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Abstract

In this work, we contribute to the theory of Hardy-type operators in a number of ways

on both Rn and Qn
p . Firstly, we characterize the central BMO spaces with variable expo-

nent via the boundedness of commutators of Hardy-type operators on variable exponent

Lebesgue and central Morrey spaces. Some boundedness results for the Hardy operator

and its adjoint operator are also demonstrated on variable exponent Lebesgue and cen-

tral Morrey spaces. Furthermore, we obtaine the boundedness of variable-order fractional

Hardy-type operators from grand Herz spaces to weighted spaces, subject to appropriate

weight conditions. Secondly, in the framework of variable exponent, we introduce some

new p-adic function spaces. The fractional p-adic Hardy-type operators on the p-adic

Lebesgue and central Morrey spaces with variable exponents are shown to be bounded.

We characterize some varaible p-adic function spaces by proving the boundedness of com-

mutators formed by p-adic Hardy-type integral operators and p-adic variable exponent

λ-central BMO functions on the aforementioned spaces. Furthermore, the continuity of

theses operators on p-adic variable exponent Herz-type spaces is discussed as well.
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Preface

The aim of this thesis is to study Hardy-type integral operators on variable exponent

function spaces. Our main results include the characterization of some function spaces

via commutators of Hardy-type operators and the boundedness of these operators on

function spaces defined different underlying spaces.

In Chapter 1, we give some basic definitions along with some necessary lemmas

to be used in the subsequent chapters of this thesis. In addition, we define some

function spaces and give introduction to the Hardy-type operators with Rn and Qn
p

as underlying spaces.

In Chapter 2, we come up with the characterization of variable exponent central-

BMO spaces via commutators of Hardy-type operator on Lebesgue and central Morrey

spaces. The continuity of Hardy-type operators on aforementioned spaces is estab-

lished as well. The contents of this Chapter has been published in [50].

In Chapter 3, we investigate the boundedness of variable order Hardy-type oper-

ators on the variable exponent grand Herz-Morrey space. In this Chapter, we mainly

proved the Soboleve-type theorem for Hardy-type operators on the variable exponent

grand Herz-Morrey space. The contents of this Chapter has been published in [51].

In Chapter 4, we obtain the characterization of p-adic variable exponent central-

BMO space via commutators of p-adic Hardy-type operators on p-adic variable expo-

nent Lebesgue space. The boundedness of these operators is also made possible on

the other hand. The contents of this Chapter are ready to submit for publication in

well reputed journal of mathematics.

In Chapter 5, we consider continuity properties of Hardy-type operators defined

on p-adic field on p-adic variable exponent central Morrey spaces. We also define

and characterize the p-adic variable exponent λ-central BMO space by showing the

boundedness of Hardy-type operator on these spaces. The contents of this Chapter

are ready to submit for publication in well reputed journal of mathematics.

Our study in Chapter 6 adds to and extends the results of Chapter 5 in two ways.

Firstly, we prove the boundedness of p-adic fractional Hardy-type operators on the

iii
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p-adic variable Herz spaces. Secondly, the similar results are proved true on p-adic

variable exponent Herz-Morrey spaces. The contents of this Chapter are ready to

submit for publication in well reputed journal of mathematics.

Samia Bashir

Islamabad, Pakistan

February 27, 2024
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Chapter 1

Introduction to some Function Spaces

and Operators

1.1 Introduction

Averaging operators are considered well-known fascinating mathematical objects in

harmonic analysis due to their frequent appearance in both analysis and applications.

One of the most celebrated averaging operators is the Hardy-Littlewood maximal

operator. It, for example, controls the boundedness of a variety of integral operators

and has several implications in the theory of partial differential equations (PDEs).

Likewise, in analysis, theory and applications, the Hardy-type operators are popular

averaging operators extensively studied over the past hundred years and subjected to

many generalizations in various settings. There are many others, but we will limit

ourselves to these two, for these are the main focus of our objective.

On the other hand continuity of these averaging operators on various function

spaces is also a well-developed area in analysis and needs further attention concerning

new trends in generalizing function spaces. It needs results in developing new methods,

solving existing problems, and applications to the theory of PDEs. There is a need to

focus on the new trends in operator theory and the theory of function spaces, including

variable exponent spaces defined on different underlying spaces such as the Euclidean

space Rn and the p-adic space Qn
p . With recent advancements in PDE theory, their

modeling, and the emergence of new issues, the objective of boundedness of averaging

operators on function spaces becomes more effective and fascinating.

In recent years, there has been a growing interest in the study of function spaces

equipped with variable exponents, leading to the development of a new framework

known as variable exponent analysis. These spaces provide a powerful tool for an-

alyzing functions with variable growth or decay rates and have found applications

1



2 Introduction to some Operators and Function Spaces

in various areas of mathematics, including partial differential equations, harmonic

analysis, and image processing. One can better understand the heterogeneity and

complexity inherent in many real-world phenomena by taking into consideration the

theory of variable exponent function spaces. The introduction of variable exponents

extends the traditional framework of function spaces that opens up new avenues for

mathematical analysis, numerical methods, and applications in various scientific and

engineering fields [1, 2, 3]. These spaces offer a versatile framework for analyzing and

modeling phenomena with non-standard regularity, anisotropy, or localized features.

The ability to adapt the exponent to the local properties of the functions provides a

powerful tool for capturing the behavior of complex systems.

The purpose of this thesis is twofold. Firstly, we investigate the boundedness of

Hardy-type operators along with their commutators on function spaces with variable

exponents defined over Rn. Also, in some cases, we provide necessary and sufficient

conditions for such boundedness results. Secondly, based on [4, 5], we define some

new function spaces with variable exponents on p-adic field with Qn
p as the underlying

space. We then discuss the continuity of p-adic Hardy-type operators along with their

commutators on these spaces.

1.2 Introduction to Variable Exponent Function Spaces

The concept of variable exponent function spaces was initially introduced by Orlicz [6]

in the 1930s, who developed the theory of Orlicz spaces based on the growth function

of the exponent. However, it was not until the 1990s that the general theory of vari-

able exponent function spaces began to be systematically studied. Function spaces

with variable exponent started significant progress when some of their essential fea-

tures were provided by Kováčik and Rákosńık [7]. The seminal works of Diening,

Harjulehto, Hästö, and Růžička [1, 8, 9, 10] have laid the foundation for this research

area, providing fundamental results, characterizations, and functional analytic tools

for studying variable exponent function spaces. For a detailed history and recent

developments in the theory of variable exponent function spaces, we refer the inter-

ested readers to the books [8, 9]. These spaces have a wide range of applications,

including electrorheological fluid modeling [1], image processing [2], and differential

equations with nonstandard growth [3]. Variable exponent λ-central BMO spaces,

Morrey type spaces, and associated function spaces, on the other hand, have fascinat-

ing applications in analyzing the boundedness of integral operators; see, for instance,

[11, 12, 13, 14, 15, 16].



1.2 Introduction to Variable Exponent Function Spaces 3

All over remaining of this thesis, the constant C > 0 may vary from step to

another and do not dependent on main parameters involved. The sign ”≈”between two

function f and g implies that there exist constants c1 and c2 such that c1f ≤ g ≤ c2f.

1.2.1 Variable Exponent Function Spaces on Rn

This section serves to define the variable exponent function spaces with Rn as un-

derlying space. For this section we refer the reader to some standard references

[7, 8, 17, 18, 19] from the literature.

Definition 1.2.1 Consider a measurable function q(·): D → [1,∞) with D ⊂ Rn.

(i) Denote by Lq(·)(D) the variable exponent Lebesgue space:

Lq(·)(D) =

{
g measurable :

∫
D

(
|g(z)|
ξ

)q(z)

dz < ∞ where ξ is a constant

}
.

in which we define the norm:

∥g∥Lq(·)(D) = inf

{
ξ > 0 :

∫
D

(
|g(z)|
ξ

)q(z)

dz ≤ 1

}
.

(ii) The local version of Lq(·)(D) is given by

L
q(·)
loc (D) :=

{
g : g ∈ Lq(·)(F ) for all compact subsets F ⊂ D

}
.

This thesis use the following notation for remaining discussion:

(a) Let g ∈ L1
loc(D), then the Hardy-Littlewood maximal function M is defined as

Mg(z) := sup
t>0

t−n

∫
B(z,t)

|g(x)|dx (z ∈ D),

where

B(z, t) := {z ∈ D : |z − s| < t}.

(b) We denote by P(D) the set of all functions r(·) which are measurable and satisfy:

r− := ess inf
ζ∈D

r(ζ) > 1, r+ := ess sup
ζ∈D

r(ζ) < ∞. (1.2.1)
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(c) We denote by Plog = Plog(D) the set of all functions r ∈ P(D) which are

measurable and satisfy (1.2.1) along with log condition given as below:

|r(ξ) − r(ζ)| ≤ C(r)

− ln |ξ − ζ|
, |ξ − ζ| ≤ 1

2
, ξ, ζ ∈ D. (1.2.2)

(d) If D is unbounded, then P0,∞(D) and P∞(D) become the subsets of P(D).

Functions belonging to P0,∞(D) and P∞(D) satisfy:

|r(d) − r∞| ≤ C

ln(e + |d|)
, (1.2.3)

where r∞ ∈ (1,∞).

|r(d) − r0| ≤
C

ln |d|
, |d| ≤ 1

2
, (1.2.4)

respectively.

(e) Finally, Dm = D(0, 2m) = {y ∈ Rn : |y| < 2m}, Am = Dm \Dm−1, for all m ∈ Z,
and χm = χAm .

Definition 1.2.2 [12, 13] A function g ∈ L
u(·)
loc (Rn), for u(·) ∈ P(Rn), is said to be in

variable CBMO (central bounded mean oscillation) space if

∥g∥CBMOu(·)(Rn) =: sup
r>0

∥(g − gB(0,r))χB(0,r)∥Lu(·)(Rn)

∥χB(0,r)∥Lu(·)(Rn)

< ∞.

If u(x) = u is a constant, then CBMOu(·)(Rn) equals CBMOu(Rn). We write Cu(·) =:

CBMOu(·)(Rn) simply here and in the following.

Definition 1.2.3 [13] Let µ ∈ R, and u(·) ∈ P(Rn). The variable exponent central

Morrey space Ḃu(·),µ(Rn) is given by

Ḃu(·),µ(Rn) = {g ∈ L
u(·)
loc (Rn) : ∥g∥Ḃu(·),µ(Rn) < ∞},

where

∥g∥Ḃu(·),µ(Rn) = sup
r>0

∥gχB(0,r)∥Lu(·)(Rn)

|B(0, r)|µ∥χB(0,r)∥Lu(·)(Rn)

.

Definition 1.2.4 [13] Let µ < 1/n and u(·) ∈ P(Rn), then the variable exponent µ-

central BMO space CBMOu(·),µ(Rn) is given by

CBMOu(·),µ(Rn) = {g ∈ L
u(·)
loc (Rn) : ∥g∥CBMOu(·),µ(Rn) < ∞},

where

∥g∥CBMOu(·),µ(Rn) = sup
r>0

∥χB(0,r)(g − gB(0,r))∥Lu(·)(Rn)

∥χB(0,r)∥Lu(·)(Rn)|B(0, r)|µ
.
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Remark 1.2.5 An equivalent form of the definition given above can be written as:

∥g∥CBMOu(·),µ(Rn) = sup
γ∈Z

inf
c∈C

∥(g − c)χBγ∥Lu(·)(Rn)

|Bγ|µ∥χBγ∥Lu(·)(Rn)

.

Note Bu(·),µ(Rn) and CMOu(·),µ(Rn) inhomogeneous version of the variable exponent

central Morrey space and the µ-central BMO space can be obtained respectively by

taking the supremum on R ≥ 1 in Definitions 1.2.3 and 1.2.4 in place of R > 0 here.

The results of this thesis apply to an inhomogeneous version of µ-central BMO

space and a central Morrey space with variable exponents.

Definition 1.2.6 Suppose 1 ≤ u, v < ∞, ζ ∈ R, then the homogeneous and in-

homogeneous Herz spaces (classical version) are defined as:

∥f∥Kζ,u
v (Rn) = ∥f∥Lv(D(0,1)) +

{∑
ℓ∈N

2ℓζu∥fχℓ∥uLv(Rn)

} 1
u

, (1.2.5)

∥f∥K̇ζ,u
v (Rn) =

{∑
ℓ∈Z

2ℓζu∥fχℓ∥uLv(Rn)

} 1
u

, (1.2.6)

respectively.

Definition 1.2.7 Let u ∈ [1,∞), v(·) ∈ P(Rn) and ζ ∈ R. K̇ζ,u
v(·)(R

n) is the homoge-

nous version of Herz space and its norm is given as

K̇ζ,u
v(·)(R

n) =
{
g ∈ L

v(·)
loc (Rn \ {0}) : ∥g∥K̇ζ,u

v(·)(R
n) < ∞

}
, (1.2.7)

where

∥g∥K̇ζ,u
v(·)(R

n) =

(
ℓ=∞∑
ℓ=−∞

∥2ℓζgχℓ∥uLv(·)

) 1
u

.

Definition 1.2.8 For 1 ≤ u < ∞, v(·) ∈ P(Rn) and ζ ∈ R. The inhomogenous Herz

space Kζ,u
v(·)(R

n) is given by

Kζ,u
v(·)(R

n) =
{
h ∈ L

v(·)
loc (Rn \ {0}) : ∥h∥Kζ,u

v(·)(R
n) < ∞

}
, (1.2.8)

where

∥h∥Kζ,u
v(·)(R

n) = ∥h∥Lv(·)(D(0,1)) +

(
ℓ=∞∑
ℓ=−∞

∥2ℓζhχℓ∥uLv(·)

) 1
u

.
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Definition 1.2.9 For a(·): Rn → R, 0 < u < ∞, v(·) ∈ P(Rn) and 0 ≤ β < ∞. A

variable Herz-Morrey spaces MK̇
a(·),β
u,v(·) (R

n) is defined by

MK̇
a(·),β
u,v(·) (R

n) =

{
g ∈ L

v(·)
loc (Rn \ {0}) : ∥g∥

MK̇
a(·),β
u,v(·) (R

n)
< ∞

}
,

where

∥g∥
MK̇

a(·),β
u,v(·) (R

n)
= sup

k0∈Z
2−k0β

(
k0∑

ℓ=−∞

2ℓa(·)u∥gχℓ∥uLv(·)(Rn)

) 1
u

.

Next, we define variable exponent grand Herz spaces.

Definition 1.2.10 Let a(·) ∈ L∞(Rn), u ∈ [1,∞), v: Rn → [1,∞), θ > 0. A grand

Herz spaces with variable exponent K̇
a(·),u),θ
v(·) is defined by

K̇
a(·),u),θ
v(·) =

{
g ∈ L

v(·)
loc (Rn \ {0}) : ∥g∥

K̇
a(·),u),θ
v(·)

< ∞
}
,

where

∥g∥
K̇

a(·),u),θ
v(·)

= sup
ϕ>0

(
ϕθ
∑
ℓ∈Z

2ℓa(·)u(1+ϕ)∥gχℓ∥u(1+ϕ)

Lv(·)

) 1
u(1+ϕ)

= sup
ϕ>0

ϕ
θ

u(1+ϕ)∥g∥
K̇

a(·),u(1+ϕ)
v(·)

.

1.2.2 Variable Exponent Function Spaces on Qn
p

The p-adic analysis finds its applications in different areas of mathematical sciences

including mathematical physics, quantum mechanics, probability theory, and dynam-

ical systems [21, 22]. Function spaces with variable exponents defined on p-adic fields

with Qn
p as underlying space are well known to pique interest not only in real and har-

monic analysis, but also in applied mathematics. Variable exponent function spaces

defined on Qn
p attract less attention in the past and need careful consideration in the

future. Unlike classical p-adic function spaces with fixed exponents, such as Lebesgue

or Sobolev spaces, p-adic variable exponent function spaces allow the exponent to

vary across the domain, providing a more flexible framework for studying functions

with diverse characteristics. In order to introduce these spaces, a brief introduction

of p-adic number is pre-requisite which is as below.

Let the field of rational numbers is denoted by Q. The absolute value |x| of x ∈ Q
satisfies the below properties:

(i) |x| ≥ 0, |x| = 0 iff x = 0,
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(ii) |xy| = |x||y|,
(iii) |x + y| ≤ |x| + |y|.
Therefore, the function | · | : Q → R is termed as norm. Alternatively, for a prime a

number p, the field of p-adic numbers Qp is defined as the completion of the rational

number field Q with respect to the p-adic norm | · |p, which is defined as

|x|p =:

0, if x = 0,

p−γ, if x = pγ a
b
,

(1.2.9)

where a and b are integers that are co-prime to p. The p-adic order of x is denoted by

the integer γ =: ord(x) (ord(0) =: +∞). We extend this norm to Qn
p as follows:

∥x∥p =: max
1≤i≤n

|xi|p for x = (x1, ..., xn) ∈ Qn
p , (1.2.10)

and satisfies the ‘strong triangular inequality’

∥x + y∥p ≤ max{ ∥x∥p, ∥y∥p}, (1.2.11)

when ∥x∥p ̸= ∥y∥p, there is equality. If ord(x) =: min
1≤i≤n

{ord(xi)}, then ∥x∥p =:

p−ord(x). The set (Qn
p , ∥.∥p) is a complete ultrametric space, and Qp is homeomorphic

to a subset of the real line that is Cantor-like as a topological space. x ̸= 0 is a p-adic

number having a one of a kind series expansion, precisely,

x =: pord(x)
∞∑
l=0

xlp
l, (1.2.12)

where xl ∈ {0, 1, 2, ..., p− 1} and x0 ̸= 0 are used. We use γ ∈ Z to represent

Bγ(a) = { x ∈ Qn
p : ∥x− a∥p ≤ pγ}, (1.2.13)

the ball with a radius pγ and a center at a = (a1, ..., an) ∈ Qn
p and by

Sγ(a) = { x ∈ Qn
p : ∥x− a∥p = pγ} := Bγ(a) \Bγ−1(a), (1.2.14)

the sphere that corresponds to the ball Bγ(a). We use

Bγ(0) =: Bγ, Sγ(0) =: Sγ, (1.2.15)

and take note of the fact that

Qn
p \ {0} =:

⋃
γ∈Z

Sγ. (1.2.16)
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The one-dimensional ball is represented by Bγ(ai) =: { x ∈ Qp : |x − ai|p ≤ pγ},

where Bγ(a) = Bγ(a1)×...×Bγ(an). With regard to addition, Qn
p is a locally compact

commutative group with the additive Haar measure dnx =: dx (by |F |, we designate

the Haar measure of the set F). We get a unique measure by normalizing the measure

dx by
∫
B0

dx = 1. From this point forward, we will use the normalized Haar measure;

as a result,

pγn = |Bγ(a)|, pγn(1 − p−n) = |Sγ(a)|, (1.2.17)

for any a ∈ Qn
p .

A partition of Qn
p is made up of all disjoint balls with the same radius, γ, because

inequality (1.2.11) states that, in Qn
p , if we have any two balls with same radius then

either one contains the other or they are disjoint.

