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Abstract 

Climate Change has already been realized and endorsed by multi-disciplinary researchers as an 

outcome of excessive economic activity based on fossil fuels. Experiencing consistent natural disasters, 

the global policy dynamics shifted more towards sustainability. However, the central questions still 

debatable are the disproportionate nature of the climate change impact, adaptation and mitigation 

measures, and possible ways to reduce the pace of changing climate that is harmful to human existence. 

One of the immediate global policy responses to climate change was the formation of international 

organizations that came up with major global agreements, i.e., the Kyoto Protocol and the Paris 

Agreement. The current study employs exploratory analysis to study the relationship between climatic 

variability and geographical location, income, and industrialization levels of countries in regimes when 

two important agreements took place. However, global warming is constantly increasing in the period 

of analysis (1991 to 2018), irrespective of geographical location, income, and industrialization levels. 

The results show that global warming slowed after the policy measures taken by these organizations. 

Among income groups, high income countries are experiencing greater climate variability (temperature) 

in terms of magnitude, while LIC’s warming pace is more pronounced than any other group. Climate 

variability expressed by rainfall shows volatile behavior in all categories considered. There is no clear 

pattern in rainfall behavior throughout the time used in the analysis, thus, adding to the existing 

challenges. Climate variability behavior for the degree of industrialization shows that newly 

industrialized countries' pace of additional warming is relatively faster than others. Regional results 

show that Europe and Central Asian countries are experiencing greater temperature variability, 

followed by the Middle East and North African countries, North America, Sub-Saharan Africa, South 

Asia, East Asia Pacific, Latin America, and the Caribbean. 

The study also highlights the distinction between climate, climate variability, and climate change 

considering their short-term and long-term changes in climatic variables. The study quantifies the spatial 

determinants of climate, climate variability, climate change, and carbon intensity to accelerate 

mitigation and adaptation measures. The study also incorporates the spillover effect of these 

determinants on climatic variables by using the spatial Durbin model. For climate variability and carbon 

intensity, we have considered panel data for 116 countries from 1991 to 2018. While for climate and 

climate change, we have cross-sectional data averaged for 30 years (1989 to 2018). GDP per capita, 

energy intensity, population, industrialization, and urbanization are significant determinants of climate 

variability (temperature), while energy intensity, population size, and proportion of urban population 

spillover affect nearby countries' climate variability. For climate variability expressed by rainfall is 

affected by energy intensity, trade openness has a spillover effect on nearby countries' climate variability 

(rainfall). Carbon intensity over the same period is influenced by the GDP per capita, trade openness, 

population size, and urbanization, while energy intensity has a spillover effect on the carbon intensity of 

nearby countries. Climate change (temperature), population density, and trade are key spatial 

determinants. 

For impact assessment, the present study evaluates the impact of climate change on food production by 

considering wheat, rice, and maize production per agricultural land. Certain non-climatic (fertilizer, 

machinery, labor, openness) and climatic input factors (temperature, temperature variability, rainfall, 

and rainfall variability) are used in the analysis by the spatial Durbin model. Results vary with the type 

of crop considered. For wheat production per unit of land area, fertilizer usage, labor, trade openness, 

rainfall, and its variability are major input factors affecting wheat production. For the spillover effect, 

increased fertilizer use by neighboring countries has a negative significant spillover effect on the 

domestic country's production. Also, an increase in labor usage by neighboring countries negatively 

affects wheat production in the home country. Free movement and access to wheat in domestic and 

neighboring countries positively impact wheat production in domestic countries. An increase in rainfall 

variability in one region and its neighboring countries increases wheat production in the domestic 

country. 

For rice production per agricultural land, fertilizer, agriculture labor, average annual temperature and 

its variability, and rainfall are major input factors affecting rice production. Increased machinery usage, 

rainfall, and variability have spatial repercussions on nearby countries. Maize production per 

agricultural land is affected by increased fertilizer usage, labor, machinery, temperature, rainfall, and 

their respective variability. In the case of maize, non-climatic input factors such as fertilizer, labor, 

machinery, and trade openness of nearby countries have a spillover effect on the domestic country’s 

maize production.   
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Chapter 1 

 

INTRODUCTION 

 

1.1. Background of the Study 

World GDP has increased multifold in the past century, led by an incentive structure 

that promotes production, consumption, technological innovation, and increased 

economic integration. Brown growth based on fossil fuels, overutilization of natural 

resources, and excessive production have a greater negative spillover effect on the 

environment, biodiversity, and our ecological systems. Climate and environmental 

concerns have increased considerably as natural disasters worldwide have increased. 

Consequently, many climate agreements and climate change conventions led by 

international organizations for global collaboration emerged. Paris Agreement, 

Sustainable Development Goals (SDGs) 2030, and the recent Conference of all Parties-

26 (COP-26) identified climate risks and adaptive and mitigation measures. United 

Nations, in its COP-26, has urged countries to limit the net emission to zero by 2030, 

limit methane emissions, loss of forest, coal-driven production, and international 

financing of fossil fuel projects. In addition, they emphasized the need for global action 

and collaboration to reduce the pace of climate change.  

 

In its subsequent reports, Inter-governmental Panel on Climate Change (IPCC) stressed 

that global warming beyond 1.5 degrees Celsius above the pre-industrial level would 

have a detrimental effect globally. Some of the intrinsic warmings naturally take place 

due to our ecosystem. However, literature largely agrees that past-century warming is 

the negative externality of industrialization led by fossil fuels. IPCC, in its AR-5, 

revealed that some of the world regions are experiencing warming greater than the 

global average while some regions, in one season, experience temperatures greater than 

1.5 degrees Celsius from the preindustrial levels. The latest issue, i.e., the Sixth 

Assessment Report (AR-6), highlighted that manmade factors are responsible for 

increased Greenhouse Gases (GHG) emissions causing environmental damage. The 

risk associated with climate change, possible solutions, and transformations required to 
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contain global warming below 2 degrees Celsius from pre-industrial levels by 2028 are 

discussed. 

 

Besides global warming beyond the preindustrial level, climate variability and carbon 

dioxide (CO2) emissions are also used to assess the pace and magnitude of climate 

change. However, some of the researchers conclude that variability and change are two 

different concepts as they affect economic activity varyingly. Climate variability is a 

short-run phenomenon measured by the deviation of climatic variables from their long-

run mean, often known as climate anomalies. At the same time, climate change is a 

long-run measure to analyze thirty-year average of climate variables. Moore and Lobell 

(2014) used deviation of climate variables from a 30-year baseline period of 1961-90 

to access climate variability. Tol (2021) used a 30-year average of climate variables as 

climate change. The impact of variability and change matters for policymakers as short-

term fluctuations require immediate policy responses, while long-term fluctuations 

require a structural change to counter the negative impacts. 

 

Economic activity directly influences the environment and vice versa. To contain, adapt 

and mitigate the negative impact of climate change, it is important to analyze the factors 

causing this change. A number of socio-economic drivers have been identified in the 

literature for increasing the pace of GHGs. Theoretically and empirically, Malthus 

studied the impact of population on natural resource degradation. While Environmental 

Kuznets Curve (EKC) indicates that economic growth initially increases CO2 

emissions, economic growth leads to lower environmental degradation after a certain 

limit as counties tend to be better off adapting to a better quality of economic growth. 

Literature also suggests N-shaped relation between economic growth and 

environmental quality (Friedl & Getzner, 2003).  

 

Similarly, other factors responsible for climate change include industrialization, 

urbanization, population size, trade openness, and energy intensity (Lin et al., 2017; 

Rahman, 2017; Du et al., 2018; Liu & Bae, 2018; Dong et al., 2019; Ghazali & Ali, 

2019). The sign and impact of these factors on climate change remain contingent on 

their sustainability and renewable nature. For example, when led by fossil fuels, 

industrialization has a detrimental effect on climate change and variability, while using 

renewable energy in the process of industrialization reduces the negative impact on 
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climate change (Appiah et al., 2019). Urbanization increases the demand for energy and 

results in rural-urban migration. However, if urbanization is unplanned and unevenly 

dispersed, it adds additional pressure on the environment (Wang et al., 2020; York et 

al., 2003). The population is also considered one of the factors affecting climate change, 

as highlighted by Malthus; however, the Boserupian view considers the population as 

a source of innovation that reduces the negative impact on the environment. Developed 

and developing countries have differentiated impacts on climate change for 

socioeconomic factors as developing countries mostly remain unplanned, 

overpopulated, and poverty-ridden, while developed countries have planned urban 

systems that are more climate-friendly and sustainable. Energy intensity and trade 

openness are also examined in literature as important determinants of climate change.  

 

Importantly, the risk and impact of climate change are disproportionately distributed 

among countries (IPCC). The literature also highlights that climate change's impact, 

adaptation, and mitigation will be subject to geographical location and income levels 

(Tol et al., 2004; Mendelsohn et al., 2006; Tol, 2009). Countries near the equator are 

more prone to the risk of high temperature as they have already achieved their upper 

limit of high temperature (Tol et al., 2004). Countries located towards the poles are 

likely to get warmer. Geographical and income levels of countries are important to 

gauge the risk and cost associated with climate change. Several studies concluded that 

climate change has a heterogeneous impact across countries. Developing and 

underdeveloped regions of the world are mostly located in warmer regions and close to 

the equatorial belt. At the same time, their economy is mostly dependent on the 

agriculture sector that is under serious threat of climate change. Developed regions, on 

the other hand, have a geographical location and income level conducive to adaptation 

to climate change (Nordhus, 1993; Gallup, 1999; Tol et al., 2004; Dell et al., 2008).  

 

Climate change impact assessment on various sectors is extensively researched. 

Mendelsohn et al. (2006) study reveals that the relationship of climate variables with 

economic sectors is hill shaped, indicating a benchmark temperature level where 

revenues for that particular sector are maximum and beyond which it tends to decline 

with increasing temperatures. Climate is the agriculture sector's basic input, affecting 

labor (Kjellstrom et al., 2009), capital (Tsigaris & Wood, 2019), and land productivity. 

Major climatic factors affecting agriculture productivity include a rise in temperature, 
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irregular or extreme rainfall, and a rise in CO2 emission to the levels that disturb the 

photosynthesis process. 

 

Food security is the prime concern for countries in post-pandemic and Russia-Ukraine 

war world. One of the major concerns is that the world population is increasing at a 

high rate compared to crop yield per hectare (Arora, 2019). With additional burden 

from climatic change risks, ambitious policy measures are required to achieve the 

global sustainable development goal of zero hunger by 2030. Climatic factors such as 

temperature, precipitation, and humidity directly affect crop cycle, growth, yield, and 

production. The impact of climate change is heterogeneously distributed across space 

and type of crop. Literature suggests that agriculture activity will likely shift to colder 

regions as temperature surges. The fertilization process will provide a beneficial effect 

until a certain limit of temperature rises. However, on the other hand, tropical zones are 

likely to incur losses. Developing and least developed economies are situated in tropical 

and equatorial belts. Most of them depend heavily on agriculture as a primary source 

of their livelihood. In addition, their high levels of poverty and minimum capacity for 

adaptation make them more vulnerable to climate change. In their study, Wheeler and 

Kay (2010) concluded that crop area would shift towards the north by 50kms for every 

1 degree increase in temperature.  

 

Literature provides ample evidence that south Asia and sub-Saharan Africa are likely 

vulnerable due to their limited adaption and high dependence on the agriculture sector 

to feed their rising population. Many studies in the literature predict a decline in cereal 

yields in sub-Saharan Africa (Barrios et al., 2008; Ward et al., 2014; Blanc, 2012; 

Ginbo, 2022) and Asia (Bandara & Cai, 2014; Chandio et al., 2022). Also, climate 

change impacts various crops according to their ability to retain CO2 emissions in 

photosynthesis. Increased CO2 emissions can improve yields of C3 (rice, wheat, oats, 

barley, cotton) plants as the photosynthesis process expedites with increased CO2 

emissions. In contrast, C4 crops (maize, sugarcane, pearl millet, sorghum) are 

negatively affected by CO2 emissions (Calzadilla et al., 2010). A rise in CO2 emissions 

will only be beneficial if other determinants of plant growth should be adequately 

available. 
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Global integration in trade, value chains, technology diffusion, and labor migration has 

increased the spillover effect of economic activities. The post-pandemic and global 

economic recession in most countries highlights the externality of economic decisions. 

Indeed, developed regions with high productivity are closely connected geographically 

in Europe and America, while developing regions with low to moderate productivity 

levels are mostly clustered around each other in Asia and Africa. Macroeconomic, 

trade, investment, and environmental policy measures taken in one country have more 

spillover effects on immediate neighboring countries rather than distant ones. 

 

 It is rightly said; 

 

 “Everything is related to everything else, but near things are more 

related than distant things”   

Tobler's (1969) 

 

Climate change is intrinsically a global phenomenon that cannot be limited to one 

country. Carbon emission emitted in one country affects its neighboring countries and 

the global climate system. Similarly, the factors that cause climate change have 

negative or positive externality on nearby countries. Spatial effects in empirical 

literature have been incorporated through the gravity model that incorporates spatial 

location and distance as a source of variation in economic activity between two 

countries. Countries that are in close geographical proximity to each other gain more in 

terms of any economic activity as compared to their distant neighbors. Also, the use of 

panel data has facilitated to capture of the unobserved heterogeneity between countries 

by fixed and random effects; however, it fails to capture the spatial dependence and 

spatial heterogeneity between countries. Spatial econometric methods have been 

devised to incorporate the spatial effects between countries. The spatial relationship is 

captured by the weight matrix that can be modified according to the spatial relationship 

between countries. For example, literature considers inverse distance, socio-economic 

variables, and countries with borders as a source of explaining the spatial relationship. 

 

Considering the background of the study, firstly, we have differentiated climate change 

and variability, considering variability a short-run phenomenon, i.e., the deviation of 

climatic variables from their long-run mean. In contrast, climate change is the change 
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in the long-run trend of climate variables. Secondly, by using historical data on climatic 

variables, we have analyzed climate variability under the footprint of income, 

geographical location, and industrialization by highlighting the role of international 

collaboration in global climate policy process breakthroughs. Thirdly, as drivers of 

climate change in one country have a spillover effect on the neighboring country, we 

have quantified spatial association of climate variability and change. Lastly, we have 

examined the impact of climate change and other related inputs and their direct and 

indirect impact (spillover) on the agriculture production of countries that produce 

wheat, maize, and rice.  

  

1.2. Research Gap and Research Questions 

1.2.1 Research Question 1: 

Many studies have analyzed the relationship between climatic variables and economic 

activities. Initial studies have focused on calculating the damage function by assuming 

different future climatic scenarios. Some studies focused on how temperature changes 

affect sectors such as agriculture, industry, and energy labor productivity. The 

relationship between economic growth and environmental factors such as CO2 

emissions have been well researched. The role of geographical factors in determining 

the impact of climate change has also been analyzed by considering region-specific 

studies. Existing literature has used complex methodologies to access climate change 

and related sectors under study and has ignored the impact of policy measures taken in 

different periods. The present uses historical data on climate anomalies under different 

policy regimes in the global climate policy process formation by considering the 

transition of economies based on income levels and industrialization. The geographical 

location of countries is also considered with their respective climate anomalies. GIS 

analyzes the spatial spread of climate anomalies across different regions. We have 

considered the following research question in the first part of our analysis; 

• Is there any spatial climate variability across regions, income groups, and levels 

of industrialization? 

• Is there any role of international organizations in decreasing the pace of climate 

variability (anomalies)? 
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1.2.2 Research Question 2: 

Existing literature has analyzed non-spatial and spatial determinants of climate change 

using several proxies such as carbon emissions, sulphur dioxide (Wang et al., 2016), 

various pollutants (Hao & Liu, 2016; Du et al., 2018), and ecological footprint (Aydın 

et al., 2019; Xun & Hu, 2019; Destek & Sinha, 2020; Akadiri et al., 2020; Koyuncu et 

al., 2021). Often in existing literature, climate change and variability are used 

interchangeably. Some of the studies, for example, Tol (2021), considered climate 

anomalies as climate variability while climate change is considered as 30 years average 

of climate variables. Keeping the distinction between climatic variability and climate 

change, we have devised the following research questions; 

• What are the spatial determinants of climate? 

• What are the spatial determinants of climate variability? 

• What are the spatial determinants of climate change? 

• What are the spatial determinants of carbon intensity? 

• What are the spatial determinants of climate variability and carbon intensity 

across regions? 

 

1.2.3 Research Question 3: 

Literature provides ample evidence on the relationship between climate change, crop 

yield, and agriculture production at global and regional levels by using crop simulation 

models, GTAP-W, and production function approach (Isik & Devadoss, 2006; Lobell 

et al., 2011; Lobell & Field, 2007; Blanc, 2012; Fei et al., 2020; Ray et al., 2019). Also, 

the relationship of climate variables with farm values (Passel et al., 2017) and farm 

profits (Moore & Lobell, 2014) is discussed. Some of the studies (Donfouet et al., 2017; 

Zhong et al., 2019; Nicita et al., 2020; Qingshi & Akbar, 2022) have incorporated the 

role of the spillover effect of agriculture production on nearby regions. Most of these 

studies are country-specific that measures the spillover effect of climatic and other 

agriculture inputs on output. The role of countries producing similar crops close by is 

missing in the literature. There is a need to examine the direct, indirect, and feedback 

effects of factors responsible for the disparity in a county's agriculture production of 

wheat, rice, and maize nearby. We are interested in evaluating whether climatic 

variability, trade openness, and the use of other agricultural inputs of any country have 
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repercussions on countries located near them. Following this, we have devised the 

research question as under; 

• Does climate variability spatially affects wheat production across wheat-

producing countries? 

• Does climate variability spatially affects rice production across rice-producing 

countries? 

• Does climate variability spatially affects maize production across maize-

producing countries? 

• Does climate variability spatially affects wheat, maize, and rice production 

across the producing regions? 

 

1.3. Significance and Scope of the Study 

Policymakers have stressed the need for sustainable and inclusive economic growth. 

Despite technological advancement and innovations, climate change is one of the 

greatest threats facing both developed and developing countries. It has been widely 

agreed that a global temperature increase of 1.5 degrees Celsius compared to pre-

industrialization is detrimental to our natural ecosystem. Earlier, proponents of 

Malthus's theory highlighted the negative impact of population increase on 

environmental degradation. However, with the emergence of the Kuznets curve, most 

researchers found that the negative impact of economic activity on the environment 

prevails up to a certain limit. Beyond that, high income and industrialization cushion 

the negative impact on the environment, causing climate change. Some scholars are of 

the view that this relationship is N-shaped. Also, the impact of climate change on 

developing and developed economies is heterogeneous, while some scholars believe 

that the net impact depends on a country’s adaptive capacity. 

 

Geographical location also holds a key position in determining the impact of climate 

change. The controversy about the relationship between climatic variables, income, 

industrialization levels, and geographical location still prevails. Furthermore, the role 

of breakthroughs such as the Kyoto Protocol and the Paris Agreement in the history of 

global collaboration for climate change has been ignored in the literature. The present 

study's first paper contributes to the existing literature by studying the historical data 

on climatic anomalies across income levels, industrialization, and geographic location, 
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keeping in view the time frame of major international agreements. Importantly, the time 

frame chosen in the analysis is when some countries moved from lower middle income 

to upper middle income and experienced industrialization based on fossil fuels. Thus, 

to the best of our knowledge, the present study is the first to evaluate and highlight the 

role of international agreements in considering the transition in income levels and 

industrialization across countries. 

 

In its subsequent reports, IPCC highlighted the number of anthropogenic factors 

responsible for the past century’s warming. Moreover, the earlier carbon emissions are 

likely to persist in the atmosphere even if net emissions are reduced to zero. Studying 

the drivers causing climate change is important to effectively manage the mitigation 

and adaptive measures. However, the central question remains inconclusive as to what 

climate change is. Literature evaluating the determinants of climate change has used 

several proxies to study climate change; for example, the vast majority of the studies 

have used carbon emissions as an important measure to gauge climate change. Some 

studies have used sulphur dioxide (Wang et al., 2016), various pollutants (Hao & Liu, 

2016; Du et al., 2018), and ecological footprint (Aydın et al., 2019; Xun & Hu, 2019; 

Destek & Sinha, 2020; Akadiri et al., 2020; Koyuncu et al., 2021) as measures to access 

climate change.  

 

Unlike the existing studies, in the second paper, we employed climatic variables to 

measure climate change and variability. Importantly, one of the prime concerns is also 

the short-term (climate variability) and long-term (climate change) changes in climatic 

variables (temperature and rainfall). Short-term changes call for a different set of policy 

measures than long-term ones. Most studies consider climatic variability and change as 

synonyms, while some consider climate variability as the deviation of climatic variables 

from a long-run mean of 30 years and climate change as a 30-year average of climatic 

variables. The present study separates itself from the literature by evaluating the 

determinants of climatic variables (temperature and rainfall) as a proxy for climate 

variability and change. For comparison with the existing studies, we have also 

employed carbon intensity and have evaluated its determinants. 

 

The major climate change determinants identified in the literature are economic growth, 

population, industrialization, trade openness, and energy intensity. Country-specific 
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policies often have a spillover effect on neighboring countries. The free rider problem 

in climate-related issues fails to provide a competitive global solution. Nationally 

determined goals and common policies for countries often help internalize the cost and 

benefits of spillover effects. We have examined the direct and indirect effects of drivers 

responsible for climate change, variability, and carbon intensity to analyze the 

determinants effectively.  

 

One of the major sectors vulnerable to climate change in agriculture. Food security in 

the post-pandemic and post-Russian-Ukraine war has raised concerns for developed 

and developing countries. Besides this transitory threat to food security, climate change 

is a permanent risk facing the agriculture sector. The agriculture sector, in general, and 

crop production, in particular, are connected to the natural environment, climate, and 

land conditions that show similar patterns across closely connected regions. Most 

agriculture regions suitable for crop production are clustered around each other. Besides 

agroecological conditions, globalization, increased communication, and information 

sharing create dependency of regions on one another, creating a spillover effect of their 

economic decisions not just on their own country but on countries in close proximity to 

them. Ulimwengu and Sanyal (2011) found that regions with low agriculture 

productivity surrounded by highly productive regions tend to catch up with the highly 

productive regions in case Africa. Keeping this in mind, the third paper in the study 

considers the direct, indirect, and feedback effects of factors affecting the agriculture 

production of wheat, rice, and maize. Contrary to the existing literature, we have 

considered countries that produce wheat, rice, and maize and have accounted for the 

spillover effect on countries that also produce the same crop. We are interested in 

evaluating whether countries producing the same crop can affect each other, 

considering climate variability and other agricultural inputs. 

 

The study has a few limitations. In the first paper, we considered the number of 

countries falling in income groups and industrialization. We have not accounted for 

their actual income or industrialization values. We have considered temperature and 

rainfall as a proxy for climate variables in the study. Other variables such as humidity, 

sunshine, and evaporation are ignored in the analysis that can be used for future 

research. Most crop production studies consider data on a monthly or crop seasonal 

basis as crop growth patterns requirement of climate input tend to change within a 
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season. For agriculture production and climate variables, we have analyzed the data on 

an annual basis as data on climate variables is readily available daily, but the data on 

agriculture production and other agriculture inputs is available annually. 

 

1.4. Plan of the Thesis 

Following the chapter of Introduction, the second chapter outlines the exploratory 

analysis of climate anomalies, considering the breakthrough in international 

collaboration across regions, income, and industrialization levels. In the third chapter, 

we quantified the spatial determinants of climate change, climate variability, and carbon 

intensity. In the fourth chapter, we analyzed the impact of climate variability on food 

production by considering a spatial econometric model for wheat, rice, and maize. 

Chapter 5 concludes the study with a policy recommendation 
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Chapter 2 

 

THE FOOTPRINT OF SPACE, INCOME, 

AND LEVEL OF INDUSTRIALIZATION ON 

CLIMATE CHANGE 

 

2.1. Introduction 

Climate change, often termed a distant threat, has already begun to show its visible 

signs with the emergence of natural disasters in the past few years. The recent global 

outbreak of locusts in Africa, South Asia, and the Middle East has been reasoned by 

a longer than usual rainy season and floods in Indonesia, India, Bangladesh, Iran, and 

Brazil. Australian bush fires, a volcanic eruption in the Philippines, and earthquakes 

in Russia, Turkey, India, China, and Jamaica give glaring signals for widespread 

impacts and consequences.1  

 

Generally, climate evolves over time, explaining some natural forces intrinsically 

altering the earth’s climate.2 Changes in biological factors majorly cause the pre-

industrial era’s climate variations. The post-industrial revolution came up with 

technological progress, increased urbanization, enhanced efficiency, and global 

integration with significant changes in global temperatures. The primary reason 

behind these significant changes is the excessive increase in human activities that 

emits carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and other 

greenhouse gases (GHGs).3 As compared to pre-industrial levels (1750), in 2011, 

global CO2 concentration swelled by 40 percent (278 ppm to 390.5ppm), while CH4 

and N2O were picked up by 150 percent (722 ppb to 1803 ppb) and 20 percent (271 

ppb to 324.2 ppb) respectively (IPCC AR5). Unfortunately, the pressing concern is 

that many of these emissions are permanent and cannot be reversed in centuries. 

 
1 The international disaster database, (CRED) https://www.emdat.be/ 
2 Variations in solar energy, volcanic eruptions, and natural changes in greenhouse gas (GHG) 

concentrations 
3 Increase use of fossil fuels and change in land use activities increases carbon dioxide emissions while 

agriculture sector is responsible of intensifying methane and nitrous oxide content in the atmosphere.  

https://www.emdat.be/
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Earth’s surface temperature will continue to rise even if net CO2 emissions are 

marginalized to zero.4 

 

Industrial activity has played an essential role in economic growth, development, and 

technological innovation in developed and upper middle income. However, the present 

series of climate change disasters reveals that industrial innovation and progress are 

also coupled with negative externality that affects our ecosystem’s standard working 

capacity. Carbon dioxide is continuously released and removed from the atmosphere 

by natural processes. However, excessive release of gases that absorb carbon content 

in the atmosphere increases the earth’s temperature. Multi-disciplinary scientists have 

analyzed several natural and anthropogenic factors responsible for climate change. 

This fact has also been validated in the current health crisis COVID-19 when more 

than half of the world has halted production, transportation, and all kind of carbon-

intensive activities. Le-Quéré et al. (2020) revealed that daily carbon emissions 

decreased by 17% in April 2020 compared to 2019. International Energy Agency 

(IEA) also ensures the reduction of 2.6 gigatons of CO2 emissions globally in 2020. 

 

Global collaboration to address climate change started in the late 1990s. International 

organizations such as United Nations Environment Programme (UNEP), United 

Nations Framework Convention on Climate Change (UNFCCC), and World 

Meteorological Organization (WMO) came into existence. Later UNEP and WMO 

jointly established a scientific body as Inter-governmental Panel on Climate Change 

(IPCC), for climate change research and awareness.  

 

UNFCCC came up with several tools and policy measures in its Conference of the 

Parties (COPs) each year since 1995 (for details, see Table 1). However, the Kyoto 

Protocol and the Paris Agreement (COP-21) are breakthroughs in global 

collaboration. Developed countries were considered responsible for the past century's 

industrial activity and were constrained to reduce their GHGs emissions levels. The 

Kyoto Protocol agreement restricted developed countries from cutting their emission 

by 5% compared to 1990 and country-specific goals for 2008 to 2012. In 2005, the EU 

 
4 Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change 
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also introduced an Emission Trading System (ETS) to strengthen emission reduction 

further. Through its technical and scientific reports (AR4 & AR5), IPCC assured an 

increasing carbon emissions rate from emerging economies (China, India, and Russia). 

Later, in 2015, the Paris agreement included developed, emerging, and developing 

economies as part of the global climate change process. The world’s top GHGs 

emitters agreed to move forward in decelerating the pace of worldwide temperature 

and keeping it between 1.5 °C to 2°C as compared to pre-industrial levels.5 

 

Climate change is not confined to geographical boundaries. Carbon emission emitted 

from one part of the world is homogenously mixed across the atmosphere irrespective 

of the country emitting it, but the impact of climate and natural disasters are 

heterogeneous. Distributional consequences across regions hold a crucial position for 

policy formulation at regional and country levels. The present study measures climate 

change's spatial and temporal spread across regions, income groups, and 

industrialization levels. Existing research on distributional analysis focuses more on 

impacts and future climate change based on process-based simulations.6 However, the 

present study uses historical climate change data to gauge climate change magnitudes 

across different regions, income groups, and key industrialization drivers. This paper 

does not explain complex models nor uses any complex methodologies in the analysis. 

Instead, it narrates merely factual data and graphically gives a birds-eye view of 

income levels, socio-economic linkages, and climate change. 

 

It is essential to have global and regional perspectives for international policy 

formulation. Considering differences in an economic framework, level of 

industrialization, and geographical location present study provides important insights 

to international policymakers. IPCC formulates its policy, keeping in view the income 

level of countries. The present study highlights the role of other factors, such as 

industrialization and geographical space, in devising climate change policies.  

 

 
5 Both Kyoto Protocol and Paris agreements includes three subgroups for countries. Annex I, Annex II 

and Non- annex I countries. Detail list of countries and their divisions into these sub groups can be 

assessed through https://unfccc.int/process/parties-non-party-stakeholders/parties-convention-and-observer-

states?field_national_communications_target_id%5B515%5D=515&field_partys_partyto_target_id%5B511%5D=

511  
6 climate models such as by Global Circulation Models (GCMs), regional climate models (RCMs), 

integrated assessment models (IAMs) and many more are being used to access climate change impacts 

https://unfccc.int/process/parties-non-party-stakeholders/parties-convention-and-observer-states?field_national_communications_target_id%5B515%5D=515&field_partys_partyto_target_id%5B511%5D=511%20
https://unfccc.int/process/parties-non-party-stakeholders/parties-convention-and-observer-states?field_national_communications_target_id%5B515%5D=515&field_partys_partyto_target_id%5B511%5D=511%20
https://unfccc.int/process/parties-non-party-stakeholders/parties-convention-and-observer-states?field_national_communications_target_id%5B515%5D=515&field_partys_partyto_target_id%5B511%5D=511%20
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Table 2.1: Key Developments in Climate Change Policy Formulation 

Period Key developments  

Pre-1990 1972- UN conference on the human environment 

1979- First World climate change conference 

1987- Montreal Protocol (restrict the use of chemicals that damage ozone) 

1988- IPCC was set up 

1990-1996 The 1990-IPCC first assessment report was launched 

1991- First meeting of intergovernmental negotiating committee IPCC 

1992-convection on climate change adopted. Rio Summit Declaration  

1994-UNFCCC was established 

1995-COP1 takes place in berlin 

1997-2004 1997- Kyoto Protocol was adopted 

2001-Marrakesh Accords 

2005-2014 2005-EU’s emission trading system was launched 

2007- IPCC's fourth assessment report was launched 

2009-Copenhagen Summit on Climate Change  

2010- The Cancun Agreement was adopted 

2015-2019 2016- The Paris Agreement was enforced 

2018-Rules for Paris Agreement Decided 

2019-UN Climate Action Summit for world leaders in New York 

Source: https://www.unfccc.int/, https://www.ipcc.ch/ 

 

The rest of the paper is structured as follows. Section 2 outlines the review of relevant 

literature on the distributional impact of climate change. Section 3 discusses 

methodology, data description, and data sources. Section 4 discusses findings by 

analyzing climate change across regions, income groups, and industrialization levels 

through graphical and spatial analysis. Section 5 concludes the study 

 

2.2. Review of Literature 

Climate change has already begun; it is a well-agreed phenomenon endorsed by multi-

disciplinary literature. It is not confined to geographical boundaries; therefore, 

countries are more concerned about the impacts, adaption, and possible mitigation. 

Going deeper into the causes of climate change, the literature reveals that human-

induced factors are crucial in altering climatic variables’ trajectories7. Others 

strengthen this fact by recognizing global warming as a by-product or externality of 

 
7 IPCC (2007) 

https://www.unfccc.int/
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unsustainable technological and industrial progress (Stern, 2007). The world economic 

system incentivizes production, consumption, capital accumulation, and technological 

progress. The industrial revolution, accompanied by the capitalist system, led to 

exponentially high growth levels for the global economy. However, every economic 

activity directly impacts our ecological system (Li, 2009; Burke et al., 2015), while 

some economic activities (crops, fisheries) are now contingent on climate and weather 

conditions.  

 

Climate variables, particularly temperature, nonlinearly affect economic productivity 

(Burke et al., 2015), labour supply (Zivin & Neidell, 2014), and agriculture yields 

(Mendelsohn & Dinar, 1999). Initial literature on climate change focused on GHGs 

damage functions and abatement costs for world regions. Nordhaus (1991), Tol et al. 

(2000), Fankhauser and Tol (1996), and Pearce et al. (1996) assumed different climate 

scenarios, damage functions, and adaptation practices to estimate future carbon 

emissions cost in monetary terms. Further studies analysed the impact of climate 

change on other sectors (agriculture, forestry, marine life, energy) have linear8 (Arnell 

et al., 2013) quadratic or parabolic9 (White et al., 1999) relationships with temperature 

changes. All these models that assumed different damage function forms predicted that 

each country would suffer from climate change relative to its income level. 

Experimental and cross-sectional studies on the climate sensitivity of different sectors 

reveal that climate change has a hill-shaped relationship in each industry. It means a 

specific optimal temperature for each industry maximizes revenues for that sector and 

beyond which gains tend to diminish (Mendelsohn et al., 2006).  

 

Burke et al. (2015) examined the non-linear relationship between temperature, 

precipitation, and productivity, irrespective of a country’s economic status. Deviations 

from growth trends are compared with deviations from temperature and precipitation 

trends. Besides this, the study identifies benchmark temperature (13°C to 16°C) that 

yields the highest productivity gains and beyond which productivity starts 

diminishing. 

 

 
8 Degree of impact is same as temperature increases 
9 Initial climate change may yield benefits until a point where benefits start diminishing with high 

levels of climate change 
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Comparative development theorists consider a strong correlation between a country’s 

location from the equator and economic prosperity (Andersen et al., 2016). We move 

away from the equator, and the income per capita of countries increases. Andersen et 

al. (2016) study revealed a strong and negative relationship between ultra-violent 

radiations on economic activity. The impact of climate change differs across countries. 

Existing literature, for example, Schelling (1992), Mendelsohn et al. (2006), Tol 

(2009), and Tol et al. (2004), revealed that developing countries, because of their 

geographical location, on average, are already more prone to hot temperature. Besides 

geographical conditions, most of their economic activities are dependent on climate-

sensitive natural resources. Also, their limited capacity to adapt makes them more 

vulnerable to additional warming. On the other hand, rich countries are relatively 

colder, rely on human-made resources, and have improved adaptive capacity, making 

them somewhat better off than developing countries.  

 

Climate models often predict that warming will increase towards the poles 

(Mendelsohn et al., 2006). While Tol et al. (2004) expressed that the temperature 

increase will drift more towards the equator because countries near the equator have 

already overcome warming resistance. Additional warming will harm them more than 

countries far from the equator. For further distributional analysis for climate change 

across the world’s poor and rich, Mendelsohn et al. (2006) analysed three different 

climate models with response functions and divided the world population based on 

their per capita income expected in 2100. The study predicted that the poor half of the 

world would be adversely affected by climate change compared to the wealthy half.10  

 

Changes in temperature and precipitation affect output and hinder output growth in 

developing countries (Dell et al., 2008; World Bank, 2010). With no prior assumption 

of channels through which temperature affects economic activity, Dell et al. (2008) 

estimated that temperature changes have a more pronounced negative impact on 

developing countries economic growth than on the rich. At the same time, changes in 

precipitation do not affect economic growth for both groups. The study examined the 

 
10 For further clarification on distributional impact, it was assumed that other things being different only 

climate change and initial climate is similar across countries. With similar climate change cross countries, 

the study strengthens the existing results while in case of same initial climate damage increases with 

income thus reducing the gap between rich and poor nations. 
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impact on both the level and growth of output. Horowitz (2009) examined the 

relationship between temperature and income using the econometric method and 

explored contemporaneous and historical climate factors. Dell et al. (2012) revealed 

that a 1℃ rise in developing countries’ temperature would decrease agriculture growth 

by 2.6 percentage point. While 1℃ increase in warming decreases economic growth 

falling by 1.3 percentage points.  

 

Existing literature has used complex methodologies to assess climate change and 

related future predictions for rich and developing countries. Most studies focus on 

economic growth as an important determinant causing and threatened by this change. 

The present study first separates itself from existing literature by reviewing climate 

change under the footprint of income, geographical location, and industrialization 

levels by overviewing factual historical data instead of complex economic models and 

scenarios. Secondly, the role of international collaboration, climate adaptation, and 

mitigation efforts has been accessed by analysing the pre and post-era significant 

breakthroughs in the global climate policy process. 

 

2.3. Methodology & Data 

The present study is exploratory and uses spatial analysis to capture climatic variables’ 

behavior given income, industrialization, and geographical location. The study uses 

spatial graphs using QGIS and excel software. Tobler’s (1969) first law of geography 

states that “everything is related to everything else, but near things are more related 

than distant things.” Location and geographical factors hold critical information that 

policy decisions can’t ignore. Thus, a mapping tool such as a geographical information 

system (GIS) is used to minimize the loss of information. Many studies have used GIS 

for environmental (Rahman, 2015) and metrological and socio-economic variables 

mapping. GIS is a computer-based program that integrates spatial information and 

other socio-economic variables into meaningful maps. Spatial analysis tools are 

widely used in urban planning (Kohsaka, 2000), poverty mapping (Vista & Murayama, 

2011), land use management, and tourism management (Boers & Cottrell, 2007). 

