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Abstract 

Cancer stands as one of the deadliest diseases worldwide, claiming a significant number of 

lives. It's a complex condition influenced by various factors, including physical, chemical, 

and biological carcinogens. Cancer can be broadly categorized into genetic or somatic 

forms, with somatic cancer involving DNA changes or damage as a primary cause. 

Hypermutation, characterized by an excessive number of mutations in cancer cells, further 

divides into microsatellite instability (MSI-High and MSI-Low) and microsatellite stability 

(MSS). In recent years, immunotherapy has emerged as a promising and relatively low-

side-effect approach to cancer treatment. Recent findings reported promising results of 

immunotherapy in MSI. This study focuses on MSS samples with higher mutation burden 

has potential for immunotherapy. To achieve this, we examined hypermutated cancers, 

including UCEC, COAD, READ, PAAD, STAD, UCS and ESCA, utilizing TCGA data. 

This analysis includes transcriptomic and differential gene expression analysis using 

cBioPortal and the edgeR package in R for Next-Generation Sequencing (NGS) data. 

Among the key mutations contributing to MSS, the POLE gene mutation emerged as a 

major player, alongside other reported mutations like APC R1114* and ZNHIT6 R258*. 

This study incorporated a total of 42 hypermutated samples. From this analysis, we 

uncovered common upregulations in genes like DKK4, FGF20, and HMX2 corelated to 

POLE mutations, as well as TSIX, GNG4, GSTM1, ALDH1A1, and CPS1 corelated to 

APC mutations. Additionally, HOXC5 and LMO3 were upregulated corelated to ZNHIT6 

mutations. Conversely, downregulation was observed in AKR1B10 and AKR1C2 

corelated to POLE mutations, HOMER2 and FGF19 corelated to APC mutations, and IHH, 

UGT2B7, and OGDHL due to ZNHIT6 mutations. Furthermore, a differential expression 

analysis conducted in UCEC, STAD, and CRC identified MUC5AC and CXCL5 as genes 

involved in inflammation and apoptosis. Pathway analysis revealed their potential 

connection to the IL-17 signaling pathway and immune response. Therefore, this study 

suggests that the upregulation and downregulation of common genes in CRC and UCEC, 

along with the interaction of MUC5AC and CXCL5 with the IL-17 pathway, could serve 

as promising biomarkers for immunotherapy.
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1.1 Cancer 

Cancer, an intricate and formidable illness with far-reaching impact on millions of people 

worldwide. It is defined as uncontrolled division of body cells. According to the National 

Cancer Institute it is a disease in which some body cells grow uncontrollably and could 

spread to other body parts. (What Is Cancer? ,2021) Cell, the function unit of life, makes 

up whole human body. The human body is composed of trillions of cells. These cells have 

remarkable ability to undergo cell division process, in which cells grow and divide. The 

human body transmits special signals to genes residing inside cell nucleus for cell division 

initiation. These genes serve as regulators for cell division to produce new cells, as needed 

by body for growth, tissue repair or renewal. The newly produce cells are crucial for proper 

functioning of human body and multiple ongoing processes. At the same time these cells 

could be damaged by oxygen deprivation, genetic mutations, aging and physical, chemical, 

infectious agents etc. These newly synthesized cells replace damage or aged cells. 

Damaged cells are detected and controlled by immune system and have two potential 

outcomes, they either undergo necrosis, accidental cell death, or apoptosis, planned cell 

death. This process represents natural phenomena of life. Any disruption in this well-

organized process could lead to uncontrolled division of damaged or abnormal cells 

resulting in cancer.  

WHO (World Health Organization) defines cancer as rapid creation of abnormal cells 

beyond their boundary and forms a mass called tumor. Tumor could be benign, non-

cancerous that grows slowly and does not spread to other parts of the body, but when it 

invades adjoining body parts and spread to other organs, through metastasis, such tumor is 

malignant tumor.  

1.1.1 Causes/ Risk Factors of Cancer 

Cancer is the leading cause of the death worldwide. According to the latest WHO statistics, 

nearly 10 million deaths due to cancer were reported worldwide in 2020. Whereas, only in 

Pakistan 117149 deaths and 178388 new cancers were reported. Cancer arises through a 

multistage process of transformation of normal cells into tumor cells. An individual’s 
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genetic factors interactions with three external factors, mentioned below could lead to 

cancer.  

• Biological Carcinogens: Such biological agents that have potential to cause cancer 

include any  

1. Oncogenic viruses that can integrate their DNA into host DNA and cause cancer, 

like Hepatitis virus. (Wild & Montesano, 2009) 

2. Bacterial infections are also associated with high risk of certain types of cancer. 

For example, Helicobacter pylori (H. pylori) is reported to be associated with 

gastric cancer. (Mohabati Mobarez et al., 2020) 

3. Parasitic infections, similar to bacterial infections are also associated with certain 

cancer development. For example, Schistosoma haematobium link to bladder 

cancer is reported in Middle east. (Mohammed et al., 2023) And Opisthorchis 

viverrini and Clonorchis sinensis association with cholangiocarcinoma is reported 

in Southeast Asia. (Herrick, 2023) 

• Physical Carcinogens: As indicated by the name, they cause cancer through physical 

exposure or processes by directly damaging DNA or disrupting cellular processes. 

1. Ionizing radiation are high energy waves that are capable of removing tightly 

bound electrons of an atom and form ions. X-rays, gamma rays and radioactive 

material radiations are its examples. Prolong exposure to these radiations can cause 

certain solid tumors and leukemia. (Abalo et al., 2020; Mazzei-Abba et al., 2021) 

2. Ultraviolent radiations are electromagnetic radiation emitted by sun, prolong 

exposure to these can cause DNA damage in skin leading to different types of skin 

cancers, such as basal cell carcinoma, squamous cell carcinoma, melanoma etc. 

(Chan et al., 2019; Teng et al., 2021; Autier & Doré, 2020) 

• Chemical Carcinogens: These substances can induce genetic alterations after 

interactions with DNA. These substances could be found in various environment, 

occupational or personal life style. 

1. Tobacco smoke contain numerous chemicals carcinogens such as polycyclic 

aromatic hydrocarbons (PAHs), nitrosamines, and aromatic amines. Smoking is the 
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major risk for lung, mouth, throat, esophagus, and bladder cancers. (Parascandola 

& Xiao, 2019; Lewis, 2020) 

2. Alcohol consumption could also lead to cancers like mouth, throat, esophagus, 

liver, breast, and colon. (Rumgay et al., 2021) 

3. Asbestos is the naturally occurring minerals found in the construction materials. 

Long term inhalation of asbestos could lead to lung cancer or other respiratory 

diseases. 

4. Aflatoxins are toxins that are involved in food contamination produced by certain 

molds. These toxins are linked with high liver cancer risk. (Dabuo B., et al., 2022) 

It is not necessary that all individuals exposed to these carcinogens may develop cancer. 

Complex interactions, intensity, exposure, individual susceptibility, environmental factors 

and lifestyle contribute equally along with these carcinogens.  

1.2 Cancer Genetics  

Cancer is a complex disease, caused by combination of multiple factors. Clear cause for all 

cancers is not known. Whereas, DNA sequence mutations are the fundamental cause of the 

cancer. Changes in DNA sequence of an individual usually do not affect the genetic 

mutations but some mutations can lead to genetic conditions. Among the multiple types of 

genetic mutations two main types are germline and somatic mutations.  

Germline mutations, as suggested by their name, are heritable genetic alterations. These 

mutations originate in the very first cell, which subsequently divides and gives rise to a 

new individual. There exists a high likelihood that this mutation will be present in every 

cell of the body. These mutations are often referred to as hereditary mutations. In cases 

where germline mutations are associated with cancer, the risk of cancer development is 

notably heightened, particularly in the early stages of life. This is due to the fact that the 

defective gene carrying the hereditary mutation provides a predisposition for cancer 

initiation. When a gene alteration that elevates the risk of cancer is observed within a 

family, it is referred to as a family cancer syndrome. If multiple family members, especially 

from the same side of the family, have been afflicted with either rare or common forms of 

cancer, coupled with exposure to certain risk factors, it raises concerns for a potential 
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family cancer syndrome. Notable examples of cancers resulting from germline mutations 

include Lynch syndrome (also known as hereditary non-polyposis colorectal cancer), 

which is caused by damage to any of the MMR genes including MLH1, MSH2, MSH6, 

PMS2, and EPCAM, as well as Hereditary Breast and Ovarian Cancer (HBOC) syndrome, 

arising from mutations in the BRCA1 or BRCA2 genes.  

Somatic or sporadic mutations are genetic changes that are not passed on to future 

generations. These mutations can occur at any stage of life. They originate in a single cell 

and can subsequently propagate to other cells. Factors such as exposure to ultraviolet (UV) 

radiation, chemical carcinogens, errors during DNA replication, and malfunctioning DNA 

repair mechanisms can contribute to the occurrence of these mutations. Skin cancer and 

lung cancer are examples of cancers resulting from somatic mutations, where mutations in 

specific genes relevant to these cancers play a significant role.  

Not all mutations in genes, nor all types of mutations, result in cancer. Among these, 

somatic mutations are a more prevalent cause of cancer compared to germline mutations. 

This observation has been substantiated by various studies. For instance, a study conducted 

in 2021 by Zhaopei Li and colleagues examined the profiles of somatic and germline 

mutations in cancer. The findings revealed that the risk associated with germline mutations 

is around 9%, while somatic mutation risk stands at 73.1% within genes (Li et al., 2021).  