For any x ∈ Qn
p , the function ℏ : Qn

p → C is referred to as a local constant if an

integer m(z) ∈ Z exists in such a way that

ℏ(z + z′) = ℏ(z) for z′ ∈ Bm(z). (1.2.18)

If ℏ : Qn
p −→ C is locally constant with the compact support, then it is called a test

function (or a Schwartz-Bruhat function). Here, S(Qn
p ) =: S denotes the C-vector

space of such test functions.

Let f : Qn
p −→ C be measurable, then it is a member of the Lebesgue space

Lu(Qn
p ), 1 ≤ u < ∞, when

∥f∥uLu(Qn
p )

=:

∫
Qn

p

|f(x)|udx < ∞, (1.2.19)

where ∫
Qn

p

|f(x)|udx =: lim
γ→∞

∫
Bγ(0)

|f(x)|udx, (1.2.20)

if the limit exists.

This section introduces the idea of p-adic Lebesgue spaces with variable exponents

and lists some of their necessary features. The proofs are contained in citation [4].

If u : Qn
p −→ [1,∞) is a measurable function. The set of all measurable functions

u(·) satisfying u− > 1 and u+ < ∞ is denoted by ℵ(Qn
p ), where u+ =: esssupx∈Qn

p
u(x)

and u− =: essinfx∈Qn
p
u(x).

Let g : Qn
p −→ R is measurable then Lu(·)(Qn

p ) denotes the space of all u ∈ ℵ(Qn
p )

given by

∥g∥Lu(·)(Qn
p )

=: inf
{
σ > 0 : ℘u(·)

( g
σ

)
≤ 1
}
< ∞, (1.2.21)

where ℘u(·)(g) =:
∫
Qn

p
|g(y)|u(y)dy.
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For the Lebesgue space with a variable exponent, we now have

∥g∥Lu(·)(Qn
p )

≤ ℘u(·)(g) + 1, (1.2.22)

℘u(·)(g) ≤
(

1 + ∥g∥Lu(·)(Qn
p )

)u+

, (1.2.23)

∥g∥Lu(·)(Qn
p )

= ∥|g|s∥
1
s

Lu(·)/s(Qn
p )
, s ∈ (0, u−]. (1.2.24)

The Hölder’s inequality holds true for variable exponent Lebesgue spaces i.e.∫
Qn

p

|g(ξ)h(ξ)|dξ ≤ C∥g∥Lu(·)(Qn
p )
∥h∥Lu′(·)(Qn

p )
, (1.2.25)

here, u and u′ are conjugate exponents.

For u ∈ ℵ(Qn
p ), we say that u ∈ W0(Qn

p ), If

γ
(
u−(Bγ(ξ)) − u+(Bγ(ξ))

)
≤ C, (1.2.26)

for any C > 0, ξ ∈ Qn
p and all γ ∈ Z. Similarly, for C > 0 and any ξ, η ∈ Qn

p , we say

that u ∈ W∞(Qn
p ) if

|u(ξ) − u(η)| ≤ C
1

logp (p + min{∥η∥p, ∥ξ∥p})
. (1.2.27)

Class W∞
0 (Qn

p ) is described as W∞
0 (Qn

p ) =: W∞(Qn
p ) ∩W0(Qn

p ).

Definition 1.2.11 A function f ∈ L
u(·)
loc (Qn

p ) for u(·) ∈ ℵ(Qn
p ) is in p-adic CMOu(·)(Qn

p )

with variable exponent if

∥f∥CMOu(·)(Qn
p )

=: sup
γ∈Z

∥χBγ∥−1
Lu(·)(Qn

p )
∥(f − fBγ )∥Lu(·)(Qn

p )
< ∞,

where

fBγ =
1

|Bγ|

∫
Bγ

f(x)dx.

If u(x) = u is a constant, then CMOu(·)(Qn
p ) equals CMOu(Qn

p ). We write Cu(·) =:

CMOu(·)(Qn
p ) simply here and in the following.

Definition 1.2.12 Let u(·) ∈ ℵ(Qn
p ) and 1/n > µ. The p-adic µ-central BMO space

with variable exponent CBMOu(·),µ(Qn
p ) can be defined as

CBMOu(·),µ(Qn
p ) = {g ∈ L

u(·)
loc (Qn

p ) : ∥g∥CBMOu(·),µ(Qn
p )

< ∞},

where

∥g∥CBMOu(·),µ(Qn
p )

= sup
γ∈Z

∥(g − gBγ )χBγ∥Lu(·)(Qn
p )

|Bγ|µ∥χBγ∥Lu(·)(Qn
p )

.

Here and in what follows, we write Cu(·),µ =: CBMOu(·),µ(Qn
p ) for simplicity.
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Remark 1.2.13 An equivalent form of the definition given above can be written as:

∥g∥CBMOu(·),µ(Qn
p )

= sup
γ∈Z

inf
c∈C

∥(g − c)χBγ∥Lu(·)(Qn
p )

|Bγ|µ∥χBγ∥Lu(·)(Qn
p )

.

Definition 1.2.14 Let u(·) ∈ ℵ(Qn
p ) and µ ∈ R. The p-adic variable exponent central

Morrey space Ḃu(·),µ(Qn
p ) can be defined as

Ḃu(·),µ(Qn
p ) = {g ∈ L

u(·)
loc (Qn

p ) : ∥g∥Ḃu(·),µ(Qn
p )

< ∞},

where

∥g∥Ḃu(·),µ(Qn
p )

= sup
γ∈Z

∥gχBγ∥Lu(·)(Qn
p )

|Bγ|µ∥χBγ∥Lu(·)(Qn
p )

.

Definition 1.2.15 Let β ∈ R, 0 < m < ∞, and u(·) ∈ ℵ(Qn
p ). K̇β,m

u(·) (Qn
p ) is the

homogeneous version of p-adic Herz space and its norm is given by

K̇β,m
u(·) (Qn

p ) =
{
g ∈ L

u(·)
loc (Qn

p ) : ∥g∥K̇β,m
u(·) (Q

n
p )

< ∞
}
,

where

∥g∥K̇β,m
u(·) (Q

n
p )

=

(
∞∑

ℓ=−∞

∥pℓβgχℓ∥mLu(·)(Qn
p )

) 1
m

.

Definition 1.2.16 Suppose β ∈ R, 0 < m < ∞, λ ∈ [0,∞) and u(·) ∈ ℵ(Qn
p ).

MK̇β,λ
m,u(·)(Q

n
p ) is the homogeneous version of p-adic Herz-Morrey space and its norm

is given by

MK̇β,λ
m,u(·)(Q

n
p ) =

{
g ∈ L

u(·)
loc (Qn

p ) : ∥g∥MK̇β,λ
m,u(·)(Q

n
p )

< ∞
}
,

where

∥g∥MK̇β,λ
m,u(·)(Q

n
p )

= sup
k0∈Z

2−k0λ

(
k0∑

ℓ=−∞

∥pℓβgχℓ∥mLu(·)(Qn
p )

) 1
m

.

Having finishing the streak of definitions we are now going to introduce some

integral operators of our interest.

1.3 Introduction to Some Integral Operators

The Hardy operator, the fractional Hardy operator, the p-adic Hardy operator, and

the fractional p-adic Hardy operator are all integral operators of our interest in this

thesis. The following subsections provide a quick overview of the operators that were

defined on different underlying spaces.
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1.3.1 Hardy-type Operators on Rn

The Hardy operator was firstly introduced by Hardy [23] in the early 20th century. The

Hardy operators and their associated Hardy inequalities are widely studied in a variety

of function spaces. Various stages of development of the classical Hardy inequality like

for example its extensions and early weighted generalization were studied by Kufner

[24]. They cover both the discrete and continuous forms of the Hardy inequality.

These operators find their applications in the theory of partial differential equations

[25, 26, 27] as well as in characterizing the function spaces [28, 29, 30].

The extension of Hardy operators was first introduced by Samko [31] in 1993 in his

work of fractional integration and differentiation. He defined the concept of fractional

integral operators with variable order and established their basic properties.

Hardy introduced the operator

hg(z) =
1

z

∫ z

0

g(η)dη, z > 0, (1.3.1)

in [23] which satisfy:

∥hg∥Lu(R+) ≤
u

u− 1
∥g∥Lu(R+), 1 < u < ∞. (1.3.2)

Additionally, it was demonstrated that the constant u/(u− 1) found in (1.3.2) is the

best one. In [32] Faris and in [33] Christ and his coauthor introduced an extension of

(1.3.1) and (1.3.2) to the high-dimensional Euclidian space Rn, the equivalent forms

of which are:

Hg(ξ) =
1

|ξ|n

∫
|η|≤|ξ|

g(η)dη, H∗g(ξ) =

∫
|η|>|ξ|

g(η)

|η|n
dη, ξ ∈ Rn \ {0}. (1.3.3)

Additionally, in [33], the operator norms of H and H∗ were computed and matched

with those of the corresponding one-dimensional Hardy operators. Usefulness of Hardy

integral inequalities in analysis and their applications have garnered considerable at-

tention. With regards to their generalizations, variants, and applications there are

numerous papers out there, for instance see [28, 32, 34, 35] and the references cited

therein.

Now , we turn towards the definition of fractional Hardy operators [28]

Hαg(ξ) =:
1

|ξ|n−α

∫
|η|≤|ξ|

g(η)dη, H∗
αg(ξ) =:

∫
|η|>|ξ|

g(η)

|η|n−α
dη, ξ ∈ Rn \ {0}, (1.3.4)

as well as their commutators

Hα,bf = bHαf −Hα(bf), H∗
α,bf = bH∗

αf −H∗
α(bf). (1.3.5)



12 Introduction to some Operators and Function Spaces

It is worth noting that if we take α = 0 in (1.3.4), we obtain (1.3.3). Also, if we select

α = 0 and n = 1, (1.3.4) reduces to (1.3.1). The following definition serves to define

the variable-order fractional Hardy operator.

Definition 1.3.1 Let g ∈ L1
loc(Rn), and 0 ≤ ζ(ξ) < n, then the variable order high-

dimensional fractional Hardy-type operators are defined by

Hg(ξ) :=
1

|ξ|n−ζ(ξ)

∫
|η|<|ξ|

g(η)dη, H∗g(ξ) :=

∫
|η|≥|ξ|

g(η)

|η|n−ζ(ξ)
dη, ξ ∈ Rn \ 0.

Since Hardy-type operators gain well deserved attention as compared to the variable-

order fractional Hardy-type operators. So, in third chapter, we decided to establish

the boundedness of variable-order Hardy-type operators in variable exponents grand

Herz-Morrey space.

1.3.2 Hardy-type Operators on Qn
p

The p-adic integral operators has a deep connections to p-adic Fourier analysis, p-adic

differential equations, and p-adic dynamical systems [21, 22, 36, 37, 38, 39, 40]. Also,

they have great importance in wavelet theory, pseudo-differential equations and har-

monic analysis, among other fields [41, 42, 43, 44, 45, 46]. In the book [22], published

in 1989, Vladimirov et al. introduced a formulation of p-adic quantum mechanics and

introduced p-adic pseudo-differential operators, p-adic stochastic processes, and p-adic

quantum theory. Most importantly, this book contains a thorough re-creation of the

acclaimed Schwartz theory of distributions over p-adic fields. Since the publication

of this monograph, many researchers took interest to study the harmonic analysis on

p-adic fields, resulting in numerious generalizations in operator theory and function

spaces.

The study of Hardy-type operators on p-adic field provide an insights into the

behavior of functions defined on p-adic field and associated function spaces. Fu et

al. introduced the p-adic Hardy-type operators Hp and Hp,∗ for the first time in

[47] and computed their sharp bounds on on Lebesgue space defined on Qn
p . The

authors in [46] established the boundedness of p-adic Hardy operators along with

their commutators in central Morrey spaces. Optimal bounds for the p-adic Hardy

operator and associated adjoint operator on higher dimensional product spaces are

computed in [48]. Finally, the definitions and study of high-dimensional fractional

p-adic Hardy-type operators were given in [48] and are as below:

Hp
αg(ξ) =

1

|ξ|n−α
p

∫
|η|p≤|ξ|p

g(η)dη, Hp,∗
α g(ξ) =

∫
|η|p>|ξ|p

g(η)

|η|n−α
p

dη, ξ ∈ Qn
p \ {0},

(1.3.6)
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where g is a locally integrable function and α ∈ [0,∞). The commutator operator of

p-adic Hardy-type operators are given by

Hp
α,bg = bHp

αg −Hp
α(bg), Hp,∗

α,bg = bHp,∗
α g −Hp,∗

α (bg). (1.3.7)

Taking α = 0, we get the commutator operators of p-adic Hardy-type operators. For

detailed information, see [49].

1.4 Our Contribution

We contribute to the theory of Hardy-type operators in a number of ways on both

Rn and Qn
p . Firstly, we characterize the variable exponent central BMO spaces via

the boundedness of commutators of Hardy-type operators on variable Lebesgue and

central Morrey spaces. Some boundedness results for the Hardy operator and corre-

sponding adjoint operator are also demonstrated on variable exponent Lebesgue and

central Morrey spaces. These results have been published and are online [50]. Fur-

thermore, we also obtained the boundedness of variable-order fractional Hardy-type

operators from grand Herz spaces to weighted spaces, subject to appropriate weight

conditions. The results of this chapters have also been published in [51].

In the framework of variable exponent, we introduce some new p-adic function

spaces. The fractional p-adic Hardy-type operators on the p-adic Lebesgue and cen-

tral Morrey spaces with variable exponents are shown to be bounded. We characterize

some p-adic function spaces as well by proving the boundedness of commutators gen-

erated by p-adic Hardy-type operators and p-adic variable exponent λ-central BMO

functions on the aforementioned spaces. Furthermore, the continuity of theses op-

erators on p-adic variable exponent Herz-type spaces is discussed as well. Future

submissions of these findings to appropriate scientific journal are planned.



Chapter 2

Characterization of Variable Exponent

Central BMO Space Via Commutators

of Fractional Hardy Operator

2.1 Introduction

Characterization of function spaces via commutators of integral operators is an in-

teresting issue in harmonic analysis mainly because of its numerous applications in

the theory of partial differential equations. Many authors worked on such problems

by defining commutators of these integral operators. Among many others, the high

dimensional fractional Hardy-type operators are also used in the characterization of

function spaces via their commutators. For example, in [28] Fu et al. gave the charac-

terization of central BMO space via commutators of Hardy operator on Herz spaces.

Later on, Zhao and Lu [29] characterized the λ-central BMO space for λ ≥ 0 via the

commutators of the same operator. The difficulty caused by taking λ < 0 for the same

characterization was tackled in [30]. Since the Hardy operator is center-symmetric,

using this property the authors characterized the central BMO space through the com-

mutators of rough fractional Hardy operator in [52]. A characterization of weighted

central Campanato spaces using the commutators of Hardy operator was given in [53].

Recently, in [54], Wei introduced the mixed central bounded mean oscillation space

and characterized it using the boundedness of the commutators of the high dimen-

sional Hardy operator on mixed Herz spaces. Finally, two new characterizations of

central BMO space via the commutators of the rough Hardy operator were reported

in the literature in [55].

Although the Hardy operator is a celebrated operator in analysis but there are

only few publication discussing this operator on variable exponent function spaces.

14
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To mention a few we cite here some references considering the continuity of Hardy-type

operators along with their commutators in variable exponents function spaces [56, 68,

57, 58, 59, 60]. In this paper, we characterize the variable exponent central BMO

space via the commutators of Hardy-type operators on variable exponent Lebesgue

and central Morrey spaces. In addition, we discuss the continuity of Hardy-type

operators on variable exponents Lebesgue and central Morrey spaces.

We divide this chapter into the following sections. Next Section gives some basic

propositions and lemmas regarding the function spaces with variable exponents. Sec-

tion 3 of this Chapter investigates the boundedness of the fractional Hardy operators

in the context of variable exponent Lebesgue space along with the characterization

of variable central BMO space via its commutators. Finally, similar boundedness of

Hardy operator and characterization of central BMO space via its commutators on

the variable exponent central Morrey space is done in the last Section.

2.2 Preliminaries

If u′(·) = u(·)/(u(·)−1) then we give the following inequality known as the generalized

Hölder inequality:

Lemma 2.2.1 ([7]) Let u(·) ∈ P(H), where H is an open subset of Rn. If g ∈ Lu(·)(H)

and h ∈ Lu′(·)(H), then we have∫
H

|g(η)h(η)|dη ≤ ru∥g∥Lu(·)(H)∥h∥Lu′(·)(H), (2.2.1)

where ru = 1 + 1
u−

− 1
u+

.

Lemma 2.2.2 ([61]) Suppose u(·) ∈ B(Rn). Then, for every ball B ⊂ Rn, there exists

a C > 0 such that
1

|B|
∥χB∥Lu(·)(Rn)∥χB∥Lu′(·)(Rn) ≤ C.

Lemma 2.2.3 ([62]) If u(·) ∈ B(Rn) then, for every ball B in Rn and all measurable

subsets S ⊂ B, there exists constants C > 0 and δ, δ1 ∈ (0, 1) such that

∥χB∥Lu(·)(Rn)

∥χS∥Lu(·)(Rn)

≤ C
|B|
|S|

,
∥χS∥Lu(·)(Rn)

∥χB∥Lu(·)(Rn)

≤ C

(
|S|
|B|

)δ

,
∥χS∥Lu′(·)(Rn)

∥χB∥Lu′(·)(Rn)

≤ C

(
|S|
|B|

)δ1

.

(2.2.2)

Lemma 2.2.4 ([68]) Let u(·) ∈ B(Rn), 0 < α < n
u+

and define v(·) by

1

v(·)
=

1

u(·)
− α

n
. (2.2.3)
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Then

∥χBj
∥Lv(·)(Rn) ≤ C2−jα∥χBj

∥Lu(·)(Rn). (2.2.4)

Lemma 2.2.5 ([9]) Let u(·) ∈ B(Rn) satisfying conditions (1.2.2) and (1.2.3) of Chap-

ter 1, then

∥χQ∥Lu(·)(Rn) ≈

|Q|
1

u(x) , if |Q| ≤ 2nand x ∈ Q,

|Q|
1

u(∞) , if |Q| ≥ 1,

for all Q ⊂ Rn, where u(∞) = lim
x→∞

u(x).

Following propositions will be helpful in proving results on central Morrey spaces.

Proposition 2.2.6 ([12]) If u(·) ∈ B(Rn), then f ∈ Cu(·) if and only if there exists a

collection of numbers {cB}B in such a way that

∥g∥
C

u(·)
∗

=: sup
r>0

∥(g − cB(0,r))χB(0,r)∥Lu(·)(Rn)

∥χB(0,r)∥Lu(·)(Rn)

< ∞.

Proposition 2.2.7 ([12]) If u(·) ∈ B(Rn), then f ∈ Cu(·) if and only if

∥f∥
C

u(·)
∗∗

=: sup
r>0

inf
c
∥χB(0,r)∥−1

Lu(·)(Rn)
∥(f − c)χB(0,r)∥Lu(·)(Rn) < ∞.

2.3 Characterization of Central BMO Via Commutators

on Lebesgue Space

2.3.1 Main Results

The first result of this section gives us the boundedness of the operator defined in

(1.3.4) on the variable exponent Lebesgue spaces.