Before quantitative analysis, GIS tools explain the visual relationship between 

variables graphically. For climate variables, annual average temperature (°C) and 

rainfall (mm) is used. Climate variability (anomaly) is measured by the deviation of 
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climatic variables from their long-run mean, often known as climate anomalies. WMO 

(2017) has also updated climate typical with changing conditions as the most recent 

30 years ended with zero. The current climate standard period is 1981-2010, but 1961-

1990 can be used for long-run analysis. We have used the 1961- 1990 baseline period 

for the current research because major international organizations were formed after 

the 1990s. Therefore, the base period is chosen before any policy measures are 

enforced to capture climate change organizations’ roles effectively. Climate Research 

Unit (CRU) UK published various climate variables data sets under CRU TS 4.03 with 

high resolution (0.5°x 0.5°). It covers data for the entire world from 1901 to 2018. 

Several stations are being captured for a single country11. Overall, CRU monitors four 

thousand weather stations around the world.  

 

The study utilizes seven regions: North America, Europe, Central Asian, Latin 

America and Caribbean, East Asia and Pacific, Middle East and North Africa, South 

Asia, and Sub-Saharan Africa. Each year's historical classification of countries is taken 

from the World Bank database to categorize income groups (For detail, see Appendix 

A). The study uses the United Nations Industrial Development Organization (UNIDO) 

bifurcation of countries into Industrialized Economies (IEs), Newly Industrialized 

Economies (NIEs), Developing Economies (DEs), and Least Developing Economies 

(LDEs). The analysis is divided into four regimes with two principal policy 

interventions to analyze the international organizations’ role.  

 

Figure 2.1: Major Regimes in Climate Change Policy Formulation 

1990-1996 1997-2004 2005-2014 2015-2018 

Regime 1:  

pre-Kyoto protocol 

(R1) 

Regime 2:  

post-Kyoto 

protocol (R2) 

Regime 3:  

pre-Paris agreement and 

Kyoto protocol 

enforcement (R3) 

Regime 4:  

post-Paris agreement 

(R4) 

 

2.4. Discussion on climate, climate variability, and climate change 

Many international organizations use various climate definitions, variability, and 

change. It is important to quantify climate change and variability for effective policy 

formulation. World Metrological Organization (WMO) defines climate as:  

 
11 Complete list of stations considered for each country can be accessed through  

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/ 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/ge/ 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/ge/
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“the state of the average behavior of climatic variables over a period of 

time of 30 years or more”.  

 

For climate change, WMO defines the statistically significant change in climatic 

variables' average behavior that persists for a decade or more, caused by external and 

internal factors. However, UNFCCC defines climate change as the changes caused by 

anthropogenic factors. Climate variability is measured by the deviation of climatic 

variables from their long-run mean, often known as climate anomalies (WMO). 

Climate variability defines a prerequisite for a benchmark or baseline from which 

change is calculated. Thus, WMO has defined climate normal as a reference to 

compare current climate variables. These reference periods show climate variables' 

average behavior for thirty continuous years. The benefit of using thirty years is to 

minimize extreme events’ effects and get insight into climate variables’ historical 

perspectives. 

 

Literature suggests several indicators to access climate change. For example, 

Bugmann and Pfister (2000) considered the year-to-year fluctuations around the long-

run mean of climate variables as climate variability. Katz and Brown (1992) depicted 

the long-run trend in climate variables as climate change, and Chang (2002) used the 

difference of seasonal mean temperature and rainfall from 20 years moving average 

as climate variability. Rowhani et al. (2011) measured climate variability by the 

coefficient of variation of seasonal temperature and precipitation. Agovino et al. 

(2019) used mean annual temperature and mean annual precipitation to measure 

climate change in analysis.  

 

Gohar and Cashman (2016) considered the study's climate average, climate change, 

and climate variability assumptions. A normal climate zone lies where annual average 

rainfall follows normal distribution around the mean with a 5 percent variation. If 

average annual precipitation falls below 50 percent, it is climate change. At the same 

time, climate variability is a 30 percent variation of average yearly rainfall around 

mean rainfall. Badolo and Kinda (2014) defined climate variation as the absolute 

deviation of rainfall from its long-run mean. Moore and Lobell (2014) used the 

deviation of climate variables from a 30-year baseline period of 1961-90 to assess 

weather variability while the 30-year average temperature to gauge climate. Tol (2021) 
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used multiple forms of weather anomalies, such as linear, square, and asymmetric, to 

assess weather variability. Tol (2021) defines weather as what we get at a point in time 

and defines climate as the weather we expect in the future. The climate in the study is 

defined as long-run temperature.  

 

Considering the definitions outlined by international organizations and existing 

literature, we refer to climate as 30 year average of climatic variables in the present 

study.  For climate anomaly, we define it as climatic variables from a long-run mean 

of 30 years. For climate variability, we define the square deviation of climatic variables 

from a long-run mean of 30 years. We assign more weight to large deviations when 

using a square.12 On the other hand, climate change is defined by the change in the 30-

year average temperature from the long-run mean. We will use these definitions in the 

subsequent chapters to evaluate the impact. The present chapter considers temperature 

and rainfall deviation of climate variables from the long-run mean to assess climate 

variability.  

 

2.5. Theoretical Background 

Malthus was the first to coin environmental degradation when he studied the 

relationship between population and environmental degradation. Simultaneously, 

development economics theorists suggest that structural transformation is vital for 

economies to take off and transit from one income level. When countries move from 

low to high income, more resources are diverted from agriculture to the manufacturing 

and services sector. Excessive production and a conductive capitalist system 

encourage profit-seeking and thus overexploit resources at the cost of the environment. 

Contrary to this, modernization theories such as the Environmental Kuznets curve 

(EKC) followed by ecological modernization theory (EMT) favored industrialization 

as a significant growth and innovation source that ultimately improves the 

environment. However, controversy still prevails on the relationship between climate 

change countries’ income, industrialization, and geographical location. Thus, the 

present study uses historical data to revisit the relationship between industrial activity 

and climate change. 

 
12Weather colder or warmer than usual will incur adaptation cost for countries.  
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2.6. Results 

2.6.1 Climate Anomaly: A Historical Perspective across Varying Income Levels  

Economic theory suggests that countries’ production or income levels are driven by 

four production factors, i.e., capital, labor, resources, and technology. Climate change 

comes under the domain of help as it is the primary input for agriculture, affects labor 

productivity (Kjellstrom et al., 2009), and capital to net income ratio (Tsigaris & Wood, 

2019). The present section highlights how climate change varies with countries’ income 

levels across the past three decades. World Bank (WB) has classified countries 

according to four income groups: High-Income Countries (HIC), Upper Middle-Income 

Countries (UMIC), Lower Middle-Income Countries (LMIC), and Low-Income 

Countries (LIC). In the present section, we have analyzed the economic status of 

countries from 1991 to 2018. The prime reason to choose this period is that most 

countries have improved their economic status. Few have gone down while others have 

sustained. Secondly, many international organizations took aggressive steps to 

minimize climate change vulnerability. As our data set is divided into different time 

intervals, countries’ income status is ranked according to each interval’s year ending.13 

The number of countries within the subgroup of income level varies with time  

 

All income groups experienced more warming than usual in periods beyond the 1990s. 

A constant warming trend is accompanied by a higher magnitude of warming in all 

income groups each additional year. Considering international agreements, most of the 

HICs were part of the Kyoto Protocol and the Paris agreement. Warming has increased 

in pre-and post-Kyoto protocol times from 1990 to 2004. However, before the Paris 

agreement regime (R3), additional warming slowed significantly across all income 

groups except UMICs (see Table 2.2). It was the time when the EU launched an 

emission trading scheme, IPCC reports were launched, and COPs were being held each 

year with conclusive policy discussions in the form of a Paris agreement. R4 magnitude 

of temperature anomaly for HIC increased more than any other income group, followed 

by increased UMICs, LMICs, and LICs. Within a short span of 4 years, an increase in 

warming is more pronounced in this period (See Table 2.2). 

 

 
13 For example, for interval 1990-1996 income status of countries in year 1996 is used in the analysis 

and vice versa for other regimes 
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Interestingly, if we see the percentage change of anomalies from regime 1 to R4, LICs 

speed of change in temperature anomaly is highest, followed by UMIC, LMIC, and 

HIC (See Table 2.2). The rainfall anomaly fluctuates for all income groups (See Figure 

2.3). Most regimes witness less rainfall than the standard benchmark of 1961-90, except 

for R3. In the past few years (2015 to 2018), all income groups received less than an 

average period.  

 

Literature also widely supports that high-income countries will experience warming but 

will be less damaging for them because of their location, resources, and adaptive 

capacity (Nordhaus, 1993; Gallup et al., 1999; Tol et al., 2004;14 Dell et al., 2008). They 

have also examined that the economic activities of HICs do not heavily rely on climate-

sensitive sectors. This fact is also validated if we look at the sectoral contribution to the 

GDP and sector-wise employment status of HICs. The services sector has increased its 

value-added in GDP in HICs from 65 to 69 percent in the past two decades, and it is 

the highest among all income categories. However, agriculture, manufacturing, and 

industry shares have declined over the same period.15 Employment also followed the 

same trend; the services sector caters to more than 70 percent of HICs individuals. 

Socio-economic factors such as low population growth (0.4 percent),16 small household 

size (less than three persons)17, and stable low annual consumption growth (2.02 

percent) as compared to other income groups provide further cushion for HICs. GNI 

growth rate (4.2 percent) in HICs is greater than the population growth, which shows 

less burden on their existing resources. HICs have not only empowered themselves 

economically but have built strong institutions with more adaptive capacity towards 

changing circumstances. One of the prime reasons for achieving economic success long 

ago and developing this adaptive capacity is increased reliance on cheap energy 

resources (fossil fuels) for massive production.  

 

 
14 climate models such as by Global Circulation Models (GCMs), regional climate models (RCMs), 

integrated assessment models (IAMs) and many more are being used to access climate change impacts 
15 According to World Bank, agriculture value added has declined from 2 % to 1.3% while manufacturing 

sectors contribution has contracted from 17.5% to 14 %. Despite this, manufacturing valued added itself 

has surged and is highest among all income groups as most of HICs produce complex value-added 

technological goods. 
16 Data for population growth, annual consumption expenditure growth and GNI growth rate is for year 

2018. Source: World Bank Data Base, 2020 
17 United Nations, Department of Economic and Social Affairs, Population Division (2019) 
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Major UMICs, often called “Plus Five” emerging economies experienced the transition 

from LMICs and LICs. Development economic theorists suggest that structural 

transformation is vital for economies to take off and transit from one income level. 

When countries move from low to middle income, more resources are diverted from 

agriculture to the manufacturing and services sector. Unfortunately, all this has been 

achieved at the stake of environmental and resource degradation. UMICs and other 

developing economies’ contributions to world GDP improved from 35.5 percent in the 

1990s to 51.3 percent in 2018, while HIC decreased from 63.7 percent to 47.9 percent 

in the same period18. The prime reason for the strong and steadily increasing growth 

rate is the interconnectedness and global collaboration in production. Presently UMICs 

value-added contribution to GDP is dominated by the services sector (55.6 percent), 

followed by industry (32.5 percent), manufacturing (19.8 percent), and agriculture (6.1 

percent). UMICs are home to 37.4 percent of the world population, with a per capita 

income growth of 3.2 percent (WB, 2019) annually. About 21 percent of the employed 

are dependent on agriculture, while the share of industry and services in the labor force 

is 25.7 percent and 52.6 percent, respectively. 

 

Cereal production in UMICs is the highest (1.28 billion metric tons) and is increasing 

among all income groups; industry, services, and manufacturing value-added stood at 

USD 8.7 trillion, USD 12.6 trillion (2017), and USD 5.5 trillion in 2018, respectively. 

Literature suggests that the service sector will be less affected by climate change than 

other sectors. (Tol, 2018; OECD, 2015). UMICs make up 20 percent of world tourism 

receipts, with an increase of 2.97percent in 2013-2018. Several arrivals in UMIC are 

second-highest after HICS. As most of these countries are situated near the tropical 

zone with outdoor tourism activities, there is a high probability that climate change in 

the form of a surge in temperature and sea level will reduce their earnings and 

deteriorate coastal infrastructure. Socioeconomic factors are not accommodating for 

UMICs as 66 percent of the total population resides in urban areas, with a significant 

population living in urban slums. Average HH size of four members with limited access 

to health, education, and other social services. Besides this, GDP and consumption 

expenditure growth exceed HICs, i.e., 3.8 percent (2019) and 4.6 percent (2018), 

respectively.  

 
18 World bank database on GDP PPP (constant 2017 USD) 
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Considering LMICs, their industry and manufacturing sector are backed by the growth 

of foreign direct investment (FDI) in the late 1980s and the emergence of MNCs with 

the global value chain mechanism. Sectoral contribution of GDP in LMICs shows that 

agriculture holds a 15.7 percent share in GDP, with manufacturing having 14.8 percent, 

followed by industry at 27.4 percent, and services at 49.8 percent. The share of 

agriculture, the most climate-sensitive sector, holds a predominant role in LMICs. 

Agriculture land is 43.7 percent of the total land area (WDI, 2016), the highest among 

all income groups. About 39.5 percent of the population is employed by the sector, with 

a rural population of 60.3 percent (WDI, 2019). The trade scenario for food suggests 

that LMICs export food products that account for 13.7 percent (WDI, 2018) of their 

merchandise trade. Most food products are traded in the raw or primary form with minor 

value addition. It makes them more susceptible to changing climatic conditions.  

 

Geographical location further adds to the existing challenges as most countries are 

water-stressed and dependent on rainwater for irrigation. Rent from natural resources 

has decreased considerably over the past two decades (World Bank). Nordhaus (1993), 

Tol (2009, 2018), Mendelsohn and Dinar (1999) also validated the above facts through 

macro-economic models. Around 42.4 percent of the urban population lives in urban 

slums. Consumption expenditure growth of HHs is highest among all income groups 

with five persons’ average household size. High population density causes additional 

stress on existing natural resources threatening food and water security, shelter, 

conflicts, and mass migration. 

 

Mendelsohn et al. (2006), Dell et al. (2008), and Dell et al. (2012) are of the view that 

developing countries will be adversely affected by climate change as they are already 

hot. LIC is the agrarian economy as they have a more sectoral share in agriculture than 

any other income group, with a more significant fraction of the population linked with 

agriculture activities. In 2018, agriculture had a 24.5 percent share of GDP, followed 

by industry at 25.7 percent and services at 40.2 percent. Agriculture land is 39.6 percent 

of the total land (WDI, 2016). About 59.1 percent of the population is employed by the 

sector, with a rural population of 66.6 percent (WDI, 2019). Their dependence on 

natural resources is highest among all income groups as rent from natural resources 

accounts for 12.5 percent of GDP, i.e., highest among all income groups. LIC is the 
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most vulnerable group to changes in climatic conditions. Most LICs are part of Sub-

Saharan Africa near the equator and have already achieved the maximum temperature 

tolerance limit. Besides, warming and low rainfall will severely affect food and water 

security (Mendelsohn et al., 2006). LIC has a low per capita income and the highest 

population growth rate globally, with an average HH size of 5 members. About 60 

percent of the urban population lives in urban slums with poor health and living 

conditions. Trade accounts for 50 percent of the GDP, based on primary agriculture 

products. International tourism accounts for 13.6 percent of the GDP. Any damage to 

natural or physical resources affects earnings from the tourism sector. 

 

Table 2.2: Percentage Change of Temperature Anomalies across Different Income 

Groups (Values in Percentage) 

Regions 1990-

1996 

R1 

1997-

2004 

R2 

2005-

2014 

R3 

2015-

2018 

R4 

percentage 

change between 

R1 & R4 

High Income - 91.8 9.3 42.8 199.3 

Upper Middle 

Income 

- 

94.8 27.9 33.9 233.6 

Lower Middle 

Income 

- 

133.7 6.1 31.2 

225.4 

Low Income - 143.3 13.8 25.5 247.5 
Source: Authors’ calculation from Climate Research Unit Database CRU TS 4.03 

 

Figure 2.2: Temperature Anomaly across Income Level of Countries 

 
Source: Author’s calculation from Climate Research Unit Database CRU TS 4.03 
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Figure 2.3: Rainfall Anomaly across Income Level of Countries 

 

Source: Author’s calculation from Climate Research Unit Database CRU TS 4.03 

  

2.6.2. Climate Anomaly across Varying Levels of Industrialization  

IPCC reported that anthropogenic factors induced significant sources of past-century 

warming. High GDP growth, technological advancement, massive production, and 

growing consumption worldwide have left far-reaching negative stimuli on the 

challenging environment. The present section sheds some light on the historical trends 

of climate variables for industrialization. The study also examines the past trend in CO2 

emissions with varying industrialization degrees, as industrialization is directly linked 

to carbon emission. 

 

Countries have experienced more warming at all industrialization levels than usual in 

periods beyond the 1990s—the warming trend to surge in the post-Kyoto protocol 

period (R2) in all countries. NIEs percentage change in temperature anomaly from 1990 

to 2018 increased the most, followed by an increase in DEs, LDEs, and IEs in this 

period. It shows that NIEs have experienced more significant temperature changes from 

their usual than any other industrialization group (IG).  

 

Regarding cross IG comparison, the magnitude of temperature anomaly experienced by 

IEs recorded is the highest, i.e., 1.3°C, followed by an increase in NIEs, DEs, and LDEs. 

In 2015-2018, the rise in warming again surged, yet it was slower than warming in the 

post-Kyoto protocol period (See Table 2.3 & Figure 2.4). The rainfall anomaly shows 
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a fluctuating trend for all IGs. Initially, in 1990-96, rainfall in all IGs declined from the 

standard period. At the same time, most regimes witness more rain than the common 

benchmark of 1961-90 in R3. In the past few years (2015 to 2018), DEs and LDCs 

received rainfall less than benchmark periods. The volatile behavior of rainfall anomaly 

(See Figure 2.5) creates uncertainty and serves as a twin challenge to handle in the 

presence of ever-increasing warming. 

  

Table 2.3: Percentage Change of Temperature Anomalies across Levels of 

Industrialization (Values in Percentage) 

Regions 1990-

1996 

R1 

1997-

2004 

R2 

2005-

2014 

R3 

2015-

2018 

R4 

% Change 

between R1 

& R4 

Industrialized - 83.5 10.1 46.3 195.5 

Newly 

Industrialised 

- 

154.0 32.7 42.5 380.2 

Developing - 125.7 17.6 39.7 270.7 

least Developed - 114.9 15.0 19.1 194.4 
Source: Author’s calculation from Climate Research Unit Database CRU TS 4.03 

 

Global collaboration to address climate change started with central IE member states. 

Kyoto Protocol, the first international agreement for reducing GHGs, restricted 

developed countries from cutting their emission by 5 percent in 1990 and country-

specific goals for 2008 to 2012. Most of the IEs except the US19reduced GHGs 

emissions in this period (see Figure 2.6 and Figure 2.7). Besides this, the EU also 

introduced an emission trading system (ETS) to strengthen emission reduction further. 

After 2013, most of the HICs experienced warmer than average temperatures. Before 

2006 HICs’ share in global carbon emission was 47 percent, the highest among all 

countries. However, this share was reduced considerably after enforcing the Kyoto 

Protocol in 2006. As GHGs are irreversible, they exist in the atmosphere even if net 

emission is zero (AR5, 2014). Thus, despite international organizations’ concerted 

efforts, most IEs show a warming trend even though emissions rates have significantly 

decreased (See Figure 2.6 and Figure 2.7). Abban et al. (2020) examined that energy 

consumption increases carbon emissions in HIC by 0.8 percent. However, renewable 

energy consumption in IEs has significantly increased (See Figure: 2.14). 

 

 
19 US was the largest emitter of GHGs, but it was not part of the protocol at the time of its 

commencement  
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Figure 2.4: Temperature Anomaly across the Level of Industrialization 

 
Source: Author’s work based on Climate Research Unit Database CRU TS 4.03 

 

Figure 2.5: Rainfall Anomaly across the Level of Industrialization 

 
Source: Author’s work based on Climate Research Unit Database CRU TS 4.03 

Figure 2.6: The Percentage Share of IE’s in Global Total Carbon Emissions (Mton) 1990-2018.  

Source: Emissions Database for Global Atmospheric Research (EDGAR), EU 
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Figure 2.7: The Percentage Share of IE’s in Global Total GHGs Emissions (Mton CO2 eq) 1990-

2015.  

Source: Author’s work based on Emissions Database for Global Atmospheric Research (EDGAR), EU 

 

Fast-growing economies of East Asia Pacific and Latin American regions have 

achieved exceptionally high growth levels in the past two decades. Global collaboration 

in manufacturing and industry, exploitation of natural resources, cheap energy as the 

primary input, large market size, export, and investment-led growth has served these 

economies well. However, these countries were one of the small-time's most significant 

contributors to carbon emissions. Major NIEs that experienced a transition in their 

economies include China, Brazil, Mexico, Russia, Malaysia, and Venezuela. Total 

carbon emissions by these countries in 2018 alone comprised 37.9 percent of global 

carbon emissions.20  

 

Initially, newly industrialized countries were not part of the Kyoto Protocol as IEs were 

considered responsible for past century industrial activity; thus, developed countries 

and the EU was constrained to reduce their GHGs emissions levels. NIEs entered a 

carbon reduction mechanism in the Paris Agreement in 2015. This agreement was a 

hallmark for international collaboration on climate change reduction efforts. The 

world’s top GHGs emitters agreed to move forward in decelerating the pace of global 

temperature and keeping it between 1.5 °C to 2°C as compared to pre-industrial levels. 

In the early 1990s, NIEs contribution to global total carbon emission was around 37 

percent, yet this share reached 51.6 percent in 2018, making NIEs the highest 

contributor among all country groups. Carbon emissions in NIEs show an increasing 

trend till 2010; after that, emission tends to be stable (See Figure: 2.8, Figure 2.9). 

 
20 China (29.7%) Brazil (1.32%), Mexico (1.31%), Russia (4.61%), Malaysia (0.68%) and Venezuela 

(0.32%) data is taken from https://ec.europa.eu/eurostat/data/database  
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Renewable energy resources increase more rapidly in NIEs than in IEs (See Figure: 

2.14). 

 

Figure 2.8: The Percentage Share of NIEs in 

Global Total Carbon Emissions (Mton)  

1990-2018 

Figure 2.9: The Percentage Share of NIEs in 

Global Total GHGs Emissions (Mton CO2 

eq) 1990-2015.  

 

Developing economies have a large population, rising demand for energy, 

transportation services, and rapidly growing urban areas. Industrial growth is driven by 

power as the primary source of input. The percentage share of global carbon and GHG 

emission in DEs (See Figure 2.10 and Figure 2.11) and LEs (See Figure 2.12 and Figure 

2.13) is far less than IEs and NIEs but has increased since 1990. Most of them are 

agriculture-based economies and are in their initial stages of development in which they 

use conventional cheap energy resources for production. Literature also suggests no 

causality between energy consumption and economic growth in low-income countries 

(Yasar, 2017). 

 

Figure 2.10: The percentage share of DEs in 

global total carbon emissions (Mton) 1990-

2018.  

Figure 2.11: The percentage share of DEs in 

global total GHGs emissions (Mton CO2 eq) 

1990-2015.  
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Figure 2.12: The Percentage Share of LDEs 

in Global Total Carbon Emissions (Mton) 

1990-2018.  

Figure 2.13: The Percentage Share of LDEs in 

Global GHGs Emissions (Mton) 1990-2015 

 

Figure 2.14: Renewable Energy Source Calculated in (TWh) Terawatt Per Hour. Source; BP 

Review 2019 

 

2.6.3 Measuring Climate Anomaly Dynamics across Space 

The present section describes the regional disparity of climate change variables across 

geographical locations. For climate change analysis individual country’s geographical 

location, population, adaption capacity, and other factors determine the scale of impact. 

The literature has well documented that climate change will affect low latitude 

countries near the equator, while those at high latitude will reap benefits. All regions of 

the world, irrespective of regimes considered in our analysis, have experienced more 

warming than the reference period.  

 

In addition, the magnitude of warming with each additional year is increasing (See 

Table 2.4 & Figure 2.15). Rainfall anomaly revealed fluctuating trend along reference 

period for all regions except the Middle East and North African (MENA), South Asia 

(SA), and Sub Saharan African (SSA) countries that have experienced rainfall reduction 

from 2005 to 2018 (See Figures 2.17e to 2.17h & Figure 2.16). Although the magnitude 
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of change is not much, the constant direction of an anomaly in decreasing trend 

is an alert for an already heat-stressed equatorial belt. 

 

Figure 2.15: Temperature Anomaly across Regions 

 

Source: Climate Research Unit Database CRU TS 4.03 

 

Figure 2.16: Rainfall Anomaly across Regions 

 

Source: Climate Research Unit Database CRU TS 4.03 

Unlike existing literature, North America (NA) and Europe, and Central Asian (ECA) 

countries’ temperature anomalies are more in terms of magnitude than other regions 

(See Figures 2.17a and 2.17d). Considering the policy intervention regimes, most of the 

temperature rise is evident in Europe's post-Kyoto protocol and pre-Paris agreement 

period. Most European countries are part of the Kyoto Protocol and the Paris agreement 

as annex I countries that restrict carbon emissions with their nationally determined 

contributions (NDCs) and provide funds to developing countries to adapt to climate 

change. However, NA countries had undergone warming in the post-Paris agreement 

when three of the two countries in NA (Canada, US) ratified significant carbon 
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emissions cuts when they experienced warming than usual21. Other regions like Latin 

America and the Caribbean (LAC), East Asia Pacific (EAP), SS, and SSA also 

experienced an increase in temperature anomaly. However, their magnitude was lower 

than most high-altitude countries (See Figures 2.17a to 2.17d). All these regions lie in 

non-annex I members that were not part of the Kyoto protocol but were members of the 

Paris agreement with carbon emission restrictions. One of the prime reasons for the 

overwhelming response from all regions to the Paris Agreement is excessive warming 

in all regions within two decades. 

 

European countries such as France, Germany, and the Netherlands experienced record 

heat waves in 2019. Southern European countries22 are projected to experience high 

temperatures, melting glaciers, and disruption in hydrological cycles. Eastern and 

Central Europe23 are projected to be more sensitive to climate change because of their 

limited adaptive capacity and low-income levels than other European countries. 

Northern Europe is projected to have relatively warm temperatures favorable for the 

agriculture and tourism industry, particularly in some parts of Russia. Central Asian 

countries are landlocked and are often called the world’s driest regions. These countries 

have a delicate ecological system susceptible to water shortages. The primary source of 

water supply through glacier melting (Zhang et al., 2019). Climate change in high 

temperatures will reduce water flow from upstream countries. Any disruption or 

shortage in water makes downstream central Asian countries vulnerable to rising inter-

regional conflicts.  

 

MENA is a resource-rich region for oil and natural gas. MENA24 is adversely affected 

by climate change. The whole area is situated near the equatorial belt. These countries 

have already achieved upper tolerance limit for high temperatures; the further increase 

will harm this region the most. Low rainfall than usual and rising temperature lead to 

 
21 It is important to mention US and Canada where not part of Kyoto protocol, but they were important 

signatory of Paris agreement. 
22 Includes countries: Italy, Malta, Greece, Croatia, Bosnia and Herzegovina, Montenegro, Slovenia, 

Spain, Southern France, European Turkey and Cyprus. 
23 Central and Eastern European Countries (CEECs): Albania, Bulgaria, the Czech Republic, Hungary, 

Poland, Romania, the Slovak Republic, Slovenia, and the three Baltic States: Estonia, Latvia and 

Lithuania. 
24 Algeria, Bahrain, Djibouti, the Arab Republic, Egypt, the Islamic Republic of Iran, Iraq, Israel, Jordan, 

Kuwait, Lebanon, Libya, Morocco, Oman, Qatar, Saudi Arabia, the Syrian Arab Republic, Tunisia, the 

United Arab Emirates and the Republic of Yemen are included 



  

36 

drought and water scarcity. According to World Bank, MENA is the most water-

stressed region globally, which might cost the region a loss of 6 to 14 percent of the 

GDP by 2050. Sand and dust storms are also frequent in the region. The current 

outbreak of locusts in eastern Africa and its favorable environments in other parts of 

the Middle East, such as Oman and the Kingdom of Saudi Arabia, is also an irregular 

rainfall pattern. 

 

LAC is blessed with natural resources such as amazon forests, fertile lands, livestock, 

and water resources.25 Rapidly growing population and increasing world demand have 

led LACs to excessive land and other resource extractions. Deforestation to improve 

land for agriculture, production of biofuels, and livestock grazing activities augment 

climate change’s negative impact. However, the magnitude of warming is less in LAC 

(See Figures 2.17a and 2.17d) than in other regions.  

 

East Asian economies are the largest archipelagos with coastal mangroves and coral 

reefs. EAP is a densely populated region with consumption and investment-led growth 

structures. These economies are also production hubs for innovative value-added goods 

and are part of the global value chain. Massive resource utilization has threatened 

mangroves, forests, and other natural resources that affect the balance of the ecosystem. 

EAP has faced a series of floods, storms, and tropical cyclones every year. Many MNCs 

have moved away from these economies because of a series of natural disasters. Costal 

infrastructure destruction also leads to mass migration and deterioration of income from 

coastal tourism and fishing. The hardest-hit countries by climate extremes are in this 

region. 

 

South Asia is considered vulnerable to climate change because most countries are 

agrarian and home to 24.8 percent of the world population. Geographical and natural 

resources make these countries dependent on water from rainfall and glacier melting. 

The Himalayas are a water source, balance rainfall dynamics, and regulate groundwater 

for crops. Rain is also less than their respective usual since 2005. Rising temperature is 

catastrophic for glacier melting. Besides this, South Asian countries have little capacity 

to adapt to climate change due to their weak economy and financial conditions. 

 
25 LAC holds 25% of world forest and fertile land area with 30 percent of water resources of the world. 
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SSA is a region where most agrarian economies depend on rain-fed water. About 96 

percent of crops are dependent on rainwater. The agriculture sector contributes to the 

GDP and employment opportunities for more than 60 percent of the population. IPCC, 

2014 declared it the most vulnerable region due to its low adaptive capacity, poverty, 

and dependence on natural resources. Any disruption in rain-fed water leads to food 

insecurity in the region. 

 

Table 2.4: Percentage Change of Temperature Anomalies across Regions (Values 

in Percentage) 

Regions 1990-

1996 

R1 

1997-

2004 

R2 

2005-

2014 

R3 

2015-

2018 

R4 

percentage 

change 

between R1 & 

R4 

North 

America 

- 

28.1 13.3 59.4 131.4 

Europe and 

Central Asia 

- 

120.1 23.2 41.9 284.6 

Latin 

America and 

the Caribbean 

- 

43.8 18.7 45.5 148.3 

East Asia and 

the Pacific 

- 

103.5 -16.3 69.9 189.6 

The Middle 

East and 

North Africa 

- 

248.1 15.1 33.4 434.4 

South Asia - 229.6 28.8 16.0 392.6 

Sub Saharan 

Africa 

- 

101.5 22.3 20.6 197.1 
Source: Author’s calculation from Climate Research Unit Database CRU TS 4.03 
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Figure 2.17a: Annual Temperature Anomaly (°C) 1990-1996 

  

Source: Author's work from climate research unit database 
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Figure 2.17b: Annual Temperature Anomaly (°C) 1997-2004 

 

Source: Author's work from climate research unit database   
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Figure 2.17c: Annual Temperature Anomaly (°C) 2005-2014 

 

Source: Author's work from climate research unit database   
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Figure 2.17d: Annual Temperature Anomaly (°C) 2015-2018 

 

Source: Author's work from climate research unit database   
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Figure 2.17e: Annual Rainfall Anomaly (mm) 1990-1996 

 

Source: Author's work from climate research unit database 
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Figure 2.17f: Annual Rainfall Anomaly (mm) 1997-2004 

 

Source: Author's work from climate research unit database   
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Figure 2.17g: Annual Rainfall Anomaly (mm) 2005-2014 

 

Source: Author's work from climate research unit database   
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Figure 2.17h: Annual Rainfall Anomaly (mm) 2015-2018 

 

Source: Author's work from climate research unit database
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2.7. Conclusion 

The past century’s unprecedented industrialization based on fossil fuel consumption has 

caused far-reaching consequences for the world. GHGs emissions are considered a key 

contributor to climate change. At the same time, industrial activity is the primary source of 

emitting it. Sustainability has held a key position in policy formulation since climate 

change realization. Climate adaptation and mitigation policies aim to move the global 

economy to a sustainable path by managing driving sources such as industrial activity. 

International organizations have devised policies such as carbon emission restrictions to 

minimize climate change vulnerabilities. The present study considers countries’ industrial 

activity, location, and income levels to assess the dynamic of climate change. Also, the role 

of international organizations has been viewed by analyzing time before and after 

significant climate change agreements. 

 

A constant warming trend is accompanied by a higher magnitude of warming with each 

additional year irrespective of income groups, level of industrialization, and region 

considered. It is keeping in view the four policy regimes in the analysis, all income groups, 

levels of automation, and areas (except North America, Europe, and Central Asia) 

experienced more significant warming in regime two, the period after the Kyoto protocol. 

In regime 3, the pre-Paris agreement and Kyoto protocol enforcement period, additional 

warming increased slower than in other regimes. In regime 4, the pace of warming 

increased, yet it was slower than warming in the post-Kyoto protocol period. Overall, two 

significant climate change policy measures have deaccelerated the rate of additional 

warming in the world.  

 

Contrary to the magnitude of warming, the speed of change in temperature anomaly is 

different and is subject to income group, level of industrialization, and region considered 

in the analysis. Both income level and level of industrialization are positively associated 

with the magnitude of temperature anomaly. Higher-income levels and more industrialized 

countries have experienced more significant deviations from the reference period. 

Interestingly, the speed with which this change has been registered is different; LICs have 

more speed of warming as indicated by the percentage change from1991 to 2018, trailed 
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by UMICs, LMICs, and HICs. It shows that LICs temperature is changing at a more 

excellent pace; they need to speed up their adaptation and mitigation process more than 

any other income group. Considering industrialization, the NIEs pace of additional 

warming is relatively faster than other IGs followed by DEs, IEs, and LDs. DEs pace of 

further warming is more than IEs. However, their carbon emissions are far less than IEs 

and NIEs. The rainfall anomaly shows a fluctuating trend in all income groups and 

industrialization groups, with the rise in rainfall from 2005 to 2014 followed by a decrease 

in rains from average from 2015 to 2018. The volatile behavior of rainfall anomaly creates 

uncertainty and serves as a twin challenge to handle in the presence of ever-increasing 

warming. 

 

All seven world regions experienced more warming than their reference period in the past 

two decades. Regional disparity is observed across regions regarding the magnitude and 

pace of warming. Europe and Central Asia experienced the highest temperature change, 

followed by the Middle East and North African countries, North America, Sub-Saharan 

Africa, South Asia, East Asia Pacific, Latin America, and the Caribbean. The magnitude 

of the warming trend shows that the Middle East, North Africa, Europe, and Central Asia 

are getting warmer than any other region. Most of the countries in this region have 

experienced warming since 1990. Unlike the magnitude of warming, the speed of change 

in MENA countries is the highest, followed by SA, ECA, EAP, SSA, LAC, and NA. 

MENA countries are already situated in the equatorial belt; further temperature hikes will 

burden these countries’ upper limits. The SA region is also vulnerable to climate change 

due to its dependence on rain and glacier meltwater. MENA, SA, and SSA countries have 

also experienced rainfall reductions from 2005 to 2018. All these regions face dual 

challenges of increased warming with decreased rainfall. 

 

Distributional impacts across regions are crucial for regional and country-level policy 

formulation. The present study creates a sense of urgency for international cooperation in 

industrial, renewable energy, and climate change policies. It enables sharing goals and 

creating and adapting new innovative techniques to help mitigate the overall adverse 

effects of climate change. Innovation-driven industry policy encourages sustainable 
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industrialization; hence research and development expenditure should be inclined towards 

energy-efficient and green technology projects. The cost of environmental degradation 

needs to internalize by applying carbon taxes stringently. An incentive structure can be 

built that encourages investors and entrepreneurs toward green technologies. Policies to 

transfer environmentally friendly technology across different levels of industrialized 

countries can be facilitated by applying low barriers to entry.  

 

Quantitative income analysis is not included in the analysis as a major aim of the study was 

to analyze the spatial spread of a diverse set of IEs, NIEs, DEs, and LDs in their respective 

climate change. Therefore, future research could be extended by incorporating quantitative 

analysis. Further breakthroughs in industrial sectors, such as the emergence of multiple 

industrial revolutions (3.0 and 4.0 generation) and their impact on climate change, can be 

analyzed. Industrialization can mitigate the adverse effects of climate change. The level of 

industrialization in countries can explore more cost-effective techniques. Industrial parks 

have proved to be cost-effective in many ways. Further research can be extended to gauge 

how they can help limit the upward trajectory of consistent warming.  
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Chapter 3 

 

QUANTIFYING SPATIAL DETERMINANTS 

OF CLIMATE CHANGE 

 

3.1. Introduction 

The prime global concern for the world as it steps into the 21st century is to maintain a 

balance between its excessive production and environmental degradation. Excessive 

production based on fossil fuels led by industrialization has disrupted the ecosystem's 

natural balance. Sustainability is central for effective policy formulation. UN, in its COP-

26, has urged countries to limit the net emission to zero by 2030, limit methane emissions, 

loss of forest, coal-driven production, and international financing of fossil fuel projects. 