Certain genes are susceptible to mutations that can lead to the development of cancer, and 

specific types of mutations have been implicated in this process. Understanding these genes 

and mutation types is vital in comprehending cancer's genetic basis and its various 

manifestations.  

1.2.1 Genes Mutations linked to Cancer 

Cancer is a genetic disease. It involves alterations or mutations in DNA of genes 

responsible for cell growth and division. For any healthy cell to turn cancerous, it requires 

more than one DNA change. Mutation in particular genes could lead to cancer including 

tumor suppressor genes, proto-onco genes and DNA- repair genes. (Smithgall et al., 2022)  
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• Tumor suppresser genes plays an important role in cell growth and differentiation 

and also inhibit cancer development. They work as a part of complex network of 

cellular processed to maintain genetic stability and control cell proliferation. Tumor 

suppresser genes are activated when cells are exposed to cancer causing factors, they 

identify damaged DNA and eliminate it before they have chance to divide by triggering 

apoptosis. P53, BRCA1, BRCA2, TP53 are most common reported tumor suppresser 

genes. (Zacharias, 2020)  

• Proto-onco genes are the normal cellular genes involved in regulating normal cell 

growth, division and apoptosis but once mutated they become onco genes, cancer 

causing genes. Oncogenes lead to uncontrolled cell division, and are smart enough to 

escape cell death, leading to cancer. (Oncogene, 2023; Zacharias, 2020)  

• DNA repair genes are of same importance as tumor suppresser genes. These genes 

identify and repair damages in DNA that is crucial for accurate DNA replication. They 

also have role in disease prevention as they do not let the mutation to accumulate. 

Hence, decreasing risk of cancer development. MMR (Mismatch Repair) a DNA repair 

pathway, recognizes error in DNA during synthesis of new cells and if match is not 

perfect it repairs it. In MMR pathway, MLH1, MSH2, MSH3, MSH6 genes have 

considerable importance in cancer development. (Lahtz & Pfeifer, 2011; Genes and 

Cancer, 2012)  

1.2.2 Not all Mutations lead to Cancer 

Every mutation has varying effect on gene functionality and protein production. Following 

are some mutation types that occur and contribute to cancer development.  

• Missense Mutation: In protein sequence, s single nucleotide substitution takes place, 

whereas, the impact of the mutation depends on the location, and amino acid change. 

Most common missense reported mutation is of BRCA1, that hinder tumor suppresser 

gene function and escalates breast cancer risk. (Aljarf et al., 2022)  

• Nonsense Mutation: In DNA sequence, nonsense mutation gives sudden rise to stop 

codon and as result protein is truncated. The translated protein is either short or non-
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functional. P53 is crucial tumor suppresser genes, nonsense mutation in this gene 

results in non-functional P53 protein. (Wu et al., 2022)  

• Frameshift Mutation: It involves insertion or deletion of one or more nucleotide and 

disturbs the normal reading frame of DNA sequence. Afterwards the synthesized 

protein has altered or no function. APC gene tumor suppresser functionality can be 

inactivated because of frameshift mutation in gene and develop CRC (Colorectal 

Cancer). (Aghabozorgi et al., 2019)  

• Duplication Mutation: DNA segment is replicated, leading to increased number of 

gene copies. Duplication mutation of HER2 leads to its amplification, resulting in its 

overexpression and promoting aggressive tumor growth in breast cancer. (Yi et al., 

2020)  

• Indel Mutation: “Insertion and Deletion Mutation”. In insertion mutation number of 

DNA bases is altered due to insertion of new DNA and deletion on the other hand is 

the removal of the DNA. The scale of these mutations could be small or massive and 

corresponding to that protein function could be disrupted. TP53 gene is involved in cell 

cycle regulation, gene repair and apoptosis. Indel mutations in TP53 are reported that 

result in loss of ability to control cell growth and division that leads to cancer. (Gurney 

et al., 2023)  

1.2.3 Hotspot Mutation 

Hotspot mutations are specific genetic alterations that occur at regions within the DNA 

known as "hotspots." These hotspots are positions in the DNA sequence where mutations 

happen at a notably high frequency. These mutations can be prompted by various factors, 

including genetic modifications and exposure to substances that can cause cancer. Hotspot 

mutations are influenced by the sequence and structure of DNA and can be advantageous 

in evolutionary processes. A study in 2017 proposed that a position could be considered a 

hotspot if it experiences at least two mutations of the same type. For example, the HTT 

gene was emphasized in a 2021 study, though its analysis dates back to 1983 when 

expandable CAG tracts were identified. These tracts were found to lead to nonfunctional 



Chapter 01  Introduction 

Page | 7  
Hypermutation in Microsatellite Stable Cancers 

protein production and were designated as hotspot regions across the genome. Hotspots 

can significantly elevate the rate of DNA mutation, occasionally up to around 100 times 

more than the average rate.  

The most prevalent genetic variations in the human genome are single nucleotide variants 

(SNVs), which account for roughly 80% of differences among individuals. SNVs can be 

categorized as transversions or transitions. However, mutations occurring in hotspot 

regions can encompass various types, including substitutions or insertions/deletions 

(indels). Numerous documented hotspot mutations are situated in CpG islands, with C to 

T transitions commonly occurring in germline variants. These CpG-rich sites, mostly 

located upstream of genes, represent about 1.5% of the human genome. Conversely, 

somatic hotspot mutations are driven by processes like activation-induced cytidine 

deaminase (AID) or apolipoprotein B mRNA editing enzyme, catalytic polypeptide 

(APOBEC)-mediated deamination. When these mutations impact regulatory genes, they 

can lead to the generation of altered proteins or disrupted regulatory elements. 

Microsatellites, are also prone to mutations, making them hotspots in both germline and 

somatic events. Genes containing microsatellites can serve as hotspots in various diseases, 

including cancer. A comprehensive investigation into APOBEC's role in tumor evolution 

suggested that specific recurrent hotspot APOBEC mutations outside hairpin structures of 

tumor suppressor genes might contribute to tumor evolution, whereas other mutations 

might lack significant functional impact. Some of these hotspot mutations propel cancer 

development, exemplified by POLE P286R, POLE V411L, and PIK3CA R88Q. In 

conclusion, hotspot mutations play pivotal roles in shaping genetic diversity, fostering 

disease development, and influencing evolution. (Rogozin & Pavlov, 2003; Baeissa et al., 

2017; Nesta et al., 2021)  

These are just examples of few mutations types whose occurrence can contribute to cancer.  

1.3 Types 
In accordance with where it started, the primary site, there are four main forms of cancer, 

described below;  
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• Carcinomas originate in the epithelial cell lining, present at the surface and organs of 

the body. Epithelial cells are found in skin, lungs, breast, colon, and many other organs, 

upon cancer development they usually form solid tumors. Carcinomas are the most 

common type of cancer worldwide. Carcinomas include different skin cancers, breast 

cancer, CRC, lung, prostate cancer, etc.  

• Sarcomas are comparatively less common than carcinomas. They arise from the 

connective tissues that support the body, such as muscle, fat, bone, nerves, tendons, 

joints, blood vessels, lymph vessels or cartilage. Sarcomas include bone cancers. 

(Tanaka & Nakamura, 2021)  

• Leukemias is blood or bone marrow cancer, characterized by the excess WBCs (White 

Blood Cells) production in body. Acute lymphocytic leukemia (ALL), chronic 

lymphocytic leukemia (CLL), acute myeloid leukemia (AML), and chronic myeloid 

leukemia (CML) are the four main types of leukemias. ALL originates in early 

lymphocytes and is more common in children than adults. CLL originates in mature 

lymphocytes, it progresses slowly and can be treated by “wait and watch” approach. It 

is common in adults.  AML originates in myeloid cells. It is common in old adults and 

requires immediate treatment. CML is identified by the presence of a genetic order 

called Philadelphia chromosome, it affects myeloid cells. Initially it progresses slowly, 

but later on it can transform into blast crises (aggressive phase). (Burke & Startzell, 

2008)  

• Lymphomas, as indicated by name, is cancer of lymphatic system, which helps fight 

infections as it is the part of the immune system. These cancers develop in the lymph 

nodes, spleen, thymus, bone marrow, and other lymphatic tissues. Lymphomas are 

divided into Hodgkin lymphoma and non-Hodgkin lymphoma. Hodgkin lymphoma 

(HL) or Hodgkin disease is a rare lymphoma, in which large abnormal cells called 

Reed-Sternberg cells are found in lymph nodes and it can spread to nearby organs. 

(Küppers et al., 2012) On the other hand, non-Hodgkin lymphoma comprise of 

lymphomas that originate from WBCs (lymphocytes). Its outspread tendency is higher 

than HL. (Shankland et al., 2012; Nayak & Deschler, 2003)  
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Each of the cancer type is further divided into subtypes as mentioned above.  

1.3.1 Subtypes 

Cancer types are further subdivided based on cell type, growth pattern and genetic 

characteristics of cancer. Better understanding of originating points or subtypes of cancer 

would give better insight to its diagnosis, treatment, prevention etc.  

Below discussed are some subtypes of the cancer used in my research.  

