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Abstract 
The COVID-19 pandemic was caused by the severe acute respiratory syndrome 

coronavirus-2 (SARS-CoV-2). This complex disease manifests different symptoms 

across different ethnicities, influenced by both environmental and genetic factors. This 

study focused on understanding of the genetic risk factors associated withCOVID-19 

severity in the Pakistani population. The study was performed on a cohort of 131 

individuals categorized into mild (N=53) and severe (N=78) groups. The study 

examined ACE insertion/deletion polymorphism, a TMPRSS2 variant (rs3787950), and 

HLA-A*11 genotype in the cohort of 131 individuals. Genotyping was conducted using 

agarose gel for ACE and HLA-A*11, but Sanger sequencing was performed for 

TMPRSS2 variant analysis. ACE D/D genotype is more common in individuals within 

severe group as compared to individuals in the mild group. Statistical analysis, 

including Fisher's Exact Test (0.04676) and Chi Square test (0.0444) for genotypes, 

Fisher's Exact Test (0.03153) and Chi Square test (0.03467) for alleles of ACE revealed 

significant association with severity of COVID-19. To explore the impact of the ACE 

I allele under recessive and dominant models, further analysis yielded a significant 

result for recessive effect. This indicates that individuals having I allele are less prone 

to develop severe disease. TMPRSS2 rs3787950 was the only variant found in our study 

cohort and the frequency of minor allele is 12%. The HLA-A*11 allele genotyping 

shows its frequent presence in both severe and mild group. However, no significant 

associations were found for TMPRSS2 and HLA-A*11 in relation to the disease 

severity. These findings enhance our understanding of host genetics in the Pakistani 

population, but additional studies are required to identify additional host genetic factors.  

 

Key words: COVID-19, Host genetic Factors, ACE, TMPRSS2, HLA 
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1. Introduction 

Severe Acute Respiratory Syndrome Coronavirus 2 is responsible for the onset of 

Coronavirus Disease 2019 and the initial emergence occurred in Wuhan, China, in 

December 2019. It swiftly evolve into a global pandemic due to its high virulence and 

contagion (Wang et al., 2020). On January 30, 2020, the World Health Organization 

(WHO) declared a public health emergency, which remained in effect until May 5, 

2023. As of October 25, 2023, there have been 771,549,718 cases confirmed globally, 

with 6,974,473 recorded deaths (https://covid19.who.int/table). Initially the virus was 

named novel Corona Virus (nCoV-19), but later SARS-CoV-2 was assigned due to 

genetic similarities with the earlier SARS coronavirus (International Committee on 

Taxonomy of Viruses, January 7, 2020). 

1.1. Clinical and Pathological Features of COVID-19 

Depending upon host genetics, manifestations of COVID-19 are diverse but commonly 

encompass symptoms such as headache, Elevated body temperature, throat irritation, 

exhaustion, respiratory issues, anosmia and ageusia. Onset of symptoms may occur 

within one to fourteen days following exposure to the virus. A significant portion of 

individuals (at least one-third) who contact the virus do not exhibit noticeable 

symptoms (Oran and Topol, 2021). Among those who do manifest symptoms to a 

degree requiring classification as patients, the majority (81%) experience mild to 

moderate manifestations, including mild pneumonia. About 14% develop more severe 

symptoms characterized by Shortness of breath and reduced oxygen levels or imaging 

indicating over 50% lung involvement. A smaller proportion, 5%, progress to critical 

symptoms, marked by respiratory collapse, abrupt circulatory failure, or multiorgan 

failure (Wu and McGoogan, 2020).  

SARS-CoV-2 primarily targets respiratory epithelial cells, causing a spectrum of 

COVID-19 manifestations from mild cold-like symptoms to severe conditions like 

acute respiratory distress syndrome and interstitial pneumonia. Severe cases can lead 

to fatal outcomes and organ damage, affecting the gastrointestinal tract, kidneys, and 

heart (Zaim et al., 2020). In COVID-19, Multiorgan failure is linked to systemic effects 

of the virus, including hypoxemia, Disturbed immune system responses, Vascular 

damage, coagulation abnormalities, and tissue  fibrosis (Mokhtari et al., 2020). 
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1.2. SARS- CoV 2 

1.2.1. Genomic Classification and Phylogenetic Analysis 

SARS-CoV-2 belongs to the extensive family of coronaviruses, identified by a helical 

nucleocapsid and Single-stranded RNA with a positive polarity (Naqvi et al., 2020). 

Through genome phylogenetic analysis, it is classified in the subgenus Sarbecovirus 

within the Beta coronavirus genus, sharing genetic relatedness with SARS-CoV and 

bat-derived SARS-related coronaviruses (SARS-CoV). Despite this relatedness, 

coronaviruses remain distinct entity (Gorbalenya et al., 2020). 

1.2.2. Genomic Identity, Variants and Structural Composition 

The genetic sequence of SARS-CoV-2 shares around 82% identity with that of MERS-

CoV and SARS-CoV and while structural proteins and crucial enzymes display over 

90% sequence similarity (Naqvi et al., 2020). WHO recognized five SARS-CoV-2 

variants named alpha, beta, gamma, and delta. The structure of coronavirus particles 

involves a helical nucleocapsid enveloped by a lipid bilayer. This nucleocapsid results 

from the interaction between RNA and Phosphorylated nucleocapsid (N) proteins. 

Within the lipid bilayer, there are three to four types of embedded structural proteins. 

(Siu et al., 2008). 

1.2.3. Genome Organization and Open Reading Frames (ORFs) 

The RNA sequence of SARS-CoV-2 is notably lengthy, spanning approximately 30kb 

that encodes a polypeptide of 9860 amino acids (Gorkhali et al., 2021). The genome 

organization reveals ORF1a, ORF1b, S, M, E, and N as six primary open reading frames  

and ORF3a/b, ORF6, ORF7a/b, ORF8, ORF9b/c, and ORF10 as accessory open 

reading frames (Wu et al., 2020) as shown in figure 1.1. The ORFs collectively encode 

29 proteins, encompassing both structural and nonstructural proteins. 

1.2.4. Nonstructural proteins 

The primary open reading frame (ORF1a/b) in SARS-CoV-2 produces polyproteins 

pp1a and pp1b, encompassing approximately two-thirds of the viral genome. pp1a and 

pp1b are cleaved by Papain-Like Protease and 3C-Like Protease which yields 16 

nonstructural proteins (nsp1–16), including essential components like RNA-dependent 

RNA polymerase and helicase (Wu et al., 2020). These nonstructural proteins play a 

pivotal role in viral translation, assembly and replication, enhancing pathogenicity 
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through modulation of transcriptional regulation and resistance to antiviral responses. 

The intricate functions of these proteins contribute to the overall virulence of SARS-

CoV-2 (Chan et al., 2020). 

1.2.5. Structural Proteins 
Four structural proteins (spike, envelope, membrane, and nucleocapsid) are encoded at 

the 3' end of the SARS-CoV-2 genome. (Gorkhali et al., 2021). The spike protein is a 

substantial glycoprotein that recognizes ACE2 receptors, facilitating virus entry and 

evading the immune system (Rajpal et al., 2022). It crucially controls viral host range 

and the host immune response with precise structural arrangements. The assembly 

involves the membrane glycoprotein (M), while protein E functions as a viroporin, 

creating ion channels (Siu et al., 2008). SARS-CoV-2 also encodes eight accessory 

proteins, contributing to its structural complexity (Zhang et al., 2021). 

1.2.6. Infection Mechanism and Pathogenesis 

The progression of the SARS-CoV-2 infection involves distinct and well-defined 

stages. These include the virus entering host cells, the replication and transcription of 

its genetic material, the synthesis of viral proteins, the assembly of new virions, and the 

eventual release of these virions to start infection in nearby cells. These stages are 

depicted in figure 1.2 and specific details are provided in below sections; 

1.2.6.1. Receptor Recognition 

 The initiation of infection involves the recognition of the virus by host cell surface 

receptors. The virus enters host cells by either fusing with the plasma membrane or 

through endosomes. In both scenarios, viral spike (S) protein binds specifically to the 

extracellular peptidase domain of the ACE2 (Hoffmann et al., 2020). This binding is 

facilitated by the S1 domain of the viral S protein, specifically through its RBD. 

1.2.6.2. Membrane Fusion 

After the activation of the S protein, the S2 domain plays a role in mediating the fusion 

of the viral and host cell membranes (Huang et al., 2020). In endosomes, cathepsin L 

activates the spike protein. Cellular serine protease TMPRSS2 activates S protein at the 

plasma membrane surface by selective cleavage between S1 and S2 domain (Majchrzak 

and Poręba, 2022). 
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1.2.6.3. Translation of viral replication machinary 

Upon entering the host cell, viral genomic RNA is released into the cytoplasm. By 

hijacking host machinery it undergoes translation and produces pp1a and pp1ab 

polyproteins. These polyproteins undergo cleavage by enzymes such as Papain-like 

protease and 3C-like protease and yield functional nonstructural proteins  like Helicase 

and the RNA replicase–transcriptase complex (RdRp). 

1.2.6.4. Replication and Translation of Viral Structure Proteins 

RdRp (Nsp12) directs the synthesis of RNA encoding structural proteins (S, E, M, and 

N) structural proteins which is subsequently translated by ribosomes attached to the 

endoplasmic reticulum. Viral RNA is replicated in double-membrane vesicles 

generated from ER. These DMVs provides shield from the host's innate immune 

system.  

1.2.6.5. Virion assembly and Release 

 Nucleocapsid proteins (N) are assembled in the cytoplasm by  interaction between viral 

genomic RNA and Phosphorylated nucleocapsid (N) proteins (Lebeau et al., 2020). The 

assembly of mature virions takes place as viral proteins, including S, M, E, and the 

nucleocapsid, come together. This results in the formation of progeny viruses. Small 

vesicles carry the mature virions from the ER to the cell surface through the Golgi 

apparatus. In the final stage, the infection cycle is completed when virions are 

discharged from the infected cell through exocytosis and ready to find out a new host 

cells. 