These measures were devised to keep countries on track with the global goal of keeping 

temperatures below 1.5 degrees Celsius.  

 

Climate change is fundamentally a global phenomenon that cannot be limited to one 

country. Countries that have closely proximity share the common meteorological 

conditions. Carbon emission emitted in the form of fossil fuel based industrialization, 

vehicles emissions, and burning agriculture residue in one country affects the air quality of 

neighboring countries and leads to transboundary movements of emissions. In addition to 

this, emergence of global value chains model for global production and industrialization 

have made economic activities more interconnected and the spillover effect of these 

activities is more profound than ever before.  

 

 Climate change has been an equal concern for both developed and developing countries. 

Many transmission channels and drivers have been identified in the literature for climate 

change to minimize the expected threats and devise informed policies that can decrease the 

pace of climate change and improve environmental quality. High global economic growth 

is generally linked to industrialization, urbanization, transport infrastructure, and 
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mechanization of industries and agriculture. In comparison, intensive industrialization and 

urbanization are associated with increased energy consumption that affects climate change 

(Waheed et al., 2019).  

 

Economic growth has been considered the critical determinant of climate change, led by 

CO2 emissions and various pollutants. Literature provides ample evidence on the 

relationship between environmental degradation and economic growth by EKC. Initially, 

economic growth increases ecological degradation, but economic growth improves 

environmental quality after a certain income level. Literature also examined the N inverted 

relationship of economic growth with environmental factors, suggesting that economic 

growth first increases environmental degradation, decreases, and finally increases 

exponentially.  

 

Industrial structure plays a vital role in economic growth and development. 

Industrialization can amplify or discourage additional warming. Industrial activities 

increase the demand for energy within and across other sub-sectors. Better income levels 

also come up with increase demand for luxury items that trigger energy demand and thus 

increase pollution. Some researchers believe that industrialization expands and restructure 

industries with technological advancement that aids the reduction of CO2 emissions. 

 

Appiah et al. (2019) study revealed that in emerging economies, carbon stock emitted is 

low when considering renewable energy resources and industrialization. However, carbon 

stocks surge if the population, urbanization, and non-renewable energy resources are 

employed. Asghar et al. (2020) found a long-run positive relationship between industrial 

growth, energy consumption, trade, and environmental degradation for 13 Asian countries, 

while in the short-run unidirectional causal relationship runs from industrialization to 

environmental degradation.  

 

Environment impact assessment studies related to drivers of climate change use 

urbanization as a proxy for measuring lifestyle and energy demand. It is also a proxy for 

development (Liddle & Lung, 2010). Ecological modernization theories suggest that when 
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countries move from low to middle-income groups, economic growth becomes a primary 

target at the cost of environmental sustainability, but as economic growth, development, 

and urbanization increase, ecological issues become of significant concern. 

 

Trade openness is also considered a key driver of climate change. Trade theories, for 

example, Hecksher-Ohlin (H-O), suggest that a country should produce goods with a 

comparative advantage in free trade. Often in the presence of trade openness, governments 

try to reduce their cost of production to achieve high profits by overlooking the 

enforcement of environmental laws and their implementation. Some researchers believe 

that greater integration helps improve the environment by enacting better solutions to 

environmental problems, as economic integration is the gateway for knowledge and 

technology integration. Most developed counties are equipped with capital-intensive 

industries, while developing countries are abundant in labor and natural resources. 

Exploiting more natural resources and excessive mechanization at the cost of cheap energy 

resources deters the natural equilibrium of the environment. 

 

Literature shows mixed evidence on the relationship between environment and population. 

Proponents of the Malthusian theory believe that each person added to the population also 

adds to environmental damage by increasing CO2 emissions in the atmosphere through 

increased water, food, energy, and resource consumption. Others follow the Boserupian 

view that considers the population as a source of innovation and reduces the negative 

environmental impact. York et al. (2003) found a proportional relationship between 

population and environmental impact. In contrast, Shi (2003) found varying results in the 

case of developed and developing countries. Some studies have also considered energy 

intensity an important predictor of climate change. 

 

Since the debate on climate change realization has reached a mutual consensus, an 

international collaboration for climate change policy and adaptive measures has increased. 

An essential instrument for climate change policy is to contain factors that exacerbate the 

pace of climate change at global and national levels. Several factors have been outlined 

that affect CO2 emissions and other pollutants; however, the impact of these factors on 
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temperature has not been studied in literature to the best of our knowledge. WMO and 

IPCC have made a distinction between climate change and variability. Climate change is a 

long-run phenomenon considering the 30-year average temperature (rainfall), while 

climate variability is the average temperature (rainfall) from the 30-year average. The 

present study considers this difference and analyses climate variability and change 

predictors. As climate change is a global phenomenon and climate regulations are globally 

determined, countries’ spillover effect on neighboring countries is under research area that 

needs more attention. For this, the present study considers spatial determinants of climate 

change and climate variability driven by temperature and rainfall change. The study also 

finds carbon intensity as a measure of climate change to analyze the variation in 

determinants using alternate dependent variables.  

 

3.2. Review of Literature 

3.2.1 Non-Spatial Determinants of Climate Change 

Sustainable economic growth and policies are the prime concern for developed and 

developing countries. The literature explains the relationship between economic growth 

and environmental factors by the Environmental Kuznets Curve (EKC). The hypothesis 

postulates a linear relationship of economic growth with environmental factors and a non-

linear relationship with its square term, indicating that economic growth initially increases 

environmental degradation while improving environmental quality at later stages.  

 

Most of the studies found GDP per capita a vital determinant while studying environmental 

factors such as carbon emissions, Sulphur dioxide (Wang et al., 2016), various pollutants 

(Hao & Liu, 2016; Du et al., 2018), and ecological footprint (Aydın et al., 2019; Xun & 

Hu, 2019; Destek & Sinha, 2020; Akadiri et al., 2020; Koyuncu et al., 2021).  

 

Some studies estimated the relationship between carbon emissions and growth at the 

country and regional levels. Some of the Asian (Rahman, 2017), and OECD countries 

(Martínez and Morancho, 2004) confirmed the presence of U shaped relationship between 

CO2 emissions and economic growth. Literature also reveals an N-shaped relationship 

between environmental factors and GDP per capita. Friedl and Getzner (2003) found an N-
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shaped relationship between environmental factor CO2 emission and the GDP per capita of 

industrialized country Austria. This indicates that emission tends to fall with a rise in 

income level, but after a specific time, they grow exponentially.  

 

Du et al. (2018) studied the association between haze pollution and economic growth, 

energy intensity, and industrial structure for a panel of 27 capital cities from 2011 to 2015. 

The study found varying trends for relationships in each region. For the central part, the 

study found a U-shaped relationship, while for other areas, the study found an inverted N-

shaped association between economic growth and CO2 emissions. Al-Mulali and Ozturk 

(2015) found industrialization, urbanization, trade openness, and political stability have a 

long-run positive relationship with the ecological footprint for 14 MENA countries. Lin et 

al. (2017) studied the determinants of CO2 emissions using the extended STIRPAT model 

for 53 non-high -, middle- and low-income countries and found that population, GDP per 

capita, and energy intensity are the key drivers of CO2 emission in low-income countries. 

  

In addition to the economic growth and environmental factors nexus several studies have 

used other socioeconomic factors to examine the complexity of the relationship. Rahman 

(2017) study found an adverse impact of exports, population density, and energy use on 

CO2 emissions. Ghazali and Ali (2019) estimated the impact of various socioeconomic 

factors on CO2 emission for a panel of 10 newly industrialized countries and found that 

GDP per capita, population, energy, and carbon intensity increase CO2 emissions. For Arab 

countries Abdelfattah et al. (2018) examined that GDP per capita, population, and energy 

intensity increase CO2 emission while institutional quality reduces the negative impact of 

environmental.  

 

Some studies in the literature considered industrialization a significant determinant of 

climate change driven by CO2 emissions. Li and Lin (2015) studied the impact of 

industrialization and urbanization on energy emission and consumption for 73 countries 

grouped by their development levels. Using threshold panel regression model study shows 

that urbanization decreases energy consumption but augments carbon dioxide emissions 

in low-income economies. Industrialization in the middle- and low-income countries 
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decreases energy consumption but increases CO2 emissions. Urbanization in middle- and 

high-income countries reduces the negative impact of carbon dioxide emissions.  

 

Dong et al. (2019) examined various industrial development stages affecting CO2 

emission. At the initial and intermediate level impact of industrialization is more 

pronounced on CO2 emissions; however, when industrialization matures in the presence 

of environmental regulations, the positive impact reduces for sub-Saharan African 

countries. Appiah et al. (2021) study examined the bi-direction causality between 

industrialization, energy use, and fossil fuel consumption. In the long run, both energy use 

and industrialization increase CO2 emissions. Opoku and Boachie (2020) examined the 

environmental impact of the presence of industrialization and FDI for 36 African 

countries.  

 

Some of the studies focused on single country analysis to analyse the relationship. Liu and 

Bae (2018) singled out causal linkages between China's per capita CO2 emissions, 

urbanization, industrialization, economic growth, and renewable energy resources. 

Sarkodie and Owusu (2017) tested the causality between environmental variables and 

Rwanda’s GDP per capita, industrialization, and population. Mahmood et al. (2020) 

studied the role of industrialization and urbanization in the environmental degradation of 

Saudi Arabia.  

 

Dalton et al. (2008) reveal that the aging population contributes to changes in US carbon 

emissions. Several indicators have been identified to gauge demographic aspects. For 

example, existing studies take the population size, growth, dependency ratio, and HH size. 

York et al. (2003) also used urbanization as component T of the STRIPAT model and 

found a positive relationship between urbanization and carbon emissions. Increased 

urbanization is conducive to economic growth, and increased consumption increases the 

demand for residential and transport infrastructure construction, which further adds to 

CO2 emissions and gives way to climate change.  Wang et al. (2020) explained the effect 

of urbanization and industrialization on CO2 emissions, considering a panel of 18 Asia-

Pacific Economic Cooperation (APEC) countries from 1990 to 2014. Results show that 
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economic growth, energy intensity, industrialization, and urbanization are the prime 

factors enhancing environmental degradation.  

 

Energy intensity is also considered an essential determinant of climate change. More 

energy consumption per unit of output increases carbon emissions, exacerbating climate 

change. In literature, energy intensity in the STIRPAT model is often used as a source of 

energy efficiency. Aydin and Turan (2020) analyzed the impact of energy intensity, 

economic growth, trade, and financial openness on an ecological footprint for BRICS 

economies. Results show that energy intensity exacerbates environmental pollution in all 

countries except Russia.  

  

Economic integration with increased international trade has increased the consumption 

and production of goods across borders. Literature suggests two different hypotheses for 

emissions and trade openness nexus. The Pollution Haven Hypothesis (PPH) states that 

multinational companies' (MNCs) for-profit motives choose destinations with low 

production costs and fewer environmental regulations. Thus, trade openness accompanies 

emission increases. In comparison, the pollution halo hypothesis states that trade openness 

decreases pollution by introducing modern and efficient technology in the production 

process. Besides this, more wealth brings greater consciousness for environmental 

problems (Atici, 2012). Shahbaz et al. (2013) examined the impact of economic growth, 

trade, coal consumption, and financial development on CO2 emissions per capita in South 

Africa. The study found that trade liberalization reduces the detrimental impact of CO2 

emissions. Essandoh et al. (2020) examined the positive relationship between CO2 

emissions and trade openness for 52 developed and developing countries. Low-income 

countries' emissions increase with increased FDI inflows, while trade openness for high-

income countries effectively reduces their carbon emissions. Sarkodie and Strezov (2019) 

study showed that the top five carbon emitters are satisfied with the PPH.  

 

3.2.2 Spatial Determinants of Climate Change 

Literature provides evidence for a spatial relationship between socioeconomic variables 

and climate change in CO2 emissions and various pollutants. Kang et al. (2016) estimated 
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the EKC for China by considering the spillover effects.     EKC in the presence of spillover 

effect of neighboring regions. You and Lv (2018) analyzed the spillover effect of 

globalization on CO2 emissions for a panel of 83 countries. Results indicate the spillover 

effect of a country’s CO2 emissions on its neighboring country. The study revealed a 

negative indirect impact of globalization, which shows that environmental quality tends 

to improve if the country is located near liberal economies.  

 

Zeng and Ye (2019) studied the impact of FDI, economic growth, population, and 

technology on energy intensity for 30 Chinese provinces. Results show evidence of spatial 

spillover effect of energy intensity in local and nearby regions. FDI has a positive direct 

and significantly high indirect effect on energy intensity. Results revealed that FDI 

inflows increase energy efficiency because of the energy-saving technology brought by 

firms in the region. This also has a high positive spillover effect on nearby countries. 

Zambrano et al. (2020) estimated the spatial determinants of ecological footprint (EF) for 

158 nations using the Spatial Durbin Model (SDM). Results indicate that EF is spatially 

correlated across space. Biocapacity, trade liberalization, and GDP per capita are spatial 

determinants of EF. Both biocapacity and trade openness have a positive spatial spillover 

effect on a domestic country’s EF, while GDP per capita directly affects EF.  

 

3.2.3 Analysis of Literature Review 

Literature provide several socioeconomic drivers of climate change including GDP per 

capita, urbanization, population, energy intensity, trade openness, FDI, and 

industrialization levels. However, the relationship of these variables vary with the income 

levels of countries, industrial development and the geographical location.  

Among the major drivers, GDP per capita is considered to be the key factor affecting 

climate change, indicating that the development levels and means to achieve development 

matters for climate change. The relationship is empirically captured by Environmental 

Kuznets curve that is inverted U shaped. However, in some countries the relationship is N 

shaped representing that emission tends to fall with a rise in income level, nevertheless 

after a benchmark, they grow exponentially. Other notable drivers such as level of 

industrialization and energy intensity also increases CO2 emissions that reflect climate 
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change. Industrialization also mitigates the negative impact of climate change if it aids 

expansion and restructuring of industries with climate-resilient technology. While contrary 

to it, it has also been highlighted that industrialization increases energy demand, produces 

industrial waste and this, in turn, affects weather patterns.  

Climate change is not limited to geographical boundaries as the countries contributing 

limited part of the global emissions are the most vulnerable to climate change related 

natural disasters. Climate change mitigation and adaptation policies are globally 

determined therefore, it is important to consider and incorporate the spillover effects of 

neighboring countries to internalize the true effects of climate change and plan global 

policies accordingly. The spatial dimension and neighborhood effects of these drivers have 

been analyzed in literature to some extent. Among the indirect effects (spillover), trade 

openness and FDI are the key drivers that tend to show spillover effects on neighboring 

countries. You and Lv (2018) study finds improvement in environmental quality if nearby 

countries have open trade policies. Zeng and Ye (2019) estimated that GDP, population 

size and technology have indirect spatial spillover effects on energy consumption on any 

given region in case of China. FDI that aimed for energy saving technologies in a region 

and its neighbors reduces the energy consumption.  

Limited studies have focused on the spatial effects of drivers of climate change and in 

addition to this, different environmental factors such as carbon emissions, Sulphur 

dioxide, and ecological footprint have been studied to measure the complexity of these 

factors with socio-economic variables. WMO and IPCC have made a distinction between 

climate change and variability. The present study considers this difference and examines 

climate variability and change predictors using temperature and rainfall as prime measures 

to access climate change. Region wise analysis has also been incorporated to study the 

regional differences in drivers and their spillover effects.  

 

3.3. Theoretical Framework 

Environmental impact assessment and critical driving forces affecting the environment 

have been an important concern since 200 years ago, when Malthusian theory highlighted 

the role of natural resources in population growth (Sherbinin et al., 2007; Dietz & Rosa, 
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1994). Neo-Malthusian theories considered high population growth a key driver of natural 

resource degradation. However, the post-World War II era was dominated by 

modernization theories that focused on economic growth and industrialization as key 

determinants aligned with our natural ecosystem. Environmental Kuznets curve (EKC), 

followed by ecological modernization theory (EMT) by sociologists, and reinforced the 

capitalist system by highlighting the positive role of economic growth, industrialization, 

and innovation on environmental resources26. Neo-Marxist economists are of the view that 

production negatively affects the environment. Firstly, showing the cost of excessive 

extraction of resources is detrimental to the natural environment. Secondly, production 

assets are majorly owned by wealthy elites who influence the policy process of society. 

They tend to devise and propagate those policies that give them high profits (York et al., 

2003). 

 

In their subsequent reports, the intergovernmental panel on climate change (IPCC 

henceforth) highlighted the number of anthropogenic factors responsible for the past 

century’s warming. Several studies have analyzed economic growth as a critical factor 

affecting CO2 emissions. However, controversy still exists in economic growth and 

environmental impact nexus. Studies following EKC have used limited explanatory 

variables to explain the environmental impact. However, additional factors affecting the 

ecosystem are analyzed using structural decomposition analysis (SDA), logarithmic-Mean 

Divisia Index (LMDI), Computable General Equilibrium model (CGE), and Stochastic 

Impact by Regression on Population, Affluence, and Technology (STIRPAT) (Zhang et 

al., 2014; Wang & Liu, 2017; Yang et al., 2018). Most studies have used the STIRPAT 

model to analyze a diversified range of factors explaining impact. 

 

IPAT equation, the basic starting point of STIRPAT, was proposed by Ehrlich and Holdren 

(1971). IPAT considers impacting directly linked to population, affluence, and technology. 

 
26 Proponents of these theories based their argument on the notion that industrialization coupled with 

technological advancement has intrinsic ability to be compatible with natural resources. Moreover, with 

progressive society, markets provide incentive for reforms by restructuring industries with environmentally 

friendly solutions. 
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The impact depends on the population's size and its interaction with varying affluence and 

technology levels.  

 

 𝐼 = 𝑃𝐴𝑇         (3.1) 

 

Where P signifies population size, A refers to affluence, and T is the technology measured 

as impact per unit of economic activity. IPAT has several limitations; firstly, it assumes a 

multiplicative and proportional relationship of factors affecting the environment, i.e., 

factors are not independent. Secondly, the model assumes similar elasticities with 

monotonic effects for all drivers. Thirdly, a model is based on restrictive assumptions and 

is a mathematical identity that limits hypothesis testing27 (York et al., 2003; Rosa et al., 

2004; Yang et al., 2018). 

 

IPAT equation followed by stochastic impact by regression on population, affluence, and 

technology STIRPAT model, both are based on Structural Human Ecology (SHE) theory28. 

Considering all these limitations, Dietz and Rosa (1994) presented STIRPAT with a 

stochastic blend with a non-monotonic and non-proportional relationship of environmental 

factors. Besides this, the model could perform hypothesis testing (York et al., 2003). 

STIRPAT's theoretical base also stems from SHE and has been used extensively for 

recognizing socioeconomic drivers of environmental threats. The model is expressed as 

follows. 

 

𝐼 = 𝑎𝑃𝑏𝐴𝑐𝑇𝑑𝑒         (3.2) 

 

Taking natural log on both sides model takes the form. 

 

 
27 IPAT has undergone several modifications like ImPACT in which T has been segregated into two parts 

such as C and T. Where C shows energy consumption per economic activity and T explains impact per unit 

of economic activity. Both IPAT and ImPACT can’t be used for statistical analysis due restrictive 

assumptions. 
28 Structural Human Ecology (SHE) theory is based on human interaction with environment. Duncan and 

Schnore 1959, formulated POET model based on SHE, showed bi-directional relationship between four 

factors (population, organization, environment, and technology) that considers broader aspects of human 

interaction with environment. 
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𝑙𝑛𝐼 = 𝑙𝑛𝑎 + 𝑏𝑙𝑛𝑃 + 𝑐𝑙𝑛𝐴 + 𝑑𝑙𝑛𝑇 + 𝑙𝑛𝑒     (3.3) 

 

Where P is the population size, A refers to affluence, T includes all drivers not included in 

P, and A. e is the error term, while b, c, and d are respective elasticities of drivers included. 

Considering the definition of T, researchers have moved on to an extended STIRPAT 

model that goes beyond conventional factors like population and affluence and contains 

elements like urbanization, energy intensity, industrial structure, primary energy structure, 

trade, foreign direct investment, and technology. Initially, numerous studies analyzed 

drivers of CO2 emissions using the STIRPAT model. However, later, due theoretical 

flexibility of the STIRPAT model, researchers examined a variety of environmental 

concerns such as GHG emissions, deforestation, ecological footprint, energy footprint, and 

water footprint as the dependent variable and called STIRPAT an extended-STIRPAT 

model (York et al., 2003; Rosa et al., 2004; Dietz et al., 2007; Zhao et al., 2014). 

 

Using an extended STIRPAT model, the present study uses climate change as an 

environmental threat and examines the underlining factors causing it. Existing literature 

has analyzed climate change attribution from anthropogenic drivers such as radioactive 

forcing, ocean heat content, volcanic forcing sulphate arsenals (Kaufmann et al., 2011; 

Triacaa et al., 2013; Stern & Kaufmann, 2014; Zhai et al., 2018). This gave us room to 

explore socio-economic drivers responsible for climate change. This study separates itself 

from existing studies by using two different indicators to assess the impact of climate 

change impact. Following (Tol, 2021), we consider square temperature anomalies a 

dependent variable. In the second step, we have to use the 30-year average mean of the 

climate variable to measure impact.  

 

We can specify our model in the panel setting as follows; 

 

𝑙𝑛𝐶𝑉𝑖𝑡 = 𝛽° + 𝛽1𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡 + 𝛽2𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡
2 + 𝛽3𝑙𝑛𝐸𝐼𝑖𝑡 + 𝛽4𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖𝑡 +

𝛽5𝑙𝑛𝐼𝑁𝐷𝑖𝑡 + 𝛽6𝑙𝑛𝑃𝑂𝑃𝑖𝑡 + 𝛽7𝑙𝑛𝑈𝑅𝑃𝑖𝑡 + 𝑙𝑛𝑒𝑖𝑡   (3.4a) 

 

And in cross-section setting model take the form. 
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𝑙𝑛𝐶𝑖 = 𝛽° + 𝛽1𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡 + 𝛽2𝑙𝑛𝐺𝐷𝑃𝑖𝑡
2 + 𝛽3𝑙𝑛𝑃𝑂𝑃𝐷𝑖𝑡 + 𝛽4𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖𝑡 +

𝛽5𝑙𝑛𝐼𝑁𝐷𝑖𝑡 + 𝑙𝑛𝑒𝑖𝑡       (3.4b) 

 

𝑙𝑛𝐶𝐶𝑖 = 𝛽° + 𝛽1𝑙𝑛𝐺𝐷𝑃𝑖𝑡 + 𝛽2𝑙𝑛𝐺𝐷𝑃𝑖𝑡
2 + 𝛽3𝑙𝑛𝑃𝑂𝑃𝐷𝑖𝑡 + 𝛽4𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖𝑡 +

𝛽5𝑙𝑛𝐼𝑁𝐷𝑖𝑡 + 𝑙𝑛𝑒𝑖𝑡        (3.4c) 

  

Following Tol (2021) and Moore and Lobell (2014), climate variability 𝐶𝑉 is calculated 

by the square deviation of the climate variable from its 30 years (1961-90) average; 

𝐶 stands for the climate, which is 30 years (1989-2018) average of climate variables; 𝐶𝐶 

stands for climate change which is the deviation of 30 years (1989-2018) average of climate 

variables from the long-run mean (1961-1990); 𝐺𝐷𝑃𝑝𝑐 is the gross domestic product per 

capita; 𝐺𝐷𝑃𝑝𝑐2 indicates the square term of gross domestic product per capita; 𝐸𝐼 weighs 

energy intensity; 𝑇𝑅𝐴𝐷𝐸 is the sum of exports and imports divided by GDP; 𝐼𝑁𝐷 is used 

for a share of industrial value added in GDP; 𝑃𝑂𝑃 is the total population; 𝑈𝑅𝑃 is the 

proportion of the total population living in urban areas; 𝑃𝑂𝑃𝐷 shows population density. 

 

3.4. Methodology  

3.4.1 Spatial Econometric Models 

In the current globalize and integrated world, Tobler (1969) first law of geography29 can’t 

be ignored. Traditional panel and cross-sectional econometrics models assume no spatial 

autocorrelation and heterogeneity in error terms. However, classical linear regression 

models are not valid in spatial dependence. Geographical boundaries do not restrict climate 

change. Indeed, one prime example is a homogenous distribution of GHGs worldwide, 

irrespective of the country emitting them. Climate change in the form of change in 

temperature and rainfall is being experienced globally. Considering the nature of climate 

change variables, it is essential to consider drivers and spillover of the effects of drivers 

causing climate change. Following You and Lv (2018) and Zeng and Ye (2019), the present 

 
29 First law of geography states “Everything is related to everything else, but near things are more related 

than distant things” 
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study uses the extended STIRPAT model to analyze variables' spatial relationships in a 

spatial econometric setting.  

 

The spatial econometrics model deals with three types of spatial interaction effects that 

further define spatial models, i.e., the Spatial Lag of X Model (SLX) deals with exogenous 

spatial relationships; the Spatial Autoregressive (SAR) model handles endogenous 

interaction effect; Spatial Error Model (SEM) deals with spatial interaction in the error 

term, and Spatial Durbin Model (SDM) takes both endogenous and exogenous spatial 

relationships.  

 

In the presence of externality, the data generating process shows the spatial relationship of 

the exogenous variable of a given location with exogenous variables in its proximity, i.e., 

the variability in the dependent variable is explained by both exogenous variables at a given 

location and its neighborhood. In our case, climate variability and change depend on 

determinants like GDP, population, energy intensity, and industrial structure of a country 

and its neighboring countries. 

 

In general SLX model can be written as: 

 

 𝐶𝑉𝑖𝑡 = 𝜇𝑖 + 𝜆𝑡 + 𝛾 ∑ 𝑤𝑖𝑗𝑥𝑗𝑡
𝑁
𝑗=1 + 𝛽𝑥𝑖𝑡 + 𝜀𝑖𝑡    (3.5a) 

 

If the dependent variable of nearby location explains spatial relation, and the data 

generating process describes spillover effects, we use SAR. Unlike time series analysis, 

where the spillover effect is explained by dynamic modeling, spatial econometrics 

considers the spatial lag of the dependent variable. In this case, the dependent variable at a 

given location is associated with a spatially weighted average of the dependent variable of 

its neighboring locations. In our case, climate variability at one location increases the 

likelihood of having similar climate variability at nearby locations. 

  

In general form, SAR can be written as. 
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𝐶𝑉𝑖𝑡 = 𝜇𝑖 + 𝜆𝑡 + 𝛿 ∑ 𝑤𝑖𝑗𝐶𝑉𝑗𝑡
𝑁
𝑗=1 + 𝛽𝑥𝑖𝑡 + 𝜀𝑖𝑡      (3.5b) 

𝑖 = 1,2, … , 𝑁   𝑡 = 1,2, . . . , 𝑇  

 

where 𝑤𝑖𝑗𝐶𝑉𝑗𝑡 is the spatially weighted average of the dependent variable of nearby 

countries, 𝛿 is the spatial autocorrelation coefficient; 𝑤𝑖𝑗 refers to the weight matrix 

explaining the spatial relation between two locations 𝑖 and 𝑗; 𝑥𝑖𝑡 shows independent 

variables in the model ; 𝜇𝑖 shows country-specific fixed effect; 𝜆𝑡 indicates time-specific 

fixed effect ; 𝜀𝑖𝑡 is the error term which is independent and identically distributed. 

 

In our case of climate variability and CO2 intensity, the model takes the form. 

 

𝑙𝑛𝐶𝑉𝑖𝑡 = 𝛽° + 𝜇𝑖 + 𝜆𝑡 + 𝛿 ∑ 𝑤𝑖𝑗𝑙𝑛𝐶𝑉𝑗𝑡
𝑁
𝑗=1 +𝛽1𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡 + 𝛽2𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡

2 +

𝛽3𝑙𝑛𝐸𝐼𝑖𝑡 + 𝛽4𝛽6𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖𝑡 + 𝛽7𝑙𝑛𝐼𝑁𝐷𝑖𝑡 + 𝛽8𝑙𝑛𝑃𝑂𝑃𝑖𝑡 + 𝛽9𝑙𝑛𝑈𝑅𝑃𝑖𝑡 +

𝜀𝑖𝑡         (3.5c) 

𝑖 = 1,2,3, … , 𝑁     𝑡 = 1,2,3, … , 𝑇  

 

𝑙𝑛𝐶𝑂2 𝑖𝑡 = 𝛽° + 𝜇𝑖 + 𝜆𝑡 + 𝛿 ∑ 𝑤𝑖𝑗𝑙𝑛𝐶𝑂2 𝑗𝑡
𝑁
𝑗=1 +𝛽1𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡 + 𝛽2𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡

2 +

𝛽3𝑙𝑛𝐸𝐼𝑖𝑡 + 𝛽4𝛽6𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖𝑡 + 𝛽7𝑙𝑛𝐼𝑁𝐷𝑖𝑡 + 𝛽8𝑙𝑛𝑃𝑂𝑃𝑖𝑡 + 𝛽9𝑙𝑛𝑈𝑅𝑃𝑖𝑡 +

∈𝑖𝑡         (3.5d) 

𝑖 = 1,2,3, … , 𝑁    𝑡 = 1,2,3, … , 𝑇  

 

In the case of climate change, the model in SAR becomes. 

𝑙𝑛𝐶𝐶𝑖 = 𝛽° + 𝛿 ∑ 𝑤𝑖𝑗𝑙𝑛𝐶𝐶𝑗
𝑁
𝑗=1 +𝛽1𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖 + 𝛽2𝑙𝑛𝐺𝐷𝑃𝑝𝑐2

𝑖
+ 𝛽3𝑙𝑛𝑃𝑂𝑃𝐷𝑖 +

+ 𝛽4𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖 + 𝛽5𝑙𝑛𝐼𝑁𝐷𝑖 + 𝜔𝑖      (3.5e) 

 

If the model's omitted variables explain the spatial structure, i.e., by the error term, we 

move towards SEM. By introducing the spatial error lag structure in the model, SEM 

handles spatial autocorrelation. Errors of neighboring locations are correlated with the 

errors of a given location. This model is inapplicable in cases where spatially correlated 

error term influences given and adjacent locations (You & Lv, 2018). 
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In general form, this can be written as: 

 

𝐶𝑉𝑖𝑡 = 𝛽𝑥𝑖𝑡+𝜇𝑖 + 𝜂𝑖𝑡   

𝜂𝑖𝑡 = 𝜌 ∑ 𝑤𝑖𝑗𝜂𝑗𝑡 + 𝜀𝑖𝑡
𝑁
𝑗=1        (3.6a) 

𝑖 = 1,2,3, … , 𝑁, 𝑡 = 1,2,3, … , 𝑇 

 

𝜂𝑖𝑡 specifies spatially auto correlated error term dependent on the error structure of adjacent 

locations and normally distributed error term, 𝜌 represents the spatial autocorrelation 

parameter. 

 

In our case, the panel model takes the form.  

 

𝑙𝑛𝐶𝑉𝑖𝑡 = 𝛽° + 𝜇𝑖 + 𝜆𝑡+𝛽1𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡 + 𝛽2𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡
2 + 𝛽3𝑙𝑛𝐸𝐼𝑖𝑡 +

𝛽4𝛽6𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖𝑡 + 𝛽7𝑙𝑛𝐼𝑁𝐷𝑖𝑡 + 𝛽8𝑙𝑛𝑃𝑂𝑃𝑇𝑖𝑡 + 𝛽9𝑙𝑛𝑈𝑅𝑃𝑖𝑡  + 𝜂𝑖𝑡    

         (3.6b) 

𝜂𝑖𝑡 = 𝜌 ∑ 𝑤𝑖𝑗𝜂𝑗𝑡 + 𝜀𝑖𝑡
𝑁
𝑗=1  𝑖 = 1,2,3, … , 𝑁;  𝑡 = 1,2,3, … , 𝑇 

 

𝑙𝑛𝐶𝑂2 𝑖𝑡 = 𝛽° + 𝜇𝑖 + 𝜆𝑡+𝛽1𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡 + 𝛽2𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡
2 + 𝛽3𝑙𝑛𝐸𝐼𝑖𝑡 +

𝛽4𝛽6𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖𝑡 + 𝛽7𝑙𝑛𝐼𝑁𝐷𝑖𝑡 + 𝛽8𝑙𝑛𝑃𝑂𝑃𝑇𝑖𝑡 + 𝛽9𝑙𝑛𝑈𝑅𝑃𝑖𝑡  + 𝜂𝑖𝑡    

         (3.6c) 

𝜂𝑖𝑡 = 𝜌 ∑ 𝑤𝑖𝑗𝜂𝑗𝑡 + 𝜖𝑖𝑡
𝑁
𝑗=1  𝑖 = 1,2,3, … , 𝑁;  𝑡 = 1,2,3, … , 𝑇 

 

In the case of climate change, the model in SEM becomes. 

 

𝑙𝑛𝐶𝐶𝑖 = 𝛽° + 𝜇𝑖 + 𝜆𝑡+𝛽1𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖 + 𝛽2𝑙𝑛𝐺𝐷𝑃𝑝𝑐2
𝑖

+ 𝛽3𝑙𝑛𝑃𝑂𝑃𝐷𝑖 +

+ 𝛽4𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖 + 𝛽5𝑙𝑛𝐼𝑁𝐷𝑖  + 𝜂𝑖     (3.6d) 

𝜂𝑖 = 𝜌 ∑ 𝑤𝑖𝑗𝜂𝑗 + 𝜔𝑖
𝑁
𝑗=1   
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An alternative specification to the SEM model is SDM, presented by LeSage and Pace 

(2009), in which spatial relation is explained by spatial exogenous and spatial 

autoregressive terms of the model. In this case, it is not only climate variability in one 

country that simulates neighboring countries' climate variability but also the determinants, 

like GDP, population, energy intensity, etc., of one country affected by its neighboring 

countries. SDM is a more generalized and unrestricted form that embeds SAR and SEM. 

 

In general form, this can be written as. 

 

𝐶𝑉𝑖𝑡 = 𝜇𝑖 + 𝜆𝑡 + 𝛿 ∑ 𝑤𝑖𝑗𝐶𝑉𝑗𝑡
𝑁
𝑗=1 +  𝛾 ∑ 𝑤𝑖𝑗𝑥𝑗𝑡

𝑁
𝑗=1 + 𝛽𝑥𝑖𝑡 + 𝜀𝑖𝑡  (3.7a) 

𝑖 = 1,2,3, … , 𝑁;  𝑡 = 1,2,3, … , 𝑇 

 

𝛾 is the coefficient of spatially autocorrelated explanatory variables. In our case, the panel 

model takes the form.  

 

𝑙𝑛𝐶𝑉𝑖𝑡 = 𝛽° + 𝜇𝑖 + 𝜆𝑡+𝛿 ∑ 𝑤𝑖𝑗𝑙𝑛𝐶𝑉𝑗𝑡
𝑁
𝑗=1 + 𝛽1𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡 + 𝛽2𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡

2 + 𝛽3𝑙𝑛𝐸𝐼𝑖𝑡 +

𝛽4𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖𝑡 + 𝛽5𝑙𝑛𝐼𝑁𝐷𝑖𝑡 + 𝛽6𝑙𝑛𝑃𝑂𝑃𝑇𝑖𝑡 + 𝛽7𝑙𝑛𝑈𝑅𝑃𝑖𝑡 +

 𝜃1 ∑ 𝑤𝑖𝑗𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑗𝑡
𝑁
𝑗=1 + 𝜃2 ∑ 𝑤𝑖𝑗𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑗𝑡

2𝑁
𝑗=1 + 𝜃3 ∑ 𝑤𝑖𝑗𝑙𝑛𝐸𝐼𝑖𝑗𝑡

𝑁
𝑗=1 +

𝜃4 ∑ 𝑤𝑖𝑗𝛽4𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖𝑗𝑡
𝑁
𝑗=1 + 𝜃5 ∑ 𝑤𝑖𝑗𝑙𝑛𝐼𝑁𝐷𝑖𝑗𝑡

𝑁
𝑗=1 +  𝜃6 ∑ 𝑤𝑖𝑗𝑙𝑛𝑃𝑂𝑃𝑇𝑖𝑗𝑡

𝑁
𝑗=1 +

 𝜃7 ∑ 𝑤𝑖𝑗𝑙𝑛𝑈𝑅𝑃𝑖𝑗𝑡
𝑁
𝑗=1 + 𝜀𝑖𝑡      (3.7b) 

 

𝑙𝑛𝐶𝑂2 𝑖𝑡 = 𝛽° + 𝜇𝑖 + 𝜆𝑡+𝛿 ∑ 𝑤𝑖𝑗𝑙𝑛𝐶𝑂2 𝑗𝑡
𝑁
𝑗=1 + 𝛽1𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡 + 𝛽2𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑡

2 +

𝛽3𝑙𝑛𝐸𝐼𝑖𝑡 + 𝛽4𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖𝑡 + 𝛽5𝑙𝑛𝐼𝑁𝐷𝑖𝑡 + 𝛽6𝑙𝑛𝑃𝑂𝑃𝑇𝑖𝑡 + 𝛽7𝑙𝑛𝑈𝑅𝑃𝑖𝑡 +

 𝜃1 ∑ 𝑤𝑖𝑗𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑗𝑡
𝑁
𝑗=1 + 𝜃2 ∑ 𝑤𝑖𝑗𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑗𝑡

2𝑁
𝑗=1 + 𝜃3 ∑ 𝑤𝑖𝑗𝑙𝑛𝐸𝐼𝑖𝑗𝑡

𝑁
𝑗=1 +

𝜃4 ∑ 𝑤𝑖𝑗𝛽4𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖𝑗𝑡
𝑁
𝑗=1 + 𝜃5 ∑ 𝑤𝑖𝑗𝑙𝑛𝐼𝑁𝐷𝑖𝑗𝑡

𝑁
𝑗=1 +  𝜃6 ∑ 𝑤𝑖𝑗𝑙𝑛𝑃𝑂𝑃𝑇𝑖𝑗𝑡

𝑁
𝑗=1 +

 𝜃7 ∑ 𝑤𝑖𝑗𝑙𝑛𝑈𝑅𝑃𝑖𝑗𝑡
𝑁
𝑗=1 +∈𝑖𝑡      (3.7c) 

 

In the case of climate change, the model in SDM becomes. 

