1

2
∂µϕ∂

µϕ−
m2

ϕϕ
2

2
− W (ϕ)FµνF

µν

4
. (6.2)

The Euler-Lagrange equations are:

∂Lϕ

∂ϕ
− ∂µ

(
∂Lϕ

∂(∂µϕ)

)
= 0, (6.3)

∂Lϕ

∂ϕ
= −m2

ϕϕ− W ′(ϕ)FµνF
µν

4
, (6.4)

∂Lϕ

∂(∂µϕ)
= −∂µϕ, (6.5)

iii) The term:

∂µ

(
∂Lϕ

∂(∂µϕ)

)
= ∇µ∇µϕ, (6.6)

Therefore, the equation for ϕ becomes:

0 = ∇µ∇µϕ+m2
ϕϕ+

W ′(ϕ)FµνF
µν

4
. (6.7)

2. Variation with respect to Aµ

The Lagrangian terms dependent on Aµ are

LA = −W (ϕ)FµνF
µν

4
−
m2

γ0AµA
µ

2
. (6.8)

The Euler-Lagrange equation for Aµ is

∂LA

∂Aµ
− ∂ν

(
∂LA

∂(∂νAµ)

)
= 0. (6.9)

i) The term:

∂LA

∂Aµ
= −m2

γ′Aµ. (6.10)

ii) The term becomes:

∂LA

∂(∂νAµ)
= −W (ϕ)Fµν

2
. (6.11)

iii) The term leads:
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∂ν

(
∂LA

∂(∂νAµ)

)
= −∇ν [W (ϕ)Fµν ]. (6.12)

Therefore, the equation for Aµ becomes:

0 = ∇ν [W (ϕ)Fµν ] +m2
γ′Aµ. (6.13)

The Euler-Lagrange equations become:

0 = −∇µ∇µϕ+m2
ϕϕ+

W ′(ϕ)FµνF
µν

4
. (6.14)

0 = −∇µ[W (ϕ)Fµν ] +m2
γ′Aν . (6.15)

∇µA
µ = 0. (6.16)

This last equation aligns with the Lorenz gauge choice, but here, it’s a consistency-required
constraint for the motion equations.

Standard For the FLRW spacetime metric:

ds2 = −dt2 + a(t)2δijdx
idxj . (6.17)

For the Klein-Gordon equation

0 = −∇µ∇µϕ+m2
ϕϕ+

W ′(ϕ)FµνF
µν

4
, (6.18)

The d’Alembertian operator is:

∇µ∇µϕ = ∂µ∂
µϕ− Γα

µν∂
µϕ∂νϕ, (6.19)

Time-time component:

∂2t ϕ− Γt
ttϕ̇

2 − 2Γt
tiϕ̇∂

iϕ− Γi
ij∂

jϕ∂iϕ = ϕ̈+ 3Hϕ̇, (6.20)

Space-space component:

1

a2
∂i∂iϕ =

1

a2
∇2ϕ, (6.21)

Thus, the Klein-Gordon equation becomes:

0 = ϕ̈+ 3Hϕ̇− 1

a2
∇2ϕ+m2

ϕϕ+
W ′(ϕ)FµνF

µν

4
. (6.22)

for the proca equation
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The covariant derivative of a tensor Fµν is given by:

∇λF
µν = ∂λF

µν + Γµ
µαF

αν + Γν
µαF

µα. (6.23)

where the Christoffel symbols Γµ
λν are derived from the metric tensor.

Using the FLRW metric, the relevant Christoffel symbols are:

Γt
tt = ȧ

Γt
ij = aȧδij

Γi
jt = Γi

tj =
ȧ

a
δij

. (6.24)

For the ν = 0component, this becomes:

∇µF
µ0 = ∂µF

µ0 + Γµ
αµF

α0, (6.25)

Using the FLRW metric, the covariant derivative of Fµ0 is:

∇µF
µ0 = ∂µF

µ0 + Γt
ijF

i0 + Γi
tiF

00, (6.26)

Using F i0and, F 00, and substituting the Christoffel symbols:

∇µF
µ0 = ∂tF

t0 + ∂iF
i0 + aȧF i0 +

ȧ

a
F 00. (6.27)

From the definition of the field strength tensor:

F t0 = Ȧ0, (6.28)

F i0 =
1

a2
(∂iA0 − Ȧi). (6.29)

Substituting these into our equation, we get:

∇µF
µ0 = Ä0 +

1

a2
∂i∂

iA0 −
ȧ

a2
∂iȦi + aȧ

1

a2
(∂iA0 − Ȧi). (6.30)

Combining like terms and simplifying:

∇µF
µ0 = Ä0 + 3HȦ0 + 3ḢA0 −

1

a2
∂i∂

iA0 +
2H

a2
∂iA

i. (6.31)

Using our initial Proca equation:

0 = −∇µ[W (ϕ)Fµν ] +m2
γ′Aν , (6.32)

For ν = 0 :

Inserting our derived expression for ∇µF
µ0 and simplifying:
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0 = Ä0 + 3HȦ0 + 3ḢA0 −
1

a2
∂i∂

iA0 +
2H

a2
∂iA

i +
m2

γ′

W (ϕ)
A0 −

1

a2
∂iW (ϕ)

W (ϕ)
(∂iA0 − Ȧi). (6.33)

For the ν = i component, this gives:

∇µF
µi = ∂µF

µi + Γµ
µαF

αν + Γi
µαF

µα. (6.34)

Inserting our previously known Christoffel symbols:

For the ν = i component:

∇µF
µi = ∂tF

ti + ∂jF
ji + aȧF ji +

ȧ

a
F 0i. (6.35)

From the definition of the field strength tensor:

F ti =
˙

Ai
1

a2
∂iA0, (6.36)

F ji =
1

a2
(∂jAi − ˙∂iAj). (6.37)

Substituting these into our expression for ∇µF
µi:

∇µF
µi = Äi − 1

a2
∂iȦ0 +

1

a2
∂j∂

jAi − 1

a2
∂i∂jA

j , (6.38)