  



Chapter 1  Introduction 

Analysis of Genetics Risk Factors Associated with COVID-19 Severity 
 Page 6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  SARS-CoV 2 Virion Structure and Genomic Organization (Adopted 

from Zhang et al., 2021 and Pizzato et al., 2022). 
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Figure 1.2.  SARS-CoV 2 Infection Mechanism and Pathogenesis (Adopted and 

Modified Yan et al., 2022) 
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1.3. Genetic Factors Influencing COVID-19 Severity 
The clinical manifestations of COVID-19 are determined by interplay of both genetic 

and environmental factors. Genome-wide association studies  have revealed significant 

associations between host genetic factors (e.g., ACE2, ABO, TMPRSS2, TYK2, 

PPP1R15A, SLC6A20, IFNAR2, OAS, CCR2, CCR5, TLR7, SLC6A20,  HLA) and 

Susceptibility to SARS-CoV-2 infection (Khouri et al., 2023). These genetic factors 

impact the severity of infection through their roles in SARS-CoV2 entry receptors 

(ACE2), accessory proteases (TMPRSS2 and Furin), and immune system genes (HLA, 

cytokines). ACE2 and TMPRSS2 play crucial roles in determining susceptibility by 

affecting the binding of the spike protein. Polymorphisms in these genes have been 

linked to COVID-19 susceptibility, and studies have identified associations with ACE1 

polymorphism (Atiku et al., 2023) and variations in HLA alleles (Dobrijević et al., 

2023) as additional contributors to susceptibility. 

1.3.1. Angiotensin-I-converting enzyme 2 (ACE2) 

ACE2 functions as a primary receptor and attachment site for SARS-CoV-2, 

orchestrating the initial stages of viral engagement. In 2000, ACE2 was identified as 

the primary homologue of ACE. Its gene is located on chromosome Xp22.2 spanning 

39.98 kb of genomic DNA and comprising 18 exons (Donoghue et al., 2000). ACE2 is 

a zinc metalloprotease, a Type 1 integral membrane glycoprotein with a genomic 

structure similar to the initial 17 exons of ACE (Tipnis et al., 2000). It is widely 

expressed in tissues, with highest levels in the testis, small intestine, heart, kidneys, 

thyroid, and adipose tissue. Moderated expression is seen in the bladder, colon, liver, 

lungs, and adrenal glands, while ACE2 is relatively lower in the blood, blood vessels,  

bone marrow, brain, spleen and muscle, indicating diverse distribution with varying 

concentrations across specific tissues and organs (Lubbe et al., 2020). 

1.3.1.1. Structure and Functions 

ACE2 comprises 805 amino acids with a 17-amino-acid N-terminal signal peptide and 

a peptidase domain (aa 19-615) hosting the crucial HEXXH zinc-binding 

metalloprotease motif. The C-terminal collectrin-like domain (CLD) spans residues 616 

to 768, featuring a ferredoxin-like folded neck domain (615-726). The structure 

includes a 22-amino-acid transmembrane hydrophobic helix region and a 43-amino-

acid intracellular segment (Devaux et al., 2020). Resembling collectrin, ACE2's 
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conserved HEXXH motif in the PD characterizes zinc metalloproteinase that play a 

pivotal role in catalysis by chelating a zinc ion (Figure 1.3). 

ACE2 converts angiotensin I to Ang 1-9 and subsequently to Ang 1-7. The ACE2/Ang 

1-7/Mas pathway, mediated by the Mas receptor, promotes vasodilation and anti-

proliferative effects, counteracting the vasoconstrictor actions of the ACE/Ang 

II/AT1R pathway (Carpenter et al., 2022). This pathway offers cardiovascular and 

pulmonary benefits, protecting against inflammation, apoptosis, and remodeling in 

respiratory disorders (Liu et al., 2020a). It has protease-independent functions, 

including cleaving apelin-13 and regulating vasoactive peptides (Camargo et al., 2009). 

 

 

 

 

Figure 1.3. ACE2 Protein Structure and Function in RAAS 
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1.3.1.2. Role in SARS-CoV-2 Pathogenesis 

Angiotensin-converting enzyme 2 is significantly involved in the pathogenesis of 

SARS-CoV-2 (Kuba et al., 2021). As the primary cellular receptor for the virus, ACE2 

facilitates its entry into host cells, particularly those in the respiratory system. The 

interaction of the viral spike protein with ACE2 facilitates internalization of the virus 

through a series of steps, including membrane fusion and endocytosis (Shirbhate et al., 

2021). Furthermore, ACE2 is widely dispersed across a wide range of tissues, including 

the kidneys, heart, gastrointestinal tract, and lungs (Beyerstedt et al., 2021), this 

distribution may potentially explain the observed multi-organ involvement in severe 

cases of COVID-19. Additionally, the Interaction of SARS-CoV-2 with ACE2 receptor 

disrupts the renin-angiotensin-aldosterone system (RAAS) and this disruption can lead 

to elevated levels of angiotensin II, potentially contributing to inflammation and 

vasoconstriction (Ni et al., 2020). The resultant dysregulation of the RAAS could 

contribute to the severity of COVID-19, especially in triggering inflammatory reactions 

linked to acute respiratory distress syndrome as demonstrated in figure 1.4. 

 

 

 

Figure 1.4. ACE2 Significances in COVID 19 Pathogenesis 
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1.3.1.3. Polymorphism of ACE2 And Covid-19 Severity 

The ACE2 gene displays frequent genetic polymorphism, which may potentially 

influence the association between ACE2 and the S protein of SARS-CoV-2, impacting 

virus entry and mitigating lung and systemic damage in COVID-19 (Calcagnile et al., 

2021). In silico study of 290,000 samples identified ACE2 variants associated with 

increased susceptibility (S19P, T92I, I21V, K26R, T27A, N64K, I21V, Q102P, E23K, 

and H378R) and protective mutations (K31R, N33I, H34R, E35K, E37K, D38V, Y50F, 

N51S, M62V, K68E, F72V, Y83H, G326E, G352V, D355N, Q388L, and D509Y) 

(Suryamohan et al., 2021). Biochemical analyses revealed altered S-protein affinity in 

specific variants, with K31R and E37K showing decreased and K26R and T92I 

showing enhanced affinity. Soluble ACE2 variants K26R and T92I demonstrated 

increased efficacy in inhibiting S-protein pseudo typed virus entry, highlighting the role 

of ACE2 variations in SARS-CoV-2 susceptibility (Suryamohan et al., 2021). 

In a molecular docking study, six ACE2 missense variants (I21T, A25T, K26R, E37K, 

T55A, E75G) showed increased affinity for the receptor-binding domain  of SARS-

CoV-2 S protein compared to the wild type, while 11 variants (I21V, E23K, K26E, 

T27A, E35K, S43R, Y50F, N51D, N58H, K68E, M82I) displayed decreased affinity 

(Calcagnile et al., 2021). In another study focusing on ACE2 gene expression within 

the nasal epithelium, it was observed that children under 10 years of age displayed the 

lowest levels of ACE2 expression. This observation suggests a plausible correlation 

with milder presentations of COVID-19 in the pediatric demographic (Bunyavanich et 

al., 2020). 

In a research investigation involving individuals from Spain, the study highlighted the 

association between the C/C genotype at rs2106809 and the presence of the A allele at 

rs2285666 within the ACE2 gene, indicating their identification as risk factors for 

susceptibility to COVID-19 (Sabater Molina et al., 2022). However, a study on the 

Turkish population found no correlation between ACE2 rs2106809 and rs2285666 

polymorphisms and COVID-19 severity (Karakaş Çelik et al., 2021). On the contrary, 

findings from a German study demonstrated a correlation between the G/G genotype at 

ACE2 rs2285666 or the presence of the G allele and an almost twofold higher 

likelihood of SARS-CoV-2 infection. Additionally, individuals with this genotype or 
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allele exhibited a threefold elevated risk of experiencing severe disease or succumbing 

to COVID-19-related complications (Möhlendick et al., 2021). 

Through SNP genotyping, a research investigation identified five intronic SNPs 

(rs4646142, rs4240157, rs-6632677, rs2048683, and rs2074192) situated within ACE2, 

Notably, among these, rs6632677 and rs4646142 emerged as particularly promising 

genetic markers associated with increased susceptibility to COVID-19-related 

cardiovascular complications (Ma et al., 2022). In Saudi Arabian population, the 

correlation between the rs4240157 polymorphism in ACE2 and the severity of COVID-

19 was observed, where a high prevalence of alleles C was linked to severe outcomes. 

Additionally, a study from the Iranian Pasteur Institute, involving 1078 COVID-19 

patients, associated the ACE2 rs2285666 C/C genotype with increased mortality rates 

(Khalilzadeh et al., 2022). These findings highlight the intricate connection between 

severity of COVID-19 and ACE2 polymorphisms across diverse populations. 

1.3.2. Angiotensin-I-converting enzyme (ACE) 

ACE, a vital component of the renin-angiotensin aldosterone system (RAAS), 

significantly contributes to the pathogenesis of COVID-19. The angiotensin-converting 

enzyme (ACE) is a vital metalloenzyme which is encoded by a gene on chromosome 

17q23.3. The gene comprised of 26 exons and 25 introns with a total span of 21,313 bp 

(Riordan, 2003). The ACE gene gives rise to two distinct isoforms. Exons 1–12 and 

14–26 encode somatic ACE, which is widely expressed in a variety of cell types. 

However, germinal or testicular ACE is transcribed from exons 13–26. (Riordan, 2003).  

1.3.2.1. Structural features and functions 

Human somatic ACE is a type-I membrane-bound protein, presenting a heavily 

glycosylated 1227-residue extracellular part, a 22-residue transmembrane section, and 

28-residue cytosolic tail (Figure 1.5). The extracellular component comprises two 

catalytically active domains (N and C), each exhibiting homology and containing a 

zinc-binding motif. (Soubrier et al., 1988). 

ACE functions as a central regulator in diverse physiological processes. Primarily, it 

hydrolyzes angiotensin I to angiotensin II, contributing to the angiotensin-renin system 

and influencing blood pressure through vasoconstriction. ACE also participates in the 

kinin-kallikrein system, degrading vasodilator bradykinin. In neuropeptide regulation, 

ACE modulates synaptic transmission by cleaving hormones like substance P and 
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enkephalins (Skidgel et al., 1984). Additionally, it plays a role in opioid signaling, 

regulates hematopoietic stem cell differentiation, is implicated in cannabinoid 

signaling, and contributes to amyloid-beta metabolism (Hemming and Selkoe, 2005).  

