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ABSTRACT

The emerging field of nano-electro-mechanical systems (NEMS), in which the modes of a
nanomechanical oscillator play the role of an active device, is receiving much attention
due to its technological importance. The characteristic component that gives the name to
these devices is an oscillator of nanometer size coupled to the electrons on the dot that
transfer electrons one-by-one between a source and a drain lead. From a fundamental
point of view, it is important to understand the interplay between the electronic transport
and the nanomechanical motion of the oscillator quantum mechanically.

In this thesis, we describe a formalism for calculating dc current-voltage characteristics of
nanostructures connected between two leads taking into account the interaction inside the
device. The method is based on nonequilibrium Green's functions (NEGF) techniques and
a Meir-Wingreen type formula for the current through an interacting region. We discuss
the quantum transport of electrons through a resonant tunnel junction coupled to a
nanomechanical oscillator at zero temperature. By using the Green's-function technique,
we calculate the transport properties of electrons through a single dot strongly coupled to
a single oscillator. In addition to the main resonant peak of electrons on the dot, we find
satellite peaks due to the creation of phonons. These satellite peaks become sharper and
more significant with increasing coupling strength between the electrons and the

oscillator.
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Chapter 1

Introduction and Background

1.1 Introduction: Electronic Transport in Nanostructure

Electrical conductance of a macroscopic object is described by the well known Ohm’s law. The
conductance (G) of a conductor is proportional to its eross-sectional area (A) and inversely
proportional to its length (L)

G=— (1.1)

Here o is the conductivity of the conductor, which depends on the charge carrier density and
mean free path.

As the conductor gets smaller, several effects that are negligible in a macroscopic conductor
become increasingly important. In very small objects such as nanostructures and molecules,
electron transport usually does not follow Ohm'’s law. There are several reasons why Ohm’s law
fails at such exceedingly small scale. First, the size is smaller than the mean free path, which
is the distance traveled by an electron before its initial momentum is destroyed. Thus electron
transport is not a diffusive process as described by Ohm'’s law. Instead, it is in a ballistic con-
ducting regime, where charge carriers experience no scattering within the conductor. Second,
the contact between macroscopic electrodes and the nanoscale conductor strongly affects the
over all conductance, depending on the property of the contact, the overall transport hehavior
can be very different and hence understanding the nature of the contact is extremely impor-

tant. Third, a nanoscale object has a large charge addition energy and a quantized excitation



spectrum. Both of these strongly affect electron transport especially at low temperature.
Studying transport behavior of these extremely small objects is a very interesting scientific
problem, and it also has many practical implications, especially to the micro electronic industry.
In recent years, studying electron transport in nanoscale objects has become one of the most ac-
tive fields in condensed matter physics and has also attracted huge research efforts from various
other disciplines of science. To date, many nanoscale systems have been investigated, includ-
ing solid-state nanostructures as well chemical nanostructures such as carbon nanotubes and
nanocrystals. Transport measurements on such system have displayed exciting new behavior

that cannot be explained within the framework of conventional macroscopic theory [36].

1.2 Theoretical Approaches

A widely used approach to describe electrical transport through nanoscale systems is the
Landauer-Buttiker formalism [21, 22, 23]. Within this framework, the applied voltage drops
entirely at the contacts and not within the wire. The Joule dissipation associated with this
resistance is assumed to take place far away from the contact, where electrons and holes relax to
the Fermi level of the electrodes. This picture is correct for small voltages, and this allows only
very small currents. Going beyond, one can use the Kubo formalism [10, 13, 20] to include many
body effects. This approach is limited to the linear order in the response. Another approach
to transport, especially in the weak coupling regime, where the Coulomb interaction plays an
important role [24, 25], makes use of the rate equation to obtain the device currents. In this
thesis, we study transport in a regime where we can exclude the presence of charging effects, as
we do not consider double occupancy of the electronic levels of the quantum dot. We describe
our system within the nonequilibrium Green function formalism (NEGF) [4, 5, 8, 10, 13]. This
theory provides a microscopic description for a quantum system out of equilibrium including
interactions. It combines quantum dynamics with a statistical description of the interactions.
The first approaches within this formalism to calculate transport with an electron-phonon in-
teraction go back to Caroli et al [1, 2, 3]. With the realization of single molecular experiments,
this topic has gained great deal of intefest (26, 37, 38, 39]. An important development in this

regard was the derivation of an expression for the nonequilibrium current through an interacting



region by Wingreen et al. [6, 7, §].

1.3 Partition Scheme

An approach to the quantum transport problem has been suggested by Caroli et al. {1; 2, 3]
who state: “It is usually considered that a description of the system as a whole does not permit
the calculation of the current”. Their approach is based on a fictitious partition where the left
and right leads are treated as two isolated subsystems in the remote past. Then, one can fix a
chemical potential 4, and a temperature B! for each lead, & = L,R. In this picture the initial
density matrix is given by p = exp(—B(Hy, — pu, Ny, exp|—Lp(Hp — krIVR))|, where Hy, g and
ltr,r now refer to the isolated L, R lead. The current will flow through the system once the
contacts between the device and the leads have been established. Hence, the time-dependent
perturbation is a lead-device hopping rather than a local one-particle level-shift. Since the
device is a mesoscopic object, it is reasonable to assume that the hopping perturbation does not
alter the thermal equilibrium of the left and right charge reservoir and that a non-equilibrium
steady state will eventually be reached. This argument is very strong and remains valid even
for noninteracting leads. Actually, the partitioned approach by Caroli et al. was originally
applied to a tight-binding model describing a metal-insulator-metal tunneling junction and
then extended to the case of free electrons subjected to an arbitrary one-body potential. This
extension was questioned hy Feuchtwang; the controversy was about the appropriate choice
of boundary conditions for the uncontacted-system Green functions. In later years the non-
equilibrium Green function techniques in the partitioned approach framework were mainly
applied to investigate steady-state situations. An important breakthrough in time-dependent
non-equilibrium transport was achieved by Wingreen et al (6, 7, 8]. Still in the framework of
the partitioned approach, they derived an expression for the fully nonlinear, time-dependent
current in terms of the Green functions of the mesoscopic region (this embedding procedure
holds only for noninteracting leads). Under the physical assumption that the initial correlations

are washed out in the long-time limit, their formula is well suited to study the response to



external time-dependent voltages and contacts.

right lead
1 I

left l‘f}i“’[ mesoscopic svstem
M. 4,

Basic setup of a transport experiment.

1.4 Outline

We start with the definition of the Green’s function in the Heisenberg picture and transform
it into the interaction picture. Therehy, we introduce the notation of contour ordered Green’s
functions. By using formulation of the nonequilibrium theory based on the work of Keldysh
and Langreth [4, 5, 14, 27], we derive some lmportant quantities such as the self-energy, which
are useful for the derivation of current.

In chapter 3, we derive an exact formula for time-dependent current through the region of
interacting electrons coupled to two multi channel leads where the electrons are not interacting.
The current is then written in terms of local Green's functions. The general result is then
examined in several special cases:

1) We Determine the time independent current. from it.

2) It is shown that in the steady state situation for the non interacting region the current
is conserved,

3) We derive an exact solution for arbitrary time dependence in a single non interacting
level.

In chapter 3 we discuss our model of electrical tunnel junction through a quantum dot cou-



pled to an oscillator, where we have introduced non perturbatively electron phonon interaction

ancl strong dissipation inside system such as when our electron leave the dot-oscillator system

then our oscillator comes back to the ground state.