• Uterine Corpus Endometrial Carcinoma (UCEC): It is the fourth most common 

reported cancer in females in USA. According to the 2013 study on integrated genomic 

characterization of UCEC by Douglas A. Levine, estimated 49,500 new cases and 

8,200 deaths were reported in 2013. Not only in USA it is common gynecologic 

malignancy worldwide. Over 500,00 die due to UCEC yearly. (Pan et al., 2019) 

Epidemiological data have revealed increase in UCEC incidence globally in last two 

decades. Approximately 1.9% incidence increase is reported every year. (Hu et al., 

2021) UCEC is the uterus lining (endometrium) cancer with low survival rate and poor 

prognosis. (Levine, 2013; Zhao & Li, 2023) It is common in post-menopausal women, 

due to high estrogen levels. Whereas, clinically UCEC is heterozygous and its 

heterozygosity is linked to tumor growth, clinical traits, and prognostic outcomes. (Hou 

et al., 2020) Fortunately, it can be detected at early stage with >90%, 5-year overall 

survival (OS) rate. But unfortunately, advance or recurrent UCEC have poor prognosis 

with 5-year OS rate >30%. Risk factors reported by different studies for generation and 

development include obesity, drinking, smoking and high blood pressure. Some studies 

also reported molecular changes or genetic alterations as a contributor to development 

and poor prognosis of UCEC. UCEC can be further divided into Type I and Type II 

UCEC. Type I is estrogenic-dependent UCEC with good prognosis and Type II is non-

estrogen dependent UCEC with poor prognosis. (Zhao & Li, 2023) For early detected 

cases traditional treatment methods that include chemotherapy, radiotherapy, surgery 

and hormone therapy could be effective but for metastasized cases surgery and 

radiotherapy could not achieve satisfactory results (Zhao et al., 2021). In TCGA data, 
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the majority of hypermutated MSS samples, comprising 52.71%, were identified as 

UCEC samples. 

• Colorectal Cancer (CRC): CRC comprises of colon and rectum cancer and is the 

second most deadly cancer after breast cancer. Yearly incidence and mortality of CRC 

is expected to rise. It is expected to be doubled by 2035. In 2020, 9.4% out all cancer-

related deaths were due to CRC. CRC develops when epithelial cells undergo genetic 

or epigenetic changes that cause hyper-proliferation and form growths in the inner 

lining of colon and rectum, these growths are called polyps (adenoma), that may or 

may not develop into cancer over the period of time. CRC can progress through 

microsatellite instability (MSI), chromosomal instability (CIN), and serrated neoplasia 

pathways. Both modifiable and nonmodifiable risk factors influence CRC 

development. Modifiable risk factors include lifestyle and individual habits. On the 

other hand, non-modifiable risk factors include personal history, family history, 

inflammatory bowel disease history, adenomatous polyp’ history. Some studies 

reported that the family history of CRC plays a significant role in increasing the risk. 

CRC deaths are more prevalent in high-income countries compared to developing 

countries. Although access to early detection and treatment is better in developed 

countries but recurrence rate is high and drug resistance is a hurdle in treatment. For 

early detected CRC at 0-II stage surgery is standard treatment option, for stage III 

surgery and adjuvant chemotherapy and for stage IV surgery, chemotherapy, and 

targeted therapy are used but unfortunately there is no known established cure (Hossain 

et al., 2022). Within TCGA data, 30.95% of hypermutated MSS samples were 

categorized as COAD. 

• Stomach Adenocarcinoma (STAD): It is ranked as fifth most common whereas, third 

leading cause of cancer related mortalities worldwide. It is heterozygous cancer with 

highest incidence rate in Asia, specifically in China but 5-year OS rate is also higher 

that European countries i.e., 30-36%. OS rate could improve if early detected and 

treated. Development of STAD initiates when chronic inflammation of stomach lining 

takes place, often caused by Helicobacter pylori (H. pylori) or other risk factors like, 

alcohol consumption, smoking, obesity, family history. Further, these chronic 



Chapter 01  Introduction 

Page | 11  
Hypermutation in Microsatellite Stable Cancers 

inflammations to formation of precancerous lesions, which are not cancerous but over 

the time accumulation of genetic alterations in precancerous lesions cells can transform 

it into cancerous cells. Due to this genetic instability, cells proliferate uncontrollably 

and metastasis. Around 90-95% of all stomach cancers are adenocarcinomas. Early 

detection based on its location it is further subdivided into cardia, located near gastro-

esophageal junction and non-cardia, located away from gastro-esophageal junction. 

Treatment methods are similar as that of other cancers, surgeries for early detected and 

different therapies for later stages (Ren et al., 2020; Zhou et al., 2020). In the TCGA 

dataset, 7.14% of the samples were hypermutated MSS samples in STAD. 

• Pancreatic Adenocarcinoma (PAAD): It is reported as the second most common 

gastrointestinal malignancy in USA with poor prognosis. In 2018, approximately 

53,000 people were diagnosed with PAAD. Its incidence rate is also low comparatively 

but still it is the fourth leading cause of death. Development of PAAD takes place 

through genetic alterations in critical genes like KRAS, TP53, and CDKN2A, the cell 

undergoes abnormal growth leading to Pancreatic Intraepithelial Neoplasia (PanIN), 

which are early precancerous lesions that develop in the ducts of the pancreas with 

malignancy potential. Afterwards, some PanIN may transform into invasive carcinoma. 

Other than obesity, smoking, alcohol consumption, diabetes type 2 is suspected to be a 

risk factor in PAAD development, although exact mechanism is not clear yet. Like 

other cancers early detection and molecular mechanism comprehension are vital for 

advancing treatments. Only 10-15% of affected individuals are candidates for surgery 

due to advancing of disease without detection. Other than neoadjuvant, to optimize 

surgical recursion and adjuvant therapies, preventing recurrence, chemotherapy is used 

for PAAD treatment (Vareedayah AA, et al., 2018). Hypermutated MSS samples from 

PAAD accounted for 2.38% of the TCGA dataset. 

• Uterine Carcinosarcoma (UCS): It is a rare and most aggressive subtype of cancer, 

also known as malignant mixed Müllerian tumor. In 2020, particularly in the USAtotal 

of 1.8 million new cases in the USA were reported out of which 417,367 were uterine 

malignancies. And UCS comprises of less than 5% of uterine malignancies. It is 

considered as subtype of endometrial cancer but unlike endometrial malignancy it 
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contains epithelial (carcinomatous) and mesenchymal (sarcomatous) components in 

tumor. Due to this unique behavior UCS tumors are known as biphasic tumors, as upon 

visualization under microscope one component may appear of mesenchymal and other 

of epithelial cells. Studies reveal that mutations in key regulatory genes such as PTEN 

and TP53 genes contribute to UCS tumor development. Because of the extremely 

aggressive behavior of the UCS, distant metastasis patients have a high recurrence and 

less survival rate. The incidence rate is 30-39%. Risk factors that may contribute to 

UCS development are not only genetic and environmental but also hormonal. 

Hormonal imbalance, especially long-term exposure of estrogen without 

counterbalance of progestogen can contribute to UCS particularly in postmenopausal 

women. Other risk factors are same as of other cancers. Surgery, including 

hysterectomy bilateral salpingo-oophorectomy and pelvic lymph node dissection is 

used as the primary treatment for UCS (Moukarzel et al., 2021; Pezzicoli et al., 2021). 

Similar to PAAD, UCS hypermutated MSS samples also constituted 2.38% of the total 

TCGA dataset. 

1.4 Hypermutation 
Hypermutation is a characteristic of tumors with deficient mismatch repair (dMMR) and 

is often associated with high mutation burden, observed in certain cancer types. The term 

"hypermutated tumors" refers to tumors that exhibit a significantly elevated number of 

mutations compared to normal cells (Molina et al., 2022). In the context of molecular 

subtyping, hypermutation can be further classified into two categories: microsatellite 

instability (MSI) and microsatellite stability (MSS) (Huang et al., 2015). Mismatch 

repair (MMR) plays a crucial role in maintaining genomic stability and is a prime cause of 

cancer, leading to microsatellite instability (MSI) (Huang et al., 2015).  

In the early 1990s, while working on hereditary non-polyposis colorectal cancer (HNPCC), 

the nature of the HNPCC mapped genes was not known. However, based on observed 

clonal shifts in microsatellite allele sizes, occur approximately once per 100,000 base pairs 

in genomic DNA across the entire genome, researchers identified this as potential 

mechanisms that could lead to tumor development (Aaltonen et al., 1993).  
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Later, in the late 1990s, an international workshop on Microsatellite Instability and RER 

phenotypes in Cancer Detection and Familial Predisposition was held. During this 

workshop, it was announced that the form of genomic instability associated with defective 

DNA mismatch repair in tumors would be referred to as Microsatellite Instability (MSI). 

The workshop also proposed the use of five markers to classify tumors based on the 

frequency of instability. (Rodriguez-Bigas et al., 1997).  

In addition to dysfunction in the mismatch repair system, other endogenous and exogenous 

mutagenic processes, such as ultraviolet (UV) radiations, tobacco smoke, MSI, excessive 

APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) activity, 

as well as mutations in the POLD1 and POLE genes, contribute to hypermutation. The 

occurrence of hypermutation can vary depending on the specific cancer type and 

sequencing techniques employed (Huang et al., 2015).  