Theorem 2.3.1 Let u(·) ∈ B(Rn) satisfying conditions (1.2.2) and (1.2.3) of Chapter

1. Also, let 0 < α < min{ n
u+

, n
v′+
} and define v(·) by

1

v(·)
=

1

u(·)
− α

n
, (2.3.1)

then both Hα and H∗
α map Lu(·)(Rn) into Lv(·)(Rn) and Lv′(·)(Rn) into Lu′(·)(Rn).

If α = 0 in the above theorem then we have the following corollary:

Corollary 2.3.2 Let u(·) ∈ B(Rn) satisfying conditions (1.2.2) and (1.2.3) of Chapter

1, then both H and H∗ map Lu(·)(Rn) into Lu(·)(Rn) and Lu′(·)(Rn) into Lu′(·)(Rn).
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The second result of this section gives the characterization of Cu(·)(Rn) via the

commutators operators defined in (1.3.5) on Variable Lebesgue space.

Theorem 2.3.3 Let u(·) ∈ B(Rn) satisfying conditions (1.2.2) and (1.2.3) of Chapter

1. Also, let 0 < α < min{ n
u+

, n
v′+
} and define v(·) by

1

v(·)
=

1

u(·)
− α

n
, (2.3.2)

then the following statements are equivalent:

(1) b ∈ Cv(·) ∩ Cu′(·).

(2) Both Hα,b and H∗
α,b map Lu(·)(Rn) into Lv(·)(Rn) and Lv′(·)(Rn) into Lu′(·)(Rn).

If α = 0 in the above Theorem we obtain the following corollary which is Theorem

4.1 in [12].

Corollary 2.3.4 Let u(·) ∈ B(Rn) satisfying conditions (1.2.2) and (1.2.3) of Chap-

ter 1, then the following statements are equivalent:

(1) b ∈ Cu(·) ∩ Cu′(·).

(2) Both Hb and H∗
b are bounded on Lu(·)(Rn) and Lu′(·)(Rn).

The next Lemma is an extension of Lemma 2.6 in [28] to the variable exponent

central BMO space.

Lemma 2.3.5 Let g ∈ Cu(·) and l,m ∈ Z, then

|g(x) − gBl
| ≤ |g(x) − gBm| + C|m− l|∥g∥Cu(·) . (2.3.3)

Proof. Let i ∈ Z, then using inequality (2.2.1) we have

|gBi
− gBi+1

| =
1

|Bi|

∫
Bi

|g(y) − gBi+1
|dy

≤ C
1

|Bi+1|
∥(g − gBi+1

)χBi+1
∥Lu(·)∥χBi+1

∥Lu′(·)

≤ C∥g∥Cu(·) ,

where in the last inequality, we made use of Lemma 2.2.2 to obtain the desired output.

Next, if l < m, then

|g(x) − gBl
| ≤ |g(x) − gBm | + C

m−1∑
i=l

|gBi
− gBi+1

| ≤ |g(x) − gBm| + C(m− l)∥g∥Cu(·) .

(2.3.4)
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Similarly, if m < l, then

|g(x) − gBl
| ≤ |g(x) − gBm| + C

l−1∑
i=m

|gBi
− gBi+1

| ≤ |g(x) − gBm | + C(l −m)∥g∥Cu(·) .

(2.3.5)

The inequalities (2.3.4) and (2.3.5) yield the inequality (2.3.3).

2.3.2 Proof of the Main Results

The proof of theorem 2.3.1 is essentially same as that of the proof of Theorem 2.3.3

with proper adjustment of the function b. So, we only give the proof of Theorem 2.3.3.

Proof of Theorem 2.3.3. We give proof of this theorem in two steps:

(1) ⇒ (2) Let b ∈ Cv(·) ∩ Cu′(·), then

∥Hα,bf∥Lv(·)(Rn) =
∞∑

k=−∞

∥χkHα,b(f)∥Lv(·)(Rn),

=
∞∑

k=−∞

∥∥∥∥χk(·)
(

1

| · |n−α

∫
|t|≤|·|

(f(t))(b(·) − b(t))dt

)∥∥∥∥
Lv(·)(Rn)

,

≤
∞∑

k=−∞

∥∥∥∥∥χk(·)| · |α−n

k∑
j=−∞

∫
Aj

(f(t)(b(·) − b(t)))dt

∥∥∥∥∥
Lv(·)(Rn)

. (2.3.6)

Let us consider the inner integral first which can be decomposed as:∫
Aj

|b(x) − b(t)||f(t)|dt ≤
∫
Aj

|b(x) − bBk
||f(t)|dt +

∫
Aj

|bBk
− b(t)||f(t)|dt. (2.3.7)

In view of the generalized Hölders inequality (2.3.6), the fisrt component of the above

inequality (2.3.7) implies∫
Bj

|bBk
− b(x)||f(t)|dt ≤ C|bBk

− b(x)|∥fj∥Lu(·)(Rn)∥χBj
∥Lu′(·)(Rn). (2.3.8)
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The second component of the inequality (2.3.7), by virtue of Lemma 2.3.5 and the

Hölder inequality, gives us:∫
Aj

|f(t)||bBk
− b(t)|dt ≤

∫
Aj

|bBj
− b(t)||f(t)|dt + C(k − j)∥b∥Cu′(·)

∫
Aj

|f(t)|dt

≤ C∥(b− bBj
)χBj

∥Lu′(·)(Rn)∥fj∥Lu(·)(Rn)

+ C∥χBj
∥Lu′(·)(Rn)∥b∥Cu′(·)(k − j)∥fj∥Lu(·)(Rn)

≤ CχBj
∥Lu′(·)(Rn)∥b∥Cu′(·)∥∥fj∥Lu(·)(Rn)

+ C∥χBj
∥Lu′(·)(Rn)(k − j)∥b∥Cu′(·)∥fj∥Lu(·)(Rn)

≤ C∥χBj
∥Lu′(·)(Rn)(k − j)∥b∥Cu′(·)∥fj∥Lu(·)(Rn).

(2.3.9)

We infer from (2.3.6)-(2.3.9) that:

∥Hα,bf∥Lv(·)(Rn)

≤
∞∑

k=−∞

∥∥∥∥∥χk(·)| · |α−n

k∑
j=−∞

∫
Aj

|f(t)||b(t) − b(·)|dt

∥∥∥∥∥
Lv(·)

≤ C
∞∑

k=−∞

k∑
j=−∞

2−k(n−α)∥(bBk
− b)χBk

∥Lv(·)(Rn)∥χBj
∥Lu′(·)(Rn)∥fj∥Lu(·)(Rn)

+ C
∞∑

k=−∞

k∑
j=−∞

2−k(n−α)(k − j)∥b∥Cu′(·)∥χBk
∥Lv(·)(Rn)∥χBj

∥Lu′(·)(Rn)∥fj∥Lu(·)(Rn)

≤ C

∞∑
k=−∞

k∑
j=−∞

2−k(n−α)(k − j)∥χBk
∥Lv(·)(Rn)∥χBj

∥Lu′(·)(Rn)∥fj∥Lu(·)(Rn).

(2.3.10)

Next, our objective is to sort out the product term ∥χBk
∥Lv(·)(Rn)∥χBj

∥Lu′(·)(Rn). A

use of Lemma 2.2.2 and the Lemma 2.2.3 help us to write:

∥χBk
∥Lv(·)(Rn)∥χBj

∥Lu′(·)(Rn) ≤ 2kn∥χBk
∥−1

Lv′(·)(Rn)
∥χBj

∥Lu′(·)(Rn)

≤ C2kn2(j−k)nδ1∥χBk
∥−1

Lv′(·)(Rn)
∥χBk

∥Lu′(·)(Rn).

Since 1
u′(·) = 1

v′(·) −
α
n
, so by virtue of Lemma 2.2.4, we obtain

∥χBk
∥Lv(·)(Rn)∥χBj

∥Lu′(·)(Rn) ≤ 2k(n−α)2(j−k)nδ1 . (2.3.11)
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Hence, (2.3.10) and (2.3.11) together yield

∥Hα,bf∥Lv(·)(Rn) ≤ C

∞∑
k=−∞

k∑
j=−∞

(k − j)2−(k−j)nδ1∥fj∥Lu(·)(Rn)

≤ C

∞∑
j=−∞

∥fj∥Lu(·)(Rn)

∞∑
k=j

(k − j)2−(k−j)nδ1

≤ C∥f∥Lu(·)(Rn).

In a similar fashion it is easy to prove that

∥H∗
α,bf∥Lv(·)(Rn) ≤ C∥f∥Lu(·)(Rn).

A similar procedure as used in the (Lu(·)(Rn), Lv(·)(Rn)) boundedness of Hα,b and

H∗
α,b and the fact that 1

u′(·) = 1
v′(·) −

α
n
, implies that both Hα,b and H∗

α,b map Lv′(·)(Rn)

into Lu′(·)(Rn).

(2) ⇒ (1) Using the fact that both Hα,b and H∗
α,b map Lu(·)(Rn) into Lv(·)(Rn) and

Lv′(·)(Rn) into Lu′(·)(Rn), we have to show that b ∈ Cv(·) ∩ Cu′(·).

For any ball B =: B(0, r) and x ∈ B, we obtain

|b(x) − bB| =:

∣∣∣∣ 1

|B|

∫
B

(b(x) − b(t))dt

∣∣∣∣ ,
≤ C

∣∣∣∣ |B|−α
n

|x|n−α

∫
|t|≤|x|

(b(x) − b(t))χB(t)dt

∣∣∣∣
+ C

∣∣∣∣∫
|t|>|x|

(b(x) − b(t))χB(t)|B|−1|t|n−α

|t|n−α
dt

∣∣∣∣ ,
≤ C|B|−

α
n |Hα,bχB(x)| + C|B|−1

∣∣H∗
α,bf0(x)

∣∣ ,
where f0(x) = |x|n−αχB(x). Hence

∥(b− bB)χB∥Ls(·)(Rn) ≤ C|B|−
α
n ∥Hα,b(χB)∥Ls(·)(Rn) + C|B|−1∥H∗

α,b(f0)∥Ls(·)(Rn).

(2.3.12)

In order to arrive at our claim, we split the problem into the following two cases:

Case 1: s(·) = v(·). In this case using the (Lu(·)(Rn), Lv(·)(Rn)) boundedness of Hα,b

and H∗
α,b, one has

∥(b− bB)χB∥Lv(·)(Rn) ≤ C|B|−
α
n ∥Hα,b(χB)∥Lv(·)(Rn) + C|B|−1∥H∗

α,b(f0)∥Lv(·)(Rn)

≤ C|B|−
α
n ∥χB∥Lu(·)(Rn) + C|B|−1∥f0∥Lu(·)(Rn)

≤ C|B|−
α
n ∥χB∥Lu(·)(Rn).
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Using Lemma 2.2.5 and the condition 1
v(x)

= 1
u(x)

− α
n
, we have

∥χB∥Lu(·)(Rn) ≈ |B|
1

u(x) ≈ ∥χB∥Lv(·)(Rn)|B|
α
n .

Therefore

∥(b− bB)χB∥Lv(·)(Rn) ≤ C∥χB∥Lv(·)(Rn).

Case 2: s(·) = u′(·). In this case using the (Lv′(·)(Rn), Lu′(·)(Rn)) boundedness of Hα,b

and H∗
α,b, we have

∥(b− bB)χB∥Lu′(·)(Rn) ≤ C|B|−
α
n ∥Hα,b(χB)∥Lu′(·)(Rn) + C|B|−1∥H∗

α,b(f0)∥Lu′(·)(Rn)

≤ C|B|−
α
n ∥χB∥Lv′(·)(Rn) + C|B|−1∥f0∥Lv′(·)(Rn)

≤ C|B|−
α
n ∥χB∥Lv′(·)(Rn).

Using Lemma 2.2.5 and the condition 1
v′(x)

= 1
u′(x)

+ α
n
, we have

∥χB∥Lv′(·)(Rn) ≈ |B|
1

v′(x) ≈ ∥χB∥Lu′(·)(Rn)|B|
α
n .

Therefore

∥(b− bB)χB∥Lu′(·)(Rn) ≤ C∥χB∥Lu′(·)(Rn).

We thus conclude from these cases that b ∈ Cv(·) ∩ Cu′(·). Thus the proof is com-

pleted.

2.4 Characterization of Central BMO Via Commutators

on Central Morrey Space

2.4.1 Main Results

The first result for this section gives the continuity properties of Hα and H∗
α the

variable exponent on central Morrey space.

Theorem 2.4.1 Let u(·) ∈ B(Rn) satisfying conditions (1.2.2) and (1.2.3) of Chapter

1. Also, let 0 < α < min{ n
u+

, n
v′+
} and define v(·) by

1

v(·)
=

1

u(·)
− α

n
, (2.4.1)

then for γ = β + α
n

with γ < 0, both Hα and H∗
α map Ṁu(·),β(Rn) into Ṁ v(·),γ(Rn)

and Ṁ v′(·),β(Rn) into Ṁu′(·),γ(Rn).
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Remark 2.4.2 Theorem 2.4.1 improves and unifies Theorem 3.1 and Theorem 4.1 in

[60] by removing extra parameters involved in the stated conditions for these theorems.

Also, it uses a different methodology for its proof.

If α = 0 in Theorem 2.4.1 then it yields the following corollary:

Corollary 2.4.3 Let u(·) ∈ B(Rn) satisfying conditions (1.2.2) and (1.2.3) of Chapter

1, then for β < 0, both H and H∗ map Ṁu(·),β(Rn) on Ṁu(·),β(Rn).

The next Theorem characterizes the variable central BMO space via the commu-

tators of Hardy operators on central Morrey space.

Theorem 2.4.4 Let u(·) ∈ B(Rn) satisfying conditions (1.2.2) and (1.2.3) of Chapter

1. Also, let 0 < α < min{ n
u+

, n
v′+
} and define v(·) by

1

v(·)
=

1

u(·)
− α

n
, (2.4.2)

then for γ = β + α
n

with γ < 0, the following statements are equivalent:

(1) b ∈ Cv(·) ∩ Cu′(·).

(2) Both Hα,b and H∗
α,b map Ṁu(·),β(Rn) into Ṁ v(·),γ(Rn) and Ṁ v′(·),β(Rn) into Ṁu′(·),γ(Rn).

The last Theorem has the following corollary:

Corollary 2.4.5 Let u(·) ∈ B(Rn) satisfying conditions (1.2.2) and (1.2.3) of Chapter

1, then for β < 0, the following statements are equivalent:

(1) b ∈ Cu(·) ∩ Cu′(·).

(2) Both Hb and H∗
b are bounded on Ṁu(·),β(Rn) and Ṁu′(·),β(Rn).

2.4.2 Proofs of Main Results

We first present the proof of Theorem 2.4.1.

Proof of Theorem 2.4.1. Without loss of generality we may assume Bk0 = B(0, R)

with k0 ∈ Z for a fixed ball B(0, R) ⊂ Rn. Let f = f1 + f2 where f1 = fχ2Bk0
and

f2 = fχ(2Bk0
)c

then

∥
(
Hαf

)
χBk0

∥Lv(·)(Rn) ≤ ∥
(
Hαf1

)
χBk0

∥Lv(·)(Rn) + ∥
(
Hαf2

)
χBk0

∥Lv(·)(Rn)

=: I1 + I2.
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In view of Theorem 2.3.1, we estimate I1 as below:

I1 =: ∥(Hαf1)χBk0
∥Lv(·)(Rn)

≤ ∥
(
Hαf

)
χ2Bk0

∥Lv(·)(Rn)

≤ C∥fχ2Bk0
∥Lu(·)(Rn)

≤ C∥f∥Ṁu(·),β∥χ2Bk0
∥Lu(·)(Rn)|2Bk0 |β

≤ C∥f∥Ṁu(·),β∥∥χBk0
∥Lu(·)(Rn)|Bk0|β.

Using Lemma 2.2.5 and the condition 1
v(·) = 1

u(·) −
α
n

we get

∥χBk0
∥Lu(·)(Rn) ≈ |Bk0|

1
u(x) ≈ ∥χBk0

∥Lv(·)(Rn)|Bk0|
α
n . (2.4.3)

Therefore, by virtue of γ − β = α
n
, we get

I1 =: C∥f∥Ṁu(·),β∥∥χBk0
∥Lv(·)(Rn)|Bk0|γ.

Now in order to estimate I2, we proceed as below:

|Hαf2(x)| =

∣∣∣∣∣|x|α−n

∫
|y|≤|x|

f2(y)dy

∣∣∣∣∣
≤ C

∞∑
k=2k0

1

|Bk|1−
α
n

∫
Ck

|f(y)|dy

≤ C
∞∑

k=2k0

1

|Bk|1−
α
n

∥fχBk
∥Lu(·)(Rn)∥χBk

∥Lu′(·) .

Using Lemma 2.2.2, it is easy to see that

|Hαf2(x)| ≤ C

∞∑
k=2k0

|Bk|
α
n
+β∥f∥Ṁu(·),β

≤ C∥f∥Ṁu(·),β

∞∑
k=2k0

|Bk|γ,

where we have used the condition γ = α
n

+ β. Since β < −α
n
, so that we have

|Hαf2(x)| ≤ C∥f∥Ṁu(·),β |Bk0|γ.

Finally, we get

I2 =: ∥(Hαf2)χBk0
∥Lv(·)(Rn) ≤ C∥f∥Ṁu(·),β∥χBk0

∥Lv(·)(Rn)|Bk0|γ.
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Combining the estimates for I1 and I2, one has

∥Hαf∥Ṁv(·),γ(Rn) ≤ C∥f∥Ṁu(·),β(Rn).

Similarly, the following inequalities can be established as well:

∥H∗
αf∥Ṁv(·),γ(Rn) ≤ C∥f∥Ṁu(·),β(Rn),

∥Hαf∥Ṁu′(·),γ(Rn) ≤ C∥f∥Ṁv′(·),β(Rn),

∥H∗
αf∥Ṁu′(·),γ(Rn) ≤ C∥f∥Ṁv′(·),β(Rn).

We thus finish the proof of Theorem 2.4.1.

Proof of Theorem 2.4.4. For (1) → (2), following the proof of Theorem 2.4.1, we

write

∥
(
Hα,bf

)
χBk0

∥Lv(·)(Rn) ≤ ∥
(
Hα,bf1

)
χBk0

∥Lv(·)(Rn) + ∥
(
Hα,bf2

)
χBk0

∥Lv(·)(Rn)

=: J1 + J2.

Making use of the Theorem 2.3.3 for estimation of J1, we get

J1 =: ∥(Hα,bf1)χBk0
∥Lv(·)(Rn)

≤ ∥
(
Hα,bf

)
χ2Bk0

∥Lv(·)(Rn)

≤ C∥fχ2Bk0
∥Lu(·)(Rn)

≤ C∥f∥Ṁu(·),β∥χ2Bk0
∥Lu(·)(Rn)|2Bk0|β

≤ C∥f∥Ṁu(·),β∥∥χBk0
∥Lu(·)(Rn)|Bk0|β.

The relation (2.4.3) and the condition γ = β + α
n
, help us to write

J1 =: C∥f∥Ṁu(·),β∥∥χBk0
∥Lv(·)(Rn)|Bk0 |γ.

