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ABSTRACT 

The purpose of thi s work is to provide a brief description of the transport of the 

part icles and heat energy in the non-relativi sti c and ultra -re lativistic 2DEG in the low 

temperature limit where linear response theory wo rks. A viable bas is of the Landau er 

theory wi ll be provided to understand the transport of the non-relativistic and ultra­

relativ istic quas i-free particles and energy . The electrical conductance and thermal 

conductance quantum will be found by using Landauer theory. This also provides a 

gateway to find Seebeck and Peltier coeffi cient. Moreover, we examine the behav ior of a 

2DEG that is subj ected to both a perpendicul ar magnetic field and spatially va rying 

internal e lectri c fi e lds. We choose one of the two guiding centre to be diagonal. Thi s 

makes energy a loca l function of the pos ition, allowing for an easy visualization of the 

transverse response to externally imposed fi elds, as we ll as the spatial distribution of the 

(transverse) Hall current inside the sample. Further, in thi s model, we apply a thermal 

gradient vvhi ch results into the quantized thermal current flowin g through the sample. 



Chapter 1 

Introduction 

Solids are typically classified into three categories depending on their electrical 

properties: conductors, insulators and semiconductors. Conductors such as metals 

conduct current well , whereas insulators do not conduct current . The conductivity 

of semiconductors lie somewhere in between metals and insulators. The current 

in solids is carried by the electrons, which are elementary particles that behave as 

both particles and waves. The differences in the electrical properties of solids arise 

from the interactions between the crystal structures of materials and electrons. 

In solids, this interaction will give rise to an energy gap in the allowed states of 

electrons in the material. In semiconductors and insulators, the energy gap divides 

electrons into bound electrons, the so-called conduction band electrons. How well 

a semiconductor or insulator conducts current, i.e., its conductivity, is related to 

the number of electrons in the conduction band. In semiconductors the energy gap 

is large as compare to conductors. This means that semiconductors can conduct 

fairly well at room temperature since bound electrons can become free mobile 

charge carriers through thermal excitation. The conductivity of semiconductors 

can be fine tuned, from metal like to insulating, by introducing so-called doping 

that can control the number of free carriers in the conduction band, or by using 

an electric field to shape the band structure. 

As the size of the devices become closer to the wavelength of the electrons in 

the material, a confinement effect will lead to electrons exhibiting low dimension 

properties. A low dimension system is created when electrons in a conductor are 

physically confined so that they can no longer move in fully three dimensional 

space, but only in two dimension, one dimensional or 

gions of space. The electronic and thermal nrr,no'ri" 

have been the subject of much interest in the last 
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goals of discovering new physics and developing potential applications. Studies 

of low dimensional systems have indeed yielded exciting new discoveries, such as 

quantum Hall effects, which will be discussed in t he coming chapters, for which 

two Nobel Prizes have been awarded. The electronic properties of low dimen­

sional system remain an important topic of research with ongoing exploration of 

physical systems. Low-dimensional properties of electrons are clearly seen in two­

dimensional electron gases (2DEG) based on semiconductor heterostructures[l]. 

This thesis is about t he electronic and thermal properties of a two dimen­

sional electron gas, confined in a rectangular geometry and subjected to a strong 

perpendicular magnetic field , in low dimension. We will focus on intellectual cu­

riosities that 2DEG has to offer and , in particular, will discuss several phenomenon 

that can be observed in electronic and thermal transport. 

1.1 Two dimensional electron gas 

Many important developments in transport properties have taken place in the 

two-dimensional electron gas (2DEG), and are likely to continue to do so in the 

future. We make explicit here the certain approximations with which we shall 

work. Although transport in semiconductors can be mediated by both electron and 

hole flow, it is usually just t he electrons that are involved. The two-dimensional 

samples are usually degenerate, which means that the conduction band is highly 

populated with electrons. Furthermore, transport energy scales are low cf. the 

band gap and therefore inter-band transit ions are avoided. Thus, we need to 

consider only a single band, t he conduction band (CB) and t he electrons that reside 

in it . We consider t he electrons to be non-interacting. The justification of non­

interacting electron comes from the Fermi gas theory. Fermi gas, or free electron 

gas, is a physical model assuming a collection of non-interacting fermions. It is 

the quantum mechanical version of an ideal gas for the case of fermionic particles . 

Electrons in metals and semiconductors can be approximately considered Fermi 

gases. 

The energy distribution of the fermions in a Fermi gas in thermal equilib­

rium is determined by their density, temperature, and t he set of available energy 

states, via Fermi-Dirac statistics . By the Pauli principle, no quantum state can 

be occupied by more t han one fermion , so the total energy of the Fermi gas at 

zero temperature is larger than the product of the number of particles and the 

single-particle ground state energy. For this reason, the pressure of a Fermi gas is 
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non-zero even at zero temperature, in cont rast to t hat of a classical ideal gas. It 

is possible to define a Fermi temperature below which t he gas can be considered 

degenerat e. T his temperature depends on t he mass of t he fermions and the energy 

density of states . For metals, the electron gas Fermi temperature is generally many 

thousands of kelvins, so they can be considered degenerate. T he maximum energy 

of the fermions at zero temperature is called t he Fermi energy. T he Fermi energy 

surface in the momentum space is known as the Fermi surface. Since interactions 

are neglected by definition , the problem of t reating t he equilibrium properties 

and dynamical behaviour of a Fermi gas reduces to the study of t he behaviour 

of a single independent particle. As such, it is still relatively t ractable and forms 

the st arting point for more advanced theories (such as Fermi liquid t heory in the 

interaction) which take into account interactions to some degree of accuracy[2] . 

Another strict justification of free electron gas comes from t he Landau theory, in 

which an interacting electron gas is re-described in terms of non-interacting quasi­

particles wit h renormalised energy (as compared to original particles) and a finite 

lifetime. Provided t his lifetime is long compared to any experimentally relevant 

processes, t he quasi-particle picture is a valid one, and this is generally the case 

in semiconductors. 

1.2 Outline 

The rest of this thesis will present a review of t he local electronic and thermal 

properties of 2DEG in the quantum Hall regime and in nano-st ructures. 

In chapter 2, we give a quick review of the classical Drude's theory and use this 

model of transport to study the electrical and thermal conductivity and the See­

beck coefficient. Then we formulate the semi-classical Boltzmann theory of t rans­

port in bulk materials in order to become familiar with some concepts and lan­

guage, and also have a cachet wit h which to compare. At the end of this chapter 

we give a review of Landau theory and mesoscopic t ransport concepts which are 

frequently used to calculate the current in the next chapters. 

In chapter 3, we present Landau levels to understand t he Integer 

Quant um Hall Effect in a 2DEG. We solve t he Schrdinger equation for single 

particle wave functions and energy spectrum in the symmetric and Landau gauges. 

Then , we use Landau theory to study the edge currents and conductivity. The 
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effect of the periodic potential is also introduced in chapter 3 to study the gauge 

invariance of the Hall conductance. Here, in this chapter we show t hat the Hall 

conductance is shown to be represented by a gauge invariant quantity which is 

naturally an integer. 

This is similar to the Laughlin's argument[8] that an exact quantization must be a 

consequences of a general principle which is determined by t he geometrical nature 

of the problem. Chapter 3 then follows an alternative frame work for a 2DEG. In 

this section we study the effect of a random confinement potential in a rectangular 

geometry. We check here that how the Landau levels are modified by introducing 

this random potential. Then we calculate thermal conductivity in linear response 

theory by using the Landau formalism. 

Chapter 4 introduces graphene, a two dimensional material composed of 

carbon arranged in a hexagonal lattice. Graphene was first discovered in 2004[15] , 

and in the few years since, it has attracted the attention of researchers. The first 

thing will come in mind when the physicist hear the word graphene is t he linear 

dispersion relation of the charge carrier. 

The low energy properties of the graphene are predicted to be governed 

by a two dimensional massless Dirac equation[19, 21 , 22] . This has confirmed by 

experiments[23] . The basic properties of Dirac equation are not discussed here, 

and refer a book such as in [20] . We will go through the derivation of the Dirac 

Hamiltonian of graphene and go into t he more details of the origin of pseudo-spin. 

The most striking transport prediction for Dirac electrons is Klein tunneling[9, 

10, 15] in the ultra relativistic limit . Imagine a system where a Dirac particle 

of energy E is in a mono atomic potential which only depends upon x. Suppose 

it satisfies U(x -+ -00) = U1 , U(x -+ +00) = U2 , where U1 < E < U2 , in 

such configuration a Dirac particle incident normally will be fully transmitted , 

independent of E. We will explore Klein tunnelling in more detail in chapter 4. 

This problem will be tackled by using so-called mass confinement. Then, by using 

this hypothetical mass term, we discuss quantum transport through a constriction 

which is a counter-part of the derivation which we did before for the non-relativistic 

case in chapter 2. Finally, we find transport coefficients in terms of transmission 

probabilities. 



Chapter 2 

Basic principles 

2.1 History 

Quant um Hall Effect is a study of the 2D electron gas in a perpendicular magnetic 

field . It is one of the most interesting topics in t he field of research in condensed 

matter physics. The Quant um Hall Effect is the quantum version of t he classical 

Hall Effect in which conductivity takes discrete values , 

e2 

a=/J -
h 

(2. 1) 

where e is electron charge and h is Planck's constant and /J is called filling factor. 

It takes eit her integer (/J = 1,2, 3 .. ...... ) or fractional (/J = ~,~) ~ .. "" .. .. ) values. 

The Quant um Hall Effect is Integer or Fractional Quantum Hall Effect depending 

on whether the value of /J is integer or fraction respectively. It is well understood 

in terms of a single electron subjected to a perpendicular magnetic field. The 

FQHE is somewhat complicated. It involves electron-electron interactions. 

The IQHE was first predicted by Ando, Matsumoto, and Uemura in 1975 

but they were not sure about the t ruth of the result which they derived on the basis 

of approximate calculation . In several experiments this effect is observed, which 

are carried out on the MOSFET inversion layer. It was Klaus von Klitzing[17] who , 

first working with Michael Pepper and Gerhard Dorda, experimentally observed 

the exact quantization of conductivity in 1980. On that marvelou s work Von 

Klitzing was awarded the Nobel Prize in 1985. The connection between exact 

quantization of conductivity and gauge invariance was developed by Laughlin[8]. 

5 
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2.2 Classical Hall Effect 

The conductivity and resistivity tensors can be found using the classical Drude 

Model. Drude equation of motion is , 

In the steady state, 

Hence, 

and, 

p ~ dp 
- -+F=-· 

T dt 

dp = o. 
dt 

~ P 
F=­

T 

T ~ 

v=-Y 
m 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

For the Hall effect in the presence of a magnetic field, the Lorentz force is, 

~ ~ (v x B) F = -eE - e -c- . (2.6) 

Resolving the velocity into its components along x and y-direction , and solving 

for velocity we get 

_m ( 
eT 

1 
(2.7) 

where We is cyclotron frequency of electrons. T he current is related with the 

velocity as 

~ J 
V=--, (2.8) 

en 

where e is electron charge and n is electron number density so, 

n:'T ( -~"T W;T )( ~: ) ( ~: ) , (2.9) 

1 W;T ) , p= ~ ( 
ao 

1 m 
Pxx = - = -- , 

Wo ne2 T 

WeT B 
P ----

xy - aO - nec ' 

(2.10) 
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(2.11) 

Here is a point to be noted: when B = 0, CTx y = O. T his implies t hat p is diagonal 
1 

and Pxx = - . If we have a system where CTxx = 0, t hen Pxx --700 and the system 
CTxx 

is insulator wit h infinit e resistivity. The system is dissipat ive and joule heating is 

large. If we have a system where a magnetic field is present , CTxy i= 0, Pxx i= ,L 
If we have CTxx = 0, then Pxx = 0, not infinity. 

If electron scattering is absent then T --7 00 and we have Pxx = CTxx = 0, Px y = n~c' 
and we have dissipation-less state wit h Jl.E. In QHE we find t hat at certain 

discrete values of B , 

CTxx = Pxx = 0, 

1 e2 

CTx y = - = v - . 
Pxy h 

2.3 Thermal conductivity 

(2 .12) 

(2. 13) 

If we have two systems at different temperatures heat will flow from the hot body 

to t he cold body to attain thermal equilibrium. Heat flux can be calculated by 

using Fourier 's Law J = -K,'VT , where 'VT is gradient of temperature , J is heat 

flux, and K, is thermal conductivity. K, is t emperature dependent and a scalar if 

the system is isotropic. Else it is tensor valued. 

To underst and thermal conductivity we need to start from the atomic level where 

phonon interactions play an important role in thermal transport . In insulators, 

heat is carried by t he harmonic oscillations of phonons and in metals electrons also 

play an important rule. Theoretically, for an infinite crystal the t hermal conduc­

t ivity is infinite. But the thermal conductivity of common crystal is finite. There 

are t hree main reason for the finite result of the t hermal conductivity. Firstly, the 

scattering from impurit ies reduced t he thermal conductivity. Secondly, the mate­

rial is finite. Finally, an-harmonic oscillations or umklapp processes are essent ial 

for the finite thermal conductivity. 
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2.3.1 Classical Treatment 

In the classical treatment of thermal transport , we use the Drude Model. This 

was the first attempt made by Paul Drude, to theoretically understand electronic 

transport properties. Drude assumed that the electrons are free, non-interacting 

particles carrying heat current as well as electronic current. One finds the elec­

tronic conductivity, 
ne2 

a=-T. 
m 

(2.14) 

Now apply a thermal gradient across the metal. A thermal current p will flow 

through the metal. From thermodynamics , 

dE: = Tds - pdv . (2.15 ) 

For a fixed volume, 

dE: = dQ = Tds. (2.16) 

Consider the energy flowing through the plane perpendicular to \IT and assumes 

that \IT is along the x-direction, 

(2. 17) 

Electrons crossing through the planes from left to right have had their last colli­

sion , on average, at t ime T earlier at the position, xL = x - V~T. Here v~ is the 

average speed of these electrons in the x-direction. These electrons have average 

energies, E: (T(x - V~T)) , where E:(T) is average energy at temperature T. 