1.4.1 Microsatellite Instable (MSI) 

Somatic or germline indel mutations in microsatellites, caused by malfunctioning DNA 

mismatch repair (MMR) or MLH1 hypermethylation, are responsible for microsatellite 

instability (MSI) (Yuza et al., 2017; Ballhausen et al., 2019; Huang et al., 2015). Lynch 

syndrome, also known as hereditary nonpolyposis colorectal cancer (HNPCC), is 

characterized by germline mutations in MMR genes, particularly MLH1, MSH2, MSH6, 

and PMS2 (Nature, 2012; Barbari and Shcherbakova, 2017).  

Following the first reported case of MSI in 1996, an international conference on MSI was 

held, leading to the proposal of the Bethesda panel as a reference panel for future research 

(Boland et al., 1998). The Bethesda panel consists of five microsatellite loci: two 

mononucleotide markers (BAT25 and BAT26) and three dinucleotide markers (D5s346, 

D2s123, and D17s250) (Huang et al., 2015). Instability in any of these loci is classified as 

microsatellite instability-low (MSI-L), while instability in two or more loci is classified 

as microsatellite instability-high (MSI-H) (Huang et al., 2015).  

There are seven known MMR genes associated with MSI: MLH1, MSH2, MSH6, PMS2, 

EPCAM, APC, and MUTYH (Bonneville et al., 2020). Lynch syndrome, characterized by 
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deleterious germline mutations in MMR genes, primarily involves MLH1, MSH2, MSH6, 

and PMS2. Deletion of the EPCAM gene is associated with upstream MSH2 in MSI-H 

(Kim et al., 2014). In contrast, APC gene mutations are less frequently found in MSI-H 

tumors but are often associated with tumor budding, which is caused by beta-catenin 

overexpression and MSH1 hypermethylation (Bonneville et al., 2020). The MUTYH gene 

encodes the MYH glycosylase enzyme involved in the Base Excision Repair (BER) system 

(Bonneville et al., 2020).  

MLH1 hypermethylation is considered the predominant cause of MSI, based on available 

literature (Nojadeh et al., 2018). The percentage of MSI varies among different cancer 

types, with approximately 15% in colorectal cancer, up to 30% in endometrial cancer, 10-

22% in gastric cancer, and 10% in intrahepatic cholangiocarcinoma (Silva et al., 2016; 

Ballhausen et al., 2019; Kim et al., 2013).  

1.4.2 Microsatellite Stable (MSS) 

On the other hand, microsatellite stability (MSS) is typically associated with somatic or 

germline mutations in the DNA polymerase epsilon (POLE) gene (Nature, 2012; Barbari 

and Shcherbakova, 2017). POLE belongs to the DNA polymerase B family, which includes 

polymerase epsilon (Pol ε) and polymerase delta (Pol δ). These polymerases play a crucial 

role in DNA replication by accurately incorporating complementary nucleotides and 

proofreading the newly synthesized strands (Korona et al., 2010). They also participate in 

nucleotide excision repair and double-strand break repair processes. The exonuclease 

domain of POLE/POLD1 acts as a proofreader, identifying and removing incorrect bases 

during replication. Mutations in the exonuclease domain of POLE/POLD1 

(POLE/POLD1-EDM) result in a loss of proofreading function, leading to the 

accumulation of mutations in cells (Loeb & Monnat, 2008; Ma et al., 2022). In Bethesda 

panel, tumors that showed no significant instability were classified as Microsatellite Stable 

(MSS), although using a larger number of markers can help differentiate between MSI-L 

and MSS  

Studies have identified specific somatic and germline mutations in POLE. For instance, the 

somatic POLE P286R mutation was reported as a driver mutation for early-onset colorectal 
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cancer (CRC), causing the rapid accumulation of additional somatic mutations and 

accelerating cancer development (Ahn et al., 2016). High-frequency somatic mutations 

such as P286R and V411L, as well as low-frequency germline mutations like P286H/S, 

F367S, S459F, and V424L, have been observed in POLE (Nebot- Bral et al., 2017). Other 

pathogenic factors involved in cancer include somatic point mutations in the polymerase 

domain of PolE (R567C, K593C, S595P, E611K, and L621F) and frameshift deletion 

mutations in the middle region of the PolE gene (V1446fs *3) (Meng et al., 2020; Min et 

al., 2020). These mutations contribute to the development of cancer. The POLE P286R 

mutation, validated in a yeast model, exhibits a mutator phenotype similar to complete 

mismatch repair deficiency, further supporting its role in driving hypermutation (Kane & 

Shcherbakova, 2014).  

1.5 Treatment  
Cancer has become a major global health issue, causing a significant number of fatalities 

worldwide. Consequently, there is a growing emphasis on the importance of cancer 

prevention and treatment as crucial components of public health. In 2020, Cancer Research 

UK reported the identification of more than 200 different types of cancer, while the World 

Health Organization (WHO) revealed that approximately 10 million people lost their lives 

to cancer in the same year, accounting for one in every six deaths (Cancer, 2023). Over the 

past decade, a notable trend in cancer research has been the recognition of hypermutation 

as an emerging type of cancer. This phenomenon has been investigated through whole 

exome sequencing (WES), which has provided valuable insights into colorectal, 

endometrial, and lung cancers. The analysis revealed high mutation rates, exceeding 12 

mutations per million bases (Mb), over 18 mutations per Mb, and at least 178 

nonsynonymous mutations per tumor, classifying them as hypermutated (Yuza et al., 

2017). The Cancer Genome Atlas (TCGA) has also identified cancers with mutation rates 

surpassing 12 mutations per one million bases as hypermutated (Huang et al., 2015).  

While traditional cancer treatment methods such as surgery, radiotherapy, and 

chemotherapy have been developed and proven effective, they are not without side effects. 

Recent advancements in our understanding of the tumor microenvironment and tumor 
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immune mechanisms have led to the emergence of tumor immunotherapy as a novel and 

promising approach to cancer treatment (Disis, 2014).  

1.5.1 Immunotherapy 

Immunotherapy controls the power of the immune system to generate tumor-specific 

immune responses that can control tumor growth and eliminate cancer cells (Zhang et al., 

2021). T cells are specialized to identify and attack foreign invaders. In cancer cells, 

neoantigens are the unique proteins found on cancer cell surfaces as result of mutations. 

They are novel proteins that distinguish cancer cells from normal. In immunotherapy these 

neoantigens are recognized as foreign bodies by our immune system and eliminated. 

However, cancer cells evade detection by immune system as neoantigens are not 

recognized. To overcome this evading one significant breakthrough in immunotherapy is 

the discovery of T-cell immune checkpoint inhibitors (ICIs) or inhibitory receptors, such 

as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death 

protein 1 (PD-1) (Esfahani et al., 2020). These inhibitors, when used in combination, block 

the PD-1/PD-L1 pathway and enhance antitumor immunity by activating CD8-positive T 

cells in cancer tissues, thus promoting their infiltration into tumors (Kudo, 2019). Tumor 

immunotherapy, particularly through the use of ICIs, has demonstrated significant 

improvements in the long-term survival of patients with advanced solid tumors, including 

lung cancer, melanoma, colorectal cancer, and esophageal cancer (Disis, 2014). PD-1 

antibody treatment has shown particularly promising results. It has been associated with 

sustained remission even after discontinuing treatment and higher overall survival rates 

compared to traditional chemotherapy and targeted therapy (Disis, 2014; Zhang et al., 

2021). However, it is important to note that the efficacy of ICIs remains limited to a subset 

of patients who positively respond to the treatment (Esfahani et al., 2020).  

Immunotherapy works notably better in the MSI-H subtype of hypermutation compared to 

MSS due to distinct immune response differences. This is mainly because MSI-H patients 

have more neoantigens – special markers resulting from high mutation rates. These 

neoantigens are like flags that the immune system can recognize, making MSI-H tumors 

more vulnerable to immune attack. Additionally, the increased mutation rate in MSI-H 

tumors boosts the chances of presenting these neoantigens to immune cells. Immune 
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checkpoint inhibitor (ICI) drugs also excel in MSI-H cases because there are more antigens 

for them to target effectively. In simple terms, the combination of more neoantigens and 

effective ICIs makes immunotherapy a potent strategy for MSI-H tumors. (Nebot-Bral et 

al., 2019)  

To optimize immunotherapy outcomes, there is a growing need to identify reliable 

molecular markers that can predict patient response to ICI treatment. This would enable 

the identification of individuals who would benefit the most from immunotherapy while 

reducing overtreatment in those who are less likely to respond (Esfahani et al., 2020). 

Additionally, in the realm of tumor immunotherapy, a noteworthy approach involves HLA 

(human leukocyte antigen)-dependent therapies. HLA molecules play a pivotal role in 

immune responses by presenting antigens to T cells. Thus, utilizing HLA-dependent 

strategies can hold potential for augmenting immune responses against tumors.  

1.5.1.1 Human leukocyte antigen (HLA) 

Human leukocyte antigen (HLA) molecules, also known as major histocompatibility 

complex (MHC) molecules, are vital for immune response as they present antigens to T 

cells (Mungall et al., 2019). HLA includes diverse types like HLA class I (e.g., HLA-A, 

HLA-B, HLA-C) presenting intracellular antigens to CD8+ T cells, and HLA class II (e.g., 

HLA-DR, HLA-DP, HLA-DQ) presenting extracellular antigens to CD4+ T cells 

(Petersdorf et al., 2020).  

HLA typing, identifying specific alleles, is integral in predicting immunotherapy response. 

