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Abstract

In this work, the balance-equation approach formulated by X.L. Lei and C.S. Ting is
studied which is extremely useful in analyzing nonlinear hot-carrier transport. This
approach is well suited to treat interaction effects in electron transport.

The essential idea is to separate the center-of-mass motion from the relative motion of
electrons. An electron temperature is introduced as a measure of the internal energy of
the relative electrons. By allowing different temperatures for decoupled electrons and
phonons in the initial state, we obtain the density matrix for the electron-lattice system to
the first order of interaction but under arbitrarily strong electric field. The force- and
energy-balance equations are obtained using this approach for the steady state dc
transport in a 3D isotropic system. The scattering mechanism includes impurity and
phonon interactions with nonlocal dynamic screening effects due to electron-electron
interactions. Linear and nonlinear resistivities are discussed in the degenerate and non-
degenerate statistical regime.
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Chapter 1

Background

Electron transport in submicron systems and specifically nano scale systems is an area of great
interest in physics. It is not only an area rich in physics where ideas from various fields of
physics come into play, but it also has practical implications for device physics.

In the following sections, we discuss the various approaches to electron transport in sub-
micron systems. In the last section, of this chapter, Lei-Ting balance equation theory[1] is

introduced which is the main focus of this thesis.

1.1 Different approaches to electron transport

1.1.1 Boltzmann Transport Equation

In a semi-classical theory of transport one can derive an equation of motion, known as the
Boltzmann equation[2], for the non-equilibrium distribution function f(r,p,t). To do this,
consider first a set of NV non-interacting particles subject to an external potential Ve (r, t), and

thus evolving according to the Hamiltonian

H= i <% + Vet (r, t)) . (1.1)

By noninteracting, we mean that they do not experience any type of scattering. The Hamil-
tonian of Eq.(1.1) describes the dynamics of independent particles evolving under the same

equation of motion. The phase space density D(ry,pq;........ TN, Py, t) factorizes into a prod-



uct of IV one-particle reduced densities f(r,p,t). Instead of working with the N-particle density
we can thus work with the quantity f(r,p, t)drdp, that gives the number of particles in drdp.

Since the particles evolve under Hamiltonian dynamics, the Liouville theorem|3] guaran-
tees that the phase-space volume drdp is conserved during time-evolution. In addition, no
interactions are present among particles, therefore the number of particles in volume drdp
remains constant during time-evolution under the above Hamiltonian. All of this implies that

the single-particle density f(r,p,t) must be conserved, namely
—f( t)=0 (1.2)
r =0. .
dt P

The total time derivative of f(r,p,t) is determined by all the terms that either implicitly or

explicitly depend on time

0 dr dp B
E (r,p,t) o+ -d_t-vrf(rapat) o 'E'fo(r7p’t) =0 (13)

-We can use the Hamilton’s canonical equations for the particles’ conjugated variables{r;, p; } (i.e.,

the jth component of the particle position and momentum, respectively)

drj OH dp;  0H

- i i oo 1.4
dt 8p]-’ dt 67“]' (1.4)
with the single-particle Hamiltonian H — QL; + Veat(r, t) to obtain
9 P
E (I‘, P, t) a5 E'Vrf(r7 pvt) - VI‘I/(-:‘.’IJt(ra t).fo(I',p, t) = O (15)

Let us now allow the particles to interact via, say, a two-particle potential W(lr—r|) that
depends on their relative distance (this could be, e.g., the mutual Coulomb interaction for
charged particles), or via some other general potential that scatters particles. The presence of
this interaction changes the particles’ momenta via collisions, and the particles can scatter "in"
and "out" of the phase-space volume drdp. The distribution function f(r,p,t) is no longer a
conserved quantity and condition given by Eq.(1.2) is not satisfied. The change in time of the

distribution function must thus be balanced by an equal amount of change due to collisions.



We write this as

Gi/Cpt) = (Ffepn) =1ig1) (16)

col
where the quatity I | f | is called the collision integral(or scattering operator) and is a functional
of the distribution function. It gives the net rate of change of number of particles with momen-
tum p, at position r and time . For arbitrary interaction potentials, it contains information
on the type of processes that drive the system to local equilibrium. These processes may be
elastic or inelastic i.e., they may or may not change the energy of single particles. Equating

Eq.(1.6) with Eq.(1.5), we obtain the Boltzmann equation :
9 P
5 (6P + — Ve f(r,p,t) = ViVeus(r,£). Vo f(r,p,t) = T | £ (1.7)

Given an interaction potential, the collision integral can be formally calculated exactly. For

Instance, for a two-body potential one finds
Ilfl|= /dr'dper(( r —r|).Vp fo(r, p; ¥, p) t). (1.8)

Unfortunately, the above expression contains the two-particle reduced density fo. We thus
need an equation of motion for this quantity. Carrying out a derivation similar to that leading
to Eq.(1.8), one can show that the equation of motion for f, contains the three-body reduced
density f3 . In turn, the equation of motion for f3 depends on the four-body reduced density
faand so on. This generates an infinite hierarchy of coupled equations, known as the BBGKY
hierarchy, thus making the problem practically unsolvable.

The collision integral can be expressed as
T15 1=~ [ g (Wo,ps 0,00 - 000 - Wi 01 - frm0) (1)

where the quantity Wy p is the transition probabilty density per unit time that a particle with
momentum p is scattered into a state with momentum p’. This probability density may depend
on the distribution function itself. The term f(r,p,t) that appears in Eq.(1.9) counts how many
electrons are in the initial state p, while the term [1 — f(r, p; t)] counts the available states

with momentum p’into which the electrons can scatter. FEq.(1.7) is now a nonlinear integro-



differential equation for the distribution function. Therefore, approximations are required to
solve the Boltzmann equation for f(r,p,t).

According to the type and the strength of the scattering potential, the transition probability
Wp, p’can be calculated using standard techniques of quantum mechanics, such as perturbation
theory. An approximation, known as the relaxation-time approximation, can be employed that

assumes the identity

% = /dep,le = f(r,pit)]. (1.10)

where 7(p) is the relaxation time, i.e., the average time between successive collision. With this

approximation we can rewrite the collision intergal as

I I f |: _ [f(r,p,t) - feq(r’p)]. (111)

=
Here, f¢(r,p) is the local equilibrium Fermi distribution function

1
eq =
e, p] = 11 eBE)—n)/kp0(r)

(1.12)

with position-dependent chemical potential and temperature.

Eq.(1.11) quantifies deviations from equilibrium, and contains the physical notion that once
electrons reach local equilibrium, then further scattering will not modify their distribution
(Z'| f1=0 at local equilibrium).

Irrespective of the approximation employed for the collision integral, once the distribution

function is known we can calculate the electron number density
n(e,t) = [ dpf(e,p,0) (1.13)

and current density

it =e [ a2 sr,p,0). (114)

Electron transport studies of sub-micron devices relies heavily on Boltzmann equation. In
practice, solving the Boltzmann integro-differential equation is a very difficult task especially

in the presence of electron-electron interactions.



1.1.2 Nonequilibrium Green’s function approach (NEGF)

Another important approach to electron transport is the nonequilibrium Green’s function ap-
proach (NEGF). When only the properties of the ground state are required, zero-temperature
(single- and many-particle) Green’s function together with its perturbation theory principally
gives all the information. However, electron transport is essentially a nonequilibrium problem
so the equilibriun Green’s function technique needs to be generalized to the nonequilibrium
situation. For certain applications it is advantageous to write the Boltzmann equation as an
integral equation rather than an integro-differential equation. With this idea in mind, here,
we will present the techniques of non-equilibrium Green’s function, also known as the Keldysh

Formalism[4]. Generally, we need to calculate the Green’s function
Gl@tidt) = ~3Tr (T {w, @0 ¥}, (50} 5, ) (1.15)

where 1) ., (2,t) is the annihilation field operator in the Heisenberg picture, and p is the density
matrix, also in the Heisenberg picture. We have assumed that p is diagonal in the particle
number basis, [N, p] = 0.