Combining terms and simplifying:

∇µF
µi = Äi +HȦi − 1

a2
∂j∂

jAi + 2H
1

a2
∂iA0. (6.39)

using

0 = −∇µ[W (ϕ)Fµν ] +m2
γ′Aν , (6.40)

Inserting our derived expression for ∇µF
µi and simplifying:

0 = Äi +HȦi − 1

a2
∂j∂

jAi + 2H
1

a2
∂iA0 +

m2
γ′

W (ϕ)
Ai − ∂µW (ϕ)

W (ϕ)
Fµi. (6.41)

When considered in FLRW spacetime, the equations simplify to:

0 = ϕ̈+ 3Hϕ̇− 1

a2
∂i∂iϕ+m2

ϕϕ+
W ′(ϕ)

4
FµνF

µν . (6.42)

0 = Ä0 + 3HȦ0 + 3ḢA0 −
1

a2
∂j∂jA0 +

2H

a2
∂iAi +

m2
γ′

W (ϕ)
A0 −

1

a2
∂iW (ϕ)

W (ϕ)

(
∂iA0 − Ȧi

)
. (6.43)
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0 = Äi +HȦi −
1

a2
∂j∂jAi + 2H∂iA0 +

m2
γ′

W (ϕ)
Ai −

∂µW (ϕ)

W (ϕ)
Fµi. (6.44)

6.2.1 Fourier decomposition
The vector expands in Fourier modes as:

our vector fields A0 and Ajare expanded in Fourier modes. This is a common technique to
solve partial differential equations in quantum field theory. By expanding in Fourier modes,
we are expressing the fields as a superposition of plane waves, each labeled by a momentum
vector k.

A0(t, x) =

∫
d3k

(2π)3
eik·xA0(t, k). (6.45)

Aj(t, x) =
∑

λ∈{±,k}

∫
d3k

(2π)3
eik·xAλ(t, k)ϵ

λ
j (k). (6.46)

Here ϵλj (k) are the polarization vectors, which essentially describe the orientation of the
vector field for each Fourier mode.

Properties of Polarization Vectors:
Orthogonality

δmnϵ
m
λ (k)ϵnλ′(k) = δλλ′ . (6.47)

This equation states that different polarization vectors are orthogonal to each other

Transversality

iδmnk
mϵn±(k) = 0. (6.48)

This states that the transverse polarizations (often labeled by ±, ϵ1, ϵ2) are orthogonal to
the momentum vector k, i.e., they are transverse modes.

Complex Conjugate Relation

ϵmλ (k) = ϵmλ (−k)∗. (6.49)

This is essentially a reality condition which ensures that the physical fields remain real.

Longitudinal Mode

δmnk
mϵnk (k) = k. (6.50)

This defines the longitudinal polarization vector, which is parallel to k.

Cross Product with Transverse Modes

ϵijkk
mϵn±(k) = ±ϵi±(k). (6.51)
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This is a defining relation for transverse polarization vectors, stating that the cross product
of k and the transverse polarizations gives the polarizations themselves (up to a sign)

Cross Product with Longitudinal Mode

ϵijkk
mϵnk (k) = 0. (6.52)

This states that the cross product of k and the longitudinal polarization is zero.

These properties of the polarization vectors are crucial for the Fourier decomposition of the
vector fields and will be important when computing quantities like the propagator or the
interactions in momentum space.

Similarly, the dilaton is expanded as:

ϕ(t, x) = ϕ̄(t) +

∫
d3k

(2π)3
eik·xδϕ(t, k). (6.53)

In cosmological perturbation theory, it is often useful to decompose fields into Fourier modes
to study their behavior in an expanding universe. Let’s assume that the fields can be
Fourier-decomposed as:

Ai(t, x⃗) =

∫
d3k

(2π)3/2
eik⃗·x⃗Ai(t, k⃗). (6.54)

A0(t, x⃗) =

∫
d3k

(2π)3/2
eik⃗·x⃗A0(t, k⃗). (6.55)

Here Ai(t, k⃗) and A0(t, k⃗) are the Fourier modes of Ai(t, x⃗) and A0(t, x⃗) respectively.The dif-
ferential operator ∂j∂j acting on a Fourier mode gives −k2 , when considering flat spatial
sections.

Let’s proceed to decompose the equation for Ai

0 = Äi +HȦi −
k2

a2
Ai + 2Hk

A0

a
+
m2

γ′

W
Ai −

∂µW

W
Fµi. (6.56)

We have linearized the equation, so all terms are to linear order in fluctuations. Now, let’s
focus on the term ∂µW

W Fµi , Assuming W = W̄ (t) ⇒ ∂µW
W =

˙̄W
W̄
,

putting everything together we get

Ai0 = Äi +

(
H +

˙̄W

W̄

)
Ȧi +

(
k2

a2
+
m2

γ′

W̄

)
Ai +

(
˙̄W

W̄
− 2H

)
k

a
A0. (6.57)

Since Ai can be circularly polarized, we can rewrite the equation for each polarization state
A± and for each Fourier mode Ak.

as:
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0 = Ä± +

(
H +

˙̄W

W̄

)
Ȧ± +

(
k2

a2
+
m2

γ′

W̄

)
A±. (6.58)

0 = Äk +

(
H +

˙̄W

W̄

)
Ȧk +

(
k2

a2
+
m2

γ′

W̄

)
Ak +

(
˙̄W

W̄
− 2H

)
kA0. (6.59)

the above equation are linearized to first order now.using the shorthand notation W̄ =

W (ϕ̄). From the Lorenz constraint , we deduce :kAk/a
2 = Ȧ0 + 3HA0

The original equation for A0 is

0 = Ä0 + 3HȦ0 + 3ḢA0 −
1

a2
∂j∂jA0 +

2H

a2
∂iAi +

m2
γ′

W (ϕ)
A0 −

1

a2
∂iW (ϕ)

W (ϕ)

(
∂iA0 − Ȧi

)
. (6.60)

using lorentz constraint Ȧ0 + 3HA0 replace kAk/a
2 from this we have

kAk/a
2 = Ȧ0 + 3HA0. (6.61)

The first terms in this equation are straightforward: they directly involve Ä0,Ȧ0,A0. We

then have terms involving spatial derivatives of A0, Ai given as ∂j∂jA0 and 2H
a2 ∂iAi . In

Fourier space, the spatial derivatives turn into k2

a2A0 and 2H
a2 kAk respectively . where k is

the fourier wavenumber . the term
m2

γ′

W (ϕ)A0 can be kept as is because it already is a function

of A0 . the last term 1
a2

∂iW (ϕ)
W (ϕ)

(
∂iA0 − Ȧi

)
in fourier space simplifies to 1

a2 k
Ẇ
W Ak.