It's linked to T cell activity, immune checkpoint blockade effectiveness, and clinical 

outcomes. For example, certain HLA class I alleles were associated with better responses 

to immune checkpoint inhibitors in colorectal cancer (Le et al., 2015). Similar associations 

have been observed in melanoma and other cancers, emphasizing the significance of 

tailoring immunotherapy based on HLA genotypes (Chowell et al., 2018; Bell and 

Ellenson, 2019).  
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1.6 Cancer Research Tools and Databases 
Cancer research is necessary for decoding the complexities of diagnosis, refining 

treatments and enhancing outcomes of disease itself. By understanding the genetic and 

molecular underpinnings of diverse cancers, new avenues for early detection and the 

development of personalized therapies are being paved, resulting in an improved survival 

rate. Tools and databases play a vital role in accomplishing these tasks by offering 

organized data in a user-friendly format for easy exploration. Following are some tools and 

databases that will be further used in this research:  

1.6.1 The Cancer Genome Atlas Program (TCGA): It is a comprehensive and 

collaborative initiative by National Cancer Institute (NCI) and the National Human 

Genome Research Institute (NHGRI) to uncover genomic alteration in cancer. A large 

amount of genomic, epigenomic, transcriptomic and genomic data is not only generated by 

TCGA, but it is also freely available to scientific community around the world. TCGA data 

proves highly beneficial in comprehending cancer genomics and discerning multiple 

biomarkers for cancer therapies. TCGA store data for 33 cancer types that is accessible 

through Genomic Data Common (GDC) Data Portal. GDC data portal is a user-friendly 

interface to access TCGA collected data for analyzation and interpretation. GDC serves as 

central platform for storing, starting and distributing TCGA and its collaborative projects 

data.  

1.6.2 cBioPortal: Another freely accessible online cancer genomics database, this 

platform offers a user-friendly interface for accessing and analyzing data. Moreover, it 

facilitates the interactive analysis of complex bulk data by enabling the creation of graphs 

and plots based on user-defined parameters. The database contains comprehensive 

genomic information, encompassing details such as genetic mutations, gene expression, 

protein abundance, and clinical outcomes. It not only provides open datasets for free access 

but also permits users to upload their own datasets.  
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1.6.3 Database for Annotation, Visualization and Integrated Discovery 

(DAVID): It is a bioinformatics tool designed for the interpretation and analysis of large 

datasets. It serves as a pathway analysis tool, offering several functionalities such as gene 

ontology analysis, pathway analysis, functional annotation clustering, protein-protein 

interaction analysis, and disease association analysis. DAVID facilitates a better 

understanding of genes, proteins, and their interactions within high-throughput datasets.  

1.6.4 Empirical Analysis of Digital Gene Expression Data in R (EdgeR): 
It is a R computational language package extensively used for differential gene expression 

analysis in high-throughput data. It basically performs statistical analysis through various 

functions to identify differentially expressed genes. Some of the common statistical test 

conducted by edgeR are Negative Binomial Generalized Linear Model (GLM), distributes 

the normal read counts and incorporates experimental conditions, sample groups and 

potential sources of variation to differentiate biological changes from fluctuations. 

Afterwards, likelihood ratio test (LRT) is carried out to calculate p-value of each associated 

gene to check the significance of observed changes in gene expression. It also adjusts p-

value to make sure identified genes are not by chance. It is a robust, differential gene 

expression analysis framework.  

1.7 Problem Statement 
Cancer's multifaceted nature has a global impact, leading to a range of treatment 

approaches. In the last two decades immunotherapy has emerged as the most effective and 

minimal side effect cancer treatment. Immunotherapy activates our body natural defense 

system to identify the unique markers on cancer cells i.e., neoantigens and mark them as 

foreign bodies. This signals specialized T cells to eliminate them. It has proved effective 

in hypermutation subclass microsatellite instability-high, but its effectiveness is 

constrained in microsatellite stable subclass due to availability of low number of 

biomarkers. To overcome this problem, there is need to identify new biomarkers for better 

prognosis of hypermutated microsatellite stable cancer.  
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1.8 Objectives 
Following are the objectives of this research:  

➢ To identify novel biomarkers for hypermutated microsatellite stable cancers.  

➢ To enhance prognosis of hypermutated microsatellite stable cancers through identified 

biomarkers.  

➢ To propose optimizing immunotherapy effectiveness on hypermutated microsatellite 

stable cancers.  

1.9 Scope 

Cancer is a widespread prevalent disease, whose quest for effective treatment remains 

paramount. Immunotherapy has arisen with notable effectiveness in hypermutated 

microsatellite instable high patients, while when applied on hypermutated microsatellite 

stable patients it reveals critical obstacles due to lack of available biomarkers. To overcome 

this obstacle, we aim to identify new biomarkers that could lead to better outcomes and 

predictions of hypermutated microsatellite stable patients. It will make personalized 

treatment effective for more people and improve overall cancer care.   

1.10 Limitations 
Some limitations of this project are that cancer is a heterogeneous disease, resulting in 

diverse response to treatment. Like other treatments, some patients could be nonresponsive 

to immunotherapy. While reported success rate of immunotherapy is 20-50%. Whereas, 

notably the response rate of immunotherapy is higher in developed countries than in under 

developing countries, due to resources limitations. Developing countries face financial 

crises that hinder their population from testing and treatment. On the contrary, developed 

countries possesses better resources and provide better accessibility to treatments. These 

variations lead to regional limitations in treatment applicability. 

 



 

 

CHAPTER 02 

MATERIALS AND METHODS 



Chapter 02  Materials and Methods 

Page | 22  
Hypermutation in Microsatellite Stable Cancers 

Hypermutated MSS cancer study for the identification and characterization of novel 

biomarkers, that hold the potential to transform the panorama of immunotherapy, 

addressing its current limitations and effectiveness within hypermutated MSS.   

For above mentioned purpose, TCGA datasets of 7 different cancers were used. Its 

transcriptomics analysis was performed on cBioPortal and gene differential analysis was 

performed using EdgeR.  

2.1 Data Retrieval 

TCGA has been a game-changer in our understanding of cancer. It has transformed 

treatment approaches and paved the way for advancements in technology and research. 

This extensive database represents over 12 years of hard work and includes data from more 

than 11,000 patients. It's one of the most used freely available cancer databases, 

contributing significantly to our understanding of cancer. TCGA data can be easily 

accessed through GDC by customizing search parameters to fit specific research needs.  

While focusing on the identification of new biomarkers like POLE P286R in hypermutated 

Microsatellite Stable (MSS) cancers, in this study seven cancers based on their high 

hypermutation rates were selected. These cancers included Uterine Corpus Endometrial 

Carcinoma (UCEC), Colorectal Adenocarcinoma (COAD), Rectal Adenocarcinoma 

(READ), Stomach Adenocarcinoma (STAD), Uterine Carcinosarcomas (UCS), Pancreatic 

Adenocarcinoma (PAAD), and Esophageal cancer (ESCA).  

In the Genomic Data Commons (GDC), the 'Repository' tab was utilized to store, manage, 

and analyze data. Further exploration involved two additional tabs named 'Files' and 

'Cases,' from which specific parameters were configured. In the 'Data Category' section, 

'Simple Nucleotide Variation (SNV)' was selected, as SNVs are crucial for studying 

biomarker identification. The next parameter set was 'Masked Somatic Mutation' from the 

'Data Type' dropdown and for mRNA files ‘Transcriptomic Profiling’ was used . This data 

type is instrumental in identifying hidden somatic mutations. For data format, 'MAF' 

(Masked Annotation Format) was chosen, which contains detailed annotation data for each 

mutation. The data selected for this research was all openly accessible.  

Moving on to the 'Cases' tab, 'TCGA' was chosen from the 'Program' selection because all 

the data used in this research originates from TCGA. From the 'Project' dropdown, all seven 
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selected cancer studies were chosen, namely TCGA UCEC, TCGA COAD, TCGA READ, 

TCGA STAD, TCGA UCS, TCGA PAAD, and TCGA ESCA. The remaining parameters 

were left at their default settings.  

The number of files downloaded from the GDC v36.0 repository for the selected seven 

cancer subtypes totaled 1,993.  

Table 1: Number of files of each cancer subtype downloaded from GDC of TCGA data. 

Cancer 

Subtype 

Total number of 

files downloaded 

for each subtype 

Total 

number of 

samples 

Total number 

of mutations 

reported 

Total 

number of 

mRNA files 

TCGA-UCEC  519  518 626,945 589 

TCGA-COAD  457 455 252,615 524 

TCGA-READ 161 161 57,699 177 

TCGA-STAD  434  432 183,109 448 

TCGA-PAAD  180  173 24,849 183 

TCGA-UCS  57  57 8,774 57 

TCGA-ESCA  185  185 29,760 198 

  

The table above represents the total number of files downloaded for each cancer and within 

those files total number of samples studied and mutations reported in all samples of each 

subtype along with their mRNA files count. 

2.2 Data Filtration  
After downloading the data, the files for each cancer subtype were extracted and organized 

into separate folders. To further filter these files into categories like hypermutated, non-

hypermutated, MSI (Microsatellite Instability), MSI-High (MSI-H), MSI-Low (MSI-L), 

and MSS (Microsatellite Stable), Perl scripts were employed.  