Chapter 2

Nonequilibrium Green’s functions:

Formalism

In this chapter, we introduce the basic concepts of the nonequilibrium Green function formalism
[5, 8, 9, 10, 13, 18]. The nonequilibrium formulation is needed because the system under
consideration, a nanostructure between two leads at different chemical potentials, is in a steady
state and not in an equilibrium situation, We give the definitions of retarded, advanced, lesser,
and greater Green functions and consider some simple examples [34].We also introduce a very
important concept of the Schwinger-Keldysh closed-time contour [4, 5, 14, 27, 28], and define
contour Green functions. We introduce a general model: two leads, right (R) and left (L) and
a single nanostructure such as a quantum dot. We then briefly describe the basic calculations
of the time-independent retarded and advanced Green’s function and the corresponding self-
energy for this model. We move to introduce Langreth’s theorem [35] and apply it to derive
the time-independent lesser Green’s function or the density matrix using the standard Dyson’s
equation. The expression of the density matrix is equivalent to the Keldysh non-equilibrium
Green’s function result. This chapter is somewhat technical, but we need these definitions in

the chapters to follow.
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2.1 Time Ordered Series

Let us consider the full Hamiltonian H(t) as the sum of a free-particle time independent part.
Hy and (possibly time-dependent) perturbation V() [10, 20] (note that this perturbation may
not be necessarily small)

H(t) = Hy + V(1) (2.1)

H(t) is in the Schrodinger picture. Let U s be the solution of the time dependent Schrodinger
equation then our task is to solve the equation

id] U,(t) >

= Hs(t) [ Us(t) > -

j o]
[N]
~—

We can solve formally by introducing the unitary time evolution operator Ug such that
| Ws(t) >= Us(t, to) | Ty(to) > (2.3)

where tp is arbitrary, and in the time-independent problem one can choose top = 0. In general,
it is a much better idea taking Hg(t) which depends on time, with the condition that for ¢ < to,
V' = 0.Assume that the interaction is added very slowly, starting from a time t — ¢y, when the

Hamiltonian was just Hy and everything was easy. From Eq. (2.3) and Eq. (2.2)
. d
1= Us(tto) | Ws(to) >= Hs(t)Us(t, 10) | Us(te) > . (2.4)
Since | W4(tp) > is arbitrary we find that,
. d ,
i Us(t to) = Hs(t)Us(1, to). (2.5)

The solution of the above equation is:
it
Us(tyio) = Texp(~i | iy () (2.6)
to

Here Texp is a conventional notation that means nothing but the exponential series of time-

ordered products.



In the Heisenberg picture

<A(l) >=< Uy | Ag(t) | Oy > (2.7)

where by definition

| Uy >=| Ug(ty) > . (2.8)

So,

b
T
Il

UL(t, to) As(t)Us (&, to)

I

to ol
Texp(—i/ diyHs(11)) As()T exp(—i | dtyHs(t:)
4

J by

’ o
~ To(exp(—i / dt, Hs(t1)) As(2)) (2.9)

where C' is an oriented path that goes from ty to t at which the operator Ag(t) acts, and

subsequent propagating from t to tg

[U:. < .
'+
@ ~ .
fy ; Yoo 2
AS
4

Figure 2-1: aj. A contour on the complex time z plane far obtaining <Alt)> from a single
particle Schrodinger picture evolution bl The Keldyzh contour

The evolution operator satisfies the group property U(t,¢1)U(t1,t2) = U(t, ty); hence the
path can be deformed freely as long as it starts and ends at top and goes through t. In time-
dependent problems, the most common contour is the Keldysh one from #y to ¢ — +oo and
back to tg;there are an ascending or positive branch and a descending or negative branch, and

a physical time can be taken on any of the two. We write t+ and t_ the times taken on the

10



ascending and descending branch respectively;

Now we introduce the Interaction Picture in which the operators evolve only with Hy
Ap(t) = etflot gge—iHot (2.10)
while the wave function is defined by
W, (t) = ot wg(to). (2.11)
By substituting W,(t) in the Schrodinger equation we find that

() = Vi) w0 (2.12)

which is like Schrodinger equation without the obvious part of the dynamics. The evolution

operator in the interaction picture from an arbitrary time
Wy(t) = U (t,7)¥;(T) (2.13)

and

Z'ditU[(t,T) ZV](t)U[<t,T). (214)

The solution
t

Ur(t, to) = Texp(—i/‘dtl‘/j(tl)) (2.15)

to

is at the basis of all perturbation theory. In the Heisenberg picture,
Ap(t) = Ul(t, 1) As()U; (¢, k) (2.16)

Having succeeded in writing Heisenberg operator in terms of interaction ones, we can expand

them in series of V} .

11



2.2 Retarded (G#) and Advanced (G*#) functions

Retarded Green function for fermions is defined as
GRy(t1.ta) = —i0(ts — 12) < [ea(t1), ch(ta)]+ > (2.17)

where ¢,(t1)and c%(tz) are creation and annihilation time-dependent (Heisenberg) operators,
[¢,d]. = cd + dc is the anti-commutator, < .. > denotes averaging over the equilibrium state.
We use o, §, ... to denote single-particle quantum states.

The advanced Green's function for fermions is defined as
GagltL, te) = i0(t2 — t1) < [ealts), ch(t2)]4 > . (2.18)

Retarded and advanced functions for bosons can be defined as,

Gfﬂ(tj,tg) = —if(t) —ta) < [(Lm(ll),ag({‘,g)]_ > (2.19)
Ghaltr ta) = i0(ta ~ 1) < [aa(tr), aly(ta)]~ > (2.20)
where a(t), (:.L(t) are creation and annihilation boson operators, |a,b|- = ab — ba is the com-

mutator.
Free-particle retarded function for fermions: Now consider the simplest possible example ~
retarded Green function for free particles (fermions).

The free-particle Hamiltonian has the same form for either Schrodinger or Heisenberg op-

erators:
H=Ho=Y cachca =) each(t)ea(t) (2.21)
(o3 [a}
If we assume ty =0
cL(t)c,_,(t) _ e“‘”czye‘”“eimcne_iH’
_ eiH"chae_””
-



where we have used the property that c};ca commutes with H. Now we use the equation of

motion technique to determine the time evolution of the operator c,(t) :

deq(t) L
t Zt = [ca(t), H]- = ;Eﬂ[cﬂ(t)»cﬁch
= Ze (caches — chese )
3\ Crx 33 BC3Ca
A
= ZG'(C ches + che cg)
A\Calpla Blatp
B
- to
= Z Eg(co.cﬁ + ezca)ep
8
= Z €3dapcp
B
€ala(t) (2.22)
So the Heisenberg operator ca(t) for free fermions can be expressed as
Calt) = e“““"cﬂ(O), ch(t) = e‘ie‘-"'cé(()). (2.23)
If we take ty # 0, then Heisenberg operators for free fermions are
Calt) = elt=0ley (1), el (1) = efeali=to) gt (1) (2.24)
but the commutator relation in both case is
< ealtr), ch(ta)]y >=< calti)eh(ta) + cfy(ta)ca(ty) >
= etalta=to) ,—ica(ly—1y) & C,,,CL +C;CD‘ >
= e ali=hlg (2.25)
Therefore
Gla(ty, ta) = —if(t, — tg)e~Hali=ta)g o (2.26)
Similarly,
Glgltr,t9) = ib(ty — ty)e~iealti=i)5 (2.27)

13



We define Fourier transform over time difference (t1 — tg) as
oo o
GR(e) = / Gty — to)e HeHOt—ta)gry) _ 4,y (2.28)
J0

where we add infinitely small positive complex part to € to make this integral well defined at

the upper limit. Thus,

(5 .
Alg)es — 28 2.29
Gas(e) € — €q + 10 (2:29)

Likewise,

a1 ) )
G4 (e) = / GA(ty — ty)e™ 0=t gy 49
—00

with the result

: )

Now we introduce a useful combination of retarded and advanced functions known as the spectral

or spectral weight function

Aap(€) = i(Gga(e) — Gaa(e)). (2.31)
Since GA(e) = (G"(€))* this implies Aqple) = —2Im Gf‘ﬁ(e). For free fermions the spectral
function is
J
Aag(€) = =2Im(—=2L ) = 2r5(c — €4)6 5. (2.32)
€ — €, — 40 '

Further, the spectral function has a special property

e de .
/ Aaﬁ(ﬁ)% = Jag. (2.33)

2.3  Lesser (G<) and Greater (G™) functions

The lesser and greater Green function are defined as:

For Fermions

Gopltita) = i< cli(ta)ea(ts) > (2.34)

Goaaltita) = =i < calty)ch(ty) > (2.35)