Next, to estimate J2 we need to the decomposition:

|Hα,bf2(x)| =

∣∣∣∣∣ 1

|x|n−α

∫
|y|≤|x|

(b(x) − b(y))f2(y)dy

∣∣∣∣∣
≤ C

∣∣∣∣∣
∞∑

k=2k0

1

|Bk|1−
α
n

∫
Ck

(b(x) − b(y))f(y)dy

∣∣∣∣∣
≤ C

∣∣∣∣∣
∞∑

k=2k0

1

|Bk|1−
α
n

∫
Ck

(b(x) − c)f(y)dy

∣∣∣∣∣
+ C

∣∣∣∣∣
∞∑

k=2k0

1

|Bk|1−
α
n

∫
Ck

(b(y) − c)f(y)dy

∣∣∣∣∣
=: J21 + J22.
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Using the generalized Hölder inequality, J21 assumes the following form:

J21 = C

∣∣∣∣∣
∞∑

k=2k0

|Bk|
α
n
−1(b(x) − c)

∫
Ck

f(y)dy

∣∣∣∣∣
≤ C

∞∑
k=2k0

|Bk|
α
n
−1|b(x) − c|∥fχBk

∥Lu(·)(Rn)∥χBk
∥Lu′(·) ,

which in view of Lemma 2.2.2 gives us:

J21 ≤ C|b(x) − c|
∞∑

k=2k0

|Bk|
α
n
+β∥f∥Ṁu(·),β

≤ C|b(x) − c|∥f∥Ṁu(·),β

∞∑
k=2k0

|Bk|γ

≤ C|b(x) − c|∥f∥Ṁu(·),β |Bk0|γ,

where series in the second last step converges due to the fact that γ < 0.

Similarly, Lemma 2.2.1 and Proposition 2.2.7 are used, respectively, in establishing

the below inequality for J22.

J22 = C

∣∣∣∣∣
∞∑

k=2k0

|Bk|
α
n
−1

∫
Ck

(b(y) − c)f(y)dy

∣∣∣∣∣
≤ C

∞∑
k=2k0

|Bk|
α
n
−1∥fχBk

∥Lu(·)(Rn)∥(b(y) − c)χBk
∥Lu′(·)

≤ C∥b∥Cu′(·)

∞∑
k=2k0

|Bk|
α
n
−1∥fχBk

∥Lu(·)(Rn)∥χBk
∥Lu′(·) ,

which, by virtue of Lemma 2.2.2 and the condition γ < 0, yields

J22 ≤ C∥f∥Ṁu(·),β

∞∑
k=2k0

|Bk|γ ≤ C∥f∥Ṁu(·),β |Bk0|γ.

Hence, we have

J2 ≤ C∥(b(x) − c)χBk0
∥Lv(·)∥f∥Ṁu(·),β |Bk0 |γ + C∥f∥Ṁu(·),β∥χBk0

∥Lv(·)(Rn)|Bk0|γ,

which on making use of Proposition 2.2.7 results in the following inequality:

J2 ≤ C∥f∥Ṁu(·),β∥χBk0
∥Lv(·)(Rn)|Bk0|γ.

Combining the estimates J1 and J2, we get

∥Hα,bf∥Ṁv(·),γ(Rn) ≤ C∥f∥Ṁu(·),β(Rn).
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Similarly, the following inequalities can be established as well:

∥H∗
α,bf∥Ṁv(·),γ(Rn) ≤ C∥f∥Ṁu(·),β(Rn),

∥Hα,bf∥Ṁu′(·),γ(Rn) ≤ C∥f∥Ṁv′(·),β(Rn),

∥H∗
α,bf∥Ṁu′(·),γ(Rn) ≤ C∥f∥Ṁv′(·),β(Rn).

Thus the proof of the case (1) → (2) is complete.

(2) ⇒ (1) Using the fact that both Hα,b and H∗
α,b map Ṁu(·),β(Rn) into Ṁ v(·),γ(Rn)

and Ṁ v′(·),β(Rn) into Ṁu′(·),γ(Rn), we have to show that b ∈ Cv(·) ∩ Cu′(·).

For f0(x) = |x|n−αχB(x), here we rewrite (2.3.12):

∥(b− bB)χB∥Ls(·)(Rn) ≤ C|B|−
α
n ∥Hα,b(χB)∥Ls(·)(Rn) + C|B|−1∥H∗

α,b(f0)∥Ls(·)(Rn).

Next, we split the problem into the following two cases:

Case 1: s(·) = v(·). In this case using the (Ṁu(·),β, Ṁ v(·),γ) boundedness of Hα,b and

H∗
α,b, one has

∥(b− bB)χB∥Lv(·)(Rn) ≤ C|B|γ−
α
n ∥Hα,b(χB)∥Ṁv(·),γ∥χB∥Lv(·)(Rn)

+ C|B|γ−1∥H∗
α,b(f0)∥Ṁv(·),γ∥χB∥Lv(·)(Rn)

≤ C|B|γ−
α
n ∥χB∥Ṁu(·),β∥χB∥Lv(·)(Rn)

+ C|B|γ−1∥f0∥Ṁu(·),β∥χB∥Lv(·)(Rn)

≤ C∥χB∥Lv(·)(Rn).

Case 2: s(·) = u′(·). In this case using the (Ṁ v′(·),β, Ṁu′(·),γ) boundedness of Hα,b and

H∗
α,b, one has

∥(b− bB)χB∥Lu′(·)(Rn) ≤ C|B|γ−
α
n ∥Hα,b(χB)∥Ṁu′(·),γ∥χB∥Lu′(·)(Rn)

+ C|B|γ−1∥H∗
α,b(f0)∥Ṁu′(·),γ∥χB∥Lu′(·)(Rn)

≤ C|B|γ−
α
n ∥χB∥Ṁv′(·),β∥χB∥Lu′(·)(Rn)

+ C|B|γ−1∥f0∥Ṁv′(·),β∥χB∥Lu′(·)(Rn)

≤ C∥χB∥Lu′(·)(Rn).

From these cases, we conclude that b ∈ Cv(·) ∩Cu′(·). We thus complete the proof.

2.5 Conclusion

In this Chapter we showed that the Hardy-type operators are bounded on variable

exponent Lebesgue and central Morrey spaces. In addition, we gave a characterization



2.5 Conclusion 27

of central Bounded Mean Oscillation (BMO) space via the commutators of these

operators on variable exponents Lebesgue and central Morrey spaces.



Chapter 3

Continuity of Hardy Operators on

Grand Herz Spaces With Variable

Exponent

3.1 Introduction

The investigation of boundedness properties of operators in variable exponent spaces

is a challenging and active area of research, for reference see [58, 59, 60]. The behavior

of operators in these spaces often differs significantly from that in classical Lebesgue

or Sobolev spaces. Consequently, the study of boundedness properties of fractional

Hardy operators in variable exponent spaces requires new techniques and approaches.

The concept of Variable exponent grand Herz spaces was introduced in [63] and

opens new dimensions in the specified function spaces. Sultan et al. [64, 65] introduced

the idea of grand variable Herz-Morrey spaces and proved boundedness for Riesz

potential operator in these spaces. Grand weighted Herz spaces and grand weighted

Herz-Morrey spaces was introduced by Sultan et al. in [66, 67] respectively.

Inspired by above cited work, in this chapter, we consider the boundedness of

fractional Hardy-type operators of variable order from grand Herz spaces to weighted

space under some proper assumptions on weight functions.

In this chapter, the content has been divided into four main sections. In addition to

the introduction, the next Section is dedicated to exploring fundamental lemmas and

propositions. The third Section focuses on the Sobolev-type theorems for fractional

Hardy-type operators with variable orders in grand Herz spaces. The last Section

includes concluding remarks.

28
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3.2 Preliminaries

We are assuming that order of the fractional integral operator is:

Iζ(ξ)h(ξ) =

∫
Rn

h(ξ)

|η − ξ|n−ζ(ξ)
dη, 0 < ζ(ξ) < n. (3.2.1)

ζ(ξ) is not continuous rather we are assuming that it is a measurable function in Rn

satisfying:

(1) ζ0 := ess infy∈Rn ζ(y) > 0,

(2) ess supy∈Rn p(y)ζ(y) < n,

(3) ess supy∈Rn p(∞)ζ(y) < n,

where p(∞) = lim
|x|→∞

p(x).

The following proposition is one of the main requirement to prove our main results.

This proposition was proved in [20] and commonly known as Sobolev theorem for

Riesz potential operator in Lebesgue spaces under the some necessary assumptions

on exponent.

Proposition 3.2.1 Suppose that

p(·) ∈ Blog(Rn) ∩B0,∞(Rn) ∩B(Rn)

and assume

1 < p(∞) ≤ p(x) ≤ p+ < ∞.

Let ζ(x) satisfy the above conditions (1)–(3). Then, we have following weighted

Sobolev-type estimate for the fractional operator Iζ(z)

∥(1 + |z|)−λ(z)Iζ(z)(f)∥Lq(·)(Rn) ≤ C∥f∥Lp(·)(Rn),

where
1

q(z)
=

1

p(z)
− ζ(z)

n

is the Sobolev exponent.

λ(z) = Cζ(z)

(
1 − ζ(z)

n

)
≤ n

4
C,

with C is being the Dini-Lipschitz constant from the inequality (1.2.3) in which a(·)
replaced by p(·).
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Lemma 3.2.2 If the indices appearing in the statement of Proposition 3.2.1 satisfy the

condition given at there then the following inequality holds:

∥(1 + |z1|)−λ(z1)|z1|ζ(z1).χDℓ
(z1)∥Lq(Rn) ≤ C∥χDℓ

∥Lp(Rn).

Proof: Differing slightly from the procedure given in [68], we have

Iζ(z1)(χDℓ
)(z1) ≥ Iζ(z1)(χDℓ

)(z1).(χDℓ
)(z1) =

∫
Dℓ

1

|z1 − z2|ζ(z1)−n
dy.χDℓ

(z1)

≥ C|z1|ζ(z1).χDℓ
(z1).

Multiplying both sides with (1 + |z1|)−λ(z1), the above inequality can be written as:

(1 + |z1|)−λ(z1)|z1|ζ(z1).χDℓ
(z1) ≤ C(1 + |z1|)−λ(z1)Iζ(z1)(χDℓ

)(z1).

Applying Lq(Rn) norm on both sides and using Proposition 3.2.1, we obtain

∥(1 + |z1|)−λ(z1)|z1|ζ(z1).χDℓ
∥Lq(Rn) ≤ C∥(1 + |z1|)−λ(z1)Iζ(z1)(χDℓ

)∥Lq(Rn)

≤ C∥χDℓ
∥Lp(Rn).

Thus we finish the proof of Lemma 3.2.2.

Remark 3.2.3 (i) If ζ(z) is satisfying the condition (1.2.3):

|ζ(z) − ζ∞| ≤ C∞

ln(e + ∥z|)

for x ∈ Rn. Then, (1 + |z|)−λ(z) is equivalent to the weight (1 + |z|)−λ∞.

(ii) We can replace the variable order of Riesz potential operator ζ(x) by ζ(y) if

we consider potentials over bounded domain, these potentials vary unessentially if

the function ζ(x) is satisfying the logarithmic smoothness condition given in (1.2.2)

because:

C1|z1 − z2|n−ζ(z2)| ≤ |z1 − z2|n−ζ(z1) ≤ C2|z1 − z2|n−ζ(z2).

Lemma 3.2.4 [19] Let 1 < A and p ∈ P0,∞(Rn). Then,

1

t0
r

n
p(0) ≤ ∥χB(0,Ar)\B(0,r)∥p(·) ≤ t0r

n
p(0) (3.2.2)

for 0 < r ≤ 1 and
1

t∞
r

n
p∞ ≤ ∥χB(0,Ar)\B(0,r)∥p(·) ≤ t∞r

n
p∞ (3.2.3)

for r ≥ 1, where 1 ≤ t0 and 1 ≤ t∞ depend on A but not on r.
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Lemma 3.2.5 [8] Consider a measurable subset D such that D ⊆ Rn and p−(D) ≥ 1,

≤ p+(D) ≤ ∞. Then,

∥gh∥Lr(·)(D) ≤ ∥g∥Lp(·)(D)∥h∥Lq(·)(D)

holds, where g ∈ Lp(·)(D), h ∈ Lq(·)(D) and

1

r(t)
=

1

p(t)
+

1

q(t)

for every t ∈ H.

3.3 Sobolev-type Theorem for Hardy-type Operators in

Grand Herz Spaces

The main results of our chapter along with their proofs are given below.

Theorem 3.3.1 Let 1 < u < ∞,

1/q1(z1) − 1/q2(z1) = ζ(·)/n,

0 < ζ(·) < n and a, q2 ∈ P0,∞(Rn), such that

−n

q1∞
< a∞ <

n

q′1∞
,

−n

q1(0)
< a(0) <

n

q′1(0)
,

where q1∞ = lim
x→∞

q1(x) and q′1∞ = lim
x→∞

q′1(x). Then,

∥(1 + |z1|)−λ(z1)H(f)∥
K̇

a(·),u),θ
q2(·)

(Rn)
≤ C∥f∥

K̇
a(·),u),θ
q1(·)

(Rn)
.

Proof . Let f ∈ K̇
a(·),u),θ
q2(·) (Rn) and

f(z1) =
∞∑

j=−∞

f(z1)χj(z1) =
∞∑

j=−∞

fj(z1),

we have

|H(f)(z1).χℓ(z1)| ≤
1

|z1|n−ζ(z1)

∫
Dℓ

|f(x)|dx.χℓ(z1)

≤ C2−ℓn

ℓ∑
j=−∞

∥fj∥q1(·)∥χj∥q′1(·).|z1|
ζ(z1)χℓ(z1).
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Consequently, we have

∥χℓ(1 + |z1|)−λ(z1)H(f)∥q2(·)
≤ C2−ℓn∥fj∥Lq1(·)∥χj∥q′1(·)∥(1 + |z1|)−λ(z1)|z1|ζ(z1)χℓ(z1)∥q2(·)

≤ C2−ℓn

ℓ∑
j=−∞

∥fj∥q1(·)∥χj∥q′1(·)∥(1 + |z1|)−λ(z1)|z1|ζ(z1)χDℓ
(z1)∥q2(·)

≤ C2−ℓn

ℓ∑
j=−∞

∥fj∥q1(·)∥χj∥q′1(·)∥χDℓ
∥q1(·)

≤ C

ℓ∑
j=−∞

2−ℓn∥fj∥q1(·)∥χj∥q′1(·)∥χDℓ
∥q1(·),

where we used Lemma 3.2.2 in the second last step of the above inequality.

Next by definition of Herz-Morrey spaces, we have

∥(1 + |z1|)−λ(z1)H(f)∥
K̇

a(·),v),θ
q2(·)

(Rn)

= sup
ϕ>0

(
ϕθ
∑
ℓ∈Z

2ℓa(·)v(1+ϕ)∥χℓ(1 + |z1|)−λ(z1)H(f)∥v(1+ϕ)
q2(·)

) 1
v(1+ϕ)

≤ sup
ϕ>0

ϕθ
∑
ℓ∈Z

2ℓa(·)v(1+ϕ)

(
ℓ∑

j=−∞

2−ℓn∥fj∥q1(·)∥χj∥q′1(·)∥χDℓ
∥q1(·)

)v(1+ϕ)
 1

v(1+ϕ)

≤ sup
ϕ>0

ϕθ

−1∑
ℓ=−∞

2ℓa(·)v(1+ϕ)

(
ℓ∑

j=−∞

2−ℓn∥fj∥q1(·)∥χj∥q′1(·)∥χDℓ
∥q1(·)

)v(1+ϕ)
 1

v(1+ϕ)

+ sup
ϕ>0

ϕθ

∞∑
ℓ=0

2ℓa(·)v(1+ϕ)

(
ℓ∑

j=−∞

2−ℓn∥fj∥q1(·)∥χj∥q′1(·)∥χDℓ
∥q1(·)

)v(1+ϕ)
 1

v(1+ϕ)

=: E1 + E2.

Now, we will find the estimate for E1. By the Lemma (3.2.4)

2−ℓn∥χj∥q′1(·)∥χDℓ
∥q1(·) ≤ C2−ℓn2

kn
q1(0) 2

jn

q′1(0) ≤ C2
(j−ℓ)n

q′1(0) . (3.3.1)



3.3 Sobolev-type Theorem for Hardy-type Operators in Grand Herz Spaces 33

Applying above results to E1 to get

E1 ≤ sup
ϕ>0

ϕθ

−1∑
ℓ=−∞

2ℓa(·)v(1+ϕ)

(
ℓ∑

j=−∞

2−ℓn∥fj∥q1(·)∥χj∥q′1(·)∥χDℓ
∥q1(·)

)v(1+ϕ)
 1

v(1+ϕ)

≤ C sup
ϕ>0

ϕθ

−1∑
ℓ=−∞

2ℓa(0)v(1+ϕ)

(
ℓ∑

j=−∞

2
(j−ℓ)n

q′1(0) ∥fj∥q1(·)

)v(1+ϕ)
 1

v(1+ϕ)

.

Let b := n
q′1(0)

− a(0). Applying the fact 2−v(1+ϕ) < 2−v, the Hölder’s inequality and

Fubini’s theorem to get,

E1 ≤ C sup
ϕ>0

ϕθ

−1∑
ℓ=−∞

(
ℓ∑

j=−∞

2a(0)j∥fj∥q1(·)2b(j−ℓ)

)v(1+ϕ)
 1

v(1+ϕ)

≤ C sup
ϕ>0

ϕθ

−1∑
ℓ=−∞

(
ℓ∑

j=−∞

2a(0)j∥fj∥q1(·)2b(j−ℓ)

)v(1+ϕ)
 1

v(1+ϕ)

≤ C sup
ϕ>0

[
ϕθ

−1∑
ℓ=−∞

(
ℓ∑

j=−∞

2a(0)v(1+ϕ)j∥fj∥v(1+ϕ)
q1(·) 2bu(1+ϕ)(j−ℓ)/2

)

×

(
ℓ∑

j=−∞

2b(v(1+ϕ))′(j−ℓ)/2

) v(1+ϕ)

(v(1+ϕ))′
] 1

v(1+ϕ)

≤ C sup
ϕ>0

[
ϕθ

−1∑
ℓ=−∞

ℓ∑
j=−∞

2a(0)v(1+ϕ)j∥fj∥v(1+ϕ)
q1(·) 2bu(1+ϕ)(j−ℓ)/2

] 1
v(1+ϕ)

≤ C sup
ϕ>0

[
ϕθ

−1∑
j=−∞

2a(·)v(1+ϕ)j∥fj∥v(1+ϕ)
q1(·)

−1∑
ℓ=j

2bu(1+ϕ)(j−ℓ)/2

] 1
v(1+ϕ)

≤ C sup
ϕ>0

(
ϕθ

−1∑
j=−∞

2a(0)v(1+ϕ)j∥fj∥v(1+ϕ)
q1(·)

−1∑
ℓ=j

2bu(1+ϕ)(j−ℓ)/2

) 1
v(1+ϕ)

≤ C sup
ϕ>0

(
ϕθ

−1∑
l=−∞

2a(0)v(1+ϕ)j∥fj∥v(1+ϕ)
q1(·)

) 1
v(1+ϕ)

= C sup
ϕ>0

(
ϕθ
∑
j∈Z

2a(·)v(1+ϕ)j∥fj∥v(1+ϕ)
q1(·)

) 1
v(1+ϕ)

≤ C∥f∥
K̇

a(·),v),θ
q1(·)

(Rn)
.

