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Abstract

In this study we have checked the validity of Zipf’s Law for city size data of of U.S, China,

Pakistan and India. Zipf’s Law says that, the distribution of city sizes follows a Power Law

distribution with shape parameter equal to 1. We have used two-step approach to check the

validity of Zipf’s Law, where in first step we test (using goodness of fit test) if the distribution

of city sizes follow a Power Law distribution and in second step, we estimate the Power

Law exponent whether its value is equal to unity or not. The HILL, OLS, MOLS, ML and

MVU estimation techniques are considered for the estimation purposes. Graphical display is

presented to overview the nature of the city size data sets. The Kolomogrove-Simirnov (KS)

goodness of fit test is applied to check the distributions of the all the data sets, assuming the

Power Law distribution under null hypothesis. The KS statistics is also used to estimate the

minimum threshold values.

Simulation study is carried out to point out an efficient estimator for the estimation of

the Power Law exponent. Base on the bootstrap simulation we conclude that minimum

variance unbiased estimator (MVUE) is more efficient and unbiased. The range, in which

the exponent value is one, is to be found through rolling sampling technique under the

considered estimation methods. A nonparametric analysis is carried out to give a more

detailed description of the Power Law exponent. It will be shown, through kernel density

plots (a nonparametric technique), that the Power Law exponent distribution is uni-modal.
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CHAPTER 1

Introduction

City size distribution is a broad term. A lot of work has been done in analyzing the

city size distribution for both developing and developed countries. Various dimensions for

modeling the size of the cities have been proposed. It has been investigated through these

studies whether there exists evidence that some cities grow faster than other cities? What are

the basic reasons for these particular growth patterns? What are the problems associated with

these growth rates?

Cities are the center of many economic activities, commonly cities are of different sizes

and the main focus of the researchers is to study the size distribution of cities. Therefore, it

is necessary to put attention on the urban expansion of different countries through city size

distribution. Cities are important centers for poverty reduction and development in both urban

and rural areas. They play a vital role for the national economic activity and provide a link

between rural areas. Urban areas enjoy properties like high literacy, better health, and greater

access to social services. When the necessary infrastructure is not developed or when policies

are not well planned then rapid and unplanned growth will lead unsustainable development,

pollution and environment deprivations. The criteria for classifying an area are as urban
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CHAPTER 1. Introduction

on the basis of following characteristics like population density; proportion employed in

non-agricultural sectors; the presence of infrastructure such as paved roads, electricity, piped

water or sewers; and the presence of education or health services. Thus urbanization is the

extremely concerned phenomena that cannot be ignored.

The proper definition of the city is a burning topic in literature, while analyzing city size

distribution, it is very important to consider a proper urban unit. As we know that in different

time period different proportion of the country’s population are living in the cities. Any study

of Zipf’s Law for city size distributions usually faces the problem that what is meant by city.

The definition of cities varies with respect to the country as well as within the country after

some period of time. Any city can be defined as:

1. Administratively defined city or politically defined city e.g. area defined by a committee

of a town.

2. Economically defined cities (Metropolitan cities) where most of the people are not en-

gaged in the agriculture and there exists high employment and there exist characteristics

of the urban.

To highlight the effect of definition of cities on the Pareto exponent Rosen and Resnick

(1980) checked the validity of Zipf’s law for six countries, considering the proper city and

metropolitan areas. He found that the value of the index is more close to unity for the

metropolitan areas as compared to the proper city.

When compiling information on city population size, it is better to use data or estimates

based on the concept of urban agglomeration. When those data are not available, population

data that refer to the city were used. However, when the administrative boundaries of cities

remain fixed for long periods of time, they are likely to misrepresent the actual growth of a

city with respect to both its territory and its population.

3



CHAPTER 1. Introduction

Many natural phenomena’s like distribution of wealth and income in a society, distribution

of face book likes, distribution of football goals follows power law distribution (Zipf’s Law).

Like above phenomena’s, distribution of city sizes also follow Power Law distribution. Auer-

bach (1913) first time gave the idea that the distribution of city size can be well approximated

with the help of Pareto distribution (Power Law distribution). This idea was well refined

by many researchers but Zipf (1949) worked significantly in this field. The distribution of

city sizes is investigated by many scholars of the urban economics, like Rosen and Resnick

(1980) , Black and Henderson (2003), Ioannides and Overman (2003), Soo (2005), Anderson

and Ge (2005) and Bosker et al. (2008).

Zipf’s law states that:

"The rank of cities with a certain number of inhabitants varies proportional to the city sizes

with some negative exponent, say that is close to unit".

In other words, Zipf’s Law states that the product of city sizes and their ranks appear

roughly constant. This indicates that the population of the second largest city is one half

of the population of the largest city and the third largest city equal to the one third of the

population of the largest city and the population of nth city is 1
n of the largest city population.

This rule is called rank, size rule and also named as Zipf’s Law. Hence Zip’s Law not only

shows that the city size distribution follows the Pareto distribution, but also show that the

estimated value of the shape parameter is equal to unity.

According to Auerbach (1913), the relation between city sizes and their ranks is RiPi = C

, where Pi is the population of the ith city, Ri denotes the rank of the ith city and A is a positive

constant. The relation RiPi = C, states that when we sort cities in decreasing order with

respect to their population, rank them and then the product of rank and there population is

roughly a constant. We elaborate here the rank size rule in detail. Let us consider cities of a

4
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country, count the number of inhabitants in that city (city population), then one can arrange

the cities in the descending order, so that the most populated cities get rank equal to 1, the

second most populated city gets rank equal to 2 and so on. After ranking the cities and then

multiply rank with the population, we get a constant relation. Let us consider the city size

data of ten most populated cities of Pakistan. The results of the above relation are shown in

the following table.

City Name Rank Size Product

Karachi 1 5208132 5208132
Lahore 2 2952689 5905378
Faisalabad 3 1104209 3312627
Rawalpindi 4 794843 3179372
Hyderabad 5 751529 3757645
Multan 6 732070 4392420
Gujranwala 7 600993 4206951
Peshawar 8 566248 4529984
Sialkot 9 301609 2714481
Sargodha 10 291362 2913620

From the above table, it is apparent that there exists approximately a constant relationship

between the rank and size of the Pakistani city for the year 1981 and the range of the constant

relation is between [2714481, 5905378]. We apply logarithm on both sides of the relation

RiPi = A.

logRi + logPi = logC (1.1)

logRi = logC− logPi (1.2)

From equation 1.2, we can see that the Pareto curve is in linear form and we can easily plot

this linear equation in double log scale. The interpretation of the slope term is given in detail

5



CHAPTER 1. Introduction

in the next section. Generalized form of Equation 1.2 can be written as:

Ri =CPi
−(α+1) (1.3)

If Ri = p(xi) and Pi = xi then above equation can be written as:

p(xi) =Cxi
−(α+1) (1.4)

From equation 1.4 it is apparent that p(xi) diverges as x→ 0 . It means that the distribution

must deviate from the Power Law distribution below some minimum value called Xmin .

Hence equation 1.4 can be normalized as
∫

∞

xmin
p(x)d(x) = 1 to obtain the value of constant

C only if x and α obey the following condition α > 0 and x ≥ Xmin. Hence equation 1.4

becomes:

p(xi) =Cxi
−(α+1),α > 0,x≥ xmin > 0 (1.5)

In this study, we have used the two step approach to check the validity of Zip’f Law following

Terra (2009). In the first step, we check, by applying goodness of fit test, that whether the city

size data follow Power Law distribution within a country. In the second step, we estimate the

Power Law exponent and check that whether its value equals to unity (Zip’f Law) or not. It is

to be noted that the usual approach to test the validity of Zip’f Law based upon the estimated

value of the Power Law exponent is misleading. Hence we need to check at first step that

whether the underlying distribution is Power Law or not.

Testing only for the equality of Power Law exponent, ignoring the value of the constant,

does not constitute a proper test of the rank size distribution and the conclusion drawn may be

misleading (Rosen and Resnick (1980)). Alperovich (1984) concluded from his study that the

6
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confirmation of rank size distribution is just to obtain the value of the Power Law exponent

equal to unity and the value of the constant is equal to the population of the largest city

which is not supported by the data. Instead if the confirmation of the rank size distribution is

considered in such a way that the value of the Power Law exponent is equal to unity and the

value of the constant is taken equal to the average of the product of the ranks and population

of cities, then this confirmation is supported by the data. This means that the condition of

taking the intercept in simple linear regression line equal to the size of the largest city is

misleading. Alternatively, we should take the intercept equal to the average of the product of

the ranks and population of cities.

Related to the city size data, Eeckhout (2004) have discussed two important ideas.

1. When the city size data is considered as a whole with no restriction on their size, the

Lognormal distribution best fits the data.

2. When the true distribution is Lognormal then the plot of rank size is concave and the

value of the Power Law exponent decreases. This means that a sample size can be

found for which the Zipf’s Law holds exactly.

Soo (2007) pointed out that city size is too much studied due to following two main

reasons

1. Zipf’s Law and Power Law exponent provide useful information related to the distribu-

tion of urban system.