14



For bosons

Gapltite) = i <ali(ta)aa(ts) >

Gasltita) = —i<aa(t))al(tz) >

The origin and utility of these Green functions is apparent if we consider a Green function
which is the central element in equilibrium theory which can be calculated by diagrammatic

techniques. This is the time-ordered Green function defined by

Gap(ty, ta) = =i < T(caltr)ch(ts)) > . (2.36)
It can be expressed as

; f ; — > ;
—1 < cq(ty)c (tg) > if bt >y, = G (tl,tg) =G2 (tl, ta)
Gapl(t1, tg) = , =(t1)e = w . (2.37a)
i< cglta)ea(ty) > ity < to, = Gas(tr, te) = GSa(t, ta)
here additional negative sign appears on account of interchanging of fermionic creation and

annihilation operators.Lesser means that ty < ta. From the definitions it is clear that the

retarded function can be obtained from lesser and greater functions
Gl(ti,ta) = 0(t; — t2)[Gos(t1, ta) — Gyt 1)) (2.38)
Free-particle lesser function Jor fermions:Lesser function is

Gosltits) = 1< cl(ta)ca(ts) >=qemitati+icn ey ¥

= deTieelitiata f(e V6,4, (2.39)

The lesser function is proportional to the distribution function, in equilibrium this is the Fermi

distribution function

1
J(€a) =T (2.40)

15



Now we define the Fourier-transform for lesser function
oo . . .
G<(€) - / G<(T>e'z(e+01.(31.gnr))rd7_‘
)

note that here we use Oisign(7) for convergence.

Applying this transformation we obtain,

. m . . .
Gople) = '];f(eﬂ)(s(vﬁ/ el(eta+0ilsignT))T 4.
W — 00

= 2mif(ea)d(e — €a)bap. (2.41)
By comparing Eq. (2.32) and Eq. (2.41) we get

Giple) = if(ca)dap(e)
~flea)(Gha(e) — Gg(e)). (2.42)

I

For free fermion greater function

Giﬂ(e) = =2mi(1 — f(€a))d(e — €a)0ap = —i(1 — J(ea))Aaple). (2.43)

f(€a) describes the thermal occupation of the states.So in the fermionic case G< contains infor-
mation about the occupied particles(electrons) and G about the unoccupied states (holes). In
the nonequilibrium case the spectral density and the distribution function have to be calculated.

By subtracting Eq. (2.42) and Eq. (2.43) and substitute the vale of A(,H(e‘) we get
Gaa(€) — Go(e) = i(Ghy(e) — Gis(e)) (2.44)

2.4 Contour-Ordered Green Function

Now we will express the Green functions in the interaction representation. Consider, for exam-

ple, the lesser function

Gaplt,te) =i < chta)ea(tr) >=1i < O | ch(ta)ea(tr) | U7 >, (

no
KN
(w7

16



c-operators here are Heisenberg operators and they should be replaced by operators ¢/ (t) = c(t)

in the interaction representation:

Gus(tita) = < Ul(ta, to)el(t2)Us(t2, 1)UL (b1, to)ealt) Ui (b1, t0) >

= < Uj(to, ta)ch(t)Us(ta, t1)ea(t)Us (b1, 1) > (2.46)

It would still be cumbersome to expand the three Uy factors, but we can do with just one

expansion, since for each operator A

Au(t) = ULt to)A(8)UL(t to)

0 s
= Texp(=i [ dnVi0) AT oxpli [ anvie))
Jitg Jly
v

Tc(exp(—i/ dt1Vi(t1))A(t)) (2.47)

Jig

where C is any oriented path in complex time through ¢y and t, using the generalized time-

ordering T¢ along C

e
e — — >R (L)
“eth *_/ t b

FI3.2.2 A contour an the complex time t plane for chtaining < Ajt) from a single

particle interaction evolution picture

Note that A;(t) is under the action of T¢: that places it appropriately. In a similar way, we

17



can read from left to right GSalta,te) =i < c};([g)ca(tl) > as one story: the system starts at
lo — —o0, evolves to t1, is acted on by cq, then evolves to receive the action of f at time iy
and eventually it evolves back to to- Physically, 5 can be before or after t1. In this story, we
meet ¢! after ¢ because G< is defined with ¢! on the left of c¢. Thus along the path C = C,U Cy,

t precedes t', we write t < t’ , and

Lm{ti '
\

k}__’y*[u't}

Fizure 2.3 The contour C for g on the t planewith t« .t Note C can he analvzed a: a

two-step path C=CLCy. €} starts from to and returns there after visiting t. and Co starts
from tg and returns there after visiting t’

t
G=(t1,13) = < {T(.:'(GXP(—'L'/ dtyVi(ty))e ())}{TG(GXP("?/ dtyVi(ty))e(t)) > (2.48)

to J by

I

< Te(exp(—i /C dtlvl(tl))cy(t)cl(t) > (2.49)

Because of the group property, the contour C' is largely arbitrary. It can go back to to between
t and #' any number of times, including 0. The terms arising in the series development of the

operators are ordered automatically by T with earlier times (on C) to the right. Moreover,

G” (1, t2) =< To(exp(—i / dt1Vy(t1))e (t)c 5(1’) e (2.50)



We can also use the same C in both cases, placing t and t’ in opposite orders. As we know, the
knowledge of both G an G< gives access to the physically important retarded and advanced

Green’s functions. We also need to define a time-ordered (on C') Green's function:

iG(t1,ta) =< Tees(t)eh(t) >= G (t1, t2)fc(tr — ta) — G=(1, ta)f0c(ta — t1) (2.51)

where the contour C' goes through t and t’ and f¢(t — t) = 1 if C is such that #/ is met first

and 0 otherwise.

2.4.1 Complex-Time Integrals by Langreth’s Technique

Let A and B denote contour-time-ordered Green’s functions expressed in terms of > and <

functions as

A(t, )
B(t,t")

Following Langreth we must

diagrams in this theory. The

D(t,t")

= —ia”(t,1)0c(t — ') +ia<(t, t")0c(t' — t)

= —ib”(t,t)0c(t — t') + b= (4, t)0c (¢ — t).

develop their combinations in series which is needed to calculate

combination in series D = AB is defined by

AB(t,¢') = / drA(t, 7)B(r,t')
JC

—id” (6, ¢")0c(t — ') +id<(t, ") (t' — t)

(2.54)

and must be rewritten as a combination of ordinary real-axis integrals. To calculate d<(t,t’ )
we want ¢ to be earlier on the contour, so we adopt C' = C; > Cj like in Figure. C; starts from
to and returns there after visiting ¢, C; starts from to and returns there after visiting t’. Along

Ci, 7 <¢t= B =4b<, while along Co,7 >c t = A = 1a<, hence

d5(t¢) = —iD = d|Cy] +d>(Cy (2.55)

d<[cy] = —i/dTA(t,T)'L'b<(T,t') (2.56)
:

d?[Cs) = —i/dTia<(t,T)B(7,t') (2.57)
;
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On C1, A = —ia” on the tg < 7 < t branch, A = ia<on the back trip, so

ol

d<[C] = /

to

"to
dr(—=1)a” (¢, T)b<(7,t') + / dria<(t,7)b<(7.t)
JI

= /t dr(=i)[a” (t, 7) — a<(t, 7)]b< (7, t) (2.58)

to

Now we let tg — —no, and formally extend the integration to the full real axis introducing a

theta function. The result is

d<[C] = /'00 dr(=i){[a”(t,7) — a<(t,7)]0(t — 7)< (T, 1)

J =00

oo
/ dra.(t, T)b(1,t') = a,b< (2.59)

J —0Q

using Langreth’s convenient shorthand notation (product of small letters for real axis integrals).