In order to understand Keldysh Formalism we must be aware of Dyson’s equation. Consider

an example with V = > B ]\/[aﬁCng . Then the first order perturbation gives,
G (b0, 8) = GO (u, tyw, 1) — Z/ds]\lagTr (TC {Cp () CI (#) C1. (s) C (s)}) (1.16)
af

The second term has one disconnected term and one non-zero connected term, which includes

3 / dsMgTr (Tc {c# (t)Ch(®) Ct (s) Cp (s)}) =y / ” dsGOe (4t a, s) MagGo+ (B, 50, 1)
af af v 7>

+/ dsG™™* (u,t; @, 8) MagGOE (B, s v, t) }

o0

These expansion series can be represented by a matrix equation in the form

G =G+ G'%G° + GOSQOs@0 + . = (P (1 + Z@) (1.18)

(1.17)



which is the Dyson equation and this can be organised as

@(t,t’)z@o(t,t')+// dt1dtaGO (t,11) S (t1,t2) G (t2, 1) (1.19)

where @(t,t} is the operator form of G (z,t;2,t) = (x| G (t,t) | z); G° = D is the free-field
NEGF; and ¥ is the self-energy term coming from interaction. The calculation for the Green’s

function requires calculation of the self-energy if the last equation is expressed as
G =0 +5°86 (1.20)

NEGF has proven to be very effective tool to study transport phenomena. A wide range of
electron transport phenomena have been successfully addressed using the NEGF technique.
Several exact results, not obtained previously by conventional theoretical techniques have been

obtained using NEGF.
1.1.3  Path Integral Formulation

The standard formulations of quantum mechanics was developed by Schrodinger, Heisenberg
and others in the 1920’s. In 1933, Dirac[5] published a paper where he suggested that exp (2.5/h)

can be treated as the propagator, where S is the classical action, defined mathematically by
tb ’
Sz () = / L (a: 3,t) dt (1.21)
t(l

and L (a:’,x, t) is the classical Langrangian of the system. Here the prime ( 7) represents
time-derivative.

Feynman developed this idea, taking into account paths other than only the classical one
and published a third complete formulation of Quantum Mechanics which provides a much

more intuitive introduction to the quantum theory.

Path Integral and the Wave Function

In order to perform the sum over all paths we divide the time interval (to — tp) into N intervals of

length e.For each path z () we can write z; = z (t) [Ne =ty —ta, e =tip1 — t;, tog =ta, ty =1p, TN = Tp)

9



and get a result for the sum over all paths:

1 i /h)S dzq dz dx
7~ 1 (7‘/,1') [b)a]_l__g N-1 1.22
]\(b,a)—ehloA//,../e ( )

with some normalization factor A, which we need for the convergence of the whole expression,

and, K (b,a) is called the Kernel of the motion. We will write the above equation as
b . o
K (bya) = / ei/MSbel pg (¢) (1.23)

and call it in this notation the configuration space path integral or Feynman path integral.
For K (b,a) there is a rule for combining amplitudes for events occuring in succession in

time:

K (bya) = / K (bye) K (c,a)dze,if toctecty (1.24)

[which follows from S (b,a) = S (b,c) + S (c, b) ,which is true from the definition of the action.
It holds for any point ¢ lying on the path from a to b]. We can write the wave function in terms

of the above kernel as

o0
T (29, t2) :/ B long, o, 1100 (e 2 i (1.25)

—00
which means that the total amplitude to arrive at (z9,t2) is equal the sum over all possible

values of z; (at a fixed time ¢1) multiplied by the amplitude to go from 1 to 2.

Perturbation Theory

The idea of Perturbation theory in the path integral formalism is very simple but important.

Inserting Eq.(1.21) in Eq.(1.23) and expanding the exponential, we have
Ky (2,1) =Ky (2,1)+ K, (2,1) + Ky (2,1) + ... (1.26)

where,

2 i ta melQ
Ky (2,1) :/1 {exp (E .2 dt)J Dz (t) (1.27)

10



. "2 . "to m:rlQ to
By (3.1) = —%/ [exp (Z dt)J V[z(s),s]dsDz (t) (1.28)

1 By 2 t
1 /2 i [ ma t2 ?
. 1 S s|ds| Dzt 1.29
K5 (2,1) 7z, exp | = 2 [ 5 Viz(s),s] SJ z (t) (1.29)

and so on. Here the prime () shows the time-derivative and Ky (2,1) is just the free-particle

kernel. If we interchange the order of integration over z and z (¢) we obtain for Kj (2,1) :

K (2,1) = —%/ttzF(s)ds (1.30)

2 i io mw/Q
F 5):/ exp | — dt
( v1 { (FL 2! 2

which is interpreted as free propagation from ¢juntil some intermediate time s and again from

where

/2 Viz(s),s] Dz (£) (1.31)

t1

s to ta, weighting each path with a characteristic factor V' [z (s), s]. Consequently we can write

F(s) in the form
F(s)= / Ko (z2, ta; x5, 5) V (s, $) Ko (5, 85 21, 1) ds (1.32)
and with Eq.(1.30), the perturbation term gives
1 to (0,0)
K (2,1) = ~ / Ko (z2,t2; s, 8) V(zs,8) Ko (s, 8; 71, t1) dzsds (1.33)
11 —00

The interpretation is the following: Ky (2, 1) gives us the amplitude that the particle is propa-
gating from 1 to 2 without being affected by V (z,¢) at all. K7 (2,1) is the amplitude that the
particle is scattered once at any time s between 1 to 2. Ko (2,1) will then be scattered twice,

and so on.

1.1.4 Scattering Matrix Approach
Scattering Matrix

This is one of the most widely used approaches in electron transport in nanostructures especially

in the mesoscopic regime[6]. It is an important approach because at sufficiently low energies

11



any nanostructure can be regarded as a huge scatterer of electron waves coming from leads.
Note that a nanostructure taking part in quantum transport is part of an electric circuit. It is
connected to several leads(reservoirs), which are in thermal equilibrium and are characterized
by a fixed voltage. Here we only consider the case when there are two reservoirs (referred
to as left and right). Between the reservoirs is the scattering region. Let us start with a
feature borrowed from quantum point contact model(QPC) - a system without potential barriers
- ideal waveguides connect the reservoirs and the scattering region. This is convenient as
scattering only takes place in a finite region, the reservoirs being far from this region. The
wave functions may have very complicated form in the scattering region, but in the waveguides
they can be treated as combination of plane waves. The left and the right waveguides do
not have to have the same axis and the same cross-sectior. This is why it is convenient to
introduce the separate coordinates zr < 0,yr,zr and xg > 0,yg, 25 for the left and right
waveguides,respectively.Generally, a wave function of fixed energy E can be presented as a

linear combination of plane waves

1 L (n) . (n)
U(zyr, ,yL,21) = ———u_lyr, up )|, etk Bl 4 “e—””"’ L] (1.34)
; \/Th'l}n Ln Ln
and
1 . () _opm)
V(xR YR, 2R) = Z W%m(y&ZR)[%,,,C“”"" TR 4 b€ W= TR, (1.35)

Here we label the transport channels in the left and right waveguides by the indices n and m,
respectively.

The corresponding transverse wave functions are ¢,, and ¢,,, and the energies of the trans-
verse motion are E, E,,. For any transverse channel n or m, be it in the left or the right
waveguide, the energy E fixes the value of the wave vector k;”) = \/m.'ﬁansport
is due to propagating, not evanescent waves, and kg(cn) has to be real. Then, only a finite number
of open channels, Ny, to the left and N R to the right, exist at a fixed energy F. |

In Eqs.(1.34) and (1.35), the coefficients a > @p,, are the amplitudes of the waves coming
from the reservoirs, and b,., by, are the amplitudes of the waves transmitted through or
reflected back from the scattering region. These coefficients are therefore not independent: the

amplitude of the wave reflected from the obstacle linearly depends on the amplitude of incoming

12



waves in all the channels:

bat=> > sapragh =L R1=nm. (1.36)
B=L,R I

The proportionality coefficients are combined into a, (NL + Ng)x (Np + NR) scattering matriz

§ . It has the following block structure:

. SLL SLR r ot
SRL SRR t 7

The Npx Ny, reflection matriz 7 describes the reflection of the waves coming from the left.
Thus, 7y, is the amplitude of the following process: the electron coming from the left in the
transverse channel n is reflected to the channel 7’ Consequently, | 7., |%is the probability of
this process. The Ngx Ng transmission matriz tis responsible for the transmission through
the scattering region.