2. The Power Law index is closely related to the Gini coefficient. As Gini coefficient is

used to measure the inequality of income in a society, similarly Power Law index is

also used to study the distribution of population in the cities.

7
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We know that the number of cities with certain population (sample size) affects the estimated

coefficient.

If we use the first criterion, then we will get a small number of cities for some countries,

while for the other countries we will get a large number of cities. Using this criterion, we

might include different fractions of urbanized population. On the other hand, if we use the

second criterion, we will get the same number of cities for each country but the limitation

of this criterion is that, for the small countries, the nth ranked city might be a village and

for the large country the nth ranked city might be a large city. In this study, we consider the

first criterion but the threshold xmin is fixed by using Kolomogrov-Simernov (K.S) statistics

following

As the logarithmic form of the Power Law distribution is log(Ri) = log(C)− (α +

1) log(Pi) ,the Power Law exponent is linear in this case. So we can easily plot Log-Log plot.

Here α is the elasticity function α =−d log(y)
d log(x) i.e. change in the number of cities having a

particular size due to the change in city size. The negative sign shows that the number of

cities decreases as the city size increases.

Also the Zipf’s Law explains the fact of the equality of two forces, named as force of

diversification and the force of unification in the economy. Force of diversification is defined

as the tendency of the population to be split into many communities. This force is related

to the economic location and raw material. There exists reverse tendency of the force of

unification. This force is defined as the tendency of gathering of population in one community.

If all persons in a society located at the same point, then there is maximum force of unification.

Hence it can be concluded here that as a result of high force of diversification, the large

number of small communities will be formed and as a result of the force of unification, small

number of large communities will be formed.

8
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1.0.1 Variation Pattern in Power Law Exponent

In most of the previous studies, the estimated values of the Power Law exponent are

based on the fixed sample size. All these studies rule out the possibility of variation in

the value of the Power Law exponent with respect to size of the sample. It is to be noted

that some scholars (Rosen and Resnick (1980), Black and Henderson (2003) and Eeckhout

(2004)) concluded that the estimated value of the Power Law exponent is very sensitive to the

choice of the sample size. In this study, we have considered a rolling sampling rather than

considering the fixed sample size to check the effect of the sample size on the value of the

exponent.

Nonparametric analysis is also used to check the variation in the estimated value of Power

Law exponent likewise recursive sampling. Kernel density plots can be used to analyze the

estimated values of the Power Law exponent using nonparametric approach. As we know that

kernel density method of estimation is widely used nonparametric method for estimating the

probability density function of a random variable. The main advantage of constructing the

Kernel density plot is that it gives us a more clear description of how the values of the Power

Law exponents are distributed. Kernel density plot also describe whether the distribution of

Power Law exponent is unimodal or bimodal. In this study, we have used a nonparametric

analysis to get a more clear interpretation of how the values of the Power Law exponents

obtained from the recursive sampling are distributed.

1.0.2 Objectives of the study

The main objectives of this study are as follows.

1. To study the validity of Zipf’s Law for the Developed (U.S, China) and developing

countries (India, Pakistan) using different estimation techniques.

9
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2. To compare different estimators based on their Bias and MSE using real life data and

bootstrap simulation.

3. To check the sensitivity of the Power Law exponent by using Rolling sampling.

4. To observe the distribution of Power Law exponent using nonparametric technique.

1.0.3 Organization of Study

Chapter 2 explains literature review on Zipf’s Law. The methodology about the existence

of the Zipf’s Law for the city distribution is discussed in Chapter 3. In chapter 4, we

empirically check the validity of Zipf’s Law. In chapter 5, we adopt the Rolling sample

technique and nonparametric analysis for checking the variation in estimated value of Power

Law exponent. Chapter 6 comprises the concluding remarks and recommendations for further

study.

10
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Review of Literature

As we know that cities are very complex systems that differ in many ways like in their

size, scale and shape. Related to city size distribution, two important questions have been

raised by urban economists. The first question concerns with how cities sizes grow relative

to each other, the second is about which theoretical distribution better fits the city size data.

Most empirical studies related to the former question suggest that the relative size and rank of

cities remain stable over time. With respect to the second question, literature argue strongly

that the Power Law distribution fits best.

The idea that city size distribution is well approximated by Pareto distribution (Power

Law distribution) is first argued by Auerbach (1913). While studying the distribution of cities

in Germany, he concluded that there exists an empirical relationship between Rank and Size

of the cities. The linear trend exists between these two phenomena on a double logarithmic

scale. Ever since this theory proposed by Auerbach (1913) , become widely held opinion

among researchers in a variety of disciplines.

Zipf (1949) made a major contribution in this field. He pointed out that city size distribu-

tion can not only be described by Power Law distribution, but the size distribution of the city

11
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can take a specific form of Power Law distribution when the value of the shape parameter

is equal to 1. He also found that the constant value is equal to the population of the largest

city. According to Zipf (1949) there exists an empirical relationship between size and rank

of cities. When cities are ordered in decreasing pattern, the second largest city is half of the

population of the largest city and third largest city is one third of the size of the largest city

and so on.

Rosen and Resnick (1980) in their paper they examined the city size distribution. They

used the city size data in 44 countries and found the average value of the Power Law exponent

equal to 1.136 which is not much close to 1, indicating that population in most of the countries

are more evenly distributed as compared to that predicted by the rank size rule. The range of

the Power Law exponent lies in the interval [0.81, 1.96]. Out of 44 Countries, the value of

the Power Law exponent is less than 1 for only 12 countries. They explained the variation

pattern in the Power Law exponent and concluded that the value of the Power Law exponent

is sensitive to the definition of city and the number of cities included in the sample. In order

to check whether the larger cities grow faster than the smaller cities, the authors included

a non-linear term in the Pareto equation. This inclusion yielded positive coefficient of the

non-linear term which indicates that large cities grow faster than the smaller cities.

A more detailed study on the city size distribution is done by Guérin-Pace (1995). He has

considered the city size data of French for almost two centuries (1831 and 1990). He included

the city which has a population more than 2000 inhabitants and checked the sensitivity of

the Pareto exponent with respect to the sample selection criteria. There are many papers

in which the model is developed to test directly the validity of Zipf’s law. Gabaix (1999)

gave a statistical explanation of Zipf’s Law. In his article, he showed that if different cities

grow with the same expected rate and with same variance (Gibrats Law) than, in the long run

12
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(Steady state), the distribution of cities follows Zipf’s Law.

Ioannides and Overman (2003)used the nonparametric method to evaluate Zipf’s exponent

instead of using regression of log of rank on log of the size of cities to estimate the Zipf’s

exponent. By using metro area of U.S for the time period 1900-1990, the Zipf’s exponent

is calculated from the mean and variance of growth of cities rate. The results of this paper

suggest that value of the Zipf’s exponent vary across the cities.

Soo (2005), empirically tested the validity of Zipf’s Law using the city size data of 73

countries. He had used two estimation methods i.e. Hill and OLS. By using OLS method

of estimation, the Zipf’s Law was invalid for more than half of the sample (53 out of 73

countries (73% of the sample)) and this result is consistent with Rosen and Resnick (1980)

who rejected Zip’f Law in 36 out of 44 countries. Soo (2005) also rejected Zipf’s Law for

30 out of 73 counteries (41% of the sample) using HILL estimation method and this results

are not the same as those of the Rosen and Resnick (1980). The author concluded that the

value of the estimate of the Power Law exponent depends upon the estimation technique we

adopt. Soo (2005) also tried to explain variation in the Power Law exponent and argued that

political economy is the main factor which affects the value of the Power Law exponent. In

this paper, it is also concluded that the variation in the value of the Power Law exponent

is better explained by political economic variable. One more results the author got is that

the average value of the Pareto exponent for the urban agglomeration is less than 1 and thus

Zipf’s Law does not hold.

Gan et al. (2006) claimed that Zipf’s Law is spurious (fake) in explaining the city size

distribution. To prove their statement, the authors used the Monte Carlo simulation technique

to examine the rank size relation between the dependent and independent variables. To study

Zipf’s Law, they considered two real data sets of US urbanized area for the years 1990 and

13
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2000, china data set for the years 1985 and 1999. Two main findings have been obtained.

First, the values of R2 for both countries were very high indicating that Zipf’s Law fits well

to all these cases. Second, the estimated value of β was close to 1 but their corresponding

standard deviation was showing that β is not equal to 1 statistically for all four cases. On the

basis of standard deviation of β , it is concluded that rank size rule does not hold for the four

cases (data sets). Does high value of R2 imply that the city’s size follows the power law? This

statement was checked with the help of non-parametric (KS) test. In case of US data for the

year 1990 and 2000, the Pareto distribution was not rejected while all other distributions were

rejected. For the case of china, the KS test rejected all the distributions with p= 0.000 which

implies that Chinese data does not follow a Pareto distribution. Therefore, it is concluded

that the Zipf’s Law with a high degree of explanatory power does not necessarily imply that

city size follow a Power Law distribution.