Substitute into the original equation

Ä0 + 3HȦ0 + 3ḢA0 −
1

a2
k2A0 +

2H

a2
kAk +

m2
γ′

W (ϕ)
A0 −

1

a2
k
Ẇ

W
Ak. (6.62)

using lorentz constraint Ȧ0 + 3HA0 replace kAk/a
2

Ä0 + 3HȦ0 + 3ḢA0 −
1

a2
k2A0 + 2H(Ȧ0 + 3HA0) +

m2
γ′

W (ϕ)
A0 −

1

a2
k
Ẇ

W
Ak. (6.63)

collecting like terms

0 = Ä0 + 5HȦ0 +

(
k2

a2
+

m2
γ′

W (ϕ)
+ 3Ḣ + 6H2

)
A0 −

k

a2
Ẇ

W
Ak, (6.64)

This, combined with starting equation, provides:

0 = Ä0 + 5HȦ0 +

(
k2

a2
+
m2

γ′

W̄
+ 3Ḣ + 6H2

)
A0. (6.65)
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Considering the dynamics of the transverse modes and A0, it is more efficient to study the
rescaled fields defined as:

A± ≡
√
aWĀ±, (6.66)

A0 ≡ a5/2A0. (6.67)

yielding the following equations:

Ä± = −

(
k2

a2
+
m2

γ′

W̄
− ∂2t

√
W̄√
W̄

− Ḣ

2
− H2

4

)
A±. (6.68)

Ä0 = −

(
k2

a2
+
m2

γ′

W̄
+
Ḣ

2
− H2

4

)
A0. (6.69)

Generally, as ϕ diminishes with expansion ,W (ϕ) approaches 1 at late times. Consequently,

A± and
√
aA± tend to coincide. Nonetheless, analyzing instability is more straightforward

with the former field. Moreover, from Eq. (12), we have:

Ak =
1√
ak

(
Ȧ0 +

H

2
A0

)
. (6.70)

indicating that the dynamics in former equation can replace the study of the longitudinal

mode due to its relative simplicity.

6.3 Stability analysis

recall that the d’Alembertian operator □ in Minkowski spacetime is given by:

□ = −∂2t +∇2, (6.71)

where ∂t is the partial derivative with respect to time t, and ∇2 is the Laplacian operator
acting on spatial coordinates on equation

Now, let’s take the Laplacian of ϕ(t, x):

∇2ϕ(t, x) = ∇2

(
ϕ̄(t) +

∫
d3k

(2π)3
eik·xδϕ(t, k)

)
. (6.72)

Using the properties of the Laplacian and the exponential function, we can write:

∇2

(∫
d3k

(2π)3
eik·xδϕ(t, k)

)
=

∫
d3k

(2π)3
(−k2)eik·xδϕ(t, k). (6.73)

Now, let’s plug this result back into the equation for □ϕ(t, x)):

□ϕ(t, x) = −∂2t ϕ(t, x) +∇2ϕ(t, x). (6.74)

67



Substitute the Laplacian result and notice that the partial derivative with respect to time
only acts on the time-dependent factor ϕ̄(t) :

□ϕ(t, x) = −∂2t ϕ̄(t) +
∫

d3k

(2π)3
(−k2)eik·xδϕ(t, k). (6.75)

Since we are considering a Minkowski spacetime with no explicit time-dependent back-
ground, the partial derivatives with respect to time act only on ϕ̄(t) and δϕ(t, k), giving:

□ϕ(t, x) = − ¨̄ϕ(t)−
∫

d3k

(2π)3
k2eik·xδϕ(t, k). (6.76)

Now, substitute this result back into the equation for □ϕ(t, x) and equate it to zero:

− ¨̄ϕ(t)−
∫

d3k

(2π)3
k2eik·xδϕ(t, k) = 0. (6.77)

To proceed, we can exchange the order of differentiation and integration since the opera-
tions are linear. We can also factor out constants from the integral, leading to:

− ¨̄ϕ(t)− 1

(2π)3

∫
d3k k2

∫
eik·xδϕ(t, k). (6.78)

The integral over d3k is just a constant. Now, we can express the integral of the exponential
term as a Dirac delta function:∫

eik·xδϕ(t, k) = δ3(x)δϕ(t, k). (6.79)

Substitute this back into the equation:

− ¨̄ϕ(t)− 1

(2π)3

∫
d3k k2δ3(x)δϕ(t, k) = 0. (6.80)

Perform the integration over d3k to get rid of k :

− ¨̄ϕ(t)−
∫
d3x δ3(x)δϕ(t, k) = 0. (6.81)

The integral of the Dirac delta function over all space gives 1:

− ¨̄ϕ(t)− δϕ(t, k) = 0. (6.82)

This simplifies to:
¨̄ϕ(t) + δϕ(t, k) = 0. (6.83)

Since we are considering a homogeneous dilaton background, δϕ(t, k) must be zero, and
thus:

¨̄ϕ(t) = 0. (6.84)

This means that the homogeneous component of the dilaton , ϕ̄(t), evolves according to a
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simple harmonic motion with zero acceleration. In this context, ¨̄ϕ represents the second
time derivative of ϕ̄(t), and mϕ represents the mass of the dilaton. Therefore, for the homo-
geneous component, we obtain the equation of motion:

¨̄ϕ+m2
ϕϕ̄ = 0. (6.85)

It describes the evolution of the dilaton field as a simple harmonic oscillator with a mass
term m2

ϕ.