Now for E2, using Minkowski’s inequality we have
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E2 ≤ sup
ϕ>0

ϕθ

∞∑
ℓ=0

2ℓa(·)v(1+ϕ)

(
ℓ∑

j=−∞

∥χℓ(1 + |z1|)−λ(z1)H(fj)∥q2(·)

)v(1+ϕ)
 1

v(1+ϕ)

≤ sup
ϕ>0

ϕθ

∞∑
ℓ=0

2ℓa(·)v(1+ϕ)

(
−1∑

j=−∞

∥χℓ(1 + |z1|)−λ(z1)H(fj)∥q2(·)

)v(1+ϕ)
 1

v(1+ϕ)

+ sup
ϕ>0

ϕθ

∞∑
ℓ=0

2ℓa(·)v(1+ϕ)

(
ℓ∑

j=0

∥χℓ(1 + |z1|)−λ(z1)H(fj)∥q2(·)

)v(1+ϕ)
 1

v(1+ϕ)

:= A1 + A2.

We can easily find the approximation for A2 in a way similar to E1. We will replace

q′1(0) with q′1∞ and by virtue of the fact b := n
q′1∞

− a∞ > 0 to get our desired results.

For A1, we have

2−ℓn∥χDℓ
∥q1(·)∥χj∥q′1(·) ≤ C2−ℓn2

ℓn
q1∞ 2

jn

q′1(0) ≤ C2
−ℓn
q1∞ 2

jn

q′1(0) . (3.3.2)

As a∞ − n
q′1∞

< 0 we have

A1 ≤ C sup
ϕ>0

ϕθ

∞∑
ℓ=0

2ℓa∞v(1+ϕ)

(
−1∑

j=−∞

∥χℓ(1 + |z1|)−λ(z1)H(fj)∥q2(·)

)v(1+ϕ)
 1

v(1+ϕ)

≤ C sup
ϕ>0

[
ϕθ

∞∑
ℓ=0

2ℓa∞v(1+ϕ)

(
−1∑

j=−∞

2−ℓn2
ℓn

q1∞ 2
jn

q′1(0)∥fj∥q1(·)

)v(1+ϕ) ] 1
v(1+ϕ)

≤ C sup
ϕ>0

[
ϕθ

∞∑
ℓ=0

2
ℓa∞−ℓn

q′1∞
v(1+ϕ)

(
−1∑

j=−∞

2
jn

q′1(0)∥fj∥q1(·)

)v(1+ϕ) ] 1
v(1+ϕ)

≤ C sup
ϕ>0

ϕθ

(
−1∑

j=−∞

2
jn

q′1(0)∥fj∥q1(·)

)v(1+ϕ)
 1

v(1+ϕ)

≤ C sup
ϕ>0

ϕθ

(
−1∑

j=−∞

2a(0)j∥fj∥q1(·)2
jn

q′1(0)
−a(0)j

)v(1+ϕ)
 1

v(1+ϕ)

.

Now, by using the condition that a(0) < n
q′1(0)

and Hölder’s inequality we have
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A1 ≤ C sup
ϕ>0

[
ϕθ

(
−1∑

j=−∞

2a(0)jv(1+ϕ)∥fj∥v(1+ϕ)
q1(·)

)

×

(
−1∑

j=−∞

2
( jn

q′1(0)
−a(0)j)(v(1+ϕ))′

) v(1+ϕ)

(v(1+ϕ))′
] 1

v(1+ϕ)

≤ C sup
ϕ>0

(
ϕθ

(∑
j∈Z

2a(0)jv(1+ϕ)∥fj∥v(1+ϕ)
q1(·)

)) 1
v(1+ϕ)

≤ C∥f∥
K̇

a(·),v),θ
q1(·)

(Rn)
.

Combining these estimates we get

∥(1 + |z1|)−λ(z1)H(f)∥
K̇

a(·),v),θ
q2(·)

(Rn)
≤ C∥f∥

K̇
a(·),v),θ
q1(·)

(Rn)
.
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Theorem 3.3.2 Let 1 < v < ∞,

1/q1(z1) − 1/q2(z1) = ζ(·)/n,

0 < ζ(·) < n, and a, q2 ∈ P0,∞(Rn) such that

−n

q2∞
< a∞ <

n

q′2∞
,

−n

q2(0)
< a(0) <

n

q′2(0)
.

Then,

∥(1 + |z1|)−λ(z1)H∗(f)∥
K̇

a(·),v),θ
q2(·)

(Rn)
≤ C∥f∥

K̇
a(·),v),θ
q1(·)

(Rn)
.

Proof . Let f ∈ K̇
a(·),u),θ
q2(·) (Rn) and

f(z1) =
∞∑

j=−∞

f(z1)χj(z1) =
∞∑

j=−∞

fj(z1).

We have

|(1 + |z1|)−λ(z1)H∗(f)(z1).χℓ(z1)|

≤
∫
Rn\ℓ

1

|z1|n−ζ(z1)
|f(x)|dx.(1 + |z1|)−λ(z1)χℓ(z1)

≤ C
∞∑

j=ℓ+1

∥fj∥q1(·)∥(1 + |z1|)−λ(z1)| · |ζ(z1)−nχj∥q′1(·)χℓ(z1).

It is known, see e.g. [56] that

Iζ(·)(χDj
)(z1) ≥ Iζ(·)(χDj

)(z1).(χDj
)(z1)

=

∫
Dj

1

|z1 − z2|ζ(z1)−n
dy.χDj

(z1)

≥ C|z1|ζ(z1).χDj
(z1)

≥ C|z1|ζ(z1).χj(z1).

Consequently, we have

∥χℓ(1 + |z1|)−λ(z1)H∗(f)∥q2(·)

≤ C
∞∑

j=ℓ+1

∥fj∥q1(·)∥(1 + |z1|)−λ(z1)| · |ζ(z1)−nχj∥Lq′1(·)(τ)
∥χℓ∥q2(·)

≤ C
∞∑

j=ℓ+1

2−jn∥fj∥q1(·)∥(1 + |z1|)−λ(z1)|z1|ζ(z1)χj∥q′1(·)∥χℓ∥q2(·)

≤ C2−jn

∞∑
j=ℓ+1

∥fj∥Lq1(·)∥χj∥q′2(·)∥χℓ∥q2(·).
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∥(1 + |z1|)−λ(z1)H∗(f)∥
K̇

a(·),v),θ
q2(·)

(Rn)

= sup
ϕ>0

(
ϕθ
∑
ℓ∈Z

2ℓa(·)v(1+ϕ)∥χℓ(1 + |z1|)−λ(z1)H∗(f)∥v(1+ϕ)
q2(·)

) 1
v(1+ϕ)

≤ sup
ϕ>0

ϕθ
∑
ℓ∈Z

2ℓa(·)v(1+ϕ)

(
∞∑

j=ℓ+1

2−jn∥fj∥q1(·)∥χj∥q′2(·)∥χDℓ
∥q2(·)

)v(1+ϕ)
 1

v(1+ϕ)

≤ sup
ϕ>0

ϕθ

−1∑
ℓ=−∞

2ℓa(·)v(1+ϕ)

(
∞∑

j=ℓ+1

2−jn∥fj∥q1(·)∥χj∥q′2(·)∥χDℓ
∥q2(·)

)v(1+ϕ)
 1

v(1+ϕ)

+ sup
ϕ>0

ϕθ

∞∑
ℓ=0

2ℓa(·)v(1+ϕ)

(
∞∑

j=ℓ+1

2−jn∥fj∥q1(·)∥χj∥q′2(·)∥χDℓ
∥q2(·)

)v(1+ϕ)
 1

v(1+ϕ)

=: E1 + E2.

We will first estimate E2. For this we have

2−jn∥χℓ∥q2(·)∥χj∥q′2(·) ≤ C2−jn2
ℓn

q2∞ 2
jn

q′2∞ ≤ C2
(ℓ−j)n
q2∞ . (3.3.3)

E2 ≤ C sup
ϕ>0

ϕθ

∞∑
ℓ=0

2ℓa(·)v(1+ϕ)

(
∞∑

j=ℓ+1

∥χℓ(1 + |z1|)−λ(z1)H∗(fj)∥q2(·)

)v(1+ϕ)
 1

v(1+ϕ)

≤ C sup
ϕ>0

ϕθ

∞∑
ℓ=0

(
∞∑

l=ℓ+1

2a∞j∥fj∥q1(·)2d(ℓ−j)

)v(1+ϕ)
 1

v(1+ϕ)

,

where

d =
n

q2∞
+ a∞ > 0.

Then, by virtue of the well known Hölder’s theorem for series and 2−v(1+ϕ) < 2−v

yields
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E2 ≤ C sup
ϕ>0

[
ϕθ

∞∑
ℓ=0

(
∞∑

j=ℓ+1

2a∞v(1+ϕ)j∥fj∥v(1+ϕ)
q1(·) 2du(1+ϕ)(ℓ−j)/2

)

×

(
∞∑

j=ℓ+1

2d(v(1+ϕ))′(ℓ−j)/2

) v(1+ϕ)

(v(1+ϕ))′
] 1

v(1+ϕ)

≤ C sup
ϕ>0

[
ϕθ

∞∑
ℓ=0

∞∑
j=ℓ+1

2a∞v(1+ϕ)j∥fj∥v(1+ϕ)
q1(·) 2du(1+ϕ)(ℓ−j)/2

] 1
v(1+ϕ)

≤ C sup
ϕ>0

(
ϕθ

∞∑
j=0

2a∞v(1+ϕ)j∥fj∥v(1+ϕ)
q1(·)

j−1∑
ℓ=0

2du(1+ϕ)(ℓ−j)/2

) 1
v(1+ϕ)

< C sup
ϕ>0

(
ϕθ
∑
j∈Z

2a∞v(1+ϕ)j∥fj∥v(1+ϕ)
q1(·)

j−1∑
ℓ=−∞

2du(1+ϕ)(ℓ−j)/2

) 1
v(1+ϕ)

= C sup
ϕ>0

(
ϕθ
∑
j∈Z

2a(·)v(1+ϕ)j∥fj∥v(1+ϕ)
q1(·)

) 1
v(1+ϕ)

≤ C∥f∥
K̇

a(·),v),θ
q1(·)

(Rn)
.

For E1, by using Minkowski’s inequality

E1 ≤ sup
ϕ>0

ϕθ

−1∑
ℓ=−∞

2ℓa(·)v(1+ϕ)

(
∞∑

j=ℓ+1

∥χℓ(1 + |z1|)−λ(z1)H∗(fj)∥q2(·)

)v(1+ϕ)
 1

v(1+ϕ)

≤ sup
ϕ>0

ϕθ

−1∑
ℓ=−∞

2ℓa(·)v(1+ϕ)

(
−1∑

j=ℓ+1

∥χℓ(1 + |z1|)−λ(z1)H∗(fj)∥q2(·)

)v(1+ϕ)
 1

v(1+ϕ)

+ sup
ϕ>0

ϕθ

−1∑
ℓ=−∞

2ℓa(·)v(1+ϕ)

(
∞∑
j=0

∥χℓ(1 + |z1|)−λ(z1)H∗(fj)∥q2(·)

)v(1+ϕ)
 1

v(1+ϕ)

:= D1 + D2.

The estimate of D1 is attained in a way similar to E2 by replacing q2∞ with q2(0) and

using the inequality
n

q2(0)
+ a(0) > 0

and

0 <
n

q2∞
+ a∞.

For D2 we have

2−jn∥χDℓ
∥q2(·)∥χj∥q′2(·) ≤ C2−jn2

ℓn
q2(0) 2

jn
q′2∞ ≤ C2

ℓn
q2(0) 2

−jn
q2∞ , (3.3.4)
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D2 ≤ C sup
ϕ>0

ϕθ

−1∑
ℓ=−∞

2ℓa(0)v(1+ϕ)

(
∞∑
j=0

∥χℓ(1 + |z1|)−λ(z1)H∗(fj)∥q2(·)

)v(1+ϕ)
 1

v(1+ϕ)

≤ C sup
ϕ>0

ϕθ

−1∑
ℓ=−∞

2ℓa(0)v(1+ϕ)

(
∞∑
j=0

2−jn2
ℓn

q2(0) 2
jn

q′2∞ ∥fj∥q1(·)

)v(1+ϕ)
 1

v(1+ϕ)

≤ C sup
ϕ>0

ϕθ

−1∑
ℓ=−∞

2ℓa(0)v(1+ϕ)

(
∞∑
j=0

2
ℓn

q2(0) 2
−jn
q2∞ ∥fj∥q1(·)

)v(1+ϕ)
 1

v(1+ϕ)

≤ C sup
ϕ>0

ϕθ

−1∑
ℓ=−∞

2ℓ(a(0)+n)/q2(0)v(1+ϕ)

(
∞∑
j=0

2
−jn
q2∞ ∥fj∥q1(·)

)v(1+ϕ)
 1

v(1+ϕ)

≤ C sup
ϕ>0

ϕθ

(
∞∑
j=0

2a∞j∥fj∥q1(·)2j(nq2∞+a∞)

)v(1+ϕ)
 1

v(1+ϕ)

≤ C sup
ϕ>0

ϕθ

(
∞∑
j=0

2a∞ju(1+ϕ)∥fj∥v(1+ϕ)
q1(·)

)v(1+ϕ)( ∞∑
j=0

2j(nq2∞+a∞)v(1+ϕ)

) v(1+ϕ)

(v(1+ϕ))′


1
v(1+ϕ)

≤ C sup
ϕ>0

(
ϕθ

(∑
j∈Z

2a(·)jv(1+ϕ)∥fj∥v(1+ϕ)
q1(·)

)) 1
v(1+ϕ)

≤ C∥f∥
K̇

a(·),v),θ
q1(·)

(Rn)
.

The estimates for E1 and E2 in combined form yields

∥(1 + |z1|)−λ(z1)H∗(f)∥
K̇

a(·),v),θ
q2(·)

(Rn)
≤ C∥f∥

K̇
a(·),v),θ
q1(·)

(Rn)
.

3.4 Conclusions

Our primary goal of determining the sufficient conditions for ensuring the boundedness

of fractional Hardy operators in Grad Herz spaces with variable exponents has been

successfully accomplished. We investigated the interplay between the variable order

and exponent, exploring how different combinations of these parameters affect the

boundedness properties of the operators.



Chapter 4

p-adic Hardy-type Operator and

Commutators on Variable p-adic

Lebesgue space

4.1 Introduction

An essential component of harmonic analysis is to discuss the characterization of

function spaces and regularity theory of partial differential equations, both of which

make use of the boundedness properties of commutator operators. The definition and

discussion of the commutators of the p-adic Hardy-type operators Hp and Hp
α with

the locally integrable function b can be found in the citations [46, 47], and [69]. With

regard to the boundedness of Hp and Hp
α and their commutators on variable exponent

p-adic function spaces, there exists a clear gap in the literature which we want to fill

here in the remaining of this thesis.

In this Chapter, we investigate the boundedness of fractional p-adic Hardy opera-

tors and commutators on the variable exponent lebesgue spaces. For this purpose, we

use the concept of the Sobolev limitting exponent given in [4,5] to prove our bound-

edness results.

The next Section contains some fundamental lemmas to be used in this chapter

and subsequent chapters.

4.2 Preliminaries

Lemma 4.2.1 [5] Assume that u ∈ ℵ(Qn
p ) is an L-Lipschitz function for a value of

L ≥ 0, then u ∈ W0(Qn
p ).

40
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Lemma 4.2.2 [5] Suppose u ∈ W0(Ω
n
p ), where Ωn

p ∈ Qn
p is a bounded set, then there

arise an extension function ũ ∈ W∞
0 (Qn

p ) which is constant outside of some fixed ball.

Lemma 4.2.3 [5] Let u(·) ∈ W∞
0 (Qn

p ). Then,

∥χBk
∥Lu(·)(Qn

p )
≤ Cpkn/u(x,k),

where

u(x, k) =:

u(x), k < 0,

u(∞), k ≥ 0.

Lemma 2.2 in [48] is extended to the p-adic variable exponent central BMO space

in the following Lemma.

Lemma 4.2.4 Let g ∈ Cu(·) and m, l ∈ Z, then

|g(x) − gBm | ≤ |g(x) − gBl
| + pn|l −m|∥g∥Cu(·) . (4.2.1)

Proof. Let i ∈ Z, then using inequality (1.2.25) we have

|gBi
− gBi+1

| ≤ 1

|Bi|

∫
Bi

|g(y) − gBi+1
|dy

≤ pn
1

|Bi+1|
∥(g − gBi+1

)χBi+1
∥Lu(·)∥χBi+1

∥Lu′(·)

≤ pn∥g∥Cu(·) ,

where in the last inequality, we made use of Lemma 4.2.3 to obtain the desired out-

come. Next, if m < l, then

|g(x) − gBm| ≤ |g(x) − gBl
| +

l−1∑
i=m

|gBi
− gBi+1

| ≤ |g(x) − gBl
| + pn(l −m)∥g∥Cu(·) .

(4.2.2)

Similarly, if l < m, then

|g(x) − gBm| ≤ |g(x) − gBl
| +

m−1∑
i=l

|gBi
− gBi+1

| ≤ |g(x) − gBl
| + pn(m− l)∥g∥Cu(·) .

(4.2.3)

The inequalities (4.2.2) and (4.2.3) yield the inequality (4.2.1).
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4.3 p-adic Hardy Operators on Variable Exponent p-adic

Lebesgue Spaces

Theorem 4.3.1 Let 0 < α < min{ n
u+

, n
v′+
}. Suppose, moreover, that u ∈ ℵ(Qn

p ), where

v is the Sobolev limiting exponent define as

1

v(x)
=

1

u(x)
− α

n
. (4.3.1)

Then, the operator Hp
α, H

p,∗
α : Lu(·)(Qn

p ) −→ Lv(·)(Qn
p ) and Lv′(·)(Qn

p ) −→ Lu′(·)(Qn
p )

are bounded.

The following corollary results from the above theorem if α = 0:

Corollary 4.3.2 Let u ∈ ℵ(Qn
p ), then both Hp and Hp,∗ map Lu(·)(Qn

p ) into Lu(·)(Qn
p )

and Lu′(·)(Qn
p ) into Lu′(·)(Qn

p ).

Proof of Theorem 4.3.1 Repeated use of Holder’s inequality gives

∥Hp
αf∥Lv(·)(Qn

p )
=

∞∑
k=−∞

∥χkH
p
α(f)∥Lv(·)(Qn

p )
,

=
∞∑

k=−∞

∥∥∥∥∥ χk(·)
|·|n−α

p

∫
B(0,|·|p)

|f(t)|dt

∥∥∥∥∥
Lv(·)(Qn

p )

,

≲
∞∑

k=−∞

∥∥∥∥∥χk(·) 1

|·|n−α
p

k∑
j=−∞

∫
Sj

|f(t)|dt

∥∥∥∥∥
Lv(·)(Qn

p )

.

Inequality (1.2.25) implies∫
Sj

|f(t)|dt ≲ ∥fj∥Lu(·)(Qn
p )
∥χj∥Lu′(·)(Qn

p )
.