Moura Jr and Ribeiro (2006) used the Zipf’s law for the cities in Brazil. They collected

data only from those cities whose inhabitants are more than 30,000. They considered city

size data for the time period 1970, 1980, 1991 and 2001. The results reveal that the Brazilian

population distribution does not follow a Power law seem like as other countries. Estimates

of Power Law exponent for the census 1970 and 1980 are 2.22±0.34 and for 1991 and 2000

was 2.26±0.11. The results obtained from MLE’s for 1970 are 2.41 and for the other three

years was 2.36.

Nota and Song (2007), analyzed Zipf’s exponent by changing the sample size and

truncation point by using rolling sampling. They estimated the values of the exponent and

also checked the elasticity of the exponent with respect to the sample size. In this paper the

authors considered U.S. (1990 and 2000) and China (1985 and 1999) data. Two estimation

techniques were used in this paper OLS and modified OLS. By using Rolling sampling,
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they concluded that rank size rule holds for the selected sub-samples. In order to check the

elasticity of the Power Law exponent with respect to the sample size, the authors regressed

the estimated coefficients on the sample sizes. In case of U.S data, one percent increase in

sample size gave 0.15 percent decrease in the value of the estimated coefficient. Therefore,

the authors concluded that Zipf’s exponent depends upon the sample size and rank size rule

does not holds always.

Sarabia and Prieto (2009), have introduced Positive Pareto Stable (PPS) distribution to

model the city size data. They demonstrated the problem of selecting a correct truncation

point for estimating the Power Law. For the existence of optimal points, Akaike Information

Criterion (AIC) and simulation study are used under different assumptions. Different kinds of

heavy tailed distributions are considered in this paper. They also described the methodology

for the city size data of Spain for optimum estimation of Power Law distribution and came

across the conclusion that this new distribution (PPS) out performs other (Tsallis, Pareto and

Lognormal) distributions.

Gangopadhyay and Basu (2009), gave a new structure to analyze the city size distribution.

He has used two-step approach to check the validity of Zipf’s Law. In the first step, the

author formally tested that the distribution of cities follows the Power Law distribution and

in the second step, the exponent of the Power Law distribution is estimated. By using the

Monte Carlo simulation, the author compared the performance of MVU estimator with OLS,

MOLS and HILL estimators. The MVU estimator performed better and turned out to be

unbiased and more efficient as compared to the other estimators. To check the validity of

Zipf’s Law empirically, based on the two step approach, the author has used city size data of

155 countries. It is concluded that Zipf’s Law holds for 62 countries.

Akhtar and Dhanani (2012) first time investigated the city size data of Pakistan. This
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study has been made in order to check that whether the city size data in Pakistan follow any

of the three rules i.e. Law of Primate city, City size pyramid, rank size rule or any other? In

order to check the above mentioned laws, the authors have considered the city size data of

the years 1951, 1961, 1972, 1981 and 1998. The authors concluded that the city size data for

these time periods is well approximated by City size pyramid.

Fazio and Modica (2012), in their article, studied the relation between city size distribution

and the truncation point. The author considered the U.S census data for 2000 and 2010. They

applied the recursive truncation approach to estimate the Zipf’s Law. By calculating the

recursive estimates, the authors showed the presence of Zip’f Law for each truncation sample

of the distribution of US cities. Also the authors applied the above methods to simulated

data set. The results confirmed the sensitivity of truncation point. Based upon the test results,

using real and simulated data sets, they highlighted the difficulty to distinguish between

the Power Law upper tail and the tail of Log-normal. By using the census data set, the

authors obtained recursive estimate of the Power Law exponent which showed that as the

observations in the right tail increases, the estimated value of α decreases.

González-Val et al. (2013) used four densities (Lognormal, q-exponential, Log-Logistic

and Double Pareto Lognormal) for analyzing the city size distribution of urban economic.

The data sets have been taken from the US, Italy and Spain from 1900 to 2010 with no

restriction on the city size. MLE method of estimation was used for estimating the parameters

of above densities. In order to check the goodness of fit for the data, Kolmogorov-Smirnov

and Cramer’s-von Mises test was performed. To check which distribution better fits the

data, they computed AIC (Akaike Information Criterion) and BIC (Bayesian Information

Criterion). Double Pareto Lognormal distribution best fitted all the data sets in most of the

cases i.e. (86.76%).
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Luckstead and Devadoss (2014), have analyzed the city size data of China and India for

1950-2010 for three probability distributions (Pareto, Lognormal and General Pareto). The

authors studied how the distribution of cities gets change during these time periods. It is

apparent from this study that the world two famous countries have similar trend. The chines

data set for the time period 1950-1990 is well modeled by Log normal distribution, where

as it is well modeled by Pareto distribution for the time period 2010 but it does not follow

Zipf’s Law. Indian city size data for earlier time period is also well modeled by lognormal

distribution and Zipf’s Law for the time period 2000 and 2010 holds.

Amalraj et al. (2014) defined Pareto positive distribution as a new model to describe the

city size distribution of a country. PPS distribution is defined as a flexible model for fitting

the entire range of a country. Pareto distribution is treated as special cases of PPS distribution.

The PPS distribution is compared with Pareto distribution and Log-normal distribution. They

predicted number of cities for future time period by using Lagrange method of interpolation.
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Methodology

As the main objective of our study is to examine the city size distribution for the developed

and developing countries i.e. we want to examine whether city size distribution for U.S (1990,

2000), China (2005, 2010), Pakistan (1981, 1998) and India (2001, 2011) follow Zipf’s Law.

We have used parametric methods to estimate Power Law exponent applied the goodness of

fit test of the above data sets. The graphical representation e.g. histogram and log-log plots

are also used in this study to examine the rank size rule. We know that when we plot the log

of rank versus log of city size yields a straight line having slope equal to -1 which confirms

the validity of Zipf’s Law ( Zipf (1949)).

The value of the Power Law exponent is too much sensitive to the sample size (number

of cities to be included in the analysis) and the truncation point xmin (below which we

truncate the data). In order to check this argument we have used recursive sampling and

non-parametric analysis (Kernel density plots are made to check the distribution of the Power

Law exponent). Detail of these techniques is given below..
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3.1 The Model

Let x denotes the size of cities then the probability density function (pdf) of Power Law

distribution is given by

f (x) =
α

xmin

(
x

xmin

)−(α+1)

,x≥ xmin > 0,α > 0 (3.1)

where α is shape and xmin is scale parameter.

The cumulative density function of Power Law distribution is given by

F(x) = 1−
(

x
xmin

)−α

,x≥ xmin > 0,α > 0 (3.2)

One main goal of this study is to investigate the distribution of city size data and to use an

accurate and robust estimation method to estimate the empirical distribution of city size data.

For that purpose, correct fitting of Power Law distribution to empirical data is very important.

Most of the previous studies used different criteria to fix the threshold value xmin as well as

considered different estimation methods to estimate the scaling parameter a of Power Law

distribution.

3.2 Parameters Estimation of Power Law distribution

We know that most of the previous studies considered different estimation techniques to

estimate the Power Law exponent. In this study we have considered five estimation techniques

and compared them on the basis of their estimated values.
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3.2.1 Estimation of Scale Parameter (xmin)

The first step in the fitting Power Law distribution is to correctly estimate the value of its

scale parameter xmin which is also known as the threshold from above which we consider the

data set. It is commonly discussed that the estimated value of the shape parameterˆof the

Power Law exponent is very much sensitive to the choice the value of xmin After estimating

this threshold we will have the data for which the Power law distribution is valid. We adopt

here the procedure of Clauset et al. (2009) to estimate the threshold value. We choose value

of x as a (xmin) which minimizes the KS statistics. The detail of this procedure is given below.

To find the best value of the xmin, we go through our data set and choose each value of

the x as xmin, truncate the data below this and compute the empirical cdf for each truncation

value as:

F(x) = 1−
(

x
xmin

)−α

,x≥ xmin > 0,α > 0 (3.3)

On the basis of that truncated data, we calculate KS statistics which is the difference between

the empirical cdf and the corresponding theoretical cdf (1, n−1
n , n−2

n , .......2
n ,

1
n) We choose

that value of X as estimate of the threshold (xmin ) for which the value of KS statistics is

minimum.

It is to be noted that the lower population threshold for a city to be included in the sample

varies from one country to another. On average, larger countries have higher thresholds, but

also a larger number of cities in the sample and smaller countries have smaller threshold.

3.2.2 Estimating Shape Parameter (α̂)

After estimating the Scale Parameter (xmin) correctly, we are left with the data set for

which the Power Law distribution gives best fit. The next step is to estimate the shape
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parameter α of Power Law distribution by using a precise and accurate method. We know

that the validity of Zipf’s Law extensively depends upon the estimated value of its exponent.

In this study we have used five different estimation techniques (OLS, MLE, MOLS, HILL

and MVU) following Terra (2009) to estimate the value of the Power Law exponent.

3.2.3 Ordinary Least Square (OLS) Estimator

The Ordinary Least Square method has been widely used for estimating the Pareto index

(Gan et al. (2006) and many other). The OLS estimate of the Pareto index is the slope of the

following equation.

ln(Ri) = α−β ln(Pi)+ ei, i = 1, ...,n (3.4)

where Ri is rank of ith city in decreasing order, Pi is the population of ith city and ei is error

term.