One finds d<[C2] and d> in a similar way and get

d< = 0,0 4a<b,
& = wh® L™k, (2.60)
From d<, d> one finds d,, d,:
dp = —ifl(t = t")[d< + d”] = —iB(t — t')[a,b< + a<by, + a,b> + a” b, (2.61)

that is, more explicitly,

d-(t,t") = —if(t—t") /'oo driar(t=T)[b” (r, )05 (7, ")+ [a” (7, ")+ a< (7, t')]ba (7, ')} (2.62)

oo
Since g< + g~ =i(g, — g,), we can simplify this to read

o0

dr(t,t') = 0(t —t') / dr{ar(t — )b (7, 1) = aq(t — T)by(7, ')} (2.63)

J =00

However, the second integrand vanishes unless ¢ > T >t but then the 6 in front of the integral



vanishes; therefore, we conclude that

dy = aby, (2.64)

do = Aabq. (265)
The series combination E = ABC is immediately obtained:

e” = (AB).c” + (AB)” ¢y = arbrc” + (arb” +a”by)ca, (2.66)

e< (AB)rc< + (AB)<¢, = apbpc< + (arb< 4+ a<b,)ca, (2.67)

f

2.5 General model formulation: Time-independent

We consider the time-independent formulation of our model problem. The system that we
model is a molecule/quantum dot connected to leads and analyze electron transport through
this system. In the present case, we have two leads, right (R) and left (L) and a single molecule

such as a quantum dot. Hamiltonian of our simple system is
H = Hy + AH, (2.68)

Hy = Eocgco + Hiends, AHy = Hist teanis

where o = L or R stands for each lead and €0 is the single energy level of electrons on the dot

with cg, cg the corresponding creation and annihilation operators. The remaining elements of

the Hamiltonian are

Hieats = Y _ gicley, (2.69)
J
1
Hleads—dol. = V0= Z Vo (C;CO I Cgf,) ) (270)
VN &

where IV is the total number of states in the lead, j represents the channels in one of the leads
=L, R. For the second lead the Hamiltonian can be written in the same way.

Now the Green’s function on the dot due to interaction with the leads can be written as
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[see Appendix]

Goo(E) = goo(E +Zgoo JAH)oGap(E), (2.71)

where the unperturbed Green’s function on the dot is goo while the perturbed one on the dot

due to the lead (a) is Gq 0(E). With the help of Ga,0(£), one can write Eq. (2.71) as

Goo(E) = goo(E) + ZQOO(E)AHO,Q{QQ,O(E) + 9o,a(E)AH, 0Goo(E)). (2.72)

Using the fact that go0(E) is zero the two sites are uncoupled, Eq. (2.72) is simplified to

Goo(E) = goo(B) + ) 900(E)AHy 0000 E)AH, 0Goo(E). (2.73)
(a7
Using Sy = Yo AHD'QgC,‘a(E)AHﬂ'O, the self-energy calculated in the next section, the ex-

pression Eq. (2.73) may be written as

Goo(E) = g00(E) + goo(E)SooGoo(E), (2.74)

which is the standard Dyson’s Green’s function expression.

With the help of Eq. (2.74), the retarded (advanced) Green’s function may be written as

G (B) = git + s (BYSp0 6ot () (2.75)
(1 — g6 (B)Ze G (B) = gr® (2.76)
r(a) o

Goo (B) = —J0______ (2.77)

r(a) r(a

[1- ‘/0((3 (E)ESE) )]

1

G(T)E)a)(E) T (2.78)

llagy - ~ =5)

Hence, the final result is written as

Goo (E) = [E — By — )1, (2.79)

G’(')éa (E) has poles in one hal If-plane and are sufficient ingredients for calculating the physical

Do
3]



response of the system. Information about the spectral properties, density of states and scat-
tering rates are contained in these functions. Egé“) behaves as an exact contribution to the

energy of the dot. Hence, the term "self-energy".

2.5.1 The Self-energy

The self-energy represents the contribution to the dot energy, due to interactions between the
dot and the leads it is coupled to. We use the wide-band approximation where the self-energy
of the dot due to each lead is considered to be energy independent. The self-energy defined in

the previous section can be calculated in the following way

L0 = AHoa g o(E)AHy p, (2.80)
where
1
Ioo(E) = == >~ g 5(E) (2.81)
7
17 nod
b Nad€q
B N ./NE — &

+oo
where g, (E) is the uncoupled Green’s function in the leads, Z = /Nnadea. J stands for

7 Lo
channels in each lead, and n, is the density of states in lead . The retarded self-energy can

be rewritten as

17
260 = AHO’O‘?V—/ N

—00

N dEq

AHgp, (2.82)

E~'gg



which can be simplified as follows

+o00

Sho = [Voal? /

— 00

NadEq
-

I
L4 ]

+o00

. " den
:~]V0'a|3nﬂ/ —

b(y—e

—00
= B |V0,0|2 Ne X (21i)
—ilq
2 1

where Tq = 47 |Vj o] ng, and Yo =(Z0) = ”;“ and « represents the L or R lead.

2.5.2 Dyson’s equation and the Lesser Green’s function

The standard Dyson’s equation (2.74) may be rewritten as

Gob () = oo (B) + gnl Byl arla) gy,

where Gy and G, are the retarded and advanced Green’s functions respectively.

(2.83)

(2.84)

Applying Langreth’s theorem (2.67) to equation (2.84) in order to derive a relation for the

G on the dot, the above becomes
Go = ggo(E) + 900(E)E50Gon(E) + 900(E)E5,Goo(E) + 950(E)S50Go0(E),
which can be rewritten as
{1 = 900 (EVE00} Gy = 95(E) + g50(E)S5Giio( E) + g5 (B) 58, G2 (E)

{1 = g00(E)Z50}G5o = g5(E) {1 + £2,G8(E)} + 900(E)Z5,Ggo(E)

G = {1 = 900(E) S50} 950(E) {1 + oG ()} + gbo(E) S5 G (E)]

(2.85)

Goy = {1—960<E)260}_190<0(E){1+280G80(E)}+{1—QEO(E)ZSO}-IQGO(E)ZEOGSD(E)]' (2.89)

Eq. (2.89) can be further simplified by using the following relations {1 — gj,(E)
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{1+ Gho(E)Zh}, and {1 — gio(E)Sgo} 'gho(E) = Gho(E). Hence, the final result is

Goo = {1+ GGo(E)Z50} 950(E){1 + T§Go(E)} + Gio(E)E5,Goo(E). (2.90)

For the unperturbed system, the dot is initially empty due to which gg,(E) is zero. Thus Eq.

(2.90) can be written as

Goo = Goo(E)S5Go0(E), (2.91)

This is the Keldysh’s nonequilibrium Green'’s function result and is related to the density matrix
through the following relation

poo = —iGS. (2.92)

This is the central result of this formal development.
The lesser Green’s function is called the particle propagator and the greater is called the
hole propagator in which the order of the operators (creation & annihilation) is reversed. By

using Eq. (2.43)

G> = —i[l — f(E)(G® - G"), (2.93)

where f(E) is the Fermi-Dirac distribution function. The lesser and the greater Green’s func-
tions are directly linked to physical observables and properties of the system such as dot pop-

ulation and current.
The lesser self-energy may be written as (using Eq. (2.42))
I3 = fa(E)[Z5 - T4 (2.94)

From Eq. (2.83)

2: = il fo(E), (2.95)

where f,(E) is the Fermi-Dirac distribution function and represents the L or R leads. Simi-

larly one can calculate the greater self-energy as

[\
(71



52 = —iTa[l = fo(E)]. (2.96)

[a3



Chapter 3

Current through a nanosystem:

Meir-Wingreen-Jauho formula

In the last chapter, we have developed the formalism to calculate the Green functions for
the interacting central region, which is coupled to the leads [5, 6, 7, 8, 29]. Now we have to
relate those Green functions to physical quantities such as current. The general result that
we shall derive is known as the Meir-Wingreen-Jauho current formula. This important result
shows that the current can be calculated, if the spectral (G",G") and kinetic (G<, G~) Green
functions of the central region are known, and it is exact in the case of noninteracting leads.
Time-independent current can be easily formulated by taking the Fourier transform of time
dependent case. Further, we apply the formalism to investigate / — V' characteristics of a

resonant tunneling diode.