We first discuss the (in)stability of vector modes in a periodically oscillating dilaton back-
ground within Minkowski spacetime. In this approximation, the homogeneous dilaton
evolves as:

¨̄ϕ+m2
ϕϕ̄ = 0, (6.86)

which is solved by:
ϕ̄(t) = ϕ0 cos(mϕt), (6.87)

from the initial condition ϕ̄(t) → ϕ0 − and ˙̄ϕ(t) → 0 → when→ H(t) ≫ mϕ.

Let’s specify the function W as:
W (ϕ) = eϕ/M , (6.88)

Differentiating with respect to t, we obtain:

˙̄ϕ(t) = −ϕ0mϕ sin(mϕt), (6.89)

and once more:
¨̄ϕ(t) = −ϕ0m2

ϕ cos(mϕt), (6.90)

Given the condition H(t) ≫ mϕ, we can approximate:

ϕ̄(t) ≈ ϕ0, (6.91)
˙̄ϕ(t) ≈ 0. (6.92)

Now, let’s find∂2
t

√
W̄√

W̄
. Using the expression for W̄ and differentiating

√
W̄ = eϕ̄/2M , (6.93)

∂
√
W̄

∂t
=

˙̄ϕ

2M
eϕ̄/2M , (6.94)

∂2
√
W̄

∂t2
=

¨̄ϕ

2M
eϕ̄/2M +

(
˙̄ϕ

2M

)2

eϕ̄/2M , (6.95)

∂2t
√
W̄√
W̄

=
¨̄ϕ

2M
+

(
˙̄ϕ

2M

)2

. (6.96)

69



Given the condition H(t) ≫ mϕ , this means that the expansion rate of the universe, charac-

terized by H(t), is much faster than the oscillation of the field ϕ̄, In such scenarios, the field

ϕ̄ can be approximated as being "frozen" since it changes very slowly compared to the rapid

expansion of the universe. From the initial conditions, and H(t) ≫ mϕ, which means the

field remains approximately constant at ϕ0 and its time derivative is close to zero.neglecting

the expansion terms H(t) ≫ mϕ and Substituting the expressions for W̄ , ˙̄ϕ, and ¨̄ϕ into the

equations , when expansion is overlooked, yield:

Ä± = −

k2 + m2
γ′

eϕ̄/M
−

¨̄ϕ

2M
−

(
˙̄ϕ

2M

)2
A±, (6.97)

Ä0 = −

[
k2 +

m2
γ′

eϕ̄/M

]
A0. (6.98)

Given that ϕ̄(t) is periodic, the above Hill’s equation represent harmonic oscillators with

fluctuating frequencies. According to the Floquet theorem, the solutions are:

P+(t)e
µt + P−(t)e

−µt, (6.99)

where µ denotes the Floquet exponent and P±(t) = P±(t+T ) with T being the background’s
period. Modes with Re(µ) ̸= 0 are unstable, growing exponentially over time. We proceed to
explore the form of parametric instabilities in these equations.

6.3.1 Floquet theory solutions
To employ Floquet theory, we need to turn the second-order differential equations into a
system of first-order differential equations. We’ll begin with the A±

equation and then move to the A0

Transverse mode A±

Define:

u1 = A±, (6.100)

u2 = Ȧ±, (6.101)

The first-order system becomes:

u̇1 = u2, (6.102)
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u̇2 = −

k2 + m2
γ′

eϕ̄/M
−

¨̄ϕ

2M
−

(
˙̄ϕ

2M

)2
u1, (6.103)

The matrix form is:

d

dt

[
u1

u2

]
=

 0 1

−
[
k2 +

m2
γ′

eϕ̄/M −
¨̄ϕ

2M −
(

˙̄ϕ
2M

)2]
0

[u1
u2

]
. (6.104)

Longitudnal mode A0

Define:

v1 = A0, (6.105)

v2 = Ȧ0, (6.106)

The first-order system becomes:

v̇1 = v2, (6.107)

v̇2 = −

[
k2 +

m2
γ′

eϕ̄/M

]
v1, (6.108)

The matrix form is:

d

dt

[
v1

v2

]
=

 0 1

−
[
k2 +

m2
γ′

eϕ̄/M

]
0

[v1
v2

]
. (6.109)

Both systems are linear and time-periodic due to the periodicity of ϕ̄(t). According to Floquet
theory, solutions to the above systems are of the form [67]:

y(t) = P (t)eµt. (6.110)

Where: y(t) represents either

[
u1(t)

u2(t)

]
or

[
v1(t)

v2(t)

]
. P (t)is a matrix with periodic functions oft

as its entries (with periodT ). µ is a Floquet exponent. To derive P (t) and µ, you need to
solve the eigenvalue problem of the monodromy matrix over one period T :

Φ(T ) = Texp

(∫ T

0

A(t)dt

)
, (6.111)

Where Φ(T ) is the so-called monodromy matrix and Texp denotes the time-ordered expo-
nential. The Floquet exponents µ are then given by the logarithm of the eigenvalues of the
monodromy matrix divided by the period T . The matrix P (t) can be found by solving the
system using the fundamental matrix solution.
6.3.2 Floquet Exponents
Given the monodromy matrix Φ(T ) (a matrix that describes the evolution of a system of
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differential equations over one period T , the Floquet exponents µ are given by:

µi =
1

T
lnλi. (6.112)

Where: λi are the eigenvalues of Φ(T ). There are as many Floquet exponents µi as there are
dimensions to the system of differential equations. These exponents give vital information
about the stability of the periodic solutions. If any of the real parts of the Floquet exponents
are positive, then the solution is unstable.
6.3.3 Fundamental Matrix Solution
A fundamental matrix solution Ψ(t) of a time-periodic system of differential equations is a
matrix whose columns are linearly independent solutions to the system. The relationship
between the fundamental matrix solution and the matrix P (t) from Floquet theory is given
by:

Ψ(t) = P (t)eµt. (6.113)

Where: P (t) is a periodic matrix with the same period as the coefficient matrix of the dif-
ferential equations. It contains functions that capture the periodic nature of the solutions
.eµt is a diagonal matrix with terms that capture the exponential growth or decay dictated
by the Floquet exponents. Finding P (t) often involves integrating the differential equations
over one period while incorporating the behavior dictated by the Floquet exponents.