 

 

Figure 1.5.  ACE Protein Structure 

 

1.3.2.2. ACE Role in SARS COV 2 Infection 

ACE is not directly involved COVID-19 pathogenesis. ACE converts Angiotensin-1 to 

Angiotensin-2, causing adverse effects through AT1 receptor binding. However, in 

SARS-CoV-2 infection, the virus engages ACE2 receptors, reducing ACE2 activity and 

disrupting the delicate ACE-ACE2 balance in RAAS. This disruption can lead to 

elevated ACE activity or reduced ACE2 expression, resulting in uncontrolled 

Angiotensin-2 levels. This imbalance potentially contributes to acute lung injury, 

characterized by increased vascular permeability, vasoconstriction, apoptosis, fibrosis, 

and heightened release of proinflammatory mediators (Zheng and Cao, 2020b). 

1.3.2.3. ACE Polymorphism and COVID-19 severity 

Genetic variations in the ACE gene, particularly ACE insertion/deletion polymorphism, 

referred as ACE I/D, are associated with COVID-19 distinct outcomes (Gomes et al., 

2022). The ACE D/D genotype is identified as a genetic risk factor for thromboembolic 

events in COVID-19 pneumonia patients (Calabrese et al., 2021). Multiple studies in 

diverse populations consistently showed a significant correlation between the ACE 

insertion/deletion and the clinical severity of COVID-19. The ACE I/I genotype 

appears to be protective, while the ACE D/D genotype is associated with an increased 
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risk of severe outcomes (Gunal et al., 2021; Gómez et al., 2020 and Verma et al., 2021). 

However, some studies did not find a significant association (Karakaş Çelik et al., 2021 

and Möhlendick et al., 2021). There are racial differences in ACE gene polymorphisms. 

Eastern Asian have a greater frequency of I allele, whereas African Americans exhibit 

the greatest prevalence of the D allele. The COVID-19 outcomes are consistent with 

these genetic variances; populations with a low occurrence of ACE I allele and high 

D/D genotype have higher fatality rates, while populations with a high frequency of 

ACE I allele and a low prevalence of ACE D/D genotype have significantly lower 

fatality rates (Zheng and Cao, 2020a). 

Research investigating the correlation between ACE gene polymorphisms and 

outcomes in COVID-19 cases, particularly rs1799752 and rs4341 variants, have yielded 

inconsistent and inconclusive results. Möhlendick et al., (2021) found no impact of 

ACE rs1799752 polymorphism, while Calabrese et al., (2021) suggested a connection 

between ACE D/D genotypes and elevated ACE levels in COVID-19. Saad et al., 

(2021) linked ACE rs1799752 polymorphism, particularly ACE I/D genotype, to an 

increased risk of COVID-19 and worse outcomes. Martinez-Gomez et al., (2022) in 

Mexico found no consistent evidence for rs1799752 and rs4344 polymorphisms in the 

ACE gene influencing COVID-19 outcomes. Alimoradi et al., (2022) identified ACE1 

rs4343 GG homozygote as a potential contributor to COVID-19 susceptibility. Iniguez 

et al., (2021) suggested that rs4343 polymorphisms could be predictive markers for 

COVID-19 severity, emphasizing the need for further investigation. 

1.3.3. Transmembrane serine protease 2 (TMPRSS2) 

TMPRSS2 plays a crucial role in COVID-19 as it facilitates the priming of the viral 

spike protein, promoting viral entry into host cells. TMPRSS2 is a transmembrane 

protease serine 2. It is encoded by a gene that spans approximately 43.59 kilobases (kb) 

on chromosome 21q22.3 and structurally organized into 14 exons and 13 introns 

(Paoloni-Giacobino et al., 1997). It exhibits two alternative splicing variants, generating 

transcripts of 3.25 kb and 3.21 kb (Park, 2010). Notably, TMPRSS2 features multiple 

androgen receptor elements (AREs) upstream of the transcription start site and within 

the first intron. This indicate potential regulatory influence by androgen signaling on 

TMPRSS2 expression, implicating its role in processes modulated by androgen activity 

(Shen et al., 2017). 
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1.3.3.1. Structure and Functions 

TMPRSS2 is a 492-amino acid long protein that exhibits a unique structure with a 

single-pass type II membrane arrangement (Paoloni-Giacobino et al., 1997). It is 

predominantly located on the cell membrane, has an external C-terminal serine protease 

domain and an N-terminal intracellular region. Notable structural elements include a 

catalytic triad in the protease domain, a Scavenger Receptor Cysteine-Rich Domain 

(SRDR), and a Low-Density Lipoprotein Receptor Class A Domain (LDLRA). 

TMPRSS2, initially expressed as a single-chain zymogen, undergoes self-cleavage to 

activate its proteolytic function (Wettstein et al., 2022). The majority of mature 

proteases remain membrane-bound, with a fraction possibly released extracellularly. 

This intricate process highlights TMPRSS2's regulatory role in cellular functions 

(Figure 1.6). 

The exact physiological role of TMPRSS2 is uncertain, but it appears to participate in 

anti-inflammatory processes in the lungs and prostate. In the lungs, it regulates 

epithelial sodium currents by cleaving an epithelial sodium channel. In the prostate, 

TMPRSS2 cleaves Proteinase Activated Receptor 2 (PAR2), a G-protein coupled 

receptor (Wilson et al., 2005). The phenotypic analysis of mice lacking the TMPRSS2-

encoded protease reveals that mice without TMPRSS2 appear to exhibit  normal 

function and unaffected phenotype (Kim et al., 2006). 

 

 

Figure 1.6. TMPRSS2 Protein Structure 

 

1.3.3.2. TMPRSS2 Role in SARS-CoV-2 Pathogenesis 

TMPRSS2 expression in the respiratory system plays a vital role in facilitating the virus 

interaction with host cells in the lungs, there by contributing significant role in the 

pathogenesis of COVID-19 (Liu et al., 2020b). Functioning as a cell surface protease, 
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TMPRSS2 plays a pivotal role in initiating the activation of viral S protein after its 

interaction with ACE2 receptors. This proteolytic activation is crucial for the 

subsequent fusion of the host cell membrane with virus and enable the virus to 

efficiently enter host cells and initiating the process of infection (Hoffmann et al., 

2020). COVID-19 severity is influenced by age and gender-related TMPRSS2 

variations (Ranjan et al., 2021). Pediatric patients experience milder disease, attributed 

to robust innate immune responses and lower steroid hormones (Mihalopoulos et al., 

2020). The male predominance in COVID-19 may be influenced by androgen-regulated 

TMPRSS2, while preadolescents exhibit a lower incidence of the virus. Hamon and 

Ween, 2022 findings suggest that the tissue-specific up regulation of TMPRSS2 in 

smokers has the Possibility to enhance the COVID-19 Severity. 

1.3.3.3. TMPRSS2 Polymorphism and COVID-19 Severity 

TMPRSS2 genetic variations play a central role in susceptibility of COVID-19, 

revealing the intricate interplay of host genetic factors. Analysis of TMPRSS2 gene 

expression reveals four variations (rs464397, rs469390, rs2070788, and rs383510) 

influencing lung tissue expression (Irham et al., 2020). Increased prevalence of up 

regulating TMPRSS2 variants in Europeans and Americans, compared to Asians, 

suggest an elevated COVID-19 infection risk. The T/T genotype of rs464397 is 

associated with increased TMPRSS2 expression (Sahranavard-Pirbazari et al., 2023). 

Four regulatory variations (rs112657409, rs713400, rs77675406, and rs11910678) are 

reported to have impact on TMPRSS2 expression highlighting their potential 

pathological relevance (Torre‐Fuentes et al., 2021). In a German cohort, an intronic variant 

known as rs383510 within the TMPRSS2 gene showed an association with an increased 

susceptibility to COVID-19 infection (Schönfelder et al., 2021). 

 The rs12329760 variant (C to T) is strongly correlated with Increased  severity of 

COVID-19 in Irani population and this study highlighted study the T allele as a risk 

factor (Yaghoobi et al., 2023). Polymorphisms, including rs2070788, rs7364083, 

rs9974589, and a sex related rs8134378 in TMPRSS2, related to sex, play pivotal role 

in both priming of viral proteins and cell adhesion. (Alshahawey et al., 2020). Androgen 

receptor-regulated TMPRSS2 expression, higher in male prostates, potentially explains 

sex-related COVID-19 differences, indicating a protective role for females (Asselta et 
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al., 2020). This contributes to increased virus entry, influencing the higher Fatality rate 

observed in male COVID-19 patients compared to females. 

A prevalent European haplotype linked to the TMPRSS2 gene is absent in Asians, but 

this haplotype is associated with androgen-responsive enhancement. This haplotype, 

involving specific SNPs (rs35041537, rs35899679 , rs34783969 , rs734056, rs4290734, 

rs55964536, rs11702475, rs34624090, rs35074065 and rs463727), is expected to 

selectively up regulate TMPRSS2 expression in response to androgens (Asselta et al., 

2020). Another identified variant, , enhances viral infectivity (Russo et al., 2020). 

 Specific variants, including rs77675406, rs464397, rs469390, and rs2070788, were 

associated with varying TMPRSS2 expression levels. The missense mutation in 

rs469390 showed the Increased pulmonary expression of TMPRSS2 in those with A/A 

carriers, while homozygous T/T genotypes of rs464397 and rs383510 exhibited the 

highest lung expression (Irham et al., 2020). For rs2070788, G/G genotypes displayed 

higher pulmonary TMPRSS2 expression. Variant allele frequencies related to elevated 

pulmonary TMPRSS2 expression were higher in American, African, and European 

populations compared to East Asian populations, potentially contributing to increased 

COVID-19 susceptibility (Irham et al., 2020). 

1.3.4. Human Leukocyte Antigens (HLA) 

The Human Leukocyte Antigen (HLA) system is a vital component of the immune 

system, playing a crucial role in providing immunity against infectious agents including 

SARS-CoV-2 infection. The immune system is a complex network designed to protect 

the body from various foreign antigens. It comprises two main types of defenses: innate 

immunity and adaptive immunity. Innate immunity provides immediate, antigen-

independent defense through anatomical, physiological, and inflammatory barriers, 

involving immune cells like phagocytes, natural killer cells, and dendritic cells. It lacks 

immunologic memory but can initiate an adaptive immune response. Adaptive 

immunity functions in an antigen-specific manner, featuring memory for faster 

responses upon re-exposure. T cells, originating in the bone marrow and maturing in 

the thymus, circulate and collaborate with antigen-presenting cells through unique 

receptors (TCRs). B cells, originating from bone marrow, directly recognize antigens, 

producing antibodies and forming memory cells for the humoral immune response. 