3.1 Model Hamiltonian
We split the total Hamiltonian in three pieces:
H ZHC+HT+]:I(;3-,1, (‘31)

where H, describes the contacts, Hy is the tunneling coupling between contacts and the inter-

acting region, and H,,,, models the interacting central region, respectively. Below we discuss
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each of these terms.

3.1.1  The contact Hamiltonian H,

We view electrons in the leads as noninteracting except for an overall self-consistent potential.

Thus, the contact Hamiltonian is

H, = Z Eknc};acka (3.2)
kael,R

and the Green functions in the leads for the uncoupled system are:

Gralt = 1) i <l (t)epalt) >

Il

= if(ED,) expliepa(t — £)]. (3.3)
Ghalt =t) = —ib(t ¢ < {chal(t), cl (£)} >
= —0(t —t') exp[—ieya(t — t)] (3.4)
ancd
Gia(t =11) = 0(~t +1') < {cpa(t), el ()} >
= —i0(~t+1') exp[—iega(t — ).
Here

f(Elm) = [emp[(ska - P’a)/kET] + 1]_1

Is the equilibrium distribution in a given lead.The operator ¢, (cf

ko) destroys (creates) an

electron with wave vector £ in lead .



3.1.2 Coupling between leads and central region, H,

The coupling between the lead and the central region can be modified with the time dependent

gate voltage. Hence,

Hy =Y " [Vian(t)el dn + H.q] (3.5)

kael

Here, { d;r,} and {dn} are the single-electron creation and annihilation operators in the central

region.

3.1.3 The central region hamiltonian, H..,

The form chosen for the central region Hamiltonian H.., depends on geometry and on the
physical behavior being investigated. We take the central region to consist of noninteracting,

but time-dependent levels,

Heen = Z E'm(t)djndm.a (36>
m

Here, d.:rn(dm) creates (destroys) an electron in state m. The choice made in Eq. (3.6) represents
a simple model for time dependent resonant tunneling. Below we shall present general results
for an arbitrary number of levels, and analyze the case of a single level, which is exactly solvable

in detail,

3.2 General Expression For Current

The current from the left lead contact through the right barrier to the centrel region can he

calculated from the time evolution of the occupation number operator of the left contact:

Jo=—e< N >= -%‘f < [H,Ng] > (3.7)
where
NL = Z C/t“ Clecy
kael,
and

H =H.+ Hp + H,pp.



Since H, and Hg., commute with N, we only need to calculate

[Hr, Ny]

i

A’a’kmeb

Z Vk’a’

I

k'a'el
n

[ Z (w:’a’.n(t)clla/dn + H.C), Z Cltaclﬁa]

kael

> Viarm(t)elgdnleh o, chal + H.c

k'a'el

and hence,
JL
k'a'eL

n

Now we define two Green functions

C’n,\a(tt)

ko: n(t t )

Using

Gn l\n(

the current can be expressed as

JL

%?Re

Cknd” + L/\’c\ 11( )d;c/‘:(\'

Z; Z [V’v’f" (t) < ckn(] 4 Vl’oz’ n(t) < d;clﬂa >]'

i< el ()dn(t) >

= i < db(t)epa(t)

P

Il

-[Grrat )]

Z chn t)cyn,}g((zL t)}

kael
n

(3.8)

(3.10)

(3.11)

(3.12)

We now require an expression for G e .o (1, t"). For the present case, with non-interacting leads,

a general relation for contour-ordered Green function Gy, (7, 7') can be derived easily with

the equation of motion technique as follows: Equation-of-motion for the time-ordered Green

function Gy, 1o in Eq. (3.10) is

.0
—Z% G‘n,k‘a(t -

(—igs -

ot Eka) Gn./m(t =

i) =

Il

t')

EA:aGn.lca(t - tl) Gk Z Cnm(
ZGW’” ‘/Aa m( )

30

)an m( )



We can interpret the factor (—‘Lgp

Green function operator and introduce a short-hand notation:

Grpalt —t gAa Zonm t—t )VI -

m

By operating with gy, from right, we arrive at

Gn,ka(t - t')gk;lgka = Z Gnm(t - tl)vk*a,m(t)gka
m

Gn.lm(T»TI) = Z /(‘lT]Gnm(T,7'1)‘/,:0’,"(7”1),6]1,30(7'],7').
m "

Here G (7, T1) is the contour ordered Green function for the central region.

Now using the Langreth technique Eq. (2.60) we find that
Raalt) = 3 /dtmw(tl G (b 4105 (81,8) + G (1 gl (b1, )]

whereby the current becomes

JL(t) = “R‘e Zvlan /dflvl\am( )

kael

m,n

[G;nl (t7 tl)gl\fa(tl H t) oF G‘lfm(t‘ ty )g/ZLv(tl ’ T)”

= == /([f1 Re Z Vka TI V/.a m(fl)

ke L,
™m,Tt

[CJ;;Nl(tV tl)g/f”(tl ) {') + G'n<'m(t’ ['l)gll;a(t] ) t)]

— €ka) multiplying Gy, o (t — t') as the inverse of the contact

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

At this Juncture, it is useful to convert the momentum summations to energy integrations and

define a level-width function:

T(e, t,t1)|mn = 27TZTLO Vam(e, t)Va (e, 1)

ael,
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where Vian(t) = Van(e, t), where n(e) is the density of states. There are two terms in the

current expression. Consider, for example, the piece involving G7, .., which we evaluate as

2% [ d .
Tut) = % [ dtn [ SERELY Vion(e 0V a0 G (1 2)050 61,8 + it 1) 11,0
' oy
(3.19)
2e de L r |
']L(t) = F dtl 'é;r'r (Eatyt])Re[GnTn(t)t])sz(ek.a)
expl—icka(t1 — t) — G5 (b, 81)i0(—t + 1) exp[—ieka (t — t')]] (3.20)
2 ¢ de .
Jif(t) = —7(’2/_00 dtl/é;exp[—zska(tl —t)]f‘[‘(e,t,tl)
Im[G:l.‘m(tvtl)fL(Egcx) + G;m(t’tl)] (321)
2€ rt r dE . I
Jplf} = —% . aftlj o Im T'r{exp[—icka(ts — t)]T" (e, ¢, t1)
[G‘rfm(t’ tl) + G;’;m(t’tl)f[z(ﬁ?m)]} (322)

This is the central formal result. The current is expressed in term of the local quantities: Green
functions of the central region. The first term which is proportional to the lesser function
G'< suggests an interpretation as an out-tunneling rate [recall Im G< = NJ. Likewise, the
second term which is proportional to the occupation in the leads and to the density of states
in the central region, can be associated to the in-tunneling rate. However, one should bear in
mind that all Green functions in the above equation are to be calculated in the presence of
tunneling. Thus, G< may depend on the occupation in the leads. Furthermore, in the presence
of interactions, G" may depend on the central-region occupation. Consequently, the current

can be a nonlinear function of the occupation factors.



3.3 Time-independent case

3.3.1 General expression

In the time-independent limit the line-width function simplifies:
[(e,t,t1) — C(e)

and the ¢; integration is performed and we get the current from the left (right) contact to the

central region becomes,

Tuw(®) = 5 [ SETHIHEEE) +67(0) - G, (3.23)

In the steady state, the current will be uniform, so that

J=Jy=~Jg

or the current J is

_JL-FJL_J]J*JR

J 2 2
Thus the general expression for current in this case is
e [ de " -
7= 55 | 32T e) = THENGS(E) + (THe) fule) — TR(e) Sl () - (&)}, (3.24)

3.3.2 Proportionate coupling
If the left and right line-width functions are proportional to each other, i.c., ['*(¢e) = Al (e), a
very simple final result can be acheived. We observe that the current can be written as

J=zJ, - (1-1)Jp

which gives, using

ie de

d=—= gTT{FR(e)[(/\?E“(1—$))G<(6)+(A-’I'f/4(€)—(1*m)fﬂ(s))(GT(S)—GT(E))]} (3.25)



The arbitrary parameter x is now fixed so that the first term vanishes, Le,z = 1/(1+ X), which

results in

) R
=5 [ et - saterr (o O ey - ey (3.20)

The ratio is well-defined because the I-matrices are proportional. The difference between the

retarded and advanced Green functions is essentially the density of states.