An important condition on the scattering matrix is imposed by symmetry with respect to
time reversal. If this symmetry holds, the scattering matrix is symmetric, § = 57 So, the
reflection matrices are summetric, and ¢ = £7.

Further, a scattering matrix satisfies the unitary condition, 575 = 1. The diagonal element

is given by
(59) = lrae P+ [ tmn =1 (1.38)

since it represents the total probability of an electron in channel n being either reflected or

transmitted to any channel.

Transmission eigenvalues

Now we turn our attention to calculating the current. The current I can be expressed as
*° dk,
IZQSeXn:/_OO oV (ko) f (k). (1.39)

where vy (k) (= hky/m) is the velocity and the factor 25 reperesents spin-degeneracy. Let

us calculate the current through a cross-section located in the left waveguide. The electrons

13



with k;>0 originate from the left reservoir, and their filling factor is therefore f(E). Now, the
electrons with k,<0 in a given channel n are coming from the scattering region. A fraction of
these electrons originate from the left reservoir and are reflected; they carry the filling factor
fL(E).This fraction is determined by the probability of being reflected to channel n from all
possible starting channels n, R, (E) = > | T | .Other electrons are transmitted through
the scattering region, their filling factor being fr(E). The resulting filling factor for k,<0 is
therefore R, f(FE)+ (1 — R,) fr(E). For the current we write

SRR 0 A
I=2,¥ ( | Euterne) + | G (R fL(E>+(1—Rn>fR(E)J> (1.40)

n

Replacing —k, by k, in the second term of Eq.(1.40) we have the expression

F= 20 (7 G (1= BB B) - fu(N ). (141)

n

Eq.(1.38) can be written as
1= R = |t = (71) (1.42)

changing variables from k,to E, Eq.(1.41) can be expressed as

7= 2
27T 0

" aBTY [ZT?] [fu(E) - fr(E)]. (1.43)

The trace can be represented as a sum of eigenvalues T, of the Hermitian matrix ¢¢, the
transmission eigenvalues. Because of the unitarity of the scattering matrix, T}, are real numbers
between zero and one.

The transmission eigenvalues depend on energy. However, in the linear regime, when the
applied voltage is much smaller than typical energy scale of this dependence, they can be
evaluated at the Fermi surface, and we obtain the following expression for the conductance

(using the left waveguide):

G=Go ) Thu) (1.44)
P

14



where Gg = % is the conductance quantum. Calculations of the current in the right waveguide
gives the same result: current is conserved.Eq.(1.44) is known as the (two-terminal) Landauer
formula.

The scattering matrix is the approach of choice when a simple intuitive approach is required
to study coherent, linear transport of electrons in a nanostructures. In the presence of inelastic
scattering or transport beyond linear regime, a better approach is required as the scattering

matrix becomes unwieldly due to the large number of transport channels available.

1.1.5 Balance Equation Approach

Over the years, both classical and quantum transport theorists have studied transport phenom-
ena using innovative techniques: superoperators, Feynman diagram expansions of equilibrim
correlation functions and more recently non-equilibrium Green’s functions, path integrals as
well as Wigner distributions[7] and multi-particle density matrices. With the development of
computational capacity, Monte Carlo techniques have been employed in transport calculations.
These efforts have had great success, but also have some shortcomings. Some are formidable
to deal with accurately even within linear regime and very hard to extend beyond linear con-
duction, others involve complicated analytic continuation, etc. Calculations are lengthy and
difficult, and few of these seem to offer a simple vehicle for generating useful physical insight
into transport dynamics on a systematic basis. Most often, because of technical difficulties,
they also ignore electron-electron interaction effects which can be of vital importance.
Although the consideration of carrier-carrier (e-e) interaction introduces considerable com-
plication, physically there is a substantial simplification in the situation when e-e interactions
are large enough to induce rapid thermalization of the carriers about the drifted transport state.
This opens a quasi-analytic description of transport, which is successfully addressed by Lei-Ting
balance equation approach in developing a perturbation theory about a displaced drifted equi-
librium state. As one would expect, the results differs from those analysis which ignore the
role of e-e interactions. The quantum mechanical Lei-Ting balance equation, in the classical
limit, exactly reproduce the successful gas plasma theory (develpoed by Spitzer et al.) which
similarly cuts through the formidable difficulties of rigorous formal classical theory, particularly

with the inclusion of e-e interactions which are germane to gas plasma dynamics. The results

15



offer considerable physical insight into the dynamics of both quantum and classical transport.
The object of the present work is to provide a comprehensive description of the quantum
dynamical formulation of the Lei-Ting balance equation transport theory, clarifying approxi-
mations and to explore its advantages as a quasi-analytic approach to electron-transport|[1].
The balance equation approach allows an analytically tractable analysis of transport prob-
lems even in the non-linear regime, taking electron-electron interaction into account. As an
analytic theory, it provides physical insight beyond that provided by other methods which
require extensive numerical work. In the earlier investigations of transport, the carrier-carrier
Coulomb interactions were taken into account as static screening. On the contrary, the balance-
equation approach incorporates the dynamic effects of the carrier-carrier interactions within the

framework of the density-density correlation function ITy (¢, w).
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Chapter 2

Balance Equation Approach

2.1 Understanding Balance equations

As solving the Boltzmann transport equation for the electron-electron interaction is too difficult,
simpler approaches are often adopted when analyzing, designing, and optimizing devices. The
use of balance, or conservation, equations which are derived from the Boltzmann transport
equation is a common approach. Balance equations have a very clear physical interpretation.

For instance, the electron continuity equation|§]

on
— =-V. n— Rn 2.
5 V.F,+G R (2.1)

states that the net rate of increase of average carrier density at a specified location and time,
n(r,t), is given by the rate per unit volume at which carriers are flowing in (negative diver-
gence of the electron flux, F,) plus the 1‘atevper unit volume of electron creation, G,, ( due to
optical or avalanch generation, for example) minus the rate per unit volume at which electrons
disappear (by recombining with the holes or defects). Balance equations for the average carrier
momentum and energy density can also be formulated and expressed as continuity equations
in the form of Eq.(2.1). Such equations find wide applications in device analysis. The familiar
drift-diffusion equation, for instance, is a simplified form of the momentum balance equation. In
the drift-diffusion approach, the unknowns are the average carrier density and velocity. When

the average carrier density is required, another balance equation can be solved. Although the

17



balance equations are conceptually sraightforwad, many different sets of balance equations can

be formulated, depending upon the specific approach and the simplifying assumptions.

2.2 Center-of-mass and Relative Variables of Electron

We consider a system of N electrons under the influence of a uniform applied electric field E.
The electrons interact with each other through the Coulomb potential, and are coupled with
phonons and scattered by N; randomly distributed impurities.

The Hamiltonian of the system, for the single band effective-mass description of electrons,

can be written as[9)]

2m

2 2
Z P; Z € Z Z Z
o = . + . m e : U(I‘i — Ra) — 2 ul-VUl(ri—Rl) =€ : I‘i.E. (2.2)
7 i< 5,a %] %

Here r;and p; = —iV; are the coordinate and momentum of the ith electron with effective mass
‘m’and charge ‘e’ v(r;—Ry) denotes the potential by the [th ion at lattice site R; and w; is its
displacement from the regular equilibrim position; u(r — R,) denotes the additional scattering
potential due to an impurity at site R,which is randomly located ; and the second term on the
right hand side of Eq.(2.2) is the Coulomb interaction between electrons. The balance-equation
theory proceeds from the separation of motion of centre-of-mass (c.m.)(ie. the motion of the
system as an entity) from the relative motion of the electrons.