Similarly, t he electrons moving from right to left have had their last 

collision at the position, xR = x + V;;T and carry average energy, E: (T( x + V;;T) ). 
The number of electrons per unit area per unit time crossing from left to right are, 

(2 .18) 

and the number of electrons per unit area per unit time crossing from right to left 

are, 

(2.19) 

The energy flux can be written as, 

(2.20) 
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For slow variation of temperature, ~; < If , where To is average temperature and 

e is mean free path , we can expand equation (2.20) to get , 

1 L ( L dE dT ) 1 R ( R dE dT ) 
J.q = - nv E (T( x)) - v T - X - - -nv E (T(x)) + v T- X - . 

2 x x dT dx 2 x x dT dx 
(2.21) 

By rearranging the above equation we get , 

(2 .22) 

The first term of the equation (2.22) can be approximated as, 

(2.23) 

In the second term, v~ - v;; = (vx ) is average velocity at position x . But since the 

t hermal conductivity is usually measured in an open circuit , no current will flow 

in the x-direction. Hence, (vx ) = O. Thus , the second term in t he equation (2.22) 

vanishes. We will discuss t his point later in this section , 

. 1 2 dE dT f = --nT(v )--. 
3 dT dx 

(2 .24) 

By t he definition of t hermal conductivity one reads, 

(2.25) 

where E(T) is average energy per electron at temperature T, N E is total average 

energy and nE is average energy density. If Cv is specific heat capacity per unit 

volume at constant volume then, 

(2.26) 

Thermal conductivity in equation (2 .25) is, 

(2.27) 

The ratio between the thermal conductivity and electrical conductivity reads , 

a (~ k1 ) T = LoT. 
2 e2 (2.28) 
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Which is the well-known Wiedmann-Franz law. Here Lo = ( ~:~ ) is Lorentz num­

ber , the value of which is 1.11 x 1O-8watt.ohm/k. This is in excellent agreement 

with t he experimental value. T his success is just luck. We will see that when 

we treat electron gas quantum mechanically, the value of (v 2 ) is greater than 100 

t imes as calculated in the classical case by t he Drude's model but t he value of Cv 

is almost 100 times less than t he previously calculated value. These two effects 

exactly cancel each other. So accidentally the Drude model exactly matches the 

experimental value. 

Even in Drude's day, it was known that something is not right since no 

electronic contribution to specific heat capacity was ever found as large as ~nkB. 

2.3.2 Thermo-electric effect 

We state in the previous section, v~ - v: = (v) = 0 in an open circuit. But since, 

T(xd > T( XR) one would expect that v~ > v:. 

This implies t hat in t he steady state an electric field must generated in t he same 

direction as '\1T that exactly compensates for t he difference in t hermal velocit ies 

so t hat velocities of right going and left going electrons are equal as t hey cross the 

same plane at x. 

This is the t hermo-electric field E and it is proportional to the VT. We 

define t hermo-power S by the equation 

E = SVT. (2.29) 

We estimate the value of S here. Suppose, v~o is velocity from equilibrium thermal 

distribution at T( X-VxT ), and v~ is velocity from equilibrium t hermal distribution 

at T( X+VxT) . When the t hermo-electric field E is present , the speed of right going 

electrons when t hey cross the plane at x is, 

(2 .30) 
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Here, eE is acceleration due to the presence of electric field. Similarly, 
m 

The temperature dependence of thermal velocities one reads, 

R dvx dT 
vxo = Vx (T(x + VxT)) = Vx (T(x)) + dT' dx VxT 

The difference in velocities must vanish at x. So, 

L R 0 Vx - Vx = , 

L eET R eET 
vxo - -- - v - -- = 0 m xo m ' 

dvx dT dvx dT eET 
Vx (T(x)) - dT x dx VxT - Vx (T(x)) + dT x dx VxT - 2~ = O. 

The electric field one can read, 

E _ m dV; dT _ 1 dE dT 
- - 2e dT dx - - 3e dT dx . 

The thermo-power can be written as , 

s = _ kB 
2e' 

11 

(2 .31 ) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

i.e., S = -0.4 x 1O-4volt/k. We can see that when we apply quantum mechanical 

models the value of S is 100 times less than this classical Drude's result. 

2.3.3 Semi-classical approach 

We do need quantum mechanics to understand the properties-ii~~tin~1CtJ~~ 

discuss here a quick review of Bloch theory, and then the Bolt.z;mann approacH to 

understand the transport of particles. . .\..-..-: . . ~.' 
2.3.3.1 Bloch Theory 

The Bloch theory of electrons concerns the motion of non-interacting el trons in 

a periodic potential V (T) generated by ions rather than a free space motion where 
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the potential is zero. The potential is periodic, 

V(f + R) = V(f'). 

The Hamiltonian of a single electron moving in a periodic potential is, 

r H = - + V(f'). 
2m 

12 

(2.36) 

(2 .37) 

According to the Bloch t heorem, the translation symmetry of the Hamiltonian 

allows the wave function of the form , 

(2 .38) 

Where n is band index, and Unk (f') is a periodic function of period R. Here R is a 

Bravais lattice vector. The dynamics of t he Bloch electrons can be summarised in 

three phrases. Firstly, the band index is constant of motion. An electron starting 

its motion in band n will remain t hereafter in same band. Second , the position of 

Bloch electrons changes according to the equation, 

(2.39) 

and the electron's momentum changes accordingly, 

:. ~ e ( ~) l'ik = -eE - ~ if x B . (2.40) 

This is the quantum version of Newton's law. The filling factor of any Bloch state 

is , 

(2.41 ) 

2.4 Boltzmann Transport 

The Boltzmann transport equation tells how particles and energy are transported 

in any system which obeys the Hamilton 's equation. This must not include just 

t he dynamics of carriers under t he influence of external fields , but also scattering 

effects arising from the carrier interactions with impurit ies , phonons, contacts , 

etc. The Boltzmann equation is a transport theory that operates in the classical 

diffusive regime in which the state of a system is described by a non-equilibrium 

distribution function f(r , k , t) , which gives occupancy of a state k at position f 
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and time t. The position f in f (r , k, t) represents a suitable coarse grained length 

scale (much greater t han the atomic scale), such that each f represents a thermo­

dynamics system. 

In equilibrium, f(r, k, t) = fO(k). There are external forces acting to 

drive the distribution function away from equilibrium and collisions act to restore 

the equilibrium, i. e., try to bring f back to fa . 

2.4.1 Time evolution of f(r , k , t) 

Suppose we know f(r , k , t) at time t = 0, we want to know f(r , k , t) at some later 

time t provided we know the forces acting on the system. The electron 's position 

and momentum change continuously and are described by semi-classical equation 

of motion . The change in distribution function is, 

Thus, 

af ~ of ~ of df = -dt + dr . ~ + dk . ----:::;. at aT ok 

df af ~ af ~ af 
- = -dt + r . - + k . -
dt at af ak' 

(2.42) 

(2 .43) 

If t here are no scattering processes , the total t ime derivative of distribution func­

tion is zero, i.e., 
df 
dt = O. (2.44) 

Hence, 
af ~ af ~ af 
- = -T ·- - k·-
at af ak' 

(2.45 ) 

If scattering processes are there, electrons momentum now changes discontinu­

ously, to include the effect of these processes Boltzmann added a new term, 

df 
dt I coil 

(2.46) 

called the collision term, the equation (2.45) becomes, 

af ~ af ~ af df 
at = -1" af - k . ak + dt Icoll . (2.47) 
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The equation (2.47) is known as the Boltzmann equation. We will solve it in the 

relaxation t ime approximation where t he simplest form of the collision term is, 

df f - fO 
dt 

Icoll= ---, 
, T f: 

(2.48) 

here Tf: is t he relaxation time and depends upon k through energy. We will discuss 

it later. Once the relaxation time approximation is employed , the Boltzmann 

equation takes a simpler form , 

df f-r 
(2.49) 

The solut ion of the above equation in relaxation time approximation can be taken 

as, 

f = jt dt' f (t' ) exp ( ~) . 
- 00 Tf: 

(2.50) 

Integrating by parts and by using equation (2 .45) one can write , 

~ ~ jt (t -t') [. 8 :... 8] f(f, k , t) = fO(k) - dt' exp - f· ----:. + k . -;-::; fO(t' )· 
-00 Tf: 8r 8k 

(2 .51) 

If we use , 

----::; = - - V'J.L - (10k - JL)-8f 8f [ ~ -gT] 
8r 810 T 

(2 .52) 

and 

(2 .53) 

t hus we obtain, 

I (r, k, t) = fO (k) - dt exp -- r · - V' J.L - (10 - JL) - - + ltk . 'U- . 
. ~ ~ ~ jt , ( t - t') [ ~ ( ~ -gT ) 8f :... ~8f ] 

-00 Tf: T 810 810 
(2.54) 

By using equation (2.40) we obtain , 

nk . v = - ev . E. (2 .55) 

Hence, 

j (t - t') ~ V' J.L 10 - - J.L ~ ( 8 f) 
t [( ~ ) ] f = fO - - 00 dt' exp --:;:;- Vk ' e E + --;- + T V'T - 810 . (2.56) 
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We take the slow variation of semi-classical dynamics such that we ignore the t ime 

dependence of all other quantit ies except exponent ial factor. By integrating above 

equation , only exponent ial factor, we have 

We define here, 

- - fiT 
E'=E + - . 

e 

(2.57) 

(2.58) 

This form of solut ion has the virtue that it is written as a sum of unperturbed 

term and perturbed term. Now, let's formulate how we can calculate T". Consider 

VI is the impurity potential which causes the transition from one Bloch state to 

another . The rate of transition from k --+ i2 is, 

27f 2 ( - - ) Wk--tk l = n \ (k' IVI\ k ) \ 0 c(k) - c(k') . (2.59) 

This is Fermi's golden rule. Now let's look back on the collision term, we can write 

it more elaborately as, 

(2.60) 

As the temperature does not affect much t he impurity scattering so we can ignore 

the temperature dependent term in (2.57) to get, 

(2 .61 ) 

and, 

f(k) - f(k') = - T~e aLa [v(k) - v(k')] . Ee ff . (2.62) 

Using (2.61) and (2.62) one can solve (2.60) for T", 

(2.63) 

Here, () is angle between k and k'. 
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2.4.2 Thermodynamics and production of heat 

As pioneered by Massieu and Gibbs, thermodynamics can be based on the postu­

late that the static properties of any physical system with r independent variables 

can be compressed into certain functions of these variables, which are called ther­

modynamic potentials. The most familiar thermodynamic potential is the energy 

E when expressed as a function of the independent extensive variables of the sys­

tem. In the case of simple fluid or gas, the independent extensive variables are the 

entropy S, the volume V and the particle number N. Assigning values for a set of 

independent variables, e.g., for (S, V, N), specifies a certain state of the system. 

The total differential of the function E(S, V, N) can be written as, 

For a fixed volume this equation reduces as, 

If we define the absolute temperature as 

and the chemical potential fJ, as 

T(S, N) = ;~ , 

aE 
fJ,(S, N) = aN' 

then the equation (2.65) becomes, 

dE = TdS + fJ,dN. 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

(2 .68) 

Equation (2.66) and (2.67) are called caloric and chemical equations of state of the 

system. The equation (2.68) is called the Gibbs fundamental form. This equation 

has a very simple physical meaning. Consider a system heated by connecting it 

to an external reservoir by keeping volume V and number of particles N fixed . 