Both innate and adaptive immune responses are crucial for overall immune defense. 
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1.3.4.1. HLA System 

The HLA system, commonly referred to as the major histocompatibility complex, 

constitutes a crucial aspect of the immune system and regulated by genes situated on 

chromosome 6p21. These genes encode cell surface molecules designed for presenting 

immunogenic to the T-cell receptor on T lymphocytes. There are three main classes of 

HLA molecules: 

1.3.4.1.1. HLA Class I 

HLA Class I molecules, integral components of the HLA system, are essential for 

immune surveillance. Comprising classical genes (HLA-A, HLA-B, and HLA-C) and 

non-classical genes (HLA-E and HLA-F), they present endogenous antigens to CD8+ 

cytotoxic T cells. Classical genes initiate immune responses against abnormal cells, 

featuring high polymorphism for diverse antigen recognition. Non-classical genes, like 

HLA-E, modulate NK cell activity, and HLA-F contributes to immune regulation. The 

combined functions of classical and non-classical Class I HLA genes underscore the 

immune system's adaptability and efficacy in monitoring, responding to, and regulating 

immune reactions. 

1.3.4.1.2. HLA Class II  

HLA-II molecules are pivotal in presenting exogenous antigens to CD4+ helper T 

lymphocytes for triggering the immune system. Comprising classical genes (HLA-DP, 

HLA-DQ, and HLA-DR) and non-classical genes (HLA-DM, HLA-DO), these 

molecules have alpha and beta polypeptide chains forming a peptide-binding groove. 

Classical genes exhibit significant polymorphism, diversifying immune recognition, 

while non-classical genes, like HLA-DM and HLA-DO, contribute specialized 

functions for efficient and regulated immune responses. The coordinated actions of 

classical and non-classical HLA Class II genes emphasize their crucial role in 

orchestrating adaptive immunity. 

1.3.4.1.3. HLA class III 

The genomic HLA class III region is responsible for encoding numerous molecules 

crucial in the inflammatory response, encompassing complement components such as 

factor B, C2, and C4 as well as three heat shock proteins, lymphotoxin, and tumor 

necrosis factor-alpha. 
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1.3.4.2. Integral Role in Adaptive and Innate Immunity 

HLA system is vital for both adaptive and innate immunity. In adaptive immunity, HLA 

molecules play a crucial role in presenting antigens to T cells, facilitating activation, 

proliferation, and diversity. This polymorphic nature enhances the immune system's 

capacity to recognize a broad range of antigens. In innate immunity, HLA molecules 

regulate immune responses by interacting with NK cells, influencing their activity 

based on changes in infected cells. Moreover, the MHC class III region of HLA 

contributes to inflammatory responses, shaping innate immune reactions. 

1.3.4.3. HLA Significance in SARS-CoV-2 

Following infection, antigen-presenting cells process the spike antigen into peptides 

and present them via HLA class I to cytotoxic T cells, leading to the elimination of 

infected cells. Moreover, HLA class II presentation to CD4+ helper cells trigger B cell 

differentiation, generating memory B cells and plasma cells that produce neutralizing 

antibodies, thereby blocking viral interaction with the ACE-2 receptor (Figure 1.7). 

This coordinated immune response is pivotal in defending against SARS-CoV-2. 

1.3.4.4. HLA Polymorphism and COVID-19 Severity 

HLA gene variations significantly influence susceptibility, severity, and immune 

responses to SARS-CoV-2 infection. Analyzing individuals' HLA profiles reveals 

diverse manifestations of COVID-19, with specific HLA types associated with varying 

susceptibility.  

In the Sardinian population, the extended HLA-A*02:05, HLA-B*58:01, HLLA-

C*07:01 and HLA-DRB1*03:01 haplotype has been linked to provide immunity 

against COVID-19 infection, while the presence of HLA-DRB1*08:01 in the same 

population is linked with a negative impact on COVID-19 outcomes (Littera et al., 

2020). Specifically, in Italy, an increased occurrence of HLA-DRB1*08 was detected 

in COVID-positive individuals, correlating with increased mortality (Littera et al., 

2020). In another study peptide binding prediction analyses indicated that DRB1*08 

alleles lacked high-affinity binding to viral peptides (Amoroso et al., 2021). 

In the Chinese population, studies identified associations between increased 

susceptibility to adverse COVID-19 outcomes and the HLA-A*11:01, HLA-B*51:01, 

and HLA-C*14:02 alleles (Wang et al., 2020), while the HLA-B22 serotype, 

encompassing alleles B*54:01, B*55:01, B*55:07, B*55:12, and B*56:01, was 
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suggested as a potential susceptibility marker due to compromised binding to SARS-

CoV-2 (Yung et al., 2021). In Japan,  presence of the DRB109:01 allele was linked to 

heightened susceptibility to severe disease outcomes (Anzurez et al., 2021), and a 

Spanish study found associations Among particular HLA alleles and severity of 

COVID-19, including HLA-A32 being more common in healthy individuals and HLA-

B39 and HLA-C16 more prevalent in individuals with COVID-19 (Lorente et al., 

2021). 

 In Greece, positive associations were identified for HLA-DRB1*01 alleles in total 

COVID-19 patients, with hospitalized patients showing increased frequencies of HLA-

A*11, HLA-A*23, and DRB1*09 alleles (Weiner et al., 2021). In Iran, certain HLA 

alleles were elevated in moderate and critical cases, with a negative association between 

DRB104 and severe disease (Farahani et al., 2021). In the United States, HLA-B*51:01 

and HLA-A*26:01 alleles were potentially protective, while HLA-A*03:01, HLA-

DRB1*15:01, and the B44 serotype genotypes were positively associated, indicating 

increased severity in COVID-19 cases. An Indian study also associated specific HLA 

alleles with Severe manifestations of COVID-19 (Alnaqbi et al., 2022). 

In another Indian population study, HLA genotyping in 54 SARS-CoV-2-positive 

patients and 42 asymptomatic individuals revealed specific HLA alleles associated with 

severe COVID-19 cases, including HLA-C*04:01:01:01, HLA-DRB5*01:01:01:02, 

DQA1*03:01:01:01, HLA-DPB1*04:01:01:41, and HLA-DPA1*01:03:01:02, 

(Vishnubhotla et al., 2021). Additionally, in South Asian populations, higher 

frequencies of HLA-B*51 were associated with fatal cases, while HLA-B*35 was more 

prevalent in mild infections. The presence of DRB113 was significantly observed in 

fatal cases within the HLA class II group (Naemi et al., 2021). 
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Figure 1.7. Role of MHC I and MHC II in viral peptides presentation to T cells 
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1.4. A Pakistani Perspective on COVID-19 Research 

As of November 22, 2023, the global impact of COVID-19 has been substantial, with 

reported cases reaching 772,166,517 worldwide. South Asia, including Pakistan, 

reported a total of 61,210,423 cases, displaying comparatively lower infection and 

mortality rates than Europe and North America.  

From January 3, 2020, to November 22, 2023, Pakistan documented 1,580,631 

COVID-19 cases and 30,656 deaths, positioning itself as the third highest in reported 

cases among Asian nations. The first case was reported in Karachi on February 26, 

2020. Several factors contributed to the unique impact of COVID-19 in Pakistan (Raza 

et al., 2022).  

Genetic insights from research in the Pakistani population revealed a nuanced 

understanding of genetic variants influencing COVID-19 impact. Notable findings 

included infrequent ACE2 variations, with specific variants such as p.Pro86Leu and 

15C > G showing significant associations (Waryah et al., 2023). ACE2 polymorphisms, 

especially rs781378335 and rs2285666, independently correlated with severe COVID-

19, highlighting the genetic complexities of disease susceptibility (Sidhwani et al., 

2023). The study in the Asian population links Allele D of ACE insertion/deletion 

polymorphism to infection and mortality rates, indicating a potential genetic influence 

on COVID-19 susceptibility and outcomes (Pati et al., 2020). 

Studies on South Asian COVID-19 patients, including Pakistanis, underscored a 

significant correlation between HLA genotypes and infection severity. In fatal cases, 

HLA-B*51 frequency was notably higher, while HLA-B*35 prevailed in mild cases 

(Naemi et al., 2021). Additionally, DRB1*13 in HLA class II showed a significant 

increase in fatal cases (Naemi et al., 2021). Another investigation involving 92 

individuals diagnosed with COVID-19 emphasized a notable association between 

HLA-C*04 and HLA-B*35 alleles and COVID-19 severity, emphasizing the potential 

contributions of adaptive and innate immune responses (Tay et al., 2023). 

Understanding the intricacies of genetic variations will be crucial to understand host 

response against viral infection. 
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1.5. Aim and Objectives 

This study aims to identify genetic risk factors for COVID-19 severity in the Pakistani 

population through three main objectives: 

1. To explore severity-associated Single Nucleotide Polymorphisms (SNPs) in 

TMPRSS2 gene. 

2. To investigate the role of ACE insertion/deletion polymorphism in COVID-19 

severity. 

3. To explore potential link of HLA Class-I alleles with COVID-19 severity. 
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2. Materials and Methods 

2.1. Ethical Approval 

Ethical approval was needed for investigation, which involves acquiring blood samples 

from COVID-19 patients. In order to meet the ethical standards, the permission from 

Quaid-e-Azam University's Bioethics Committee (BEC). 

2.2. Sample Acquisition and Preservation 

To determine the association of genetic risk factors, patients were stratified into mild 

and severe groups, according to WHO definitions for the COVID-19 severity. The 10ml 

sterile syringes were used to draw blood samples from 131 COVID-19 patients 

belonging to different racial groups. To prevent coagulation these collected blood 

samples were transferred into EDTA tubes and stored at 4°C until DNA extraction. 