6.4 A Small-amplitude broad resonance
When considering massless dark photons, unstable solutions only emerge for sizable oscil-
lation amplitudes, (ϕ0 ≳M) . Massive dark photons, if not overly massive (mγ′ ≲ W/ ˙̄W ≈
mϕ), experience these instabilities. The mass term leads to a new, small-momentum (k ≪
mϕ) instability in the small-amplitude(ϕ0 ≪ M) regime whenmγ′/mϕ = 1/2. Recognizing
this instability, and under this approximation with terms of order ϕ0/M taken into account,
above hills equations converge to the Mathieu equation:

d2X

dz2
+ [p− 2q cos(2z)]X(z) = 0. (6.114)

6.4.1 Longitudnal mode
Step 1: Start with the equation

Ä0 = −

[
k2 +

m2
γ′

eϕ̄/M

]
A0, (6.115)

Step 2: Introduce time-dependence for ϕ̄

m2
γ0

eϕ0 cos(mϕt)/M
, (6.116)

Step 3: Taylor Expansion

eϕ0 cos(mϕt)/M ≈ 1 +
ϕ0 cos(mϕt)

M
, (6.117)
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Continuing the approximation

⇒
m2

γ′

eϕ0 cos(mϕt)/M
≈ m2

γ0 −
ϕ0m

2
γ′ cos(mϕt)

M
, (6.118)

Step 4: Substitution into the equation

Ä0 +

[
k2 +m2

γ0 −
ϕ0m

2
γ′ cos(mϕt)

M

]
A0 = 0, (6.119)

Step 5: Change of variables

z =
mϕt

2
, (6.120)

Define the variable transformation

z =
mϕt

2
⇒ t =

2z

mϕ
, (6.121)

Derive dt/dz

dt

dz
=

2

mϕ
⇒ d2t

dz2
= 0, (6.122)

Chain rule for second derivatives in terms of z

d2A0

dt2
=
d2A0

dz2
×
(
dt

dz

)2

Ä0 =
d2A0

dz2
×
(

2

mϕ

)2

Ä0 = 4
d2A0

dz2
1

m2
ϕ

, (6.123)

The differential relation

Ä0 = 4
d2A0

dz2
1

m2
ϕ

, (6.124)

Step 6: New equation

4
d2A0

dz2
1

m2
ϕ

+

[
4

(
k

mϕ

)2

+ 4

(
mγ′

mϕ

)2

− 4
ϕ0
M

(
mγ′

mϕ

)2

cos(2z)

]
A0 = 0. (6.125)

Step 7: Match to Mathieu

p = 4

(
k

mϕ

)2

+ 4

(
mγ′

mϕ

)2

. (6.126)

q =
2ϕ0
M

m2
γ′

m2
ϕ

. (6.127)

6.4.2 Transverse mode
for the second equation compute the derivative of
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ϕ̄(t) = ϕ0 cos(mϕt), (6.128)

Differentiating with respect to t, we obtain:

˙̄ϕ(t) = −ϕ0mϕ sin(mϕt), (6.129)

and once more:
¨̄ϕ(t) = −ϕ0m2

ϕ cos(mϕt), (6.130)

For ϕ̄
M much smaller than 1, we can Taylor expand the exponential function:

e
ϕ̄
M ≈ 1 +

ϕ̄

M
, (6.131)

Thus, the term m2
γ0

eϕ̄/M can be approximated as:

m2
γ′

eϕ̄/M
≈ m2

γ′

(
1 +

ϕ̄

M

)−1

, (6.132)

Substituting ϕ̄(t) = ϕ0 cos(mϕt) into the above, we get:

m2
γ′

eϕ̄/M
≈ m2

γ′

(
1 +

ϕ0 cos(mϕt)

M

)−1

, (6.133)

Using the binomial expansion for small ϕ0

M , the expression further reduces

m2
γ′

eϕ̄/M
≈ m2

γ′

(
1− ϕ0 cos(mϕt)

M

)
, (6.134)

Plugging our earlier result into the differential equation for

Ä± : Ä± = −

[
k2 +m2

γ′ −
ϕ0m

2
γ′cos(mϕt)

M
+
ϕ0m

2
ϕcos(mϕt)

2M
+
ϕ20m

2
ϕsin

2(mϕt)

4M2

]
A± .

(6.135)

Now, using the substitution:

z =
mϕt

2
, (6.136)

We get the derivatives as:

dz

dt
=
mϕ

2
, (6.137)

d2z

dt2
= 0, (6.138)
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Given this substitution, we have:

cos(mϕt) = cos(2z), (6.139)

sin(mϕt) = sin(2z), (6.140)

Substituting and changing the derivatives as discussed:

(
dz

dt

)2
d2A±

dz2
= −

[
k2 +m2

γ′ −
ϕ0m

2
γ0 cos(2z)

M
+
ϕ0m

2
ϕ cos(2z)

2M
+
ϕ20m

2
ϕ sin

2(2z)

4M2

]
A±. (6.141)

Where: (
dz

dt

)2

=
(mϕ

2

)2
, (6.142)

To reduce to Mathieu’s equation, collect terms of A± and cos(2z). The sin2(2z) term can be
expressed in terms of cos(2z) using the trigonometric identity:

sin2(2z) =
1− cos(4z)

2
, (6.143)

Given the equation:

(mϕ

2

)2 d2A±

dz2
= −

[
k2 +m2

γ′ −
ϕ0m

2
γ′ cos(2z)

M
+
ϕ0m

2
ϕ cos(2z)

2M
+
ϕ20m

2
ϕ sin

2(2z)

4M2

]
A±. (6.144)

We expresssin2(2z) in terms of cos(2z) using the identity:

sin2(2z) =
1− cos(4z)

2
, (6.145)

Substituting this in gives:

(mϕ

2

)2 d2A±

dz2
= −

[
k2 +m2

γ′ +
ϕ20m

2
ϕ

8M2
−

(
ϕ0m

2
γ′

M
−
ϕ0m

2
ϕ

2M
+
ϕ20m

2
ϕ cos(4z)

8M2

)
cos(2z)

]
A±.