Suppose that an amount !:::..C: = T!:::..S , of energy, along with an amount of !:::..S 

of entropy, has to be added to the system from the reservoir. The first law of 

thermodynamics can be written in the form 

(2.69) 
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Now we discuss conservation laws. In general any balanceable X has to obey 

continuity equation of the form 

aX(t , i'} "7 • 

at + \l . ]x(t , i'} = x , (2.70) 

where Jx (t , i') is the local X-current density and X is the X generation rate. For 

conserved quantities X vanishes. The continuity equation for the c is 

(2 .71 ) 

for the number of particles 

aN - . 
- + \l · ]·N = N 
at ' 

(2 .72) 

and for the entropy is 
as - . at + \l . js = s. (2 .73) 

Define, 

(2.74) 

and 

(2.75) 

We assume here energy is transported with the same velocity as the particle cur­

rent. Since the number of particles are fixed , so N is a conserved quantity, i. e., IV 
is zero . Let F be the external force acting on the system which is usually electric 

or magnetic force . Then the rate of the energy generation can be written as 

(2.76) 

The equations of continuity for energy and particle currents becomes, 

(2 .77) 

(2.78) 

By combining the equations (2.69) , (2 .77) and (2.78) we have, 

(2 .79) 
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If we define the entropy current as 

(2.80) 

This easily follows from equation (2.68) and multiplying by v. Then, the continuity 

equation for the entropy becomes 

By using equation (2.79), the above equation simplifies to give , 

If F is identified as electromagnetic force 

- ( - 'VXB) F= -e E+-
c
- , 

then , 
--I --I e _ --I 

F . jN = -rE . jN' 

The rate at which entropy is generated can be written as: 

And the heat generated Q per time is , 

Define, 

. - [ - - VT 1 Q(k) = - eE+ \1f..L+ T (E;; - 11,) 

IN 
V 

(2.81 ) 

(2.82) 

(2.83) 

(2.84) 

(2 .85) 

(2 .86) 

(2.87) 

(2 .88) 

to be heat production per wavenumber per volume. Here Ek is energy per particle 

with wavenumber k. 
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2.5 Thermoelectric phenomenon 

Consider a solid immersed in forcing fields, such as an electric or magnetic or a 

thermal gradient. We want to check what response should be associated with each 

of the forcing field . For example, applying t hermal gradient will in general produce 

an electric current as well. To calculate these effects , one should check the flux 

associated with each of the forcing field . We define, t he flux induced by a forcing 

field to be the derivative of heat. In general, let Y.a be the flux associated with t he 

forcing field Y.a, t hen t he flux Y.a is defined as: 

(2.89) 

There are t hree forcing fields considered in equation(2.86), E, <g and <gf.L. Since E 
and .g f.L appear in the combination E + <g f.L , so it is useful to define t he electro-

chemical force 

(2.90) 

Now it is straight forward to calculate t he flux associated wit h t he electrochemical 

force. By using equation (2.89) and (2 .88) we have, 

(2.91) 

Here, 2 is a factor due to spin . By writing f(k) as 

(2 .92) 

i.e., the sum of perturbed and unperturbed part , we have, 

(2 .93) 

Since equilibrium part of t he distribution function generates no current , t he fi rst 

part of the integral in equation (2.93) vanishes, then 

(2.94) 
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With the help of equation (2.57), we can write t he above equation as: 

~ 2e J 3 ~ ~ ~ [ ~ E:- - I-" ( ~ )] (OJ ) je = (21T)3 d k'1J(k)Tc;V(k)· eEl + T -\IT 01-'" (2.95) 

We use here the fact that 

(2.96) 

Now it is conventional to take - V as force. The flux associated wit h this force is 

(2.97) 

This equation can easily be simplified in a similar way as we did before for t he 

electric current . The simplified form of the above equation is: 

Equation (2.95) and (2.98) can be written as: 

Ie = (2
2:)3 J d3kvkTc;Vk ' [eEl + Ck; I-" (-'\7T)] ( ~~) , (2.99) 

IQ = (2~)3 J d3kvkVkTc;Vk ' [-e(ck - I-")EI + (ck ; 1-")2 ( - '\7T)] ( ~~) . 
(2.100) 

If we define a new integral, 

(2.101) 

then the equations(2.99) and (2.100) becomes, 

(2.102) 

The matrix form of the above equation is, 

(2.103) 
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Where 

(2.104) 

Defining 

(2.105) 

we have 

,e~p = J de ~ ~ (e - fL)" a e<p ( e ) . (2.106) 

The above integral is evaluated for different values of v here. For v = 0, 

(2.107) 

If we use the fact that at temperature well below Fermi temperature 

(2.108) 

where eF is Fermi energy, we obtain, 

(2.109) 

Hence, 

(2.110) 

For v = 1, the integral in equation (2.106) is , 

(2.111) 

This integral vanishes if we ignore the energy dependence of, a e<p (e). To make it 

meaningful we expand ae<p(e) around Fermi energy, i.e. , 

(2.112) 

Hence, 

(2.1 13) 
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The first term in this integral vanishes by integrating because it contains an odd 

power of (e - /1,). Thus, 

(2.114) 

Since, 

81 1 exp (~) 
8f-t kBT(exp(~~~)+1r' 

(2.115) 

thus, 

(2.116) 

If we define x = ~~!f , then, the above equation becomes, 

(2.117) 

Hence, 

£(1) = n
2 

(k T) 2 deJ oJ3 I _ . 
a:{3 3 B de c-cp (2.118) 

For v = 2, equation (2.106) is, 

(2) J 81 ( )2 () £a:{3 = dE 8f-t E - f-t eJa:{3 E . (2. 119) 

Again by using the expansion of eJa:{3(e), the above integral can be written as: 

(2.120) 

The second term in this integral vanishes because it contains an odd power of 

(e - J.L) . Hence, 

(2) J 81 ( )2 ( ) £ a:{3 = d E 8 f-t E - f-t eJ a:{3 E = E F . (2.121 ) 

This integral is already solved above. Thus, 

(2. 122) 
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First , consider a situation where \IT = 0 in (2 .103) , we obtain 

(2.123) 

One can reads the electrical conductivity from the above equation 

a = All (2.124) 

Now, notice that a pure electrochemical gradient causes heat flow , and a pure 

thermal gradient causes current to flow . We discussed earlier that thermal con­

ductivity is measured in open circuit configuration. Therefore, to get required 

thermal conductivity coefficient , we put je = 0 in Eq. (2.103) 

(2. 125) 

This implies that 

(2.126) 

This shows that a weak field is necessary to oppose the current. In a finite sam­

ple, it would automatically result from charge build up at the boundaries . By 

combining equation (2.103) and (2.126), we obtain 

(2.127) 

By using Fourier 's Law one can read the thermal conductivity 

(2.128) 

the second term in this expression is much smaller than compare to A22 , so we 

neglect this term and by using the equation (2.104) and (2.122) , we have 

(2.129) 

This is nothing but well-known Wiedmann-Franz law. We recover Wiedmann­

Franz law for Bloch electrons. We can see that Lorenz number Lo = "'3
2 (~) 2 

differs by a factor of 7T 2/3 from the Drude's result. This simple relation between 

thermal and electrical conductivity applies component by component to electrical 

and thermal conductivity so long as the relaxation time approximation is valid. 
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Up to now, we developed the coefficient of electrical and thermal conduc­

tivity, two other co-efficient remain to be investigat ed thermo-power and Peltier co­

efficient . Let us suppose that we apply a t hermal gradient across a sample, which 

is in open circuit configuration; i.e., t here is no electrical current flow through the 

circuit . The thermal gradient establishes an electric field E: 

(2 .130) 

By using equation (2.29) , one can read t he thermo-power or Seebeck coefficient 

S - A-1A12 
- 11 T . (2. 131) 

By using equation (2.104) ,(1.118) and (1.22), we can write the above expression 

of t hermo-power as : 

(2. 132) 

The measured values of thermo-power are the order of j.1V J{ - l . The Peltier effect 

arise when current flows in a circuit without temperature gradient . The flow of 

electrical current induces heat current . The Pelt ier coefficient is defined by the 

equation: 

(2 .133) 

One sees from the equation (2.104) and (2.118) 

(2. 134) 

For the completeness , we state here t hat Peltier coefficient and Seebeck coefficient 

related by the equation, 

II = TS. (2. 135) 

2.6 Mesoscopic Quantum Transport 

Any mesoscopic system has its size between microscopic and macroscopic system. 

T he major property of mesoscopic system is that electron's wave function remains 

phase-coherent all over the sample. This introduces restrictions on the dimension 

of the system and temperature. For electrons there are two type of description . 
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First is local current density and electric field . Second is global t ransport where 

G conductance relates the total current t o voltage. For large homogeneous con­

ductors G and (J are related by t he equation: 

(2. 136) 

It is clear that from the equation in two dimension G and (J have the same mean­

ing. For mesoscopic systems, local quant it ies are meaningless and we discuss only 

conductance. Here we define three t ransport regime for electrons. 

The first is the ballistic transport regime, where the dimensions of the system are 

less t han the elastic mean free path. The second is the quasi-ballistic regime, where 

the width of the syst em is less than the elastic mean free path and the length of 

the syst em is great er than the elastic mean free path. The third is the diffusive 

regime, where the dimensions of the system are greater t han the elastic mean free 

path . We restrict ourself to the ballistic transport regime in our further discussion. 

The Landauer formula plays an important role in this t ransport regime. We will 

explain here Landauer transport , which will be completed in two steps. First we 

will discuss a simpler model of confinement of electron. Then , secondly we will 

describe our core business, quantum transport. 

2.6.1 Ideal wave guide 

Consider an electron confined in a two dimensional rectangular wave guide, which 

is infinitely long in x-direction. The walls of the wave-guide are impenetrable at 

y = ±~ . We can make this by assuming there is an infinite potential, 

00 
U(y) ~ { 

o - a < y < Q 
2 2 

otherwise . 

The time independent Schrodinger 's equation for this system is , 

[:~ + U(x) 1 w(x, y) ~ Ew(x, V)· 

(2. 137) 

(2. 138) 

Since the potential is only x-dependent , we can apply the separation of variables. 

If we write w(x, y) = 'ljJ (x)¢(y) , this separat es into two one dimensional uncoupled 
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equations, 

[:~ + u(y)] ¢(y) = Ex¢(Y), 

p 2 
~'I/J (X) = Ex'I/J (X). 
2m 

26 

(2.139) 

(2.140) 

Where Ex is energy of longitudinal motion and Ey is energy of transverse motion. 

The solution of the equation (2.140) are plane waves and can be written as , 

'I/J (X) = exp(ikxx), (2.141) 

and the energy associated with this motion is, 

(2.142) 

The solution of t he equation (2.139) is, 

(2.143) 

the effect of the infinite potential can be taken into account by setting ¢(±~) = O. 

T his condition quantize the ky , i.e., 

(2.144) 

This shows that longitudinal motion of electron is quantized with the energy eigen­

values labelled by n are 

(2. 145) 

Here n is an integer, called number of modes in wavetheory and called channel 

in mesoscopic physics. Thus, the total energy is the energy of t he longitudinal 

motion shifted by a channel dependent transverse energy given by the equation, 

(2 .146) 

The complete wave-function can be written as 

'ljJ(x,y) = Aexp('ikxx)sin k~(y - ~), (2.147) 

where A is normalization constant. 



Chapter 2. Basic principles 27 

2.6.1.1 Quantum point contact 

Quantum point contact is a system without potential barrier that behaves as a 

system with potential barrier. Now we consider a wave guide with variable walls. 

We assume t hat as, x -+ ±oo the width of the wave guide has a constant value ao 

as one moves towards moves towards x = 0, these walls come closer and form a 

constriction, as shown in fig. (2.1). The potential for this system can be written 

(/ = cOllsl (x) 

FIGURE 2 .1 : From a waveguide to constant dimension to adiabatic waveguide. 

as , 

U(y) = { 
o - a(x ) < X < a(x ) 

2 2 

otherw'ise. 
(2.148) 

00 

Now the wave function of Schrodinger equation (2.138) is not separable, so previous 

argument is not valid. However , we can understand generally the quantum point 

contact by considering an adiabatic wave guide[24], i. e. the length scale at which 

the dimension varies is much less than the dimension themselves: 

la(x)'I « 1, a(x)la(x)"I « l. (2. 149) 

If t hese approximations hold t hen the walls are locally flat and parallel. The wave 

functions are separable and we can approximate the solutions with the solutions 

for an ideal wave guide. The wave function can be written as 

W(x, y) = 'I/J (x)¢ (y , a(x)) , (2.150) 



Chapter 2. Basic principles 28 

where the transverse wave-function is given by equation (2.143) by replacing a ---+ 

a(x), i.e., 

¢n(Y , a(x)) = k sin k~ (y - a(x)) . 
a(x) 

The local energy eigenvalues corresponds to this wave-function are, 

(2 .151) 

(2.152) 

This energy depends upon the channel index and x through the dimension of the 

wave guide. The longit udinal wave-function 'ljJ(x) satisfy the equation 

(2 .153) 

We can see that En (X) plays the role of potential energy which depends upon 

channel index. Note that for every value of n this potential energy forms a barrier 

near the constriction at x = 0, as shown in fig(2.2). 

The above equation can be written as, 

(2.154) 

(2 .155) 

If we define, 

(2. 156) 

The above equation becomes, 

(2.157) 

Let us consider a situation for which a given energy E is greater than the maximum 

barrier height for some value of n . The solution of the above equation is, 

,p(x) ~ { Aexp(ikx) + Bexp(-ikx), 

C exp(ikx), 

x<o 
x> O. 

To calculate t he values of A, Band C , we use the boundary conditions, 

dx dx' 

(2.158) 

(2. 159) 
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equation(2 .140) gives, 

A+ B = C, A - B = 0, (2. 160) 

hence, B = 0 and C = A. If we define transmission and reflection coefficient in 

a usual way, we have T = 1 and R = O. Thus , an incident electron wit h energy 

FIGURE 2.2: Channel dependent potential energy. 

greater than the maximal barrier height will completely pass through it. On the 

other way, if we assume impenetrable barrier , an incoming electron with energy 

less than the maximal of t he barrier height, will reflected back. Therefore, an 

adiabatic wave-guide appears to be same as an ideal wave-guide with a potential 

barrier. Generally, for each channel we define a transmission coefficient Tn (E) 

which depends upon channel index. Here in this case Tn(E) = 1 for open channel 

and, Tn (E) = 0 for a closed channel. Significantly, t he electrons are perfectly 

reflected in a closed channel even in the absence of a potential barrier . 