 

𝑙𝑛𝐶𝐶𝑖 = 𝛽° + 𝜇𝑖 + 𝜆𝑡+𝛿 ∑ 𝑤𝑖𝑗𝑙𝑛𝐶𝐶𝑗
𝑁
𝑗=1 + 𝛽1𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖 + 𝛽2𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖

2 + 𝛽3𝑙𝑛𝐸𝐼𝑖 +

𝛽4𝑙𝑛𝑃𝑂𝑃𝐷𝑖 + 𝛽5𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖 + 𝛽6𝑙𝑛𝐼𝑁𝐷𝑖 + 𝜃1𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑗 +
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𝜃2 ∑ 𝑤𝑖𝑗𝑙𝑛𝐺𝐷𝑃𝑝𝑐𝑖𝑗
2𝑁

𝑗=1 + 𝜃3 ∑ 𝑤𝑖𝑗𝑙𝑛𝐸𝐼𝑖𝑗
𝑁
𝑗=1 + 𝜃4 ∑ 𝑤𝑖𝑗𝑙𝑛𝑃𝑂𝑃𝐷𝑖𝑗

𝑁
𝑗=1 +

 𝜃5 ∑ 𝑤𝑖𝑗𝑙𝑛𝑇𝑅𝐴𝐷𝐸𝑖𝑗
𝑁
𝑗=1 +  𝜃6 ∑ 𝑤𝑖𝑗𝑙𝑛𝐼𝑁𝐷𝑖𝑗

𝑁
𝑗=1 + 𝜔𝑖   (3.7d) 

 

3.4.2 Weight Matrix  

The selection of an appropriate weight matrix is important to uncover the prior spatial 

structure between observations at locations 𝑖 and 𝑗. For spatial structure, one needs to 

consider the network structure and the source of the relationship between regions 𝑖 and 𝑗. 

The weight matrix is non-stochastic, non-zero, and exogenously defined. The analysis uses 

an inverse square distance weight matrix, showing that the spillover effects tend to decay 

as distance increases. Matrix is row standardized as per standard procedure, and the 

weighted average of nearby locations calculates the spatial value of variables.  

 

3.4.3 Model Selection 

The present study has employed the Elhorst and Vega (2013) method for appropriate model 

selection. Firstly, a non-spatial panel model is estimated, and the Hausman test is used to 

choose between fixed and random effects. In the next step, we have employed the LM test 

(LM-lag and LM-error) and their robust forms for spatial diagnostics and choosing between 

non-spatial and spatial lag or spatial error models. If the spatial models better fit the data 

than the non-spatial model, we have used Wald and LR tests to choose the most appropriate 

model. Two hypotheses have been tested: first is spatial Durbin model can be simplified to 

the SLM model (𝐻𝑜= γ =0), and can spatial Durbin model can be reduced to the spatial 

error model (𝐻𝑜= γ +𝛿𝛽).  

 

3.5. Data Description 

The present study considers macro and socio-economic variables to analyze the spatial 

determinants of climate change, variability, and carbon intensity. One hundred sixteen 

countries were considered for accessing climate variability in the analysis from 1991 to 

2018. Climate variability is accessed through the difference in average annual temperature 

(rainfall) from its long-run mean of 30 years. Following Tol (2021), Burke et al. (2015), 

Moore and Lobell (2014), climate change is calculated by the average temperature 

(rainfall) of 30 years (1989 to 2018). For a cross-sectional analysis of climate change, we 
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have used 114 countries. Carbon intensity is another dependent variable used to study the 

environmental impact. It is the carbon content per unit of energy used through coal 

consumption.  

 

Explanatory variables in the analysis include GDP per capita; its square term; urbanization 

measured through a share of the urban population in the total population; total population; 

trade openness measured by the merchandise trade volume as a percentage of the GDP; 

energy intensity is the ratio of energy consumed per unit of output, industrialization access 

through value added share of industrialization as a percentage of the GDP. Population 

density is another proxy for the population (for detailed definitions, see appendix B).  

 

3.6. Empirical results 

3.6.1 Spatial Autocorrelation Test 

We have employed global local Moran-I statistics for spatial autocorrelation of climate 

variability. The global Moran test is calculated as follows. 

 

Moran’s I =  
∑ ∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1  (𝑧𝑖− �̅�)(𝑧𝑗− �̅� )

𝑆2 ∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

     (3.8) 

Where,  

𝑆2 =  ∑ (𝑧𝑖 − 𝑧̅)2
𝑛

𝑖=1
  

𝑧̅ =
1

𝑛
∑ (𝑧𝑖 −  𝑧̅)

𝑛

𝑖=1
 

 

𝑧𝑖 and 𝑧𝑗 indicates the value of climate variability at locations 𝑖 and 𝑗 while 𝑧̅ indicates the 

mean value of climate variability. The matrix explains the spatial relationship 𝑤𝑖𝑗 that is 

an inverse distance matrix that shows a geographical spatial relationship that represents 

that the spatial relationship tends to decay as distance increases between countries.  

 

𝑤𝑖𝑗 = {

1

𝑑𝑖𝑗
     𝑖 ≠ 𝑗

0        𝑖 = 𝑗       

 



  

68 

 

𝑑𝑖𝑗  represents the distance between location i and j measured by their respective latitude 

and longitudes. While n indicates the number of countries, i.e., 116 considered in the 

analysis. 

  

Positive and statistically significant Moran I show the presence of positive spatial 

autocorrelation, i.e., countries with the same level of climate variability are clustered 

geographically. The value of the Moran I test ranges between -1 and 1. Positive values 

indicate the presence of spatial clustering, while negative values signify spatial dispersion. 

Keeping in view the limitation30 of the global Moran’s I test, we have analyzed the 

relationship graphically through a scatter plot. The top right quadrant shows that countries 

with high climate variability are surrounded by neighbors that also experience more 

variability, while the top left quadrant indicates that countries with low climate variability 

are surrounded by neighbors sharing high climate variability. The bottom left quadrant 

shows that countries with low climate variability are accompanied by countries 

experiencing low climate variability. In contrast, the bottom right quadrant countries have 

both dependent variables (log temperature variability and log of rainfall variability), 

showing the presence of spatial autocorrelation (see table 3.1). 

 

The IV quadrant is “High-Low (HL)” clustering which shows that countries with low 

values enclose countries with high values. The I and III quadrants show positive spatial 

autocorrelation. The II and IV quadrants present negative spatial autocorrelation. 

 

  

 
30 As Moran-I tests the presence of overall spatial autocorrelation. Negative and positive value of index for 

some countries might cancel each other and value of index turns out to be zero, indicating no spatial auto 

correlation.  
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Table 3.1: Global Moran’s I Climate Variability with Inverse Distance Matrix 

 Temperature variability Rainfall variability 

Year Moran-I Z Moran-I Z 

1991 0.351*** 24.407 0.136*** 9.801 

1992 0.180*** 12.914 0.152*** 10.9 

1993 0.250*** 17.595 0.147*** 10.591 

1994 0.183*** 13.158 0.171*** 12.199 

1995 0.164*** 12.090 0.184*** 13.047 

1996 0.355*** 24.837 0.155*** 11.106 

1997 0.203*** 14.713 0.158*** 11.350 

1998 0.143*** 10.498 0.180*** 12.770 

1999 0.123*** 9.201 0.178*** 12.661 

2000 0.130*** 9.649 0.173*** 12.341 

2001 0.160*** 11.685 0.183*** 13.026 

2002 0.079*** 5.956 0.179*** 12.736 

2003 0.123*** 9.06 0.159*** 11.346 

2004 0.153*** 11.029 0.142*** 10.225 

2005 0.126*** 9.351 0.190*** 13.480 

2006 0.051*** 4.918 0.136*** 9.801 

2007 0.121*** 9.055 0.186*** 13.214 

2008 0.178*** 12.926 0.146*** 10.491 

2009 0.128*** 9.321 0.143*** 10.308 

2010 0.235*** 16.636 0.182*** 12.945 

2011 0.028*** 2.579 0.171*** 12.155 

2012 0.166*** 11.953 0.120*** 8.723 

2013 0.177*** 12.720 0.175*** 12.462 

2014 0.221*** 15.729 0.153*** 10.979 

2015 0.135*** 9.726 0.189*** 13.451 

2016 0.137*** 9.992 0.151*** 10.855 

2017 0.084*** 6.351 0.202*** 14.304 

2018 0.259*** 18.299 0.132*** 9.579 

Average 0.282*** 19.768 0.235*** 16.55 
Source: Author’s calculation. Note: ***, **, * indicates the significance level at 1%, 5% and 10% respectively 
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In figure 3.1, from 1991 to 2018, the Moran I scatter plot indicates that positive spatial 

autocorrelation exists signifying that countries experience same magnitude of temperature 

variability as their neighbors. As most of the countries lie in the 3rd quadrant indicating 

that countries experiencing low temperature variability are surrounded by neighbors also 

having low average temperature variability. Temporal pattern along these years, indicate 

post 2010, some more countries tend to experience high variability along with their 

neighbors. The graph also indicates that countries share common climate conditions and 

variability and highlights the need to study the factors causing the variability in the 

countries clusters 

In figure 3.2, for rainfall variability, the Moran I scatter plot also shows that positive spatial 

autocorrelation exists signifying that countries experience same magnitude of rainfall 

variability as their neighbors. Unlike temperature variability, most of the countries lie in 

the 1st quadrant indicating that countries experiencing high rainfall variability are 

surrounded by neighbors also having high average rainfall variability. Temporal pattern 

along these decades, remains the same indicating that high rainfall variability counties are 

clustered around each other.  

In figure 3.3, for CO2 emissions, the Moran I scatter plot also shows that positive spatial 

autocorrelation exists indicating that countries having high CO2 intensity are clustered 

around and vice versa. Few countries also experience negative spatial autocorrelation (high 

CO2 intensity countries are surrounded by low CO2 intensity neighbors). Most of the 

countries lie in the 1st quadrant indicating that high CO2 intensity countries are surrounded 

by neighbors with similar high CO2 intensity. Temporal pattern along these decades, 

remains the same. 
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Figure 3.1: Moran I Scatter Plot for the log of Temperature Variability 

1991 

 

2000 

 

2010 
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2018 
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Figure 3.2. Moran-I Scatter Plot for the log of Rainfall Variability 

1991 

 

2000 

 

2010 
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2018 
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Figure 3.3. Moran-I Scatter Plot for the log of CO2 Intensity 

1991 

 

2000 
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2010 

 

2018 
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In figure 3.4a, spatial distribution of temperature variability across the countries indicate 

that in the year 1995, the northern part of the world (Russia, central Asian, northern Europe 

and Canada) experienced more climate variability as compare to the others. The magnitude 

of values is the square deviation of temperature variables from long run mean.  As we look 

into the temporal pattern temperature variability becomes more pronounced in countries 

located near equator (Middle East, south Asia), parts of Europe, USA and Mexico. 

In figure 3.4b, indicates that in the year 1995, Latin American economies, parts of Europe 

and East Asian economies experienced greater rainfall variability as compare to other 

regions. However, the magnitude of rainfall variability increased for South Asia in 2018. 

East Asia and parts of Europe also experienced greater rainfall variability.  

Figure 3.4c, depicts that CO2 emission intensities of China, Australia, parts of Europe and 

some of the Middle East countries had high carbon intensities owing to their reliance on 

fossil fuel to produce electricity. In 2018, India’s carbon intensity increased while some 

European economies CO2 emission intensities decreased.  
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Figure 3.4a: Spatial Distribution of Climate Variability – Temperature (1995) 

 

Source: Author’s work from Climate Research Unit Database 
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Figure 3.4b: Spatial Distribution of Climate Variability – Temperature (2005) 

 
Source: Author’s work from Climate Research Unit Database 
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Figure 3.4c: Spatial Distribution of Climate Variability – Temperature (2018)  

 
Source: Author’s work from Climate Research Unit Database 
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Figure 3.5a: Spatial Distribution of Climate Variability – Rainfall (1995) 

 
Source: Author’s work from Climate Research Unit Database 
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Figure 3.5b: Spatial Distribution of Climate Variability – Rainfall (2005)

 
Source: Author’s work from Climate Research Unit Database 
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Figure 3.5c: Spatial Distribution of Climate Variability – Rainfall (2018) 

 
Source: Author’s work from Climate Research Unit Database 
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Figure 3.6a: Spatial Distribution of CO2 Intensity (1995) 

 

Source: Author’s work from World Development Indicators, World Bank 
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Figure 3.6a: Spatial Distribution of CO2 Intensity (2005) 

 
Source: Author’s work from World Development Indicators, World Bank 
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Figure 3.6a: Spatial Distribution of CO2 Intensity (2018) 

 
Source: Author’s work from World Development Indicators, World Bank 
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3.6.2 Cross-Sectional Dependence Test 

We have also tested the cross-sectional dependence of variables through the cross-sectional 

dependence test (CD). This test was conducted to further examine the presence of 

dependence across countries without considering the spatial weight matrix. All the 

variables included rejecting the null hypothesis of no cross-sectional dependence at 1% 

and 5 % significance levels. 

 

Table 3.2: Cross-Sectional Dependence Test 

Variables CD test 

𝐶𝑉𝑡𝑒𝑚𝑝 60.85*** 

𝐶𝑉𝑟𝑎𝑖𝑛 3.12** 

𝐶𝑂2 -2.24** 
𝐺𝐷𝑃𝑝𝑐 283.50 

𝐺𝐷𝑃𝑝𝑐
2  283.57 

𝐸𝐼 156.21 

𝑇𝑅𝐴𝐷𝐸 113.59 

𝐼𝑁𝐷 44.16 

𝑃𝑂𝑃 231.23 

𝑈𝑅𝑃 217.07 
Notes: Under the null hypothesis of cross-section independence, CD ~ N (0, 1). ***, **, * indicates the 

significance level at 1%, 5% and 10% respectively. All variables are taken in log form 
 

3.6.3 Spatial Econometric Regression for Climate Variability 

Following Elhort (2013), we first test which of the non-spatial or spatial models fits the 

data well. For this, we try non-spatial panel models against spatial models (spatial lag and 

spatial error models). The LM diagnostics test, i.e., LM lag and LM error test in case of 

temperature variability, rainfall variability, and carbon intensity, significantly reject the 

presence of no spatial lagged dependent variable and rejects the null hypothesis of no 

spatial auto correlated error term (see Table; 3.4). Robust LM lag and Robust LM error test 

have been employed to strengthen our estimates further. The robust LM test indicates that 

the spatial lag model is preferable in the case of temperature variability as it rejects the 

presence of no spatial lag-dependent variable. In contrast, both hypotheses are rejected for 

rainfall variability, but the robust LM error test value is higher than the LM lag. Therefore, 

the study concludes that SEM is best suited for rainfall variability.  
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For CO2 intensity, LM robust test rejects null of no spatial auto correlated error term; 

therefore, the study concludes that the spatial error model fits the data. The diagnostic test 

reveals spatial effects in the data, as highlighted by the Moran-I test.  

 

Estimation results of non-spatial panel models are shown in Table 3.3. Alternative model 

specifications, such as pooled OLS, fixed effect, and random effect models, are presented. 

The model specification (1) – (9) Hausman test suggests a fixed effect model. The key 

determinants for temperature variability are; GDP per capita, its square term, energy 

intensity, industrialization, trade openness, total population, and urban population. For 

rainfall variability, results indicate no significant determinants. For carbon intensity, GDP 

per capita, its square term, energy intensity, trade openness, total population, and urban 

population are the prime factors affecting carbon intensity in the fixed effect model setting.
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Table 3.3: Estimation Results of the Non-Spatial Panel Model 

Variables 

Temperature variability Rainfall variability CO2 intensity 

Pooled OLS 

(1) 

Fixed effect 

(2) 

Random 

effect (3) 

Pooled 

OLS (1) 

Fixed 

effect 

(2) 

Random 

effect (3) 

Pooled 

OLS (7) 

Fixed 

effect (8) 

Random 

effect (9) 

𝐺𝐷𝑃𝑝𝑐 
0.0473*** 0.145*** 0.0884*** 3.663*** 0.819 1.178 0.250*** 0.201*** 0.202*** 

(4.53) (4.91) (4.61) (6.84) (0.79) (1.24) (24.76) (16.81) (17.34) 

𝐺𝐷𝑃𝑝𝑐
2  

-0.00216*** -0.00727*** -0.00439*** -0.185*** -0.0229 -0.045 -0.0136*** -0.0117*** -0.0116*** 

(-3.79) (-4.42) (-4.19) (-6.36) (-0.39) (-0.86) (-24.60) (-17.49) (-17.82) 

𝐸𝐼 
0.0417*** 0.0898*** 0.0596*** -1.616*** 0.9 0.614 -0.00246 0.0136* 0.0176** 

(8.85) (6.47) (7.17) (-6.70) (1.84) (1.46) (-0.54) (2.41) (3.29) 

𝑇𝑅𝐴𝐷𝐸 
-0.001 -0.0143** -0.00792* 0.736*** 0.0373 0.0387 0.00605* -0.0102*** -0.0106*** 

(-0.39) (-3.24) (-2.18) (5.6) (0.24) (0.26) (2.44) (-5.70) (-5.98) 

𝐼𝑁𝐷 
-0.0260*** -0.0210* -0.0218** -2.035*** -0.39 -0.5 0.0206*** 0.00239 0.00344 

(-6.09) (-2.40) (-3.19) (-9.31) (-1.26) (-1.69) (4.98) (0.670 (0.98) 

𝑃𝑂𝑃 
-0.00066 0.0555*** 0.000489 -0.0222 -0.383 -0.225 0.00322*** -0.00828* -0.00567** 

(-0.88) (6.74) (0.32) (-0.58) (-1.32) (-1.86) (4.44) (-2.48) (-2.59) 

𝑈𝑅𝑃 
0.000156 -0.0780*** -0.00327 -0.619* -0.0342 -0.189 0.0251*** 0.0517*** 0.0474*** 

(0.030) (-3.65) (-0.32) (-2.24) (-0.05) (-0.33) (4.81) (5.96) (6.25) 

intercept 
2.084*** 0.944*** 1.859*** 2.103 7.611 5.445 1.111*** 1.561*** 1.502*** 

(43.68) (6.08) (20.94) (0.86) (1.39) (1.19) (24.05) (24.8) (25.75) 
Note: t-statistics in parentheses and ***, **, * indicates the significance level at 1%, 5% and 10%, respectively. 
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Table 3.4: Spatial Diagnostics  

 Temperature 

variability 

Rainfall 

variability 

Carbon 

intensity 

Spatial error model 

Moran-I 14.97*** 17.11*** 7.89*** 

Lagrange multiplier 94.50*** 125.90*** 22.83*** 

Robust Lagrange multiplier 0.487 5.29** 3.32* 

Spatial lag model 

Lagrange multiplier 119.32*** 124.78*** 19.54*** 

Robust Lagrange multiplier 25.31*** 4.18** 0.04 
Note: ***, **, * indicates the significance level at 1%, 5% and 10%, respectively. 
 

As the non-spatial panel model is rejected in the presence of spatial panel models in all 

three cases considered, the study chooses between alternative spatial panel models that best 

describe the data. We first estimate the spatial Durbin fixed (SDM-FE) and random effect 

model (SDM-RE) for temperature variability, rainfall variability, and carbon intensity. 

Hausman test is employed to choose between fixed and random effect models. Results 

show that SDM-FE is more applicable in temperature variability, carbon intensity, and 

rainfall variability at 1% and 10 % significant levels, respectively (see Table 3.5a).  

 

To test whether SDM best represents our data, we further test two hypotheses to identify if 

SDM can be reduced to SLM or SEM. The study employs the LR test to conclude whether 

SDM can be reduced to SLM in all three cases. Further Wald test is applied to test if SDM 

can be simplified to SEM. 

 

In the case of temperature variability, the hypothesis that SDM can be simplified to SLM 

is significantly rejected at a 1 percent level of significance (LR; 42.13, p-value = 0.000), 

while the hypothesis that SDM can be reduced to SEM is also rejected at 1 percent (Wald; 

60.70 p=0.000). Thus, in the case of temperature variability, the SDM is more applicable.  

 

In the case of rainfall variability, the LR test (LR; 13.79; p-value 0.0550) rejects the null 

hypothesis that SDM can be simplified to SLM at a 10% significance level. Wald test 

(Wald; 13.26, p; 0.0661) also rejects the null hypothesis that SDM can be reduced to SEM. 

Thus, in the case of rainfall variability, we estimate SDM. 
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In the case of carbon intensity, LR (LR; 108.23, p-value 0.000) and Wald tests (Wald; 

68.78; p-value 0.000) reject the hypothesis that SDM can be reduced to SLM or SEM. 

Thus, in the case of carbon intensity, we estimate SDM. In the case of climate variability, 

SDM-FE results are shown in Table 3.5a; energy intensity, industrialization, population, 

and urbanization are the vital spatial drivers of temperature variability. Energy intensity 

shows a positive spillover effect on neighboring countries. As energy intensity increases 

across nearby countries, temperature variability in the domestic country increases by 0.4 

percent.  

 

The spatial autocorrelation coefficient 𝜌 shows positive and statistical significance at a 1 

percent significance level. Thus, if a country is surrounded by neighboring countries 

experiencing an increased temperature variability, it positively affects its temperature 

variability. The country’s per capita income raises temperature variability by 0.2 percent. 

Economic development, as measured by GDP per capita, shows a positive coefficient 

indicating a better standard of living comes at the cost of increased temperature variability. 

The negative square term of GDP per capita is in line with the inverted Environment 

Kuznets Curve (EKC), but its coefficient is statistically insignificant in SDM-FE but 

significant in SDM-RE. These results are consistent with the literature on the nexus 

between environmental degradation factors such as CO2 emissions (Rafiq et al., 2016; 

Yang et al., 2018; Lin et al., 2017; Ma et al., 2017; Salim et al., 2017; Ghazali & Ali, 2019), 

sulfur dioxide (Wang et al., 2016), PM2.5 (Hao & Liu, 2016) and economic development. 

 

A positive relationship exists between temperature variability and energy intensity. As 

energy intensity increase by 1 unit, temperature variability increases by 0.1 percent. 

Industrialization increases energy consumption, which further leads to increased 

temperature variability. Cole and Neumayer (2004) found a positive relationship between 

energy intensity and CO2 emission for 86 countries over 24 years. Rafiq et al. (2016) and 

Sadorsky (2014) also found a positive relationship between CO2 emission and energy 

intensity.  
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The study found a negative relationship between industrial value-added and temperature 

variability. One-unit increase in industrialization value-added of the GDP decreases 

temperature variability by 0.06 percent in selected countries considered in the analysis. 

These results highlight that the industrial value-added percent of the GDP doesn’t augment 

temperature variability similarly to carbon emission. Instead, it tends to decrease 

temperature variability. This might be the case that industrialization affects average 

temperature through carbon emissions but a change in temperature variability decrease 

from its long-run average of 30 years. Another possible reason for the decline in the pace 

of variability is the period considered in the analysis, i.e., 1991 to 2018, in which major 

international organizations came up with emission reduction agreements. Industrialization 

based on renewable energy resources picked momentum in this era. The fall in the pace of 

variability is due to the stringent measures adopted globally to contain temperatures below 

1.5 degrees Celsius.  

 

The total population has a significant positive relationship with temperature variability. 

One percent increase in total population increases temperature variability by 0.1 percent. 

An increase in population increases pressure on existing natural resources and industrial, 

residential, and transportation energy consumption. An increase in population also 

exacerbates the demand for other resources (Roy et al., 2017). More exploitation leads to 

more variability in environmental factors, such as temperature variability.  

 

Urbanization decreases the pace of temperature variability by 0.2 percent as more 

urbanized societies lead to efficient use of resources in the form of resource sharing in 

transportation, house buildings, and urban planning. Besides this, when society shifts from 

rural to urban areas, household income and overall standard of living increase. With a better 

sense of utilization of resources, environmental regulations, and awareness of 

environmental policies, changes in temperature variability tend to decrease. Sharma (2010) 

estimated the relationship between urbanization and CO2 emission for a global panel of 69 

countries and found a negative relationship between urbanization and CO2 emissions.  
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The coefficients of the SDM model don’t represent marginal effects. They include the 

country's explanatory variable effect, feedback from neighboring countries, and its 

repercussions on individual countries. This can be examined as SDM coefficients differ 

from the direct effect coefficients. For example, the GDP per capita coefficient in the SDM 

model is 0.28, while the coefficient of direct effect is 0.33, showing a feedback effect of 

0.05. Therefore, the study examines the direct, indirect, and total impact of drivers of 

temperature variability. 

 

Energy intensity, total population, and urban population are the critical spatial determinants 

of temperature variability for spillover effects. Countries surrounded by neighbors with 

high energy intensity tend to increase domestic countries' climate variability. The indirect 

impact of the energy intensity coefficient is more elevated than the direct, indicating a more 

significant spillover effect of the neighboring country’s energy intensity on climate 

variability. Countries with high populations also exert a positive spillover effect on the 

climate variability of nearby locations. An increase in the population size of neighboring 

countries increases the exploitation of natural resources, leading to increased energy 

consumption. Thus, the domestic country’s climate variability increases. Urbanization 

decreases temperature variability in the domestic country; if urbanized economies surround 

a country, it also reduces temperature variability.  

 

The key spatial determinant is rainfall variability in the model (3), GDP per capita, and 

energy intensity. The spatial auto correlated parameter is significant at a 1 percent level, 

indicating that it will increase the rainfall variability of the domestic country. A country's 

GDP per capita and energy intensity increase its rainfall variability. All other variables, 

such as industrialization, trade, population, and urban population, are insignificant in the 

case of rainfall variability. For spillover and indirect effects, an increase in trade liberation 

of nearby countries increases rainfall variability in the domestic country. All other variables 

considered are insignificant in determining rainfall variability.  

 

In the case of model 5, the dependent variable is carbon intensity is spatially driven by 

GDP per capita, its square term, trade liberalization, population, and urban population. 
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Energy intensity shows a positive spillover effect on nearby countries' carbon intensity for 

the indirect effect. As energy intensity increases, countries move to more fossil fuel-driven 

production, further exacerbating neighboring countries' carbon intensity. The spatial auto 

correlated parameter is significant at a 1 percent level, indicating that carbon intensity 

increases as the carbon intensity of neighboring counties increases. GDP per capita and its 

square term satisfy the inverted U EKC. Energy intensity has an insignificant relationship 

with carbon intensity; however, it has a significant and robust spillover effect on 

neighboring county energy emissions. As nearby countries' energy intensity increases, 

domestic countries' carbon intensity also increases. This is due to the reason that carbon 

emissions are homogenously distributed irrespective of the country emitting them. If 

neighboring countries have polluting industries that use fossil fuels, this will affect the 

environmental quality of an individual country.  
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Table 3.5a: Estimation Results of Spatial Durbin Model with Alternative Dependent 

Variables 

Variable 

SDM 

fixed 

effect (1) 

SDM 

random 

effect (2) 

SDM 

fixed 

effect (3) 

SDM 

random 

effect (4) 

SDM 

fixed 

effect (5) 

SDM 

random 

effect (6) 

Temperature 

variability 
Rainfall variability CO2 intensity 

𝜌 
0.934*** 0.932*** 0.215*** 0.614*** 0.410** 0.430*** 

(80.19) (78.54) (10.51) (11.64) (5.73) (6.16) 

𝐺𝐷𝑃𝑝𝑐 
0.283** 0.221*** 2.266* 2.211** 0.160** 0.170*** 

(2.1) (2.61) (1.85) (2.09) (11.81) (12.97) 

𝐺𝐷𝑃𝑝𝑐
2  

-0.01 -0.011** -0.086 -0.096 -0.009** -0.009*** 

(-1.22) (-2.27) (-1.17) (-1.59) (-10.66) (-12.33) 

𝐸𝐼 
0.131*** 0.084*** 0.585** 0.269 -0.007 -0.009 

(4.8) (4.83) (2.46) (1.24) (-1.20) (-1.56) 

𝑇𝑅𝐴𝐷𝐸 
0.010 -0.006 -0.17 -0.112 -0.006** -0.006** 

(0.57) (-0.37) (-1.11) (-0.73) (-3.00) (-3.00) 

𝐼𝑁𝐷 
-0.063** -0.052** -0.342 -0.465** -0.005 -0.003 

(-2.26) (-2.32) (-1.40) (-1.96) (-1.33) (-0.81) 

𝑃𝑂𝑃 
0.145** -7.7E-05 0.394 -0.208 0.011* 0.002 

(2.35) (-0.01) (0.74) (-1.46) (1.95) (0.56) 

𝑈𝑅𝑃 
-0.231*** -0.031 -0.39 -0.551 0.061** 0.061*** 

(-3.09) (-0.76) (-0.57) (-1.01) (6.87) (7.36) 

𝑊 ∗ 𝐺𝐷𝑃𝑝𝑐 
0.056 1.268** -3.018* -3.789 0.090 -0.012 

(0.08) (2.3) (-1.74) (-0.63) (0.12) (-0.17) 

𝑊 ∗ 𝐺𝐷𝑃𝑝𝑐
2  

0.0124 -0.069** 0.145 0.179 0.002 0.003 

(0.3) (-2.23) (1.42) (0.53) (0.4) (0.75) 

𝑊 ∗ 𝐸𝐼 
0.455*** 0.369*** -0.257 0.013 0.214** 0.216*** 

(2.87) (5.4) (-0.64) (0.01) (5.88) (6.87) 

𝑊 ∗ 𝑇𝑅𝐴𝐷𝐸 
-0.024 0.072 0.464** 0.569 0.008 0.008 

(-0.41) (1.5) (2.13) (1.17) (1.26) (1.15) 

W*𝐼𝑁𝐷 
-0.21 -0.457*** -0.144 0.028 -0.036 -0.033 

(-1.22) (-3.23) (-0.35) (0.02) (-1.64) (-1.56) 

W*𝑃𝑂𝑃 
1.242*** 0.135*** -0.774 -0.244 -0.013 0.028** 

(4.54) (3.1) (-1.28) (-0.32) (-0.51) (2.02) 

W*𝑈𝑅𝑃 
-2.255*** 0.164 0.376 1.749 -0.029 -0.095** 

(-4.31) (0.8) (0.35) (0.67) (-0.45) (-2.05) 

log L 384.72 -6643.60 8166.77 

Hausman 21.71 (0.003) 12.95 (0.073) 115.82 (0.0000) 

Note: All variables are in log form. t-statistics in parentheses. * P-Value < 0.10, ** P-Value < 0.05, *** P-

Value < 0.01
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Table 3.5b: Spatial Direct, Indirect and Total Effect of the SDM Model 

Variables 
Direct 

effects 

Indirect 

effects 

Total 

effects 

Direct 

effects 

Indirect 

effects 

Total 

effects 

Direct 

effects 

Indirect 

effects 

Total 

effects 

Dependent 

variable 
Temperature variability Rainfall variability CO2 intensity 

𝐺𝐷𝑃𝑝𝑐 
0.330** 4.502 4.832 2.165* -3.161 -0.996 0.161*** 0.121 0.282** 

(2.22) (0.45) (0.48) (1.76) (-1.63) (-0.51) (11.80) (1.06) (-2.52) 

𝐺𝐷𝑃𝑝𝑐
2  

-0.010 0.081 0.071 -0.082 0.162 0.08 -0.009*** -0.003 -0.011* 

(-1.05) (0.13) (0.12) (-1.11) (1.42) (0.71) (-10.59) (-0.44) (-1.81) 

𝐸𝐼 
0.215*** 9.001*** 9.216*** 0.596*** -0.131 0.465 -0.004 0.359*** 0.355*** 

(6.04) (3.31) (3.36) (2.64) (-0.28) (0.89) (-0.72) (5.48) (5.42) 

𝑇𝑅𝐴𝐷𝐸 
0.007 -0.253 -0.246 -0.15 0.516** 0.366 -0.006*** 0.010 0.004 

(0.68) (-0.30) (-0.29) (-1.03) (2.07) (1.46) (-3.08) (0.90) (0.38) 

𝐼𝑁𝐷 
-0.100*** -4.032 -4.132 -0.352 -0.237 -0.588 -0.005 -0.063 -0.069* 

(-2.62) (-1.50) (-1.52) (-1.52) (-0.47) (-1.03) (-1.52) (-1.63) (-1.74) 

𝑃𝑂𝑃 
0.338*** 20.84*** 21.18*** 0.375 -0.876 -0.501 0.0112** -0.017 -0.006 

(5.07) (3.89) (3.93) (0.75) (-1.49) (-0.98) (2.05) (-0.41) (-0.14) 

𝑈𝑅𝑃 
-0.575*** -37.37*** -37.94*** -0.38 0.414 0.034 0.061*** -0.005 0.056 

(-5.07) (-3.66) (-3.69) (-0.56) (0.33) (0.03) (6.83) (-0.04) (0.52) 

Note: ***, **, * indicates the significance level at 1%, 5% and 10%, respectively.
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3.6.4 Spatial Econometric Regression Results for Climate 

Following Tol (2021) study considers climate as the thirty-year average of climatic 

variables such as temperature and rainfall. We have averaged 30 years (1989-2018) for 114 

countries worldwide for climate analysis. This section measures the spatial determinants 

of climate. To measure the presence of spatial dependence in our data, we analyzed the 

Moran I test statistic. For climate analysis, binary maritime borders31 weight matrix is used. 

All the key-dependent and related covariates are tested for spatial dependence. Results of 

the univariate Moran-I test are shown in Table 3.6. Annual thirty-year average temperature 

and rainfall have positive and statistically significant spatial dependence. Thus, countries 

that experience high temperatures are surrounded by neighbors who are also experiencing 

warming. For other explanatory variables, results show the presence of spatial 

autocorrelation in the data. 

 

Table 3.6: Results of Univariate Moran I Test 

Variables Moran Statistics 

𝐶𝐿𝐼𝑀𝐴𝑇𝐸𝑡𝑒𝑚𝑝 74.16*** 

𝐶𝐿𝐼𝑀𝐴𝑇𝐸𝑟𝑎𝑖𝑛 91.34*** 

𝐶𝑂2 26.87*** 

𝐺𝐷𝑃𝑝𝑐 54.95*** 

𝐺𝐷𝑃𝑝𝑐
2  55.84*** 

𝑃𝑂𝑃𝐷 39.00*** 

𝑇𝑅𝐴𝐷𝐸 3.45* 

𝐼𝑁𝐷 24.17*** 
Note: All variables are taken in log form. * P-value < 0.10, ** P-value < 0.05, *** P-value < 0.01 

 

For spatial regression, we have analyzed the drivers of climate by using alternate models 

such as spatial autoregressive (SAR), spatial error (SEM), and spatial lag of explanatory 

variables (SLX). The SAR model shows the presence of spatial autocorrelation as the ρ is 

positive and statistically significant, indicating that the increase in the temperature of 

neighboring countries has repercussions for increasing the temperature of individual 

countries. Population density, trade, and industrialization are key spatial determinants of 

climate led by temperature. GDP per capita and its square terms are in line with EKC but 

 
31 We have constructed the weight matrix of 114 countries that share common border land or maritime. We 

have used maritime borders of those countries that have no land border. 
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remained insignificant in the case of climate. Population density is positively associated 

with an increase in temperature. One unit increase in population density across countries 

increases temperature change by 0.07. These results are consistent with earlier literature by 

Rahman (2017); Sapkota and Bastola (2017). Trade liberalizations tend to decrease the 

pace of climate led by temperature. As countries liberalize, they tend to integrate 

technology and skill transfers using better technologies, and environmental quality can be 

improved. An increase in the value-added share of industrialization in the GDP increases 

temperature change by 0.2 percent. If industrial expansion is based on fossil fuels, it 

augments warming faster.  

 

Table 3.7b shows the marginal effects of the SAR model. Direct effects are different from 

coefficients in the SAR model as direct effect encompasses the spillover effect of the 

spatially lagged dependent variable. In the present case of industrialization, the direct effect 

is 0.233, and its coefficient in the SAR model is 0.199; thus, the feedback effect for 

industrialization is 0.034. The indirect impact shows that an increase in the population 

density of nearby countries will increase the temperature in the domestic country, while 

trade liberalization of neighboring countries will decrease the temperature. Trade and 

environmental regulations are not the same across countries. Therefore, some of the 

polluting industries are being shifted to economies having less restrictive ecological 

regulations (You & Lv, 2018) 

 

SEM results depicted in model (3) show positive and significant spatial autoregressive 

terms indicating that climate is affected by unknown factors and spillover effects of nearby 

countries. In the case of SEM, population density is the key driver of climate that increases 

temperature by 0.05 percent. The SLX model lag of covariates remained insignificant, 

indicating no spillover effects on climate.  

 

In the case of climate-driven rainfall, the SAR model (6) indicates the presence of spatial 

autocorrelation as the coefficient of an autoregressive term is positive and significant. 