As a result of Lemma 4.2.3 and equality (4.3.1)
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∥Hp
αf∥Lv(·)(Qn

p )
≲

∞∑
k=−∞

k∑
j=−∞

p−k(n−α)∥fj∥Lu(·)(Qn
p )
∥χj∥Lu′(·)(Qn

p )
∥χk∥Lv(·)(Qn

p )
,

≲
∞∑

k=−∞

k∑
j=−∞

∥fj∥Lu(·)(Qn
p )
∥χBj

∥Lu′(·)(Qn
p )
∥χBk

∥−1

Lu′(·)(Qn
p )
,

≲
∞∑

k=−∞

k∑
j=−∞

p(j−k)n/u′(·)∥fj∥Lu(·)(Qn
p )
,

≲
∞∑

j=−∞

∥fj∥Lu(·)(Qn
p )

∞∑
k=j

p(j−k)n/u′(·),

≲ ∥f∥Lu(·)(Qn
p )
.

Likewise, the following inequalities are obvious;

∥Hp,∗
α f∥Lv(·)(Qn

p )
≲ ∥f∥Lu(·)(Qn

p )
,

∥Hp
αf∥Lu′(·)(Qn

p )
≲ ∥f∥Lv′(·)(Qn

p )
,

∥Hp,∗
α f∥Lu′(·)(Qn

p )
≲ ∥f∥Lv′(·)(Qn

p )
.

This conclusion completes Theorem 4.3.1.

4.4 Necessary and Sufficient condition for the Bounded-

ness of Commutator of Hp
α

This section presents the boundedness analysis of operators defined in (1.3.6) and

(1.3.7) on p-adic variable Lebesgue spaces.

Theorem 4.4.1 Let 0 < α < min{ n
u+

, n
v′+
}. Suppose, moreover, that u ∈ ℵ(Qn

p ),

where v is the Sobolev limiting exponent (4.3.1). The following are equivalent state-

ments:

1) b ∈ Cv(·) ∩ Cu′(·).

2) Hp
α,b and Hp,∗

α,b from Lu(·)(Qn
p ) to Lv(·)(Qn

p ) and Lv′(·)(Qn
p ) to Lu′(.)(Qn

p ).

If α = 0 in the preceding theorem, then the following corollary holds:

Corollary 4.4.2 Let u ∈ ℵ(Qn
p ), then the subsequent claims are equivalent:
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(1) b ∈ Cu(·) ∩ Cu′(·).

(2) Both Hp
b and Hp,∗

b are bounded on Lu(·)(Qn
p ) and Lu′(·)(Qn

p ).

Proof of Theorem 4.4.1.

1) ⇒ 2) We focus on the evidence of the boundedness of Hp
α,b, because the argu-

ments of Hp,∗
α,b are comparable with the essential adjustments. We begin

∥Hp
α,bf∥Lv(·)(Qn

p )
=

∞∑
k=−∞

∥χkH
p
α,b(f)∥Lv(·)(Qn

p )

=
∞∑

k=−∞

∥∥∥∥∥χk(·)

(
1

|·|n−α
p

∫
B(0,|·|p)

(f(t)(b(·) − b(t)))dt

)∥∥∥∥∥
Lv(·)(Qn

p )

≲
∞∑

k=−∞

∥∥∥∥∥χk(·) 1

|·|n−α
p

k∑
j=−∞

∫
Sj

|b(·) − b(t)||f(t)|dt

∥∥∥∥∥
Lv(·)(Qn

p )

.

It is simple to see∫
Sj

|b(x) − b(t)||f(t)|dt ≲
∫
Sj

|b(x) − bBk
||f(t)|dt +

∫
Sj

|bBk
− b(t)||f(t)|dt. (4.4.1)

Inequality (1.2.25) implies∫
Sj

|b(x) − bBk
||f(t)|dt ≲ |b(x) − bBk

|∥fj∥Lu(·)(Qn
p )
∥χj∥Lu′(·)(Qn

p )
. (4.4.2)

By Lemma 4.2.4, we have∫
Sj

|b(t) − bBk
||f(t)|dt ≤

∫
Bj

|b(t) − bBj
||f(t)|dt + C(k − j)∥b∥Cu′(·)

∫
Bj

|f(t)|dt

≲ ∥(b− bBj
)χj∥Lu′(·)(Qn

p )
∥fj∥Lu(·)(Qn

p )

+ (k − j)∥b∥Cu′(·)∥χj∥Lu′(·)(Qn
p )
∥fj∥Lu(·)(Qn

p )

≲ ∥b∥Cu′(·)∥χj∥Lu′(·)(Qn
p )
∥fj∥Lu(·)(Qn

p )

+ (k − j)∥b∥Cu′(·)∥χj∥Lu′(·)(Qn
p )
∥fj∥Lu(·)(Qn

p )

≲ (k − j)∥b∥Cu′(·)∥χj∥Lu′(·)(Qn
p )
∥fj∥Lu(·)(Qn

p )
.
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Next, (4.4.1), (4.4.2) and (4.4.3) leads to∥∥∥∥∥χk(·)
1

|·|n−α
p

∫
B(0,|·|p)

((b(·)− b(t))f(t))dt

∥∥∥∥∥
Lv(·)

≲ p−k(n−α)∥(b− bBk
)χj∥Lv(·)(Qn

p )
∥χj∥Lu′(·)∥fj∥Lu(·)(Qn

p )

+ p−k(n−α)(k − j)∥b∥Cu′(·)∥χk∥Lv(·)(Qn
p )
∥χj∥Lu′(·)

× ∥fj∥Lu(·)(Qn
p )

≲ p−k(n−α)(k − j)∥b∥Cv(·)∩Cu′(·)∥χBk
∥Lv(·)(Qn

p )

× ∥χBj∥Lu′(·)(Qn
p )
∥fj∥Lu(·)(Qn

p )
.

This clearly shows

∥Hp
α,bf∥Lv(·)(Qn

p )
≲ ∥b∥Cv(·)∩Cu′(·)

∞∑
k=−∞

k∑
j=−∞

(k − j)p(j−k)n/u′(·)∥fj∥Lu(·)(Qn
p )

≲ ∥b∥Cv(·)∩Cu′(·)

∞∑
j=−∞

∥fj∥Lu(·)(Qn
p )

∞∑
k=j

(k − j)p(j−k)n/u′(·)

≲ ∥b∥Cv(·)∩Cu′(·)∥f∥Lu(·)(Qn
p )

where (4.3.1) and Lemma 4.2.3 are used in above case. Similarly, the following

can be easily achieved

∥Hp,∗
α,bf∥Lv(·)(Qn

p )
≲ ∥b∥Cv(·)∩Cu′(·)∥f∥Lu(·)(Qn

p )

∥Hp
α,bf∥Lu′(·)(Qn

p )
≲ ∥b∥Cv(·)∩Cu′(·)∥f∥Lv′(·)(Qn

p )

∥Hp,∗
α,bf∥Lu′(·)(Qn

p )
≲ ∥b∥Cv(·)∩Cu′(·)∥f∥Lv′(·)(Qn

p )
,

Which is the desired result.

2) ⇒ 1) Condition b ∈ Cv(·) ∩ Cu′(·) turns out to be a prerequisite for the conclu-

sion, which is that both Hp
α,b and Hp,∗

α,b are bounded from Lu(·)(Qn
p ) to Lv(·)(Qn

p ) and

Lv′(·)(Qn
p ) to Lu′(.)(Qn

p ).
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For any ball B =: Bγ, we gain

|b(x) − bB| =:

∣∣∣∣ 1

|B|

∫
B

(b(x) − b(t))dt

∣∣∣∣
≤ C

∣∣∣∣∣ |B|−1|x|n−α
p

|x|n−α
p

∫
B(0,|x|p)

(b(x) − b(t))χB(t)dt

∣∣∣∣∣
+ C

∣∣∣∣∣
∫
Qn

p\B(0,|x|p)

(b(x) − b(t))χB(t)|B|−1|t|n−α
p

|t|n−α
p

dt

∣∣∣∣∣
≤ C

∣∣|B|−1|x|n−α
p (Hp

α,bχB(x))
∣∣+ C

∣∣|B|−1|t|n−α
p (Hp,∗

α,bχB(x))
∣∣ .

It follows from the boundedness of Hp
α,b and Hp,∗

α,b that

∥(b− bB)χB∥Ls(·)(Qn
p )

≤ C|B|−
α
n

(
∥Hp

α,b(χB)∥Ls(·)(Qn
p )

+ ∥Hp,∗
α,b(χB)∥Ls(·)(Qn

p )

)
.

In order to arrive at our estimations, we split the problem into two cases: s = v(·), s =

u′(·).

Case 1: s = v(·)

∥(b− bB)χB∥Lv(·)(Qn
p )

≤ C|B|−
α
n

(
∥Hp

α,b(χB)∥Lv(·)(Qn
p )

+ ∥Hp,∗
α,b(χB)∥Lv(·)(Qn

p )

)
≤ C|B|−

α
n

(
∥χB∥Lu(·)(Qn

p )
+ ∥χB∥Lu(·)(Qn

p )

)
≤ C∥χB∥Lv(·)(Qn

p )

where we used limiting exponent 1
u(x)

− 1
v(x)

=: α
n

, , which implies b ∈ Cv(·).

Case 2: s = u′(·)
We know that both Hp

α,b and Hp,∗
α,b map Lv′(·)(Qn

p ) to Lu′(·)(Qn
p ). Therefore, by utiliza-

tion of Sobolev limiting exponent

∥(b− bB)χB∥Lu′(·)(Qn
p )

≤ C|B|−
α
n

(
∥Hp

α,b(χB)∥Lu′(·)(Qn
p )

+ ∥Hp,∗
α,b(χB)∥Lu′(·)(Qn

p )

)
≤ C|B|−

α
n

(
∥χB∥Lu⋆

′
(·)(Qn

p )
+ ∥χB∥Lu⋆

′
(·)(Qn

p )

)
≤ C∥χB∥Lu′(·)(Qn

p )
.

Therefore, we obtain that b belongs to Cv(·) ∩ Cu′(·).
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4.5 Conclusion

The boundedness of commutators of fractional p-adic Hardy operators on variable

exponent p-adic Lebesgue spaces is used to characterise variable exponent p-adic cen-

tral BMO spaces in this chapter. On variable exponent p-adic Lebesgue spaces, the

boundedness of fractional p-adic Hardy operators is also obtained.



Chapter 5

p-adic Variable λ-central BMO

Estimates for the Commutators of

p-adic Fractional Hardy-type Operators

5.1 Introduction

In continuation to the previous Chapter, we introduce p-adic variable exponent λ-

central BMO spaces and investigate the boundedness of commutators of fractional

p-adic Hardy-type operators on central Morrey spaces. The boundedness of Hp
α and

its dual on p-adic variable exponent central Morrey spaces are also established. To

be more specific, in this Chapter, we primarily focus on characterizing p-adic variable

exponent λ-central BMO spaces via commutators of fractional Hardy-type operator

on central Morrey spaces.

To fulfill our assertion, we need following lemma:

Lemma 5.1.1 Assume that b ∈ Cu(·),λ(Qn
p ) and j, k ∈ Z, λ ≥ 0. Then,

|bBj
− bBk

| ≲ |j − k|Cu(·),λ(Qn
p ) max{|Bj|λ, |Bk|λ}.

48
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Proof. We can make the assumption that k > j without losing generality. Bear in

mind that bBi
= (1/|Bi|)

∫
Bi

b(x)dx. Holder’s inequality and Lemma 4.2.3 provide us

|bBj
− bBk

| ≲ 1

|Bi|

∫
Bi

|b(x) − bBi+1
|dx

≲
1

|Bi|

∫
Bi+1

|b(x) − bBi+1
|dx

≲
1

|Bi|
∥(b− bBi+1

)χBi+1
∥Lu(·)(Qn

p )
∥χBi+1

∥Lu′(·)(Qn
p )

≲
1

|Bi|
∥b∥Cu(·),λ(Qn

p )
|Bi+1|λ∥χBi+1

∥Lu(·)(Qn
p )
∥χBi+1

∥Lu′(·)(Qn
p )

≲ ∥b∥Cu(·),λ(Qn
p )

|Bi+1|λ+1

|Bi|
≲ pn∥b∥Cu(·),λ(Qn

p )
|Bi+1|λ.

Therefore,

|bBj
− bBk

| ≤
k−1∑
i=j

|bBi+1
− bBi

|

≲ ∥b∥Cu(·),λ(Qn
p )

k−1∑
i=j

|Bi+1|λ

≲ (k − j)∥b∥Cu(·),λ(Qn
p )
|Bk|λ.

5.2 Variable p-adic Centtral Morrey Space Estimates

Following Chapters 1 and 2, which covered the rudimentary theory of p-adic variable

exponent function spaces and special findings relating to the p-adic fractional Hardy

operators, we now present the following conclusion:

Theorem 5.2.1 Suppose that u ∈ ℵ(Qn
p ), and v is defined by

1

v(x)
=

1

u(x)
− α

n
, (5.2.1)

where 0 < α < min{ n
u+

, n
v′+
}. Let λ = λ1 + α

n
with λ1 > −1, then, the operators

Hp
α, H

p,∗
α : Ḃ(λ1,u(·))(Qn

p ) −→ Ḃ(λ,v(·))(Qn
p ) and Ḃ(λ1,v′(·))(Qn

p ) −→ Ḃ(λ,u′(·))(Qn
p ) are

bounded.

Theorem 5.2.1 yields the following corollary if α = 0:
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Corollary 5.2.2 Let u ∈ ℵ(Qn
p ), then for λ1 > −1, Hp and Hp,∗ both map Ḃ(λ1,u(·))(Qn

p )

on Ḃ(λ1,u(·))(Qn
p ).

For convenience, we write
∑∞

j=−∞ f(x)χj(x) =
∑∞

j=−∞ fj(x).

Proof of Theorem 5.2.1. It is clear from the definition of the p-adic fractional Hardy

operator and (1.2.25), that

|Hp
αf(x).χk(x)| ≲ 1

|x|n−α
p

∫
B(0,|x|p)

|f(t)|dt.χk(x)

≲ p−k(n−α)

(
k∑

j=−∞

∫
Sj

|f(t)|dt

)
χk(x)

≲ ∥f∥Ḃ(λ1,u(·))(Qn
p )
p−k(n−α)

k∑
j=−∞

|Bj|λ1∥χj∥Lu(·)(Qn
p )
∥χj∥Lu′(·)(Qn

p )
χk(x).

Using (5.2.1), Lemma 4.2.3 and applying the norm to both sides of the aforemen-

tioned inequality, we get

∥χkH
p
α(f)∥Lv(·)(Qn

p )
≲ ∥f∥Ḃ(λ1,u(·))(Qn

p )

k∑
j=−∞

p−k(n−α)|Bj|λ1∥χBj
∥Lu(·)(Qn

p )
∥χBj

∥Lu′(·)(Qn
p )

× ∥χBk
(·)∥Lv(·)(Qn

p )

≲ ∥f∥Ḃ(λ1,u(·))(Qn
p )
|Bk|λ∥χBk

∥Lv(·)(Qn
p )

k∑
j=−∞

pn(λ1+1)(j−k)

≲ ∥f∥Ḃ(λ1,u(·))(Qn
p )
|Bk|λ∥χBk

∥Lv(·)(Qn
p )

where we used the fact λ1 + 1 > 0. Therefore, the desired boundedness of Hp
α is

obtained.

Similarly, the boundedness of Hp,∗
α and the following can be easily established.

∥Hp,∗
α f∥Ḃ(λ,v(·))(Qn

p )
≲ ∥f∥Ḃ(λ1,u(·))(Qn

p )

∥Hp
αf∥Ḃ(λ,u′(·))(Qn

p )
≲ ∥f∥Ḃ(λ1,v

′(·))(Qn
p )

∥Hp,∗
α f∥Ḃ(λ,u′(·))(Qn

p )
≲ ∥f∥Ḃ(λ1,v

′(·))(Qn
p )
.

This concludes our results.
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5.3 p-adic Variable λ-central BMO Estimates for Hp
α,b

The current section illustrates the necessary and sufficient condition for the bound-

edness of commutators of p-adic Hardy operators when the symbol functions belongs

to C(v(.),λ1) ∩ C(u′(.),λ1).

Theorem 5.3.1 Let 0 < α < min{ n
u+

, n
v′+
}. Suppose, that u ∈ ℵ(Qn

p ), where u is as

defined in (5.2.1). If λ = λ1 + λ2 + α
n
with 0 ≤ λ1 < 1/n, −1 < λ2. Then

(i) b ∈ C(v(.),λ1) ∩ C(u′(.),λ1).

(ii) Hp
α,b and H

p,∗
α,b from Ḃ(λ2,u(.))(Qn

p ) to Ḃ(λ,v(.))(Qn
p ) and from Ḃ(λ2,v′(.))(Qn

p ) to Ḃ(λ,u′(.))(Qn
p ).

The last Theorem has the following corollary:

Corollary 5.3.2 Let u ∈ ℵ(Qn
p ), then for β = λ1 + λ2 < 0, the following statements

are equivalent:

(1) b ∈ C(u(.),λ1) ∩ C(u′(.),λ1).

(2) Hp
b and Hp,∗

b from Ḃ(β,u(.))(Qn
p ) to Ḃ(β,u′(.))(Qn

p ).

Proof of Theorem 5.3.1. It is not difficult to see that

|Hp
α,bf(y)χk(y)| ≲ 1

|y|n−α
p

∫
B(0,|y|p)

|f(t)(b(y) − b(t))|dt.χk(y)

≲
1

|y|n−α
p

∫
Bk

|f(t)(b(y) − b(t))|dt.χk(y)

≲ p−k(n−α)

k∑
j=−∞

∫
Sj

|f(t)(b(y) − bBk
)|dt.χk(y)

+ p−k(n−α)

k∑
j=−∞

∫
Sj

|(b(t) − bBk
)f(t)|dt.χk(y)

= A1 + A2.

For A1, inequality (1.2.25) produces the following inequality;

A1 ≲ p−k(n−α)|b(x) − bBk
|χk(x)

k∑
j=−∞

∫
Sj

|f(t)|dt

≲ p−k(n−α)|b(x) − bBk
|χk(x)

k∑
j=−∞

∥fj∥Lu(.)(Qn
p )
∥χj∥Lu′(.)(Qn

p )

≲ ∥f∥Ḃ(λ2,u(.))(Qn
p )
p−k(n−α)|b(x) − bBk

|χk(x)
k∑

j=−∞

|Bj|λ2∥χj∥Lu(.)(Qn
p )
∥χj∥Lu′(.)(Qn

p )
.
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Using Lemma 4.2.3, inequality (5.2.1) and the norm on both sides, we get

∥A1∥Lv(.)(Qn
p )

≲ ∥f∥Ḃ(λ2,u(.))(Qn
p )
p−k(n−α)∥(b− bBk

)χBk
∥Lv(.)(Qn

p )

×
k∑

j=−∞

|Bj|λ2∥χBj
∥Lu(.)(Qn

p )
∥χBj

∥Lu′(.)(Qn
p )

≲ ∥f∥Ḃ(λ2,u(.))(Qn
p )
∥b∥Cv(.),λ1p

−k(n−α)|Bk|λ1∥χBk
∥Lv(.)(Qn

p )

×
k∑

j=−∞

|Bj|λ2∥χBj
∥Lu(.)(Qn

p )
∥χBj

∥Lu′(.)(Qn
p )

≲ ∥f∥Ḃ(λ2,u(.))(Qn
p )
∥b∥Cv(.),λ1 |Bk|λ∥χBk

∥Lv(.)(Qn
p )

k∑
j=−∞

pn(j−k)(λ2+1)

≲ ∥f∥Ḃ(λ2,u(.))(Qn
p )
∥b∥Cv(.),λ1 |Bk|λ∥χBk

∥Lv(.)(Qn
p )
.