2.7 Quantum transport 

Here we are going to study our main business the quantum transport. As we know 

that the current density is , 

(2.161) 

Here 2 is a factor due to spin , fn(kx) is filling factor and vx (kx) is speed of the 

electrons in the x-direction. The expression for the velocity in the x-direction can 
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be found by using Heisenberg EOM , 

inx = [x, H(px, py, x, y)] , 
aH aH aH aH 

= [x ,px]-a + [x,PY]-a + [x ,x]-a + [x'Y]-a ' 
Px Py X Y 

_.~aH 
-~na ' 

Px 
. aH 
x = apx' (2. 162) 

Hence, 

(2 .163) 

Note that we can use any cross-section to evaluate the current because charge 

conservation states t hat current through any cross-section remains same. We 

choose the cross-section far above from the constriction where a( x) has a constant 

value ao , so does kyo Hence, 

1+00 dky ---+ ~ . 
-00 27f ao L 

n 

(2.164) 

Thus, the expression for the current density becomes, 

(2. 165) 

One can read the expression for the current as , 

(2.166) 

Since closed channels do not contribute to the flow of current , we fo cus only on 

open channels. Let us connect the wave-guide with two reservoirs which are at 

chemical potentials f..LL and f..LR. Where, f..LL is the chemical potential of the left 

reservoir and f..LR is the chemical potential of the lower reservoir as shown in fig (2 .3). 

These reservoirs injected electrons into the wave-guide. 

Now the filling factor of the electrons which are injected by the left reservoir 

(2.167) 
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FIGURE 2.3: filling factors for open and close channels. 

and the filling factor of the electrons which are injected by the right reservoir 

(2.168) 

Since filling factor depends upon energy and energy is labelled by n so t here is n 

dependence in the filling factor. Let 1+ is the current flowing in the + x-direction 

and L is the current flowing in the -x-direction, then 

(2 .169) 

and 

(2.170) 

If we replace kx --+ -ky in last equation and by using vy( -kx) = -vy(kx) , we have, 

(2.171) 
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The total current can be written as, 

(2.172) 

Since f depends on kx through energy, we can replace kx in the favour of energy 

by using dE = ltv(ky)dk. Thus, we have so-called Landauer formula 

2e 100 

I = ~ L dE (J(E - /-LB) - f(E - /-LA)) . 
21T1L 0 

n 

(2 .173) 

This is the particular case of the Landauer formula in which Tn(E) = 1 or Tn(E) = 

O. Now let us consider generally we have an ideal waveguide connected with t he 

reservoirs and at the centre we have a scattering region such that any channel 

have a finite probability of transmission Tn(E) and reflection R,.,(E) . To calculate 

t he current we take a cross-section located in t he left side of the waveguide . The 

current flowing towards right is, 

(2.174) 

Now the current flowing towards left side contains two parts , a fraction of the 

originated electrons from left reservoir are reflected, this reflected current can be 

calculated as, 

(2.175) 

and electrons coming from right reservoirs are partially transmitted and partially 

reflected, hence the second part of the current flowing in the right direction is 

given by, 

(2.176) 

Hence, the total current flowing in the right is, 

(2. 177) 
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Thus, the total current flowing through the cross-section is, 

1= 2e L ('X> dkxvx (kx)h(E-J.Ld+2e L 10 

dkXvx(kx) (R-nfdE - J.Ld + Tnh(E - J.LR)) · Jo 2n -00 2n n n 
(2.178) 

If we replace , kx -+ -kx in the second part of the above equation and use v( - kx) = 

-v(kx) we obtain, 

This simplifies into the result , 

(2.180) 

If we replace kx in the favour of energy we obtain the following result , 

(2.181) 

This is the Landauer formulae which converts a conductance problem into one 

dimensional scattering problem. 
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Int eger Quantum Hall Effect 

3.1 Landau quantization 

Here we will discuss the general quantization of kinetic energy of the 2D electron 

gas . Section (3.1) deals with the wave function of a free particle and how these 

modify under t he influence of a strong magnetic field. The later sections deal wit h 

the formalism of these wave function in t he symmetric and Landau gauges. 

3.1.1 Hamiltonian for a free particle 

Hamiltonian for a free part icle can be written as , 

p2 
H=- . 

2m 
(3. 1) 

If we assume mass is isotropic, i.e., the mass of electron in bands is same in all 

directions, then t he Hamiltonian can be written as , 

2 2 

H = J!..£ + !!.JL. 
2m 2m 

(3.2) 

Here the momentum of electron is constant of motion because, [p ,1-L] = 0, So t he 

eigenvalues of moment um is a good quantum number in this free part icle case. 

34 
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3.1.2 Hamiltonian with non-zero B -field 

The effect of the magnetic field can be easily taken into account by replacing, 

p --+ P - ~A == IT , where IT is gauge invariant momentum moment um and A(f') is 

magnetic vector potential which generates magnetic field according to the equa­

tion, 

v x A = B . (3.3) 

Then the Hamiltonian in (3.2) becomes, 

( eA )2 ( eA)2 H = Px - -;; x + Py - -;; y 
2m 2m 

(3.4) 

By using the definition of gauge invariant momentum IT , we can write the Hamil­

tonian as, 
IT2 IT2 

H= ~+--..J!.... . 
2m 2m 

Now the Hamiltonian is not transnationally invariant because , [P , H] =1= o. 
Let 's calculate the commutation relation of IT x , IT y , 

Defining lB = [ii, where lB is known as magnetic length, we have, 

(3.5) 

(3.6) 
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This commutation relation allows us to define two very useful operators 

(3.7) 

The commutation relation between operators defined in (3 .9) is , 

l2 
[a , at] = 2~2 ([ll x, llxl - i[llx, llyl + i[lly , llxl - i2 [lly, lly]) , 

l2 
= 2~2 2i[llx, lly], 

[a , at] =1. (3.8) 

3.1.3 Landau Levels And Energy Eigenvalues 

By writing equation (3.176) in terms of llx and lly we get 

(3 .9) 

Using equation (3 .9) , we can write the Hamiltonian in (3. 5) as , 

(3.10) 

Where We = :! is cyclotron frequency of electron. Defining N = at a, where N is 

a number operator with the following relations , 

N In) = n In). (3.11) 

Where, 

at In) = Vn+11 n + I) , a I n) = Vn I n - 1). (3.12) 

If we operate the Hamiltonian on number state we get, 
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Thus the energy eigenvalues labelled by n are given as, 

(3.13) 

Thus the motion of an electron in a magnetic field is quantized with the energy 

levels given by (3 .13) similar to the simple harmonic oscillator energy levels. 

3.1.4 Wave Functions In Symmetric Gauge 

Here we will apply the formalism developed in the previous section to find the 

wave function of an electron in a strong magnetic field and represent them in the 

complex notation. To accomplish this, we need to define a gauge which generates 

the magnetic field. Let's assume that the magnetic field is frozen along z -axis. 

The magnetic vector potential in symmetric gauge is , 

~ (B B) A = --y-x 2 ' 2' . (3 .14) 

This gauge is also called rotational invariant gauge. It can easily be verified t hat 

'9 x A = Bz, for this gauge. In this gauge the component of gauge invariant 

momentum are, 

eB 
IIx =Px + 2c y , 

eB 
IIy =Py - 2cx . 

To find the ground state wa, we use, 

iiwa = O. 

(3 .15) 

(3.16) 
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Since a is lowering operator, it kills the ground state . First , let us find the complex 

notation for a defined in (3.7) , 

(3.17) 

Now apply a on the ground state wo. 

awo = 0, (3.18) 

(3.19) 

(3.20) 

Nm can be evaluated by using normalization condition. 

3.1.5 Level degeneracy 

Our original Hamiltonian has two pairs of conjugate operators , x and Px , and y 

and Py . When we express the Hamiltonian in the form of ladder operators (3.9) we 

have one pair of conjugate operator a and at. The search for the other conjugate 

pair gives rise to level degeneracy. 

Within the classical treatment, symmetric gauge allows us to make a connection 

with classical constant of motion that one obtains by solving classical equations 

of motion for the massive electrons in a magnetic field. 

mr = e(r x B), 

(3.21) 
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The above equations describe acceleration due to Lorentz force. By integrating 

with respect to time we get, 

{ 
X= X + ...!!u... mwc' 
y=y _ lh... 

TnWc 

(3.22) 

Here R = (X, Y) are the integration constant. In the semi-classical treatment 

these are the guiding-centre operators for the electron's cyclotron motion , given 

as, 

(3.23) 

The commutation relation between these guiding centre operators is , 

[ ] [ 
IIy IIx ] 'l2 X , Y = x---,y+ -- =-~B ' 

mwc mwc 
(3.24) 

This commutation relation allows us to define two operators , 

(3.25) 

The commutation relation between the operator defined in (3.25) is, 

[b , bt] =-l\ {i [X , Y] - i [Y, Xl} = -l\ (l~ + l~) = 1. 
2B 2B 

The complex representation of these operators is given by, 

(3 .26) 

Let's check the action of bt on the wo,o, 

t nV2 ( - eB) ( ZZ ) b woo = -- -0 + - z woo = N z exp -- s = WO,l. 
' mwclB 4nc ' 4nc 
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Hence bt is an operator which generates all ground states. By consecutive appli­

cation of bt we have, 

(3.27) 

So b and bt behave as creation and annihilation operators. T he action of at on 

ground st ate is, 

Hence, 

Hence , for each value of n there are infinite values of m . Each Landau Level is 

infinitely degenerate . Now we find the restriction on the values of m . For ground 

state n = 0, the probability density for the ground state is , 

The probability density is shaped like a ring around t he origin. To find r max , 

- = 0 =27rN2 (2m + 1) r2m _ _ r 2m+2 , dP ( eB) 
dr ne 

2 ne 
r max = (2m + 1) eB' 

Consider R is t he radius of ring such t hat 

(3 .28) 

ne 
(2m+ 1) eB ~ R2, 

eB R2 cJ? cJ? 
m < -- =-- =-. 

- 2ne he/ e cJ?o 
(3.29) 

Here cJ?o = he/ e is called flux quantum. So maximum number of states depends 

upon the ratio of magnetic flux threading through the sample to the flux quantum. 

3.1.6 Wave functions in Landau Gauge 

If the sample geometry is rectangular the Landau gauge, A(r) = (-y , 0, 0) is 

more appropriate . In this gauge the Hamiltonian is translationally invariant in 

the x-direction , so Px = nk is a good quantum number. The Hamiltonian (3.2) 
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becomes , 
(p _ eB y ) 2 ])2 

1-£ = x c +-.JL. 
2m 2m 

(3 .30) 

We can make a plane wave ansatz, 

exp (ikx) 
Wn,k(X, y) = VI Xn,k(Y)' 

The Hamiltonian becomes, 

2 
Py 1 2 ( )2 H = - + -mw Y - Yo . 2m 2 c 

(3.31) 

This is the Hamiltonian of a harmonic oscillator centred about point Yo = kl~ . 

The solution of the Schrodinger's equation is, 

,T, ( ) = exp ('ikx) H (Y - Yo ) (_ (y - yo) 2) 
'1'n,k X, Y VI n lB exp 4l~ . (3.32) 

Periodic boundary conditions along x direction quantize k , as k = m x 27r / L. The 

maximum number of states can be determined as discussed previously by 

<P 
M = <Po' (3.33) 

For each value of n t here are M number of degenerate states. So each Landau level 

has M degenerate states. 

3.2 Edge Currents and conductivity 

3.2.1 Ideal perfect conductor 

Consider an ideal perfect conductor without impurit ies or inhomogeneities of width 

W connecting two electron reservoirs as shown in fig(3 .1). The electron reservoirs , 

at chemical potentials fi.L and fi.R , act as source or sink of energy and carriers. 

Every reservoir eject electrons into current carrying states upto its chemical po­

tential. 
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y 

flL 

x 

FIGURE 3.1 : Perfect two-dimensional conductor connected to reservoirs. The 
chemical potentials are J.LL and J.LR . 

3.2.1.1 B = 0 case 

Now consider the Hamiltonian for zero magnetic field with a potential along the 

y-direction, 

H = TJ~ + (P~ + V(Y)) . 
2m 2m 

(3 .34) 

The wave functions are separable and labelled by nand k. The sample has finite 

length L along x-direction and width W along y direction. The x-direction motion 

is free particle motion. The wave function then can be written as, 

Wn,k = exp (ikx) fn ,k(Y)' 

The application of the Hamiltonian (3.34) on Wn , k gives, 

(3.35) 

Here the periodic boundary conditions yields the quantization of k with En being 

the energy of transverse motion. Now let's calculate the current using the Landauer 

formula in equation (2.181) for the current of a single conducting state, 

(3.36) 

We use here Tn(€) = 1, for the perfect conductor. The Fermi distribution function 

is given by, 
1 

fF( € - f.l) = (<:-1') + l' exp kT 
(3 .37) 

At low temperature, we can write, 
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Then the current (3.36) becomes, 

(3 .38) 

In IQHE, we take T = O. Therefore, f becomes a step function and derivative of 

f with respect to energy is a delta function around Fermi energy, i.e. , 

(3.39) 

Hence, t he integral (3.38) becomes, 

e 
In = h~f.1,· 

This shows that the current does not depend upon index n. Each filled Landau 

level contributes the same amount of current. Suppose the Fermi level lies midway 

between the nth and n + 1 th level, then there are n completely filled Landau levels 

which contribute to current. So the total current becomes, 

The voltage drop between the reservoirs is, ~/.l = e V. Hence, the total current 

becomes, 
e2 

I tot = n h x V. 

The conductivity is then becomes, 

(3.40) 

3.2.2 Non-zero B field 

Now let us consider an ideal perfect conductor placed in a magnetic field which 

points in the z-direction. This ideal perfect conductor has length L and width W 

where W is much less than length L. Electrons are confined in this rectangular 

geometry by using a potential Vconj(Y) that only depends upon y and the system 

remains translationally invariant in the x-direction. We take the magnetic vector 

potential , A = ( - By , 0, 0) . The Hamiltonian then becomes, 

( eB) 2 2 
'1J = Px + c y + Py + V (. ) 
n. 2 2 can! Y . m m 

(3.41) 
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Where Vconj(Y) = 0, inside the sample and increases rapidly near t he edges. For 

inside the sample t he Hamiltonian is, 

The eigenvalue equation is, 

Hw = EW. 