Denoting the centre-of-mass momentum and coordinate variables by P, R and the relative

electron momentum and coordinate variables by pj, rj, we have

P:Zpi, R:%Zri (2.3)

I
Pi = Pi — NP’ ri=r; — R. (2.4)

P, R canonically conjugate variables:

[Ro, Pg] = i6s (2.5)
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(o, B =z,y, 2), and they commute with r}, p; :
[, P] = [R,pi] = 0. (2.6)

The N relative electron momenta and coordinates so defined are not completely independent,

but subject to the constraints:

7

Zp{: 0, Zrz =0 (2.7)

and their commutation relations include a canonical 1/N term:
e . 1
[Fia, Pjg] = i0ap(dij + N (2.8)

For a macroscopiclly large N system, we make a reasonable assumption that 1/N term in
Eq.(2.8) is negligible, such that one can treat the relative momentum and coordinate as canon-
ical variables:

[ r’iCU p,jﬂ] = idaﬁ‘sij (29)

Although Eq.(2.9) is an approximation, the neglect of noncanonical 1 /N term in Eq.(2.8) does
not result in any error within the framework of balance-equation theory if the-center-of-mass

coordinate R(t) is treated classically.

In terms of the-center-of-mass variables and the relative electron variables we can express

Hamiltonian of Eq.(2.2) as

H=H:+ He+ Hpp, + He; + Hep (2.10)

2
H, = — NeE. 2.11
°= o VER (L)

1
Hy =) exc),cuo + = > ve(q)(pgp_q — N) (2.12)

k,o

th = Z qu\b:r]/\bq)\ (213)

q,\
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1 ; u
Hei = 5 Z u(q)elq‘(R R”)pq (214)
q,a
ZM (a4, Npgrae™ o, (2.15)

where H, is the centre of mass Hamiltonian, H, is the relative electron Hamiltonian, H,), is the
non-interacting phonon Hamiltonian, H,; is the electron-impurity interaction Hamiltonian, He,
is the electron-phonon interaction Hamiltonian, € is the volume of the system, and c;'w (cko)
are the creation(annihilation) operators for the relative electrons with wave-vector k, spin o,

and energy ey = k2/2m,and Pq 1s the electron density operator defined as

pq = Zpkq = Z eiq.rj = Z CL+qo_Cko-, (216)
k J o
P, = bf_ arF bqx is the phonon field operator with bL/\ and bqy being creation and annihilation
operators for phonons of wavevector q in branch A with frequency Qg», v.(q) = 7{1* is the
Coulomb potential (x is the background dielectric constant), u(q) and M(q, \) are respectively

the electron-impurity potential and the electron-phonon-matrix element in the plane wave

representation, satisfying u(q) = u*(—q) and M(q, A) = M*(—q, \).

2.3 Center of mass treated as a classical particle

Because of its enormous mass, the motion of the centre-of -mass is essentially classical, and
we can treat the c.m.-related operators classically, regarding R in H,; and Hep, as real, time-
dependent position of the center-of -mass. The relative electron system, which is composed
of a large number of interacting particles and is treated fully quantum-mechanically, does not
directly sense the electric field but is coupled to the centre-of-mass motion through the c.m.
position R(t).

Hp = Hei + H,p. (2.17)
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Employing the Hamiltonian, it is apparent that the c.m. velocity V, or the time derivative of

the c.m.position, is given by

R=—dit, B]=22 = T (2.18)

¥ P~ Nm'

e

Note that the centre-of-mass, which is accelerated by the electric field and damped by the
relative electron-phonon bath medium, is a Brownian particle due to the random force associated
with the electron-impurity and electron-phonon interactions. Therefore the c.m. velocity V is

composed of a drift part v and a fluctuation or random part 0V :
V=v+JiV. (2.19)

We denote v = (V) or (§V) = 0,with the (...) symbol understood as an average either over an
appropriate time period or over a statistical ensemble which eliminates the fluctuations. The

forces experienced by the centre of mass are obtained by calculating the time-derivative of the

c.m. momentum ‘Z—Ft’ = —={{P, {] = ~g—g, yielding
dP
— =NeE+F (2.20)
dt
with F = F,+F,, and
F,=— zz u(q)qeiq'(R_R“)pq (2.21)
q,a
F,=—i) M(q,NapgeRp, (2.22)
q,A

are frictional forces due to impurities and phonon scattering. Being quantum-mechanical oper-
ators in the relative-electron and phonon space, F,and F,, also comprise an average part and a
fluctuation part. The latter contributes a random force exerted on the center of mass. Eq.(2.20)
can be regarded as an operator force balance equation.

We can calculate the rates of change of the energies of the phonon and relative electron

system as
d , d ;
Eth = _Z[tha H] =W =— Z‘Al(q’ )‘)q(a(/)q,\)e q'qu (223)
q,A
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d - i
%He = _i[He:H} =5= _ZZM(CL /\)q(/)q/\e q.RZ(€q+k - Ek)pkq
aA k
~i S u(@)ae ™ S (equk - ek)pkq} (2.24)
q,a k
with

@ o = —ildan, Hop] = —if2 (bgr — b1 _,) (2.25)
%(pq/\ = _Z[d)q/h D ] = —WigAOgn —qA/: s

Energy balance for the electron system requires that the energy supplied per unit time by
the field E : NeE.V, matches the sum of the energy increase rate of the center of mass,
d(%N mV2) /dt, the increase rate of the relative electron internal energy, %HG , and the energy

loss rate of the electron system to the phonon system W:

dvV d
NeE.V=NmV.—+ —H, +W (2.26)
dt dt

Eq.(2.26) states the energy balance for the relative electron system. All these equations are in
operator form in the quantum number spaces of relative electrons and phonons.

The balance equations can also be derived by taking the ensemble averages of F and W
over the density matrix of the relative electron and phonon systems. The statistical average of

a dynamical variable Y at time ¢ can be evaluated in the Schrodinger picture by
(Y)=Tr{pY}. (2.27)

Here Y is the operator (possibly time dependent) representing a dynamical variable in the

Schrodinger picture and p is the density matrix satisfying the Liouville equation[10]

d
Zd—‘: = [He+th+HIt>p] (228)

subject to the initial condition at initial time Ly
P L= P, (2.29)

where we will use ty, = —oo or t, =0 as initial time.
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2.4 Initial Density matrix

As a parametrized theory, the balance-equation approach allows us to choose an initial state
to have its major features resemble, as closely as possible, the real final state, such that the
system, starting from its virtual initial state, can reach the real final state in a short evolution
process. For the present work, we assume the relative electron system as an isolated system,
will approach a thermodynamic equilibrium state with a fixed temperature T¢(t), which is
dependent on the system at time ¢.This value is then used for the initial state: 7, = T.(1).
The phonon system that has been decoupled from the electron system, can also be considered
to arrive at an equillibrium state jointly with the bath at the lattice temperature 7. This is
Justified if phonons relax faster than electrons. The initial density matrix is thus chosen as:

po: e—Hc/Tce"th/T (230)

N[

where Z is a normalization coefficient and H, is implicitly measured from the Fermi level
corresponding to a grand canonical ensemble for the relative electron system. This initial
density matrix depends on time ¢ parametrically, p, = p,,.

It should be noted that there are at least two distinct time scales involved. The motion
of the center-of-mass, the time variation of the applied electric field E(t) and the temporal
development of statistically averaged quantities such as v(t), Te(t), occur at a macroscopic
time scale, which is assumed to be much larger than the microscpic relaxation time, or the

evolution time scale of the Liouville equation.