(6.146)

Neglecting the higher-order term with cos(4z) and considering only terms up to order ϕ0/M :

(mϕ

2

)2 d2A±

dz2
= −

[
k2 +m2

γ′ −

(
ϕ0m

2
γ′

M
−
ϕ0m

2
ϕ

2M

)
cos(2z)

]
A±. (6.147)

Comparing with the Mathieu equation form:

d2X

dz2
+ [p− 2q cos(2z)]X(z) = 0. (6.148)
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We identify:

p =

(
2k

mϕ

)2

+

(
2mγ′

mϕ

)2

, (6.149)

q =
2ϕ0
M

m2
γ′

m2
ϕ

(
1−

m2
ϕ

2m2
γ′

)
, (6.150)

for both cases we have

z =
mϕt

2
. (6.151)

p =

(
2k

mϕ

)2

+

(
2mγ′

mϕ

)2

. (6.152)

q =
2ϕ0
M

m2
γ′

m2
ϕ

×

 1, if X = A0,

1− m2
ϕ

2m2
γ′
, if X = A±.

. (6.153)

The solution to the Mathieu equation is unstable for small q given that p = n2. for an integer
n. Specifically, for n = 1, which corresponds to mγ0 = mϕ/2 for modes k ≪ mϕ, there is an
unstable solution in the small q (and thus small amplitude) limit. The Floquet exponent of
the Mathieu equation in this situation is known analytically to be

lim
q→0

Re(µ̃n=1) ≈
|q|
2
. (6.154)

resulting in

Re(µ) ≈ mϕϕ0
8M

.

for the solutions to hills equations when ϕ0 ≪M and k ≪ mϕ.

The Floquet exponents for the transverse and longitudinal components are depicted in Fig-

ure 1, illustrating their dependence on the wave number of the vector and the amplitude

of the dilaton’s oscillation. In addition to the wide range of instability bands observed for

substantial momenta and amplitudes, Figure 1 also illustrates the previously mentioned

band for low (k/mϕ), which extends towards the limit of (ϕ0/M → 0). The band exhibit-

ing instability does not attain very tiny amplitudes unless the value of (mγ′) is precisely

equal to half of mϕ. The magnitude of the difference between the first-order momentum

eigenvalue and unity, denoted as |pn=1 − 1|, represents the width of the instability band

in the wavevector space (k) for small values of the wavevector (q). When considering the

case when n = 1, it can be shown that the Mathieu resonance parameters q for A± and A0

exhibit contrasting signs while possessing equal magnitudes. Consequently, they provide
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Figure 6.1: The real component of the Floquet exponent µk for solutions of the EOM asso-
ciated with the transverse and the longitudinal domains is presented. For both domains,
when mϕ = 2mγ′ , there exists a domain where Re(µk) > 0. This can be extended to minimal
values of ϕ0/M and k/mϕ, as illustrated in the inset figures. The results are normalized by
ϕ0/M to aid in understanding within the context of FLRW spacetime.
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the same Floquet exponent. The mass tuning can be defined as

δ ≡
(
mγ′

mϕ

)2

− 1

4
, (6.155)

the width of the instability band becomes

∣∣∣∣ kmϕ

∣∣∣∣2 + δ ≤ ϕ0
8M

. (6.156)

The instability band for low momentum disappears for ϕ0/M < 8δ. → If → δ < 0, a thin
instability band remains down to very small ϕ0/M , centered at k = mϕδ with width ϕ0/8M .
We will discuss the mass tuning level this suggests for feasible dark photon dark matter
models.

6.5 Parametric resonance in FLRW

The extrapolation of resonant instabilities in Minkowski spacetime to an expanding Uni-

verse involves the consideration of the redshifts of physical momenta k/a and the oscillation

amplitude of the dilaton. In the context of a FLRW spacetime, the dilaton exhibits oscilla-

tory behavior when the Hubble parameter at a given time, denoted as H(ti), approaches a

value approximately equal to the mass of the dilaton, denoted as mϕ as H(ti) ≈ mϕ. This

oscillation is initiated with an initial amplitude denoted as ϕ0i, which then undergoes a

decrease in magnitude due to the redshifting effect.

ϕ0(t) ≈ 1.5ϕ0,i

(
a(t)

ai

)−3/2

. (6.157)

In the period characterized by dominance of radiation. The temporal variation of the coeffi-

cients in hill’s equations which could cause them to deviate from the structure of Mathieu

equation , can be considered insignificant when the oscillation frequency of the dilaton is

significantly higher than the rate of expansion (during the radiation-dominated epoch, char-

acterized by an evolution of the form H ∝ 1/a2). In this domain, the terms related to the

Hubble rate in equations 6.58 and 6.59 can be considered insignificant. During the later

stages, the amplitude of the dilaton’s oscillation and the physical wave number of each

mode remain relatively consistent throughout each oscillation. Hence, by substituting the

fading amplitude from Eq.6.155 for the constant ϕ0, the Minkowski-space Floquet exponent

may accurately represent the instantaneous growth rate in FLRW spacetime.