The wave function can be decomposed due to translational invariance of Hamilto­

nian in the x-direction as, 

(3.42) 

The application of the Hamiltonian on the wave function (3 .42) gives us 

This is the equation of a Harmonic Oscillator with shifted centre, where 

l2 - ~ 
B - eB ' (3.44) 

and 

Yo = - kl1 · (3.45) 

The solution of equation (3.43) is, 

( ) ( 
(Y_YO)2) 

fn,k = Hn Y - Yo exp - 411 . 

So t he complete wave function becomes, 

exp( ikx) ( (y - YO) 2) 
Wn,k(X, y) = VI Hn (y - Yo) exp - 4l~ . (3.46) 
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The energy eigenvalues in this case can be written as , 

(3 .47) 

Now let there be a confinement potential. This leads to an eigenvalue problem for 

the function f n,k, 

(3.48) 

The confinement potential varies strongly near the sample edges , i.e ., in the vicinity 

of Yl and Y2. We assume adiabatic variation, i.e. , the potential varies strongly with 

respect to the dimension of the sample but does not vary much compare to the 

magnetic length lB . For a fixed value of k, Yo is fixed. So we can expand t he 

potential about Yo and by ignoring the second order terms we get, 

~ 
'" '-

~4 n" 3 

we 3 n: 2 

2 n • I 

~. 0 

YI Yz 

YO 

FIGURE 3.2: Perfect two-dimensional conductor connected to reservoirs. The 
chemical potentials are ILL and ILR . 

We define here local electric field in terms of the first derivative of potential at Yo , 

Using this, the expansion of potential in first order becomes , 

V(y) = V(Yo) - (y - yo)eE(yo). 
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The operator part of t he equation (3.48) is , 

[ 
ft2 82 1 ] 

- 2m 8y2 + 2mw~ (y - Yo) + v"onj(Y) , 

[ 
ft2 82 1 2 2 ] = ---- + -mw (y - Yo) + V(yo) - (y - yo)eE(yo) , 

2m 8y2 2 c 

[ 
ft2 8

2 
1 2 ( 2 2E(yo) ) ] = --- + -mw (y - Yo) - (y - Yo) + V(yo) , 

2m 8y2 2 c mw~ 

_ [ ft2 8
2 

1 2 ( ( )2 2eE(yo) ( ) ( eE(Yo)) 2 ( eE(Yo)) 2) V() ] - --- + -mw y - Yo - Y - Yo + - + Yo , 
2m 8y2 2 c mw~ mw~ mw~ 

[ 
ft2 8 2 1 2 2 1 2 ] 

= --- + -mw (y - y'o ) - -mv + V(yo) . 2m8y2 2 c 2 D 

(3.49) 

Here, 

(3.50) 

is the drift velocity and t he position of the centre of t he harmonic oscillator is 

shifted from Yo ---+ yb = Yo + eE(Yo) /mw~ . We can see t hat the drift velocity term 

in the above expansion has to be dropped as it is second order in electric field. 

This leads to t he result , 

Hence, the eigenvalue equation (3.48) becomes, 

(3.52) 

The energy eigenvalues becomes, 

(3.53) 

Here prime is omitted to keep the notation simple. This is the same energy spec­

trum as without confinement potential apart from a potential term at the centre 

of t he position of harmonic oscillator which may indeed vary strongly. For hard 

well potential the energy spectrum shown in fig. (3.2). 
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Periodic boundary condit ions allows us to apply arguments similar to Bloch func­

t ions, one can show t hat t he carrier velocity at the edge state is, 

From equation (3 .45) t he derivative of Yo is , 

dyo _ _ Z2 
dk - B ' 

(3.54) 

Hence , t he velocity of the carrier in the edge state is given by, 

(3 .55) 

Thus t he velocity of t he carriers in an edge state is proport ional to t he Landau 

level. The velocity is negative at t he lower edge Yl and posit ive at t he upper 

edge Y2 ' Note that t he velocity is zero in the bulk Landau states where Enyo is 

independent of Yo . The magnetic field quenches t he kinetic energy for longit u­

dinal motion . The density of st ates along a Landau level approximately for one 

dimensional conductors is given by, 

dN 1 

dk 27l' 

Further t he density of the states is related to t he velocity of the carriers in an edge 

state as , 

[
dN ] = dN [dk ] 
dE n dk dE n 

1 
(3.56) 

T he no of states at Fermi energy (i.e., the number of t he values of the k) determined 

by t he equation, 

(3.57) 

The current fed into each edge state is as calculated in zero-B field case, discussed 

previously, 

The current fed in each channel is independent from n. So for n complet ely filled 

channels the total current is, 

(3 .58) 

T hus t he current fed into an edge stat e by a reservoir is the same as the cur­

rent fed into a quant um channel in a zero-field perfect conductor. The result ing 
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conductivity is again found to be the same as for zero-field case, i. e., 

(3.59) 

3.3 Gauge invariant and quantization of Hall con­

ductance 

Here, we will discuss the different aspects of the wave function of electrons in a 

perpendicular magnetic field with the periodic potential. We review here some 

basic properties of the Bloch electrons and we calculate the Hall conductance by 

the Kubo formulae in the linear response. We will show that the Hall conductance 

is a gauge invariant quantity. This argument leads to quantization of conductivity. 

3.3.1 Bloch electron in magnetic field 

The Hamiltonian for a two dimensional electron gas subjected to a perpendicular 

magnetic field is , 

1-l = _1_ (p _ ::A)2 + U(:£ , y) . 
2m c 

Where, U(x , y) is a periodic potential in both dimensions, i.e. , 

U(x + a, y) = U(x, y) , 

U(x, y + b) = U(x, y). 

(3.60) 

This shows that the system is invariant under these translation but the Hamil­

tonian is not because the Hamiltonian contains a gauge dependent quantity A , 

which depends upon the position although the magnetic field is not . We need to 

choose an appropriate gauge to make Hamiltonian translationally invariant under 

these translations. Let R is Bravais lattice vector, i.e. , 

R=na +mb . (3.61) 

Here nand m are integers. We know that an ordinary translation operator is , 

(3.62) 
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This translation operator acts on any smoothly varying function f(r) and gives, 

TIif(r) = f(r + R). (3.63) 

Let us choose the symmetric gauge, i.e. , 

1 
A = '2 (B x r) . (3.64) 

We can easily verify that , 

.g x A = B i. (3.65) 

T he magnetic translation operator in the symmetric gauge is, 

TA i R(p-~(Bx r)) Ii = eli 2c • (3.66) 

In terms of an ordinary t ranslational operator , we can write this, 

(3 .67) 

If we apply TIi on the Hamiltonian (3.60) , it left U(f) invariant. However, the 

magnetic vector potential is t ransformed to A(f + R). In general, 

A(f + R) i= A(f). (3 .68) 

Since, the magnetic field is uniform. Thus , A( f) and A(f + R) differ by a gradient 

of a scalar function , i.e., 

(3.69) 

In the symmetric gauge, 

1 ~ 
A(r+R) = '2(B x r) - \/g . (3 .70) 

Where the \/ 9 is defined as, 

~ 1 
\/g = '2(B x R). (3 .71) 

Now we show that t he magnetic translation operator defined in (3.66) commutes 

with the Hamiltonian (3.60). Consider, f(r) is any smoothly varying function such 
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that 

A - i e ( B x R) ·r 1 ( e e )2 
Tj{Hf(r) = e"T.C 2 - P - -B x r - -B x R f(r + R). 

2m 2c 2c 
(3.72) 

On the other hand, 

1-rr
f
J(r) = (p - fcB x r) 2 exp ~ie (B x R) .r Tfif(r). (3.73) 

2m I~C 2 

By operating sequentially we get, 

A (-ie (B x R).r) 1 ( e e )2 A HTR = exp - - p - -B x r - -B x R f(r+R) = TfiHf(r) . 
nc 2 2m 2c 2c 

(3 .74) 

This shows that the Hamiltonian is invariant under the translation Tfi, i.e. , 

(3.75) 

Now, we have to work out the commutation relation between the magnetic trans­

lation operators with each other , for simplicity we choose , 

Ra = ax, r=xx+ yy . (3 .76) 

So, 

(3.77) 

Let us apply these operators on any smoothly varying function f(r) , we get, 

Here we define , cP = Bba the flux threading through a magnetic unit cell and CPo 

is the usual flux quantum. Similarly, 

A A (CP ) ( eBa) ( eBb ) TbTaf(r) = exp -in CPo exp -i 2nc y exp i 2nc x f(r + ax + by) . (3.79) 

Above equations (3 .78) and (3.79) imply that , 

(3.80) 
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Here we define, 
<P 

¢ = <Po' 

51 

(3.81) 

magnetic flux number in t he unit cell . Note t hat: t he magnetic translation oper­

ators do not commute with each in general because ¢ may be a rational number. 

Suppose ¢ is a rational number such that 

(3.82) 

where p and q are relative prime. We can construct a subset of translations which 

commute with each other . We take a large unit cell which an integral mult iple of 

flux goes through. Suppose, the Bravais lattice vectors of the form , 

R' = n(qii) + mb, (3.83) 

are taken. Then, p magnetic flux quanta are in the magnetic unit cell of area 

(qa)b , and 

(3 .84) 

also , 

(3 .85) 

Now consider w(x, y) is common eigenstate of TR , and 1-L. The eigenvalues of Tqa 
and 'h are given by, 

Tqa w(x , y) = exp (ikxqa) w(x, y) , 

TbW(X , y) = exp (ikyb) w(x, y) , (3 .86) 

where kx and ky are crystal momentum in respective directions. The magnetic 

Brillouin zone is , 

(3 .87) 

The eigenstates are labelled by kx and ky in addition with band index n, the 

eigenstate can be written as, 

(3 .88) 
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By applying Tqa on Wt:k)X , y) and using (3.77) we get, 

rqa Wk(n)k (x , y) = exp ( -i eBaq 'I)) exp 'i (kx(:r; + qa) + kyY) '/l'k(n)+qa k (x + qa , y) , 
x , y 2nc . x I Y 

(n) ( ) (. 1fYP ) (n) ( ) ukk x+qa,Y =exp t- ukk x ,y. 
x, y p x, y 

(3.89) 

Similarly, 

(n) ( b) ( .1f p) (n) ( ) Uk k X,Y + = exp -t-X- Uk k X,y. 
x, Y a q x , Y 

(3 .90) 

These are the generalised Bloch conditions on ut\)x, y) . Note that: going back­

wards changes the sign in exponential, i.e., 

(n) ( ) _ ( .1fYP) (n) ( ) Uk k X - qa , Y - exp -t- Uk k x, Y , 
x, y p x, y 

u~n\ (x, Y - b) = exp ('i~X!!.) u~n\ (x , y). 
x, Y a q x, Y 

(3.91) 

This implies that going one way around the magnetic unit cell accumulate net 

phase -21fp. Let , 

Ukx,ky (x, y) =1 Ukx ,ky (x , y) 1 exp( iB(x , y)). (3.92) 

This implies that by integrating over a closed loop in counter clockwise direction , 

we obtain , 

- 21fp = f de · 'QeB. (3.93) 

Here, 
-r7 B = aB(x, y) 
ve ae' (3.94) 

We omit here the band index n to keep the notation simple. 

3.3.2 Linear response formula and Hall conductance 

The Schrdinger equation is, 

Hw = cW. (3.95) 

By replacing the Hamiltonian (3.60), we get, 

[_1_ (p _ ~A)2 + U(x y) ] exp(ik . f'I 'u(n), = c(n) exp('ik . f'lu(n). (3.96) 
2m c ,j ~~j ~~ 
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It is useful to write above equation as, 

[ 
1 ( ~k A) U( , )] (n) _ (n) (n) - P + IL - e- + x, Y 'U'k k - E uk k . 2m c x y x y 

(3 .97) 

Hence, t he k dependent Hamiltonian can be read as, 

(3.98) 

Where kx and ky are component of k along x- and y-directions respectively. Note 

that: the eigenvalues E(n) depend continuously on k. In a fixed band n , different 

values of E(n ) corresponds to different values of k form a magnetic sub-band. W hen 

we apply small electric field, this field draws t he current t hrough thee sample. We 

can calculate this current by Nakano-Kubo formula. In linear response theory, t he 

Kubo formula for Hall conductance is, 

. 2~ 
([xy = 2e I~ (3.99) 

Where E F is Fermi energy. The sum is over all states below and above the Fermi 

energy. The indices nand m represents band index. We also need k to specify 

a state with band index. The presence of k must be clicked whenever t he band 

index present . The velocity operator from Heisenberg equation of motion is, 

~ 1 ( ~ eA~) 
v =m p-~ . (3 .100) 

The states are normalised as, 

l
qa lb (n) (m) nm 

dx dyuk k Uk' k' = 0 Ok k' Ok k' . o 0 xy xv Xx Yy 
(3. 101) 

The velocity operator (3 .100) can be replaced by partial derivative of the k depen­

dent Hamiltonian , i.e., 

(3.102) 

Note that here kx gives no contribution to the current because, 

(m lkx ln) = O. (3.103) 
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Here we are taking off-diagonal component for which , m '# n. Therefore, 

Consider, 

This gives us a very useful result , 

or , 
aN an 

(nl ak
x 

1m) = -(Em - En)( ak
x 

1m). 