3.4 Current Conservation

Any meaningful theory of transport must respect current conservation. Here we examine what
implications this necessary requirement has on the derived expressions for the current flowing
between the contacts and the central region. To this end, it is convenient to rewrite the current

expression Eq. (3.19) as

Ze
1) = F [t [ ERe( S Vinle, 0V pa(ert)

kael,

™m,7

[G:‘L'ﬂl(t’ tl)glfa(tl ) t) + G‘ﬁm(h tl)gzcx(tl ) t)]} (327)

For the time independent case Vian(€:t) = Vian(e) and after doing the integration on ¢ as in

the time independent case we get

JL:_~ —Re > Via,n(€)Viiika () [Grm (€) g (€) + G (€) g ()] ). (3.28)
kacl
‘m,n

Using the general relationship G" — G* = G> — G'<, valid for both contact and central region

Green functions, we re-express

Jr {Z Vean(€)V;h ko )G (€)g5 (6) = G (€)g2 ()]}
ke L
JL TR Z[Cﬂm E\ :mn( ) lem( )_’T/Tﬂl(\( )” (329)
el
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% [ de
Jpe=2

=% | 21 TrIG7 (©)E5(E) - GXEBE ()

where we have defined the tunneling self-energy ¥ = $V*¢V with the components

227;11)11( ) = Z m, Arv g,l,a )Vlan( )
L(fmﬂ.( ) = Z m, kn .gA:a(E)‘/I\7CY.ﬂ(€)

Z;’ITLH ( )

Il

Z €)%k (€)Vian(e) (3.30)

The Green function G< contains the distribution of the occupied electronic states and G~
contains information about the empty states, similarly the greater and lesser self-energies from
the leads. The product $>G< represents in this respect the scattering out from the central
region, and the other product the in scattering. We next define the total self-energy, which is

the sum of tunneling contributions, and the interactions residing in the central region:
Stot =X+ IR + Tint (3.31)
Also the sum of left and right current should vanish.

Tt dn=F [ ETE @85 - GXO5u(0)] - TrC> (E5(6) - G5O
(3.32)

.4

With the Keldysh equations (Eq. (2.91)) for steady state G< = G"N<Ge

S5-Th = (@GS - (@) 67 (60!
(G.’.)_l {G< _— G>} (Ga)—l
= (G“)_l . (Gr)~l

Il

SO

G (55 — S G =G -G =@ - G< (3.33)



Now we can show:

TrlG> S5, — G<52,]
= TrZ5(G” +G*¥> 6" - G°2>6") - £2,6<)
Tr[S5 (G856 + G B, G™ - GU57,G7) - 52,G°5<GT]

Il

~ @ (3.34)

the current conservation condition

Jo+Jrp =0

implies the following constraint on the self-energy 2,

Tt dn =3 [ 1-THE €550 - 0<(e)52, )]} = 0. (3.35)

Obviously this shows that if there are no internal interactions the current is conserved.

3.5 Noninteracting Resonant-Level Model

In the noninteracting case (or mean-field models), the Hamiltonian is H = H. + Hp + Heep,

where Hee, = Yom smd . The Dyson and the Keldysh equations are now

G'(e) = g"(e)+ g (e)=" ()G (¢)
G"(e)E=(e)G%(e) (3.36)

Q

A

@
I

By taking the Fourier transform of the Green function we get,

a 1
g'(e) = € — Eka + 1
¢*e) = (3.37)

€= Efa — )
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where we have defined the self-energy

P o 2 - s WUCE
b (6)_ Z Vkag (E)—_ Z S—E/m+7:"7.

haeL,R kael, R

Since

L(e) = ~2ImE7(e) = 21 ) 6(e — exa)

and we define

Therefore
S (€) = Ale) — iF(;)

Similarly
I'(e
Z°(e) = Afe) + i)

&

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

where the real and imaginary parts contain left right contributions: A(g) = Al(e) + AB(e)

and ['(e) = I'“(¢) + 'R (). The lesser self-energy is

S = ) VieS(e)

kaeL,R

= i[C%(e)fue) + TR(e) f(e)].

Using the identity
G'G* =

G" - @G* Ale)

Gle—1 _ Gr—1 =

where A(e) = i[GT(e) — G*(e)],is the spectral function, one can write G<

rium” form:

G<(e) = iA(e) F(e)
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(3.43)

(3.44)

in a “pseudoequilib-

(3.45)



where

FL(E)fL(E) + FR(E)fR(E)

f(€) )
Ale) = L(e) - (3.46)
e~ e — A(e)2 + [%2)]
The current hecomes
L(\TR
125 [T~ e (3.47

o [e — 0 — A(e)]? + [@}

Note that this derivation made no assumptions about proportionate coupling to the leads. The
factor multiplying the difference of the Fermi functions is the familiar expression for elastic
transmission coefficient T'(e) through a resonant level [31].

If the level-width and level-shift functions T and A are energy-independent, it is easy to
evaluate the integral in equation (3.47), and get the current-voltage characteristic. However, the
model still lacks two essential ingredients before the nonmonotonic IV-curve characteristic of
RTD devices can be obtained. The first missing item concerns the band-widths of the contacts:
so far the band-width is essentially infinite. This failure can be remedied by considering a model
where the contacts have a finite, occupied band-width; we introduce a low energy cutoff Dy, p, in
addition to the upper cutoff provided by the electrochemical potential. Further, we must specify
how the central-region energy ¢y depends on the applied voltage ju; — pp = eV, However, for
present purposes it is sufficient to simply assume that the left chemical potential 11, defines the
sero-point for energy, and that the other two field-dependencies are given by pp(V) = pup —eVv

yand gg(V) =gy — eV/2, respectively. The zero-temperature I'V-characteristic is then

e, [rL—eolV) 4 L
Jae(V) = _[/ o 2 Lye
" JuL=Dr—eo(V) “T [e — gq — A]2 + [3]
/#R*EO(V) de répk |
nr=Dr—eo(V) 2T [¢ — go — A2+ [512
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. o LTR B o
Ja(V] = %QFFF [Tan""l(%/).) _ Tan~1(HL DI‘L/Q EO(V))
_T(Ln—l(w(_v)) 4 Tan_l(’uR — Dp ~Eo(V))]' (3.48)

/2 i

We note that the strong increase in current, which is observed in experimental systems at very
high voltages, is not present in our model: this is because we have ignored the bias-dependence

of the barrier heights as well as any higher lying resonances.
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Fig. 3. 1 IW-characteristic for a model resonsnt tunneling device, The system is
cdefined by parametorns 401 = =2y =prV =0 =0 and [ = D =12

i

The energy paramereors are in units of I and the current s shewn in units of ¢f h
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Chapter 4

Single particle quantum transport in
a resonant tunnel junction coupled

to a nanomechanical oscillator

4.1 Introduction

In this chapter, we apply the formalism introduced in chapter 2 to study electron transport in
NanoElectromechanical (NEM) systems. The NEM system that we consider is a single dot and
a single oscillator with strong coupling between them (32, 33]. An arbitrary voltage is applied to
the tunnel junction and the electrons in the leads are considered to be at zero temperature. We
consider the electronic state of the dot as empty /occupied (a two-level system). This chapter
is based on the work carried out in (12]. In the present model the system is initially in its
ground state and we assume strong dissipation of the nanomechanical oscillator. This means
that every independent electron which comes onto the dot finds the oscillator in its ground
state. We consider a finite chemical potential difference between the right and left leads. In
addition to the main resonant feature due to electrons on the dot, we find satellite features
due to creation or annihilation of phonons. These satellite features become sharper and more

significant with increasing strength of coupling between the electrons and the oscillator.
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Figure 4-1: Oscillator coupled to an electrical tunnel junction.
voltage V, electrons will tunnel from the left (L) to the right (R) electrode, with tunnel rates
depending on the position x of a nearby mechanical oscillator. The electromechanical coupling
can be achieved by putting a net non-zero charge (or voltage) on a metallized