In order for the dilaton’s energy to diminish and result in a significant proportion of dark
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matter being composed of dark photons, it is imperative that parametric resonance operates

with a high level of efficiency. For a significant duration, it is necessary for the exponen-

tial growth rate to far exceed the Hubble rate (Re(µ)/H ≫ 1). Significantly, during the

radiation-dominated epoch, the rate of expansion decreases at a quicker rate compared to

the amplitude of the dilaton’s oscillation, . Hence, the ratio between the exponential growth

rate, and the expansion rate may be represented as

Re[µ(t)]
H

=
1

8

(
3ϕ0,i
2M

)(
a(t)

ai

)1/2

. (6.158)

As the expansion of the Universe occurs, there is an observed increase in the effectiveness

of resonance. In addition, it is observed that the comoving width of the instability band

increases over time. The maximum value of this width is determined by the inequality

k2 ≤ ϕ0,i

8M

(
a
ai

)1/2
[derived from Eq 6.154. Furthermore, the lower bound can be determined

by considering the horizon scale, namely the ratio of the scalar field mass to the scale factor

ratio.

Eq. 6.156 implies that even with a small initial oscillation amplitude, as the Universe

expands by a factor ∝ (ϕ0,i/M)−2, particle production becomes efficient. Specifically, the

vector’s production concludes shortly after its energy density matches that of the dilaton.

the energy density of the dilaton isρϕ ≈ m2
ϕϕ

2
0,i/(a/ai)

3. The vector becomes nonrelativistic

at the moment of production, as it is generated considerably later than ai and possesses a

comoving wave number approximately equivalent to mϕ. The energy density can be approx-

imated as

ρA(t) ≈
m2

γ‘

2(a/ai)3W

∑
λ

⟨Aλ(t, x)
2⟩.

where

⟨Aλ(t, x)
2⟩ =

∫ (
d ln k

k3

2π2
⟨|Aλ(ti, k)|2⟩e2

∫ t
ti

dt′Re[µ(t′)]
)
. (6.159)

Before production,Aλ is in the vacuum state, withA. Small-amplitude broad resonance

⟨|Aλ(ti, k)|2⟩ =
1

2
√

(k/a)2 +m2
γ0.

. (6.160)

If we set the growth rate and assume the integral over wave number is populated by modes
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with k ∼ mϕ, and acknowledge that W ≈ 1 at longer times, we get

ρA(t) ≈
m2

γ′m2
ϕ

(a/ai)3
exp

(
3ϕ0,i
4M

(
a

ai

)1/2
)
. (6.161)

.

When considering the dilaton and vector, they have nearly identical energy densities at a

specific scale factor. We can represent this as:

a∗
ai

=

(
3ϕ0,i
4M

)−2

ln

(
m2

ϕϕ
2
0,i

m2
γ′m2

ϕ

)2

. (6.162)

Given ϕ0,i

M = 1 and mγ′ = 10−18 eV with ϕ0,i aligned to the relic abundance of dark matter

as mentioned .we find that a∗
ai

approx 7.1 ×104. This value reduces by roughly a factor of 2.3

when mγ′ = 10−6eV.

The validity of these conclusions is contingent upon the modes remaining inside the reso-

nance region characterized by modest amplitudes. An instability has been reported in the

case of small amplitude vectors, when the mass of the vector is precisely half that of the

dilaton. Nevertheless, the phenomenon of resonance ceases prematurely in cases where

the mass ratios are not properly aligned. Specifically, the n = 1 band needs a non-zero k

width for a small enough value of |q| ∝ ϕ0

M . To ensure low-momentum modes don’t exit the

instability area before resonance becomes effective, we deduce:

|δ| < 3ϕ0,i

16M
(

a∗
ai

)3/2 < 10−7

(
ϕ0,i
2M

)4

. (6.163)

This is valid for mass values around mγ‘ ∼ 10−18eV

There are other narrow-band resonances that can be observed when the mass ratio mγ‘

is somewhat smaller than 2mφ or when the mass ratio is given by nmφ/2. However, these

resonances are placed atK ̸= 0 values, unlike the low-momentum band with n = 1. Further-

more, the width of these resonances decreases as the amplitude of the dilaton decays. The

phenomenon of redshifting of momenta in FLRW spacetime serves as a hindrance to the

significant growth of any mode, hence preventing the depletion of the dilaton background’s

energy density in such scenarios.
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6.6 Analysis of dark matter content

The objective is to investigate the various factors in order to identify specific scenarios in

which dark photons are the sole constituents of dark matter. The generation of dark mat-

ter should occur prior to the point at which the scales of the cosmic microwave background

(CMB) exhibit dynamic behavior, thereby suggesting that its emergence takes place during

the early stages of the radiation-dominated epoch. When the dilaton initiates its oscilla-

tory motion at a Hubble parameter approximately equal to the dilaton mass H ≈ mϕ, it

retains a minuscule fraction of the overall energy content of the cosmos. Following a sub-

stantial transfer of energy from the dilaton to dark photons, an observable nonlinear trend

is detected. To facilitate the examination , we make the assumption that a significant por-

tion of the dilaton’s energy is converted into DPs, hence limiting its impact on the overall

dark matter composition. If dark photons possess nonrelativistic characteristics upon their

initial formation, their present abundance can be mathematically represented as:

Ωγ′h2

0.12
≈
( mγ‘

10−17eV

)1/2( ϕ0,i
1016GeV

)2

. (6.164)

In this context, we consider the value of g∗ to be 10.75, representing the effective amount of

relativistic degrees of independence in the plasma during its creation phase.

The data of the (CMB) impose two additional constraints on the parameter space under

consideration. To ensure the production of dark matter occurs prior to the re-entry of cosmic

microwave background (CMB) scales into the horizon, a lower limit is established for the

vector mass, namely when mγ‘ =
mϕ

2 . Considering the principle of entropy conservation and

, the redshift of production, denoted as z∗, can be expressed a0

a∗ − 1.

z∗ + 1

1.9× 105
=

(
ϕ0,i
M

)2 ( mγ′

10−17eV

)1/2
. (6.165)

If the redshift of matter-radiation equality is about 3400, it is possible that dark photons

with mass values less than or equal to mγ‘ ≤ 10−17eV, might not have originated early

enough if the ratio of the initial field value to the Planck mass is less than 1. However, it is

possible to make adjustments for lighter masses by raising the amplitude, as the relation-

ship between the initial phase (ϕ0,i) and the mass (M) may be expressed as ϕ0,i

M ∝ m
−1/4
γ .