The expression for conductivity (3 .99) becomes, 

Using the identity, 

L In)(nl + Im)(ml = 1, 

we have, 

This can be written as, 

Let us define here a vector field in the magnetic BZ, 

~ J 2 * ~ A(kx,ky) = d ruJC(f)'VkuJC(f) , 

=(Ukx,ky 1'V~klukx,ky), 

54 

(3. 104) 

(3.105) 

(3.106) 

(3. 107) 

(3.108) 

(3. 109) 

(3 .110) 

(3. 111) 

(3.113) 
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where "Ilk is vector operator whose component are at and at . Using Eq. (3 .113) 

and (3 .112) becomes , 

(3.114) 

Here, (h is the third component of the vector. The integration is over magnetic 

BZ defined in (3.87) . 

Let 's discuss first gauge transformation . Suppose , Ukxky(X , y) is the solution of the 

Schrodinger equation 

(3 .115) 

then the Ukxky(X , y) exp(if(kx, ky)) also satisfies the Eq.(3 .115). Where, f(kx, ky) 

is an arbitrary smoothly varying function of kx and kyo This function does not 

depend upon x and y. This introduces a transformation , 

(3.116) 

Since this transformation only changes the overall phase of the wave-function , so 

any physical observable quantity remains invariant under this transformation. The 

A.(kx, ky) transform as, 

A.'(kx, ky) = J d2ru*' (kxky)VkU~x ky ' 

=A.(kx, ky) + i'V kf(kx, ky) J d2ru~xky Ukxky, 

=A.(kx, ky) + i'Vkf(kx, ky) . (3 .11 7) 

We use here , J d2ruk* k Uk k = 1. The expression of conductivity under this 
x y x y 

transformation becomes , 

(3. 118) 

Using t he vector identity , 

v x Vf = 0, (3.119) 

we have, 

(3.120) 
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T his shows t hat CJxy remains invariant under this gauge transformation, if f(kx, ky) 

is determined uniquely and smoothly in the ent ire magnetic BZ. 

Now consider the case where wave-function Ukx ky(X , y) is zero for some value of 

kiD) and k~O) in the magnetic BZ. We divide the magnetic BZ into two pieces HI 

and HIl such that HI contains (kiO) , k~O) ) as shown in fig.(3.3). At the boundary 

21t 
b 

H" 

o 21t 
qa 

FIGURE 3.3: Schematic diagram of a phase of a wavefunction in the magnetic 
Brillouine zone. 

of HI and HIl we have a phase relation between the state vectors , 

(3. 121) 

where X(kx, ky) is smoothly varying function of kx and ky on the boundary of the 

HI and hII . This implies that, 

(3.122) 

The expression for conductivity (3.114) becomes , 

e
2 

1 1 2 ( ~ A - ) 1 2 ( ~ A - ) CJ xy = -h - . d k V k X AI (k) + d k V k X AIl (k) . 
21Tt HI 3 HI/ 3 

(3.123) 

By applying Stokes law separately, we obtain, 

(3.124) 



Chapter 3. Integer Quantum Hall Effect 

e
2 

1 J ~ ~ (Jxy =-h -.'i dk . Y'X, 
2m 

e2 1 
=-h - (Xi - XI) ' 

27f 

57 

(3.125) 

Since, (Xi - XI) = 27fn for the single valuedness of the state vector at the boundary 

of the HI and HI! ' Thus , we obtain, 

(3.126) 

The conductivity is quantized in the unit of t. We used here gauge invariance 

argument to quantize the conductivity. 

3.4 2DEG in an arbitrary electric and perpen­

dicular magnetic fields 

We appraise here an alternative frame work for understanding the behaviour of the 

two-dimensional electron gas in a large perpendicular magnetic field and spatially 

varying electric field. We investigate here electronic and thermal properties of 

electron gas. The sample geometry is rectangular of length Lx and width Ly along 

x and y direction respectively. The Hamiltonian in the presence of t he magnetic 

and electric field can be written as, 

rr2 rr2 
'Ii = 2:n + 2~ + eV(x , y) . (3 .127) 

By using raising and lowering operator define in (3.7) , we can write Hamiltonian 

as , 

'Ii = 1M (ata + ~) + eV( x, y) . (3.128) 

We choose here a representation where one of the guiding centre coordinate is 

diagonal say X. So Y is forced to be indefinite because, 

[X, Y] = -il1 . (3.129) 

The non-commutativity means that (X , Y) can generate the entire phase space 

with the cells of size 27fl~. This non-commutativity is the main reason of degen­

eracy of Landau levels which we discuss later in this section. The commutation 
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relation between X and Y implies the following matrix element , 

1 (XY) (Y IX) = -- exp -i-2- . 
JL;; lB 

(3.130) 

If the potential is arbitrary, i.e., it depends upon x as well as y coordinate, then it 

is unhelpful to choose X eigenstate because , [X, 'til of- O. Let us assume that the 

potential has only x dependence, i.e. , V(x,y) = U(x). 

3.4.1 Degeneracy of Landau levels 

As electrons are free in Y-direction so we can rightfully insist that 

(Y + Lylx) = (YIX) . 

This imply that 

_1_ exp (-i X
2

Y ) = _1_ exp (_ iX(Y: L y
)) . 

JL;; lB JL;; lB 

This restricts X to a certain discrete values , i.e. , 

X 
_ 27r l~ 

m- L m. 
y 

As the all values of X lies between, 

(3 .131) 

(3.132) 

(3. 133) 

(3.134) 

This implies that for some maximum value of M = :0 the X M < Lx· So each 

Landau level is hugely degenerate . 

3.5 Hamiltonian and energy eigenvalues 

Now consider a Hamiltonian in which the potential is only x-dependent. Since 

under this approximation [X, 'Hl = 0, so energy eigenvalues can be labelled by X. 

Vlfe assume that the potential is smooth enough to approximate linear in any 6.X. 

So Ex is constant in any interval 6.X and Ex is very large near the edges such 

that it confines the electrons inside the sample and have any arbitrary form in the 
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Bulk of the sample. If we expand U(x) we have, 

U(x) = U(X) - x Ex . (3 .135) 

The Hamiltonian in (3.128) becomes, 

II2 II2 
H = ---E. + --.JL + e 2.:)U(X) - x Ex ). 

2m 2m x 
(3 .136) 

Using the value of x in (3.22) and ladder operators define in (3.7) we have , 

(3.137) 

By arranging and using the value of IIy defined in (3. 15) we obtain, 

(3 .138) 

To keep the notation simple, let us define (3 = e~C}B. One can write the above 

Hamiltonian using this value of (3 as, 

Now let us define two new ladder operators as, 

(3.141) 

We can check that t he new definition of t he ladder operators preserve the usual 

commutation relation, i. e. , 

[A~ , Ax]=1. (3.142) 

The final form of the Hamiltonian is given by 

H = (u;; L [A~Ax + l (1 - (32) ] + e L (Ux - X Ex) . 
x x 

(3 .143) 
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Now to calculate the ground state wave function we need to consider the following 

property of ladder operator 

AxIO, X) = 0. (3.144) 

We can see that it is not killed by ordinary lowering operator a. The complex 

representation of Ax is given below 

(3 .145) 

The ground state wave function thus , 

_ . /r, ( - eB (3 ) 
(z, zl - w 2lB a + 4nc z + 2lB 10, X) = 0, (3.146) 

(
- eB (3 ) a + 4nc z + 2lB <Po(z, z) = 0, (3.147) 

_ 1 ( zz (3z ) 
<Po(z, z) = ~ exp - 4l~ - 2lB . (3.148) 

The energy eigenvalues are local and given by the equation, 

(3 .149) 

The position operators of electron are, 

(3.150) 

(3.151) 

The average value of x in any Landau Level is , 

(x) =(n, XIX + j; (A~ - Ax) + (3 lBin , X) , 

_ 'ilB t 'ilB 
- v'2(n, XiAxin, X) + v'2(n, XiAxin , X) + X + {3 lB ' 

=X + {3lB ' (3.152) 

Similarly, 

(y) = Y. (3.153) 
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This shows that in large B limit , f3 lB ---7 o. Hence, 

(x) = X, (y) = y. (3. 154) 

Thus the electrons are localised around the guiding centre. We can understand 

the above in t he following way. First, consider there is no electric field which is 

the condition of an ideal 2D electron gas. The electrons are hugely degenerate and 

fill up the states upto the Fermi energy and X takes one of the maximum value 

say X M . Now we apply the potential which is only x-dependent . Since X = 0, 

so X does not change. However , there is a broadening of LLs. This broadening 

depends upon the value of the internal electric field. Let us now calculate t he 

current flowing through the sample. 

3.6 Current and Conductivity 

The current flowing in any direction can be calculated by using Heisenberg equa­

tion of motion , 

i lt± =[x , H] 

~ [x + j; (A~ - Ax) + {31B , nw ~ [A~Ax + ~ (! - {3')] + e ~ (Ux - XExl] , 
i lBnw ( t ) = y'2 Ax + Ax . (3.155) 

Hence the current operator in x-direction is , 

I - el B W ( A At ) x - Lx x + x . (3.156) 

In the similar way we can find the current operator in the y-direction which is 

e [Ex . 1 ( t )] Iy = - Ly cB + 2W y'2 Ax - A x (3. 157) 

The average value of the current operator in x-direction in any Generalised Landau 

Level(GLL) is, 
_ elBw ( t ) _ (Ix) - (n, XI L Ax + Ax In, X) - o. 

x 
(3 .158) 
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The average value of the current operator in any interval 6.X is, 

I t:.x = _"::""c Ex 
Y LB' 

Y 

The total current can be obtained by adding t he current in all strips , i.e. , 

One reads the Hall conductance, 

e2 

a xy = h ' 
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(3.159) 

(3.160) 

(3. 161) 

Since each filled Landau Level contribute same amount to t he conductivity. Hence, 

(3 .162) 

Here is point to be noted: as the current flows in any interval 6.X is proportional 

to the value of Ex so the current will flow wherever electric field is present even 

in the bulk. Since t here is a strong electric field near the edges so more current 

flows near the edges of the sample. 

The importance of this calculation lies in the fact that we use arbitrary piecewise 

linear potential rather than ideal 2-D electron gas. Translational symmetry is 

broken, we do not have a frame of reference where electric field made to vanish . 

Thus the electrical conductance is quantized . 

3.7 H eat current 

Now let us assume that the system is attached to a heat bath with a temperature 

gradient along y-direction, i.e. , T+ on the upper end and T_ on the lower end. The 

temperature gradient is given by, 

(3. 163) 
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Here we are going to focus our attention to the heat current in the ballistic trans­

port regime, i.e. , the pure semi-conductor and low temperature, low enough that 

the mean free path is greater than the sample size and linear response theory 

works. We predict here when the Fermi energy lies in the gap between two GLL's, 

the thermal conductance is perfectly quantized. The charges moves ballistic-ally 

from upper end to the lower end equilibrated fermi distribution f(f.L+, T+) and 

the charges moves from lower end to upper end are equilibrated with the fermi . 

function f (f.L -, T _ ). The resulting heat current can be calculated by using the 

Landauer formula (2.181). The heat current is, 

(IQ) = ((c - f.L) Y). (3.164) 

Where c is energy per particle and Y is velocity of electron in the y-direction can 

be calculated by the Heisenberg EOM as, 

ihY = [Y, 1-l (R)], (3 .165) 

where the Hamiltonian does not depend explicitly on R but through potential. 

Hence, 

Hence , 

Y· = l1 81-l 
h8X' 

The average value of Y in any GLL can be calculated as, 

. . l1 8cn,x 
(Y) = (n, XIYln, X) = Ii 8X . 

(3.166) 

(3.167) 

(3 .168) 

The average value of the heat current by using the Landauer formula (2.181) can 

be written as, 

where Tn(c) = 1 for the perfect transmission. Thus, 
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Here, co(n) = cn,O, and CI(n) = cn,XM' We define, 

J1.+ +J1.­
J1.= 

2 
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(3. 170) 

In order to compute linear response, we expand the Fermi function around the 

averages . T hus we get , 

(3. 171) 

where x = ~~~. Thus t he expression for t he current in (3.169) becomes, 

(3.172) 

Where, 
CI(n) - J1. 

Xl = kBT ' (3. 173) 

The derivative of fermi function is, 

a1 -1 

ax 4cosh2~' 
(3.174) 

Thus the equation (3. 172) becomes, 

(3. 175) 

Here we define, 

l
X 1 XV 

Av(n) = dx h2x ' 
xo 4cos 2 

(3.176) 

The integral defined in (3.176) can be evaluated for v = 1,2. At t he low temper­

ature limit , Xo -7 -00 , and X l -7 00. Hence the integral in (3.176) becomes, 

1
+00 X 

AI(n) = dx 2x=O , 
- 00 4cosh 2 

1+00 X2 n 2 

A2(n) = dx 2 x = - . 
-00 4cosh 2 3 

(3. 177) 

The heat current in (3 .175) is , 

I "
nk1T 

t\ Q = L -- x uT. 
3h 

(3.178) 
n 
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Thermal conductance can be read as, 

G = 7fkbT M 
Q 3h . (3 .179) 

Hence we arrive our result that the thermal conductivity is quantized. 



Chapter 4 

Electronic and thermal properties 

of graphene 

We review here the basic aspects of the electrons in graphene subjected to a 

strong perpendicular magnetic field. One of its most interesting features is the 

relativistic quantum Hall effect. The RQHE may be understood in terms of Landau 

quantization for massless Dirac fermions , which is also the theoretical basis for the 

understanding of more involved phenomena due to electron interaction. We present 

the role of mass confinement in integer filling of Landau levels. Furthermore, we 

discuss briefly the mesoscopic transport in a graphene sample. 