2.3. Genomic DNA extraction  

Genomic DNA extraction from blood is a process of isolating the genetic material from 

nucleated cells, primarily white blood cells. This involves breaking cell membranes, 

releasing cellular contents, and removing impurities, resulting in purified genomic 

DNA. Thermofisher Scientific's Genomic DNA Purification Kit was used to extract 

COVID-19 patient DNA using the following protocol: 

i. Lysis and Denaturation: 200 µl of patient blood sample was taken in an 

Eppendorf tube and 40 µl of lysis solution was added to it. The mixture was 

incubated for 5-10 minutes at 65°C. 

ii. Chloroform Extraction: After lysis 600 µl of chloroform was added. The 

solution was thoroughly mixed by inverting the tube several times and 

centrifuged at 10,000 rpm for 2 minutes. 

iii. DNA Precipitation: The aqueous layer was transferred to another tube. 720 µl 

of double distilled water was added to 80 µl of the concentrated Precipitation 

Solution. The aqueous phase was mixed with 800 µl of precipitation solution 

for 1-2 minutes by inverting the tube then centrifuged at 10,000 rpm for two 

minutes. 

iv. Solubilizing DNA Pellet: After discarding the supernatant, the DNA pellet was 

dissolved in 100 µl of NaCl solution by vortexing it.  
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v. DNA Ethanol Precipitation: 300 ul of ice-cold ethanol was added to 

precipitate the DNA by letting it sit for 10 minutes at -20°C. Then centrifuged 

at 10,000 rpm for 3-4 minutes. 

vi. Washing and Solubilizing: Residual ethanol was removed then DNA pellet 

was washed with 70 % cold ethanol and finally dissolved in 100 ul TE buffer. 

2.4. Quantification and Normalization 

Nanodrop (Titerteck-Berthold Technologies, Colibri, Germany) spectrophotometer is 

used for the quantitative assessment of extracted DNA. The Nanodrop works on the 

principle of Beer-Lambert Law, and it measures the concentration of extracted DNA at 

260 nm meanwhile it also takes absorbance at 280 nm and 230 nm for proteins and salts 

contamination respectively. The ratios it provides (A260/ 280 and A260 / 230) tell 

about purity of DNA samples. 

Following the quantification process, a calculated volume of nuclease-free water was 

added to dilute the DNA samples uniformly. The following formula was used to 

normalize the samples. 

Initial concentration x Initial volume = Final concentration x Final volume 

C1V1 = C2V2 

2.5. Agarose Gel Electrophoresis (1%) 

Qualitative assessment of stock and dilutions of the extracted DNA was done by using 

1 % agarose gel electrophoresis according to the following protocol:  

i. Agarose Gel Preparation: 1g of agarose was weighed and mixed into 100ml 

of 1X TBE buffer in a conical flask. The mixture was microwaved for 2-3 

minutes until the agarose was totally dissolved. To stain and highlight the 

DNA, 10µl of ethidium bromide (EtBr) was added to the gel after it had 

cooled for one minute. 

ii. Gel Casting: Gel caster was set, and comb was placed in it. The tray was 

filled with the melted agarose mixture. The air bubbles in the gel were 

removed by using a pipette tip. The gel was allowed to cool at room 

temperature so that it could polymerize. When the gel was polymerized, it 

was put into the gel tank with 1X TBE running buffer. 
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iii. Sample Loading: 3ul of DNA samples were mixed with 3ul of loading dye. 

Samples were loaded into the wells using a micropipette. 

iv. Electrophoresis: After connecting the gel apparatus to the power supply, the 

gel was run for 40-45 minutes at 100-110 volts until the DNA bands migrated 

sufficiently. 

v. Gel Visualization: The gel was visualized in the Syngene Bioimaging gel 

documentation system (Syngene, UK). 

2.6. Primer Designing 

2.6.1. Genotyping primers for ACE Polymorphism 

ACE insertion/deletion of Alu elements in intron 16 was first identified by (Rigat et al., 

1990). Tiret et al., (1993) designed two oligonucleotides for detection of 190bp 

fragment in absence and 490bp fragment in presence of Alu elements. Gómez et al., 

(2020) used these classical primers to detect the effect of ACE insertion/deletion in 

COVID-19. For ACE insertion/deletion investigation in COVID-19 patient included in 

the study same primer pair was used and in listed in table 2.1.   

2.6.2. Sequencing Primers for TMPRSS2 

SNPs in TMPRSS2 can help in explaining the difference in susceptibility of COVID-

19 in mild and severe group. Exon 3 having SNPs rs61735793, rs61735791 and 

rs3787950 have been selected due to earlier reports in several studies (Sahranavard-

Pirbazari et al., 2023). The Ensembl Genome Browser 

(https://asia.ensemblorg/index.html) was used to retrieve exon sequences and genomic 

locations of the chosen SNPs. 

The Primer3 software (https://primer3.ut.ee/) and NCBI Primer BLAST 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi) were utilized to pick 

primers for the chosen exon. The primer requirements, which included primer length, 

melting temperature (Tm), and GC content, were specified beforehand. 

2.6.3. Primer Quality Assurance 

To assess ACE and TMPRSS2 primer’s characteristics, including specificity, 

secondary structures, and melting temperature following online tools are used: 

i. BLAST-Like Alignment Tool (BLAT) aligns primers to a target genome or 

sequence database, which helps determine the specificity of the primers 



Chapter 2  Materials and Methods 

Analysis of Genetics Risk Factors Associated with COVID-19 Severity 
 Page 28 
 

(https://genome.ucsc.edu/cgibin/hgBlat). By locating probable off-target 

binding sites, this type of analysis aids in confirming that the primers precisely 

and specifically amplify the targeted genomic areas. 

ii. OligoCalc (http://biotools.nubic.northwestern.edu/OligoCalc.html) is a useful 

tool for primer assurance tests since it provides important information about 

primer design and optimization. Melting temperature (Tm) and GC content are 

two important details it provides that help with the accuracy of primer 

properties. 

iii. In silico PCR (https://genome.ucsc.edu/cgi-bin/hgPcr) is a computational 

approach. It simulates DNA amplification and predicts expected products. It 

determines primer specificity by comparing it to the target genome. This way, 

potential off-target sites are detected. Knowing original amplicon size helps to 

determine expected product sizes. 

2.6.4. HLA-A*11 Sequence Specific Primers 

Several studies have reported that certain HLA alleles are linked to a higher or lower 

risk of contracting SARS-CoV-2. For this study specific primers were designed to 

detect HLA-A*11 alleles according to phototyping protocol by (Bunce et al., 1995) 

2.6.5. Primers Quality Assurance 

Non-specific binding in the HLA sequence-specific primers was avoided by using two 

tools from the IPD-IMGT/HLA Database of the EMBL-EBI. The IPD-IMGT/HLA 

(https://www.ebi.ac.uk/ipd/imgt/hla/) Database is a specialized and comprehensive 

resource that provides information on the human leukocyte antigen (HLA) system. 

i. The Sequence Alignment Tool played a crucial part in the HLA allele analysis 

(https://www.ebi.ac.uk/ipd/imgt/hla/alignment/). The polymorphisms unique to 

every HLA allele were systematically identified using this method. 

ii. Probe and Primer Search Tool (https://www.ebi.ac.uk/ipd/imgt/hla/probe/) 

played a crucial role in ensuring the specificity of HLA allele-specific primers. 

Its functionality extends to ruling out nonspecific binding by highlighting the 

specific HLA alleles to which a particular probe or primer can potentially bind. 
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2.7. PCR Amplification 

Prior to ACE genotyping, TMPRSS2 sequencing and HLA typing, sample DNA was 

amplified through Polymerase Chain Reaction (PCR). In 1983 Kary Mullis invented 

PCR, a molecular biology technique (Mullis, K.B., 1990). It amplifies DNA, allowing 

the precise amplification of specific genomic regions as specified above.  

2.7.1. ACE, TMPRSS2 Amplification 

Prior to sequencing exon 3 of TMPRSS2 and ACE insertion/deletion genotyping, DNA 

sample of each included individual was used to amplify through procedure specified 

below; 

i. For the analysis of the 131 samples, 25 µL reactions were prepared using the 

reagent combination listed in table 2.2. 

ii. In 200 µL PCR tubes, a mixture comprising PCR buffer, MgCl2, dNTPs, 

forward and reverse primers, Taq polymerase and nuclease-free water, with 

volumes and concentrations as outlined in table 2.2, was prepared. 

iii. Following centrifugation, the tubes were transferred to a thermocycler 

(Biometra Germany). The thermocycler was programmed to run based on the 

specifications detailed in table 2.3. 

2.7.2. HLA Typing PCR with abm MasterMix 

The abm MegaFi™ Pro Fidelity 2X PCR MasterMix was used to perform HLA typing 

of 130 individuals in compliance with the protocol. 

i. 13µL reactions were prepared using the concentrations and volume 

requirements listed in table 2.3. 

ii. Reaction components were mixed and briefly centrifuged, then transferred to a 

thermocycler (Biometra Germany). The thermocycler was programmed to run 

based on the specifications detailed in table 2.4. 

iii. To validate the amplification, the PCR product was analyzed through 

electrophoresis on a 2% agarose gel by following protocol mentioned in section 2.5 

with slight modifications. 

2.8. ExoSAP-IT Purification of PCR Product 

ExoSAP-IT is a reagent used for purifying PCR products. It includes Exonuclease I and 

Shrimp Alkaline Phosphatase to remove leftover primers and nucleotides which 
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improves the accuracy of sequencing. The amplified PCR product underwent 

purification using the ExoSAP IT. PCR Product Cleanup Reagent following the 

protocol outlined below: 

i. Reaction Mixture Preparation: 7µl purification reaction was prepared by 

mixing 5µl PCR product with 2µl ExoSAP-IT. 

ii. Enzymatic Cleanup: The reaction was incubated at 37°C in the thermocycler 

for 15 minutes to eliminate leftover primers and nucleotides. 

iii. Enzyme Inactivation: Following the incubation period, ExoSAP-IT was 

heated in the thermocycler for 15 minutes to 80°C to deactivate it. 

iv. Product Purification: The cleaned PCR product was directly used for DNA 

sequencing. 

2.9. Sequencing 

The BigDye™ Terminator v3.1 Cycle Sequencing Kit (Thermofisher Scientific) was 

utilized for the sequencing of ACE2 and TMPRSS2 exons. 4µl (30–40 ng) of the 

ExoSAP purified PCR product, 4.0μl of the Terminator Ready Reaction Mix, and 1µl 

of the matching primer were combined in a 0.2 ml tube. To make up the remaining 

volume, 10μl of ddH2O was added. After mixing, centrifuging, and incubating for 25 

cycles at 96°C for 10 seconds, 50°C for 5–10 seconds, and 60°C for 4 minutes, the 

reaction was placed in the thermocycler. We kept the tubes in storage at 4°C. 