3.2.4 Modified Ordinary Least Square (MOLS) estimator

The Ordinary Least square estimation method gives biased estimate for small sample

size.Gabaix and Ibragimov (2011) gave a solution to this problem and suggested to use Ri− 1
2

instead of R− i to reduce the Bias. Thus equation 3.4 becomes

ln(Ri−
1
2
) = α−β ln(Pi)+ ei, i = 1,2,3, ...,n (3.5)

The standard errors of estimated Power Law exponent is given by β̂

√
2
n
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3.2.5 Hill’s Estimator

An alternative approach for reducing the bias in Ordinary least square method in small

sample size is to use Hill et al. (1975) estimator. This estimator is defined as

ˆβ HILL =
n−1

∑
n−1
i=1 (P(i)−P(n))

(3.6)

Where, Pi is the population of ithrankedcitysuchasP1 ≥ ...≥ Pn and Pn is the population of

city with rank n.

The standard error for the above estimator is given by

σ( ˆβ HILL) = ˆβ HILL

(n−1

∑
i=1

(ξ − 1
β HILL )

2

n−2

)
(n−1)−

1
2 (3.7)

where, ξ = i(lnP(i)− lnP(i+1)). According to Ioannides and Overman (2003), under the

null hypothesis that the underlying data follow a Pareto distribution, the hill estimator is the

maximum likelihood estimator.In fact, the HILL estimator is almost same as ML estimator.

By comparing both estimator it can be seen that, the numerator of HILL estimator is n-1

instead of n, which is the numerator of ML estimator.

3.2.6 Maximum Likelihood Estimator (MLE)

The maximum likelihood estimator can be determined by taking the first differential of

Log of Likelihood of Power Law distribution and equating it to zero. MLE of the scale

parameter is:

ˆβ MLE = n
[ n

∑
i=1

ln
( xi

xmin

)]−1

(3.8)
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3.2.7 Minimum Variance Unbiased Estimator

Jani and Dave (1990) have suggested to use Minimum variance unbiased estimation

technique for exponential family of distribution. A minimum variance unbiased estimator is an

unbiased estimator which possess a minimum variance among all unbiased estimators.Likeš

(1969) initially proposed the minimum variance unbiased estimators for estimating the Power

Law exponent. The MVU estimator can be defined as

(̂β MV E) =

(
1− 2

n

)
(̂β MLE) (3.9)

where β̂MLE has been define above.

3.3 Goodness of Fit

The Goodness of fit tests are used to check whether the empirical distribution of variable

follow the theoretical. In literature there are many tests that are used to check the goodness of

fit of the data. Kolmogorov-Smirnov (KS) test, Anderson-Darling (AD) test and Chi square

are the mostly used tests. To test how well Power Law distribution fits our observed data, we

have performed KS goodness of fit test.

3.3.1 Kolmogorov-Smirnov test

Kolmogorov-Smirnov (KS) test is a nonparametric and is one of the most commonly used

goodness of fit test. Let X1,X2, .....,Xn be i.i.d observations from some unknown distribution

with cdf S(x). We want to test the hypothesis that S(x) comes from some specified distribution

with distribution function S∗(x) . We have the following hypothesis
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H0 : S(x) = S∗(x), vs H1 : S(x) 6= S∗(x)

where, Sx is the theoretical and S∗(x) is the empirical distribution functions. As we know that

Kolmogorov-Smirnov test measures the distance between the theoretical distribution function

S(x) and the empirical distribution function S∗(x). The KS test statistic is defined as.

K = supx|S∗(x)−S(x)| (3.10)

We reject the null hypothesis when the test statistics K is greater than the critical value.

3.4 Bootstrap Investigation of Pareto Index Using Differ-

ent Estimators

We have discussed in the previous sections that OLS, MOLS and Hill estimators are

biased in the small sample. In order to check the small properties of these estimators, we

adopt bootstrap simulation. By using bootstrap simulation, we compare the above estimators

on the basis of their Biases and Precisions.

3.4.1 Simulation Design

TWe assume that the considered data sets follow Power Law distribution. Samples of

different sizes (20, 50, 100 and 150) from the city size data for different countries have been

selected and estimated the Power Law exponent by using different estimation techniques for

each sample of given size. This process is repeated 1000 times and the results have then been
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averaged.

Here we consider two criteria to evaluate the properties of different estimators. The first

criteria we have considered is the Percentage relative bias defined given as

PRB =

( 1
R ∑

R
r=1 θ̂r−θ

θ

)
×100 (3.11)

PRB =

( ˆ̄
θr−θ

θ

)
×100 (3.12)

where, θ denotes the true value of parameter and θ̂r is its estimated value on the basis of "r"

replications (r = 1,2,3, .......,R).

The second criteria to evaluate the performance of those proposed estimators are to find MSE,

MSE =
1
R

R

∑
i=1

(θ̂r−θ)2 (3.13)

3.5 Elasticity of Power Law Exponent with Respect to Trun-

cation Point and Sample Size using Recursive Sampling

There are various criteria in literature to check the validity of Zipf’s Law. To ana-

lyze Zipf’s exponent by changing the sample size and changing truncation point,Gabaix

(1999),Gabaix (1999) have discussed theoretically explanation of variation pattern in the

Power Law exponent.

It is known that small sample containing big cities results in higher value of the Power

Law exponent α > 1, while large sample containing smaller cities yield lower value of Power

Law exponent α < 1 . In other words Pareto exponent greater than unity indicates that the

second largest city is more than half of largest city and third largest city is more than one
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third of largest city and so on. Similarly if the Power Law exponent is less then unity then

the second largest city is smaller the half of largest city and third largest city is less than the

third largest city and so on.

We have used rolling sample regression and have repeated the estimation process with

moving down truncation point i.e. for the first sample we have a specific truncation point

(number of cities) and for the second sample we have a specific number of cities and so on.

We have used five estimation methods (OLS estimator, MOLS estimator, HILL estimator,

ML estimator, MVU estimator) to estimate the Power Law exponent for each sub sample.

The starting point is the largest city of the ordered data and the first sample contains first ten

largest cities which is fixed arbitrarily i.e. n1 = 10 and the second sub sample is n2 = n1 +1

and so on, we continue this process until we consider the full sample size. Hence we get

estimates of the Pareto exponent. We estimate the Power Law exponent for each sub sample

and plot estimate versus sub sample size. From the plots, we can point out the sample for

which the value of the Power Law exponent is exactly equal to or greater than or less then

unity. The main advantage of this method is that it captures the variation in the Power Law

exponent which may vary either due to the sample size or due to the truncation point or both.

3.5.1 Rolling Sampling Using With Replacement Sampling

In rolling sampling, because of the ordered pattern of the sizes of the cities, the value

of the Pareto exponent is over estimated for the most populated cities and under estimate

for less populated cities. Rolling sampling gives the overall variation in the Power Law

exponent which may be due to the sample size and/or truncation point. To separate these

simultaneous effects, we will use rolling random sampling with replacement. For rolling

random sampling, the data should not be in ordered form. We initially fix the size of sub-
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sample arbitrarily and randomly select first sub-sample of size , rank the observations and

apply the estimation method to estimate the Pareto index. Again we draw a second sub-

sample which is independent of the first sub-sample, rank the observations and estimate the

Power Law exponent and so on. This process is repeated until the last sub-sample of the full

sample size is selected. Since we adopt a random process therefore, we replicate each sample

100 times and obtain the Power Law for each sub-sample. Finally, we plot these estimates

versus sub-sample sizes and observe the variation in the Power Law exponent.

3.6 A Nonparametric Analysis of Power Law Exponent

Several studies have been done in literature to observe the behavior of the Power Law

exponent using the nonparametric methodologies. Giesen et al. (2010), by using non para-

metric analysis, concluded that city size data, at national and regional level, follows Zipf’s

Law. Ioannides and Overman (2003) considered data for metropolitan area of U.S Census for

the time period 1900 to 1990 to test the validity of Zipf’s Law for cities size. They have used

the nonparametric method to obtain the estimate of the Power Law exponent from the mean

and variance of the growth rate.

In this study, we check the distribution of the Power Law exponent by performing the nonpara-

metric method by kernel density plots using the five considered estimators. The kernel density

method of estimation is widely used nonparametric method for estimating the probability

density function of a random variable. Through kernel density plots, we observe the mode of

the distribution of Power Law exponent which will reflect the variation in the Power Law

exponent.
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Empirical Evidence of Power Law

distribution

Zipf’s Law is the great interest in urban research.The term Rank size rule have been

noted by many number of researchers [Rosen and Resnick (1980), Alperovich (1984), Gabaix

(1999), Ioannides and Overman (2003), Soo (2005), Gan et al. (2006) etc] but a valuable

empirical studies are done by Zipf’s. This study is also about validity of Zipf’s law and our

aim is to provide the empirical evidence of Power law distribution for the developing and the

developed countries and check the exponent of the Power Law distribution to its universal

value 1. We have taken the city size data from the U.S, China, Pakistan and India for the

Census 1990 and 2000, 2005 and 2010, 1981 and 1998 and 2001 and 2011 respectively. As

we know that Power Law distribution states that there exist inverse relationship between the

city sizes and there rank in a region or in a country. Auerbach (1913) first found this rank

size relationship among the city size and their ranks. Since it can be seen from the graph of

the city size data that the sizes of the city decline more rapidly and yield a graph of L-Shape

(Highly Skewed nature). This highly skewed pattern can well be approximated with the help

28



CHAPTER 4. Empirical Evidence of Power Law distribution

of the Power law distribution. To see the decline slope more clearly the city size is plot at the

double logarithmic scale. From the log- log plots it can be seen that the line is bent upward

and yield a straight line in the bottom right and the bottom of the log-log graph is a place

where more city sizes lied for the same rank. More recently it is found that many natural

phenomenon’s like the intensity of the earth quakes, number of family sir names etc. follow

Power Law distribution.