Initially, to merge all the files for each cancer subtype, the following Linux command was 

used:  

awk 'FNR > 8' *.maf > merge.txt 
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This command read all “.maf” extension files within the folder the command is executed 

and merge them in a text file named as merge.txt and it skips headers of all files 

To generate a master table that consolidates all the cancer data and separate master tables 

for hypermutated and non-hypermutated data, the following Perl script was executed.  

#!/usr/bin/perl 
use Cwd; 
 
@flow = grep { -d } glob "*";  
$arrSize = @flow; 
for ($p = 0; $p < $arrSize; $p++) 
{ 
 
 @files=<$flow[$p]\\*.maf>; 
 print $flow[$p],"\n"; 
 foreach $file(@files) 
 { 
  open(x,$file); 
  %hash={}; 
  %tested={}; 
  %Mut_Count={}; 
  $hyper=0; 
  $nonhyper=0; 
  $Total=0; 
  $line = <x>; 
  $line = <x>; 
  $line = <x>; 
  $line = <x>; 
  $line = <x>; 
  $line = <x>; 
  while($line = <x>) 
  { 
   @temp=split("\t",$line); 
  
 $key=$temp[4]."_".$temp[5]."_".$temp[6]."_".$temp[10]."_".$temp[11]."_".$temp
[12]."_".$temp[15]; 
   push @{$hash{$key}}, "0"; 
   push @{$Mut_Count{$temp[15]}}, "0"; 
  } 
   
  @nm=split(/\./,$file); 
  open(x,$file); 
  open(Out,">Results\\".$nm[1]."_MasterTable.txt"); 
  open(Out1,">Results\\".$nm[1]."_Hyper.txt"); 
  open(Out2,">Results\\".$nm[1]."_Nonhyper.txt"); 
  $line = <x>; 
  $line = <x>; 
  $line = <x>; 
  $line = <x>; 
  $line = <x>; 
   
   
   

Perl Script to Generate a Master Table for All, Hypermutated, and Non-
Hypermutated Cancer Data Separately. 
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@temp=split(" ",$line); 
  @temp2=split(",",$temp[1]); 
  print Out "Gene\tMutation\tType\tdbSNP\tStatus\tPolyphen\tSift"; 
  print Out1 "Gene\tMutation\tType\tdbSNP\tStatus\tPolyphen\tSift"; 
  print Out2 "Gene\tMutation\tType\tdbSNP\tStatus\tPolyphen\tSift"; 
 

for($i=0;$i<scalar(@temp2);$i++) 

  { 

   print Out "\t",$temp2[$i]; 

   $Total++; 

   if(scalar(@{$Mut_Count{$temp2[$i]}})>499) 

   { 

    print Out1 "\t",$temp2[$i]; 

    $hyper++; 

   } 

   else 

   { 

    print Out2 "\t",$temp2[$i]; 

    $nonhyper++; 

   } 

  } 

  print Out "\tHyper\tPer\tNonhyper\tPer\tTotal\tPercentage\n"; 

  print Out1 "\tHyper\tPer\tNonhyper\tPer\tTotal\tPercentage\n"; 

  print Out2 "\tHyper\tPer\tNonhyper\tPer\tTotal\tPercentage\n"; 

  $line = <x>; 

  while($line = <x>) 

 

  { 

   $c=0; 

   $hy=0; 

   $nonhy=0; 

   @temp=split("\t",$line); 

  

 $key=$temp[4]."_".$temp[5]."_".$temp[6]."_".$temp[10]."_".$temp[11]."_".$tem

p[12]; 

   if(!exists $tested{$key}) 

   { 

    push @{$tested{$key}}, "0"; 

    print Out 

$temp[0],"\t",$key,"\t",$temp[8],"\t",$temp[13],"\t",$temp[25],"\t",$temp[72],"\t",

$temp[73]; 

    print Out1 

$temp[0],"\t",$key,"\t",$temp[8],"\t",$temp[13],"\t",$temp[25],"\t",$temp[72],"\t",

$temp[73]; 

    print Out2 

$temp[0],"\t",$key,"\t",$temp[8],"\t",$temp[13],"\t",$temp[25],"\t",$temp[72],"\t",

$temp[73]; 

    for($i=0;$i<scalar(@temp2);$i++) 

    { 

    

 $key=$temp[4]."_".$temp[5]."_".$temp[6]."_".$temp[10]."_".$temp[11]."_".$tem

p[12]."_".$temp2[$i]; 
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if(exists $hash{$key}) 

     { 

      print Out "\t1"; 

      $c++; 

     } 

     else 

     { 

      print Out "\t0"; 

     } 

 

if(scalar(@{$Mut_Count{$temp2[$i]}})>499) 

     { 

      if(exists $hash{$key}) 

      { 

       print Out1 "\t1"; 

       $hy++; 

      } 

      else 

      { 

       print Out1 "\t0"; 

      } 

     } 

     else 

     { 

      if(exists $hash{$key}) 

      { 

       print Out2 "\t1"; 

       $nonhy++; 

      } 

      else 

      { 

       print Out2 "\t0"; 

      } 

     } 

    } 

    if($hyper!=0 && $nonhyper!=0 && $Total!=0) 

    { 

     print Out 

"\t",$hy,"\t",($hy/$hyper)*100,"\t",$nonhy,"\t",($nonhy/$nonhyper)*100,"\t"

,$c,"\t",($c/$Total)*100,"\n"; 

     print Out1 

"\t",$hy,"\t",($hy/$hyper)*100,"\t",$nonhy,"\t",($nonhy/$nonhyper)*100,"\t"

,$c,"\t",($c/$Total)*100,"\n"; 

     print Out2 

"\t",$hy,"\t",($hy/$hyper)*100,"\t",$nonhy,"\t",($nonhy/$nonhyper)*100,"\t"

,$c,"\t",($c/$Total)*100,"\n"; 

    } 
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Master tables serve as better representatives for data integration, simplifying analysis, and 

facilitating comparative analysis. The generated master tables in cancer genomics provide 

detailed representation of each mutation. In the script provided above, the data is 

categorized into hypermutated and non-hypermutated based on the following criteria: 

mutations above 500 were characterized as hypermutated, while those below are 

considered non-hypermutated. It's important to note that MSS (Microsatellite Stable) 

samples are present in both hypermutated and non-hypermutated data. However, this 

research specifically focuses on hypermutated MSS samples. To achieve this, a similar Perl 

code was executed on the previously generated hypermutated master table to further create 

MSS, MSI-High (MSI-H), and MSI-Low (MSI-L) master tables. MSI-H samples were 

segregated based on a mutation rate higher than 500, while others were categorized as 

MSS, as indicated by a given reference file.  

Master tables generated for each subtype were sorted in descending order to identify genes 

with the highest number of mutations. At the end of each master table, their mutation ratios 

were compared with other subtypes. In the hypermutated MSS master table, the sorted 

genes with the greatest number of mutations were positioned at the top. However, in 

comparison to MSS, their MSI-L and MSI-H percentages were higher, indicating a 

potential presence of microsatellite instability. To address this issue, a filter was applied to 

the MSS master table to shortlist specific genes.  

   

else 

    { 

     print Out "\t",$hy,"\t-\t",$nonhy,"\t-

\t",$c,"\t-\n"; 

     print Out1 "\t",$hy,"\t-\t",$nonhy,"\t-

\t",$c,"\t-\n"; 

     print Out2 "\t",$hy,"\t-\t",$nonhy,"\t-

\t",$c,"\t-\n"; 

    } 

   } 

  } 
 

open(Out3,">Results\\".$nm[1]."_Summary.txt"); 

  print Out3 

"Total\t$Total\nHypermutated\t$hyper\nNonhypermutated\t$nonhyper\n"; 

 } 

} 
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• PER_MSS >= 16 (to prioritize MSS samples)   

• PER_MSIL < 10 (to minimize the presence of MSI-L samples)   

• PER_MSIH < 1 (to ensure a very low percentage of MSI-H samples)    

Genes were shortlisted based on previous studies and literature reviews. To identify hotspot 

mutations in genes of interest, we created mutation maps using the GDC data visualization 

tab. Mutation mappers are algorithms designed to detect genetic alterations within the 

genome. These genetic changes, once identified, may be associated with various diseases, 

making them crucial for in-depth study.   

2.3 cBioPortal Grouping 
cBioPortal is a valuable, freely accessible platform for conducting transcriptomic analysis. 

This analysis involves the examination of gene expression patterns, specifically focusing 

on mRNA levels within cancerous cells. To investigate gene upregulation and 

downregulation across seven selected cancer subtypes, data from cBioPortal datasets was 

utilized. The next step involved performing a comparative analysis, which required the 

grouping of data. The groups were defined as follows:  

• Group 1 consisted of MSS samples with a specific hotspot mutation in a particular 

gene.  

• Group 2 comprised MSS samples without that mutation.  

• Group 3 included all MSS non-hypermutated samples.  

Transcriptomic analysis was conducted to compare Group-1 vs. Group-2 and Group-1 vs. 

Group-3. This grouping and analysis focused on two primary cancer subtypes, UCEC and 

CRC. Upregulated and downregulated genes were distinguished based on their log2ratio 

values. Log2ratio is a mathematical representation of the fold change in gene expression 

levels between two conditions or groups. Positive values signify upregulation, while 

negative values indicate downregulation. In this study, the criteria for categorizing genes 

as upregulated or downregulated were as follows: genes with values greater than +2 were 

considered upregulated, and those with values less than -2 were considered 

downregulated.  
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Subsequently, a Perl script was employed to identify genes that were consistently 

upregulated and downregulated across both UCEC and CRC datasets. Pathway analysis 

was then conducted on the selected genes.  