4.0.1 Graphene structure 

Graphene is a two dimensional layer of carbon atoms ordered into a honeycomb 

lattice as shown in figure (4.1), theoretically was described 60 years ago. Since, 

that time the band structure calculation of carbon has been done many times. 

These calculations have been also used to describe the various properties of carbon. 

The theoretical discussion of 2-D crystal is started in 1940's , when Landau and 

Peirls argued that 2-D crystal does not exist. Therefore, no one tried seriously to 

create a two dimensional sheet of atoms. However , in 2004, K.Novoselov et a1.3.45 

got hold of a two-dimensional sheet of carbon atoms. This elusive two-dimensional 

form of carbon atoms is called Graphene. It is one of the most interesting and 

theoretically studied allotropes of carbon. 

66 
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y 

x 

• : A sub/attice o : B sub/attice 

FIGURE 4.1 : Honeycomb lattice. The vectors 61, 62, and 63 connect nn carbon 
atoms, separated by a distance a = 0.142 nm. The vectors a1 and a2 are the 

basis vectors of the triangular Bravais lattice. 

The electronic structure of graphene has two atoms per unit cell which 

results in two conical points per Brillouin zone with t he band crossing, K and I{ ' . 

Near these crossing points the electron energy is linearly dependent on t he wave 

vector. Actually, this behaviour follows from symmetry considerations and thus is 

robust with respect to long-range hopping processes. 

What makes graphene so attractive for research is that the spectrum 

nearly resembles the spectrum of the massless Dirac fermions. The Dirac equation 

deals with relativistic quantum particles with spin 1/2 such as electron and proton. 

The essential feature of the Dirac equation is that the states at positive and nega­

tive energy are linked. They can be described by different components of the same 

spinor wave function . For massless Dirac fermions the energy gap between electron 

energy and maximal positron energy becomes zero and linear dispersion law holds. 

The fact that charge particles in graphene are described by the Dirac-like 

Hamiltonian rather than the usual Schrodinger equation. This can be visualised 
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as a result of graphene's crystal structure, which consists of two equivalent two 

sub-lattices A and B. Quantum mechanical hopping between two sub-lattices leads 

to the formation of two energy bands near the edges of Brillouin zone resulting 

in the conical energy spectrum. As a result , the charge particles in graphene are 

described by the Dirac Hamiltonian, 

(4.1) 

This is derived in appendix(A). Here, VF ~ c/300 , plays the role of speed of light. 

Due to the linear spectrum one can expect that the properties of graphene behaves 

differently from usual metals where the dispersion relation is parabolic. 

4.1 Chirality in graphene 

Charility in the graphene is the same as the the chirality in the ultra relativistic 

Dirac equation. iJ · p is known as chirality operator. There are two eigenvalues 

corresponding to the chirality operator, i.e. , 

( 4.2) 

where + 1 corresponds to pseudospin parallel to momentum and -1 corresponds to 

pseudospin anti-parallel to momentum. Another interpretation is t hat for a given 

p there are two chiral states, a positive energy state and a negative energy state. 

One interesting effect of chirality is Klein tunneling. We will better understand 

this concept in the next section . 

4.1.1 Klein tunnelling 

The Dirac Hamiltonian for graphene is , 

H ~ ~ ( 0 Px -0 ipy ) . D=(J · P= . 
Px + tpy 

( 4.3) 

The solution of the eigenvalue equation is a plane wave can be written as, 

w ~ ( : ) exp(ik.x + ik,y). (4.4) 
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The eigenvalue is , 

To find the values of a and b, we use the following equations , 

(HD - E) W = 0, 

a2 + b2 
= 1. 

Equation (4.6) implies that 

This gives two coupled equations, 

- fa + vF(kx - iky)b = 0, 

vF(kx + iky)a - Eb = O. 

By solving these two coupled equations , we have, 

If we define for some values of kx and ky , 

k ± 'ik exp(±iB) = x _ y. 

Ikl 

We can write the above equations as, 

a = exp( -iB)b, b = exp(iB)a. 

This shows that lal = Ibl. Hence, 
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(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4. 12) 

(4.13) 

(4.14) 

(4 .15) 

Now consider the Dirac Hamiltonian for graphene in t he presence of a potential 

V(x) , 

1-l = vFiJ . p + V(x) J, ( 4.16) 
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where V (x) varies only in the x-direction, I is identity operator. Since the Hamil­

tonian is translationally invariant in the y-direction, py is conserved. Let us choose 

V(x) to be a step function , 

V{x) ~ { -~ 2 

lQ. 
2 

x< O 

x> 0, 
(4. 17) 

so that the wave function on the both sides of the barriers are same as we found 

previously with energy, 

( 4.18) 

Now let us consider a situation for which an incoming wave on the left side of 

t he barrier have E = 0, i.e., ±hvAi;;1 = ~ . This implies that we have to choose 

minus sign in equation (4.15) and (4.18) , to satisfy this condition. Similarly, right 

side of the barrier we have to choose negative sign. Since minus sign corresponds 

to holes , if Px is momentum in left side of the barrier then it should be -Px in the 

right side of the barrier . 

Now consider a wave incident on the junction from the left side, then for x < 0, 

we can write, 

Here r is amplitude of reflected wave from the barrier. For reflected wave , kx -7 

-kx , and -kl~iky = exp(ie) . The wave function on the right side of the junction 

can be written as, 

( 4.20) 

where t is transmitted amplitude of the wave. The continuity of the wave function 

at x = 0 gives, 

exp (- 'i8) - r exp CiB) = t exp ('i8) , 

1 + r = t. 

One can solve these equations for t he values of t and r, 

1 + exp(2ie) 
t = ---'-------'-

2 ' 
exp( -2ie) - 1 

T= . 
2 

(4.21) 

( 4.22) 

( 4.23) 



Chapter 4. Electronic and thermal properties of graphene 71 

Let, T = Itl 2 is transmission probability and , R = Irl2 is reflection probability, 

then , 

T = cos2 e, R = sin2 e. (4.24) 

If a particle is incident normally on t he barrier , py = 0, equation (4. 13) becomes, 

electron in CB electron in CB 

barrier 

FIGURE 4.2: klein tunneling through a potential barrier. An incident electron 
in the conduction band above the Fermi energy, which is at the Dirac point 
before the barrier, transverses the barrier as en electron above the Fermi energy 
in the valence band. The valence band is partially emptied because the Dirac 

point has shifted to a higher energy corresponding to the barrier height . 

exp(ie) = 1. This implies that e = 2m7r, where m is an integer. For these values 

of e, T = 1 and, R = O. Note that: the t ransmission probability is independent 

of Vo. Hence, an electric potential cannot confine the Dirac particles. This effect 

may be understood in the following manner: consider an incident electron in the 

region with =? the energy of which is slightly above the Fermi energy. In the 

potential barrier, the Dirac point is shifted to a higher energy that corresponds to 

the barrier height and the Fermi energy lies now in the valence band, where the 

electron may still find a quantum state (with the same wave-vector direction and 

the same velocity v) instead of moving as an electron in t he conduction band , it 

thus simply moves in the same direction as an electron in the valence band (4.2). 

To overcome this problem we use mass confinement which will be discussed in the 

next section. 

4.2 Mass confinement 

As we discussed in the previous section an electrostatic potent ial cannot confine 

the Dirac electrons, this issue is resolved by using a mass term M a z which is added 
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in the Dirac Hamiltonian. Hence , 

FIGURE 4.3 : A gap opens when a particle approaches to the edge, which is 
forbidden region. 

(4.25) 

The wave function correspond to this Hamiltonian is given in equation (4. 15) , and 

energy spectrum is, 

(4.26) 

which is gapped at zero momentum. Note t hat when an electron approaches to 

the edge where, M =f. 0 a gap opens as shown in fig.(4.3) . An electron slightly 

above the Dirac point may then only propagate in the region with M = 0, whereas 

at the edge its energy lies in the gap which is a forbidden region and, the electron 

is thus confined. 

4 .3 Dirac fermions in magnetic field 

We now consider the problem of a uniform magnetic field B applied perpendic­

ular to the graphene sample. We use Landau gauge: A = B( -y, 0). Note that 

magnetic field introduces a new scale length in the problem, 

l = [1k 
B Vd3 ' (4.27) 

which is the magnetic length defined earlier. The only other scale is fermi velocity. 

Dimensional analysis shows that only quantity, n'llF/lB, has the dimensions of 
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energy which allows us to define cyclotron frequency, 

(4.28) 

Equations defined in (4.28) and (4.27) show that the cyclotron energy varies as 

VB rather than in non-relativistic case where cyclotron energy varies linear in B. 

This implies that energy scale associated with t he Dirac fermions is different from 

the scale associated with the ideal 2D electron gas. Moreover, if t he magnetic 

field is of the order of, B rv lOT , the cyclotron energy of t he ideal 2D electron gas 

is of the order of 10K. Whereas, the cyclotron energy of Dirac fermion is of the 

order of .83eV, that is, two order of magnitude greater than the ideal 2D electron 

gas . This has a very strong implication to observe Quant um Hall Effect at room 

temperature. Further, the Zeemann energy at strong magnetic field relatively 

small ~ 6.1 x 1O-4eV, can be ignored in a high magnetic field limit . 

We now consider Dirac equation (4.1 ) in more detail , 

(4.29) 

Here, a x and ay are Pauli matrices . The Dirac Hamiltonian (4.29) in terms of 

matrix form is, 

1-l _ ( 0 Px - 'ipy ) 
D - VF . 

Px + ipy 0 
(4.30) 

Using the minimal coupling to encount t he effect of magnetic field the above 

Hamiltonian becomes, 

(4.31) 

In the Landau gauge t he generic solution of the Dirac equation is of the form , 

w(x, y) ~ exp (iky) ( : ) , (4.32) 

and the Dirac equation then reads, 

( 4.33) 
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Using the definition of, Yo = -kl1, the above equation (4.33) becomes, 

Here we define, 
y - Yo 

~=-- . 
lB 

And the usual harmonic oscillator operator are defined , 

The equation (4.34) becomes, 

nw, ( ~t ~ ) ( ~ ) = E ( ~ ) . 
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( 4.35) 

( 4.36) 

(4.37) 

We can easily verify t hat the definition of raising and lowering operators in (4.36) 

preserve the commutation relation [O ,ot] = 1. N = oto, is number operator. 

The equation (4.37) can be written in the form of coupled spinors as , 

(4.38) 

( 4.39) 

One can decouple the above equations, 

( 4.40) 

This shows that Vn <X In) is an eigenstate of number operator. T hus the energy 

can be written as, 

En = ±n.wcVN = ±/tVF~. 
lB 

(4.41 ) 

This shows that the energy varies as VB rather than the usual ideal electron gas 

where energy varies linearly with B. We can see that the energy spectrum has ± 
signs, + for the conduction band and - sign for valence band. We need to introduce 
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another index A. The energy is now labelled by n and A, i.e. , 

(4.42) 

Another notable difference with respect to non-relativistic Landau levels in metals 

with parabolic bands is the presence of zero energy Landau Level with n = O. 

This level need to treat separately, and indeed the solution of eigenvalue equation 

yields an eigenvector, 

(4.43) 

with single non-vanishing component. As a result zero energy states at I( points 

are restricted to B sub lattice, where those, at the 1(' have a non-vanishing weight 

only on A sub lattice. The eigenstate with n =I 0 is , 

(
In - 1) ) 

1/JnI'O,>' = Aln) . (4.44) 

4.4 Mesoscopic transport in graphene 

We describe here the transport properties of graphene in t he mesoscopic regime. 

In this section, we discuss t he Landauer formula for graphene using a model of 

rectangular wave guide which was discussed in chapter 2. Further , we will use 

this formulae to analyze the transport co-efficient problem into a one dimensional 

transmission problem. 

A common mesoscopic system does not resemble with the wave guide. 

However , the physics of quantum transport for graphene is same as an infinite rect­

angular wave guide. We start with an ideal rectangular waveguide for graphene in­

finitely long in the x-direction . The Dirac electrons are confined in the y-direction. 

Since the Dirac particles cannot be confined by even an infinite potential, we as­

sume here that the particle becomes infinite massive as it enters the walls. As the 

electrons move towards the walls they repelled towards M = 0 region so that they 

cannot tunnel through. We assume an infinite mass well at y = ±~, 

M(y} ~ { 
o 
(Xl 

-a < y < !! 
2 2 

otherwise. 
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The Dirac Hamiltonian in the presence of this mass term is, 

(4.45) 

In order to obtain the eigenvalues and eigenfunction of this Hamiltonian, we need 

to solve the eigenvalue equation 

H[j 'IjJ (x , y) = E'ljJ (X, y) , 

where 'IjJ (x , y) is two spinors, 

'IjJ(x, y) = ( u(x , y) ) . 
v(x,y) 

Using this form of wavefunction, one can write the eigenvalue equation as , 

hence, 

VF(Px - ipy) ) ( u(x , y) ) = E ( u(x , y) ) , 
-M(y) v(x, y) v(x , y) 

M(y)u(x , y) + VF (Px - ipy)v (x , y) = w(x , y) , 

VF(Px + ipy)u(x , y) - M(y)v(x, y) = EV(X , y) . 

After rearranging t hese coupled equations we have, 

VF (Px - ipy)v(x, y) = (E - M(y)) u(x, y), 

VF (Px + 'ipy )u(x , y) = (E + M(y)) v(.x, y) . 