This chapter includes seven sections. The description about real life data set is given in

the first section. Section 2 describes the descriptive statistics obtain from real life data sets of

various countries. In section 3 we present graphical representation including simple plots

and log-log plots for the data sets. Section 4 deals with goodness of fit test results using real

life data. In fifth section we provide different threshold we obtained for the various countries

based on the K.S statistics. The results obtained from real life data sets are describe in sixth

section. Simulation study for the estimation of Power Law exponent is conducted in seventh

section and last section include some concluding remarks.

4.0.1 Data

To demonstrate the existence of the Zipf’s law, we used real life data sets for the develop-

ing and developed countries. Firstly we have chosen the US data of 1990 and 2000 and China

data set of 2005 and 2010. The following data sets are for the developed countries. The

United States and China has many cities so these data sets are ideal for city-size distribution

analysis. Second data sets are data on the city size also taken from the developing country

Pakistan 1981 and 1988 and India 2001 and 2010.

We have obtained the above data sets for the above mentioned countries form Brinkhoff

(2008). This site contains the record of the city population for more than 100 countries. The
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data available in the web site is based upon the administratively defined cities. Soo (2005)

also used the city size data from the above web site for the 29 countries and to check the

reliability of the data set he cross checked with the official statistics of each country, from

UN Demographic Year book, Statistical agencies and conclude that the data are very similar.

4.0.2 Descriptive Statistics

In this section we provide the descriptive statistics for developed countries U.S Census

data for 1990 and 2000, China Census data set for 2005 and 2010 and developing countries

Pakistan census data set for 1981 and 1998 and India census data set for 2001 and 2011.

Table 4.1 Descriptive Statistics for Developed Countries (U.S, China)

Country Year Sample size Mean SD Median Minimum Maximum

U.S 1990 396 399643.6 1163804 114939 50066 1 6044012
U.S 2000 452 425649.8 1246796 117465 50058 17799861

China 2005 284 737370.2 1412520 350000 158800 17784200
China 2010 139 1666414 2615784 905200 550200 23019100

Table 4.1 shows the descriptive statistic for the U.S data 1990 and 2000. The numbers of

cities in U.S are 396 and 452 for the census period 1990 and 2000 indicating here that there

is 14.14% increase in number of cities. The average city size for 1990 is 399643 persons

and for 2000 the mean value is 425649 persons. Hence there is 6.50% increase in the mean

city size which is moderate increase in the city size. The minimum city size for the 1990

and 2000 are 50066 and 50058 inhabitants respectively for the US and the maximum city

size are 16044012 and 17799861 inhabitants respectively. It is apparent from the 4.1 table

that the mean is greater than median which indicate the positive skewness of the US data.

Similarly for China data sets for census 2005 and 2010 the numbers of cities are decrease by

51% indicating that there are more migration in these time period and the number of small

30



CHAPTER 4. Empirical Evidence of Power Law distribution

cities are more. The average city size is increased by 125% indicate that there is high density

of population in the urban areas.

Table 4.2 Descriptive Statistics for Developing Countries (Pakistan, India)

Country Year Sample size Mean SD Median Minimum Maximum

Pakistan 1981 154 137284.8 496441.2 37844 5208132 20386
Pakistan 1998 244 161005.2 699342 45908.5 9269265 23653

India 2001 284 647300.4 1608807 293474.5 16434386 124245
India 2011 314 783987 1847788 243279 18394912 150019

Table 4.2 shows the descriptive statistic for the Pakistan data 1981 and 1998. The numbers

of cities in Pakistan are 154 and 244 for the census period 1981 and 1998 indicating here

that there is 58.44% increase in number of cities. The average city size for 1981 and 1998

are 137284 and 161005 persons respectively. Hence there is 17.27% increase in the mean

city size which is moderate increase in the city size. The maximum city size for the 1981

and 1998 are 5208132 and 9269265 persons respectively for Pakistan and the minimum city

size are 20386 and 23653 persons respectively. It is apparent from the above table that the

mean is greater than median which indicate the positive skewness of the US data. Similarly

for India, there is an increase in number of cities and city sizes are 10.56% and 21.11%. For

both countries mean is greater than median which shows the positive skewness of the city

size data.

4.1 Minimum Threshold

Many researchers have found Lognormal distribution fit well for city size data when city

size data is considered as a whole e.g see [Anderson and Ge (2005), Gibrat (1931)]. However

Power Law distribution well approximate the city size data above some predefined threshold

value called xmin. To fix this minimum threshold value, different criteria’s are discussed in
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literature. In this study, we find the minimum threshold value following Clauset et al. (2009).

Table 4.3 and 4.4 show the total number of cities and the number of cities after truncation for

different census years. For the U.S city size data, the minimum threshold values are 5006

and 50058 inhabitants for the year 1990 and 2000, respectively. The total number of cities

in complete data sets and number of cities in the truncated data sets are equal. For china,

the minimum threshold values are quite high i.e. 158800 and 550000 inhabitants for the

year 2005 and 2010, respectively. After the truncation, we are left with 457 and 139 cities,

respectively. In 2010, irrespective of the fact that number of cities is increased, the high value

of threshold results in small number of cities i.e. 139.

For Pakistan, the minimum threshold values are 20386, 23653 inhabitants for the years

1988 and 1996, respectively. The numbers of cities in the truncated data sets are 153 and

244, respectively. In Indian data sets, the minimum threshold values are 97011 and150019

inhabitants for the year 2001 and 2011, respectively. The numbers of cities in the truncated

data sets are 284 and 314, respectively.

Table 4.3 Number of Cities After and Before Truncation

Country Year Number of cities Xmin Number of cities ≥ Xmin

U.S 1990 396 5006 396
U.S 2000 452 50058 452

China 2005 659 158800 457
China 2010 655 550000 139

Table 4.4 Number of Cities After and Before Truncation

Country Year Number of cities Xmin Number of cities ≥ Xmin

Pakistan 1981 164 20386 153
Pakistan 1998 280 23653 244

India 2001 321 124245 284
India 2011 322 150019 314
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4.2 Graphical Representations

In order to check the deviation of data from the Power Law distribution, we present

simple plots and the log-log plots in this section. We are to examine the validity of the Power

Law distribution as well as the validity of the Zipf’s Law graphically.

As we know that the plot of city sizes (sorted) yield us L shaped curve indicating that a

bulk of cities population lie in the tail of the graph. This heavy tailed graph is similar to the

graph of the Power Law distribution. In order to check the slope of the graph more clearly,

we will plot the rank and city sizes on the double log-log graph. The value of the slope equal

to -1 confirms the validity of the Zipf’s Law.

4.2.1 Graphical Representation for US and China

The following graphs are plotted using the data sets of the developed countries. The

logarithmic of city sizes are scaled on the horizontal axis while the logarithmic of ranks are

taken on the vertical axis.
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Figure 4.4 log log plots of China Data (2005 and 2010)

Plots shown in figure 4.1, 4.2, 4.3 and 4.4 are for both U.S data and China data sets

are L shaped and resembles the Power Law distribution curve. The Log-Log plots for both

countries data sets are straight lined graphs which indicate presence of Zipf’s Law. For these

two country data sets the deviation from Power Law can be observe for the top city size since

the corresponding points are far from the straight line on the log-log plot.

4.2.2 Graphical Representation for the Pakistan and India

In order to check the validity of Power Law distribution graphically, we present simple

plots of city size and log-log plots for the city size data of developing countries Pakistan and

India. The simple plots seem near to the Power Law behavior of the both country data sets.

While the log-log plots for the Pakistan and India conforms the validity of the Zipf’s Law

because the slope of the log-log plots are approximately equal to -1.
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Figure 4.5 plots of Pakistan Data (1981 and 1998)
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Figure 4.6 log log plots of Pakistan Data (1981 and 1998)
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Figure 4.7 simple Plots for India (2001 and 2011)
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Figure 4.8 log log plots of India (2001 and 2011)

4.3 Goodness of fit

Goodness of fit tests are commonly used to investigate whether the empirical distribution

of the data coincides with the theoretical distribution. Formally, conducting the goodness

of fit test is very important to check the validity of the Power law distribution. The value of

the Power Law exponent is used to conclude that whether the data follows Zipf’s Law. But

before estimating the value of the Power Law exponent it is important to check the goodness

of fit of underline data in our case to check whether the data follows Power Law distribution.

We use Kolmogorov-Smirnov (KS) test to check the goodness of fit of the data sets for the
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developing and developed countries.