2.5 Force- and Energy-Balance Equation to the Lowest Order
in H[
2.5.1  Density Matrix and Statistical Average to Linear Order in H,

The statistical average of the time-independent dynamical variable Y is mathematically defined

as

(Y) =Tr{pY}. (2.31)
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2

In analogy to Eq.(2.31), the statistical average of- ’ﬁﬁngfd'ep;gﬁa’eﬁt dynamical Y can be written
R TR

%
as[11]
(Y)=Tr{pt)Y ()} (2.32)
where we have defined
Y (t) = eflHet Hpn)ty o—i(He+Hyn)t (2.33)
and
p(t) = e et Hp)t jo—i(Het Hyp)t (2.34)

By differentiating Eq.(2.34), we can get the well-known Liouville’s Equation which is written

as

dp(t
29 _ (hy,00), 000 (2.35)
and subject to the initial condition
P(t) lt=—co= p, (2.36)
Now integrating Eq.(2.35), we have
t
p(t) =p, — 2/ dt{HrA1), p(t)). (2.37)

This integral equation facilitates perturbative expansion in the interaction H;. The first order

interation of Eq.(2.37) yields

i
o) = p,~i [ dtlHi(0) p,) (2.38)

The statistical average for the dynamical variable Y, defined in Eq.(2.32), thus can be written

as

(V)= (¥)o—i | (H0), Y () (2.30)

where

((-))o = Tr {pp(-)} (2.40)
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Note that p, may be dependent on time ¢.

2.6 Force Balance Equation

Taking the statistical average of Eq.(2.20) in the relative electron and phonon space to the
lowest order in H; in accordance with Eq.(2.39) and using expressions (2.14) and (2.15) for H,;

and H,,, we have

nm%v(t) =neE(t) +f; + £, (2.41)

which is written for unit volume of the system with n being the carrier number density. Here
we have set (f;); and (f,), to be zero and have identified the average rate of change of c.m.

momentum as

<‘ﬁl_1;> :nm%v(t). (2.42)

v(t) being the drift part of the c.m. velocity. The frictional forces fiand f, due to impurity

scattering and due to electron-phonon interaction respectively, are given to lowest order by

fi = —in, Zq | u(q) |? /00 dtA(q, t, t)II(q,t — t) (2.43)
q o0

f=—idal M@ P [ deaa 000501 (2.44)
QA >

where n; is the impurity density.

The correlation functions II(q, ¢ — ) and A(q, \;t — t) are defined as

H(qa == t) = —7‘9(1; - t) <[pq(t)7 p—q(t))]>0 (245)
A(qv /\; t— t/) = hzg(t - t/) <[¢q/\(t)pq(t>, (/)—q/\(t’)p—q(t/)po (246)
Here
pq(t) _ eiH"‘tpqe_iH"t _ Z ei(5q+k—5k)pkq (2.47)
k
and
<75q/\(t) — otHpnt ¢q/\e—iH,,1,,t - bq/\e—qu,\t + b;/\eiQ’q’\t (2.48)
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have been obtained by using Baker-Hausdorff identity[13], and

A(q,t,t) = expliq.(R(t) — R(t)] = exp[iq./f v(s)ds]. (2.49)

In writing the equality of Eq.(2.49), we have neglected effects due to velocity fluctuation.Eq.(2.42)
1s the time-dependent momentum (force) balance equation, or the equation of motion of the

center of mass.

2.7 Energy Balance Equation

Let us take the statistical average of the right hand side of the operator equation (2.23) in the

relative electron and phonon space to the lowest order in H; to obtain

w=(W)==3" | MaN P [ et gria st -0 (2.50)
a T
with
) d

T(a it =) = =i6(t - ) {[(Goar(O)oq 0) ¢_qA(t>p_q<t>]>0 (2.51)

and
4y = it @ ~iHynt 2.52
%(/)q)\( )=e (E(bq)\)e ; (2.52)

which can be written as

d t) — 0 b —iQqgat bT 2 _gat 2.53
E(/)q)\( ) =1 q)\( g€ - —q)\e ) ( ' )

w in Eq.(2.50) is the energy increase rate of phonon system due to electron-phonon interaction,
Le. the energy transfer rate from the electron system to the phonon system. The energy balance
equation[12] results from the statistical average of the operator equation (2.26) if we retain only
the drift part of c.m. velocity and identify <%H€> as the rate of change of relative electron
internal energy, dE,/dt = ?.(i’ii (He) :

dv d
Ev= —+ — 2.5
neB.v =nmyv.— + — E. +w (2.54)
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Using the first order perturbation expansion, Eq.(2.38), for the density matrix to calculate E,

= (He) , we find that only the p, term in Eq.(2.38) contributes, leading to
Ee =) exflex,Te) (2.55)
k,o

where
1

lexp(ex — p)/T. + 1] (2.56)

f(5k7 Te) =

is the Fermi distribution function at the electron temperature, and f is the chemical potential.
Thus we have
dFE, dT,

o— =C,—= 2.57
dt G dt ( )
with C, = 0F, /8T, as the specific heat of the relative electron system. Eliminating nmv.%‘f

by means of the force balance equation (2.42), we can write the energy balance equation as

dTe
—Ce——==v. : 2.
Ce. = f+w (2.58)

Eq.(2.54) or Eq.(2.58) are the time-dependent energy balance equation of the system.
It should be noted that the energy balance equation can also be obtained by taking the
average of operator equation (2.24) and identifying <d%He> = dE,/dt, such that

dE.

== (9. (2.59)

The balance equation thus obtained is equivalent to Eq.(2.54) for steady state transport and

for time-dependent drift motion involving negligible memory effects.
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Chapter 3

Applications of Balance Equation

Approach

In this chapter, we will apply the balance equation approach to study electron transport phe-
nomena. We will employ the force- and energy-balance equations developed in chapter (2) to
the examination of steady state dc transport in a 3D isotropic system. We take & = 1 in all the

equations that follow.

3.1 Steady-State DC Transport in a 3D System

3.1.1 Balance Equation for Steady-State Transport

In an externally applied uniform electric field, the system approaches a steady state with a
constant drift velocity vy and a contant electron temperature T, after transients die out. For

steady state transport we can take v(s) = v4 in Eq.(2.49) to obtain
t
Aq,t,t) = exp[iq./ vads) = exp [iq.vy(t — 1)) (3.1)
s

which can also be written as

A(q, t, ) = e™olt=1 (3.2)

where wg = iq.vy.
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Now using Eq.(3.2) in Eqs.(2.43), (2.44) and (2.50), we obtain

== Nalu@ [~ a-ing, - (33)
f,=—-i) ql M(q,) P/ dte™o DN (q, A\t — ¢) (3.4)
QA =9
and
w=(W)=->"|M(gA) / dte™°=ID(q, At — 1) (3.5)
aA -

Fourier transforming Eqs.(3.3),(3.4), and(3.5) followed by a change of variables i.e. replacing

(t —t) by ¢ we obtain the steady state force- and energy-balance equations:

neE+f =0 (3.6)
where f = fi+f,, with
fi=mn; Zq | u(q) |* My(q, wo) (3.8)
Q Qe +w
=2) a| M(q,\) [* (q, Qqx +wp) {n (TCM) —-n (%)J (3.9)
A e
and
Qqn Qg + wo
w2300 | M) P e s o) [ (B2) - (b0},

QA
where n(z) = ﬁ is the Bose distribution function, and I5(q, wo) is the imaginary part of the

Fourier transform of the density-density correlation function:

II(q,w) = /_'00 e“'Tl(q, t)dt (3.11)

oo

The function I(q, t), defined in 2.45, is the density-density correlation function in a thermody-
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namic equilibrium state with temperature 7., for the relative electron system described by the

Hamiltonian

H, = Zskckacka 50 ZUC (@)(pgp—q — N). (3.12)
k,o

Let’s introduce the field operators[11]

Wi, 1) = é S emiltp ey (3.13)
P
and
Yo(r,t) = é D emilerHe g (3.14)
P
The density operator is
n(r,t) = Pl (r, t), (r, t). (3.15)

The density-density correlation function II(q,t) is defined as
(g, t) = [A(r, 1), A(x;1)]. (3.16)

Using Eq.(3.15) along with (3.13)and (3.14), the density-density correlation function II(q,w)
(for a 3D single parabolic band system in the absence of the Coulomb interaction between

carriers) turns out to be

_ f(€k+ 7T6’) - f(Ek,TE)
olqw) =2 Ek+:_€k+w+i5 (3.17)

followed by Fourier transformation[14] and application of Wick’s theorem[15]. The real part

IIp1(q,w) and the Imaginary part ITp2(q,w) of this function are, respectively, given by

HOI qa = _2Zf Ek,Te [ ! - 1 } (318)