Population density increases while trade liberalization decreases the pace of climate. The 

indirect effect of SAR models indicates that the increase in population density of nearby 
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countries increases temperature while countries surrounded by more liberalized countries 

have decreased the pace of climate-driven rainfall. For the SEM model, population density 

is the key determinant causing a change in average rainfall across countries. SLX model 

(8) shows a significant positive relationship between rainfall with GDP per capita and a 

negative association with its square term. Population density has a positive and significant 

relationship with rainfall. 

 

For carbon intensity results of the SAR, the model depicts the presence of spatial 

autocorrelation as ρ is positive and statistically significant, indicating that an increase in 

the carbon intensity of neighboring countries has a positive spillover effect on individual 

countries. GDP per capita and square term are important and satisfy the EKC showing 

positive linear and negative nonlinear relationships between CO2 intensity and GDP. As 

countries grow, they tend to move towards more environmentally friendly technologies. 

Industrialization drives and augments CO2 intensity in the present case. The indirect effect 

shows that GDP per capita has a spillover effect on carbon intensity. SEM and SLX models 

consider GDP per capita and its square term an important determinant of CO2 intensity. 
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Table 3.7a: Regression Results for Climate (Temperature and Rainfall) and CO2 Intensity 

Variables 
OLS (1) SAR (2) SEM (3) SLX (4) OLS (5) SAR (6) SEM (7) SLX (8) OLS (9) SAR (10) SEM (11) SLX (12) 

 Climate (temperature) Climate (rainfall)  carbon intensity 

𝐺𝐷𝑃𝑃𝐶  
0.058 0.118 -0.035 0.042 1.656 0.575 -0.231 1.968* 0.275*** 0.277*** 0.259*** 0.295*** 

(0.14) (0.36) (-0.11) (0.1) (1.56) (0.79) (-0.37) (1.85) (5.91) (6.35) (5.63) (6.56) 

𝐺𝐷𝑃𝑝𝑐
2  

-0.010 -0.01 -0.001 -0.005 -0.083 -0.027 0.016 -0.101* -0.015*** -0.015*** -0.014*** -0.016*** 

(-0.41) (-0.54) (-0.03) (-0.19) (-1.36) (-0.64) (0.45) (-1.65) (-5.48) (-5.88) (-5.21) (-6.20) 

𝑃𝑂𝑃𝐷 
0.079** 0.073*** 0.054* 0.099** 0.368*** 0.247*** 0.167*** 0.284*** 0.00148 0.003 -0.001 -0.001 

(2.42) (2.86) (1.83) (2.37) (4.4) (4.24) (2.83) (2.64) (0.4) (0.92) (-0.33) (-0.20) 

𝑇𝑅𝐴𝐷𝐸 
-0.0998 -0.153*** -0.0133 -0.076 -0.0325 -0.362*** -0.033 0.001 0.005 -0.007 0.006 -0.005 

(-1.39) (-2.69) (-0.25) (-0.93) (-0.18) (-2.79) (-0.34) (0.01) (0.67) (-0.76) (0.79) (-0.51) 

𝐼𝑁𝐷 
0.199 0.218* 0.119 0.195 -0.362 -0.057 -0.461* -0.516 0.024 0.031* 0.013 0.018 

(1.26) (1.75) (0.89) (1.06) (-0.89) (-0.20) (-1.81) (-1.08) (1.34) (1.86) (0.71) (0.9) 

intercept 
2.716 1.15 2.884** 2.304 -1.881 0.427 8.203*** -2.186 1.124*** 0.980*** 1.236*** 1.018*** 

(1.64) (0.87) (2.2) (1.4) (-0.44) (0.15) (3.24) (-0.51) (6.06) (5.4) (6.68) (5.66) 

ρ 
 0.425***    0.587***   

 0.0611***   
 (7.39)    (10.38)   

 (2.84)   

Λ 
  0.575***    0.792***  

  0.336***  
  (9.51)    (17.51)  

  (3.54)  

𝑊 ∗ 𝐺𝐷𝑃𝑝𝑐  
   0.305    -0.41    -0.0197 
   (1.18)    (-0.61)    (-0.70) 

𝑊 ∗ 𝐺𝐷𝑃𝑝𝑐
2  

   -0.0242    0.0244    0.00165 
   (-1.54)    (0.6)    (0.96) 

𝑊 ∗ 𝑃𝑂𝑃𝐷 
   -0.0172    0.214    0.00901 
   (-0.31)    (1.5)    (1.49) 

𝑊 ∗ 𝑇𝑅𝐴𝐷𝐸 
   -0.142    -0.404    -0.0072 
   (-1.13)    (-1.24)    (-0.52) 

𝑊 ∗ 𝐼𝑁𝐷 
   -0.039    0.658    0.0443* 
   (-0.16)    (1.07)    (1.7) 

Log L  -46.2 -38.75 -63.6  -140.6 121.06 171.02  184.4 185.9 186.3 

Pseudo-R2  0.1 0.1 0.2  0.2 0.1 0.3  0.5 0.5 0.5 

N 113 113 113 113 113 113 113 113 113 113 113 113 

Note: t-statistics in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 3.7b: Direct, Indirect and Total Effect of SAR Model on Climate (Temperature & Rainfall) and CO2 Intensity 

Note: ***, **, * indicates the significance level at 1%, 5% and 10%, respectively. 

 

Table 3.8: Summary of Results for Direct and Indirect Effects of Climate, Climate Variability, and Carbon Intensity 

Source: Author’s work 

Dependent 

variable 
Climate-Temperature Climate-Rainfall CO2 intensity 

Variables Direct 

effects 

Indirect 

effects 

Total 

effects 

Direct 

effects 

Indirect 

effects 

Total 

effects 

Direct 

effects 

Indirect 

effects 

Total 

effects 

𝐺𝐷𝑃𝑝𝑐 0.127 0.078 0.204 0.669 0.716 1.384 0.278*** 0.018** 0.295*** 

𝐺𝐷𝑃𝑝𝑐
2  -0.011 -0.007 -0.017 -0.031 -0.033 -0.064 -0.015*** -0.001** -0.016*** 

𝑃𝑂𝑃𝐷 0.078*** 0.048** 0.127*** 0.287*** 0.307*** 0.594*** 0.003 0.000 0.003 

𝑇𝑅𝐴𝐷𝐸 -0.164*** -0.101** -0.265** -0.421*** -0.450** -0.871** -0.007 0.000 -0.007 

𝐼𝑁𝐷 0.233* 0.144 0.377* -0.066 -0.071 -0.137 0.031* 0.002 0.033* 

Determinants 

Temperature 

variability 

Climate-

Temperature 

Rainfall 

variability 

Climate-

Rainfall 

Carbon intensity 

panel 

Carbon intensity cross-

sectional 

Direct  indirect Direct Indirect Direct indirect direct indirect direct indirect direct indirect 

𝐺𝐷𝑃𝑝𝑐 **(+) (+) (+) (+) *(+) (-) (+) (+) ***(+) (+) ***(+) ***(+) 

𝐺𝐷𝑃𝑝𝑐
2  (-) (+) (-) (-) (-) (+) (-) (-) ***(-) (-) ***(-) ***(-) 

𝐸𝐼 ***(+) ***(+) Not included ***(+) (-) Not included (-) ***(+) Not included 

𝐼𝑁𝐷 ***(-) (-) *(+) (+) (-) (-) (-) (-) (-) (-) (+) (+) 

𝑇𝑅𝐴𝐷𝐸 (+) (-) ***(-) **(-) (-) **(+) ***(-) **(-) ***(-) (+) (-) (+) 

𝑃𝑂𝑃 ***(+) ***(+) Not included (+) (-) Not included **(+) (-) Not included 

𝑈𝑅𝑃 ***(-) ***(-) Not included (-) (+) Not included ***(+) (-) Not included 

𝑃𝑂𝑃𝐷   ***(+) ***(+)   ***(+) ***(+)  (+) (+) 
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3.6.5 Spatial Econometric Regression Results for Climate Change 

In the present section, we have calculated climate change by taking the square deviation of 

thirty years' annual temperature and rainfall from their respective long-run mean (1961-

90). Cross sectional data from 114 countries are used. We have tested for the presence of 

spatial relationship by the univariate Moran I test. Results indicate the presence of a spatial 

relationship. To gauge the driving factors of climate change and their spillover effects, we 

have tested for alternative model specifications in spatial settings by employing spatial 

autoregressive (SAR), spatial error (SEM), and spatial lag of explanatory variables (SLX). 

We have employed SBC/AIC criteria to choose between alternative model specifications. 

Results for temperature change indicate the absence of significant spatial relationship 

indicating the heterogeneous nature of climate change across countries considered in the 

analysis. The SEM model shows a spatial error relationship with the average error of 

nearby countries. All other variables included in the analysis are insignificant in explaining 

temperature change. 

 

In the case of rainfall change, the SAR model shows the presence of spatial autocorrelation 

as the ρ is positive and statistically significant, indicating that the increase in the rainfall of 

neighboring countries has repercussions for increasing the rainfall of individual countries. 

𝐺𝐷𝑃𝑝𝑐  and its square term is the key spatial determinant of climate change led by 

temperature. 𝐺𝐷𝑃𝑝𝑐  and its square terms are in line with EKC. SEM also indicates that 

spatial relationship is due to neighboring countries' errors or unobserved factors.  

 

In the case of rainfall change, SAR model, we found a positive and statistically significant 

ρ value which shows that increased rainfall change has a positive spillover effect on nearby 

locations. 𝐺𝐷𝑃𝑝𝑐  and its square term is in with the EKC showing that economic activity 

initially amplifies change, but this relationship tends to decay at a higher level of 𝐺𝐷𝑃𝑝𝑐. 

In the case of SEM, the positive and significant spatial autoregressive term indicates that 

climate is affected by unknown factors, and spillover effects of a nearby country's 

population density and industrialization are the key determinants of rainfall change. SLX 

model reveals 𝐺𝐷𝑃𝑝𝑐, and its square term, a population density determines changes in 

rainfall. Also, trade openness has a spillover effect in decreasing rainfall change. For 
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choosing between models, we applied the SBC/AIC criteria results, suggesting SEM is the 

best fit in the case of rainfall variability. 
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Table 3.9: Regression Results for Climate Change (Temperature and Rainfall)  

Variables 
OLS(1) SAR(2) SEM(3) SLX(4) OLS(5) SAR(6) SEM(7) SLX(8) 

Temperature Change Rainfall Change 

𝐺𝐷𝑃𝑃𝐶  
-0.012 -0.0114 -0.012 -0.019 7.018** 4.295* 2.981 7.367** 

(-0.87) (-0.89) (-0.90) (-1.43) (3.15) (2.32) (1.48) (3.28) 

𝐺𝐷𝑃𝑝𝑐
2   

0.001 0.001 0.001 0.001 -0.386** -0.234* -0.151 -0.397** 

(1.16) (1.18) (1.12) (1.53) (-3.02) (-2.21) (-1.31) (-3.08) 

𝐼𝑁𝐷 -0.011 -0.010 0.008 -0.003 -1.722 -1.474 -3.140** -2.123 
 (-1.58) (-1.50) (1.08) (-0.38) (-1.43) (-1.51) (-2.89) (-1.57) 

𝑇𝑅𝐴𝐷𝐸 0.0002 0.0003 0.004 0.002 -0.0281 0.208 0.615 0.402 
 (0.07) (0.07) (0.92) (0.58) (-0.04) (0.39) (1.1) (0.59) 

𝑃𝑂𝑃𝐷 (-0.001) -0.001 -0.002 -0.001 1.101*** 0.764*** 0.633** 0.875** 
 (-0.98) (-0.92) (-0.95) (-0.57) (4.85) (4.00) (2.71) (3.05) 

intercept 2.390*** 2.379*** 2.369*** 2.387*** -22.19* -14.02 -0.492 -24.84** 
 (44.77) (42.67) (43.75) (45.74) (-2.45) (-1.89) (-0.06) (-2.77) 

ρ   0.003       0.472***     
   (0.54)       (6.59)     

Λ     0.333**       0.560***   
     (2.94)       (7.5)   

𝑊 ∗ 𝐺𝐷𝑃𝑝𝑐       0.0118       -0.583 
       (1.18)       (-0.34) 

𝑊 ∗ 𝐺𝐷𝑃𝑝𝑐
2        -0.00045       0.024 
       (-0.75)       (0.23) 

𝑊 ∗ 𝐼𝑁𝐷       -0.00724       2.481 
       (-0.72)       (1.43) 

𝑊 ∗ 𝑇𝑅𝐴𝐷𝐸       -0.00903       -1.771* 
       (-1.81)       (-2.07) 

𝑊 ∗ 𝑃𝑂𝑃𝐷       -0.000       0.603 

        (-0.01)       (1.59) 

Log L   325.13 323.04 330.02   -243.7 -242.54 -256.55 

Pseudo R2   0.147 0.134 0.22   0.28 0.21 0.31 

N 114 114 114 114 114 114 114 114 

Source: Author’s work. 
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3.6.6 Spatial Econometric Regression Results across regions-Temperature Variability 

The results of the regional analysis are depicted in table 3.10. In the case of region 1, that 

is, Europe and the Asia Pacific, the spatial correlation coefficient indicates the positive and 

statistically significant relationship between the temperature variability of a country to its 

nearby locations. As the coefficient of SDM–FE and SDM–RE represents the variable 

explanatory effect, feedback effect, and its repercussions on a country, marginal effects are 

calculated by our explanatory variable's direct, indirect, and total effect. The relationship 

between 𝐺𝐷𝑃𝑝𝑐 and its square term in both the regions satisfies the EKC, which indicates 

that initially, 𝐺𝐷𝑃𝑝𝑐 in the country increase, but after a certain period, a rise in 𝐺𝐷𝑃𝑝𝑐 tends 

to reduce temperature variability.  

 

In the case of Europe, energy intensity has a direct positive relationship with temperature 

variability, indicating that high energy use exacerbates temperature variability. In contrast, 

in the case of region-2, the Asia Pacific increase in energy intensity tends to decrease 

temperature variability. The results indicate that the type (quality) of primary energy used 

to produce goods matters instead of the amount of energy used. Trade openness increases 

temperature variability in the case of Europe, while in the Asia Pacific, it tends to decrease 

it. European countries trade in high energy-intensive products like machinery, cars, and 

electrical equipment, while the Asia Pacific is mostly part of the global value chain and an 

important destination for foreign firms that transfer advanced knowledge and techniques. 

Also, newly industrialized countries that are part of Asia have increased their share in 

global renewable energy resources, as depicted in Figure 2.16. An increase in the total 

population tends to increase temperature variability as existing resources are over-

exploited to influence the balance of our ecosystem.  

 

In the case of Europe,𝐺𝐷𝑃𝑝𝑐, energy intensity, trade openness, and urbanization have 

significant spillover effects on the temperature variability of nearby countries (and vice 

versa). Countries initially exert the negative impact of temperature variability in their 

nearby locations, but this relationship tends to weaken as GDP grows. The trade openness 

of other European countries increases the temperature variability of their neighbors. While 

in the case of Asia Pacific, 𝐺𝐷𝑃𝑝𝑐, and trade openness have significant spillover effects. 
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Trade openness is more beneficial in the case of Asia Pacific countries as it tends to 

decrease their temperature variability.  
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Table 3.10: Results of Climate Variability (Temperature) Spatial Durbin Model – 

across the Regions 

Variables 

Region 1 Region 2 

SDM fixed 

effect 

SDM random 

effect 
SDM fixed effect 

SDM random 

effect 

Temperature Variability 

𝜌 
0.867*** 0.876*** 0.454*** 0.438*** 

(41.95) (44.65) (5.85) (5.51) 

𝐺𝐷𝑃𝑃𝐶  

0.090 -0.04 0.045 0.0534* 

(1.24) (-1.19) (1.29) (2.11) 

𝐺𝐷𝑃𝑝𝑐
2   

-0.002 0.003 -0.004 -0.0034** 

(-0.50) (1.43) (-1.88) (-2.62) 

𝐸𝐼 
0.106*** 0.043* -0.083** -0.038 

(4.52) (2.55) (-3.22) (-1.66) 

𝑇𝑅𝐴𝐷𝐸 
0.022* -0.002 -0.011 -0.003 

(2.44) (-0.30) (-1.50) (-0.60) 

𝐼𝑁𝐷 
-0.048** -0.011 0.021 -0.002 

(-2.72) (-0.86) (1.26) (-0.15) 

𝑃𝑂𝑃 
0.125*** -0.005 0.074** -0.000 

(4.16) (-1.72) (2.81) (-0.16) 

𝑈𝑅𝑃 
0.024 0.028 0.032 0.023 

(0.46) (1.15) (1.02) (1.29) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 
  -2.154   -0.784 

  (-1.94)   (-1.27) 

𝑊 ∗ 𝐺𝐷𝑃𝑝𝑐 
0.985*** 0.480* 0.289 0.217 

(3.5) (2.44) (1.69) (1.84) 

𝑊 ∗ 𝐺𝐷𝑃𝑝𝑐
2  

-0.055*** -0.029** -0.021* -0.017* 

(-3.62) (-2.80) (-2.16) (-2.47) 

𝑊 ∗ 𝐸𝐼 
0.320* -0.031 0.017 0.121 

(2.55) (-0.44) (0.14) (1.38) 

𝑊 ∗ 𝑇𝑅𝐴𝐷𝐸 
0.064* 0.035 -0.051* -0.053* 

(2.25) (1.46) (-2.13) (-2.43) 

W*𝐼𝑁𝐷 
-0.097 -0.001 0.0515 0.035 

(-1.03) (-0.02) (0.77) (0.57) 

W*𝑃𝑂𝑃 
-0.085 -0.039 -0.094 0.008 

(-0.56) (-1.60) (-1.16) (0.79) 

W*𝑈𝑅𝑃 
0.732* 0.273 0.222 0.24 

(2.23) (1.88) (0.97) (1.88) 

L 1723.1059 1212.811 

Hausman 44.70(0.0000) 130(0.0000) 

Source: Author’s work. 
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Table 3.11: Results of Spatial Direct, Indirect and Total Effect of Climate 

Variability (Temperature) SDM Model-across the Regions 

Variables 

Region 1 Region 2 

Temperature Variability 

Direct 
Indirect 

effect 
Total effect Direct 

Indirect 

effect 
Total effect 

𝐺𝐷𝑃𝑝𝑐 
0.282*** 7.802*** 8.084*** 0.0633 0.534* 0.597* 

(3.81) (3.65) (3.74) (1.71) (1.97) (2.12) 

𝐺𝐷𝑃𝑝𝑐
2  

-0.0123** -0.415*** -0.428*** -0.005* -0.040* -0.045** 

(-2.96) (-3.57) (-3.63) (-2.47) (-2.42) (-2.66) 

𝐸𝐼 
0.183*** 3.073*** 3.256*** -0.082** -0.023 -0.105 

(5.95) (3.43) (3.56) (-3.01) (-0.11) (-0.45) 

𝑇𝑅𝐴𝐷𝐸 
0.037*** 0.609** 0.645** -0.014* -0.100* -0.114** 

(3.83) (2.76) (2.87) (-2.01) (-2.33) (-2.58) 

𝐼𝑁𝐷 
-0.072** -1 -1.072 0.025 0.118 0.143 

(-2.72) (-1.41) (-1.47) (1.46) (0.93) (1.07) 

𝑃𝑂𝑃 
0.129*** 0.142 0.271 0.071** -0.119 -0.048 

(3.89) (0.15) (0.27) (2.7) (-0.85) (-0.32) 

𝑈𝑅𝑃 
0.159 5.603* 5.762* 0.046 0.44 0.486 

(1.75) (2.13) (2.13) (1.14) (1.05) (1.08) 

Source: Author’s work. 

 

3.6.7 Spatial Econometric Regression Results across regions-Rainfall Variability 

In the case of region-1, Europe, and region-2, Asia Pacific, the spatial correlation 

coefficient indicates the positive and statistically significant relationship of the rainfall 

variability of a country to its nearby locations.  In the case of Europe, energy intensity 

directly affects rainfall variability, while trade openness tends to reduce rainfall variability 

in the case of Asia. There is no significant spillover effect of variables considered in the 

analysis for Europe and the Asia Pacific.  
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Table 3.12: Results of Climate Variability (Rainfall) Spatial Durbin Model – across 

the Regions 

Variables Region 1 Region 2 

SDM fixed 

effect 

SDM random 

effect 

SDM fixed 

effect 

SDM random 

effect 

Rainfall Variability 

𝜌 
0.546*** 0.532*** 0.395*** 0.382*** 

(8.8) (8.42) (4.9) (4.66) 

𝐺𝐷𝑃𝑃𝐶  

 

3.386 1.042 -0.459 0.572 

(1.22) (0.76) (-0.17) (0.270) 

𝐺𝐷𝑃𝑝𝑐
2  

 

-0.185 -0.071 0.005 -0.067 

(-1.21) (-0.97) (0.03) (-0.57) 

𝐸𝐼 
1.547 -0.83 1.542 -0.765 

(1.72) (-1.32) (0.8) (-0.46) 

𝑇𝑅𝐴𝐷𝐸 
0.373 -0.057 -2.063*** -1.299* 

(1.08) (-0.21) (-3.77) (-2.56) 

𝐼𝑁𝐷 
0.13 -1.054* 2.455 2.079 

(0.19) (-2.07) (1.88) (1.85) 

𝑃𝑂𝑃 
0.597 -0.394*** 0.915 -0.515* 

(0.52) (-3.47) (0.46) (-2.22) 

𝑈𝑅𝑃 
-0.72 0.32 3.719 1.668 

(-0.36) (0.34) (1.58) (1.06) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 
  -50.52   31.53 

  (-1.23)   (0.64) 

𝑊 ∗ 𝐺𝐷𝑃𝑝𝑐 -1.49 15.96* -2.209 3.925 

 (-0.14) (2.29) (-0.17) (0.41) 

𝑊 ∗ 𝐺𝐷𝑃𝑝𝑐
2  0.175 -0.751* -0.194 -0.478 

 (0.3) (-2.01) (-0.26) (-0.86) 

𝑊 ∗ 𝐸𝐼 1.793 9.200*** -9.22 -11.02 

 (0.38) (3.41) (-1.00) (-1.47) 

𝑊 ∗ 𝑇𝑅𝐴𝐷𝐸 -0.851 0.468 2.141 0.764 

 (-0.78) (0.53) (1.2) (0.46) 

W*𝐼𝑁𝐷 -5.661 -9.684** -2.208 0.138 

 (-1.54) (-3.22) (-0.44) (0.03) 

W*𝑃𝑂𝑃 -7.362 0.0417 -7.254 -1.567 

 (-1.28) (0.04) (-1.19) (-1.51) 

W*𝑈𝑅𝑃 -1.037 -3.263 20.23 7.946 
 (-0.08) (-0.56) (1.18) (0.78) 

L -2257.35 -1123.54 

Hausman 42.02 (0.0000) 108.72 (0.0000) 

Source: Author’s Work.  
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Table 3.13: Results of Spatial Direct, Indirect and Total Effect of Climate 

Variability (Rainfall) SDM Model-across the Regions 

Variables 

Region 1 Region 2 

Rainfall Variability 

Direct 
Indirect 

effect 
Total effect Direct 

Indirect 

effect 
Total effect 

𝐺𝐷𝑃𝑝𝑐 
3.488 0.0531 3.541 -0.512 -5.191 -5.703 

(1.3) (0.00) (0.17) (-0.19) (-0.28) (-0.30) 

𝐺𝐷𝑃𝑝𝑐
2  

-0.188 0.216 0.027 -0.008 -0.221 -0.23 

(-1.26) (0.18) (0.02) (-0.06) (-0.20) (-0.21) 

𝐸𝐼 
1.730* 6.015 7.745 1.33 -13.03 -11.7 

(2.03) (0.63) (0.8) (0.67) (-0.88) (-0.74) 

𝑇𝑅𝐴𝐷𝐸 
0.339 -1.514 -1.175 -2.016*** 2.136 0.12 

(1.05) (-0.66) (-0.52) (-3.81) (0.77) (0.04) 

𝐼𝑁𝐷 
-0.055 -11.76 -11.81 2.388 -1.551 0.837 

(-0.08) (-1.52) (-1.48) (1.88) (-0.18) (0.09) 

𝑃𝑂𝑃 
0.339 -15.63 -15.29 0.657 -12 -11.34 

(0.32) (-1.37) (-1.35) (0.33) (-1.25) (-1.11) 

𝑈𝑅𝑃 
-0.782 -1.99 -2.772 4.81 36.78 41.59 

(-0.37) (-0.07) (-0.09) (1.64) (1.26) (1.31) 

Source: Author’s work. 

 

3.6.8 Spatial Econometric Regression Results across regions-Carbon Intensity  

The spatial autocorrelation coefficient is negative and statistically significant, indicating 

that CO2 intensity varies across space in Europe and the Asia Pacific. Countries with high 

carbon intensities tend to be surrounded by countries with low carbon intensities (and vice 

versa). GDP per capita and its square terms satisfy the EKC in the European and Asia 

Pacific regions. Energy intensity positively influences carbon intensities in both regions. 

Trade openness reduces carbon intensity in Europe while it increases carbon intensity in 

the Asia Pacific. These results are in contrast to the openness effect on temperature 

variability. This is because carbon emitted once in the atmosphere affects temperature 

variability despite the reduction in emissions. In the case of carbon intensity, openness 

helps reduce carbon emissions. Liberalization policy in Europe allowed firms to move to 

countries with less restrictive environmental regulations. Also, most Asian emerging 

economies are important destinations for the global value chain. High production costs for 

low environmental regulation have led to increased carbon emissions. Increased industrial 

value added decreases carbon intensity of Asian pacific countries while it has a negative 

and statistically insignificant relationship in the case of Europe. Urban population increases 

CO2 intensity in Europe while it tends to decrease in the case of the Asia pacific region. 
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The spillover effect of carbon intensity indicates that in the case of Europe, 𝐺𝐷𝑃𝑝𝑐, trade 

openness, size of the total, and urban population have a spillover effect on nearby locations. 

𝐺𝐷𝑃𝑝𝑐, its square term, industrialization, and the size of the total population have spillover 

an individual country's carbon intensity in Asia Pacific countries.   
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Table 3.14: Results of Carbon Intensity Spatial Durbin Model –across the Regions 

Variables Region 1 Region 2 

SDM fixed effect 
SDM random 

effect 

SDM fixed 

effect 

SDM random 

effect 

CO2 intensity 

𝜌 
-0.596*** -0.579*** -0.540*** -0.493*** 

(-4.18) (-4.07) (-3.77) (-3.42) 

𝐺𝐷𝑃𝑃𝐶   

0.171*** 0.171*** 0.388*** 0.374*** 

(8.35) (8.54) (23.24) (21.31) 

𝐺𝐷𝑃𝑝𝑐
2   

-0.009*** -0.009*** -0.022*** -0.021*** 

(-7.99) (-8.27) (-23.32) (-21.43) 

𝐸𝐼 
0.059*** 0.058*** 0.059*** 0.065*** 

(8.89) (8.66) (4.94) (5.28) 

𝑇𝑅𝐴𝐷𝐸 
-0.009*** -0.009*** 0.015*** 0.012*** 

(-3.40) (-3.82) (4.37) (3.43) 

𝐼𝑁𝐷 
-0.006 -0.005 -0.027** -0.030*** 

(-1.15) (-1.10) (-3.28) (-3.63) 

𝑃𝑂𝑃 
0.006 0.003 0.010 0.012 

(0.71) (0.73) (0.86) (1.33) 

𝑈𝑅𝑃 
0.074*** 0.073*** -0.090*** -0.065*** 

(5.01) (5.13) (-6.20) (-3.98) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 
  2.344***   -0.327 

  (3.41)   (-0.42) 

𝑊 ∗ 𝐺𝐷𝑃𝑝𝑐  
-0.067 -0.050 -0.197* -0.332*** 

(-0.82) (-0.61) (-2.34) (-3.58) 

𝑊 ∗ 𝐺𝐷𝑃𝑝𝑐
2   

0.005 0.004 0.015** 0.022*** 

(1.21) (0.92) (3.06) (4.17) 

𝑊 ∗ 𝐸𝐼  
0.001 -0.011 0.109 0.083 

(0.02) (-0.35) (1.89) (1.4) 

𝑊 ∗ 𝑇𝑅𝐴𝐷𝐸  
-0.032*** -0.030*** -0.021 -0.016 

(-3.97) (-3.78) (-1.88) (-1.39) 

W*𝐼𝑁𝐷  
0.126*** 0.125*** 0.086** 0.098** 

(4.54) (4.47) (2.77) (3.07) 

W*𝑃𝑂𝑃  
0.203*** 0.177*** 0.327*** 0.223*** 

(4.79) (5.73) (8.67) (4.86) 

W*𝑈𝑅𝑃 
-0.663*** -0.620*** -0.421*** -0.227 

(-7.18) (-7.10) (-3.97) (-1.92) 

L 3242.6716 1532.4396 

Hausman 

P-Value 

26.60  

0.0322 

12.40   

0.6483 

Source: Author’s work. 
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Table 3.15: Results of Spatial Direct, Indirect and Total Effect of Carbon Intensity 

SDM Model-across the Regions 

Variables 

Region 1 Region 2 

CO2 emission 

Direct 
Indirect 

effect 
Total effect Direct 

Indirect 

effect 
Total effect 

𝐺𝐷𝑃𝑝𝑐 
0.174*** -0.112 0.0627 0.390*** -0.360*** 0.030 

(7.92) (-1.96) (1.4) (21.17) (-5.59) (0.47) 

𝐺𝐷𝑃𝑝𝑐
2  

-0.009*** 0.007* -0.002 -0.022*** 0.023*** 0.001 

(-7.60) (2.28) (-0.89) (-20.96) (6.02) (0.24) 

𝐸𝐼 
0.060*** -0.022 0.038 0.065*** 0.036 0.101* 

(9.12) (-0.99) (1.87) (5.57) (0.86) (2.32) 

𝑇𝑅𝐴𝐷𝐸 
-0.009** -0.018** -0.026*** 0.013*** -0.015 -0.002 

(-3.26) (-2.92) (-5.21) (3.56) (-1.66) (-0.24) 

𝐼𝑁𝐷 
-0.008 0.084*** 0.076*** -0.034*** 0.077*** 0.043 

(-1.67) (4.96) (4.51) (-4.22) (3.4) (1.94) 

𝑃𝑂𝑃 
0.003 0.129*** 0.131*** 0.006 0.153*** 0.159*** 

(0.3) (4.61) (5.4) (0.65) (4.35) (4.63) 

𝑈𝑅𝑃 
0.087*** -0.457*** -0.370*** -0.059*** -0.142 -0.201* 

(5.79) (-7.25) (-5.83) (-4.21) (-1.71) (-2.19) 

Source: Author’s work. 

 

3.7 Conclusion 

In the present study, we estimated spatial determinants of climate, climate variability, 

climate change, and carbon intensity. For climate variability, we have used the panel of 

116 countries from 1991 to 2018. The study measures the climate variability of the average 

temperature difference from the long-run mean. At the same time, climate change is 

calculated by the thirty-year average of temperature, rainfall, and carbon intensity in cross-

sectional data of 114 countries. 

 

Spatial Determinants of Climate Variability include GDP per capita, energy intensity, 

industrialization, total population, and urban population. Energy intensity, total population, 

and urban population are the key spatial determinants of temperature variability for 

spillover effects. Countries surrounded by neighbors with high energy intensity tend to 

increase domestic countries' climate variability. Countries with high populations also exert 

a positive spillover effect on the climate variability of nearby locations. Urbanization 

decreases temperature variability in the domestic country; if urbanized economies surround 

a country, it also reduces temperature variability. 
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The key spatial determinants for rainfall variability are GDP per capita and energy 

intensity. For spillover and indirect effects, an increase in trade liberation of nearby 

countries increases rainfall variability in the domestic country. Carbon intensity is spatially 

driven by GDP per capita, its square term, trade liberalization, population, and urban 

population. Energy intensity shows a positive spillover effect on nearby countries' carbon 

intensity for the indirect effect. As energy intensity increases, countries move to more fossil 

fuel-driven production, further exacerbating neighboring countries' carbon intensity.  

 

Spatial Determinants of Climate led by temperature find population density positively 

associated with increased temperature change. Trade liberalizations tend to decrease the 

pace of climate change led by temperature change. An increase in the value-added share of 

industrialization in the GDP increases temperature change by 0.2 percent. The indirect 

effect shows that an increase in the population density of nearby countries will increase the 

temperature in domestic countries. In contrast, trade liberalization of neighboring countries 

will decrease the pace of climate change.  

 

Climate change led by rainfall shows that population density and trade liberalization are 

the key determinants. Population density increases while trade liberalization decreases the 

pace of climate change. The indirect effect of SAR models indicates that the increase in 

population density of nearby countries increases temperature change while countries 

surrounded by more liberalized countries have decreased the pace of climate change driven 

by rainfall. For carbon intensity in a cross-sectional setting, GDP per capita and square 

term are significant and satisfy the EKC showing a positive linear and negative nonlinear 

relationship between CO2 intensity and GDP. Industrialization drives and augments CO2 

intensity in the present case. The indirect effect shows that GDP per capita has a spillover 

effect on carbon intensity. 

 

Climate variability (temperature) shows that the short-term fluctuation in climate is 

affected by GDP per capita, energy intensity, total population, and urbanization, while 

industrialization decreases variability in the short run. Climate change intensified because 

of industrialization and increased population density in the long run. Economic growth 
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raises temperature variability while having an insignificant positive effect on climate 

change in the long run. 

 

Economic growth increases carbon intensity in the panel and the cross-sectional setting. 

For short-term policy suggestions, results highlight the need to consider energy 

consumption, energy mix, population growth, and urban planning as the key factors to slow 

the pace of climate variability; however, for long-run climate change, countries need to 

consider policies aim to handle population density and urban planning. In the long run, 

trade openness decreases the pace of climate change. 

 

A cross-regional determinants 

Europe and the Asia Pacific both satisfy the EKC relation with temperature variability. 

Energy intensity in Europe exacerbates temperature variability, while in the Asia Pacific, 

it helps reduce the pace of variability. The quality of energy being used to produce also 

matters. Trade openness increases temperature variability in Europe while it decreases in 

the case of Asia Pacific. Industrial value-added decreases temperature variability in Europe 

while it increases in the case of Asia Pacific. GDP, energy intensity, trade, and urban 

population have the key spillover. While in the case of Asia, 𝐺𝐷𝑃𝑝𝑐, and trade have spillover 

effects. In the case of Europe, rainfall variability is explained by positive changes in energy 

intensity. In the case of Asia Pacific, trade openness affects rainfall variability. 𝐺𝐷𝑃𝑝𝑐, 

𝐺𝐷𝑃𝑝𝑐
2 , 𝐸𝐼, 𝑇𝑅𝐴𝐷𝐸, 𝐼𝑁𝐷, and 𝑈𝑅𝑃 are the key determinants for carbon intensity in Europe. 

While 𝐺𝐷𝑃𝑝𝑐
2 , 𝑇𝑅𝐴𝐷𝐸, 𝐼𝑁𝐷, 𝑈𝑅𝑃, and total 𝑃𝑂𝑃 size have a spillover effect. 𝐺𝐷𝑃𝑝𝑐,  𝐺𝐷𝑃𝑝𝑐

2 , 𝐸𝐼, 

𝑇𝑅𝐴𝐷𝐸, 𝐼𝑁𝐷, and 𝑈𝑅𝑃 are the key driving factors for carbon intensity, while 𝐺𝐷𝑃𝑝𝑐, 𝐺𝐷𝑃𝑝𝑐
2 , 

𝐼𝑁𝐷, and 𝑃𝑂𝑃 size have a spillover effect. 

 

Spillover effects suggest that countries must devise their environmental policies and 

regulations, keeping in view neighboring countries' energy policies, energy mix, and 

energy consumption patterns. Coordination in energy policies for countries at the regional 

level is central to reducing climate variability and change. Climate change policies need to 

consider the spillover effect of nearby locations to implement better regulations, 

adaptation, and mitigation measures. For climate change, densely populated neighboring 
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countries increase climate change's pace. This needs to be considered part of urban 

planning. Sustainable economic growth must be regarded as, in all cases, improvement in 

per capita income increases climate change, variability, and carbon intensity. The 

difference in temperature variability and carbon intensity determinants indicates that both 

should be analyzed in formulating the policy target for climate change. Also, the adaptation 

measures should be according to existing temperature variability faced by countries. 

Variability, positive or negative, creates short-term uncertainty and increases cost. 

 

3.8 Key Takeaways 

 

In the panel of 116 countries, increase in the GDP per capita has direct impact on climatic 

variability irrespective of the alternative dependent variables considered in the analysis. 

However, the magnitude varies with the type of dependent variable considered. One 

percent increase in GDP per capita increase temperature variability by 0.3 percent, rainfall 

variability by 2.2 percent and CO2 intensity by 0.2 percent. 

 

Among the indirect impact, temperature variability is more sensitive to changes in energy 

intensity of any neighboring countries.  One-unit increase in the energy intensity of 

neighboring country increases temperature variability of a given country. In case when CO2 

emission were used as dependent variable, energy intensity of neighboring country 

increases CO2 intensity by 0.4 percent.  The result also indicates that neighboring countries 

energy intensity is more on temperature variability rather than CO2 intensity.  

 

Results of the regional analysis shows that in Region-1 i.e. the European countries, the 

magnitude of spillover effects of increase in GDP, energy intensity, trade openness on 

temperature variability are more as compare to Asia Pacific region. Interestingly, the 

magnitude of spillover effect is more than direct effect of these determinants indicating 

that European countries need to devise a common climate adaptation and mitigation 

policies as neighboring countries GDP, energy intensity, and trade liberalization impact a 

given country’s temperature variability. Contrary to the existing literature energy intensity 

of a given country in case of Asia Pacific lowers the temperature variability while there is 
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no spillover effect on other countries. The reason can be the diverse geographical spread, 

regional climates (tropical and artic), industrial structures, and energy consumption 

patterns. The relationship needs to be explored further in terms of long run and short run. 