2.10. Sequencing Product Purification 
The BigDye XTerminator™ was used to purify the sequencing reaction in accordance 

with the subsequent protocol: 

i. The SAM solution was combined with the BigDye XTerminator™ beads after 

they had been vortexed for 8 to 10 seconds.  

ii. To prepare a 110µl SAM/BigDye XTerminator™ bead working solution, 45 µL 

of SAM solution and 90 µL of BigDye XTerminator™ bead solution was mixed 

together.  

iii. Each sample received the bead mix, and MicroAmp™ Clear Adhesive Film was 

used to seal the plate.  

iv. After centrifuging at 1000 g for two minutes, the 96-well plate was vortexed for 

20 minutes at 1,800 rpm. 
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2.11. Data Analysis 

2.11.1. ACE Genotyping by gel electrophoresis 

Genotyping of ACE insertion/deletion variations was conducted through 2% agarose 

gel electrophoresis. In order to genotype 10 µL of PCR product was mixed with 10 µL 

of loading dye and loaded on gel. The gel was subjected to electrophoresis for 45-50 

minutes at 100 to 110 volts. The amplified samples were resolved along with 100bp 

ladder and resultant bands were analyzed to detect insertion or deletion of Alu repeat. 

2.12.2. Sequencing Data Analysis 

The sequencing data was analyzed with several different software tools. BioEdit 

(http://www.mbio.ncsu.edu/BioEdit/bioedit.html), Sequencher® version 5.4.6 by Gene 

Codes and CLC Genomics Workbench (http://www.clcbio.com/products/clc-

genomics-workbench) were utilized for comprehensive examination. These tools allow 

thorough assessment interpretation and analysis of sequencing data. 

2.12.3. HLA Typing Gel Electrophoresis 

HLA typing of the selected samples were investigated by using 2% agarose gel 

electrophoresis in accordance with the comprehensive technique described in section 

4.8. A modification to the protocol involved filling the wells with 5µL of loading dye 

and 5µL of the HLA PCR product. The purpose of this modification was to improve 

the clarity of differentiation between any non-specific HLA bands and specific ones. 

The gel electrophoresis procedure took 45–50 minutes to complete, with an electrical 

voltage of between 100 and 110 volts. 

2.13. Statistical test 

2.13.1. Non-Parametric Test: 

For the data analysis, non-parametric tests, Fisher's exact test and the chi-square test 

are employed. These tests are distribution-free and require few distributional 

assumptions, particularly used when dealing with ordinal or categorical data, small 

sample sizes and situations where normality assumptions do not hold. 

2.13.2. Fisher's Exact Test: 

Fisher's exact test is used to determine significant associations between two categorical 

variables. The test is commonly used for analyzing data in contingency tables, 
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providing an exact p-value and odd ratios along with confidence intervals for 

determining statistical significance.  

2.13.3. Chi-Square Test: 

The chi-square test is a statistical test that is used to determine whether there is a 

significant association between two categorical variables. It is often applied to 

contingency tables, which display the joint distribution of the two variables.  

2.13.4. Contingency Tables: 

To facilitate the application of Fisher's exact test and the chi-square test, data is 

organized into either 2 by 3 contingency table for ACE and TMPRSS2 genotypes or 2 

by 2 contingency table to explore the association between ACE, TMPRSS2, and HLA-

A*11 alleles with the severity of COVID-19. 

2.13.5. Statistical Analysis Software: 

To perform Fisher's exact test and the chi-square the R project (https://www.r-

project.org/) and R Studio (https://posit.co/products/open-source/rstudio/) are used. R 

is a specialized programming language used for statistical analysis and it provides wide 

range of libraries and packages for specific analyses or visualizations. R Studio serves 

as an integrated development environment (IDE), designed to enhance the R coding 

experience by providing a user-friendly interface with tools for real-time code 

execution, plotting, and project management. Together, R and R Studio create a 

powerful environment for statistical computing, data analysis, and visualization. 
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Table 2.1.  ACE, TMPRSS2 and HLA Primers 

Primer Sequence Length Tm 
(°C) 

Product 
Size 

hACE 
Intron-16-F CTGGAGACCACTCCCATCCTTTCT 24bp 66.1 

191bp hACE  
Intron-16-R GATGTGGCCATCACATTCGTCAGAT 25bp 68.4 

hTMPRSS2 
Exon-3-F CACCCAGCCTTGTAGTACCTT 21bp 59.37 

609 bp hTMPRSS2 
Exon-3-R CAGGAAGAGAGTGGAAAGGCA 21bp 59.65 

HLAA*11 
Exon-2-3-F GACACGGAATGTGAAGGCCCAG 22bp 58.6 

552bp HLAA*11 
Exon-2-3-R GAGCCACTCCACGCACCG 18bp 59.7 

HLA Typing Control Primer 
hAPC 
EX-15-F TCTTAATTTACCAGTGAGGGACG 23bp 57.92 

251bp hAPC 
EX-15-R TAAGAGTGCCAACCAAAAATGC 22bp 58.01 

 

Table 2.2. PCR Reagents 

Reagent Volume Required (per 25µl 
Reaction) 

10X Taq. Buffer with (NH4)2SO4 2.5µl 
Magnesium Chloride (25Mm) 1.5-2µl 
dNTPs (10Mm) 0.5µl 
Forward Primer (10Μm) 1µl 
Reverse Primer (10Μm) 1µl 
Template DNA 2µl 
Taq. Polymerase 0.2µl 
Nuclease Free Water Remaining Volume (15.8-16.8µl) 

HLA Typing (MegaFi™ Pro Fidelity 2X PCR MasterMixper 13µl reaction) 

MegaFi™ Pro Fidelity 2X PCR MasterMix 6µl 

Template DNA 2µl (40-60 ng/µl) 

Primer Mix (10nM conc. per primer) 1µl 

Nuclease Free Water Remaining Volume (6.8µl) 
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Table 2.3. PCR Profile for ACE and TMPRSS2 

Step Cycles Temperature (°C) Time 

Initial Denaturation    95° 10 min 

Denaturation 
40 

95° 1 min 

Annealing 60° - 64° 1 min 

Extension 72° 20s - 1 min 

Final Extension   72°  10 min 

Pause   4° ∞ 

 

Table 2.4. PCR Profile for HLA Typing 

Step Cycles Temperature (°C) Time 

Initial Denaturation    95° 5 min 

Denaturation 
35 

95° 15 min 

Annealing 60° 15 min 

Extension 72° 30s 

Final Extension   72°  5min 

Pause   4° ∞ 

 

Table 2.5. Agarose Gel Reagents 

Reagent Required Volume (per 100ml gel) 

Agarose 1-2g 

1X Tris-borate-EDTA (TBE) buffer 100ml 

Ethidium bromide (EtBr) 10µl 

Loading dye 3µl 
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3. Results 

3.1. Study Cohort  

This study comprises a cohort of 131 samples who were tested positive for COVID-19. 

The collected samples were divided into Mild and Severe groups based on their 

symptoms and disease severity after COVID-19 infection. The mild group has 53 

samples and severe group has 78 samples, respectively. The severe group include 

patients who exhibit pronounced symptoms, including severe pneumonia, shortness of 

breath, high fever, persistent cough, lack of oxygen and organ failure. The patients in 

Mild group are characterized by milder symptoms such as mild respiratory symptoms, 

general discomfort like fatigue and body aches, low-grade fever, and no or mild 

pneumonia.  

3.2. ACE Genotyping 

To explore the association of COVID-19 severity with ACE insertion/deletion (I/D) 

polymorphism (rs4646994), genotyping was conducted by polymerase chain reaction 

(PCR) followed by gel electrophoresis. The genotyping was carried out on 131 samples 

belonging to mild and severe groups. The ACE allele status was judged by the analysis 

of bands obtained on agarose gel. A 190bp PCR product indicates deletion or absence 

of Alu element, whereas 490bp PCR product indicates presence of Alu repeat (Figure 

3.1).  

Among 131 samples, in 40 individuals are homozygous for single 190bp band and are 

thus labeled as D/D genotype. In 63 individuals, the presence of both 190bp and 490bp 

bands suggests the heterozygous I/D genotype, whereas in 28 individuals a single 490bp 

band, indicated homozygous I/I genotype. 

In the subgroup analysis of mild group having 53 individuals, 17 were homozygous I/I, 

23 showed the heterozygous I/D genotype, and 13 had the homozygous D/D genotype. 

Among 78 severe cases, 11 individuals had the homozygous I/I genotype, 40 had 

heterozygous I/D genotype, and 27 had the homozygous D/D genotype.  

3.3. ACE Sequencing 

To confirm the presence and absence of Alu repeat, Sanger sequencing was performed 

on two representative samples. The sequencing result of a D/D homozygote individual 
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confirmed the absence of Alu repeat in 190bp amplified product (Figure 3.2), whereas 

the sequencing of I/I homozygote individual identified the insertion of a 289 base pairs 

of a Alu repeat sequence in intron 16 of ACE gene (Figure 3.3). Further sequence 

comparison of identified insertion of 289bp revealed features consistent to previously 

reported sequence of I/I allele (Figure 3.4) (Manson et al., 2010). Alu repeat have left 

arm towards 5’ end, in middle linker sequence, right arm towards 3’ and Poly-A tail, 

structural features includes Retinoic Acid Receptor response element (RARE) 

sequence, ERE-like sequence identified in the 3’ and 5’ arms (Figure 3.4). 

3.4. TMPRSS2 Sequencing  

To investigate the association of two missense variants (rs61735793, rs61735791) and 

a synonymous variant rs3787950 present in TMPRSS2 gene in 131 individuals, 

comprising 78 severe and 53 mild cases as mentioned in section 3.1. 

The synonymous variant rs3787950 (g.41494369T>C) was detected in 27 individuals, 

constituting 20.7% of the cohort of 131. This specific variant involves an A to G 

substitution at the 225th position in exon 3 of TMPRSS2. Importantly, this substitution 

in the codon does not induce a change in the protein sequence (p. Thr75=). 

Further analysis revealed that rs3787950 was observed in 17 patients from the severe 

infection group and 10 patients from the mild infection group. In severe group this SNP 

is present in the heterozygous (A/G) state whereas in mild group 2 out of 10 individuals 

were homozygous G/G and remaining 8 have heterozygous A/G genotype.  