€k+q — €k T W  Exiq—Ek —w

Hop2(q,w) = QWZ (ex, Te€) — f(extq, T€)] 6 (Ekrq — €k + w). (3.19)

Changing the sum into an integral and solving for a parabolic band (i.e.ek = k%} 2m) , the real
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part gives

oi(q,w) = —% [1—<M%>2J1D|11L8L\L:E§I+
[1 _ (ﬂ B _ﬂ In | Tgf‘;;g ;} (3.20)

and shifting the momentum of the second term f(€k+q,Te) by f (e, Te), the last equation

reads
Hoz2(q,w) = 277/ ai%f(&k, Te) [0 (—€xtq+ex+w)—4 (€x — €k—q + w)]. (3.21)

For the case of a parabolic band, gy = k2 /2m, the last equation can be written as

- dk K pk B2 pk
Io2(q, w) 2m (27T)3f(5k,T€) (5 <w—2——p—> _5<%+p_+w>J

m

I

il

(3.22)

and will contain a single Fermi distribution function. We now transform to spherical coordinates

and obtain

[<<—>>J<—>

Substituting I, in Eq.(3.22) we obtain

m2T,
Hpa(q,w) = — org P (q,w) (3.24)

where

(3.25)
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For the case of a degenerate system at low temperature, we have the expression (7' = 0K)

o = {02 ()
() o - (o))

where ¢ (z) is the Heaviside unit step function, kg is the Fermi wavevector, vp = kp/m is the

Fermi velocity, e is the Fermi level from band bottom at T = 0K, and p = q/2kp, v = w/4ep.
Within the random phase approximation the density-density correlation function including

Coulomb interactions is given by

_ Ho(q,w)
I(q,w) = Tela,w) P (3.27)
where
€(q,w) =1 — ve(q)p(q, w) (3.28)

is the dielectric function. Here the factor | €(q, w) |%is the dynamical screening by carriers of the
electron-impurity potential | u(q) |?and of the electron-phonon matrix element | M (q, ) |2 .
The frictional forces f; and fy, and energy transfer rate w may be written in terms of screened

potentials

u(a)/e(q, wo) (3.29)

and

M(q, A)/e(q, Qqx + wo) (3.30)

together with the Iy function. This screening is dynamic in that the dielectric functions ap-
pearing in these equations are at the frequency wg = iq.v, or at frequency Qqx + wo, which
depend on the drift velocity v,. For an Isotropic system the total electrical resistivity p is
defined as

p=(B.va)/ (I.va) (3.31)

where

J =nevy (3.32)
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is the current density. The force balance equation (3.6) can be written as
vi. (neE+£) =0 (3.33)

or
nevg.E+ vyt =0. (3.34)

Dividing by n?e?v2 and using f = f; + f,, we have

nevgE  vq.(fi +1£,)

=0 3.35
n262v§ n%zvg ( )
which can be written as
where
p=(E.va)/(J.va), (3.37)
Vd.fi
o 3.38
pi TL2€2U§ ( )
and
vafp

The last two equations are, respectively, the resistivities due to impurity and phonon scatterings.

The energy balance equation(3.34) can also be written as
p—p5 =0 (3.40)
in terms of an equivalent resistivity related to the electron energy loss rate:

pr = w/ne??. (3.41)
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3.1.2 Weak Current Ohmic Resistivity

Let’s propose a solution to the energy balance equation(3.7) as
T. =T
Using the expression for f; from Eq.(3.8) in Eq.(3.38) we get
p= a2y W@ [ (g, w0)

which with v4.q = wg = vgqcos § = v,q,, can be written as

pi= =55 > a2 w(@) * Tha(a,wo) fwo.
q

Now we expand Ilp2(q,wo = v4q;) in a Taylor series to obtain

0
Mo2(q, vagqe) = o2(q, 0) + v4gs {—Hoz(q,m} |w=0 +--..

Ow

(3.42)

(3.43)

(3.44)

(3.45)

and also we see that with respect to w the real part of II(q,w) is even while the imaginary part

1s odd, i.e.,

o1(q, w) = o1 (q, —w)

and

Mo2(q,w) = —Ip2(q, —w).

Therefore, for w = 0, we have

o2(q, 0) = —Tlp2(q,0)

or

o2(q,0) =0

which can be used in Eq.(3.45) to obtain

0
Ho2(a, v4qz) /wo =~ {—Hw(q,w)} et «

ow
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(3.47)

(3.48)

(3.49)

(3.50)



Substituting Eq.(3.50) in Eq.(3.44)

i_

qulu ) |2 {_HOQ(Q, )J |w=0 (3.51)

n262

with

| u(q) [*=| u(q)/e(q,0) |? (3.52)

which is the screened electron-impurity potential.

Using Eq.(3.9) in Eq.(3.39) and taking T, = T, we get

-2 9 Qq)\ Qq,\ + wo
Py = mgq | M(q,A) | oz (g, Qqr + wo) [n <7) ~ 78 (T : (3.53)

in which n (%‘) -n (#) can be expressed using Taylor’s expansion as

() ()] = (5) (%) - (%)

wo , qu\
= 9 i 4 .54
Tn( T ) (3.54)

where prime ( * ) represents derivative w.r.t q* . With Eq.(3.54), (3.53) becomes

1,/ Qqn
Pp = 2 S0 | @ N P Ta(a, O { T (T‘*)J (3.55)
q,A
where we have defined ¢, = ﬂ Also, the screened electron-phonon interaction matrix element
is

| M(a, A) =] M(q, \)/e (q,Qqn) |2 . (3.56)

For the degenerate case kgT < er (and vg — 0), we have

Moa(g,w) = £H02(qyw) (3.57)
wo Ow



and
2

o2 (q, w) = _%9 (1 . (q/%p)2> w. (3.58)

s =

Using Eq.(3.58) in Eq.(3.51) and changing the sum of latter into integral as Sq= (%)3 Jodd,

we obtain
- 2epo : )
T i i B 3.59
Pi 12”371262/0 dgq” | u(q) |, (3.59)
where the result
oo 216]9
)t @0 (1= @2ee) = [ aasto) (3.60)

along with Eq.(3.57) have been used.
For the evaluation of phonon-induced resistivity at low temperature, we consider long wave-

length longitudinal acoustic phonons with a Debye-type spectrum

g = uag. (3.61)

We use Eq.(3.61) in Eq.(3.58) and obtain
Tloa( Q)~~m29<1—(/9k ?) (3.62)
029, qy — 27_“7 q/4RR USQ' My’

Now substituting Eq.(3.62) in Eq.(3.55) & using Eq.(3.60) we arrive at

mQUS 2;“[3‘ - 1 3 Q A
ot — 0) = po = gt [ dagt | W@ ) P B (T)] (3.63)

which is the Bloch-Gruneissen[16][17] formula. Assuming a deformation potential of the type
| M(q, ) *=nxgq, (3.64)
where 7) is a constant of proportionality, Eq(3.63) can also be expressed as

ppO = p*g(tF)) (365)
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where p* is a resistivity-dimension coefficient given by

. _ 16m2nk?,

= —12= .66
3m3n2e?’ (3.66)
tr =T7/OF with Or =2kp, and
1 i y5
t) = — d ; 3.67
o) =7 [ b =T} (3.67)

All of these formulae for impurity- and phonon-induced dc steady-state resistivities are known
as isothermal force-balance equation results, in contrast to those obtained from conventional

adiabatic transport theories.