As a result of an applied



4.2 A Simple Model Hamiltonian

In this model, we describe electrons tunneling between a left and a right. lead (electron reservoir
Hjeaqs ) through a single dot level ¢y that is coupled to a single phonon mode with creation

operator bl.The total Hamiltonian (system plus coupling to leads) is [12, 16, 17]
H = Hpn_gor + Hieags + Hr (4.1)

The system Hamiltonian Hph—dor describes a single dot level €o linearly coupled to a single

harmonic oscillator mode,
Hpp—gor = [60 + a(bl + b)} cheo + Hpy, (4.2)

the second term in the bracket describe a linear coupling between the charge on the dot-level
and the vibrational coordinate, where the proportionality constant « is the electron-vibration

coupling and

2
P I gwt 1
Hpyp = o + imwom = hw(blb -+ 5) (4.3)

where we have introduced the phonon creation and annihilation operators bf b in terms of which

the position operator z and the momentum operator p of the oscillator can be expressed as

1 A

~_ 1 A 4.4
T 7 'mw(b +b), (4.4)
p = —VEma(b - b). (4.5)

V2
In the following we want to study electron transport through the device and we therefore assume
that the device is connected to two leads kept at different chemical potentials u; (left lead) and
tp (right lead) with Kr > tg. The potential difference defines a bias drop across the device
which causes electrons to propagate through the system from the left lead to the right lead.

"The electrons of the leads are assumed to be non-interacting, and given in terms of the creation



and annihilation operators c; and ¢; with j = L, R. The Hamiltonian of the leads is,

Hpeaas = ) €jcle; (4.6)
J

whereas the tunnelling of clectrons between the leads and the device is described by

Hr = 71_1—\[— ZJ: Va (c;f.co -+ C(T)Cj> (4.7)

where NV is the total number of states in the lead, V4 is the hopping between the dot and
the leads a = L, R, j represents the channels in one of the leads. For the second lead the

Hamiltonian can be written in the same way.
4.2.1 Canonical transformation
The first approach to this new type of problem is to consider a canonical transformation of the

dot-level Hamiltonian.

1
: S [eo +a(bt + b)] cheo + Fw(blb + 7). (4.8)

<

We introduce a unitary transformation for all operators O ,

(4.9)
(bT — b)clco. (4.10)

t O
l

€ S
il

m\’]

Q)
¢

The operator U = ¢S is unitary because U~} = Ut j.e.UUt = Uty = 1. Note that cgco in the
definition of S is the electron number operator.
For explicit calculations, one has to use the nested commutator expansion
L 1 1 .
O=0+[S0] + 9—’[5. [S.0]] + 5[5 [S5.[S,0]]] + .. (4.11)

We first transform the electron number operator cgco,

5560 £ cgco +[S, c:gco] + .= c(f)co (4.12)
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because S and cgco commute. This is not the case for b

S
Il

wu&m+%w¢am+”

I

b+ £Y-cgco[bT —b,b +..
w

= b—Zcleo (4.13)
w
because [bf, b] = —1 is a scalar and all the higher commutators vanish. Correspondingly,

bT:N+ﬁW+%MHWH“
«
= b+ Zd—c};co[bf ~b,b1 + ..

Q
= bl + =clc. (4.14)
w
Transforming now all operators individually, the canonical transformed Hyh—dor is

= I _q
f‘/ph-do!. = e‘th—dot.e :

= % [60 + a(bl + b)] céco + hw(b'h + %))e"s

I

[eo + b + B)} &gy + hw (B + %)
= {60 + (bt + gcgco +b— gcgco)] cgco + huw( (bt + 30500)(17 - 30600) + 5)

Il

1 , 2
eoc};co + Fw (bth + 5) — hw (gcgco> ; (4.15)

2
The square of the number operator is just the number operator itself, (cgco) = C(T)(,'():the]‘(? is
either one or no electron on the level. We can thus write
2

_ 2 1
Bl o = (e = ﬁ%)cgco + Ao(blb+ 5). (4.16)

From this result it is clear that the canonical transformation provides a decoupling of the

electronic and vibrational degrees of freedom. We write the eigenvalues of Hp,_ g0 as (h = 1)

1
f:eo+w(n+§)—A (4.17)
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where

o2

A=—,

W

We find from the definition that the Green function

G(t, t") (—1) < Th(t)b(2) >

Il

= (i) < Th(t)b (t)eSe~5 >

i

(—i) < TeSb(t)bt (t)e™5 >

= (1) < Th(t)b'(t) > (4.18)

in applying the canonical transformation to the individual operators, we obtain

b = by, where x = e~ w(b=0") (4.19)
bF = byt where xt — eS (-1 (4.20)
So,
G(t.t') = (=i) < Th(O)n (b (1)x! () >

Il

(=1) < ()b (£) >< A (O)xT () >

G'(t,t) < x(OxT() > (4.21)

I

The meaning of the above equalities is that we can calculate the properties of the resonant
level in the quantum dot as we have done before, but in the Hamiltonian system, and then
finally multiply it by the average < x(t)xf(t') > This average can be exactly calculated as,

We write the eigenfunctions of Hyot—pn, in k-space representation as

l2 2
p(k, zo # 0) = An, exp[—

5 [HIn (k) exp|—ikzo]
21,2

,f’ |y (k)

4

l
®,,(k, 2 = 0) = A, eXP[*
for the occupied, zg # 0, and unoccupied, zy = 0, dots, respectively, where zq is the displace-
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ment of the oscillator due to the coupling to the electron and Hy,(k) are the usual Hermite
polynomials. Here we have used the fact that the harmonic oscillator eigenfunctions have the
same form in both real and Fourier space.

In order to transform between the representations for the occupied and unoccupied dots,

we require the matrix with elements
A = / B2 (k, 0 = 0)y (k, 70 # 0) (4.22)

which may be simplified [15, 30] as

] :
Apn = T /exp (=&*) HE (k) Hy (k) exp (ikzp) dk (4.23)

gm=np] 1 1, N,
= T eXp (—Zm2> <§1"c> Ly 1(;2—:1:2)

for m n, where z = LA‘Ov A= g—;, and L7 (x) are the associated Laguerre polynomials. Note

that the integrand is symmetric in m and n but the integral is valid only for m < n. Clearly

the result for m > n is obtained by exchanging m and n in Eq. (4.23) to obtain

2Im=nl min[n, m]! 1 1\l 1
AW _ ) _t.2) (1 [m—n]| =52
< x(Ex'(t) >= A = \/ max[n, m]! exp ( 4'1 > (21$> Lmin[n,m] <2:II
(4.24)

where z = % and L;'7"(x) are the associated Laguerre polynomials

4.2.2 Green’s function and quantum transport

In order to calculate the analytical results and to discuss the numerical quantum dynamics
of the nanomechanical system, our focus in this section is to derive an analytical relation for
the retarded self-energy. The self-energy represents the contribution to the dot energy, due to
interactions between the dot and the leads it is coupled to. In obtaining these results we use
the wide-band approximation where the retarded self-energy of the dot due to each lead is

considered to be energy independent and is given by

a * T 1 ]
Eotte g = AHQ_qq,a(E — (ng + §)ﬁw)AHﬂ, (4.25)
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where off-diagonal element of matrix, X omt o are zero, and gl (E — (ng + %)hw) is the un-
Ty 00

coupled Green function in the leads as

: 1 1 1
Ja(B = (o + 5hw) = = ;gg‘j(E_- (no + 5)Aw) (4.26)

+o00

! / Nngdeg

N E—(ng+ 3)hw — €4
—00

+oco
where Z = / Nnudeq, j stands for every channel in each lead, and n, is the density of states

J K
in lead . With the help of eq. (4.26), the retarded self-energy may be written as