4.3.1 Goodness of fit test for US and India

The values of K-S test for the developed countries i.e. U.S and China are shown in the

following table.

Table 4.5 Goodness of fit for U.S and China

Country Year Test Sample size Statistics Critical value Alpha Conclusion

U.S 1990 K.S 396 0.02 0.068 0.05 Accept Ho
U.S 2000 K.S 452 0.03 0.063 0.05 Accept Ho

China 2005 K.S 457 0.05 0.063 0.05 Accept Ho
China 2010 K.S 139 0.04 0.115 0.05 Accept Ho

From these results we observe that, our null hypotheses is not rejected at 5% level of

significance. It is therefore, concluded that both the country data sets follow Power Law

distribution.

4.3.2 Goodness of fit test for Pakistan and India

The following table consists of the KS test results for the data sets of the developing

countries, i.e. Pakistan and India.

Table 4.6 Goodness of fit for Pakistan and India

Country Year Test Sample size Statistics Critical value Alpha Conclusion

Pakistan 1981 K.S 153 0.037 0.109 0.05 Accept Ho
Pakistan 1998 K.S 244 0.025 0.086 0.05 Accept Ho

India 2001 K.S 284 0.030 0.080 0.05 Accept Ho
India 2011 K.S 314 0.042 0.076 0.05 Accept Ho

It is apparent from table 4.6 that we cannot reject any of our null hypotheses at 5%

significance level. This means that both the countries data sets have Pareto nature.
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4.4 Estimate’s of Power law Exponent

After confirming that the considered data sets follow Pareto distribution (Power Law),

we move towards the estimation of the shape parameter of the Power Law distribution. The

exponent of Power Law distribution measures the degree of inequality of the population

among the cities. In literature, different estimation methods are used. Most of the common

methods is OLS, used by many authors [Alperovich (1984), Gan et al. (2006) and others].

Moura Jr and Ribeiro (2006) used MLE method as the estimation method. Soo (2005) have

used OLS and HILL estimator for the estimation purpose. Moura Jr and Ribeiro (2006) used

three estimation methods, namely OLS, MLE and Parameter averaging method to estimate

the Power Law exponent. Following Terra (2009), we use five estimation methods i.e. OLS,

MOLS, ML, HILL and MVU.

4.4.1 Estimates of Power Law Exponent for US and China

We report the estimates of Power Law exponent for US data set 1990, 2000 and China

data set 2005 and 2010 in table 4.7.

Table 4.7 Estimates of the Power Law Exponent for US and China

Country Year OLS Est MOLS Est ML Est HILL Est MVU Est

U.S 1990 0.895 0.913 0.856 0.854 0.853
U.S 2000 0.879 0.896 0.840 0.838 0.836

China 2005 1.13 1.151 0.990 0.988 0.986
China 2010 1.331 1.396 1.374 1.355 1.354

The results in 4.7 emphasize that the Power Law exponent for U.S data sets lie in the

range (0.85, 0.91) and (0.836, 0.896) for the years 1990 and 2000, respectively. The MOLS

estimate, for both the years, is closer to unity. So we conclude from the above results that

Zipf’s Law does not hold for both the US data sets. From the results of above table , it is also
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apparent that the estimated value, using OLS and MOLS of the Power Law exponent for the

year 2005 is greater than 1. On the other hand, values for the other three estimation methods

are less than 1 with negligible difference from 1. For the data set of the year 2010, all the five

methods give values greater than 1. So we conclude that Zipf’s Law does not hold for both

the data sets, except for the year 2005 by using the ML, HILL and MVU estimation methods.

4.4.2 Estimates of Power Law Exponent for Pakistan and India

We report the estimates of Power Law exponent for Pakistan and India for the Census

period 1981, 1998 and 2001, 2011 respectively in the following table.

Table 4.8 Estimates of the Power Law Exponent for Pakistan and India

Country Year OLS Est MOLS Est ML Est HILL Est MVU Est

Pakistan 1981 0.961 1.007 1.059 1.052 1.045
Pakistan 1998 1.003 1.039 1.082 1.077 1.073

India 2001 1.059 1.089 1.025 1.022 1.018
India 2011 1.039 1.065 1.024 1.021 1.018

It is emphasized from table 4.8 that the Zipf’s law holds for both the data sets of Pakistan

using all of the estimation methods except under OLS for 1981.It can also be seen from the

above table that the estimated value of the Power Law exponent using all the estimation

methods is exactly 1. This indicate that Zipf’s Law holds for both the data sets of India.

4.5 Simulation study

In bootstrap simulation we assume given data set as a population with unknown distri-

bution. We compute only one statistic from data set, assume the statistic as true population

parameter. In bootstrap simulation, we generate a large number of data sets, compute statistics

for each data sets. Thus we get distribution of the statistics whose sample value should be
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equal to the true parametric value for large sample sizes. Bootstrap simulation allows us how

a statistic varies from sample to sample and with increasing number of re-samples and how

the sampling distribution evolves over time with increasing number of sample or re-sample

observations. In this section, we have considered the bootstrap simulation design to study the

behavior of the Power Law exponent for different sample sizes and evaluate the performance

of estimation methods based upon their PRB and MSE.

4.5.1 Simulation Results for the US and China

We have simulated sample of sizes 20, 50, 100 and 150 from the data set of US for the

year 1990 by assuming the true value of the Power Law exponent as 0.895, 0.913, 0.854,

0.857 and 0.853 for OLS, MOLS, HILL, ML and MVU estimation methods respectively. For

US data for the year 2000, the true parametric values are 0.879, 0.896,0.838, 0.840 and 0.836,

for the estimation methods OLS, MOLS, HILL, ML and MVU respectively.The process is

repeated 1000 times and then averaged the results.The results of the simulation study are

reported in table 4.9.
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Table 4.9 Simulation Results for U.S

Year 2000 Year 1990

Estimator Estimate PRB MSE Estimate PRB MSE

n=20

HILL 0.915 7.131 0.049 0.863 2.996 0.038
OLS 0.797 6.708 0.042 0.778 11.507 0.050
MOLS 0.926 -8.419 0.056 0.902 -0.634 0.049
ML 0.883 3.385 0.039 0.879 4.682 0.039
MVU 0.795 -6.836 0.034 0.791 -5.310 0.032

n=50

HILL 0.872 2.090 0.015 0.850 -0.411 0.013
OLS 0.833 2.462 0.014 0.816 4.405 0.015
MOLS 0.904 -5.860 0.020 0.888 -3.939 0.017
MLE 0.872 2.070 0.015 0.855 0.155 0.013
MVU 0.837 -1.896 0.014 0.821 -3.734 0.013

n=100

HILL 0.865 1.315 0.006 0.849 1.334 0.012
OLS 0.862 -0.986 0.007 0.849 3.443 0.008
MOLS 0.909 -6.445 0.011 0.895 0.160 0.007
ML 0.864 1.138 0.006 0.846 0.738 0.006
MVU 0.846 -0.768 0.006 0.829 -0.800 0.006

n=150

HILL 0.861 0.787 0.005 0.842 0.455 0.004
OLS 0.876 -2.537 0.005 0.858 2.419 0.005
MOLS 0.906 -6.138 0.008 0.893 0.361 0.005
ML 0.863 1.014 0.005 0.844 0.515 0.004
MVU 0.851 -0.216 0.004 0.833 -0.349 0.004

From the results given in table 4.9 for Years 1990 and 2000, we conclude that, for large

sample size n=150, MVU estimator out performs as compared to all the other estimator

as it possesses minimum PRB and MSE. For US 1990 data set MVU estimator contains

PRB ( 0.092% ) and MSE ( 0.004 ) and for data 2000 the PRB and MSE are 0.010%, 0.004

respectively.

We have simulated sample of sizes 20, 50, 100 and 150 from the data set of China for the

year 2005 assuming the true value of the Power Law exponent as 1.13, 1.151, 0.988, 0.990
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and 0.986 for OLS, MOLS, HILL, ML and MVU estimation methods respectively. For China

data for the year 2010, the true parametric values are 1.331, 1.396, 1.355, 1.374 and 1.354,

for the estimation methods OLS, MOLS, HILL, ML and MVU respectively.