 

In both the regions Europe and Asia Pacific GDP per capita, energy intensity, trade 

openness and urbanization are the key direct determinants of CO2 intensity.  In case of 

Europe trade liberalization tends to decrease the CO2 intensity by 0.01 percent while in 

case of Asia Pacific trade liberalization increase CO2 intensity by 0.01 percent. In Europe, 

the clean energy mix, regulatory measures for climate change and trade liberalization also 

encourage easy access to cleaner technologies and practices, thereby decreasing CO2 

intensity. Among the spillover effect, in both the regions, industrialization and population 

increase augments CO2 intensity. 
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Chapter 4 
 

IMPACT OF CLIMATE CHANGE ON FOOD 

PRODUCTION: AN ANALYSIS BASED ON 

SPATIAL ECONOMETRIC MODEL  

  

4.1. Introduction 

Food security, in general, and food production, are central to any country's sustainable 

economic development and national security. Food security encompasses food production, 

food access, and its utilization. Climate change affects all components of food security as 

climate variables such as temperature, humidity, and precipitation are major factors 

affecting food production processes. Climate change indirectly affects food access as 

disruption in the food supply chain creates a food shortage, exacerbates prices, and creates 

uncertainty for farmers' income. Climate change also affects food's nutritional quality, 

affecting food security's food utilization component.  

 

Few countries dominate the global grain market for rice, maize, and wheat. All these crops 

constitute the major food basket for most of the world's daily calorie intake. Simultaneous 

shock in the form of a global rise in temperature will change the projection of future grain 

production in the world market. Although globalization has increased food availability for 

countries even with limited food production, the global pandemic COVID-19 and recent 

Russia and Ukraine war-driven food inflation have led countries to rethink food security in 

terms of food production.  

 

Achieving the global sustainable development goal of achieving zero hunger by 2030 needs 

stringent policy action in the post-pandemic era. According to FAO32, around 720 to 811 

 
32 FAO, IFAD, UNICEF, WFP and WHO. 2021. The State of Food Security and Nutrition in the World 2021. 

Transforming food systems for food security, improved nutrition and affordable healthy diets for all. Rome, 

FAO. https://doi.org/10.4060/cb4474en 
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million people are expected to face hunger in 2020. Besides the global pandemic, certain 

climate-related challenges such as locust outbreaks, floods, and drought have added 

additional pressure on limited resources used to feed the increasing population. The world 

population is increasing at a high rate compared to crop yield per hectare. (Arora, 2019). 

With the additional burden of unexpected climate-related changes, food production, price 

hikes, and food shortage are the major challenges to ensuring global food security. 

 

Food security and its sustainability have been important agendas for countries around the 

globe. However, despite existing bottlenecks for its smooth functioning, climate change is 

one of the most challenging threats for this sector. Climate change is not confined to the 

geographical boundaries of countries, and its impacts are heterogeneously distributed 

across space. Increases in temperature and rainfall affect plant growth, soil fertility, and 

water availability, and are more prone to pests' attacks. Rising temperature leads to multiple 

implications for the world agriculture system. For colder regions away from the equator 

where the temperature is increasing, fertilization effects will aid a conducive environment 

for agriculture production, while already hot and humid countries will face water scarcity. 

More rainfall will benefit countries with semi-arid, arid, and rain-fed land holdings. In 

contrast, less rainfall and a high temperature in these areas will be detrimental to agriculture 

(Agovino et al., 2019). 

 

Also, the world economy relies on the temperate zone while most of the world population 

resides in the tropical zone. Initially, temperate zones might benefit from climate change, 

while tropical zones may in occur losses. However, as termed by Tol (2009), this benefit 

is a 'sunk benefit' that ultimately dies out with escalating carbon emissions. Climate change 

and technological advancement will likely shift world agriculture production to temperate 

zones. Developing and least developed economies are situated in tropical and equatorial 

belts. Most of them depend heavily on agriculture as a primary source of their livelihood. 

In addition, they have a high poverty level and minimum capacity for adaptation.  

 

Climate change affects the crop cycle, growth, production, and yield. Crop production and 

yields are directly affected by climate change through certain factors such as temperature, 
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precipitation, carbon dioxide, temperature and precipitation variability, and surface water 

availability. Both temperature and rainfall are important inputs for crop growth; however, 

a decrease in precipitation affects freshwater availability and soil moisture. High rainfall 

reduces the yield gap between irrigated and rain-fed farms and can cause flooding beyond 

certain limits. The length of the growing period and water requirements are also determined 

by temperature and soil moisture. High temperature reduces the crop cycle and decreases 

crop productivity and yield (IPCC, 2007; Calzadilla et al., 2010).  

 

The positive impact of climate change due to increased carbon emissions in the atmosphere 

is also highlighted in the literature. Nordhaus (2013) pointed out that crops like wheat, rice, 

and soybeans can increase yields from 10-15 percent if carbon emissions are doubled. This 

is because plants need carbon dioxide for growth. More carbon emissions in the atmosphere 

will stimulate photosynthesis and speed up the plant growth cycle. In addition to carbon 

emission, other determinants of plant growth should be adequately available for the 

beneficial use of increased carbon emissions. Increased CO2 emissions benefit C3 (rice, 

wheat, oats, barley, cotton) plants whose photosynthesis expedites with increased CO2 

emissions. The C4 (maize, sugarcane, pearl millet, sorghum) plant type is negatively 

affected by CO2 emissions (Calzadilla et al., 2010).  

 

Population growth and climate change are the two serious concerns for future food 

availability. Most of the studies in the literature identified a reduction in wheat yields in 

South Asia while improvement in the yield across Europe owing to the increase in global 

temperatures. Major cereal and staple food consumption worldwide comprise wheat, 

maize, and rice. The present study considers these crops to evaluate the impact of various 

climatic and non-climatic factors in determining the level of crop production. 

Globalization, economic and technological integration, increased communication, and 

information sharing have created a spillover effect of any economic activity on the country 

itself and its nearby regions more than ever before. Agriculture activity especially has a 

greater spillover effect as countries share common ecological and climatic conditions. 

Therefore, unlike traditional panel models that ignore the spillover effect of neighboring 
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countries in proximity, we apply spatial panel models that incorporate the spatial 

dependency between regions.  

 

4.2. Review of Literature 

The agriculture sector in general and food production, in particular, depend on climate and 

environmental conditions. Being the basic input and public good by nature of climatic 

conditions, its impact on the agriculture sector has been extensively researched in the past 

few decades. The present section discusses existing studies on the impact of climate change 

on the agriculture sector regarding crop yields, productivity, and farm profits. Numerous 

studies have been conducted at regional and country levels using different data sets, 

models, and estimation methodologies. Some studies found a negative relationship 

between climate change and agriculture. High temperature and increased precipitation 

affect crop productivity at growth stages, increasing production costs and lowering farmers' 

profits. At the same time, others reveal a positive impact. However, the net impact climate 

change exerts on food production remains inconclusive. For this, the present section 

highlights the existing studies and their conflicting evidence on the impact of climate 

change on agriculture and food production in general. 

 

One of the prime SDGs is to ensure zero hunger for all. Owing to the natural climate or 

artificial financial or economic crisis, food prices face upward pressure and are subject to 

volatility. Food generating resources are under pressure as the world population is 

increasing faster than agricultural land growth. High-income levels and high food demand 

have added to existing challenges for food security and access. It has been estimated that 

food demand will surge to 300 percent by 2080. In the presence of climate change, food 

production will create a wedge between supply-demand followed by a surge in food prices, 

consequently worsening the food security situation. (Sanchez, 2000; Siwar et al., 2013; 

Bandara & Cai, 2014). 

 

The green revolution in the 1960s equipped many developing countries with better crops 

and farming practices and ensured the availability of better inputs. However, the quality of 

natural endowments, such as climate and soil fertility, plays an important role in gaining 
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true benefits. Yields, along with input intensity, also varies with change in the climate. 

Mendelsohn and Wang (2017) estimated farm input intensity in the presence of climate 

change by using 8400 farms' data sets across China. Results suggest that if climate change 

benefits crop productivity, farmers will increase their crop intensity and vice versa.  

 

Most developing and less developed countries depend on agriculture for income and 

revenue generation. In addition, their geographical location (low altitude), rising 

temperature, water shortages, and low adaptive capacity make them more vulnerable 

(IPCC, 2014; Mendelsohn et al., 2006). Unfortunately, more than half of poor HH of the 

world live in the South Asian region. The agriculture sector has an important contribution 

to GDP and employment generation. Further, this sector helps in poverty reduction. 

Climatic change-induced factors such as drought, floods, and rising temperatures in this 

region have been observed in subsequent years.  

 

The impact of climate change on food production is heterogeneously distributed among 

regions and countries. For example, Bandara and Cai (2014) studied the impact of climate 

change on crop productivity and its repercussion on food prices and security in the South 

Asian region with a computable general equilibrium model. Without incorporating the 

adaptive capacity, the study found a negative impact of climate change on the food 

production of all five countries in this region. In addition to this, the study examined food 

shortages by 2030 with a major decline in wheat (11%), cereal (7%), and rice (4%) from 

the baseline scenario. For the price of these commodities major increase is forecasted for 

cereal grains (45%), wheat (25%), and rice (10%). Food demand for these commodities is 

likely to decrease from 0.5 to 5 percent, while GDP is projected to decline in all five 

countries. 

 

Chandio and Gokmenoglu (2022) estimated the impact of climatic and non-climatic factors 

on rice production in Asian economies from 1961 to 2016. Results indicate that 

temperature and carbon emission increase has a detrimental effect on rice production in the 

long run, while the increase in precipitation positively affects rice production. Increased 
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non-climatic factors such as labor, fertilizer consumption, and cultivated land area increase 

rice production in Asian economies.  

 

Climate change impact assessment studies reveal that the impact of climate change varies 

in low and high-altitude countries. (Kolstad & Moore, 2019). Rosenzweig and Parry (1994) 

simulated the impact of climate change scenarios on the global food supply. Results 

suggest that developing countries lying at low altitudes are more affected by climate change 

than developed countries despite employing adaptive strategies by farmers. Ginbo (2022) 

analyzed the impact of climate change on various crop yields located in different 

agroecological zones of Ethiopia. The study analyzed the future impact of climate change 

on cash crops (coffee) and major cereals (wheat, maize, barley, and sorghum) for 2041–

2060 compared to 1988–2018. Wheeler and Kay (2010) suggested that crop area will shift 

towards the north by 50kms for every 1-degree increase in temperature. 

 

Also, the least developed countries in sub-Saharan Africa (SSA) are agrarian economies 

that attain 40% of their GDP from the agriculture sector while it employs more than half 

of their labor force. The temperature in these economies is consistently increasing with low 

rainfall. Extreme climatic events such as drought and floods are frequent. The inability to 

access modern technology makes them worse off than the rest of the world. 

 

Barrios et al. (2008) examined the impact of climate change on agriculture production in 

sub-Saharan Africa (SSA) and non-sub-Saharan African (NSSA) developing countries for 

the years 1961 to 1997. Climate change is accessed through changes in rainfall and 

temperature from the long-run mean. Other inputs include labor, livestock, mechanization, 

land, and fertilizer use. Results indicate that changes in rainfall and temperature in the 

country are major determinants of agriculture production in SSA.  

 

Ward et al. (2014) examined the impact of temperature and diurnal temperature range on 

the cereal yield of sub-Saharan African economies. The study found that by the end of this 

century increase in temperature and diurnal temperature range will decrease cereal yields 
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by 36 percent. Simulation results suggest that the negative effect on yield can be reduced 

by employing better irrigation facilities.  

 

 Ray et al. (2019) studied the impact of climate change on the crop yields of ten major 

crops, including maize, rice, wheat, and others, for 20,000 political units. Crop yields in 

Australia, Europe, and South Africa negatively impact climate change, while Latin 

America has a positive impact. Asia and northern and central America have mixed results. 

Globally, results show a decline in rice yields by 0.3 percent and wheat by 0.9 percent. For 

maize, a slight increase of 0.2 MT annually is found in the analysis. Further, the study 

evaluated the changes in global consumable crop calories and found a decrease in rice 

calories by 0.4 percent, wheat by 0.5 percent, and maize by 0.7 percent annually.  

 

Fei et al. (2020) estimated the impact of climate change on wheat, maize, and rice 

production potential. The study found that wheat crop production potential has declined 

since 1960 because of climate change, while the production potential of rice and maize has 

improved in China. Wheat is sensitive to high temperatures (maximum and minimum) in 

its flowering stage, while maize and rice have a beneficial effect of higher temperatures at 

the flowering stage. Changes in precipitation have a negative impact on the production 

potential of all the crops. 

 

Lobell et al. (2011) estimated the yield responses of major crops (maize, wheat, rice, and 

soybeans) to changes in climate variables for all countries of the world from 1980 to 2008. 

Results indicate a reduction in maize and wheat yield for a net global loss of 3.8 percent 

and 5.5 percent, respectively. For rice, the study found that gains compensate for the 

insignificant impact of loss in global production by others. Among climatic variables, 

trends in temperature drive impact, while the trend in precipitation influences internal 

annual variability.  

 

Some of the studies in the literature have measured the spatial spillover effect of crop 

production (Donfouet et al., 2017), total factor productivity (Zhong et al., 2019), land 

values (Nicita et al., 2020), and food security (Qingshi & Akbar, 2022). Donfouet et al. 
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(2017) studied the impact of crop diversity on crop production in the presence of climate 

change in France using a spatial autoregressive model with the spatial autoregressive error 

term (SAC). The study found that crop diversity cushions the negative impact of the 

reduction in rainfall. The study concluded that the unobserved factors and shocks are 

responsible for spillover effects for spatial effects. Nicita et al. (2020) investigated the 

impact of climate change and agrobiodiversity on farmland values using the Ricardian 

spatial Durbin model for Sicily. The study incorporated the spatial relationship and 

heterogeneity of farms. Results indicate that farm values have a significant relationship 

with climate and agro-biodiversity, and spillover effects contribute to the difference in farm 

values. 

 

Zhong et al. (2019) investigated the impact of climate change on province-wise agricultural 

total factor productivity for China. The data envelope method is used to access the average 

total factor productivity. The Spatial Durbin Model (SDM) is applied to evaluate the impact 

of climatic variables (temperature, rainfall, evaporation) at the regional level for China.  

 

Qingshi and Akbar (2022) investigated the determinants of food security with a particular 

focus on political risk factors for food security and its repercussion on neighboring 

countries using the spatial Durbin model for 35 Asian countries. Results suggest that 

environmental and political risk negatively affects the food security of a particular country 

and its neighbors. Countries deteriorating the environment through polluting industries 

affect regional food security. Trade openness benefits a particular country, but its spillover 

effects on neighboring Asian countries are negative.  

 

Long Ji et al. (2018) studied the factors responsible for causing structural changes in 

vegetable production in the case of China using SDM. The study employed climatic factors, 

rural labor, urban population, and road density as important determinants of vegetable 

production. Results indicate that rural labor and road density positively spillover effect on 

nearby provinces' vegetable production. 
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Exiting studies in the literature have focused on the spatial clusters of agriculture crops 

with a country-specific study incorporating the spillover effect of nearby farmland. Unlike 

the existing studies, we have evaluated the impact of climate change on food production 

by taking into account the countries that produce a particular crop and are located close by. 

We have considered wheat, rice, and maize as they constitute the major portion of staple 

food being consumed globally. In addition to the country’s own effect, the spillover effect 

of a country that produces the same crop is missing in literature to the best of our 

knowledge. Thus, the present study evaluates the climatic and non-climatic factors 

affecting a country’s production and the spillover effect of nearby countries producing the 

same crop.  

 

4.3. Theoretical Framework 

The economic impact of climate variables on the agriculture sector is widely assessed 

through the Ricardian (hedonic) and production function approach, subject to the scope 

and objective of the study. Studies that aimed to analyze the impact of climate change on 

agriculture yields have employed the production function approach, while Mendelsohn et 

al. (1994); Sanghi and Mendelsohn (2008); Mendelsohn and Dinar (2009) use the 

Ricardian (hedonic) approach to access agriculture productivity by using profit or land 

values.  

 

The production function approach and crop simulation models analyze crop yield 

sensitivity to climate change. The major focus in the crop simulation models is on 

physiological aspects and plant growth under changing climate change scenarios. These 

models ignore that farmers undergo adaptation strategies while confronting climate change 

(Salvo et al., 2013). Moreover, they require daily data on climate and other farm 

management activities that are not readily available. For the production function approach, 

agriculture inputs such as fertilizers, climate, and other soil-related variables are used to 

access changes in crop yields. The basic limitation of this model lies in the 'dumb farmer 

hypothesis' that ignores the adaptation strategies in the form of changing cropping patterns 

and crops due to climate change. For the present case, we have explicitly accounted for 

adaptation strategies by adding fertilizer and mechanization as proxy variables for 
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adaptation. Integrated assessment models have also been developed to examine the 

repercussion of climate variables on the entire economy. Other models used in literature 

include positive mathematical programming and the general equilibrium model (for detail, 

see Salvo et al., 2013).  

 

Considering our study's objective, the production function approach is most appropriate as 

it explicitly accounts for agriculture inputs. Following Barrios et al. (2008) and Kahsay and 

Hansen (2016), we assume the Cobb Douglas production function converts inputs to 

output.  

 

𝑄 =  𝐴 𝐿𝛽1 𝐾𝛽2         (4.1) 

 

Where 𝑄 represents production33; 𝐿 shows the amount of labor employed in agriculture; 𝐾 

shows the capital and machinery used; 𝐴 represents other variables, including climate 

variables in our case. 𝛽1, 𝑎𝑛𝑑 𝛽2,  are the production elasticity concerning the country's 

input. 

 

The log-linear reduced form of the model in our case becomes. 

 

 

𝑙𝑛𝐹𝑃𝑖𝑡 = 𝛽°+𝛽1𝑙𝑛𝐹𝐸𝑅𝑇𝑖𝑡 + 𝛽2𝑙𝑛𝑀𝐴𝐶𝐻𝑖𝑡 + 𝛽3𝑙𝑛𝐴𝐺𝑅𝐿𝑖𝑡 + 𝛽4𝑙𝑛𝑂𝑃𝐸𝑁𝑖𝑡 +

𝛽5𝑙𝑛𝑇𝐸𝑀𝑃𝑖𝑡 + 𝛽6𝑙𝑛𝑅𝐴𝐼𝑁𝑖𝑡 + 𝛽7𝑙𝑛𝑇𝑉𝐴𝑅𝑖𝑡 + 𝛽8𝑙𝑛𝑅𝑉𝐴𝑅𝑖𝑡 + 𝜆𝑡 + 𝜇𝑖 + 𝜂𝑖𝑡 

        (4.2) 

 

As in the present case, we are interested in measuring and accounting for neighborhood 

effect, i.e., the spillover effect of neighboring countries' crop production, inputs, and 

climatic variables on domestic countries' crop production. Therefore, we have used a 

spatial econometric model in a panel setting.  

 

 
33Crops considered are wheat, rice, maize. While cereal production index is also used as dependent 

variable. 
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4.4. Methodology 

Standard panel econometric methodologies such as fixed effect and random effect models 

are extensively used to assess the impact of climatic variables on agriculture production 

yield, total factor productivity, farm profits, and agriculture sector efficiency. However, 

traditional panel models assume no spatial autocorrelation across space. To measure 

spillover or neighborhood effects affecting food production in any given country, the 

traditional panel fails to consider. Therefore, we have used spatial econometric models 

incorporating the spillover effect by considering the cross-sectional dependence and 

heterogeneity across space. (Elhorst & Vega, 2013). In spatial autocorrelation, the error 

term is no longer normal, while the standard error becomes high, leading to the acceptance 

of a false hypothesis. 

 

Spatial autocorrelation is a major concern if one location's dependent variable, error term, 

or explanatory variables correlate with its neighboring locations. Most empirical studies 

that measure the spatial effects of climate change on agriculture production, farm values, 

and profitability have applied the spatial Durbin model. For example, Qingshi and Akbar 

(2022) applied the spatial Durbin model to evaluate the role of political risk and other 

determinants of food security in the spatial context. Nicita et al. (2020) highlighted the 

importance of the spatial relationship between farm values while studying the climate 

impact assessment. Certain inputs such as soil, climate, and irrigation facilities cross space. 

While the value of land is also affected by the value of nearby land area thus, the study 

employed a spatial Durbin model that includes spatial lag exogenous factors and a spatial 

lag dependent variable. Tang et al. (2021) examined the spatial/spillover effect of farm use 

transition on grain production in the case of China.  

 

In the present case, we have analyzed the spatial relationship between food production 

determinants measured by wheat, rice, and maize production. Food production factors 

include agriculture inputs such as fertilizer usage, irrigation system, mechanization, 

climatic variables, prices, and trade decisions. Most of the variables used as input have 

similar behavior across nearby spaces. In addition, most geographical locations, soil 

fertility, and climate change variables are not limited to the country's geographical 
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boundaries. The food production area in one country is near another; thus, to capture the 

spillover effect of neighboring countries' agriculture production and other factors, we use 

a more generalized form of spatial model that includes spatial interaction of exogenous and 

dependent variables.  

 

Following Elhorst and Vega (2013) methodology for selecting an appropriate spatial 

model, we initially employed a non-spatial model, i.e., OLS, for selecting an appropriate 

model. LM lag and LM error test and their subsequent robust forms are used to choose 

between non-spatial and spatial lag and the spatial error model. If the spatial models better 

fit the data than the non-spatial model, we have used Wald and LR tests to choose the most 

appropriate model. For the present case, we have used a more generalized model that is the 

spatial Durbin model, and test two hypotheses; first, is spatial Durbin model can be 

simplified to the SLM model (Ho= γ =0), and can the spatial Durbin model can be reduced 

to spatial error model (Ho= γ +δβ). 

 

For the present case, we have used the generalized spatial Durbin model: 

 

𝐹𝑃𝑖𝑡 = 𝜇𝑖 + 𝜆𝑡 + 𝛿 ∑ 𝑤𝑖𝑗𝐹𝑃𝑗𝑡
𝑁
𝑗=1 +  𝛾 ∑ 𝑤𝑖𝑗𝑥𝑗𝑡

𝑁
𝑗=1 + 𝛽𝑥𝑖𝑡 + 𝜀𝑖𝑡  (4.3) 

𝑖 = 1,2,3, … , 𝑁;  𝑡 = 1,2,3, … , 𝑇 

Our model equation can be rewritten as this: 

 

𝑙𝑛𝐹𝑃𝑖𝑡 = 𝛽𝑜 + 𝜇𝑖 + 𝜆𝑡 +  𝜌 ∑ 𝑊𝑖𝑗𝑙𝑛𝐹𝑃𝑗𝑡 + 𝑁
𝑗=1 +𝛽1𝑙𝑛𝐹𝐸𝑅𝑇𝑖𝑡+𝛽2𝑙𝑛𝑀𝐴𝐶𝐻𝑖𝑡 +

𝛽3𝑙𝑛𝐴𝐺𝑅𝐿𝑖𝑡 + 𝛽4 ln 𝑂𝑃𝐸𝑁𝑖𝑡 + 𝛽5𝑙𝑛𝑇𝐸𝑀𝑃𝑖𝑡 + 𝛽6𝑙𝑛𝑅𝐴𝐼𝑁𝑖𝑡 +

𝛽7𝑙𝑛𝑇𝐸𝑀𝑃𝑣𝑎𝑟𝑖𝑡
+ 𝛽8 ln 𝑅𝐴𝐼𝑁𝑣𝑎𝑟𝑖𝑡

+ 𝛾1 ∑ 𝑊𝑖𝑗𝑙𝑛𝐹𝐸𝑅𝑇𝑗𝑡 +𝑁
𝑗=1

𝛾2 ∑ 𝑊𝑖𝑗𝑙𝑛𝑀𝐴𝐶𝐻𝑗𝑡 + 𝑁
𝑗=1  𝛾3 ∑ 𝑊𝑖𝑗𝑙𝑛𝐴𝐺𝑅𝐿𝑗𝑡 + 𝛾4 ∑ 𝑊𝑖𝑗𝑙𝑛𝑂𝑃𝐸𝑁𝑗𝑡 +𝑁

𝑗=1
𝑁
𝑗=1

 𝛾5 ∑ 𝑊𝑖𝑗𝑙𝑛𝑇𝐸𝑀𝑃𝑗𝑡 + 𝑁
𝑗=1 𝛾6 ∑ 𝑊𝑖𝑗𝑙𝑛𝑅𝐴𝐼𝑁𝑗𝑡 + 𝛾7 ∑ 𝑊𝑖𝑗𝑙𝑛𝑇𝐸𝑀𝑃𝑣𝑎𝑟𝑗𝑡

+𝑁
𝑗=1

𝑁
𝑗=1

  𝛾8 ∑ 𝑊𝑖𝑗𝑙𝑛𝑅𝐴𝐼𝑁𝑗𝑡 + 𝑁
𝑗=1  𝜀𝑖𝑡      (4.4) 

 

FP represents the food production (wheat, rice, and maize production), FERT fertilizer 

usage; 𝑀𝐴𝐶𝐻 is the machinery used for agriculture production; 𝐴𝐺𝑅𝐿 shows employment 

in the agriculture sector under agriculture; 𝑂𝑃𝐸𝑁 measures the ratio of trade volume 
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(exports + imports) of each crop to country's GDP; 𝑊𝑖𝑗 non-stochastic, non-zero, and 

exogenously determined weight matrix used to explain the nature of the spatial relationship 

between country i and j. We used the inverse square distance weight matrix that shows as 

distance increases. The spillover effects tend to decay.  

 

𝑤𝑖𝑗 = {

1

𝑑𝑖𝑗
     𝑖 ≠ 𝑗

0        𝑖 = 𝑗       

 

 

𝑑𝑖𝑗  represents the distance between location i and j measured by their respective latitude 

and longitudes. At the same time, n indicates the number of countries. Matrix is row 

standardized as per standard procedure, and a weighted average of nearby locations 

calculates the spatial value of variables.  

 

In matrix notation, it can be written as. 

 

𝐹𝑃 =  𝜌𝑊𝑌 + 𝑋𝛽 + 𝑋𝑊𝛾 + 𝜇𝐼𝑛 + 𝜀     

 (4.5) 

 

Y is the (𝑁 × 1) vector of crop yield for each country i (i= 1,2,…,n); 𝜌 is the scalar spatial 

lag dependent variable coefficient, W is the weight matrix of (𝑁 × 𝑁) dimension; X is 

(𝑁 × 𝐾) vector of explanatory variables, 𝛽 and 𝛾 are the unknown coefficient vector 

(𝐾 × 1) of fixed X that is to be estimated. 𝜇 represents the individual fixed effect while 𝜀 

is the random error term. WY and WX capture the spatial endogenous and exogenous 

interaction effects. 

 

As highlighted earlier, the coefficients of the SDM model include both countries' own 

explanatory variable effect and feedback from neighboring countries and its repercussions 

on the individual country. SDM calculates average direct, indirect, and total effects for 

marginal effects. Direct effects measure changes in explanatory variables of country i. 

Indirect effect measures changes in explanatory variables of other locations j that affects 
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the dependent variable of country 𝑖. Total impact combines both direct and indirect effects. 

Equation 4.5 can be rewritten as: 

 

(𝐼𝑛 − 𝜌)𝐹𝑃 = 𝑋𝛽 + 𝑋𝑊𝛾 + 𝐼𝑛𝜇 + 𝜀      (4.6) 

𝐹𝑃 = ∑ 𝑄𝑟(𝑊)𝑘
𝑟=1 𝑋𝑟 + 𝑇(𝑊)𝐼𝑛𝜇 + 𝑇(𝑊)𝜀    

 (4.7) 

𝑄𝑟(𝑊) = 𝑇(𝑊)(𝐼𝑛𝛽𝑟 + 𝑊𝜃𝑟) 𝑎𝑛𝑑 𝑇(𝑊) = (𝐼𝑛 −  𝜌𝑊)−1   (4.8) 

 

Equation (4.7) can be rewritten as: 

[

𝐹𝑃1

𝐹𝑃2

⋮
𝐹𝑃𝑛

] = ∑ [

𝑄𝑟 (𝑊)11
𝑄𝑟(𝑤)12 … 𝑄𝑟(𝑤)1𝑛

𝑄𝑟(𝑤)21 𝑄𝑟(𝑤)22 ⋯ 𝑄𝑟(𝑤)2𝑛

⋮ ⋮ ⋱ ⋮
𝑄𝑟(𝑤)𝑛1 𝑄𝑟(𝑤)𝑛2 ⋯ 𝑄𝑟(𝑤)𝑛𝑛

] [

𝑋1𝑟

𝑋2𝑟

⋮
𝑋𝑛𝑟

]𝑘
𝑟=1 + v (w)ε 

 (4.9) 

  

Direct effects are calculated by the summation of the diagonal terms of 𝑄𝑟(𝑊) matrix, 

while total impact can be calculated by the average of the sum of the rows or columns of 

the 𝑄𝑟(𝑊) matrix. The difference between total and direct is used to calculate the indirect 

effect. 

 

 �̅�(𝑟)𝑡𝑜𝑡𝑎𝑙 =  𝑛−1𝐼𝑛𝑆𝑟(w)       (4.10) 

 

Direct impact    

 

�̅�(𝑟)𝑑𝑖𝑟𝑒𝑐𝑡 =  𝑛−1𝑡𝑟(𝑆𝑟(w))       (4.11) 

 

Indirect impact/spillover  

 

�̅�(𝑟)𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟 =  �̅�(𝑟)𝑡𝑜𝑡𝑎𝑙 −  �̅�(𝑟)𝑑𝑖𝑟𝑒𝑐𝑡     (4.12) 

4.5. Data Description 

To assess the spatial impact of climate change on food production, we have used crop 

production of cereals, i.e., wheat, rice, and maize, as a proxy for food production. 
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Following Zhang et al. (2017) we have weighed crop production by agricultural land in 

each country to capture the productivity of crops. The data on crop production was taken 

from the Food and Agriculture Organization (FAO). For climatic variables, we have 

employed annual average temperature and annual average rainfall. Climate variability is 

measured by the average annual temperature (rainfall) difference from its long-run mean 

of 30 years. The period considered in the analysis is 1995 to 2020. Countries considered in 

each crop type are given in Appendix D1, D2, and D3. For wheat, we have analyzed 114 

wheat-producing countries, 93 rice-producing countries, and 126 maize-producing 

countries as per the FAO database. Other explanatory variables in the analysis include 

agriculture inputs such as fertilizer, machinery, agriculture labor, and crop-wise trade 

openness. Climate variables include temperature, rainfall, and temperature and rainfall 

variability. (Detail definitions of variables, their unit of measurement, and data sources are 

mentioned in Appendix C1). 

 

4.6. Empirical results 

4.6.1 Spatial Autocorrelation Test 

The spatial autocorrelation in crop production is examined by applying the global Moran-

I test. A positive value of Moran statistics indicates a spatial relationship between sample 

countries. This indicates that countries with the same crop production level are clustered 

geographically, while a negative value of a Moran test shows that high values are spatially 

linked to low values and no spatial relationship within countries considered. In the present 

analysis, we have performed the Moran test on wheat, rice, and maize production for 

sample countries from 1995 to 2020 (See Table 4.1). In the case of all three crops, we found 

a positive and significant spatial relationship between cereal production worldwide. 
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Table 4.1: Moran-I Test of Spatial Autocorrelation 

Year 

Wheat production per 

agriculture land 

Rice production per 

agriculture land 

Maize production per 

agriculture land 

Moran's I Z Moran's I Z Moran's I Z 

1995 0.297*** 20.933 0.216*** 11.567 0.117*** 8.676 

1996 0.287*** 20.274 0.207*** 11.1 0.116*** 8.621 

1997 0.299*** 21.123 0.206*** 11.047 0.130*** 9.63 

1998 0.298*** 21.05 0.207*** 11.102 0.119*** 8.824 

1999 0.292*** 20.604 0.205*** 10.972 0.125*** 9.262 

2000 0.295*** 20.797 0.207*** 11.075 0.121*** 9.002 

2001 0.297*** 20.92 0.205*** 10.963 0.135*** 9.947 

2002 0.299*** 21.073 0.202*** 10.822 0.146*** 10.741 

2003 0.281*** 19.824 0.203*** 10.878 0.119*** 8.814 

2004 0.299*** 21.082 0.202*** 10.815 0.144*** 10.6 

2005 0.291*** 20.518 0.204*** 10.948 0.147*** 10.796 

2006 0.285*** 20.162 0.202*** 10.801 0.132*** 9.723 

2007 0.288*** 20.302 0.203*** 10.863 0.120*** 8.939 

2008 0.299*** 21.109 0.198*** 10.599 0.137*** 10.13 

2009 0.293*** 20.657 0.193*** 10.362 0.133*** 9.839 

2010 0.287*** 20.258 0.191*** 10.272 0.127*** 9.385 

2011 0.290*** 20.472 0.189*** 10.171 0.142*** 10.442 

2012 0.284*** 20.039 0.191*** 10.274 0.126*** 9.328 

2013 0.289*** 20.368 0.188*** 10.125 0.122*** 9.038 

2014 0.293*** 20.641 0.189*** 10.169 0.127*** 9.413 

2015 0.295*** 20.784 0.187*** 10.056 0.113*** 8.414 

2016 0.294*** 20.766 0.181*** 9.727 0.134*** 9.881 

2017 0.291*** 20.546 0.184*** 9.917 0.118*** 8.72 

2018 0.283*** 19.952 0.180*** 9.695 0.127*** 9.359 

2019 0.288*** 20.319 0.168*** 9.075 0.121*** 8.998 

2020 0.284*** 20.021 0.170*** 9.189 0.124*** 9.202 

N 114 93 126 

 

 

Considering the limitation34 of the global Moran-I test, we have analyzed the relationship 

graphically through a scatter plot. The top right quadrant shows that countries with high 

crop production are clustered around neighbors also experiencing better production, while 

the top left quadrant indicates that countries with low crop production are surrounded by 

neighbors experiencing high crop production. The bottom left quadrant shows that 

countries with low average crop production accompany low crop-producing countries, 

while the bottom right quadrant countries are those with high production levels surrounded 

 
34 As Moran I tests the presence of overall spatial autocorrelation. Negative and positive value of index for 

some countries might cancel each other and value of index turns out to be zero, indicating no spatial auto 

correlation.  
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by countries with low production, indicating the non-existence of spatial autocorrelation. I 

and III quadrants show positive spatial autocorrelation. The II and IV quadrants present 

negative spatial autocorrelation or spatial dispersion. 

 

We have plotted the crop production (wheat, rice, and maize) for the years 1995, 2005, 

2015, and 2020 to examine the changes in crop production spatial dependence in the past 

two decades. As most of the points in figure 4.1 lie in the I and III quadrant, positive spatial 

autocorrelation was observed graphically in 1995. High-quantity wheat-producing 

countries are surrounded by neighbors having high average wheat production. 

 

In 2005, most values lay in the I and III quadrant. Moran-I and p-value indicate positive 

spatial autocorrelation. High wheat-producing countries are clustered around neighbors 

with high average wheat production values. 

 

In 2015, most values lay in the I and III quadrants. Moran-I and p-value indicate positive 

spatial autocorrelation. High wheat-producing countries are clustered around neighbors 

with high average wheat production values. 

 

In 2020, most of the values lie in Moran-I's I and III quadrants, and the p-value significance 

level indicates positive spatial autocorrelation. High-crop-producing countries are 

clustered around neighbors with high average wheat production values. 
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Figure 4.1: Moran I Scatter Plot for the Log of Wheat Production per Agriculture 

Land for Various Spatial Lags 

1995 

 
2005 
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2015 

 
 

 

 2020 

 
In the case of rice production in 1995, most of the values lie in the I and III quadrants, and 

the p-value of the Moran-I test is less than 0.1, indicating positive spatial autocorrelation. 

Countries producing more rice are clustered around neighbors having high average rice 

production (and vice versa).  
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In the case of rice production in 2005 and 2015, most of the values lie in the III quadrant 

showing that countries with low rice production are clustered around neighbors with low 

average rice production. Some countries lie in the first quadrant indicating that neighbors 

surround high rice-producing countries with high rice production on average. 

 

In 2020, although most of the values lie in the III quadrants, the value of Moran-I statistics 

is decreasing. Countries with low rice yields are clustered around neighbors with low 

average rice production (and vice versa). The pattern of spatial dependence has remained 

the same for rice-producing countries for the past two and half decades. 

 

Figure 4.2: Moran I Scatter Plot for the log of Rice Production per Agriculture Land 

for Various Spatial Lags 

1995 
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2005 

 
2015 
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2020 

 
 

In the case of maize production across sample countries in 1995, most of the values lie in 

the I and III quadrants, and the p-value of the Moran-I test is less than 0.1, indicating 

positive spatial autocorrelation. Countries with high maize production cluster around 

neighbors with high average maize production (and vice versa).  

 

In 2005 and 2015, most sample countries lie in the I and III quadrants, indicating positive 

spatial autocorrelation at a 1% significance level. In 2020, most of the values lie in the I 

and III quadrants indicating positive spatial autocorrelation. Countries with high maize 

production are clustered around neighbors with high average maize value (and vice versa). 
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Figure 4.3: Moran-I Scatter Plot for the log of Maize Production per Agriculture 

Land for Various Spatial Lags 

1995 

 
 

2005 
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2015 

 
  

 

2020 
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To evaluate the spatial distribution of crop production, we have averaged the data for 

wheat, rice, and maize production per agricultural land from 1995 to 2020. The legend in 

each case indicates class breaks which show quantiles of the distribution of crop 

production. 