The fact λ2 + 1 > 0 is used in above inequality. Now we will look at A2’s estimate.

By Lemma 5.1.1, we have

A2 ≲ p−k(n−α)χk(x)
k∑

j=−∞

∫
Sj

|(b(t) − bBj
)f(t)|dt

+ p−k(n−α)χk(x)
k∑

j=−∞

|bBj
− bBk

|
∫
Sj

|f(t)|dt

= A21 + A22.

Where

A21 ≲ p−k(n−α)χk(x)
k∑

j=−∞

∥b(t) − bBj
∥Lu′(.)(Qn

p )
∥fj∥Lu(.)(Qn

p )

≲ ∥b∥C(u′(.),λ1)∥f∥Ḃ(λ2,u(.))(Qn
p )
p−k(n−α)χk(x)

×
k∑

j=−∞

|Bj|λ1+λ2∥χBj
∥Lu(.)(Qn

p )
∥χBj

∥Lu′(.)(Qn
p )
.

As a result, the A21 norm implies

∥A21∥Lv(.)(Qn
p )

≲ ∥b∥C(u′(.),λ1)∥f∥Ḃ(λ2,u(.))(Qn
p )
p−k(n−α)∥χk∥Lv(.)(Qn

p )

×
k∑

j=−∞

|Bj|λ1+λ2∥χBj
∥Lu(.)(Qn

p )
∥χBj

∥Lu′(.)(Qn
p )

≲ ∥b∥C(u′(.),λ1)∥f∥Ḃ(λ2,u(.))(Qn
p )
|Bk|λ∥χBk

∥Lv(.)(Qn
p )

k∑
j=−∞

pn(j−k)(λ1+λ2+1)

≲ ∥b∥C(u′(.),λ1)∥f∥Ḃ(λ2,u(.))(Qn
p )
|Bk|λ∥χBk

∥Lv(.)(Qn
p )
.
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Now the estimate A22 by Lemma 5.1.1, Lemma 4.2.3 is

A22 ≲ ∥b∥C(u′(.),λ1)p
−k(n−α)|Bk|λ1χk(x)

k∑
j=−∞

(k − j)∥fj∥Lu(.)(Qn
p )
∥χj∥Lu′(.)(Qn

p )

≲ ∥b∥C(u′(.),λ1)∥f∥Ḃ(λ2,u(.))(Qn
p )
p−k(n−α)|Bk|λ1χk(x)

×
k∑

j=−∞

(k − j)|Bj|λ2∥χBj
∥Lu(.)(Qn

p )
∥χBj

∥Lu′(.)(Qn
p )

and

∥A22∥Lv(.)(Qn
p )

≲ ∥b∥C(u′(.),λ1)∥f∥Ḃ(λ2,u(.))(Qn
p )
p−k(n−α)|Bk|λ1∥χBk

∥Lv(.)(Qn
p )

×
k∑

j=−∞

(k − j)|Bj|λ2∥χBj
∥Lu(.)(Qn

p )
∥χBj

∥Lu′(.)(Qn
p )

≲ ∥b∥C(u′(.),λ1)∥f∥Ḃ(λ2,u(.))(Qn
p )
|Bk|λ∥χBk

∥Lv(.)(Qn
p )

k∑
j=−∞

pn(j−k)(λ2+1)

≲ ∥b∥C(u′(.),λ1)∥f∥Ḃ(λ2,u(.))(Qn
p )
|Bk|λ∥χBk

∥Lv(.)(Qn
p )
.

When we add all of the A1, A2, A21, and A22 approximations together, we get

∥Hp
α,bf∥Ḃ(λ,v(.))(Qn

p )
≲ ∥b∥C(v(.),λ1)∩C(u′(.),λ1)∥f∥Ḃ(λ2,u(.))(Qn

p )
.

Similarly, the following inequalities can be established as well:

∥Hp,∗
α,bf∥Ḃ(λ,v(.))(Qn

p )
≲ ∥b∥C(v(.),λ1)∩C(u′(.),λ1)∥f∥Ḃ(λ2,u(.))(Qn

p )

∥Hp
α,bf∥Ḃ(u′(·),λ)(Qn

p )
≲ ∥b∥C(v(.),λ1)∩C(u′(.),λ1)∥f∥Ḃ(v′(·),λ2)(Qn

p )

∥Hp,∗
α,bf∥Ḃ(u′(·),λ)(Qn

p )
≲ ∥b∥C(v(.),λ1)∩C(u′(.),λ1)∥f∥Ḃ(v′(·),λ2)(Qn

p )
.

Conversely, assuming that Hp
α,b and Hp,∗

α,b are bounded from Ḃ(λ2,u(.))(Qn
p ) to Ḃ(λ,v(.))(Qn

p )

and Ḃ(λ2,v′(.))(Qn
p ) to Ḃ(λ,u′(.))(Qn

p ), we will show that b ∈ C(v(.),λ1) ∩ C(u′(.),λ1) for any

ball B = Bγ, we gain;

|b(x) − bB| =:

∣∣∣∣ 1

|B|

∫
B

(b(x) − b(t))dt

∣∣∣∣
≲

∣∣∣∣∣ |B|−1|x|n−α
p

|x|n−α
p

∫
B(0,|x|p)

(b(x) − b(t))χB(t)dt

∣∣∣∣∣
+

∣∣∣∣∣
∫
Qn

p\B(0,|x|p)

(b(x) − b(t))χB(t)|B|−1

|t|n−α
p

dt

∣∣∣∣∣
≲
∣∣|B|−1|x|n−α

p (Hp
α,bχB(x))

∣∣+
∣∣|B|−1|x|n−α

p (Hp,∗
α,bχB(x))

∣∣ .
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The norm of above inequality implies

∥(b− bB)χB∥Ls(.)(Qn
p )

≲ |B|−
α
n

(
∥Hp

α,b(χB)∥Ls(.)(Qn
p )

+ ∥Hp,∗
α,b(χB)∥Ls(.)(Qn

p )

)
≲ |B|−

α
n |B|λ∥χB∥Ls(.)(Qn

p )

(
∥Hp

α,b(χB)∥Ḃ(λ,s(.))(Qn
p )

+ ∥Hp,∗
α,b(χB)∥Ḃ(λ,s(.))(Qn

p )

)
.

To arrive at our estimates, we divided the problem into two cases: s = v(.),and

s = u′(.). Then by boundedness of Hp
α,b and Hp,∗

α,b.

Case 1: If s = v(.),

∥(b− bB)χB∥Lv(.)(Qn
p )

≲ |B|λ−
α
n ∥χB∥Lv(.)(Qn

p )

(
∥Hp

α,b(χB)∥Ḃ(λ,v(.))(Qn
p )

+ ∥Hp,∗
α,b(χB)∥Ḃ(λ,v(.))(Qn

p )

)
≲ |B|λ−

α
n ∥χB∥Lv(.)(Qn

p )

(
∥χB∥Ḃ(λ2,u(.))(Qn

p )
+ ∥χB∥Ḃ(λ2,u(.))(Qn

p )

)
≲ |B|λ−

α
n
−λ2∥χB∥Lv(.)(Qn

p )

≲ |B|λ1∥χB∥Lv(.)(Qn
p )

where equation (5.2.1) and λ = λ1 + λ2 + α
n

are used. We obtain that b belongs to

C(v(.),λ1).

Case 2: If s = u′(.)

Since, both Hp
α,b and Hp,∗

α,b map Ḃ(λ2,v′(.))(Qn
p ) to Ḃ(λ,u′(.))(Qn

p ) due to duality. As a

result, by employing equation (5.2.1) and λ− λ2 − α
n

= λ1

∥(b− bB)χB∥Lu′(.)(Qn
p )

≲ |B|λ−
α
n ∥χB∥Lu′(.)(Qn

p )

(
∥Hp

α,b(χB)∥Ḃ(λ,u′(.))(Qn
p )

+ ∥Hp,∗
α,b(χB)∥Ḃ(λ,u′(.))(Qn

p )

)
≲ |B|λ−

α
n ∥χB∥Lu′(.)(Qn

p )

(
∥χB∥Ḃ(λ2,v

′(.))(Qn
p )

+ ∥χB∥Ḃ(λ2,v
′(.))(Qn

p )

)
≲ |B|λ−

α
n
−λ2∥χB∥Lu′(.)(Qn

p )

≲ |B|λ1∥χB∥Lu′(.)(Qn
p )
.

The proof is finished.
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5.4 p-Adic Variable Central BMO Estimates for Hp
α,b on

Variable Central Morrey Space

We introduce here certain findings concerning central Morrey spaces with p-adic vari-

ables. The subsequent theorem utilizes commutators of p-adic Hardy operators to

define and characterize the p-adic variable central BMO space within the context of

p-adic variable central Morrey spaces.

Theorem 5.4.1  Let u ∈ ℵ(Qn
p ). Also, let 0 < α < min{ n

u+
, n
v′+
} and define u(·) by

1

v(·)
=

1

u(·)
− α

n
, (5.4.1)

then for λ = β + α
n

with λ < 0, the following claims are interchangeable:

(1) b ∈ Cv(·) ∩ Cu′(·).

(2) Both Hp
α,b and Hp,∗

α,b map Ḃu(·),β(Qn
p ) into Ḃv(·),λ(Qn

p ) and Ḃv′(·),β(Qn
p ) into Ḃu′(·),λ(Qn

p ).

The corollary following the aforementioned theorem is:

Corollary 5.4.2 Let u ∈ ℵ(Qn
p ), then for β < 0, the following statements are inter-

changeable:

(1) b ∈ Cu(·) ∩ Cu′(·).

(2) Both Hp
b and Hp,∗

b are bounded on Ḃu(·),β(Qn
p ) and Ḃu′(·),β(Qn

p ).

Proof of Theorem 5.4.1. For (1) → (2), While maintaining generalization, we can

deduce that Bγ = Bγ(0) by selecting γ ∈ Z to define a fix ball Bγ contained within

Qn
p . Following the proof of Theorem 5.3.1, we write

∥
(
Hp

α,bf
)
χBγ∥Lv(·)(Qn

p )
≤ ∥
(
Hp

α,bf1
)
χBγ∥Lv(·)(Qn

p )
+ ∥
(
Hp

α,bf2
)
χBγ∥Lv(·)(Qn

p )

=: J1 + J2.

Making use of the Theorem 4.4.1 for estimation of J1, we get

J1 =: ∥(Hp
α,bf1)χBγ∥Lv(·)(Qn

p )

≤ ∥
(
Hp

α,bf
)
χ2Bγ∥Lv(·)(Qn

p )

≲ ∥fχ2Bγ∥Lu(·)(Qn
p )

≲ ∥f∥Ḃu(·),β∥χ2Bγ∥Lu(·)(Qn
p )
|2Bγ|β

≲ ∥f∥Ḃu(·),β∥∥χBγ∥Lu(·)(Qn
p )
|Bγ|β.
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Using Lemma 4.2.3 and the condition 1
v(·) = 1

u(·) −
α
n

, we get

∥χBγ∥Lu(·)(Qn
p )

≈ |Bγ|
1

u(x) ≈ ∥χBγ∥Lv(·)(Qn
p )
|Bγ|

α
n . (5.4.2)

The relation (5.4.2) and the condition λ = β + α
n
, help us to write

J1 =: C∥f∥Ḃu(·),β∥∥χBγ∥Lv(·)(Qn
p )
|Bγ|λ.

Next, we need the decomposition of J2 for its estimate:

|Hp
α,bf2(x)| =

∣∣∣∣∣ 1

|x|n−α
p

∫
|t|p≤|x|p

(b(x) − b(y))f2(y)dy

∣∣∣∣∣
≲

∣∣∣∣∣
∞∑

k=2γ

1

|Bk|1−
α
n

∫
Sk

(b(x) − b(y))f(y)dy

∣∣∣∣∣
≲

∣∣∣∣∣
∞∑

k=2γ

1

|Bk|1−
α
n

∫
Sk

(b(x) − c)f(y)dy

∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=2γ

1

|Bk|1−
α
n

∫
Sk

(b(y) − c)f(y)dy

∣∣∣∣∣
=: J21 + J22.

Using the Hölder inequality, J21 reduces to the following form:

J21 = C

∣∣∣∣∣
∞∑

k=2γ

|Bk|
α
n
−1(b(x) − c)

∫
Sk

f(y)dy

∣∣∣∣∣
≲

∞∑
k=2γ

|Bk|
α
n
−1|b(x) − c|∥fχBk

∥Lu(·)(Qn
p )
∥χBk

∥Lu′(·)

≲ |b(x) − c|
∞∑

k=2γ

|Bk|
α
n
+β∥f∥Ḃu(·),β

≲ |b(x) − c|∥f∥Ḃu(·),β |Bγ|λ,

where series in the second last step converges due to the fact that λ < 0.

Similarly, (1.2.25) is used, in establishing the below inequality for J22.

J22 = C

∣∣∣∣∣
∞∑

k=2γ

|Bk|
α
n
−1

∫
Ck

(b(y) − c)f(y)dy

∣∣∣∣∣
≲

∞∑
k=2γ

|Bk|
α
n
−1∥fχBk

∥Lu(·)(Qn
p )
∥(b(x) − c)χBk

∥Lu′(·)

≲ ∥b∥Cu′(·)

∞∑
k=2γ

|Bk|
α
n
−1∥fχBk

∥Lu(·)(Qn
p )
∥χBk

∥Lu′(·) ,
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the condition λ < 0, yields

J22 ≲ ∥f∥Ḃu(·),β

∞∑
k=2γ

|Bk|λ ≲ ∥f∥Ḃu(·),β |Bγ|λ.

Hence, we have

J2 ≲ ∥(b(x) − c)χBγ∥Lv(·)∥f∥Ḃu(·),β |Bγ|λ + ∥f∥Ḃu(·),β∥χBγ∥Lv(·)(Qn
p )
|Bγ|λ

≲ ∥f∥Ḃu(·),β∥χBγ∥Lv(·)(Qn
p )
|Bγ|λ.

Combining the estimates of J1 and J2, we get

∥Hp
α,bf∥Ḃv(·),λ(Qn

p )
≲ ∥f∥Ḃu(·),β(Qn

p )
.

Similarly, the following inequalities can be obtained as well:

∥Hp,∗
α,bf∥Ḃv(·),λ(Qn

p )
≲ ∥f∥Ḃu(·),β(Qn

p )
,

∥Hp
α,bf∥Ḃu′(·),λ(Qn

p )
≲ ∥f∥Ḃv′(·),β(Qn

p )

∥Hp,∗
α,bf∥Ḃu′(·),λ(Qn

p )
≲ ∥f∥Ḃv′(·),β(Qn

p )
.

Thus the proof of the case (1) → (2) is complete.

(2) ⇒ (1) Using the fact that both Hp
α,b and Hp,∗

α,b map Ḃu(·),β(Qn
p ) into Ḃv(·),λ(Qn

p )

and Ḃv′(·),β(Qn
p ) into Ḃu′(·),λ(Qn

p ), we have to show that b ∈ Cv(·) ∩ Cu′(·).

For setting f0(x) = |B|−1|x|n−αχB(x), the following result is obtained:

∥(b− bB)χB∥Ls(·)(Qn
p )

≲ |B|−
α
n ∥Hα,b(χB)∥Ls(·)(Qn

p )
+ ∥H∗

α,b(f0)∥Ls(·)(Qn
p )
.

Next, we split the problem into the following two cases:

Case 1: s(·) = v(·). Here using the (Ḃu(·),β, Ḃv(·),λ) boundedness of Hp
α,b and Hp,∗

α,b, one

can have

∥(b− bB)χB∥Lv(·)(Qn
p )

≲ |B|λ−
α
n ∥Hp

α,b(χB)∥Ḃv(·),λ∥χB∥Lv(·)(Qn
p )

+ |B|λ∥Hp,∗
α,b(f0)∥Ḃv(·),λ∥χB∥Lv(·)(Qn

p )

≲ |B|λ−
α
n ∥χB∥Ḃu(·),β∥χB∥Lv(·)(Qn

p )
+ |B|λ∥f0∥Ḃu(·),β∥χB∥Lv(·)(Qn

p )

≲ ∥χB∥Lv(·)(Qn
p )
.
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Case 2: s(·) = u′(·). In this case,using the (Ḃv′(·),β, Ḃu′(·),λ) boundedness of Hp
α,b and

Hp,∗
α,b, one can get

∥(b− bB)χB∥Lu′(·)(Qn
p )

≲ |B|λ−
α
n ∥Hp

α,b(χB)∥Ḃu′(·),λ∥χB∥Lu′(·)(Qn
p )

+ |B|λ∥Hp,∗
α,b(f0)∥Ḃu′(·),λ∥χB∥Lu′(·)

≲ |B|λ−
α
n ∥χB∥Ḃv′(·),β∥χB∥Lu′(·)(Qn

p )
+ |B|λ∥f0∥Ḃv′(·),β∥χB∥Lu′(·)(Qn

p )

≲ ∥χB∥Lu′(·)(Qn
p )
.

From these cases, we conclude that b ∈ Cv(·) ∩Cu′(·). We thus complete the proof.

5.5 Conclusion

The main finding of this Chapter for characterizing p-adic variable exponent λ-central

BMO spaces and central BMO spaces is the boundedness of commutators generated

from p-adic fractional Hardy operators on p-adic variable exponent central Morrey

spaces. Such outcomes in p-adic Hardy-type operators have never been attained be-

fore. Our work will pave the way for even more remarkable findings in p-adic function

spaces. Also some estimates are accomplished for p-adic Hardy-type operators.



Chapter 6

Bounds for p-adic Hardy-type

Operators and Commutator On p-adic

Variable Herz-Morrey Spaces

6.1 Introduction

In this chapter, we use the definition of the p-adic variable Herz-type spaces and

then prove some new results regarding the continuity of fractional p-adic Hardy-

type operators along with their commutators on these spaces. The coming section

gives the bounds for p-adic Hardy-type operators on p-adic variable exponent Herz

space. Whereas the last section discusses the variable Herz-Morrey estimates for p-

adic Hardy-type operators and commutators.

6.2 Variable p-adic Herz Space Estimates for Hardy Op-

erators

The findings of this section present the continuity characteristics about Hp
α, Hp,∗

α ,

Hp
α,b, and Hp,∗

α, , which are all associated with the variable exponent p-adic Herz space.

Theorem 6.2.1 Let 0 < m1 ≤ m2 < ∞, u(·) ∈ ℵ(Qn
p ), 0 < α < min{ n

u+
, n
v′+
} and

− n
v+

< β < n
u′
−
. Defined v(·) by

1

v(·)
=

1

u(·)
− α

n
, (6.2.1)

then both Hp
α and Hp,∗

α map K̇β,m2

v(·) (Qn
p ) into K̇β,m1

u(·) (Qn
p ).