3.1.3 Nonlinear Zero-Lattice-Temperature Limit

It is also interesting to discuss the zero-lattice-temperature limit. When 7" — 0, the terms with

T

is involved in these balance equations. We find that the electron temperature T, approaches a

n (E) in force- and energy-balance equations vanish and only the electron tempearture 7.

finite value 7™ which depends on the electric field and impurity resistivity. We assume M (q,A)
to be the deformation potential type, Eq.(3.64). The energy balance Eq.(3.40) can be rearranged
as

Pi = Py — Pp- (3.68)

Using the expressions for P, and p, from Eqs(3.41) & (3.39), respectively, in Eq.(3.68) we

obtain
w vy.f,
= . 3.69
B n2e2vi  n2e2y? (E:00)
Substituting the expressions for w and f, in the above Eq(3.69) we have
2 2 mQ 2 Qq + wo
pi= ey 3 O o) 1o (1= o/ 20 ) (Lo 20 (3.70)

where Eq(3.64) and (3.62) have been used to eliminate| M (q, A) [2and TIgy(q, Qqr+wp), respec-
tively. Note that we have omitted the subscript A in the above Eq(3.70) since we are dealing

with a single branch ( long wavelength acoustic phonons), substituted Qq = vsq, and consider-
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ing v; < vp. Changing the sum into integral, letting z = cos 6 & %1 = t1_“,/,-7 Eq(3.70) simplifies

to

9l 1 2
P _3 <v_> / dy/ day’ (Hﬁz) n {i (wﬂxﬂ. (3.71)
p* 2 Vd 0 —F Vs tr Us

Eq(3.53) can be expressed as

- vg.q Qqx +wo
= 2 () 1M P Tt ) [-n (220Y]
q,A

where we have used the zero-lattice temperature limit as n( %) — 0 and T, — T*. Elim-
inating Ips(q, 2qx +wo) from the above expression by means of Eq(3.62) and following the

usual procedure we followed to derive Eq.(3.71), we get

1 1
i . <E> / dy/ dxytz (1 + Ez) n {i (1 + %m>} . (3.73)
p* 2 \va/ Jo -1 Vs tr Vs

For ¢ <1, the integrations in Eqs.(3.71) and (3.73) are easily carried out, yielding

T+ 15 2
£5, = [e J - 0.0134’)%’M)2 (3.74)
F P {1 - (Ud/vsﬂ
and
’0,1 . 4/)“) (Ud/vs)z
[1 — (vg/vs) J
Now
E  (pp+p;)nevy
e ‘p*nevs ! (3.76)

Since the impurity resistivity p, is almost equal to its weak field value P, SO the last expression

becomes

K pp P\ Vd
== (2l )l 5.
12 <p* ! p*) Us S
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Using (3.75) in (3.77), the electric field can be expressed as

2
L _fotay 4 (afve) (3.78)

B oo, 3 [1 (o /vs)z}

5712
where E* = p*nev;. Eliminating the factor (vgq/vs)? / {1 - (vd/vs)z} from Eq.(3.74) and using
it in Eq.(3.75), we have

" -1/5 ; pN\2/5
gF = 0.416 (%’) <E—> (3.79)
and similarly )
%*; _ g;; <E£> _ (3.80)
10

Eq(3.79) is in agreement with the result obtained by Arai[18]. It should be noted that Eqs.(3.79)
and (3.80) are valid only in a narrow electric field range, depending on the impurity resistivity
Lo /p*, but they are completely invalid when p,, = 0. The calculated results of % and the
phonon-induced resistivity p,/p* have been plotted in Figure (3.1) and Figure (3.2), respectively,

as functions of the electric field for different values of impurity scattering.
3.1.4 Nondegenerate (Maxwell-Boltzmann) Case - Acoustic Phonon Scat-
tering

Many experimental investigations have been carried out with nondegenerate semiconductors,
in which carriers in thermal equilibrium obey Maxwell-Boltzmann distribution even at low

temperatures. In this case the chemical potential is negative and | x| /T > 1, such that the
function P»(q,w) (Eq.(3.25)) reduces to

2 2
1 q mw 1 q  mw
— = - — —exp |—= -+ — : 3.81
2mT, <2 q ) } = 2mTe, (2 * q ) J} ( )

We assume that acoustic phonons are the only scatterers and M (q) is of the deformation

Py(q,w) = e IHl/Te {GXP

potential type given by Eq.(3.64). For convenience, we introduce a temperature-dimension

parameter

05 = mu? (3.82)
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Figure 3-1: The electron temperature T* in the limit 7' — 0 is shown as a function of di-
mensionless electric field F / E* for several impurity resistivities in a degenarate electron system
with acoustic phonon and impurity scatterings. Here, p;o/p* = 0.01, 0.03 and 0.1.

/
20
20 u . —
e
. i0 o (
15t s //
= p |
& X 10 [ p* =01 // |
_— -// -,
5 / !
= -_P—‘—-"_'___””__ — -
a ..a::"_:%—:: — _— _
00 01 02 03 B, DS
E
B

Figure 3-2: The dimensionless phonon-induced resistivity p,/p* is shown as a function of dimen-
sionless electric field £/FE* in the limit 7' — 0 for several Impurity resistivities in a degenarate
electron system with acoustic phonon and impurity scatterings. Here, p;y/p* = 001, 0.03 and
0.1, while, p, stands for p.
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which is about 1K for v, = 5 x loscm/s and the electron’s effective mass m = 0.6m¢(m, is the
free-electron mass), and denote a =T, /T and t; = T/O;. The energy balance equation (3.40)

can be written in the form of Eq.(3.69) which is

w vg.f,
. n _ 3.83
Pi n262v3 7’L262'U§ ( )

We use the values of w and £, from Eqs.(3.10) and (3.9), respectively, in Eq(3.83). Following
the same procedure (as we did earlier to derieve the expressions (3.74) and (3.75)), but, now
using Eq.(3.24) instead of Eq.(3.50) for the density-density correlation function. The solution
to the energy balance equation thus obtained for ats > 1: to the lowest order of the power

expansion in (at,)™!, is

2 3.3
Vg 6a°t
ey - s .84
(US) S (ayts) ] (3.84)
where
S (o ) = / e_y2/2o‘tsy4 coth <Zy—) dy. (3.85)
0 s

With coth (%) ~ 1 for a/ts > 1, Eq.(3.85) becomes
S (a, ts) =~ 3% (ats)5/2 . (3.86)
Using Eq.(3.86) in (3.84) we can write,

4
= (Y
= <7Js> ; (3.87)

The dimensionless resistivity Pp/Ppo for ats > 1 can be expressed as

Pp S (o ts)

=Sl S L A 3L
ppO 2a2/398(t5) ( 88)
where
T -1
gs(ts) = . exp | — ot [_n (Qy/ts)] dy, (3-89)
which, for ¢4 > 1, reduces to
gs(ts) ~ t2. (3.90)
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Figure 3-3: The dimensionless phonon-induced resistivity p,/p,q is shown as a function of /v,
at several lattice temperatures. The scattering is solely because of acoustic phonons, i.e., p = Pp-

Substituting the expressions of S (o, %) and g, (ts) from Eqgs.(3.86) & (3.90), respectively,
the expression for p,/p (3.88) becomes,

pp «
—— ~1.88——/, (3.91)
Pro 13/

which can be combined with the expression of a to obtain a relationship between o = T, /T

and the electric field E = ppnevy

T TN\Y3 7 p\4/5
5 o

which is valid for ¢/©; > 1 and E/Fy > 1. Here Ey = PpoT€Vs = Vs/lg, Jio being the
carrier mobility in the zero-field limit.Both the temperature ratio 7, /T and the dimensionless
resistivity have been plotted as functions of 2 in Figures(3.2) and (3.3), respectively. The

result, Eq.(3.92), differs from the result of the carrier temperature model analysis obtained

42



b ;-
12 —_— = 10 / /
10} s
— !5 =20 .',."
gl / N
/ /
L] e 2, 240 f‘ s
B B P 3 / /S ]
.-‘f
af | S S ]
2 /” e ]
P
0 St il
. e
0 1 2 3 4 5
1‘d
L3

Figure 3-4: The temperature ratio T,/T is shown as a function of vq/vs at several lattice
temperatures.

by Seeger[19]. The latter predicts a linear dependence of T, /T on the electric field with a

temperature-independent coefficient.

3.1.5 Optic Phonon Scattering

Now we discuss an interesting case in which the optic phonon scattering dominates. As is usually
done in discussing optic-phonon scattering, we employ the Einstein model for the optic phonon
spectrum: Qgy = €, , and assume | ﬁ(-q,—/\) |2 to be a constant (nonpolar optic deformation
potential).