 

Spatial distribution in the case of wheat production shows that countries with similar 

production per agricultural land are in close proximity to each other. European countries 

and Canada are more productive in producing wheat, followed by Asia. Africa and some 

parts of Latin American countries lie in the lower quantiles in the case of wheat. For rice 

production per agricultural land, Pakistan, India, China, Bangladesh, and East Asian 

economies are more productive in producing rice crops as they lie in the upper quantile and 

are in close proximity.  Central Asian and African economies have low productivity in 

producing rice.  

 

For maize, the USA, China, East Asian countries, and part of Europe are more productive 

than the rest of the world as they lie in the upper quantile. Latin American countries, 

including Mexico and Canada, are in the middle quintile of the countries producing maize. 

Central Asia, parts of the Middle East, and Australia have low productivity in producing 

maize. 
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Figure 4.4a: Spatial Distribution of Wheat Production per Agriculture Land (1995) 

 

 
Source: Author's calculation from FAO database 
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Figure 4.4b: Spatial Distribution of Wheat Production per Agriculture Land (2005) 

 

 
Source: Author's calculation from FAO database 
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Figure 4.4a: Spatial Distribution of Wheat Production per Agriculture Land (2020) 

Source: Author's calculation from FAO database 
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Figure 4.5a: Spatial Distribution of Rice Production per Agriculture Land (1995) 

 

 
Source: Author's work from FAO database 
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Figure 4.5b: Spatial Distribution of Rice Production per Agriculture Land (2005) 

 

Source: Author's work from FAO database 
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Figure 4.5c: Spatial Distribution of Rice Production per Agriculture Land (2020) 

 

 
Source: Author's calculation from FAO database 
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Figure 4.6a: Spatial Distribution of Maize Production per Agriculture Land (1995) 

 

 
Source: Author's work from FAO database 
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Figure 4.6b: Spatial Distribution of Maize Production per Agriculture Land (2005) 

 
Source: Author's calculation from FAO database 
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Figure 4.6c: Spatial Distribution of Maize Production per Agriculture Land (2020) 

 

 
Source: Author's calculation from FAO database 
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4.6.2 Cross-sectional Dependence Test 

To further examine the presence of dependence across countries without considering the 

spatial weight matrix, we have applied the cross-sectional dependence test (CD). All the 

variables included rejects the null hypothesis of no cross-sectional dependence at a 1% 

significance level. 

 

Table 4.2 Cross-Sectional Dependence Test 

Variables 
CD test 

Wheat Rice Maize 

𝑊𝐻𝐸𝐴𝑇 35.92***     

𝑅𝐼𝐶𝐸   82.246***   

𝑀𝐴𝐼𝑍𝐸     132.141*** 

𝐹𝐸𝑅𝑇 44.085*** 63.633*** 48.266*** 

𝑀𝐴𝐶𝐻 16.699*** 179.4*** 47.458*** 

𝐴𝐺𝑅𝐿 2.891*** 133.768*** 2.507** 

𝑂𝑃𝐸𝑁 114.348*** 10.771*** 122.523*** 

𝑇𝐸𝑀𝑃 119.858*** 126.43*** 152.438*** 

𝑉𝑇𝐸𝑀𝑃 106.524*** 115.684*** 139.495*** 

𝑅𝐴𝐼𝑁 8.446*** 10.934*** 9.34*** 

𝑉𝑅𝐴𝐼𝑁 41.569*** 16.758*** 23.9*** 
Notes: Under the null hypothesis of cross-section independence, CD ~ N (0, 1). ***, **, * indicates the significance level 

at 1%, 5% and 10% respectively. All variables are taken in log form. 

 

4.6.3 Spatial Econometric Regression for Food Production 

Following Elhorst and Vega (2013), we first test for the non-spatial panel model against 

the spatial model (spatial lag and spatial error models). The LM diagnostics test, i.e., LM 

lag and LM error test in wheat, rice, and maize production, significantly reject the presence 

of no spatial lagged dependent variable and reject the null hypothesis of no spatial auto 

correlated error term (see table; 4.4). Both Robust LM lag and Robust error test reject the 

null hypothesis, but the test value of robust LM error is higher than LM lag; therefore, in 

the case of wheat, rice, and maize yield spatial error test statistic strengthen the existence 

of spatial effects in the data as highlighted by Moran-I test.  

 

Estimation results of non-spatial panel models are shown in Table 4.3. Alternative model 

specifications, such as pooled OLS, fixed effect, and random effect models, are presented. 

All model specifications from (1) – (9) Hausman test suggest a fixed-effect model for non-

spatial factors affecting crop production. 
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Table 4.3: Estimation Results of Non-Spatial Models  

Variables 

Wheat production per agriculture 

land 
Rice production per agriculture land 

Maize production per agriculture 

land 

OLS  

(1) 

Fixed 

Effect  

(2) 

Random 

Effect 

 (3) 

OLS 

 (4) 

Fixed 

Effect 

(5) 

Random 

Effect  

(6) 

OLS 

 (7) 

Fixed 

Effect 

 (8) 

Random 

Effect  

(9) 

𝑭𝑬𝑹𝑻 
-0.0145 0.0576*** 0.0641***  0.148*** 0.107*** 0.108*** 0.138*** 0.122*** 0.123*** 

(-22.85) (6.91) (7.64) (13.37) (16.11) (16.18) (14.70) (14.19) (14.46) 

𝑴𝑨𝑪𝑯 
0.385*** -0.0584 0.0941  14.38*** -3.116 -1.857 -0.249 2.757*** 2.613*** 

(8.98) (-0.34) (0.55) (5.26) (-1.08) (-0.66) (-1.61) (12.85) (12.61) 

𝑨𝑮𝑹𝑳 
6.151*** -0.573 -0.537 3.146*** 1.050*** 1.193*** 5.764*** -1.563* -1.027 

(12.51) (-0.83) (-0.80) (27.49) (7.32) (8.53) (11.96) (-1.78) (-1.24) 

𝑶𝑷𝑬𝑵 
0.116 0.257*** 0.249*** 0.591 0.148 0.146 1.081*** 0.619*** 0.621*** 

(1.33) (8.3) (7.87) (1.17) (1.24) (1.22) (9.08) (12.720) (12.65) 

𝑻𝑬𝑴𝑷 
-2.058*** 0.601** -1.101*** 1.253*** 1.218*** 1.352*** -0.664*** 2.504*** 0.551** 

(-30.95) (2) (-5.46) (12.47) (2.83) (4.35) (-9.34) (5.89) (2.26) 

𝑽𝑻𝑬𝑴𝑷 
3.531*** 0.267** 0.779*** -2.185*** -0.0837 -0.138 2.940*** -0.0825 0.493*** 

(15.28) (2.54) (9.37) (-5.24) (-0.56) (-1.12) (10.86) (-0.56) (4.52) 

𝑹𝑨𝑰𝑵 
-0.369*** 0.343*** 0.297*** 0.534*** 0.127*** 0.150*** 0.416*** 0.306*** 0.300*** 

(-11.77) (9.42) (8.34) (13.58) (3.43) (4.12) (14.61) (6.71) (6.97) 

𝑽𝑹𝑨𝑰𝑵 
0.0235 0.0301*** 0.0295*** -0.0284* -0.0142*** -0.0145*** -0.0469*** 0.00318 0.00288 

(1.62) (6.75) (6.45) (-1.83) (-3.85) (-3.91) (-3.56) (0.65) (0.59) 

𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 
-15.77*** -0.296 3.714** -42.35*** 2.44 -1.288 -20.01*** -11.55*** -7.344*** 

(-11.60) (-0.16) (2.2) (-6.44) (0.35) (-0.19) (-14.82) (-4.67) (-3.44) 

N 2756 2418 2964 

Hausman 

P-Value 

149.81 

0.0000 

30.01 

0.0000 

70.74  

0.0000 

Note: ***, **, * indicates the significance level at 1%, 5%, and 10%, respectively. 
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Table 4.4: Spatial Diagnostics  

Diagnostics Wheat  Rice  Maize  

Spatial error 

Moran’s I 60.125*** 38.117*** 48.913*** 

Lagrange multiplier 3371.781*** 1365.999*** 2270.941*** 

Robust Lagrange multiplier 2540.692*** 665.498*** 852.713*** 

Spatial lag 

Lagrange multiplier 987.557*** 704.488*** 1420.513*** 

Robust Lagrange multiplier 66.467*** 3.987** 2.285 

Note: ***, **, * indicates the significance level at 1%, 5% and 10%, respectively. 

 

As the non-spatial panel model is rejected in the presence of spatial panel models in all 

three crop production considered, the study chooses between alternative spatial panel 

models that best describe the data. We first estimate the spatial Durbin fixed (SDM-FE) 

and random effect model (SDM-RE) for wheat, rice, and maize production. Hausman test 

is employed to choose between fixed and random effect models. Results show that SDM-

FE is more applicable in the case of wheat and maize, while SDM RE is the best fit in the 

case of rice (see Table 4.5).  

 

Following Belotti et al. (2017), we test whether SDM is the best representative of our data. 

We test two hypotheses to identify if SDM can be reduced to SLM or SEM. The study 

employs the Wald test in all three crop productions to conclude whether SDM can be 

reduced to SLM and if SDM can be simplified to SEM. As SAC35 and SDM are non-nested 

models, AIC SBC information criteria are used to choose between SAC and SDM models. 

 

In wheat production, the hypothesis that SDM can be simplified to SLM is significantly 

rejected at 5 percent significance (Wald; 19.65, p=0.0118), while the hypothesis that SDM 

can be reduced to SEM is also rejected at 1 percent (Wald; 33.43; p-value 0.001). To choose 

between SAC and SDM models, we applied Akaike’s Information Criterion, which 

revealed that SDM has a lower AIC than SAC. Thus, the SDM model is applied in the case 

of wheat production.  

 

 
35 Spatial Autoregressive model with auto regressive disturbances, SAC. 
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In the case of rice production, the Wald test (Wald; 62.59; p-value 0.0000) rejects the null 

hypothesis that SDM can be simplified to SLM at a 1% significance level. Wald test (Wald; 

77.37; p-value 0.0000) also rejects the null hypothesis that SDM can be reduced to SEM. 

Thus, the SDM model is applied in the case of rice. 

 

In the case of maize production, SDM is preferred over SLM (Wald; 32.20, p-value 

0.0001), and Wald tests (Wald; 71.58; p-value 0.0000) also reject the hypothesis that SDM 

can be reduced to SEM. In the case of maize, both AIC and SBC for SDM are lower than 

SAC. Thus, we employed the SDM model for maize production. 

 

4.6.3.1 Spatial Econometric Regression Results for Food Production-Wheat 

SDM-FE and SDM RE are estimated in wheat production per agricultural land, while the 

Hausman test preferred SDM-FE. Results are shown in Table 4.5. Fertilizer, labor, trade 

openness, rainfall, and variability are major input factors affecting wheat production in 

countries considered in the analysis.  

 

The spatial autocorrelation coefficient indicates that high wheat production in a 

neighboring country has a positive spillover effect in the home country. Countries with 

high wheat per land production are clustered around countries with similar production 

patterns (and vice versa). The coefficients of the SDM model don’t represent marginal 

effects. They include the country’s explanatory variable effect, feedback from neighboring 

countries, and its repercussions on the individual country. This can be examined as the 

coefficient of SDM are different from the direct effect coefficients. Therefore, the study 

examines the direct, indirect, and total effects of wheat production 

 

The direct effect in the case of wheat indicates that increased fertilizer use increases wheat 

production by 0.05 percent. In contrast, increasing labor will decrease wheat production by 

0.2 percent. Marginal productivity decreases as more labor inputs are employed per unit of 

land. The agriculture sector usually employs unskilled labor with low adaptation to 

technological and farm management skills; thus, increased labor reduces the country’s 

wheat production. These results are in line with Zouabi and Peridy (2015). 
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Trade openness in wheat exports and imports positively impacts the country’s wheat 

production. For climate variables, average annual rainfall and its variability have a 

significant positive relationship with wheat production. This shows a positive impact if 

rainfall is higher or lower than expected. Major wheat-producing countries that makeup 70 

percent of total wheat production are in temperate and subtropical zones (see figure; 4.5), 

mostly dependent on precipitation and irrigation systems (Asseng et al., 2015). An increase 

in rainfall will create a conducive environment for the wheat crop.  

 

The indirect effect shows neighborhood and spillover effects. The study found that an 

increase in trade openness and fertilizer usage of neighboring countries impact domestic 

countries’ wheat production. While the change in the expected temperature measured by 

temperature variability of the nearby country negatively affects the domestic country’s 

wheat production. If neighbors surround a country with an open trade policy for the wheat 

crop, it will encourage farmers to grow more wheat because of increased market access 

and size. An increase in temperature variability in one region will decrease wheat 

production in the neighboring regions. Countries in nearby locations face the same 

geography and environmental inputs. Uncertain increase or decrease in temperature 

negatively affects nearby countries. Countries that are rain-fed or irrigated are spatially 

connected. Also, information sharing through increased technology access between 

countries enables farmers to take proactive measures to benefit from increased rainfall 

variability.  

 

There is a negative spillover effect of increased use of labor by neighboring countries on 

individual countries’ wheat production. If the labor supply is mobile across countries, 

increasing labor in the agriculture sector in one country will decrease the labor availability 

for other countries. This can be true in the case of the EU, US, Mexico, and Canada, where 

agriculture labor is mobile. However, in Asia, where agriculture labor is not mobile, the 

geographical, economic, and skill development of agriculture labor is the same, and the 

farmer is strongly likely to imitate the practices being followed by neighboring countries. 

If neighboring countries employ more labor, domestic farmers also follow the same pattern 
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and employ more labor. This might end up reducing their wheat output as well as labor 

productivity decrease with additional labor. The total effect indicates that labor 

productivity, trade openness, and annual average temperature and rainfall are the key 

factors determining wheat production. We have also evaluated the impact of non-climatic 

and climatic factors on wheat yield (for details, see Appendix C2 and C3). 

 

4.6.3.2 Spatial Econometric Regression Results for Food Production-Rice 

In case of rice production per agricultural land, the Hausman test preferred SDM-RE. 

Results in the Table 4.5 indicates that the key inputs affecting rice producing countries 

include fertilizer usage, agriculture sector labor, annual average temperature, temperature, 

and rainfall variability from the long-run mean. Positive sign of spatial autocorrelation 

coefficient shows that high rice producing countries are clustered around countries with 

similar production patterns (and vice versa).  

 

The direct effect shows that inputs such as fertilizer and climate factors such as 

temperature, rainfall, and rainfall variability significantly affect domestic country rice 

production. Increasing fertilizer usage by one unit increases rice production by 0.05 

percent. An increase in the annual average temperature increases rice production by 1.4 

percent. However, temperature variability has a negative impact on rice production per 

land area. This shows that uncertainty created by the temperature movement means the cost 

of reducing rice production by 0.5 percent. Annual average rainfall has a positive but 

insignificant impact. Rainfall variability decreases rice production by 0.001 percent. 

Uncertainty created by climate variables negatively affects rice production 

 

For indirect effects in the case of rice production, the use of mechanization, increase in 

annual average rainfall, and its variability are the key factors having spillover effects on 

the home country's rice production. Increasing mechanization by nearby countries 

decreases rice production in the home country. As the production will be more efficient by 

neighbors, the farmers in the home country will shift to other crops that might end up 

decreasing their rice production. Secondly, most of the agricultural machinery is imported 

from other regions. The increased use of agriculture machinery might create competition 
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among countries acquiring agriculture machinery. An increase in annual rainfall in a 

neighboring country positively affects rice production in the home country. Rice is a water-

intensive crop that requires consistent water intake. Rainfall variability of nearby locations 

or countries will deter rice cultivation in the home country as climate factors are 

homogenous across nearby locations. The total effect indicates that fertilizer, 

mechanization, rainfall, and its variability are the key determinants of rice production in 

the countries considered in the analysis. We have also evaluated the impact of non-climatic 

and climatic factors on rice yield (for details, see Appendix C2 and C3). 

 

4.6.3.3 Spatial Econometric Regression Results for Food Production-Maize 

SDM-FE in the Table 4.5 indicates that fertilizers, mechanization, agriculture labor, trade 

openness, annual average temperature, annual average rainfall, and their variability are the 

key factors affecting maize producing countries. The spatial autocorrelation coefficient is 

positive and reflects that countries will similar pattern of production are clustered around 

each other.   

 

The direct effect of maize production indicates that increased fertilizer use increases maize 

production by 0.06 percent. Fertilizer is an important input that provides resilience against 

changing climate conditions. It is also used to access adaptation measures adopted by 

countries to overcome the negative impact of climate change. The increased use of 

mechanization in maize cultivation increases maize production by 0.3 percent. At the same 

time, an increase in labor employment in the agriculture sector will decrease maize 

production by 0.3 percent. Marginal productivity decreases as more labor inputs are 

employed. Trade openness in maize exports and imports positively impacts the country's 

maize production. An open export policy for maize expands the market for farmers, while 

an open import policy also creates healthy competition for domestic farmers and low prices 

of maize to consumers. For climate variables, annual average temperature and rainfall 

increase maize production per hectare by 2.6 and 0.2 percent, respectively. Annual average 

temperature and precipitation are known to the farmers at the time of cultivation of crops; 

however, variability in terms of temperature deviation and precipitation from their long-
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run mean negatively affects maize production by 0.9 and 0.01 percent, respectively (Moore 

& Lobell, 2014). 

 

For spillover effects, increased fertilizer use, mechanization, and trade openness in the 

neighboring country promote maize production in the home country. A country surrounded 

by neighbors with an open trade policy for maize has a positive spillover effect on its 

production. As the market size of maize for domestic farmers increase. In addition, the 

import of maize tends to equalize maize prices to international price levels that benefit both 

the growers and consumers. Climatic variables have no spillover effect in the case of maize 

crops. An increase in labor in neighboring countries' maize production has a profound 

positive impact on maize production in the home country. This shows that labor sharing 

and coordination efforts among maize growers are also made. The total effect indicates that 

fertilizer, mechanization, and trade openness are the key factors determining maize 

production. We have also evaluated the impact of non-climatic and climatic factors on 

maize yield (for details, see Appendix C2 and C3).
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Table 4.5: Estimation Results of Spatial Durbin Model – Food Production 

Variables 

Wheat Production per Agriculture land Rice Production per Agriculture land Maize Production per Agriculture land 

SDM-FE SDM-RE SDM-FE SDM-RE SDM-FE SDM-RE 

 Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value 

𝜌 0.300*** (4.26) 0.311*** (4.44) 0.441*** (7.6) 0.486*** (8.6) 0.522*** (9.84) 0.550*** (10.63) 

𝐹𝐸𝑅𝑇 0.0535*** (6.21) 0.0568*** (6.49) 0.0483*** (7.66) 0.0478*** (7.45) 0.0567*** (7.29) 0.0569*** (7.21) 

𝑀𝐴𝐶𝐻 -0.0267 (-1.26) 0.00948 (0.45) -0.00775 (-0.34) -0.00266 (-0.12) 0.284*** (12.21) 0.265*** (11.77) 

𝐴𝐺𝑅𝐿 -0.170*** (-6.82) -0.188*** (-7.73) 0.159*** (8.74) 0.155*** (8.55) -0.271*** (-8.39) -0.232*** (-7.48) 

𝑂𝑃𝐸𝑁 0.145*** (4.64) 0.143*** (4.48) 0.0937 (0.88) 0.101 (0.94) 0.234*** (5.22) 0.242*** (5.29) 

𝑇𝐸𝑀𝑃 0.362 (1.2) -0.575** (-2.25) 1.061*** (2.64) 1.414*** (4.06) 2.621*** (6.37) 1.716*** (5.42) 

𝑉𝑇𝐸𝑀𝑃 0.112 (1.02) 0.401*** (4.02) -0.446*** (-2.82) -0.551*** (-3.77) -0.879*** (-4.93) -0.582*** (-3.75) 

𝑅𝐴𝐼𝑁 0.326*** (9.3) 0.313*** (8.92) 0.0219 (0.6) 0.037 (1.01) 0.215*** (4.64) 0.234*** (5.09) 

𝑉𝑅𝐴𝐼𝑁 0.0179*** (4.06) 0.0177*** (3.93) -0.00674** (-2.04) -0.00634* (-1.89) -0.0134*** (-3.06) -0.0136*** (-3.05) 

𝑊 ∗ 𝐹𝐸𝑅𝑇 -0.131** (-2.55) -0.145*** (-2.79) -0.0221 (-0.77) -0.0261 (-0.91) 0.0715** (2.07) 0.0663* (1.9) 

𝑊 ∗ 𝑀𝐴𝐶𝐻 0.0228 (0.11) 0.0901 (0.46) -0.629*** (-3.30) -0.466** (-2.48) 0.215* (1.83) 0.200* (1.85) 

𝑊 ∗ 𝐴𝐺𝑅𝐿 -0.660*** (-3.77) -0.593*** (-3.40) 0.00381 (0.04) 0.0406 (0.47) 0.365*** (2.85) 0.270** (2.21) 

𝑊 ∗ 𝑂𝑃𝐸𝑁 0.224* (1.88) 0.225* (1.85) -0.39 (-0.87) -0.359 (-0.79) 0.380** (2.12) 0.339* (1.89) 

𝑊 ∗ 𝑇𝐸𝑀𝑃 1.319 (1.46) 1.795** (2.06) -1.459 (-0.82) -1.481 (-1.04) -1.422 (-1.11) -1.265 (-1.25) 

𝑊 ∗ 𝑉𝑇𝐸𝑀𝑃 -0.616* (-1.90) -0.766** (-2.38) 0.0381 (0.07) 0.128 (0.28) 0.71 (1.64) 0.548 (1.44) 

𝑊 ∗ 𝑅𝐴𝐼𝑁 0.0702 (0.38) 0.0464 (0.25) 0.302** (2.3) 0.305** (2.36) -0.0661 (-0.40) -0.125 (-0.79) 

𝑊 ∗ 𝑉𝑅𝐴𝐼𝑁 -0.00725 (-0.32) -0.0068 (-0.30) -0.137*** (-8.48) -0.134*** (-8.16) 0.0059 (0.25) 0.00862 (0.36) 

intercept    2.531 (0.8)    2.287 (0.49)    -6.544** (-2.32) 

Hausman 

P-Value 
53.71 

0.0004 

23.83 

0.1240 

129.03 

0.0000 

Source: Author’s calculation based on FAO database
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Table 4.6: Spatial Direct, Indirect and Total effect of SDM model- Food Production 

Variables 

Wheat Production per Agriculture 

land 

Rice Production per Agriculture 

land 

Maize Production per Agriculture 

land 

Direct 

effect 

Indirect 

effect 

Total 

effect 

Direct 

effect 

Indirect 

effect 

Total 

effect 

Direct 

effect 

Indirect 

effect 

Total 

effect 
𝐹𝐸𝑅𝑇 0.0530*** -0.159** -0.106 0.0480*** -0.00365 0.0443 0.0589*** 0.216*** 0.275*** 

(5.99) (-2.14) (-1.42) (7.3) (-0.07) (0.79) (7.37) (3.13) (3.94) 
𝑀𝐴𝐶𝐻 -0.0276 0.0127 -0.0149 -0.0133 -0.929*** -0.943*** 0.290*** 0.757*** 1.047*** 

(-1.33) (0.04) (-0.05) (-0.61) (-2.61) (-2.62) (13.1) (3.55) (4.97) 
𝐴𝐺𝑅𝐿 -0.173*** -1.018*** -1.191*** 0.159*** 0.212 0.370** -0.264*** 0.449* 0.185 

(-7.12) (-4.31) (-4.89) (9.05) (1.4) (2.41) (-8.58) (1.84) (0.76) 
𝑂𝑃𝐸𝑁 0.147*** 0.390** 0.537*** 0.0932 -0.686 -0.593 0.244*** 1.047*** 1.291*** 

(4.8) (2.22) (3.09) (0.89) (-0.81) (-0.70) (5.54) (3.02) (3.73) 
𝑇𝐸𝑀𝑃 0.376 1.992 2.367* 1.397*** -1.619 -0.222 2.622*** -0.202 2.42 

(1.29) (1.55) (1.84) (4.23) (-0.62) (-0.09) (6.6) (-0.08) (0.99) 
𝑉𝑇𝐸𝑀𝑃 0.111 -0.817* -0.706 -0.549*** -0.295 -0.844 -0.869*** 0.525 -0.344 

(1.04) (-1.75) (-1.54) (-3.90) (-0.37) (-1.12) (-5.01) (0.63) (-0.44) 
𝑅𝐴𝐼𝑁 0.328*** 0.225 0.552** 0.0435 0.615** 0.658*** 0.216*** 0.0789 0.295 

(9.01) (0.86) (2.08) (1.17) (2.49) (2.79) (4.61) (0.25) (0.99) 
𝑉𝑅𝐴𝐼𝑁 0.0177*** -0.00423 0.0135 -0.00914*** -0.261*** -0.270*** -0.0136*** -0.00267 -0.0163 

(4.21) (-0.13) (0.42) (-2.85) (-6.76) (-6.95) (-3.32) (-0.05) (-0.33) 

Note: ***, **, * indicates the significance level at 1%, 5% and 10%, respectively. 
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4.7. Spatial Econometric Regression Results- across Regions 

4.7.1. Spatial Econometric Regression Results of Wheat Production across Regions 

In the present section, we have tested for spatial determinants of wheat production across 

Asia-Africa and Europe. Region 1 includes Asia and Africa, and region 2 includes Europe. 

The spatial autocorrelation term is positive and statistically significant, showing that a 

country's wheat production has a positive spillover effect on its neighboring countries in 

regions 1 and 2. Increase use of fertilizer increases wheat production in both regions. An 

increase in mechanization has a positive impact on region-1’s production, while it is 

insignificant in the case of region-2.  

 

African and Asian countries use traditional or less capital-intensive techniques for 

production. Increasing the use of mechanization can enhance their production. Trade 

openness has a direct detrimental effect on region-1’s agriculture production while it has a 

positive impact in the case of region-2. Asia and Africa both have a high cost of wheat 

production increased liberalization creates competition for domestic farmers. This can lead 

to a decrease the wheat production in region-1. In climatic variables, wheat production is 

positively influenced by rain in both regions, while temperature variability negatively 

affects wheat production in region-2. Most Africans and Asian countries depend on rain 

water for irrigation. An increase in rain enchases wheat production in this region. 

 

Results of the indirect effect reveal that in region-1, fertilizer, temperature, variability, and 

rainfall spillover affect neighboring countries. Region-2 wheat production is positively 

influenced by neighboring country temperature and rainfall, but their respective variability 

that causes uncertainty decreases wheat production.  
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Table 4.7: Results of Wheat production Spatial Durbin Model –across the regions 

Source: Author’s work. 

  

Variables Region 1 Region-2 

Wheat production per agriculture land 

SDM-FE SDM-RE SDM-FE SDM-RE 

𝜌 0.205** 0.269*** 0.410*** 0.416*** 

(2.24) (3.04) (4.91) (4.97) 

𝐹𝐸𝑅𝑇 0.0268** 0.0284** 0.0890*** 0.107*** 

(2.46) (2.56) (2.68) (3.26) 

𝑀𝐴𝐶𝐻 0.139*** 0.213*** -0.0378 -0.0238 

(3.23) (5.08) (-1.07) (-0.69) 

𝐴𝐺𝑅𝐿 0.00203 -0.00266 0.0958 0.0248 

(0.04) (-0.05) (1.37) (0.4) 

𝑂𝑃𝐸𝑁 -0.157*** -0.143*** 0.677*** 0.636*** 

(-3.72) (-3.32) (9.83) (9.16) 

𝑇𝐸𝑀𝑃 -3.546 -3.353** -0.208 -0.143 

(-1.48) (-2.54) (-0.43) (-0.40) 

𝑉𝑇𝐸𝑀𝑃 0.113 0.115 0.326* 0.305** 

(0.27) (0.43) (1.78) (1.97) 

𝑅𝐴𝐼𝑁 0.232*** 0.186*** 0.174** 0.168** 

(4.58) (3.63) (2.49) (2.38) 

𝑉𝑅𝐴𝐼𝑁 -0.00977 -0.0141* 0.0432*** 0.0439*** 

(-1.29) (-1.82) (5.28) (5.28) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡   -22.31   -8.151** 

  (-1.48)   (-2.09) 

𝑊 ∗ 𝐹𝐸𝑅𝑇 -0.119** -0.112** 0.215 0.243 

(-2.22) (-2.11) (1.35) (1.55) 

𝑊 ∗ 𝑀𝐴𝐶𝐻 0.0211 0.162 -0.372* -0.348 

(0.11) (0.88) (-1.65) (-1.58) 

𝑊 ∗ 𝐴𝐺𝑅𝐿 0.00505 -0.29 -0.018 0.0807 

(0.02) (-1.27) (-0.09) (0.4) 

𝑊 ∗ 𝑂𝑃𝐸𝑁 0.221 0.260* 0.00355 0.0539 

(1.57) (1.83) (0.01) (0.2) 

𝑊 ∗ 𝑇𝐸𝑀𝑃 17.62*** 10.98** 3.363*** 2.734** 

(3.04) (2.14) (2.61) (2.2) 

𝑊 ∗ 𝑉𝑇𝐸𝑀𝑃 -2.340** -1.253 -1.109*** -0.938** 

(-2.41) (-1.44) (-2.86) (-2.50) 

𝑊 ∗ 𝑅𝐴𝐼𝑁 0.21 0.0985 0.309** 0.289* 

(1.33) (0.64) (2.03) (1.88) 

𝑊 ∗ 𝑉𝑅𝐴𝐼𝑁 0.0475 0.0239 -0.198*** -0.191*** 

(1.16) (0.59) (-3.88) (-3.70) 

Hausman 

P-Value 

38.56 

0.0021 

65.27 

0.0000 
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Table 4.8: Spatial Direct, Indirect and Total effect of Wheat Production SDM model- 

across the Regions 

Wheat production per agriculture land 

Variables 

 Region 1 Region2 

Direct Effect Indirect effect Total effect Direct Effect Indirect effect Total effect 

SDM-FE SDM-FE SDM-FE SDM-FE SDM-FE SDM-FE 

𝐹𝐸𝑅𝑇 0.026** -0.136** -0.11 0.098*** 0.449 0.547* 

(2.29) (-2.01) (-1.55) (2.79) (1.64) (1.92) 

𝑀𝐴𝐶𝐻 0.138*** 0.053 0.19 -0.050 -0.65 -0.7 

(3.26) (0.21) (0.73) (-1.35) (-1.58) (-1.62) 

𝐴𝐺𝑅𝐿 0.007 -0.017 -0.010 0.104 0.040 0.144 

(0.13) (-0.06) (-0.03) (1.54) (0.12) (0.4) 

𝑂𝑃𝐸𝑁 -0.155*** 0.248 0.093 0.687*** 0.496 1.183** 

(-3.80) (1.31) (0.48) (9.64) (1.11) (2.57) 

𝑇𝐸𝑀𝑃 -3.303 21.18*** 17.88*** -0.115 5.419*** 5.304** 

(-1.41) (2.97) (2.58) (-0.24) (2.59) (2.51) 

𝑉𝑇𝐸𝑀𝑃 0.088 -2.892** -2.804** 0.304* -1.619** -1.316** 

(0.22) (-2.39) (-2.45) (1.69) (-2.54) (-2.12) 

𝑅𝐴𝐼𝑁 0.235*** 0.323* 0.558*** 0.185*** 0.628*** 0.813*** 

(4.49) (1.72) (2.94) (2.59) (2.77) (3.57) 

𝑉𝑅𝐴𝐼𝑁 -0.009 0.057 0.047 0.038*** -0.306*** -0.269*** 

(-1.25) (1.08) (0.87) (4.56) (-3.43) (-2.92) 

Source: Author’s work. 

 

4.7.2. Spatial Econometric Regression Results of Rice production across regions 

The present section includes rice production in Asia, north and South America. We 

consider Asia as region-1 and the Americas as region 2. The spatial autocorrelation term is 

negative and significant in the case of Asia, indicating that rice production is not clustered. 

Regions surrounding countries have high rice production with low rice production. In the 

case of the Americas, high productive regions are surrounded by high rice-producing 

countries. In the case of region 1, labor productivity increases rice production as most 

countries depend on labor-intensive techniques, while it has an insignificant impact on 

region-2’s rice production. An increase in temperature is beneficial for rice production in 

both regions. However, uncertainty regarding temperature decreases rice production.  

 

Rainfall variability and increased use of labor and agriculture machinery have a positive 

spillover effect in the case of region-1, while openness exerts a negative spillover effect on 
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nearby countries. The increased use of fertilizer and rainfall variability has a spillover 

effect in the case of region-2.  

Table 4.9: Results of Rice Production Spatial Durbin Model –across the Regions 

Variables Region 1 Region 2 

Rice production per agriculture land 

SDM-FE SDM-RE SDM-FE SDM-RE 

𝜌 -0.284** -0.344** 0.200* 0.202* 

(-2.09) (-2.47) (1.8) (1.81) 

𝐹𝐸𝑅𝑇 -0.008 -0.004 0.116*** 0.111*** 

(-0.47) (-0.26) (4.91) (4.62) 

𝑀𝐴𝐶𝐻 -0.005 0.003 -0.205 -0.226* 

(-0.05) (0.04) (-1.61) (-1.83) 

𝐴𝐺𝑅𝐿 0.107*** 0.117*** 0.032 -0.021 

(3.37) (3.65) (0.46) (-0.34) 

𝑂𝑃𝐸𝑁 -0.239 -0.272 0.042 0.021 

(-0.68) (-0.76) (0.33) (0.17) 

𝑇𝐸𝑀𝑃 2.303** 2.889*** 2.896* 3.316*** 

(2.23) (4.14) (1.85) (3.11) 

𝑉𝑇𝐸𝑀𝑃 -0.758*** -0.894*** -1.225*** -1.375*** 

(-2.71) (-4.22) (-2.60) (-3.50) 

𝑅𝐴𝐼𝑁 0.063 0.097* 0.027 0.034 

(1.12) (1.68) (0.4) (0.49) 

𝑉𝑅𝐴𝐼𝑁 -0.003 -0.001 0.009 0.009 

(-0.49) (-0.24) (1.45) (1.31) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡   -0.66   3.166 

  (-0.08)     

𝑊 ∗ 𝐹𝐸𝑅𝑇 -0.059 -0.069 0.262*** 0.229** 

(-0.80) (-0.92) (2.7) (2.33) 

𝑊 ∗ 𝑀𝐴𝐶𝐻 0.723** 0.743** 0.536 0.319 

(2.4) (2.52) (1.09) (0.66) 

𝑊 ∗ 𝐴𝐺𝑅𝐿 0.548*** 0.570*** -0.042 -0.005 

(3.62) (3.79) (-0.22) (-0.03) 

𝑊 ∗ 𝑂𝑃𝐸𝑁 -4.852*** -5.043*** 0.513 0.45 

(-2.58) (-2.63) (1.26) (1.08) 

𝑊 ∗ 𝑇𝐸𝑀𝑃 1.823 1.381 -4.215 -3.824 

(0.65) (0.57) (-1.09) (-1.08) 

𝑊 ∗ 𝑉𝑇𝐸𝑀𝑃 -0.783 -0.702 1.056 0.959 

(-0.99) (-1.00) (0.93) (0.89) 

𝑊 ∗ 𝑅𝐴𝐼𝑁 0.0265 -0.015 -0.359* -0.337 

(0.17) (-0.09) (-1.74) (-1.61) 

𝑊 ∗ 𝑉𝑅𝐴𝐼𝑁 0.142*** 0.147*** -0.042 -0.044 

(5.01) (5.11) (-1.57) (-1.59) 

Hausman 

P-Value 

8.93 

0.3481 

27.32 

0.0536 

Source: Author’s work. 
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Table 4.10: Spatial Direct, Indirect and Total effect of Rice Production SDM model- 

across the Regions 

Rice production per agriculture land 

Variables 

 Region 1 Region 2 

Direct Effect Indirect effect Total effect Direct Effect Indirect effect Total effect 

SDM-FE SDM-FE SDM-FE SDM-FE SDM-FE SDM-FE 

𝐹𝐸𝑅𝑇 -0.002 -0.049 -0.051 0.122*** 0.368*** 0.490*** 

  (-0.14) (-0.85) (-0.87) (5.03) (3.04) (3.91) 

𝑀𝐴𝐶𝐻 -0.014 0.558** 0.544** -0.2 0.663 0.463 

  (-0.17) (2.43) (2.46) (-1.60) (1.04) (0.68) 

𝐴𝐺𝑅𝐿 0.111*** 0.398*** 0.509*** 0.038 -0.058 -0.020 

  (3.6) (3.71) (4.65) (0.56) (-0.24) (-0.08) 

𝑂𝑃𝐸𝑁 -0.179 -3.947*** -4.125*** 0.051 0.679 0.73 

  (-0.53) (-2.78) (-2.69) (0.42) (1.23) (1.26) 

𝑇𝐸𝑀𝑃 2.879*** 0.257 3.136* 2.824* -4.754 -1.93 

  (4.21) (0.14) (1.76) (1.87) (-1.02) (-0.39) 

𝑉𝑇𝐸𝑀𝑃 -0.877*** -0.315 -1.191** -1.187** 1.081 -0.106 

  (-4.14) (-0.62) (-2.37) (-2.57) (0.75) (-0.07) 

𝑅𝐴𝐼𝑁 0.099 -0.043 0.055 0.022 -0.453* -0.431 

  (1.64) (-0.33) (0.44) (0.31) (-1.78) (-1.64) 

𝑉𝑅𝐴𝐼𝑁 -0.004 0.113*** 0.108*** 0.009 -0.050 -0.042 

  (-0.84) (5.61) (5.33) (1.39) (-1.36) (-1.09) 

Source: Author’s work. 