59
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From the above theorem, if α = 0, then the following result is true.

Corollary 6.2.2 Let 0 < m1 ≤ m2 < ∞, u ∈ ℵ(Qn
p ), and − n

u+
< β < n

u′
−
. Then both

Hp and Hp,∗ map K̇β,m2

u(·) (Qn
p ) into K̇β,m1

u(·) (Qn
p ).

Proof of Theorem 6.2.1. Let fi = f(χi) for any i ∈ Z. Then f =
∑∞

k=−∞ fi. So

we have

|Hp
αf(x)χj| ≲ χj

1

|x|n−α
p

∫
B(0,|x|p)

|f(t)dt

≲ χjp
j(α−n)

j∑
i=−∞

∫
j

f(t)dt

≲ χjp
j(α−n)

j∑
i=−∞

∥fi∥Lu(·)(Qn
p )
∥χi∥Lu′(·)(Qn

p )
. (6.2.2)

By taking the Lv(·)(Qn
p )-norm applying Lemma 4.2.3, we have

∥(Hp
αf)χj∥Lv(·)(Qn

p )
≲ pj(α−n)

j∑
i=−∞

∥fi∥Lu(·)(Qn
p )
∥χi∥Lu′(·)(Qn

p )
∥χj∥Lv(·)(Qn

p )

≲ pjα
j∑

i=−∞

∥fi∥Lu(·)(Qn
p )
∥χi∥Lu′(·)(Qn

p )
∥χBi

∥−1

Lv′(·)(Qn
p )

∥χBi
∥Lv′(·)(Qn

p )

∥χBj
∥Lv′(·)(Qn

p )

≲ pjα
j∑

i=−∞

pnδ2(i−j)∥fi∥Lu(·)(Qn
p )
∥χi∥Lu′(·)(Qn

p )
∥χBi

∥−1

Lv′(·)(Qn
p )

≲
j∑

i=−∞

p(i−j)n/u′(·)∥fi∥Lu(·)(Qn
p )
. (6.2.3)

Let f ∈ K̇β,m1

u(·) (Qn
p ). Then by Jensen’s inequality, we have

∥Hp
αf∥

m1

K̇
β,m2
v(·) (Qn

p )
=

(
∞∑

j=−∞

pβm2j∥(Hp
αf)χj∥m2

Lv(·)(Qn
p )

)m1/m2

≲
∞∑

j=−∞

pβm1j∥(Hp
αf)χj∥m1

Lv(·)(Qn
p )

≲
∞∑

j=−∞

pβm1j

(
j∑

i=−∞

p(i−j)n/u′(·)∥fi∥Lu(·)(Qn
p )

)m1

≲
∞∑

j=−∞

(
j∑

i=−∞

piβp(n/u
′(·)−β)(i−j)∥fi∥Lu(·)(Qn

p )

)m1

= J. (6.2.4)
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Note that β < n/u′(·). We are interested the the following two cases:

Case 1: If 1 < m1 < ∞, then Holder’s inequality implies

J ≲
∞∑

j=−∞

(
j∑

i=−∞

piβm1p(n/u
′(·)−β)(i−j)m1/2∥fi∥m1

Lu(·)(Qn
p )

)(
j∑

i=−∞

p(n/u
′(·)−β)(i−j)m′

1/2

)m1
m′

1

≲
∞∑

j=−∞

j∑
i=−∞

piβm1p(n/u
′(·)−β)(i−j)m1/2∥fi∥m1

Lu(·)(Qn
p )

≲ ∥f∥m1

K̇
β,m1
u(·) (Qn

p )
. (6.2.5)

Case 2: If 0 < m1 ≤ 1, then we obtain

J ≲
∞∑

j=−∞

j∑
i=−∞

piβm1p(n/u
′(·)−β)(i−j)m1∥fi∥m1

Lu(·)(Qn
p )

≲
∞∑

i=−∞

piβm1∥fi∥m1

Lu(·)(Qn
p )

∞∑
j=i

p(n/u
′(·)−β)(i−j)m1

≲ ∥f∥m1

K̇
β,m1
u(·) (Qn

p )
. (6.2.6)

Then the required result for Hp
α follows from (6.2.4)-(6.2.6). Similarly, it is simple to

demonstrate that

∥Hp,∗
α f∥

K̇
β,m2
v(·) (Qn

p )
≲ ∥f∥

K̇
β,m1
u(·) (Qn

p )
.

Consequently we have proved the Theorem 6.2.1.
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The next result gives the continuity of commutators of p-adic Hardy-type operators

on p-adic variables exponent Herz space.

Theorem 6.2.3 Let 0 < m1 ≤ m2 < ∞, b ∈ Cu′(·) ∩ Cv(·), v(·) ∈ W∞
0 (Qn

p ), 0 < α <

min{ n
u+

, n
v′+
} and − n

v+
< β < n

u′
−
. Defined v(·) by

1

v(·)
=

1

u(·)
− α

n
, (6.2.7)

then both Hp
α,b and Hp,∗

α,b map K̇β,m2

v(·) (Qn
p ) into K̇β,m1

u(·) (Qn
p ).

The following corollary holds if α = 0 in the preceding theorem.

Corollary 6.2.4 Let 0 < m1 ≤ m2 < ∞, b ∈ Cu′(·) ∩ Cu(·), u ∈ ℵ(Qn
p ), and − n

u+
<

β < n
u′
−
. Then both Hp

b and Hp,∗
b map K̇β,m2

u(·) (Qn
p ) into K̇β,m1

u′(·) (Qn
p ).

Proof of Theorem 6.2.3. By definition

|Hp
α,bf(x)χj| ≲ pj(α−n)

j∑
l=−∞

∫
Bl

|(b(x) − b(t))f(t)|dt.χj(x),

≲ pj(α−n)

j∑
l=−∞

∫
Bl

|(b(x) − bBj
)f(t)|dt.χj(x)

+ pj(α−n)

j∑
l=−∞

∫
Bl

|(b(t) − bBj
)f(t)|dt.χj(x),

= U + U ′.

Inequality (1.2.25) yields the following inequality for U .

U ≲ pj(α−n)|b(x) − bBj
|χj(x)

j∑
l=−∞

∥fl∥Lu(·)(Qn
p )
∥χl∥Lu′(·)(Qn

p )
.

Using Lemma (4.2.3), and Lv(·)(Qn
p ) norm of above inequality reduces to

∥U∥Lv(·)(Qn
p )

≲ pj(α−n)∥(b− bBj
)χBj

∥Lv(·)(Qn
p )

j∑
l=−∞

∥fl∥Lu(·)(Qn
p )
∥χl∥Lu′(·)(Qn

p )
,

≲ pj(α−n)∥b∥Cv(·)(Qn
p )
∥χBj

∥Lv(·)(Qn
p )

j∑
l=−∞

∥fl∥Lu(·)(Qn
p )
∥χl∥Lu′(·)(Qn

p )
,

≲ ∥b∥Cv(·)(Qn
p )

j∑
l=−∞

p(l−j)n/u′(·)∥fl∥Lu(·)(Qn
p )
. (6.2.8)
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Next we estimate U ′ with the help of Lemma (4.2.3) and inequality (1.2.25) as

U ′ ≲ pj(α−n)

j∑
l=−∞

∫
Bl

|b(t) − bBl
||f(t)|dt.χj(x) +

j∑
l=−∞

|bBj
− bBl

|
∫
Bl

|f(t)|dt.χj(x),

≲ pj(α−n)

j∑
l=−∞

∥fl∥Lu(·)(Qn
p )
∥(b− bBl

)χBl
∥Lu′(·)(Qn

p )
.χj(x)

+ pj(α−n)

j∑
l=−∞

(j − l)∥fl∥Lu(·)(Qn
p )
∥b∥Cu′(·)(Qn

p )
∥χBl

∥Lu′(·)(Qn
p )
.χj(x),

= U ′
1 + U ′

2.

Lemma (4.2.3) and norm of U ′
1 becomes

∥U ′
1∥Lv(·)(Qn

p )
≲ ∥b∥Cu′(·)(Qn

p )

j∑
l=−∞

pj(α−n)∥fl∥Lu(·)(Qn
p )
∥χBl

∥Lu′(·)(Qn
p )
∥χBj

∥Lv(·)(Qn
p )
,

≲ ∥b∥Cu′(·)(Qn
p )

j∑
l=−∞

p(l−j)n/u′(·)∥fl∥Lu(·)(Qn
p )
. (6.2.9)

Similarly, norm of U ′
2 gives

∥U ′
2∥Lv(·)(Qn

p )
≲ ∥b∥Cu′(·)(Qn

p )

j∑
l=−∞

(j − l)pj(α−n)∥fl∥Lu(·)(Qn
p )
∥χBl

∥Lu′(·)(Qn
p )
∥χBj

∥Lv(·)(Qn
p )
,

≲ ∥b∥Cu′(·)(Qn
p )

j∑
l=−∞

(j − l)p(l−j)n/u′(·)∥fl∥Lu(·)(Qn
p )
. (6.2.10)

Inequalities (6.2.8)-(6.2.10) imply that

∥(Hp
α,bf)χj∥Lv(·)(Qn

p )
≲ ∥b∥Cu′(·)∩Cv(·)

j∑
l=−∞

(j − l)p(l−j)n/u′(·)∥fl∥Lu(·)(Qn
p )
. (6.2.11)
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Let f ∈ K̇β,m1

u(·) (Qn
p ), Jensen inequality then gives us

∥Hp
α,bf∥

m1

K̇
β,m2
v(·) (Qn

p )
(6.2.12)

=

(
∞∑

j=−∞

pβm2j∥(Hp
α,bf)χj∥m2

Lv(·)(Qn
p )

)m1/m2

,

≲
∞∑

j=−∞

pβm1j∥(Hp
α,bf)χj∥m1

Lv(·)(Qn
p )
,

≲ ∥b∥m1

Cu′(·)∩Cv(·)

∞∑
j=−∞

pβm1j

(
j∑

l=−∞

(j − l)p(l−j)n/u′(·)∥fl∥Lu(·)(Qn
p )

)m1

,

≲ ∥b∥m1

Cu′(·)∩Cv(·)

∞∑
j=−∞

(
j∑

l=−∞

(j − l)piβp(n/u
′(·)−β)(l−j)∥fl∥Lu(·)(Qn

p )

)m1

,

= L. (6.2.13)

We look at two scenarios: 1 < m1 < ∞ and 0 < m1 ≤ 1.

If 1 < m1 < ∞, then inequality (1) yields

L ≲ ∥b∥m1

Cu′(·)∩Cv(·)

∞∑
j=−∞

(
j∑

l=−∞

plβm1p(n/u
′(·)−β)(l−j)m1/2∥fl∥m1

Lu(·)(Qn
p )

)

×

(
j∑

l=−∞

(j − l)m
′
1p(n/u

′(·)−β)(l−j)m′
1/2

)m1
m′

1

,

≲ ∥b∥m1

Cu′(·)∩Cv(·)

∞∑
j=−∞

j∑
l=−∞

plβm1p(n/u
′(·)−β)(l−j)m1/2∥fl∥m1

Lu(·)(Qn
p )
,

≲ ∥b∥m1

Cu′(·)∩Cv(·)∥f∥m1

K̇
β,m1
u(·) (Qn

p )
.

For 0 < m1 ≤ 1, we can use the Jensen inequality to get

L ≲ ∥b∥m1

Cu′(·)∩Cv(·)

∞∑
j=−∞

j∑
l=−∞

plβm1p(n/u
′(·)−β)(l−j)m1∥fl∥m1

Lu(·)(Qn
p )
,

≲ ∥b∥m1

Cu′(·)∩Cv(·)

∞∑
l=−∞

plβm1∥fl∥m1

Lu(·)(Qn
p )

∞∑
j=l

(j − l)m1p(n/u
′(·)−β)(l−j)m1 ,

≲ ∥b∥m1

Cu′(·)∩Cv(·)∥f∥m1

K̇
β,m1
u(·) (Qn

p )
.

We achieve the desired outcome by combining the estimates from both cases.
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Similar to the previous inequality, the following one can also be proven:

∥Hp,∗
α,bf∥K̇β,m2

v(·) (Qn
p )

≲ ∥b∥Cu′(·)∩Cv(·)∥f∥K̇β,m1
u(·) (Qn

p )
.

The proof is now complete.

6.3 Variable Morrey-Herz Estimates for p-adic Hardy-

type Operators and Commutators

This section proves the boundedness of Hp
α, Hp,∗

α , Hp
α,b and Hp,∗

α,b on Morrey-Herz type

spaces. Here fi = f(χi) remains the same as used in previous section for any i ∈ Z.

Theorem 6.3.1 Let 0 < m1 ≤ m2 < ∞, u(·) ∈ ℵ(Qn
p ), 0 < α < min{ n

u+
, n
v′+
} and

λ− n
v−

< β < n
u′
−

+ λ. Defined v(·) by

1

v(·)
=

1

u(·)
− α

n
, (6.3.1)

then both Hp
α and Hp,∗

α map MK̇β,λ
m2,v(·)(Q

n
p ) into MK̇β,λ

m1,u(·)(Q
n
p ).

If α = 0, then the following is true:

Corollary 6.3.2 Let 0 < m1 ≤ m2 < ∞, u ∈ ℵ(Qn
p ), and − n

u+
< β < n

u′
−
. Then both

Hp and Hp,∗ map MK̇β,λ
m2,u(·)(Q

n
p ) into MK̇β,λ

m1,u(·)(Q
n
p ).

Proof of Theorem 6.3.1. Consider

∥fi∥Lu(·)(Qn
p )

= p−iβ
(
piβm1∥fi∥m1

Lu(·)(Qn
p )

) 1
m1 ,

≲ p−iβ

(
i∑

l=−∞

plβm1∥fl∥m1

Lu(·)(Qn
p )

) 1
m1

,

≲ pi(λ−β)∥f∥MK̇β,λ
m1,u(·)

(Qn
p )
. (6.3.2)

By considering the inequalities (6.2.3), (6.3.2), and the Jensen inequality, we observe

that
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∥Hp
αf∥

m1

MK̇β,λ
m2,v(·)

(Qn
p )

= sup
j0∈Z

p−j0λm1

(
j0∑

j=−∞

pjβm2∥(Hp
αf)χj∥m2

Lv(·)(Qn
p )

)m1/m2

,

≲ sup
j0∈Z

p−j0λm1

(
j0∑

j=−∞

pjβm1∥(Hp
αf)χj∥m1

Lv(·)(Qn
p )

)
,

≲ sup
j0∈Z

p−j0λm1

j0∑
j=−∞

pjβm1

(
j∑

i=−∞

p(i−j)n/u′(·)∥fi∥Lu(·)(Qn
p )

)m1

,

≲ sup
j0∈Z

p−j0λm1

j0∑
j=−∞

pjβm1

(
j∑

i=−∞

p(i−j)n/u′(·)pi(λ−β)∥f∥MK̇β,λ
m1,u(·)

(Qn
p )

)m1

,

≲ ∥f∥m1

MK̇β,λ
m1,u(·)

(Qn
p )

sup
j0∈Z

p−j0λm1

j0∑
j=−∞

pjλm1

(
j∑

i=−∞

p
( n
u′(·)+λ−β)(i−j)

)m1

,

≲ ∥f∥m1

MK̇β,λ
m1,u(·)

(Qn
p )

sup
j0∈Z

p−j0λm1

j0∑
j=−∞

pjλm1 ,

≲ ∥f∥m1

MK̇β,λ
m1,u(·)

(Qn
p )
.

Likewise, it is straightforward to show that

∥Hp,∗
α f∥MK̇β,λ

m2,v(·)
(Qn

p )
≲ ∥f∥MK̇β,λ

m1,u(·)
(Qn

p )
.

Thus, we achieved the desired proofs.

Theorem 6.3.3 Let 0 < m1 ≤ m2 < ∞, b ∈ Cu′(·) ∩ Cv(·), u(·) ∈ ℵ(Qn
p ), 0 < α <

min{ n
u+

, n
v′+
} and λ− n

v−
< β < n

u′
−

+ λ. Defined v(·) by

1

v(·)
=

1

u(·)
− α

n
, (6.3.3)

then both Hp
α,b and Hp,∗

α,b map MK̇β,λ
m2,v(·)(Q

n
p ) into MK̇β,λ

m1,u(·)(Q
n
p ).

The logical consequence of α = 0 is as follows:

Corollary 6.3.4 Let 0 < m1 ≤ m2 < ∞, b ∈ Cu′(·) ∩ Cu(·), u(·) ∈ ℵ(Qn
p ), and

λ− n
u−

< β < n
u′
−

+λ. Then both Hp
b and Hp,∗

b map MK̇β,λ
m2,u(·)(Q

n
p ) into MK̇β,λ

m1,u′(·)(Q
n
p ).
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Proof of Theorem 6.3.3. Considering (6.2.11), (6.3.2), and the Jensen inequality,

we find that

∥Hp
α,bf∥

m1

MK̇β,λ
m2,v(·)

(Qn
p )

= sup
j0∈Z

p−j0λm1

(
j0∑

j=−∞

pjβm2∥(Hp
α,bf)χj∥m2

Lv(·)(Qn
p )

)m1/m2

,

≲ sup
j0∈Z

p−j0λm1

(
j0∑

j=−∞

pjβm1∥(Hp
α,bf)χj∥m1

Lv(·)(Qn
p )

)
,

≲ ∥b∥m1

Cu′(·)∩Cv(·) sup
j0∈Z

p−j0λm1

j0∑
j=−∞

pjβm1

(
j∑

i=−∞

p
(
n(i−j)

u′(·) )∥fi∥Lu(·)(Qn
p )

)m1

,

≲ ∥b∥m1

Cu′(·)∩Cv(·) sup
j0∈Z

p−j0λm1

j0∑
j=−∞

pjβm1

×

(
j∑

i=−∞

p
( n
u′(·) )(i−j)

pi(λ−β)∥f∥MK̇β,λ
m1,u(·)

(Qn
p )

)m1

,

≲ ∥b∥m1

Cu′(·)∩Cv(·)∥f∥m1

MK̇β,λ
m1,u(·)

(Qn
p )

sup
j0∈Z

p−j0λm1

j0∑
j=−∞

pjλm1

×

(
j∑

i=−∞

p
( n
u′(·)+λ−β)(i−j)

)m1

,

≲ ∥b∥m1

Cu′(·)∩Cv(·)∥f∥m1

MK̇β,λ
m1,u(·)

(Qn
p )

sup
j0∈Z

p−j0λm1

j0∑
j=−∞

pjλm1 ,

≲ ∥b∥m1

Cu′(·)∩Cv(·)∥f∥m1

MK̇β,λ
m1,u(·)

(Qn
p )
.

Noticing that n
u′(·) + λ− β > 0. Just like the above inequality, the next one can also

be shown:

∥Hp,∗
α,bf∥MK̇β,λ

m2,v(·)
(Qn

p )
≲ ∥f∥MK̇β,λ

m1,u(·)
(Qn

p )
.

This concludes the proof.

6.4 Conclusion

In this Chapter, as a first attempt, we proved the boundedness of p-adic Hardy-type

operators on p-adic Herz-type spaces with variable exponents. This work will open

ups new dimensions for research in this direction.
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