2.4 Empirical analysis of digital gene expression data in R 
(EdgeR) 

“Empirical analysis of digital gene expression data in R" is an R package used for analyzing 

digital gene expression data. This type of data offers a digital readout of gene expression 

from High Throughput Sequencing experiments. It works by counting individual RNA 

reads, where each count represents the occurrence of a particular RNA sequence 

(transcript) in a sample. This digital approach significantly enhances sensitivity, allowing 

for the identification of low-abundance transcripts. Researchers often use the EdgeR 

package, a powerful tool for RNA-seq data analysis, to identify differentially expressed 

genes under various experimental conditions or groups.  

EdgeR utilizes two input files. The first file is a contrast file, which is a structured document 

defining the basis for performing contrasts between groups. In this research, a contrast file 

was created using TCGA IDs of MSS and MSI-H samples, with the first column containing 

the TCGA IDs and the second column indicating the category of each sample (MSS or 

MSI-H).  

The second file consists of STAR count files downloaded from the GDC data portal. STAR 

(Spliced Transcripts Alignment to a Reference) is a widely used alignment tool for 

mapping RNA sequence reads to a reference genome. The STAR count files contain count 

data representing the number of successfully mapped RNA sequences reads to the 

reference genome.  

For each hypermutated MSS sample in UCEC, CRC, and STAD, STAR count files were 

individually downloaded from the GDC. All downloaded files were then merged into a 

single file, where the first column contained Ensembl IDs, and the remaining columns 

represented sample names and contained the count values obtained from the STAR count 

files.  
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This EdgeR analysis was conducted on only three subtypes due to the requirement for a 

minimum of three hypermutated MSS samples in each subtype. Specifically, in UCEC, 

there were 25 MSS and 29 MSI-H samples; in CRC, there were 10 MSS and 11 MSI-H 

samples; and in STAD, there were 3 MSS and 5 MSI-H samples that were grouped for the 

execution of the EdgeR script.   

library(edgeR) 

 library(limma) 

 library(Glimma) 

 library(org.Hs.eg.db)   

 library(gplots) 

 library(RColorBrewer) 

 library(NMF) 

 library(EnsDb.Hsapiens.v86)  

seqdata <- read.csv("F:/MS_FYP/REVIEW-

DATA/DATA/Mine/Merge.maf/edgeR_Input_Data_CRC_UCEC.csv", stringsAsFactors = FALSE) 

        sampleinfo <- read.csv("F:/MS_FYP/REVIEW-

DATA/DATA/Mine/Merge.maf/edgeR_Contrast_input_file.csv", stringsAsFactors = TRUE)

 ensembl_ids <- seqdata[, 1] 

               countdata <- seqdata[,-(1)] 

  head(countdata) 

  rownames(countdata) <- ensembl_ids 

  head(countdata) 

              table(colnames(countdata)==sampleinfo$Case_Submitter_Id) 

  y <- DGEList(counts = countdata) 

  y 

  names(y) 

  y$samples 

  group <- paste(sampleinfo$MSSvsMSIH) 

  group 

  group <- factor(group) 

  group 

  y$samples$group <- group 

  y$samples 

columns(EnsDb.Hsapiens.v86) 

ann <- 

select(EnsDb.Hsapiens.v86,keys=rownames(y$counts),columns=c("GENEID","SYMBOL","GENE

NAME")) 

 head(ann) 

 table(ann$GENEID==rownames(y$counts)) 

 y$genes <- ann 

 myCPM <- cpm(countdata) 

 head(myCPM) 

 thresh <- myCPM > 0.5 

 head(thresh) 

 table(rowSums(thresh)) 

  

  

  

Differential Gene Expression Analysis Script using EdgeR in R 
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keep <- rowSums(thresh) >= 2 

  summary(keep) 

       ensembl_ids <- seqdata[, 1] 

                

countdata <- seqdata[,-(1)] 

  head(countdata) 

  rownames(countdata) <- ensembl_ids 

  head(countdata) 

              table(colnames(countdata)==sampleinfo$Case_Submitter_Id) 

  y <- DGEList(counts = countdata) 

  y 

  names(y) 

  y$samples 

  group <- paste(sampleinfo$MSSvsMSIH) 

  group 

  group <- factor(group) 

  group 

  y$samples$group <- group 

  y$samples 

columns(EnsDb.Hsapiens.v86) 

ann <- 

select(EnsDb.Hsapiens.v86,keys=rownames(y$counts),columns=c("GENEID","SYMBOL","GEN

ENAME")) 

 head(ann) 

 table(ann$GENEID==rownames(y$counts)) 

 y$genes <- ann 

 myCPM <- cpm(countdata) 

 head(myCPM) 

 thresh <- myCPM > 0.5 

 head(thresh) 

 table(rowSums(thresh)) 

 keep <- rowSums(thresh) >= 2 

 summary(keep) 

 y <- y[keep, keep.lib.sizes=FALSE] 

 y$samples$lib.size <- colSums(y$counts) 

       y$samples$lib.size 

 par(mfrow=c(1,2)) #not required for current analysis 

 levels(sampleinfo$MSSvMSIH) 

 y <- calcNormFactors(y) 

 y$samples 

 y1 <- estimateCommonDisp(y, verbose=T) 

 names(y1) 

 y1 <- estimateTagwiseDisp(y1) 

 names(y1) 

 design.mat <- model.matrix(~ 0 + y$samples$group) 

 colnames(design.mat) <- levels(y$samples$group) 

 y2 <- estimateGLMCommonDisp(y,design.mat) 

 y2 <- estimateGLMTrendedDisp(y2,design.mat, method="power") 

 y2 <- estimateGLMTagwiseDisp(y2,design.mat) 

       et12 <- exactTest(y1, pair=c(1,2)) 

 topTags(et12, n=10)  

       de1 <- decideTestsDGE(et12, adjust.method="BH", p.value=0.05) 

 summary(de1) 
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Initially, various libraries were loaded, providing essential tools for the analysis of 

differential gene expression. Following data loading and preparation, Ensembl annotation 

was utilized to retrieve information from EnsDb.Hsapiens. v86, which included gene 

identifiers (Ensembl ID), gene names, and symbols. Subsequently, quality filtering was 

applied by counting reads per million (CPM), with a CPM threshold of 0.5, resulting in the 

removal of values below this threshold.  

Following quality filtering, data normalization and dispersion estimation were performed. 

Normalization ensures that the data can be effectively compared across different groups, 

while dispersion estimation quantifies how much gene activity varies across different 

conditions or groups.  

Genes obtained as output of EdgeR are further taken for pathway analysis.  

2.5 Pathway Analysis 
After conducting transcriptomic and differential gene expression analyses, the next crucial 

step is pathway analysis. This analysis is performed on the shortlisted genes from the 

transcriptomic analysis and the output genes from the differential expression analysis. 

Pathway analysis plays a vital role in helping us comprehend the functionality of genes and 

their involvement in various diseases. By gaining insights into a gene's functionality and 

its participation in different biological processes, we piece together the larger puzzle 

surrounding the identified genes and their significance.   

Among the various tools available for pathway analysis, one frequently used tool is 

DAVID, which stands for Database for Annotation, Visualization, and Integrated 

Discovery. DAVID offers a comprehensive set of functional annotation tools, including 

resources like Reactome and KEGG. In this research, we focused on studying Reactome 

pathways using DAVID. What distinguishes the Reactome database from others is its 

unique approach of concentrating solely on a single species, Homo sapiens, and its 

commitment to gathering information across all biological aspects using a unified 

et12_results <- et12$table 

ensembl_ids <- rownames(et12_results) 

ann_results <- ann[match(ensembl_ids, ann$GENEID), ] 

output_data <- cbind(Ensembl_ID = ensembl_ids, ann_results, et12_results) 
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approach. In DAVID, we simply passed the list of genes obtained from Homo sapiens 

species for analysis, while all the remaining parameters were set to their default values.



 

  

CHAPTER 03 

RESULTS 
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Identification of novel biomarkers in hypermutated MSS tumors has the potential to 

enhance the effectiveness of targeted therapies and improve patient selection for 

immunotherapy. These biomarkers play a crucial role in refining patient responses to 

immunotherapy, increasing treatment efficacy, overcoming resistance, and minimizing 

side effects. In essence, these biomarkers are indispensable for extending the lifespan of 

cancer patients. 

3.1 TCGA Results 
For the analysis of TCGA data, a total of 1,993 files from various cancer types, including 

UCEC, CRC, STAD, PAAD, UCS, and ESCA, were downloaded from the GDC data 

portal. Within these 1,993 files, there were a total of 1,979 samples. These samples were 

further categorized into two groups: hypermutated and non-hypermutated, resulting in 356 

samples classified as hypermutated and 1,623 samples classified as non-hypermutated. 

Among the hypermutated samples, additional classifications were made into MSS, MSI-

H, and MSI-L subtypes. 

Figure 1: Hypermutated samples distribution graph. 

This graph shows that there is total 356 hypermutated samples, along with 287 are MSI-H, 

24 are MSI-L, 42 are MSS whereas, 1 sample is unidentified. 
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3.2 Microsatellite Stable (MSS) 
This research particularly focuses on hypermutated MSS samples, we gained a total of 42 

MSS hypermutated samples among the 7 most hypermutated cancers. 