 

4.7.3. Spatial Econometric Regression Results of Maize production across regions 

In the present section, we have tested for spatial determinants of maize production across 

Europe and Africa. Region 1 includes Europe, and region 2 includes Africa. The spatial 

autocorrelation term is positive and statistically significant, showing that an increase in 

maize production of a country has a positive spillover effect on its neighboring countries 

in regions 1 and 2. Increase use of fertilizer increases maize production in both regions. 

Increase mechanization has a positive impact on region-1’s production while it is 

insignificant in the case of region-2. Trade openness and labor are important determinants 

of maize production in region-1. In the case of climatic variables, average annual 

temperature, variability, and annual average rainfall determine the changes in maize 

production in Europe. In region 2, annual average rainfall positively impacts maize 

production, while its variability negatively affects maize production in region 2. Most of 

the countries in region 2 are rain-fed. Thus, uncertainty reduces maize production.  

 

Results of the indirect effect reveal no spillover effects of the determinants considered in 

region-1, while in region-2, increased use of machinery, trade openness in maize crops, 

and increased rainfall exert positive spillover on nearby countries.  
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Table 4.11: Results of Maize Production Spatial Durbin Model – across the Regions 

Variables Region 1 Region 2 

Maize production per agriculture land 

SDM-FE SDM-RE SDM-FE SDM-RE 

𝜌 0.348*** 0.323*** 0.168* 0.173* 

(3.42) (3.1) (1.65) (1.71) 

𝐹𝐸𝑅𝑇 0.101*** 0.099*** 0.023** 0.028*** 

(3.52) (3.45) (2.38) (2.74) 

𝑀𝐴𝐶𝐻 0.089* 0.051 -0.142 -0.098 

(1.78) (1.04) (-1.08) (-0.92) 

𝐴𝐺𝑅𝐿 -0.199** -0.158* -0.043 0.029 

(-2.11) (-1.96) (-0.43) (0.33) 

𝑂𝑃𝐸𝑁 0.663*** 0.676*** -0.039 -0.035 

(7.78) (7.91) (-0.55) (-0.49) 

𝑇𝐸𝑀𝑃 4.151*** 2.312*** -9.460** -2.378 

(5.7) (4.51) (-2.02) (-0.93) 

𝑉𝑇𝐸𝑀𝑃 -1.203*** -0.597** 0.406 -0.775 

(-4.24) (-2.51) (0.49) (-1.51) 

𝑅𝐴𝐼𝑁 0.296*** 0.330*** 0.300*** 0.298*** 

(2.96) (3.28) (3.67) (3.73) 

𝑉𝑅𝐴𝐼𝑁 -0.005 -0.005 -0.016* -0.019** 

(-0.44) (-0.43) (-1.87) (-2.10) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡   -6.405   -34.58 

  (-0.92)   (-1.19) 

𝑊 ∗ 𝐹𝐸𝑅𝑇 0.080 0.048 0.011 0.017 

(0.7) (0.41) (0.29) (0.44) 

𝑊 ∗ 𝑀𝐴𝐶𝐻 0.282 0.078 1.791*** 1.579*** 

(0.63) (0.19) (3.32) (3.26) 

𝑊 ∗ 𝐴𝐺𝑅𝐿 -0.033 -0.111 -0.114 -0.159 

(-0.17) (-0.58) (-0.26) (-0.39) 

𝑊 ∗ 𝑂𝑃𝐸𝑁 0.052 0.035 0.514** 0.514** 

(0.18) (0.12) (2.4) (2.35) 

𝑊 ∗ 𝑇𝐸𝑀𝑃 -3.009 0.088 13.26 10.27 

(-1.18) (0.04) (1.17) (1.11) 

𝑊 ∗ 𝑉𝑇𝐸𝑀𝑃 0.681 -0.268 -0.549 -0.119 

(1.01) (-0.42) (-0.25) (-0.06) 

𝑊 ∗ 𝑅𝐴𝐼𝑁 0.002 -0.040 0.404* 0.421* 

(0.01) (-0.22) (1.65) (1.68) 

𝑊 ∗ 𝑉𝑅𝐴𝐼𝑁 0.067 0.054 -0.055 -0.054 

(1) (0.86) (-1.55) (-1.52) 

Hausman 

P-Value 

110.02 

0.0000 

24.62 

0.1036 

Source: Author’s work. 
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Table 4.12: Spatial Direct, Indirect and Total effect of Maize Production SDM model- 

across the Regions 
Maize production per agriculture land 

Variables 

Region 1 Region 2 

Direct Effect Indirect effect Total effect Direct Effect Indirect effect Total effect 

SDM-FE SDM-FE SDM-FE SDM-FE SDM-FE SDM-FE 

𝐹𝐸𝑅𝑇 0.106*** 0.189 0.294 0.0282*** 0.0271 0.0553 

  (3.48) (1.09) (1.6) (2.74) (0.6) (1.21) 

𝑀𝐴𝐶𝐻 0.097* 0.486 0.582 -0.0812 1.831*** 1.749*** 

  (1.65) (0.67) (0.76) (-0.79) (3.12) (2.86) 

𝐴𝐺𝑅𝐿 -0.192** -0.161 -0.353 0.036 -0.15 -0.114 

  (-2.12) (-0.60) (-1.25) (0.42) (-0.30) (-0.22) 

𝑂𝑃𝐸𝑁 0.673*** 0.436 1.109*** -0.029 0.593** 0.564** 

  (7.81) (1.08) (2.65) (-0.41) (2.38) (2.2) 

𝑇𝐸𝑀𝑃 4.115*** -2.518 1.597 -2.249 10.7 8.451 

  (5.71) (-0.64) (0.39) (-0.89) (0.98) (0.74) 

𝑉𝑇𝐸𝑀𝑃 -1.189*** 0.424 -0.765 -0.762 -0.151 -0.912 

  (-4.24) (0.4) (-0.72) (-1.48) (-0.07) (-0.39) 

𝑅𝐴𝐼𝑁 0.299*** 0.157 0.456** 0.304*** 0.548* 0.852*** 

  (2.94) (0.68) (1.98) (3.68) (1.79) (2.72) 

𝑉𝑅𝐴𝐼𝑁 -0.003 0.098 0.095 -0.0199** -0.066 -0.0861* 

  (-0.30) (1.07) (1) (-2.28) (-1.56) (-1.94) 

Source: Author’s work. 

 

4.8. Conclusion 

The present section studies the responsiveness of food production (wheat, rice, and maize) 

per unit of the land area towards spatial climatic and non-climatic inputs involved in the 

production process. The key input factors examined in the analysis are fertilizers, 

mechanization per unit of agricultural land, labor per unit of agricultural land, trade 

openness, temperature, precipitation, and their respective variability calculated by 

deviation from their long-run mean. We have employed a separate analysis for each crop 

from 1995 to 2020. The non-spatial panel model is rejected in the presence of spatial panel 

models in all three crop production. Within spatial models, the SDM model fits the data 

well. Hausman test is employed to choose between fixed and random effect models. Results 

show that SDM-FE is more applicable in the case of wheat and maize, while SDM RE is 

the best fit in the case of rice. The spatial analysis measures spatial correlation coefficient, 

direct, indirect, and total effect. The spatial correlation coefficient in all three crops is 

positive and statistically significant, showing that neighbors surround high crop-producing 

countries with high crop production (and vice versa). 
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For wheat production per unit of land area, fertilizer usage, labor, trade openness for the 

wheat crop, rainfall, and its variability are major input factors affecting wheat production. 

Increased fertilizer use by the home country has a direct positive and significant impact on 

the country's wheat production, while increased fertilizer use by neighboring countries has 

a negative significant spillover effect on the domestic country's production. This is due to 

the competition and availability of input in the international market. As most of the 

countries considered are dependent on imported fertilizers. An increase in labor 

employment has a negative impact on the country's wheat production, while an increase in 

labor usage by neighboring countries negatively affects wheat production in the home 

country. Openness, i.e., free movement and access of wheat in domestic and neighboring 

countries, positively impacts wheat production in domestic countries. An increase in 

rainfall variability in one region and its neighboring countries increases wheat production 

in the domestic country.  

 

For rice production, fertilizer, agriculture labor, average annual temperature and its 

variability, and rainfall variability from the long-run mean are major input factors affecting 

rice production. Increased fertilizer use by the home country has a direct positive and 

significant impact on the country's rice production, while increased fertilizer use by 

neighboring countries has no significant spillover effect on the domestic country's 

production. Increased machinery has a negative but insignificant impact on domestic 

country rice production, while neighboring countries' increased machinery usage reduces 

rice production in the home country. Rice-producing countries mostly use labor for the 

crop sowing and harvesting process. Thus, mechanization is not helpful in rice-producing 

countries that also require labor training to operate machinery. An increase in the annual 

average temperature of the domestic country increases rice production, while an increase 

in a neighboring country's temperature has no significant spillover effect on domestic 

country rice production. An increase in temperature variability of the home country 

negatively affects domestic rice production, while neighboring countries' temperature 

variability has a negative but insignificant spillover effect. An increase in rainfall 

variability of the home country negatively affects domestic rice production, while 

neighboring countries' rainfall variability also has a negative spillover effect on domestic 
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rice production. This shows that uncertainty about the temperature and rainfall conditions 

of domestic and neighboring countries creates additional costs for domestic rice growers. 

 

Fertilizers, mechanization, agriculture labor, trade openness, annual average temperature, 

annual average rainfall, and their variability from the long-run mean are the major 

determinants of maize production. Increased use of fertilizer by the home country has a 

direct positive and significant impact on the country's maize production, while increased 

use of fertilizer by neighboring countries also has a significant positive spillover effect on 

the domestic country's production. An increase in the use of machinery has a positive 

impact on domestic country maize production, while neighboring countries' increased 

usage of machinery has a positive effect on maize production in the home country. An 

increase in labor in the home country negatively affects maize production as unskilled 

agriculture labor marginal productivity diminishes. Increasing agricultural labor by 

neighboring countries positively affects domestic maize production. Trade openness in 

home and neighboring countries positively impacts domestic maize production.  

 

Climatic variables such as temperature and rainfall of domestic countries positively affect 

maize production with no significant spillover effect on neighboring countries' climate. 

However, climate variability in terms of temperature and rainfall change in the domestic 

country negatively affects domestic production, while neighboring countries' uncertain 

climate conditions have no significant effect on maize production. 
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Chapter 5 

 

CONCLUSION & POLICY IMPLICATIONS 

 

Climate change is considered the 21st century’s biggest challenge as countries worldwide 

struggle to achieve sustainable economic growth. It has been widely discussed in 

multidisciplinary literature that artificial factors are responsible for the past century’s 

increase in global temperature. In addition, numerous studies concluded that developed 

countries that led their industrialization based on fossil fuels and transited to higher income 

levels also augmented the pace of climate change. Carbon emissions emitted in one part of 

the world are homogenously distrusted in space irrespective of the country emitting it. 

Thus, it makes global warming-driven climate change a global problem that requires global 

solutions and collaboration. Consequently, in the last decade of the 20th- century, 

international organizations were formed to increase the pace of climate adaptation and 

mitigation measures worldwide.  

 

Impact assessment studies reveal that impact of climatic change is disproportionately 

distributed over geographical space and income levels of countries. The possible impact is 

still the debate in the literature, with a greater consensus that developing countries near the 

equator are likely to bear the brunt of climate change more than developed countries 

towards the poles. Another aspect of the ecosystem and environment is that it has a public 

good nature that incurs a free rider problem. The negative externality of countries emitting 

carbon emissions and causing climate change needs to be considered in policy formation 

at regional and global levels. The spillover effect of economic activities on neighboring 

countries gives important insights that need to be addressed while outlining the global 

policy framework for climate change.  

 

Also, the existing literature takes several proxies to measure climate change, such as carbon 

emissions, sulfur dioxide, nitrogen peroxide, and other pollutants. WMO and other 

international organizations have distinguished between climate change and climate 
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variability based on the time involved in a change. Literature provides mixed evidence on 

the use of climate change and variability interchangeably.  

 

The current research systematically takes up all the issues discussed above and empirically 

tests the interplay of climatic variables with economic activities. First, the study analyzes 

climatic variability (climate anomalies) across different geographical locations, income, 

and industrialization levels of countries within specific regimes based on breakthroughs 

(Kyoto Protocol and Paris Agreement) in global climate change policies. Results show that 

warming constantly increases irrespective of the policy regime, income and 

industrialization level, and geographical location. However, the two significant climate 

change policy measures (Kyoto Protocol and Paris Agreement) have decelerated the rate 

of additional warming in the world. When countries were bifurcated according to their 

income level, results found that high income group countries experienced greater climate 

variability (temperature).  

 

Similarly, when countries are separated according to their level of industrialization, climate 

variability (temperature) in highly industrialized countries is more pronounced than in 

others. The speed of warming as calculated by percentage change between different periods 

shows that LIC’s pace of climate variability (temperature) is more as compared to other 

income levels. Also, the amount of carbon emission by LICs is the lowest among all income 

groups. Climate variability expressed by rainfall shows volatile behavior in all categories 

considered. There is no clear pattern in rainfall behavior throughout the time used in the 

analysis, thus, adding to the existing challenges. Regional results show that Europe and 

Central Asian countries are experiencing greater temperature variability, followed by the 

Middle East and North African countries, North America, Sub-Saharan Africa, South Asia, 

East Asia Pacific, Latin America, and the Caribbean. 

 

Another important aspect examined in the study is the identification of drivers of climate 

variability, change, and carbon intensity. The mitigation and adaptation process calls for a 

deeper analysis of factors responsible for climate change. Therefore, the study highlights 

both non-spatial and spatial determinants. For climate variability, we have considered panel 
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data for 116 countries from 1991 to 2018. While for climate change, we have cross-

sectional data averaged for 30 years (1989 to 2018). Results show that GDP per capita, 

energy intensity, population, industrialization, and urbanization are significant 

determinants of climate variability (temperature), while energy intensity, population size, 

and proportion of urban population spillover effect nearby countries' climate variability. 

For climate variability expressed by rainfall is affected by energy intensity, trade openness 

has a spillover effect on nearby countries' climate variability (rainfall). Carbon intensity 

over the same period is influenced by the GDP per capita, trade openness, population size, 

and urbanization, while energy intensity has a spillover effect on the carbon intensity of 

nearby countries. For climate change (temperature), population density and trade are key 

spatial determinants. 

 

Climate variables also serve as an input for various sectors, among which the agriculture 

sector is considered the most vulnerable in literature. To effectively capture the impact, the 

present study has considered the spillover effect of climatic and non-climatic variables for 

wheat, rice, and maize production per agricultural land. In the case of wheat, fertilizer, 

agriculture labor, trade openness for wheat, annual average rainfall, and its variability are 

key inputs for a country to increase its wheat production. However, the spillover effect of 

increased fertilizer usage, openness, labor, and the presence of rainfall variability in 

countries near it are important. Similarly, in the case of rice production per agricultural 

land, fertilizer, labor, temperature and its variability, and rainfall variability are key 

determinants to enhancing rice production. At the same time, the spillover effect of 

increased use of machinery, rainfall, and its variability affect the domestic country’s rice 

production. Maize production is affected by fertilizer usage, labor, machinery, openness, 

and climatic variables and their respective variability. In addition, neighboring countries' 

fertilizer labor and machinery usage also affect maize production in the home country. 

 

Industrialization policy in all income groups, especially in developing and LICs, should 

encourage sustainable industrialization by introducing good business practices and 

incentivizing those industries that use renewable energy resources. International 

agreements such as GSP plus EBA for developing and least developed countries can be 
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used as an instrument to help them adapt to climate change. Instead of making it a 

compulsory part of the agreement, which creates additional costs for developing countries, 

it should be incentivized because they may grant additional access to industries applying 

environmentally friendly technology.  

 

Results show that global collaboration in the Kyoto Protocol and the Paris Agreement has 

reduced countries' carbon emissions; consequently, climate variability has reduced in 

almost all country groups. In addition to the NDGs, there should be region-specific goals 

to achieve as countries of the same region undergo similar climatic changes. Regional 

climate change summits and good practices need to share on a common platform. This will 

create a sense of commitment and competition among countries.  

 

UNEP, WB, ADB, and other donor agencies should aid in developing and LIC that is 

majorly affected by climate change. Carbon tax being imposed by rich and high-income 

countries should be used to build the adaptive capacity of lower-income countries. 

Developed countries should invest in developing countries' renewable energy resources. 

Developed and emerging economies relocating their polluting industry to developing 

countries should be penalized and discouraged. IPCC should play its role in knowledge 

transfer to developing countries in manufacturing and building renewable energy resources 

through collaborations between higher education institutions of developed and developing 

countries. 

 

Green technologies, renewable energy initiatives, proper management of industrial waste, 

and better industrial practices that cause less harmful environmental effects should be 

prioritized to contain the drivers of climate variability at the individual country level. 

Development plans of countries should be initiated in a manner that should have a 

minimum fixed proportion of green initiatives with year-wise targets.  

 

Researchers also need to develop methods to quantify green GDP that could be used to 

assess a country’s progress towards sustainable development. In the case of LICs and 

developing countries, green GDP could be used as an instrument to ease their debt 
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repayments to international financial institutions. Results indicate that countries must 

initiate environment-inclusive urban planning to contain climate variability. As unplanned 

urban slums add pressure to the existing resources. 

 

The energy intensity, population size, and urbanization spillover effect call for integrated 

efforts at a regional level where countries are nearby. Renewable energy policies at the 

regional level can be initiated where countries can set joint targets for their annual 

investment. Besides investment, there is a need to harmonize and change the energy mix 

towards environmentally friendly resources. A regional platform can serve as a free trade 

zone and business partnership platform for green technologies. Also, regional awareness 

campaigns, workshops, and conferences can be coordinated to exchange better energy 

solutions. 

 

For wheat crop-producing countries, a fertilizer policy should be initiated to improve the 

quality of fertilizers used by farmers. The policy should set a target to increase organic 

fertilizer in production. Further, policy should fix R&D targets in producing better 

fertilizers that are more resilient to climate change. As in the present case, the trade 

liberalization policy improves wheat production in the country. Therefore, policy measures 

to facilitate the export and import of wheat crops will be conducive to enhancing wheat 

competitiveness. Farmers' training center needs to develop in countries with courses to 

provide crop-specific knowledge, changing crop patterns, better and sustainable farming 

techniques, and sophisticated technologies. Early warnings on pest attacks can take 

adaptive measures to reduce crop losses should be dispersed through technology. As most 

depend on rain-fed irrigation, water management policy must be ensured in wheat-

producing countries. Water pricing and water-saving technologies in the form of drip 

irrigation, water recycling, and the construction of dams will help take further benefits from 

rainwater. As for the spillover effect, integrated efforts are needed to improve labor 

productivity by initiating joint seminars, workshops, and field visits among regional 

countries to transfer knowledge and share best practices in wheat production. Regional 

trade liberalization and forming a common agriculture market can give farmers greater 
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market access and competitive prices. Increase competition within the region with help in 

efficient resource allocation.  

 

Rice is sensitive to climate changes, especially rainfall uncertainty negatively affects rice 

production. Rice is water-intensive; timely crop water availability and management 

practices must be dispersed among farmers. Climate resilient rice varieties should be 

developed through R&D. Private organizations, in collaboration with government 

departments, should build the capacity to develop climate-resilient rice varieties. Maize is 

also climate sensitive crop that responds negatively to climate uncertainty; therefore, better 

weather forecasting and dissemination of information need to be ensured for maize 

cultivators. Climate uncertainty can be hedged through crop insurance and agricultural 

commodity exchange markets. 
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Appendix A: Description of the variables  

Name of 

the 

variable 

Definition of the variable Unit of 

Measurement 

Source 

𝑇𝐸𝑀𝑃 Mean temperature Degree Celsius 

(°C) 

Climate 

Research Unit 

University of 

East Anglia 

RAIN Mean rainfall Millimeters 

(mm) 

Climate 

Research Unit 

University of 

East Anglia  

Industry 

ranking 

Industrialized economies 

having adjusted manufacturing 

value added (MVA) per capita 

greater than 2,500 or a gross 

domestic product higher than 

USD 20,000 (PPP)  

Emerging industrial economies 

are the ones with adjusted MVA 

per capita between 1,000 and 

2,500 or whose share of the 

world MVA is higher than 0.5 

percent. 

The least developed are 

structured as united nations 

assembly decisions 

Developing all the rest is 

structured as developing 

 

Ranking 

1=Industrialised 

2=emerging 

Industrialise 

3=developing 

4=least Lower 

Middle Income 

Industrial 

Development 

Report 2018 

United Nations 

Industrial 

Development 

Organization 

(UNIDO)  

Country 

Ranking 

High-Income countries with 

GNI of USD 12,375 or more 

Upper middle income with GNI 

between USD 3,996 - 12,375 

Lower middle income USD 

1,026 - 3,995 

Low income with GNI of USD 

1,025 or less 

Ranking 

1= High 

Income 

2= Upper 

middle income 

 3 Lower 

middle income 

4= Low income 

World Bank 

2019 and 

World bank 

1990 
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Appendix B: Description of the variables 

Variable Description 
Unit of 

measurement 
Sources 

Dependent Variables 

𝑉𝑇𝐸𝑀𝑃 Square deviation of annual average 

temperature from its long-run mean 

(30 years) 

Degree 

Celsius 

Climate 

research unit 

TS 4.03 

𝑉𝑅𝐴𝐼𝑁 Square deviation of annual average 

rainfall from its long-run mean (30 

years) 

millimeters Climate 

research unit 

TS 4.03 

𝐶𝐶𝑡𝑒𝑚𝑝 
The average annual temperature of 

thirty years (1989-2018) 

Degree 

Celsius 

Climate 

research unit 

TS 4.03 

𝐶𝐶𝑟𝑎𝑖𝑛 
Average annual rainfall of thirty 

years (1989-2018) 

millimeters Climate 

research unit 

TS 4.03 

𝐶𝑂2 Carbon dioxide emissions from solid 

fuel consumption refer mainly to 

emissions from the use of coal as an 

energy source 

Weighted 

average 

WDI 

Independent Variable 

𝐺𝐷𝑃𝑝𝑐 Gross domestic product in current 

USD divided by population 

Weighted 

average 

World 

Development 

Indicators 

(WDI) 

𝐸𝐼 The ratio between primary energy 

supply and GDP at PPP. 

Weighted 

average 

WDI 

𝐼𝑁𝐷 Industry value added as a percentage 

of the GDP. The net output of the 

industrial sector after deducting 

intermediate inputs. Industry 

includes manufacturing, mining, 

construction, electricity, water, and 

gas. 

Weighted 

average 

WDI 

𝑃𝑂𝑃 Includes residents living in a country 

irrespective of their citizenship 

number WDI 

𝑃𝑂𝑃𝐷 A population divided by the land 

area in square km 

Weighted 

average 

 

𝑈𝑅𝑃 The ratio of urban population to the 

total population. The urban 

population includes people living in  

Weighted 

average 

WDI 

𝑂𝑃𝐸𝑁 Sum of exports and imports as a 

percentage of the GDP in current 

USD 

Weighted 

average 

WDI 
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Appendix C1:  Description of the variables 

Variable Description 
Unit of 

measurement 
Sources 

Dependent Variables 

𝑊𝐻𝐸𝐴𝑇 The amount of wheat production sold 

in the market is divided by 

agricultural land 

Tonnes/1000 

hectare 

FAO stat 

𝑅𝐼𝐶𝐸 Amount of rice production sold in the 

market divided by agricultural land 

Tonnes/1000 

hectares 

FAO stat 

𝑀𝐴𝐼𝑍𝐸 Amount of maize production sold in 

the market divided by agricultural 

land 

Tonnes/1000 

hectares 

FAO stat 

Independent Variable 

𝐹𝐸𝑅𝑇 Sum of N, P2O5, and K2O nutrients 

for fertilizer consumption 

Kgs/hectare FAO stat 

𝑀𝐴𝐶𝐻 Farm inventories of farm machinery, 

measured in thousands of metric 

horsepower (1000 CV) in tractors, 

combine-threshers, and milking 

machines 

unit United states 

department of 

agriculture, 

USDA 

𝐴𝐺𝑅𝐿 Employment in agriculture, forestry, 

and fishing –total ILO modeled 

estimates 

 1000 persons FAO stat 

𝑂𝑃𝐸𝑁 Sum of exports and imports of the 

crop (wheat, rice, and maize) as a 

percentage of the GDP in current 

USD 

USD FAO 

𝑇𝐸𝑀𝑃 Annual average temperature  Degree Celsius Climate 

research unit 

TS 4.05 

𝑅𝐴𝐼𝑁 Annual average temperature millimeters Climate 

research unit 

TS 4.05 

VTEMP Deviation of annual average 

temperature from its long-run mean 

(30 years) 

Degree Celsius Climate 

research unit 

TS 4.05 

VRAIN Deviation of annual average rainfall 

from its long-run mean (30 years) 

millimeters Climate 

research unit 

TS 4.05 
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Appendix C2: Estimation Results of spatial Durbin model for crop yield 

Variables 
SDM-FE  SDM-RE SDM-FE  SDM-RE SDM-FE  SDM-RE 

Wheat yield Rice yield Maize yield 

Ρ 0.218** (2.57) 0.245*** (2.95) 0.226*** (2.68) 0.222*** (2.67) 0.188** (2.2) 0.324*** (4.48) 

FERT 0.0490*** (3.78) 0.0585*** (4.7) -0.0241 (-1.41) -0.0113 (-0.71) 0.0229 (1.39) 0.0385** (2.46) 

MACH 0.0179 (0.56) 0.0271 (0.84)     0.200*** (4.92) 0.196*** (4.77) 

IRRI 0.0579* (1.78) 0.0368 (1.4) 0.0960** (2.13) 0.143*** (4.6) 0.00791 (0.19) 0.0603* (1.82) 

AGRL -0.0863*** (-2.71) -0.111*** (-4.20) -0.100*** (-2.29) -0.123*** (-3.74) -0.111*** (-2.83) -0.197*** (-5.89) 

TEMP 0.851 (0.78) -0.187 (-0.54) 5.152*** (2.72) 0.601 (1.53) 0.689 (0.46) -0.587 (-1.30) 

RAIN 0.247*** (5.9) 0.175*** (4.96) 0.167*** (2.65) 0.149*** (3.66) 0.290*** (5.64) 0.273*** (6.45) 

VTEMP -0.213 (-0.53) 0.12 (0.53) -1.433* (-1.96) 0.157 (0.42) -0.743 (-1.38) -0.295 (-1.00) 

VRAIN -0.0112*** (-3.61) -0.0112*** (-3.52) 0.001 (0.26) 0.002 (0.33) -0.0054 (-1.36) -0.00486 (-1.20) 

INTERCEPT    -3.516 (-0.57)    -14.74** (-2.57)    -12.75* (-1.81) 

W*FERT 0.182*** (2.88) 0.137** (2.24) 0.303*** (4.96) 0.256*** (4.5) 0.0619 (0.83) -0.038 (-0.53) 

W*MACH -0.0988 (-0.43) 0.145 (0.65)     0.604** (2.35) 1.061*** (4.38) 

W*IRRI 0.870*** (4.14) 0.531*** (2.79) -0.003 (-0.01) 0.136 (0.75) 1.526*** (4.61) 0.819*** (3.25) 

W*AGRL -0.354 (-1.37) -0.17 (-0.78) 0.102 (0.37) -0.019 (-0.11) 0.418 (1.38) -0.0945 (-0.38) 

W*TEMP -2.643 (-1.05) 1.785 (0.88) 6.02 (1.19) 4.530** (2.42) -0.953 (-0.25) 2.73 (1.15) 

W*RAIN -0.318 (-1.50) -0.271 (-1.32) 0.209 (0.87) 0.067 (0.36) 0.0992 (0.41) -0.0591 (-0.27) 

W*VTEMP 1.386 (1.25) 0.186 (0.19) -1.914 (-0.88) -0.884 (-0.74) 1.178 (0.75) 0.465 (0.38) 

W*VRAIN -0.0164 (-0.94) -0.0146 (-0.82) 0.002 (0.11) 0.004 (0.17) -0.00214 (-0.10) 0.00136 (0.06) 

N 2156  2156  1342  1342  1958  1958  

Hausman 

P-Value 

116.88 

0.0000 

12.2 

0.1427 

40.75 

0.0000 

Note: ***,**,* indicates the significance level at 1%, 5%, and 10%, respectively. 
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Appendix C3: Spatial direct, indirect and total effect of SDM model for crop yield 

Variable 

wheat yield rice yield Maize yield 

Direct  

Effect 

Indirect  

Effect 

Total  

Effect 

Direct  

Effect 

Indirect  

Effect 

Total  

Effect 

Direct  

Effect 

Indirect  

Effect 

Total  

Effect 

FERT 
0.05*** 0.26*** 0.31*** -0.02 0.379*** 0.359*** 0.02 0.09 0.112 

(3.81) (3.31) (3.96) (-1.19) (5.06) (4.75) (1.41) (0.98) (1.22) 

MACH 
0.0158 -0.131 -0.115    0.202*** 0.789** 0.991*** 

(0.5) (-0.44) (-0.37)    (5.1) (2.46) (3.02) 

IRRI 
0.0663** 1.125*** 1.192*** 0.094*** 0.037 0.132 0.02 1.851*** 1.871*** 

(2.14) (4.49) (4.64) (2.12) (0.11) (0.37) (0.52) (5.34) (5.25) 

AGRL 
-0.0892*** -0.456 -0.546 -0.095** 0.095 0.0004 -0.110*** 0.513 0.403 

(-2.91) (-1.30) (-1.53) (-2.25) (0.27) (0) (-2.89) (1.29) (0.99) 

TEMP 
0.847 -3.252 -2.405 5.224*** 8.925 14.15** 0.702 -1.121 -0.419 

(0.8) (-1.09) (-0.84) (2.84) (1.4) (2.3) (0.48) (-0.26) (-0.10) 

RAIN 
0.248*** -0.33 -0.0827 0.170*** 0.336 0.505 0.291*** 0.17 0.46 

(5.99) (-1.17) (-0.29) (2.78) (1.05) (1.57) (5.44) (0.58) (1.55) 

VTEMP 
-0.208 1.702 1.494 -1.433* -2.869 -4.302 -0.728 1.321 0.593 

(-0.53) (1.3) (1.18) (-1.99) (-1.06) (-1.60) (-1.38) (0.68) (0.32) 

VRAIN 
-0.0114*** -0.0235 -0.0349 0.0012 0.0049 0.006 -0.00552 -0.00352 -0.00905 

(-3.87) (-1.01) (-1.49) (0.25) (0.17) (0.21) (-1.46) (-0.13) (-0.33) 
Note: ***, **, * indicates the significance level at 1%, 5%, and 10%, respectively
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Appendix D1: List of countries included in the estimation of wheat production 

1 Afghanistan 37 Germany 73 Oman 

2 Albania 38 Greece 74 Pakistan 

3 Algeria 39 Guatemala 75 Paraguay 

4 Angola 40 Honduras 76 Peru 

5 Argentina 41 Hungary 77 Poland 

6 Armenia 42 India 78 Portugal 

7 Australia 43 Iran (Islamic Republic of) 79 Republic of Korea 

8 Austria 44 Iraq 80 Republic of Moldova 

9 Azerbaijan 45 Israel 81 Romania 

10 Bangladesh 46 Italy 82 Russian Federation 

11 Belarus 47 Japan 83 Rwanda 

12 Belgium 48 Jordan 84 Saudi Arabia 

13 Bhutan 49 Kazakhstan 85 Slovakia 

14 Bolivia 50 Kenya 86 Slovenia 

15 Bosnia and Herzegovina 51 Kuwait 87 South Africa 

16 Brazil 52 Kyrgyzstan 88 Spain 

17 Bulgaria 53 Latvia 89 Sweden 

18 Burundi 54 Lebanon 90 Switzerland 

19 Cameroon 55 Libya 91 Syrian Arab Republic 

20 Canada 56 Lithuania 92 Tajikistan 

21 Chile 57 Madagascar 93 Thailand 

22 China 58 Malawi 94 Tunisia 

23 Colombia 59 Mali 95 Türkiye 

24 Croatia 60 Mexico 96 Uganda 

25 Cyprus 61 Mongolia 97 Ukraine 

26 Czechia 62 Morocco 98 United Kingdom 

27 

Democratic Republic of 

the Congo 63 Mozambique 99 

United Republic of 

Tanzania 

28 Denmark 64 Myanmar 100 

United States of 

America 

29 Ecuador 65 Namibia 101 Uruguay 

30 Egypt 66 Nepal 102 Uzbekistan 

31 Eritrea 67 Netherlands 103 

Venezuela 

(Bolivarian Republic 

of) 

32 Estonia 68 New Zealand 104 Yemen 

33 Ethiopia 69 Niger 105 Zambia 

34 Finland 70 Nigeria 106 Zimbabwe 

35 France 71 North Macedonia   

36 Georgia 72 Norway   
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Appendix D2: List of countries included in the estimation of Rice Production 

1 Afghanistan 35 Greece 69 Portugal 

2 Algeria 36 Guatemala 70 Republic of Korea 

3 Angola 37 Guinea 71 Romania 

4 Argentina 38 Guyana 72 Russian Federation 

5 Australia 39 Honduras 73 Rwanda 

6 Azerbaijan 40 Hungary 74 Senegal 

7 Bangladesh 41 India 75 South Africa 

8 Belize 42 Indonesia 76 Spain 

9 Benin 43 Iran 77 Sri Lanka 

10 Bhutan 44 Iraq 78 Suriname 

11 Bolivia 45 Italy 79 Tajikistan 

12 Brazil 46 Jamaica 80 Thailand 

13 Bulgaria 47 Japan 81 Togo 

14 Burkina Faso 48 Kazakhstan 82 Trinidad and Tobago 

15 Burundi 49 Kenya 83 Türkiye 

16 Cambodia 50 Kyrgyzstan 84 Uganda 

17 Cameroon 51 Madagascar 85 Ukraine 

18 Central African Republic 52 Malawi 86 Tanzania 

19 Chile 53 Malaysia 87 United States of America 

20 China, mainland 54 Mali 88 Uruguay 

21 Colombia 55 Mexico 89 Uzbekistan 

22 Congo 56 Morocco 90 Venezuela 

23 Costa Rica 57 Mozambique 91 Viet Nam 

24 Cuba 58 Myanmar 92 Zambia 

25 Democratic Republic Congo 59 Nepal 93 Zimbabwe 

26 Dominican Republic 60 Nicaragua   

27 Ecuador 61 Niger   

28 Egypt 62 Nigeria   

29 El Salvador 63 North Macedonia   

30 Ethiopia 64 Pakistan   

31 Fiji 65 Panama   

32 France 66 Paraguay   

33 Gambia 67 Peru   

34 Ghana 68 Philippines   
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Appendix D2: List of countries included in the estimation of Maize Production 

1 Afghanistan 41 Ghana 81 Poland 

2 Albania 42 Greece 82 Portugal 

3 Algeria 43 Guinea 83 Republic of Korea 

4 Argentina 44 Honduras 84 Republic of Moldova 

5 Armenia 45 Hungary 85 Romania 

6 Australia 46 India 86 Russian Federation 

7 Austria 47 Indonesia 87 Rwanda 

8 Azerbaijan 48 Iran (Islamic Republic of) 88 Saudi Arabia 

9 Bangladesh 49 Iraq 89 Senegal 

10 Belize 50 Israel 90 Slovakia 

11 Benin 51 Italy 91 Slovenia 

12 Bhutan 52 Jamaica 92 South Africa 

13 Bolivia 53 Japan 93 Spain 

14 

Bosnia and 

Herzegovina 54 Jordan 94 Sri Lanka 

15 Botswana 55 Kazakhstan 95 Suriname 

16 Brazil 56 Kenya 96 Switzerland 

17 Bulgaria 57 Kyrgyzstan 97 Syrian Arab Republic 

18 Burkina Faso 58 Lebanon 98 Tajikistan 

19 Burundi 59 Madagascar 99 Thailand 

20 Cambodia 60 Malawi 100 Togo 

21 Cameroon 61 Malaysia 101 Trinidad and Tobago 

22 Canada 62 Mali 102 Türkiye 

23 Chile 63 Mauritius 103 Uganda 

24 China 64 Mexico 104 Ukraine 

25 Colombia 65 Morocco 105 United Arab Emirates 

26 Congo 66 Mozambique 106 United Republic of Tanzania 

27 Costa Rica 67 Myanmar 107 United States of America 

28 Croatia 68 Namibia 108 Uruguay 

29 Cuba 69 Nepal 109 Uzbekistan 

30 Czechia 70 Netherlands 110 Venezuela 

31 

Dominican 

Republic 71 New Zealand 111 Viet Nam 

32 Ecuador 72 Nicaragua 112 Yemen 

33 Egypt 73 Niger 113 Zambia 

34 El Salvador 74 Nigeria 114 Zimbabwe 

35 Eritrea 75 North Macedonia   

36 Ethiopia 76 Pakistan   

37 France 77 Panama   

38 Gambia 78 Paraguay   

39 Georgia 79 Peru   

40 Germany 80 Philippines   

 