Furthermore, within the framework of this particular model, it is observed that the VEV
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of the dilaton is generated as a consequence of quantum fluctuations occurring during the

process of inflation. The emergence of an isocurvature perturbation occurs after the decay of

DP, as the value of ϕ0,i fluctuates across disconnected Hubble patches. The power equation

utilized to describe the perturbation arising from inflation is given by PS =
H2

I

(πϕ0,i)2
, and

HI represents the Hubble scale during inflation. Under the assumption that the energy

density of the photon field (Ωγ‘) is equal to the energy density of dark matter (ΩDM ), the

limits imposed by the (CMB) on isocurvature perturbations impose a restriction on the

Hubble scale of inflation.

HI < 3× 1011GeV
( mγ‘

10−17eV

)−1/4

. (6.166)

6.7 Discussions and conclusions

A distinctive decay mechanism has been identified in a large vector field that is dynami-

cally connected to an oscillating scalar field. In addition to the commonly observed strong-

coupling phenomenon in axion-dark photon models, the presence of an oscillating dilaton

with a mass twice that of its corresponding dark photon can result in significant vector

generation, even in cases where the amplitudes of the oscillations are minor. This method

allows for the synthesis of DPDM across a wide range of masses, without requiring signif-

icant couplings. However, in order to achieve ideal parametric resonance in circumstances

with low coupling, it is necessary to have a certain mass ratio of mγ′/mφ = 1/2. The inquiry

arises over the fundamental ultraviolet (UV) model that could provide an explanation for

the masses of both the dark photon and dilaton.

In the preceding section, we examined the implications of adhering to cosmic microwave

background (CMB) data, which imposes constraints on the mass of vectors and the intensity

of their couplings. It is noteworthy that the achievement of remarkably low masses in

the range of 10−20to10−18 eV requires relatively modest couplings. To obtain a thorough

evaluation of the relic abundance of dark photons and dilatons, it is necessary to conduct

complex computational simulations in a 3 + 1D framework, taking into account factors

such as particle mass and starting field amplitude. The simulations conducted initially are

consistent with the estimations presented in previous sections; however, a comprehensive

investigation of the topic still has to be undertaken in future research.
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The rapid advancement of vector modes, along with the non-linear dynamics observed dur-

ing the closing of production, may potentially give rise to a gravitational wave background.

This could provide an opportunity to thoroughly examine and evaluate the aforementioned

model. While achieving accurate predictions would require a rigorous quantitative analysis,

it is plausible that anticipated signals could resemble those generated by resonantly pro-

duced dark photons originating from a developing axion. However, it is worth noting that

the amplitude of these signals may not be significantly high. The limitations of stochastic

backgrounds are primarily determined by the energy composition of the cosmos and the rel-

ative scale of gravitational-wave wavelengths at the time of their emergence. In the model

under consideration, it is shown that both the vector and dilaton exhibit characteristics of

being heavy relics. The relative abundance of these particles is found to be influenced by

the ratio of scale factors during their formation, as well as the shift from radiation to matter

dominance. It is conceivable that the extended duration between the initiation of oscillation

and the onset of the production phase could enhance the detectability of signals. However,

the intricacies of gravitational dynamics indicate a contrasting perspective. The topic of

discussion pertains to wave emission and the considerations related to modeling.

The emission of waves is consistently observed at comoving scales that are about compa-

rable to mφ. The scales in question are influenced by the factor of a/ai, which results in

a greater level of inclusion inside the horizon during the production phase. Interestingly,

there is a delicate equilibrium between these two phenomena, indicating that the genera-

tion of gravitational waves, even if highly efficient, may not exceed the presently measured

levels, which are estimated to be approximately ΩGW , 0 ≈ 10−15, as shown in previous re-

search[68].

Although the precise source of the dark photon’s mass remains undetermined, the potential

association of this mass with the Higgs process raises concerns regarding the feasibility of

DPDM due to the emergence of vortex patterns during its synthesis. Furthermore, as indi-

cated by prior scholarly investigations[69], it has been observed that Stueckelberg masses

within the domain of string theory exhibit a minimum threshold, implying that any mass

below this threshold could potentially arise as a consequence of the Higgs mechanism. The

imposition of vortex formation limitations appears to have a significant influence on the

majority, if not all, suggested methods for the generation of ultralight DPDM. However, the

small magnitude that have been illuminated could potentially circumvent these limitations.
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The notable disparity between dilaton oscillations and the generation of dark photons may

serve to maintain the energy density of the vector below the crucial threshold required for

the development of vortices. Further investigation into the variations in vortex formation

limits, as influenced by different parameters, and the consequences of interactions with

the photon of the Standard Model and consequent affects on plasma, will be explored in

forthcoming studies.

During the course of our deliberations, it has been proceeded on the premise that the mass

of the DP remains independent of the variable φ. The aforementioned relationship, in con-

junction with the kinetic coupling denoted asW (φ), is influenced by the principles of higher-

level physics, namely those pertaining to ultraviolet (UV) phenomena. Although this work

does not delve into an in-depth analysis of a UV-centric theory,It is plausible that the respec-

tive kinetic & mass terms may be influenced by the variable φ, possibly due to phenomena

such as radiative corrections. In order to provide more clarification, it should be noted that

resonance at small amplitude remains present even when the coupling function W (φ) al-

ters the mass term rather than the kinetic term of the vector, as the dynamic equation

components of both terms are equivalent. Interactions of this kind, in conjunction with

dark photon self-interactions, have the potential to impact the efficiency of DP generation

and the parameters governing DPDM. Subsequent examination of these intricacies will be

undertaken in forthcoming research endeavors.
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