(4.46) 

( 4.47) 

(4 .48) 

( 4.49) 

(4 .50) 

(4.51) 

(4.52) 

By applying VF(Px - ipy) on the both sides of the equation (4.50) we obtain , 

We can solve this equation by applying the separation of variables technique. By 

writing u(x, y) = X(x)¢(y), we can decompose t he last equation into two one 
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dimension equations as, 

Here, 

The solution of equation (4.53) is, 

x(x) = exp(ikxx) , 

and the solution of the equation (4.54) is, 

¢(y) = A sin kyY + B cos kyY, 
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(4.53) 

(4.54) 

( 4.55) 

(4.56) 

(4.57) 

where A and B are arbitrary complex numbers. Since the electrons are are 

perfectly confined in the transverse direction, the wave function must vanish at 

Y = ±~ , t his condition restricts ky to certain specific values, 

nn 
kn =-· 

a 

Thus, transverse wave-function and cry can be written as , 

. a 
¢n(Y) = A sm kn(y - "2) ' cry = - a-:2-

Hence, 
a 

un(kx) = Aexp(ikxx)sinkn(y - "2) ' 

and energy is given by the equation 

(4.58) 

(4.59) 

( 4.60) 

(4.61 ) 
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Where A = + for the conduction band and A = - for the valence band. Now let 

us look for the other spinor v(x, y) . From equation (4.52), 

Hence, the wave-function becomes, 

(
sin k (y - £) ) 

1/Jn,>.(kx) = Aexp(ikxx ) ~ (k . k ( ~ £) +~11T k ( _ £) ) . (4.62) 
En,»(kx ) x S1n n y 2 a cos n Y 2 

We put M(y) = 0 here , for the region inside the sample. We can easily verify that 

the particle current along the y-direction is zero by computing jy, 

( 4.63) 

where Vy is velocity operator of the electrons in the y-direction. We can find it by 

using Heisenberg EOM as follows, 

(4.64) 

hence, 

( 4.65) 

Now, 

by performing this simple matrix multiplication we obtain the result jy = O. This 

shows that electrons are perfectly confined in the transverse direction and free in 

the longitudinal direction. 

Now consider the walls of the waveguide varies, and come closer at x = 0 forming 
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a constriction in the middle , just as we discussed in non-relativistic case but this 

t ime we are considering t he infinite mass rather than the potential. Now the mass 

term is , 

M(a(x),y) = { 
00 

- a(x ) < < a(x) 
-2- y - 2-

other-wise. 
(4.66) 

o 

Since t his mass term does not allow t he separation of variables and t he solutions of 

the Dirac equation found previously do not apply in t his case. Under the adiabatic 

conditions discussed in chapter 2, the walls become locally flat and parallel , and 

the wave function can be approximated by t hose found previously by replacing, 

a -t a(x) and energy is , 

~2 2 2 

(k) \ 2 ~2k2 n V p7f 2 
En, A x = /\ Vpf~ x + a(x)2 n . ( 4.67) 

In spit e of t he similarity with the non-relativistic case t he effective chan­

nel dependent potential energies are, 

(4.68) 

4.5 Quantum transport in graphene 

Let us connect the wave-guide with two reservoirs which are at chemical potentials 

fJ,L and fJ,R where fJ,L is t he chemical potential of the left reservoir and fJ,R is the 

chemical potential of the lower reservoir as shown in fig (2.3). These reservoirs 

inject electrons into the wave-guide. The net current flowing along the x-direction 

which can be calculated in a similar way as we did for the non relativistic case, by 

using equation (2.166) which reads as , 

( 4.69) 

Here, 98 is the factor due to the four fold degeneracy of each level, two-fold due to 

t he spin and two-fold due the valley degeneracy and Tn(E) is energy and channel 

dependent transmission coefficient . The distribution function f (E - fJ,) is also dif­

ferent from the usual fermion distribution function because the energy spectrum 

in the relativistic case is linear in k. If the two reservoirs are at different tempera­

tures, i. e., TL is temperature of the left reservoir and TR is the temperature of the 
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right reservoir then the Landauer formula (4.69) becomes, 

Suppose that the waveguide is symmetrically biased, i.e. , 

and 

6.T 
TR=T- -

2 ' 

6.J-L 
J-LR = J-L --2 . 
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(4 .71) 

(4.72) 

Where 6.T = TL - TR and 6.J-L = eV are applied temperature and voltage 

bias respectively. We restrict ourselves in the linear response regime such that 

kBT,6.J-L«kBT. We can expand the distribution function around (J-L , T) , 

and 

Hence, 

Since, 

and 

Thus, 

Hence, 

6.T8f 6.J-L8f 
f(TL,£ - J-Ld = f(T ,£ - J-L) + 2 8T + 2 Be ' (4.73) 

6.T8f 6.J-L8f 
f(TR , £ - J-LR) = f(T , £ - J-L) - 2 8T - 2 Be ' (4.74) 

8f 
Be 

1 exp (~) 
- kB T [exp (~ ) + 1 r 
8j 
8T 

£- J-L8j 
----

T Be' 

(4.76) 

(4.77) 

( 4.78) 

(4.79) 
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The electric current then reads, 

Where 

and 

At low temperature, 
8f 
Be = 8(e: - fL)· 

Thus, 

I~ = 100 
dcTn( e:)8(e: - fL) = Tn(fL) · 

To evaluate, 1'2 we expand T,t(e:) around fL , 

hence, 
n ( 00 ( dTn (e: ) ) e: - fL 8 f 

12 = Jo de: Tn(fL) + (e: - fL)~ IC=/L ---y;- Be' 

The first term vanishes by integrating thus, 

If we define, 

then the above equation becomes, 

I n = _ k2 T 100 
d X2 exp X dT,t(fL) 

2 B X 2 X I 

_~ (expx + 1) de: 
kaT 

81 

(4.80) 

(4.81) 

(4.82) 

(4.83) 

(4.84) 

(4.85) 

( 4.86) 

(4.87) 

( 4.88) 

(4.89) 

( 4.90) 

(4.91) 
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where, x = -~ for E = 0 and x = 00 when E -7 00. In the low temperature 

limit , x = -~ -7 -00 . Hence, 

(4.92) 

( 4.93) 

By plugging t he values of Ii' and I!J:, in the equation (4.82) and we obtain, 

(4.94) 
n n 

Note that if 6.T = 0, then 

(4.95) 

One can read the electrical conductance, 

( 4.96) 

Note t hat electric current is also driven by the temperature difference, t his cur­

rent generates a voltage across the conductor until the electric current is zero . 

Thermopower (defined in chapter 2) can be read as, 

(4 .97) 
n n 

4.6 Thermal current 

We describe here thermal current carried by t he electrons and we will find the 

thermal conductance. The entropy current in equation (2.78) is , 

(4.98) 

In terms of heat current , 

(4.99) 
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where IQ = TIs and IE is energy current . If E is energy of single particle t hen Ie 
can be written as, IE = EIN . Hence, 

(4.100) 

By using the Landauer formula (4.69) we have , 

(4.101) 

By using equation (4.79) , the above equation can be written as: 

IQ =g~ I: 100 

dE (E - ~) Tn(E) ~~ ( 6.~ - E ; ~ 6.T) , 
n 

(4.102) 

=~ I: (I;6.~ - Ir;6.T). ( 4. 103) 
n 

Where 

(4.104) 

and 
rn = roo d (E - ~) 2 Tf' ( ) 8 f 

4 JOE T 1. n E 8E ' (4.105) 

For low temperature, 13 is already evaluated in equation(4.92),i.e. , 

(4 .106) 

We use the expansion of Tn (E) to evaluate 1'4 , 

In = ~ roo d ( _ )2 (Tf' () dTn( E) I ) 8f 
4 T JoE E ~ 1. n ~ + dE e=f-L 8E . (4.107) 

The second term of this integral vanishes by integrating because it contains an 

odd power of (E - ~). The first term is evaluated similarly as we did earlier in 

equation (4.92) . Hence, 
2 

Ir; = -k1T~ Tn(~)' ( 4.108) 

Thus , equation( 4. 102) becomes, 

(4.109) 
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Note that heat current is also driven by t he voltage bias as well as temperature 

bias . T he heat current driven by the voltage bias term contribute very small to the 

thermal conductance so we ignore this term while calculating thermal conductance. 

Hence, 

n 

One can read the thermal conductance, 

n 

where, Lo is thermal conductance quantum defined as, 

Hence, the thermal conductance is quantized in the unit of Lo. 

The Peltier coefficient is defined as, 

IT = IQ 
I ' e 

where, IQ and , Ie are driven by purely voltage bias. Thus, 

(4.110) 

(4.111) 

( 4.112) 

(4. 113) 

(4 .114) 

One can see from equation (4.96) and (4. 113) that IT and S are related by the 

Kelvin Onsager relation 

IT = TS. (4. 115) 

Hence, we convert all transport coefficient in terms of channel and energy depen­

dent transmission coefficient . 



Chapter 5 

Results and Discussion 

The purpose of t his work was to provide a brief description of t he t ransport of par­

ticles and heat energy in the non-relativistic and ult ra-relativistic 2-dimensional 

electron gas in the low temperature limit where linear response theory works. A vi­

able basis of t he Landauer theory in the ballistic transport regime was provided to 

understand the quantum transport of non-relativistic and ultra-relativistic quasi­

free particles and thermal energy carried by these particles . To implement this 

programme, we developed the concept of thermodynamics. In order to connect 

t he general principle of thermodynamics to t he quantum transport , we used the 

ideas of t he Boltzmann theory and ballistically moving charge particles. 

Further, we used the Landauer theory to discuss Integer Quant um Hall Effect in 

low temperature limit (j lK) and in a high magnetic field limit( ::::::: lOT). It was 

shown t hat the Hall conductance is quantized by using gauge invariance princi­

ple. Moreover, we examined the behavior of a 2-dimensional electron gas that was 

subjected to both a large perpendicular magnetic field as well as spatially vary­

ing internal electric fields. We choose one of the two guiding center coordinates 

to be diagonal. This made the energy a local function of position , allowing for 

an easy visualization of t he transverse responses to externally imposed fields , as 

well as the spatial distribution of the (transverse) Hall current inside the sample. 

Further, in this model, we applied a thermal gradient and calculate t he thermal 

current flowing through the sample which is quantized. 

Finally we introduced graphene. It was interesting to see the comparison of ultra­

relativistic Dirac particles with the non-relativistic particles. V\Te modified t he 

85 
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Landau formula for this case and applied to calculate electrical and thermal current 

flowing through a graphene sample. Vve found here the transport co-efficient in 

terms of channel dependent transmission co-efficient. 



Appendix A 

Dirac Hamiltonian 

Graphene is made by carbon atoms which are arranged in hexagonal structure. 

This structure can be viewed as a t riangular lattice wit h a basis of two atoms per 

unit cell. We start with the t ight bonding model approach to understand t he band 

structure of graphene. 

The t ight binding Hamiltonian with nearest neighbour hopping only is considered 

here. Consider a} is creation operator which creates an electron on sight R j on 

sub-lat t ice A and aj is annihilation operator which annihilat es an electron on sub­

lat t ice A. A similar defini t ion can be used for sub-lattice B. T he simpler form of 

t ight binding Hamiltonian is 

3 

H = co 2 ) a}aj + b}bj) - t L L (a}H bj + H.C). (A. I) 
j 0= 1 

Here, EO is nearest hopping energy. By Fourier t ransforming t he operators, we 

have, 

(A.2) 

Similarly, 

(A. 3) 

Hence, 

3 

H = c O L ( ei(k-kl).Ja1akl + ei(k-kl).Jb1bkl) - t L L ( ei(k-kl).Jeik-6a1bkl + H. C) . 

jkk' 0=1 jkk' 
(A.4) 
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Since, 

Thus , 

L eiCk- k')J = 6kkl . 

j 

88 

(A.5) 

H = co L (a1ak + b1bk) - t L (i(k)a1bk + J*(k)b1ak) . (A.6) 
k k 

Where, 
3 

f(k) = LeiH. (A.7) 
0=1 

If we define a matrix, 

H - = ( co -tf(k) ) 
k -tJ*(k) co ' 

(A.8) 

then t he above Hamiltonian can be written as 

H = ~ ( at at ) H- ( ak ) . ~ k k k b-
k k 

(A.9) 

We use, det(Hk - AI) = 0, to find t he eigenvalues of the Hamiltonian . Hence, 

(A.I0) 

The solution of the above equation is , 

(A.ll) 

Now we choose our axis in such a way that 51 makes an angle 600 with the x-axis 

then, 

5 = ( ~ v'3a
) . 

1 2' 2 (A.12) 

Similarly, 

5 = ( ~ _ v'3a
) 

2 2' 2 ' 
(A.13) 

~ =(-a , O). (A.14) 
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Hence, 

f(k) = exp(ik . cfd + exp(ik .~) + exp(ik . ~) , 

(A.15) 

For the physics of graphene, two points are important K and K' near the corners 

of the (BZ) . These are named Dirac points. The coordinates of these points in 

momentum space are given by 

(21f 21f) 
K = 3a ' 3V3a ' 

(A.16) 

We expand f(k) near these two points in first order to linearise the H k . By 

expanding f (k) near K point we have, 

- 21f ( 21f a V3 21f) f(k) = exp -i(- + kx ) 1 + 2 exp(3i(kx + -)-cos-(ky + M )a) , 
3a 3a 2 2 3v3a 

3a 
= - 2 exp(21f /3) (kx + iky) . 

By restoring Ii and using equation, co = -tf(k) , we obtain , 

(A.17) 

Where, VF = 2~;a · 
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