Table 4.10 Simulation Results for China

Year 2005 Year 2010
Estimator Estimate PRB MSE Estimate PRB MSE

OLS
20 0.977 13.523 0.071 1.223 8.098 0.126
50 1.045 7.526 0.027 1.285 3.489 0.048
100 1.082 4.209 0.013 1.319 0.927 0.023
150 1.100 2.641 0.008 1.345 -1.050 0.017

MOLS
20 1.130 1.802 0.062 1.420 -1.721 0.150
50 1.135 1.385 0.023 1.399 -0.235 0.053
100 1.141 0.895 0.012 1.392 0.274 0.025
150 1.144 0.602 0.007 1.400 -0.305 0.018

HILL
20 1.027 3.929 0.045 1.432 5.716 0.120
50 1.000 1.170 0.015 1.386 2.271 0.038
100 0.993 0.506 0.007 1.370 1.128 0.017
150 0.994 0.637 0.005 1.370 1.095 0.012

ML
20 1.018 2.847 0.042 1.423 3.571 0.111
50 1.003 1.277 0.015 1.388 0.995 0.036
100 0.996 0.654 0.008 1.373 -0.089 0.017
150 0.997 0.706 0.005 1.373 -0.049 0.012

MVU
20 0.916 -7.062 0.038 1.281 -5.409 0.093
50 0.963 -2.379 0.014 1.332 -1.613 0.033
100 0.977 -0.959 0.007 1.345 -0.641 0.016
150 0.984 -0.234 0.005 1.355 0.075 0.011

From table 4.10, we conclude that, for the year 2005, ML and MVU estimator possesses

minimum MSE ( 0.005 ) as compared to the other estimators for large sample size ( n=150

) and the PRB of MVU estimator in minimum as compared to other estimators. Hence we

conclude that MVU estimator is best for estimating the Power Law exponent.For the year

2010 MSE of MVU estimator is minimum compared to the other estimators.
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4.5.2 Simulation Results for the Pakistan and India

We have simulated sample of sizes 20, 50, 100 and 150 from the data set of Pakistan for

the year 1981 assuming the true value of the Power Law exponent as 0.961, 1.007, 1.052,

1.059 and 1.045 for OLS, MOLS, HILL, ML and MVU estimation methods, respectively.

For the year 1998, the true parametric values are 1.003, 1.039, 1.077, 1.082 and 1.073, for

the estimation methods OLS, MOLS, HILL, ML and MVU, respectively. The simulation

results for the above data sets are presented in table 4.11.
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Table 4.11 Simulation Results for Pakistan

Year 1981 Year 1998
S.size Estimate PRB MSE Estimate PRB MSE

OLS
20 0.929 3.357 0.107 0.953 4.940 0.102
50 0.935 2.696 0.038 0.975 2.805 0.045
100 0.966 -0.527 0.019 0.992 1.136 0.022
150 0.972 -1.103 0.011 0.999 0.445 0.015

MOLS
20 1.081 -7.375 0.144 1.111 -6.884 0.134
50 1.024 -1.651 0.044 1.068 -2.807 0.052
100 1.023 -1.589 0.021 1.052 -1.268 0.024
150 1.014 -0.698 0.012 1.044 -0.516 0.017

HILL
20 1.127 7.099 0.089 1.129 4.793 0.077
50 1.080 2.648 0.026 1.103 2.407 0.029
100 1.068 1.541 0.012 1.091 1.257 0.014
150 1.062 0.983 0.008 1.086 0.824 0.009

ML
20 1.124 6.120 0.084 1.140 5.330 0.079
50 1.086 2.528 0.026 1.112 2.741 0.030
100 1.073 1.366 0.012 1.096 1.339 0.014
150 1.067 0.738 0.008 1.090 0.777 0.009

MVU
20 1.011 -3.212 0.065 1.026 -4.408 0.063
50 1.042 -0.254 0.024 1.067 -0.541 0.026
100 1.052 0.670 0.011 1.075 0.145 0.014
150 1.053 0.727 0.007 1.076 0.267 0.008

From table Table 4.11, we conclude that,for both the data sets of Pakistan, MVU estimator

performs better as compared to the other estimators. The PRB and MSE of MSE is minimum

for large sample size ( n = 150 ) for both data sets.

Similarly we have simulated sample of sizes 20, 50, 100 and 150 from the data set of

India for the year 2001 by assuming the true value of the Power Law exponent as 1.059,

1.089, 1.022, 1.025 and 1.018 for OLS, MOLS, HILL, ML and MVU estimation methods

respectively. For the year 2011, the true parametric values are 1.039, 1.065, 1.021, 1.024

and 1.018, for the estimation methods OLS, MOLS, HILL, ML and MVU, respectively. The

simulated results are contained in table Table 4.12.
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Table 4.12 Simulation Results for India

Year 2001 Year 2011
Estimator Estimate PRB MSE Estimate PRB MSE

OLS
20 0.958 9.503 0.075 0.937 9.784 0.070
50 0.995 6.050 0.031 0.967 6.960 0.028
100 1.024 3.320 0.014 1.010 2.768 0.011
150 1.044 1.417 0.008 1.020 1.852 0.007

MOLS
20 1.112 -2.080 0.086 1.086 -2.004 0.078
50 1.084 0.421 0.031 1.052 1.184 0.027
100 1.082 0.638 0.014 1.067 -0.144 0.012
150 1.088 0.064 0.009 1.062 0.244 0.008

HILL
20 1.090 6.654 0.072 1.079 5.647 0.068
50 1.046 2.312 0.021 1.036 1.442 0.020
100 1.030 0.823 0.009 1.038 1.634 0.010
150 1.027 0.504 0.006 1.028 0.676 0.006

ML
20 1.083 5.623 0.064 1.079 5.379 0.065
50 1.046 2.028 0.020 1.037 1.280 0.019
100 1.033 0.748 0.009 1.038 1.405 0.010
150 1.029 0.359 0.006 1.028 0.434 0.006

MVU
20 0.974 -4.286 0.051 0.971 -4.600 0.053
50 1.004 -1.380 0.018 0.996 -2.198 0.018
100 1.012 -0.588 0.008 1.018 -0.038 0.009
150 1.015 -0.298 0.006 1.015 -0.321 0.006

From table Table 4.12, we conclude that, for large sample (n=150), HILL, ML and MVU

estimator possess minimum MSE for both the data sets ( 2001, 2011 ). But the PRB of MVU

estimator is least as compared to all the other estimators. Hence, on the basis of of simulation

study, we conclude here that MVU estimator is best for the estimation of the Power Law

exponent.
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Rolling Sampling and Non-Parametric

Analysis of Pareto Exponent

In previous chapter, we have used real data sets to examine the validity of Zipf’s Law.

In this chapter, using rolling sampling, we estimate the values of the exponent and check its

elasticity with respect to the sample size and truncation point. We will also explore the range

of the sample data for which Power Law exponent is exactly equal to unity (rank size rule

holds), greater than unity and less than unity. We shall also study the behavior of the Power

Law exponent non-Parametrically.

5.1 Rolling Sampling

In rolling sampling, the sample size changes with changing the truncation point. The

basic logic of this sampling is that a constant coefficient, through this technique, will lead

us to the conclusion that the Power Law exponent is one which guarantees the existence of

Zipf’s Law. The rolling sampling exhibits the variation pattern in the Power Law exponent

with respect to the truncation point. Using this technique, one can extend his/her research to
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the entire data distribution instead of the upper tail distribution only. All of these analysis

will be made by graphical displays.

5.1.1 Rolling sample results for US and China

We have considered city size data of the U.S for the time period 1990 and 2000. For the

U.S there are 396 and 452 cities for Census period 1990 and 2000, respectively. By using

rolling sampling, the first sub sample contains first 10 largest cities, the second sub sample

contains the first 11 largest cities and so on. The process is continued until the last sub sample

contains 396 and 452 cities for the respective time periods. Hence we get 387 ( = 396 - 10 + 1

) estimated values of the Power Law exponent for the time period 1990 and 443 ( = 452 - 10

+ 1 ) estimated values of the Power Law exponent for 2000. The following graphs show the

variation in the estimated value of the Power Law exponent for with respect to the truncation

points for US data sets.
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Figure 5.1 Rolling Sampling Plots for U.S 1990

49



CHAPTER 5. Rolling Sampling and Non-Parametric Analysis of Pareto Exponent

sample size

al
ph

a

10 70 130 190 250 310 370 430

0.
6

0.
8

1.
0

1.
2

Plot of Alpha (HILL) vs s.sizes

sample size

al
ph

a

sample size

al
ph

a

10 70 130 190 250 310 370 430

0.
4

0.
7

1.
0

Plot of Alpha (OLS) vs s.sizes

sample size

al
ph

a

sample size

al
ph

a

10 70 130 190 250 310 370 430

0.
5

0.
8

1.
1

Plot of Alpha (MOLS) vs s.sizes

sample size

al
ph

a

sample size

al
ph

a

10 70 130 190 250 310 370 430
0.

5
0.

8
1.

1

Plot of Alpha (MLE) vs s.sizes

sample size

al
ph

a

sample size

al
ph

a

10 70 130 190 250 310 370

0.
5

0.
8

1.
1

Plot of Alpha (MVU) vs s.sizes

sample size

al
ph

a

Figure 5.2 Rolling Sampling Plots for U.S 2000

Figures 5.1 and 5.2 show that the Rank size rule does not hold for both the US data sets.

All the estimation methods under estimates the value of the Power Law exponent even in the

large sample sizes. For both the data sets, the estimated value of the Power Law exponent

moves toward the steady state as the sample contains cities greater than 100. The graphs for

both the data sets of China are shown in the appendix A.
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5.1.2 Rolling Sampling Results for Pakistan and India

The following graphs show the distribution of rank size rule for the city size data of

Pakistan for the year 1981 and 1998.
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Figure 5.3 Rolling Sampling Plots for Pakistan 1981
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Figure 5.4 Rolling Plots for Pakistan 1998

From the graphs for the data set of 1981, we observe that the estimated value of Power

Law exponent is equal to unity for the sample of sizes greater than 80 for the ML, HILL and

MVU estimation methods. By using OLS and MOLS estimators, the value of the Power Law

exponent is under estimated even in the large samples.