1 v Nngd

n €
b A = AHyo— e
n0,M0,x O'O‘N / B s (77'0 + %)ﬁw —En

AHgp, (4.27)

which may be simplified as

+oo
" de
5 = [Voul? / i 1 4.98
70,10, l O,LYI E— (nO n %)ﬁw ., ( )
+o$> d
:_|v0ﬂ|'3na/ < - (4.29)
€a— E + (ng + 5)hw
= —|Voal*na x (2mi) (4.30)
—iT,
=r, (4.31)

where Ty, = 477 |V0_a,|2 Mo, @ representing the L or R leads, and the retarded self energy is now

independent of the oscillator’s index (np,no). Hence, it can be written as

= 1l
21’1-0710.0 = (Z;l‘l.u.nn,ct)* == —Tu' (4.32)
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We solve Dyson’s equation using Hyp;—jeqq as a perturbation. For the more general systems we
alm to treat in the future, this is a reasonable small parameter. In the present case, however,
we can find an exact solution. The retarded and advanced Green’s functions on the dot, with

the phonon states in the representation of the unoccupied dot, may be written as

Grimd =)~ Anmgh® (E) S m (4.33)

m

where g;;(a)( E) is the retarded (advanced) Green’s function on the occupied dot,

1 -1
gl)(B) = [E—Go— (m+ 5)hw + A £il] (4.34)

4

with the fact that T'y, =T =T
The lesser Green’s function in the presence of the nanomechanical oscillator including the

dot and the leads and is written as

nn’ - Z GTL"O nyny (E)G:L n! (435)

no,Mg

with Z,:O o (£) being the the lesser self energy which is given as
T !

Sy (B) = S5 e L (B) + 55 0 o(B), (4.36)

0, nD ng,nO,L

where the off-diagonal element of matrix, ¥ Lm0 AL€ ZETO, and the diagonal (ny = ng) element

of the lesser self-energy may be written as

Zf) no,a(E) = lrafa(E) ) (457)

where fo(E) are the Fermi distribution functions of the left and right leads, which have different.
chemical potentials under a voltage bias..

The formula for the current through each of the leads given in chapter 3 is written as
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Z / o, M, o n 0 C(rlL no) (Eza.n,a - E;Lo T a n rm]}dE (438)

nO,

With the help of the above equation, we calculate the net current through the dot and the leads

with the oscillator on the dot, written as

I=1I,~1Ig (4.39)
e o an(E) = () } {Chme — Fhin
s {(z:,,.r,,n,,, o (E)) (Grmy = Gtng)| -
DM A INT S s PR T

The resulting expression for the net current is

47(}7 Z / ng.n L Y‘mo,n R(E)) (G:l ng Gfl,"lo) dE, (4'41)

g, M

which is derived from equation (4.40) using the same damping factor for each lead (I'y, = Tz =
.
For the present case of zero temperature the lesser self-energy may be recast in terms of

the Heaviside step function f(z) as

; L, .
T gl B) =il (61?(, + (ng + g)hw - E> 010.0 » (4.42)

where €p, is the Fermi energy on lead a and the Kronecker delta, dpg0, signifies that the
nanomechanical oscillator is initially in its ground state, ng = 0.
Using the expression for the retarded and advanced Green’s function and the right and left

self-energy, the expression for the net current becomes

€FI+%/7W r2

. ;
=57 D_l4onl” / = dE, (4.43)

Jepr+Lhw [E —e— (n+ %) hw + A]
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After performing the integral in the above expression, the final result is written as

, e — — €0 — nkw + A
e n

We calculate the differential conductance by differentiating Eq. (4.44) with respect to ep;, and

keeping epp constant. The final expression for the differential conductance is then

2 2
I Pldoal” (4.45)
dEF‘L 2mh. [GF'L = fh — nhw + A]d -+ Fg

m

Obviously one could have obtained the differential conductance directly from Eq. (4.43). with-

out integrating and then differentiating.

4.3 Discussion of results

4.3.1 Current

The I — V characteristics of the NEMS device against applied bias for different values of the
coupling strength are shown in Figure 4.2. The main resonance step is the elastic or zero phonon
transition. The amplitude of the additional steps is much smaller than the basic resonance step.
The electrons that tunnel onto the dot can only excite the oscillator mode as at zero temperature
there are no phonons available to be absorbed. Moreover, we have seen that with increasing
coupling strength, the number and intensity of the additional steps increases but their intensity
always remains much smaller than the majn step. The steps in the current characteristics vanish

if the upper electrochemical potential is smaller than the dot energy plus the oscillator energy.
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Fig. 4.2 Current-voltage characteristics (dimensionless) as a function of
applied voltage p;;, (in arbitrary units), coupling strength o = 0.1lwg(dotted
line), and 1wy (solid line).Gate voltage eg = 0.5, oscillator energy wg = 0.1,

self-energy I" = 0.1wy.

4.3.2 Differential conductance

The differential conductance is shown graphically in figure 4.3 as a function of applied voltage
for different values of coupling strength, using the parameters as: the single energy level of
the dot ¢y = 0.5, the characteristic frequency of the oscillator Aw = 0.3, the damping factor
[' = 0.3/w and the chemical potentials 0 < epy, < 1 and epp = 0. These are chosen to illustrate
the physics of such systems rather than to represent a specific implementation. The oscillator
induced resonance effects are clearly visible in the numerical results. Tt must be noted that we
have obtained these results in the regime of strong and zero or weak coupling of the oscillator
with the electrons on the dot. The coupling between the leads and the dot is considered to be

symmetric and we assume that the electrons in the leads are at zero temperature and the leads
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have constant density of states. With increasing coupling strength, the number of satellite peaks
also increases while for zero or weak coupling we find only the basic resonance. This confirms
the effect of the coupling between the electrons on the dot and the single oscillator mode where
higher energy electrons are able to drop to the dot energy by creation of phonons. Transport

processes involving creation or annihilation of phonons are a common feature of NEMS.

Applicd Valtage

Fig. 4.3 Differential conductance dimensionless as a function of applied voltage fir; in
arbitrary units and coupling strength o. Gate voltage ep = 0.5, oscillator frequency wgp = 0.3,

selfenergy I' = 0.3wy.

Closer analytical examination of the expression for the differential conductance shows that
the main resonance peaks occur when the applied voltage, €y, is equal to the energy eigenvalues
of the coupled dot electron and oscillator. The main peak (n = 0) is given by the Lorentzian
form with its center at the e, = ¢g—A, known as a Breit-Wigner resonance. The satellite peaks
due to the emission of phonons can be seen on the positive energy side with epy, = ¢g — A +nhw

where w is the characteristic frequency of the oscillator.
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Chapter 5
Appendix

5.1 Green’s function for one particle Schrodinger equation
Green'’s functions are useful for problems where we use perturbation theory solutions. Consider
the Schrodinger equation,

[Ho(r) +V(r)]¥ = EW (5.1)

where we know the eigenstate of Hy(r) and E is the corresponding energy eigenvalue with the
eigenstate ¥, we want to treat V(r) as perturbation. In order to solve the Schrodinger equation,

we define the corresponding Green’s function by the differential equation

(E = Hoy(r))Go(r,7,E) =6 (r—1") (5.2)
with the boundary condiions,G (r,7') = G (r/, ) .Here it is obvious that £ — H, (r) is the inverse
of Gio (r,7") and therefore we can write

Gy'(r,E) = E — Hy(r) (5.3)

or

Gyl(r, E)Gy (F, 7 B) =§ (r—1") (5.4)



Now the Shrodinger equation can be written as,

Gy E) = V(1)]¥ =0 -5.5)
The solution may be written as an integral equation
U(r) = 0Or) + /dr'G’o (r,e', B) V(") T(r") (5.6)

where Ug is an eigenstate of H,. We can solve this equation by iteration, and upto the first

order in V' the solution is,

(r) = 00r) + / dr'Go (r, 7', E) V(") U°(r') + O(V?) (5.7)

For the static case we can write the solution as
vo= 004 Govul 4 GV GV El 4 GoVGoVGoV Il + . (5.8)
= U0+ (Go+GoVGo+ GoVGoVGo + ..) VT (5.9)

where the iteration veriable has been supressed. By comparision with the equation we can

write,

G = Go + GoV Gy + G()VG()VGO + (5.10)
& == Go+ (Go+ GoVGo +..)VGy (5.11)
G = Go + GVGO (5.12)

the last equation is the standard Dyson equation [10].
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