In describing optic phonon scattering it is convenient to introduce temperature and velocity

parameters (2, and v,, respectively,defined by

mv;f =1Q,, (3.93)
where m is the effective mass of the charge carriers. Also, denote

t, =T/, . (3.94)
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Let’s define the matrix element of electron-nonploar optic phonon interaction[20]

D2

il 3.95
50 4 (3.95)

| M(q, ) =

where D is the shift of the band edge per unit relative displacement of the two sublattices
relative to the optical mode and d is the mass density of the lattice.
The electric resistivity p and the equivalent resistivity p,, due to optic phonon scattering,

respectively, are

o = o () o (o) ) et
x[n(%})——n(g%%¥1>}}. (3.96)

and
v \2 oo q q 1
2 Uy 0 mug mug ) J_4
Qo wo + Qo
X [n <T> —-n <%Q’T >J } (3.97)
where

mSy2 D2

7 = Sridnie (3.98)

Assuming the optic phonons to be the dominent scatterers, the energy-balance equation will

be the same as Eq.(3.40)

p—pp=0 (3.99)

The important feature of optic-phonon scattering is the saturation of the current density at

high electric fields. That is, the solution of the energy-balance equation exists only when U<
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v,, with a saturation maximum v,,. We examine the asymptotic behavior of the energy-balance
equation at large atg, to determine the saturation value of the drift velocity. To the leading
order of its expansion in (atg)'l, the energy-balance equation yields

2 o =1
v, K, (1/2aty) 1
-] =3|12—- ——F— tanh [ — 3.100
<v ) 5 [ atoKr (1/2at)| 7 \ 26 (0]

0

where K (z) and K (z) are the modified Bessel functions and their derivatives. The saturation

value v, can be obtained by letting aty — oo in Eq (3.100), whence

2
Um, 3 1
m) = Ztanh | — 101
<v0> 3 <2t0> (3.101)

which is temperature dependent, having a maximum at v, = 0.866vy. The velocity ratio
Z—;’ as a function of T, /T can be obtained from Eq.(3.100) and has been plotted in Figure
(3.5). In the limit £ — oo, the above result.(3.100) is the same as the one obtained from
the Boltzmann equation. It is also consistent with the result of Thornber and Feynman[21] in
regard to saturation at high field. Figure (3.5) shows the electron temperature calculated as a

function of drift velocity for the case of pure nonpolar optic phonon scattering.

3.1.6

3.1.7 Electron Cooling

One of the most interesting consequences of the force- and energy-balance equations is the
possible cooling of the relative electrons, in that the electron temperature T, may be lower than
the lattice temperature 7' in the presence of a finite drift vy. Such a lowering of the electron
temperature below the lattice temperature occurs in low-impurity samples. At low lattice
temperature, when acoustic phonons dominate the scattering, the maximum cooling occurs at
a current density for which the electron drift velocity is near the sound velocity. In this case,
cooling is most likely to occur at much higher drift velocities in the range vg = 0.3 — 0.52p.
The problem of the electron cooling was further examined in GaAs /AlGaAs systems[22]. It was

found that in these selectively high doped high-mobility systems, in which polar optic phonon
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g-integration region. Therefore, the contribution from very large w should be equivalent to that
without screening. This is a high-field descreening effect.

The other dynamic screening effect comes from plasmon contributions. It is seen from the
RPA expression for Ilps(q,w), Eq(3.27), that significant contribution to the frictional forces
and energy transfer rate may occur in the region where both (1 — ve(q)Ip1(q,w)] and Mya(q,w)
nearly vanish, the region of the plasmon excitation. This effect on dc steady state transport is
significant in the impurity-induced resistivity at low temperature for a degenerate 3D system

22].

3.2 Summary and Results

In chapter(1), both classical and quantum mechanical approaches to electron transport in semi-
conductors are presented. It is realized that in any realistic study of electron transport, electron-
electron interactions need to be taken into account in order to explain a number of experimental
results. Lei-Ting balance equation approach[l] allows us to include the effects of interactions
between electrons in an analytically tractable manner. At the end of Chapter (1) Lei-Ting
balance equation approach was introduced, which is the main focus of this thesis.

In chapter(2), the basic formalism behind the balance equation approach is introduced. This
approach to electronic transport is suitable for systems where electron-electron interaction,
electron-phonon interaction and electron-impurity scattering need to be considered. As the
starting point of this method, the center-of-mass variables were separated from the relative
variables of the electrons in the Hamiltonain. This separation allowed us to separate the thermal
motion of the electron system from its drift motion. The fact that the electric field acts only
on the center-of-mass and the relative electrons were coupled with the center-of-mass and with
phonons only via the electron-impurity and electron-phonon interaction made it possible to
introduce an electron temperature 7. for the nonequilibrium electron system, which was in a
steady transport state in the presence of an electric field, as a measurement of its internal energy.
This temperature (T,) was defined as the thermodynamic temperature of an isolated system,
which was obtained form the electrons in relative coordinates by turning off the electron-phonon

and electron-impurity interactions after the system had reached the steady state. Thus, these
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decoupled electrons and phonons had different temperatures(23] (T, and 7", respectively), and
this was used as the initial condition of the density matrix describing relative electrons and
phonons. Unlike the conventional Boltzmann theory of phonon-induced resistivity where the
phonon system is assumed to be in an equilibrium state, the phonon temperture 7' (which is
a measure of its internal energy) can be determined in the same way as we did for relative
electrons. To the first order of electron-impurity and electron-phonon interaction, the solution
of the Liouville equation for the density matrix was obtained and the force- and energy-balance
equations were derived.

In chapter(3), we discussed the applications of the balance equation approach. There, we
performed the calculations for an isotropic electron system with parabolic band, assuming the
simplest phonon dispersion and electron-phonon matrix elements. For convenience, we pre-
sented the results only for the systems with fixed carrier density n. They can be easily modified
to be applicable to, for example, semiconductors where the carrier density is temperature depen-
dent, if the temperature dependence of the carrier density n(7%) is included in the calculation.

Our first two plots (Figure (3.1) and Figure (3.2)) show the behaviour of the electron temper-
ature 7, and phonon resistivity Pp, respectively, as functions of the dimensionless electric field
E/E* for several impurity resistivities in a degenerate electron system with acoustic phonons
and impurity scatterings. We take pio/p* = 0.01, 0.03 and 0.1. We see that the electron tem-
perature T, /O varies as (F/E*)? which initially increases rapidly then tends to move towards
saturation (tends to be uniform). It should be so because as the electric field increases, the
electron temperature increases rapidly, as expected. While, initially the phonon resistivity re-
mains almost constant for low electric field but surges at once as the electric field is increased
which is because of the fact that the electric field accelerates the electrons thereby gaining
energy which increases the phonon resistivity (energy- and momentum-trasfer occur because of
electron-phonon interaction).

Figure (3.3) shows that the phonon-induced resistivity ratio Pp/ Ppo Which has been plotted
against vq/vs, increases very rapidly (with Pp/ Ppo ~.(v4/vs)*). The temperature ratio T./T
plotted against the same function (vq/vs); shows the same behavior i.e., T, /T ~ (vy /v5)4. This
is illustrated in Figure (3.4). Which means that the acoustic phonon scattering causes both the

electron temperature and phonon-induced resistivity to increase rapidly as the drift velocity of

48



electrons increases.

Figure (3.5) reflects the behavior of v,/ v, when plotted against T, /7", for the case of optic
phonons. For small fields, i.e., for small electron temperature T, the drift velocity increases
rapidly in the absence of optic phonons (and dilute impurities affects very little). Once optic
phonons appear, for large fields and thus large T, they resist the electron motion so the drift
velocity tends to get a saturation value. This fact that drift velocity saturation at large fields is
consistent with the result of Thornber and Feynman[21]. They quantum-mechanically analyze
the expectation value of the steady state velocity acquired by an electron interacting with
the longitudinal optic phonons of polar crystals in a finite electric field for arbitrary coupling
strength, field strength, and temperature. They present numerical calculations which show a
decreasing rate of energy loss with velocity for very fast electrons. They conclude that optic
phonon scattering can indeed produce the high rate of energy loss that is present in tunnel-

cathode structures.
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