By using the Census data 1998, the value of the Power Law exponent is under estimated

using OLS estimator. All the other estimation methods give the value of the exponent one for

large sample size. The graphs for the data sets of India are given in Appendix B.
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5.2 Rolling Sampling by Using With Replacement Sampling

The rolling sampling gives us the overall variation in the Power Law exponent that may

be due to the sample size and/or due to the truncation point. To separate these simultaneous

effects, we are going to use random Rolling sampling with replacement for which our data

should not be in any ordered form. We initially fix the size of sub sample arbitrary and

randomly select first sub sample of size n1 = 5, rank the observations and apply the estimation

method to estimate the Power Law exponent. Again draw a second sub sample of size n2 =

n1+1 which is independent of the first sample. We estimate the Power Law exponent for the

second sub sample. This process is continued until the last sub sample of the full sample size.

Because we adopt a random process, so we replicate each sample 100 times and obtain the

Power Law exponent for each replication and the result is then averaged. Finally, we plot

these estimates versus sub sample sizes and observe the variation in the Power Law exponent.

5.2.1 Results of Rolling Random Sampling for US and China

In this section, we present the graphical representation of Rolling random sampling with

replacement results based on the different estimation procedures for the developed countries

U.S and China.
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Figure 5.5 Rolling Random Sampling Plots for US (1990)

The following graphs are plotted for the US data set of the year 2000.
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Figure 5.6 Rolling Random Sampling Plots for US (2000)

From the graphs for the data set of 1990, we observe that, except for HILL, all the

estimators under estimate the Power Law exponent. The estimated value of the Power Law

exponent attains the steady state for sample size great than 80.

For the year 2000, all of the estimation techniques under estimate the Power Law exponent.

There exists significant variation for small sample size for all the estimators. For sample of

size greater than 80, the estimated Power Law exponent gets the constant behavior. Graphs

for both the data sets for China are included in Appendix B
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5.2.2 Results of Rolling Random Sampling for Pakistan and India

The graphical representation of Rolling random sampling with replacement results based

on the different estimation procedures for the developing countries, Pakistan and India are

discussed.
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Figure 5.7 Rolling Random Sampling Plots for Pakistan (1981)
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Figure 5.8 Rolling Random Sampling Plots for Pakistan (1998)

Graphs in figure and , show that the Power Law exponent is exactly equal to 1 under HILL,

MLE and MVU estimators for sample size greater than 80 for both data sets of Pakistan.

OLS and MOLS underestimate the Power Law exponent even in large samples. Graphs for

both the data sets for India are included in Appendix B.
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5.3 Nonparametric Analysis of Power Law Exponent

In order to investigate Power Law exponent non-parametrically, we make kernel density

plots of the estimated value of the Power Law exponent using Rolling sampling. The

kernel density method of estimation is widely used nonparametric method for estimating the

probability density function of a random variable. The main advantage of constructing the

Kernel density plot is that it gives more clear picture that how the values of the Power Law

exponent are distributed. Using the kernel density plots, we check whether the distribution

of Power Law exponent is uni-modal or bimodal. In kernel density plots, we observe the

mode of the distribution of Power Law exponent which will reflect the variation in the Power

Law exponent. To construct the Kernel density plots, we plot the density of the Power Law

exponent versus the estimated value based on the rolling sampling.
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5.3.1 Kernel Density Plots for US and China

Following are the kernel density plots of estimated values of the Power Law exponent for

US city size data 1900 and 2000.
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Figure 5.9 Kernel desity plots for US (1990)
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Figure 5.10 Kernel desity plots for US (2000)

It can be seen from figure 5.9 and 5.10, for both the data sets of U.S, estimated value of

mode is approximately 0.9 for all the assumed estimation techniques. There is considerable

variation around the model value which reflects high fluctuation in the value of the Power Law

exponent using rolling sampling. The distribution of the Power Law exponent is uni-modal as

can be seen from figure 5.9 and 5.10. The graphs for both the data sets of China are contained

in Appendix D.
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5.3.2 Kernel density plots for Pakistan and India

Following are kernel density plots of estimated value of Power Law exponent for both

data sets of Pakistan.
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Figure 5.11 Kernel desity plots for Pakistan (1981)
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Figure 5.12 Kernel density plots for Pakistan (1998)

From the figure 5.11 and 5.12, it is learned that the distribution of Power Law exponent

is uni-modal for both the data sets under all the assumed estimators. There is significant

variation in the Power Law exponent around the modes of all the graphs. Graphs of both the

data sets of India are shown in Appendix E.
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CHAPTER 6

Conclusions and Recommendations

In this study, we have considered the city size data sets of the US, China, Pakistan

and India. The main focus of this study was to check the validity of Zipf’s Law for these

data sets. The Power law distribution was checked for all the data sets through simple

plots and KS goodness of fit test. Five different estimation methods have been used for the

estimation of the Power Law Exponent through. The validity of Zipf’s Law has been analyzed

graphically and by estimating the Power Law exponent for all the considered data sets. A

simulation study was performed to look for an efficient estimation technique. Through rolling

sampling technique, range for each data set was found within which the estimated value of

the Power Law Exponent was equal to one. The validity of Zipf’s Law was also examined

non-parametrically.

From the simple plots of the data sets, it was observed that the plots were L-shaped and

seemed to follow some type of the Power law distribution. The Log-Log plots for all the

city size data sets are straight line graphs with slope coefficient approximately equal to -1,

which indicates the presence of Zipf’s Law. It is shown that the rank size rule holds beyond a

specific threshold for all the countries data sets.
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The KS goodness of fit test is applied to check how best the Power law distribution fits the

city size data sets. It is concluded from the KS statistics results that the Power law distribution

gives best fit to all the data sets.

To examine the validity of Zipf’s Law, the Power Law exponent is estimated through

five different estimators, namely, HILL, OLS, MOLS, ML and MVU. For both the US data

sets, all the five estimators under estimated the Power Law exponent which indicates that

Zipf’s Law does not hold for both the data sets. The Power Law exponent is also estimated

for both the data sets of China. The results showed that all the estimators overestimated the

Power Law exponent for the data set of 2010 while ML, HILL and MVU under estimated

this exponent for the data set of 2005. The estimated value of the Power Law exponent was

found to be approximately 1 for both the city size data sets of Pakistan which means that

Zipf’s law holds for both the data sets of Pakistan. Similar conclusions are made for both the

city size data sets of India. Through simulation results, it is concluded that MVU possesses

minimum PRB and MSE in all the cases and hence considered as the efficient estimator for

the Power Law exponent.

The graphical displays, based on the rolling sampling, showed that the fluctuation in

the values of the Power Law exponent for small sub sample size containing big cities was

higher. When the size of the sub sample was increased, the Power Law exponent attained a

constant value. The kernel density plots of all the countries city size data sets revealed that

the distribution of the Power Law exponent was uni-modal for all the countries data sets.

Considerable variation around the modal value is observed from those plots.

6.0.3 Recommendations

The following recommendations are suggested for future studies in this field.
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1. We have considered the city size data sets of US, China, Pakistan and India for various

time periods,the same study can be done for the most recent time periods.

2. In this study we have considered the city size to check the validity of Zipf’s Law. Many

other phenomenon’s also follow power law distribution, so validity of Zipf’s Law can

be check for those phenomenon’s.

3. We have utilized five estimation methods for the estimation of the Power Law exponent,

other efficient estimators can be used in future studies.

4. We have considered KS test for model selection, other model selection criterion’s such

as AIC and BIC can also use for this purpose.

5. We have used the rolling sampling to analyze Power Law exponent, other sampling

designs can be worked with.

6. The Bayesian estimation techniques can be applied to estimate the Power Law exponent

in further studies.
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Appendix A

Rolling Sampling Plots for China (2005)
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Figure 1 Rolling Sampling Plots for China (2005)
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Rolling Sampling plots for China (2010)
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Figure 2 Rolling Sampling plots for China (2010)
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Rolling Sampling Plots for India (2001)
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Figure 3 Rolling Sampling Plots for India (2001)
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Rolling Sampling Plots for India (2011)
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Figure 4 Rolling Sampling Plots for India (2011)
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Appendix B

Rolling Random Sampling Plots for China (2005)
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Figure 5 Rolling Random Sampling Plots for China (2005)
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Rolling Random Sampling Plots for China (2010)
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Figure 6 Rolling Random Sampling Plots for China (2010)
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Rolling Random Sampling Plots for India (2001)
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Figure 7 Rolling random sampling plots for India (2001)
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Rolling Random Sampling Plots for India (2011)
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Figure 8 Rolling Random Sampling Plots for India (2011)
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Appendix C

Kernel Density Plots for China (2005)
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Figure 9 Kernel Density Plots for China (2005)
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Kernel Density Plots for China (2010)
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Figure 10 Kernel Density Plots for China (2010)
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Kernel Density Plots for India (2001)
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Figure 11 Kernel Density Plots for India (2001)
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Kernel Density Plots for India (2011)
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Figure 12 Kernel Density Plots for India (2011)
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