3.5. HLA Typing  

This study also looked at HLA-A*11 alleles in 130 COVID-19 samples. The results 

revealed distinct HLA-A*11 patterns among the severe group. 552bp PCR product 

indicates presence of HLA-A*11 and 251bp PCR product indicate control APC allele. 

Notably, 38 out of 78 individuals (48.7%) in the severe group exhibited the presence of 

HLA-A11, whereas in mild case 33 out of 53 individuals (62.3%) showed the HLA-

A*11 type. 
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3.6. Statistical Analysis  

3.6.1. ACE 

3.6.1.2. Genotypic association 

To investigate association of ACE insertion/deletion (I/D) polymorphism with COVID-

19 severity, Fisher's Exact Test and Pearson's Chi-squared Test were used. Fisher's 

Exact Test yielded a p-value of 0.04676, indicating sufficient evidence for ACE I/D 

polymorphism association with COVID-19 severity. Similarly, Pearson's Chi-squared 

test reported a statistic of 0.978 with 2 degrees of freedom and a p-value of 0.0444, and 

also supports a significant association between ACE I/D polymorphism association 

with COVID-19 severity.  

3.6.1.2. Allelic Association 

The Investigation of ACE allelic association with disease severity, also yielded a p-

value of 0.03153 with Fisher's Exact Test and thus indicate a significant association 

between ACE allelic status and C0VID-19 severity. The odds ratio estimate was 1.7598, 

with a 95% confidence interval ranging from 1.0391 to 2.9945. Pearson's Chi-squared 

Test yielded a statistic of 4.4615 with 1 degree of freedom and a p-value of 0.03467 

and support significant association. 

Overall, the results from both tests consistently point to a statistically significant 

association between ACE allelic status and disease severity. The observed p-values 

falling below the conventional significance level of 0.05 support the conclusion of 

association.  

3.6.1.3. Dominant Model II + ID vs. DD    

Dominant model is designed to determine if the I allele with dominant effect is 

associated with severity of COVID-19. Fisher's Exact Test (p-value 0.25) and Chi-

squared Test are performed for dominant model for the ACE I allele and they do not 

provide evidence for a significant association with disease severity (Table 3.1). The 

odds ratio of 0.616 indicates a negligible effect, and the 95% confidence interval 0.257 

to 1.424 further supports the non-significant effect (Table 3.1). 

Similarly, the Chi-squared Test produced a chi-squared value of 1.0756 with 1 degree 

of freedom yielded a p-value of 0.2997, and further supports the absence of a significant 
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association. Therefore, based on the statistical analysis the dominant effect of ACE I 

allele does not appear to exert a considerable influence on the likelihood of severe 

outcomes in COVID-19. 

3.6.1.4. Recessive Model II vs. (DD + ID)   

Recessive model is designed to determine whether the Alu insertion in the ACE has 

recessive effect or not. During statistical analysis, Fisher's Exact Test yielded a p-value 

of 0.01735 and Chi-square test resulting chi-squared value of 5.0434 with 1 degree of 

freedom yielded a p-value of 0.02472, and thus revealed significant evidence for 

recessive effect of ACE I allele (Table 3.1). The Alu deletion is more frequent 

(67/78=85.8%) in individuals in severe group (either homozygous or heterozygous), 

indicating deletion of Alu has significant effect. Thus, individuals with I allele exhibit 

a reduced likelihood to develop severe disease, indicating the potential role of ACE I/D 

polymorphism in influencing disease outcome. 

3.6.2. TMPRSS2 (rs3787950) 

Similar analysis of TMPRSS2 variant (rs3787950) genotype association with COVID-

19 disease severity, with Fisher's Exact Test produced a p-value of 0.1744, surpassing 

the significance threshold of 0.05, indicating no significant association between 

TMPRSS2 genotype and disease severity (Table 3.2). The Chi-Square test is not 

applicable as frequency of G/G genotype is less than 5 (Table 3.2). 

Fisher's Exact Test reported a p-value of 1, suggesting no significant association for 

alleles and disease severity. The odds ratio estimate was 1.0436, with a 95% confidence 

interval ranging from 0.4332 to 2.4419 further support it. The Chi-Square Test statistic 

0.13939 with 1 degree of freedom and a p-value of 1, signifying no significant 

association. Both tests showed lack of evidence for a statistically significant association 

between TMPRSS2 allelic status and disease severity (Table 3.2). 

3.6.3. HLA -A*11 

The Fisher's Exact Test for the HLA-A*11 allele association with disease severity 

yielded a p-value of 0.154, odds ratio is 0.578194, with a 95% confidence interval from 

0.2649773 to 1.2411943. The p-value is above the 0.05 significance threshold, 

indicating no effect of HLA-A*11 allele on disease severity. Pearson's Chi-squared Test 
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resulted in a p-value of 0.1774, also exceeding 0.05, leading to the same conclusion 

(Table 3.2). 

In summary, the combined results from Fisher's Exact Test and Pearson's Chi-squared 

Test, there is no compelling evidence supporting a significant relationship between the 

presence of the HLA-A*11 allele and disease severity. The p-values exceeding the 

conventional significance level of 0.05 indicate a lack of statistical significance, and 

the odds ratio estimate with its confidence interval reinforces the absence of a 

association between the HLA A11 allele and disease severity in cohort of 131 samples 

included in this study. 
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Figure 3.1. 2% Agrose gel representing ACE allele. Lane 11 with 190bp band 

represents the homozygous deletion of Alu repeat, but lane 4 with 490bp band represent 

homozygous insertion of Alu repeat and lane 6 with both bands represents heterozygous 

status of respective individual. 

 

 

 

 

Figure 3.2. Sanger sequencing chromatogram for ACE allele without Alu repeat. This 

sequence was obtained from an individual homozygous for ACE Alu deletion and has 

a PCR product size of 190bp. 
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Figure 3.3. Sanger sequencing chromatogram for ACE allele with Alu repeat. This 

sequence was obtained from an individual homozygous for ACE Alu insertion. 

Underline sequence represents insertion and has a PCR product size of 490bp. 
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Figure 3.4.  ACE alleles sequence with and without Alu repeat. The characteristic 

features of Alu repeat are also shown. 
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Figure.3.5. HLA-A*11 allele (552bp) and Control (APC, 251bp) on 2% agarose gel 

 

 

 

 

Figure 3.6. TMPRSS2 variant rs3787950.  No A to G substitution (c.225A>G) was 

detected in this individual and have homozygous A/A genotype  
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Figure 3.7.  TMPRSS2 variant rs3787950. The representative individual has A to G 

substitution (c.225A>G) and is heterozygous A/G. 

 

 

 

 

 

Figure 3.8. TMPRSS2 variant (rs3787950). The representative individual has A to G 

substitution (c.225A>G), and is homozygous G/G
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Table.3.1. Statistical analysis of ACE I/D Polymorphism (rs4646994) 

  Severe 
N=78 

Mild 
N=53    

Fisher’ Exact Test        Chi Square Test 

p-value Odd Ratio 95% CI X-square df p-value  

ACE Genotypes                

D/D 27 13 
0.04676 - - 0.978 2 0.0444 I/D 40 23 

I/I 11 17 

ACE Alleles               

D 94 49 
0.03153 1.759811 1.039107 - 2.994487 4.4615 1 0.03467 

I 62 57 

II + ID vs. DD Dominant Model           

I/I +I/D 51 40 
0.25 0.616154 0.2570157-1.4236068 1.0756 1 0.2997 

D/D 27 13 

II vs. (DD + ID)  Recessive Model           

I/I 11 17 
0.01735 0.350662 0.1327574-0.8911837 5.0434 1 0.02472 

D/D+I/D 67 36 
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Table 3.2 Statistical Analysis of TMPRSS2 and HLA-A*11 

  Severe 
N=78  

Mild 
N=53     

Fisher’ Exact Test        Chi Square Test 

p-value Odd Ratio 95% CI X-square df p-value  

TMPRSS2 (rs3787950) Genotypes             

A/A 61 41 
0.2889 - - Not Applicable A/G 17 8 

G/G 0 2 

TMPRSS2 (rs3787950) Alleles            

A 139 94 
0.566 1.24318 0.5387176- 2.8282974 0.13939 1 0.7089 

G 17 12 

HLA-A*02                 

Present 38 33 
0.154 0.57819 0.2649773-1.2411943 1.819 1 0.1774 

Absent 33 20 
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Figure 3.9.  Graphic representation of ACE and TMPRSS2 genotype data in Severe 

and Mild groups 

 

 

Figure 3.10. Graphic representation of allele frequencies of ACE, TMPRSS2 and 

HLA-A*1
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4. Discussion 

Coronavirus Disease 2019 (COVID-19) is a recently emerged infectious disease that is 

caused by a novel corona virus named as Severe Acute Respiratory Syndrome 

Coronavirus 2 (Wang et al., 2020). This virus was first discovered in China in 

December 2019 and soon after its identification, it spread globally and caused 

pandemic. The virus shows variations in infection patterns among individuals resulting 

in different disease phenotypes as some individuals are highly susceptibility to the 

virus, while others may remain resistant or asymptomatic.  The dynamic nature of 

COVID-19 indicates the importance of genetic and environmental risk factors and 

intricate interplay of both factors results in different outcomes of COVID-19 related 

clinical presentation. There are several genetic risk factors and their associated genetic 

variations which play an important role in the severity of disease and host immune 

response against infection. The virus entry into human cells depends on ACE2, DPP4, 

GRP78, AXL, TMPRSS2, FURIN, NRP1 and Cathepsin L (Deng et al., 2021). TLR3, 

IRF7, IRF9, TICAM1/TRIF, UNC93, TRAF3, TBK1, IRF3, NEMO/IKBKG, 

IFNAR1, IFNAR2, STAT1, STAT2  and HLA alleles play role in adaptive and innate 

immunity (Velavan et al., 2021). This study intends to explore the association of 

TMPPRSS2, HLA-A*11 and ACE polymorphisms with disease severity. 

The Renin-Angiotensin-Aldosterone System (RAAS) plays a crucial role in regulating 

blood pressure and maintaining homeostasis (Fountain et al., 2023). During infection 

virus engages with ACE2 through its spike to gain entry in host cells and in this way 

normal function of ACE2 get compromised. As a result, angiotensin-II level is 

increased which causes inflammation, increased blood pressure due to vasoconstriction 

and other cardiovascular problems as commonly seen in COVID-19 patients. RAAS 

homeostasis also get disturbed due to Genetic variations in ACE and ACE2 genes, such 

as the ACE insertion/deletion (ID) polymorphism (rs4646994) (Gómez et al., 2020). 

The ACE I/D polymorphism involves the insertion or deletion of approximately 290bp 

of Alu repeat in intron 16. Alu repeats, a mobile DNA elements, covering 11% of the 

genome  (Deininger 2011). These are capable of self-transcription through the reverse 

transcription process and randomly get inserted in coding as well as in non-coding 

region and can potentially affect gene expression. 
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Insertion/deletion ACE polymorphisms exhibit significant geographical and ethnical 

variability, where the frequency of I allele is increased in Asian and African populations 

compared to Caucasians (Hubacek et al., 2021). Several studies have explored the ACE 

I/D polymorphism and they found that this genetic variation has significant effect on 

susceptibility and severity of COVID-19. Yamamoto et al., (2020) explored the impact 

ACE insertion/deletion polymorphism on SARS-CoV-2 infection and found ACE I/I 

genotype negatively correlation with both the number of SARS-CoV-2 cases and 

deaths, indicating a potential influence on COVID-19 prevalence and clinical 

outcomes. Verma et al., (2021) also investigated the association of ACE I/D 

polymorphism with COVID-19 severity in 269 confirmed cases and he found higher 

frequency of ACE DD genotype and D allele in severe COVID-19 patients. These 

results suggest that ACE genotype may influence COVID-19 clinical outcome, 

potentially serving as a predictive marker for risk and severity. Pati et al., (2020) studied 

data from various Asian countries and explored the association between ACE gene 

insertion/deletion (I/D) polymorphism and SARS-CoV-2 infection outcomes and 

reveals a significant positive correlation of the D allele with both SARS-CoV-2 

infection rate and mortality. But another study conducted by Hubacek et al., (2021), 

contradicted their findings. He investigated the ACE insertion/deletion (I/D) 

polymorphism in 408 SARS-CoV-2-positive individuals (163 asymptomatic, 245 

symptomatic) compared with a control group of 2,559 subjects. The frequency of ACE 

I/I homozygotes is significantly higher in symptomatic COVID-19 patients, indicating 

a potential link to increased severity. This suggests that ACE I/D polymorphism may 

serve as a predictor for the severity of COVID-19, with I/I homozygotes having an 

elevated risk of symptomatic infection. 

Our study also explored the effect of ACE I/D polymorphism in a cohort of 131 

individuals, categorized into mild and sever groups based on their clinical status. ACE 

genotyping results showed that deletion of ALU repeat is more common in individuals 

who exhibited severe symptoms than individuals with mild symptoms. Statistical 

analysis results for both ACE genotypic association (Fisher’Excat Test p-value = 

0.04676; Chi Square Test p-value = 0.0444) and ACE allelic association (Fisher’Excat 

Test p-value = 0.03153; Chi Square Test p-value = 0.03467) show significant 

association between COVID 19 severity and ACE I/D polymorphism. According to 

these results individuals in which Alu repeat is deleted are prone to severe outcomes of 
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COVID-19 disease. Our results are consistent with earlier studies of Pati et al., (2020), 

Verma et al., (2021) and Yamamoto et al., (2020). 

 In order to explore whether the effect of insertion of ALU repeat element is dominant 

or recessive, dominant (II + ID vs. DD) and recessive (II vs. DD + ID) models were 

analyzed. The Dominant model indicates that presence of Alu repeat in single allele is 

enough for causing severe outcome while recessive models requires the presence of 

both alleles to cause its effects. During statistical analysis, non-significant results 

obtained for dominant model (Fisher’Excat Test p-value = 0.25; Chi Square Test p-

value = 0.2997) but significant results were obtained for recessive model (Fisher’Excat 

Test p-value =0.01735; Chi Square Test p-value = 0.02472. These results indicate that 

individuals homozygous for Alu repeat insertion are less likely to experience severe 

outcome of infection. In COVID-19 patient ACE level   may also rise due to deletion 

of Alu repeat. As these repeats have ability to regulate gene expression due to presence 

of regulatory element and high abundance of CpGs dinucleotide which are under 

epigenetic control. 

HLA system also plays a pivotal role in the adaptive immune response to SARS-CoV-

2 in COVID-19(Augusto et al., 2023). The diverse HLA genetic polymorphisms in class 

I and class II influence antigen presentation to CD8+ and CD4+ T cells, facilitating a 

robust and diverse T-cell response against viral proteins. HLA Class I alleles present 9-

8 amino acid viral peptides to T- cells. Some alleles of HLA class I are highly efficient 

in presenting diverse T-cell epitopes and produce strong immunity against viral 

infection. As SARS-COV-2 show similarity with other coronaviruses both at genome 

and protein level (Abdelrahman et al., 2020). The individuals that are already exposed 

to other corona virus are more likely to develop strong immunity against infection as 

they already develop T-cell mediated immunity upon exposure of SARS-Cov-2. 

Several Insilco and observational studies have been conducted to explore the effect of 

HLA-A*11 and other HLA alleles with severe disease outcome. Nguyen et al., (2020) 

conducted an extensive Insilco study that covered 145 HLA genotypes and assessed 

viral peptides binding strength across a diverse range of HLA alleles. HLA-A*11:01 

allele binds numerous SARS-CoV-2 peptides (n=750) and experimentally validated 

with GLMWLSYFV binding. Tomita et al., (2020) found a higher COVID-19 risk 

associated with HLA-A*02:01, suggesting lower efficacy in presenting SARS-CoV-2 
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antigens compared to HLA-A*11:01 and HLA-A*24:02.  These studies suggest that 

individuals with HLA-A11:01 genotypes may have a more efficient T-cell-mediated 

antiviral response and act as protective allele. 

On the contrary, studies discussed below proposed that HLA-A*11 has a non-protective 

effect and is associated with increased severity and mortality of the disease. Chinese 

population study analyzed 332 COVID-19 patients across different severity levels and  

links HLA-A*11:01, B*51:01, C*14:02 alleles to increased COVID-19 severity and 

susceptibility (Warren and Birol, 2020). Warren and Birol, (2021) analyzed 126 

patients (100 COVID-19 positive, 26 COVID-negative) and found DPA1*02:02 allele 

associated with COVID-19 (29%, p=0.0174) but not linked to hospitalization risk. 

Their study also showed that A*11:01, C04:01 and DQA1*01:02 alleles were 

associated with COVID-19 severity (p=0.0078, p=0.0087, p=0.0121). Observational 

study on 3886 healthy controls and 72 COVID-19 patients conducted in Spain (Lorente 

et al., 2021) also showed that HLA-A*32 being more prevalent in controls and HLA-

B*39 and HLA-C*16 in COVID-19 in patients. Japanese study on 137 mild and 53 

severe COVID-19 cases identified HLA-A*11:01:01:01 and HLA-C*12:02:02:01-

HLA-B*52:01:01:02 as significantly associated with COVID-19 severity using high-

resolution sequencing-based typing for eight HLA genes (Khor et al., 2021). 

Our study also explored the class I HLA-A*11 allele association with mild and severe 

group of COVID-19. Genotyping results showed that HLA-A*11 is frequently present 

in 131 cohort of COVID-19 positive individuals in 48% individuals in severe group and 

in 62% individuals in mild group. But statistical results (Fisher’Excat Test p-value = 

0.154; Chi square Test p-value = 0.1774) showed non-significant effect of HLA-A*11 

with disease severity. 

TMPRSS2 is another important host genetic risk factor that may play pivotal role in 

SARS-COV-2 pathogenicity (de Andrade et al., 2022). Virus use ACE2 receptor in 

synergy with TMPRSS2 to gain entry in host cell. (Bestle et al., 2020). Genetic 

variation in TMPRSS2 may play an important role in variable outcomes of COVID-19 

in individuals belonging to different ethnicities. 

Sekiya et al., (2022) found common missense variant rs12329760 as a molecular 

detriment of COVID-19 susceptibility in East Asian population as this variant replace 

normal valine with methionine at 160 of TMPRSS2 protein. Contrary to findings in 
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European populations study, in Iranian COVID-19 patients found a significant 

association between the TMPRSS2 gene variant rs12329760 (C to T), specifically the 

minor T allele, and increased severity of the disease (Yaghoobi et al., 2023). 

Polymorphisms, including rs2070788, rs7364083, rs9974589 and rs8134378 in 

TMPRSS2, play crucial roles in viral protein priming and cell adhesion (Alshahawey 

et al., 2020). Androgen receptor-regulated TMPRSS2 expression, higher in male 

prostates, potentially explains sex-related COVID-19 differences, indicating a 

protective role for females (Asselta et al., 2020).TMPRSS2 gene polymorphisms, 

including rs12329760 (T allele), are associated with increased risk of COVID-19 

susceptibility and severity. Rokni et al., (2022) observed differences between severe 

and non-severe cases, and specific TMPRSS2 genotypes (rs17854725 A > G, 

rs12329760 C > T, rs4303795 A > G) and linked to a more invasive disease pattern. The 

AG genotype of rs17854725 A > G was associated with higher mortality(Rokni et al., 

2022).  

Our study explores the role of two missense and one synonymous variant in Pakistani 

population. Sanger sequencing of 131 samples showed variation only for synonymous 

variants. Minor alleles are present in only 11% of individuals. A/A genotype is more 

common than A/G and G/G. Statistical results for genotypic association (Fisher’Excat 

Test p-value = 0.1744; Chi Square Test p-value = 0.1557) and allelic association 

(Fisher’Excat Test p-value = 1; Chi Square Test p-value = 1) show no significant 

association as in both cases p-values are non-significant. 
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5. Conclusion 

This study concludes that ACE functional insertion/deletion polymorphism has a 

significant impact on COVID-19 severity and individuals having deletion of Alu repeat 

in ACE gene are at higher risk of developing severe outcomes of COVID-19 disease 

than individual with Alu insertion. TMPRSS2 rs3787950 variant is detected in 11% 

individuals, but this variant is also not significantly associated with disease severity. 

HLA-A*11 distribution is not different among mild and severe group and is also not 

associated with COVID-19 severity in our cohort. In future, expanding genetic 

investigations will uncover additional variants and risk factors that may contribute to 

COVID-19 severity. A broader exploration of the genetic landscape, coupled with 

larger sample sizes, can provide a more comprehensive understanding of the interplay 

between host genetics and COVID-19 outcomes. 
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