Figure 2: Hypermutated MSS samples distribution graph 
Figure 2 graphs shows hypermutated MSS samples distribution, that 24 samples in UCEC, 

8 in COAD, 5 in READ, 3 in STAD, 1 in UCS and 1 in PAAD makes total of 42 

hypermutated MSS samples. 

Sorted hypermutated MSS master table representing high number of MSI-H and MSI-L. 
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Table 2: Top hypermutated MSS genes. 

 

 

Gene Mutation MSS Per_MSS MSI-L Per_MSIL MSI-H Per_MSIH 

POLE chr12_132676598 _G_C 19 45.2381 5 20.83333 1 0.346021 

ARID1A chr1_26779863_C_T 16 38.09524 6 25 3 1.038062 

PIK3CA chr3_179199088 _G_A 14 33.33333 7 29.16667 18 6.228374 

PTEN chr10_87933148 _G_A 14 33.33333 12 50 5 1.730104 

APC chr5_112838934 _C_T 13 30.95238 0 0 1 0.346021 

ZNHIT6 chr1_85706306 _G_A 11 26.19048 1 4.166667 1 0.346021 

RFTN2 chr2_197615926 _G_A 9 21.42857 2 8.333333 0 0 

C2CD5 chr12_22524531 _C_T 9 21.42857 0 0 1 0.346021 

GABRA4 chr4_46928511 _C_T 9 21.42857 1 4.166667 0 0 

NF1 chr17_31350209 _C_T 9 21.42857 1 4.166667 1 0.346021 

PTEN chr10_87864488 _G_T 9 21.42857 3 12.5 0 0 

LRRC7 chr1_70038328 _C_T 8 19.04762 2 8.333333 0 0 

TP53 chr17_7674894 _G_A 8 19.04762 1 4.166667 3 1.038062 

LYST chr1_235806698_C_C_T 8 19.04762 1 4.166667 0 0 

POLE chr12_132673703_C_A 8 19.04762 8 33.33333 1 0.346021 

PTEN chr10_87960987_G_T 8 19.04762 1 4.166667 2 0.692042 

ASCC3 chr6_100848542_C_T 8 19.04762 1 4.166667 0 0 

EFR3A chr8_131970537_C_T 8 19.04762 1 4.166667 0 0 

BMT2 chr7_112821884_G_A 8 19.04762 3 12.5 1 0.346021 

LTV1 chr6_143863098_C_T 8 19.04762 3 12.5 2 0.692042 

VPS50 chr7_93353688_C_T 7 16.66667 1 4.166667 1 0.346021 

PUS7 chr7_105462682_G_A 7 16.66667 3 12.5 0 0 

COL14A1 chr8_120216450_G_A 7 16.66667 1 4.166667 0 0 

RFC5 chr12_118029791_C_T 7 16.66667 0 0 0 0 

XRCC5 chr2_216190251_G_A 7 16.66667 2 8.333333 0 0 

SKP2 chr5_36168343_G_A 7 16.66667 1 4.166667 0 0 

TRIM23 chr5_65609421_C_T 7 16.66667 1 4.166667 0 0 

DBX1 chr11_20159234_G_A 7 16.66667 5 20.83333 0 0 

CCDC73 chr11_32635824 _C_A 7 16.66667 0 0 0 0 

MS4A8 chr11_60700868_C_T 7 16.66667 4 16.66667 0 0 

MYT1 chr20_64207872_G_A 7 16.66667 3 12.5 1 0.346021 

SYNJ1 chr21_32673466_G_A 7 16.66667 1 4.166667 1 0.346021 

SEZ6L chr22_26292931 _C_T 7 16.66667 2 8.333333 0 0 

PIK3R1 chr5_68293123_C_T 7 16.66667 9 37.5 4 1.384083 

RALA chr7_39706150_C_T 7 16.66667 1 4.166667 0 0 

ZNF267 chr16_31915952_G_A 7 16.66667 1 4.166667 1 0.346021 
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Table 2 illustrates the leading genes in the MSS master table, ranked by the count in the 

MSS column. In the first column, there are gene names, and in the second column, details 

of the mutations, including chromosome number, start and end positions, as well as the 

reference and alternate alleles that have undergone mutation. The MSS column indicates 

the number of occurrences of each mutation within MSS samples, while per_MSS 

represents the percentage of these mutations relative to the total count of MSS samples. 

This same pattern extends to the MSI-L and MSI-H columns, revealing how frequently the 

same mutations were observed in MSI-L and MSI-H samples and their respective 

percentages concerning the total count for each sample type. After applying the filter, the 

master table was sorted into the one below.  

This table unmistakably highlights that the percentages of MSI-H and MSI-L samples are 

significantly elevated in certain genes, potentially exerting an influence on our results. 

Therefore, after applying the filter, following table was obtained. 
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Table 3: Top Hypermutated MSS genes after applying filter. 

Gene Mutation MSS Per_MSS MSI-L Per_MSIL MSI-H Per_MSIH 

APC chr5_112838934 _C_T 13 30.95238 0 0 1 0.346021 

ZNHIT6 chr1_85706306_G_A 11 26.19048 1 4.166667 1 0.346021 

RFTN2 chr2_197615926_G_A 9 21.42857 2 8.333333 0 0 

C2CD5 chr12_22524531_C_T 9 21.42857 0 0 1 0.346021 

GABRA4 chr4_46928511_C_T 9 21.42857 1 4.166667 0 0 

NF1 chr17_31350209_C_T 9 21.42857 1 4.166667 1 0.346021 

LRRC7 chr1_70038328_C_T 8 19.04762 2 8.333333 0 0 

LYST chr1_235806698_C_T 8 19.04762 1 4.166667 0 0 

PTEN chr10_87960987_G_T 8 19.04762 1 4.166667 2 0.692042 

ASCC3 chr6_100848542_C_T 8 19.04762 1 4.166667 0 0 

EFR3A chr8_131970537_C_T 8 19.04762 1 4.166667 0 0 

VPS50 chr7_93353688_C_T 7 16.66667 1 4.166667 1 0.346021 

COL14A1 chr8_120216450_G_A 7 16.66667 1 4.166667 0 0 

RFC5 chr12_118029791_C_T 7 16.66667 0 0 0 0 

XRCC5 chr2_216190251_G_A 7 16.66667 2 8.333333 0 0 

SKP2 chr5_36168343_G_A 7 16.66667 1 4.166667 0 0 

TRIM23 chr5_65609421_C_T 7 16.66667 1 4.166667 0 0 

CCDC73 chr11_32635824_C_A 7 16.66667 0 0 0 0 

SYNJ1 chr21_32673466_G_A 7 16.66667 1 4.166667 1 0.346021 

SEZ6L chr22_26292931_C_T 7 16.66667 2 8.333333 0 0 

RALA chr7_39706150_C_T 7 16.66667 1 4.166667 0 0 

ZNF267 chr16_31915952_G_A 7 16.66667 1 4.166667 1 0.346021 

MAEL chr1_167005351_C_T 7 16.66667 1 4.166667 0 0 

ABCB5 chr7_20643288_G_A 7 16.66667 2 8.333333 0 0 

SELP chr1_169609552_G_A 7 16.66667 0 0 1 0.346021 

PCMTD1 chr8_51833615_C_T 7 16.66667 2 8.333333 0 0 

MBOAT2 chr2_8958590_C_T 7 16.66667 2 8.333333 0 0 

ZNF678 chr1_227655776_G_T 7 16.66667 1 4.166667 0 0 

RASA1 chr5_87353188_G_T 7 16.66667 0 0 1 0.346021 

SNX13 chr7_17796878_G_A 7 16.66667 0 0 1 0.346021 

 

Table 3 below provides an overview of the all genes from the MSS master table, after 

applying filter on Per_MSS column >16, Per_MSI-H <1 and Per_MSI-L<10. In the first 

column, there are gene names, while the second column details the mutations, including 

chromosome number, start and end positions, along with the reference and alternate alleles 

affected. The MSS column quantifies how often each mutation appears within MSS 
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samples, and per_MSS expresses these frequencies as percentages relative to the total MSS 

sample count. This pattern extends to the MSI-L and MSI-H columns, showing the 

recurrence of the same mutations in MSI-L and MSI-H samples, along with their respective 

percentages relative to the total count for each sample type. There is clear difference in top 

genes here. 

3.3 Mutation Mappers 

Mutations mappers of the multiple genes were made for the identification of hotpot 

mutations. The number of samples are out of total of 42 MSS hypermutated samples; 

 

 

Figure 3: POLE Mutation Mapper showing P286R hotspot mutation in 2 samples 

Figure 4: ZNHIT6 Mutation Mapper showing R258* hotpot mutation in 11 samples 
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Figure 5: PTEN Mutation Mapper showing R130Q hotspot mutation in 16 samples 

Figure 6: ARID1A Mutation Mapper showing R1114* hotspot mutation in 16 samples 

 

 

Figure 8: PIK3CA Mutation Mapper showing R88Q hotspot mutation in 14 samples 

 

 

Figure 7: LTV1 Mutation Mapper showing R377* hotspot mutation in 9 samples 
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Figure 10: RFTN2 Mutation Mapper showing F368= hotspot mutation in 9 samples 

 

 

 

Figure 11: NF1 Mutation Mapper showing R2429* hotspot mutation in 9 samples 

 

Figure 12: GABRA4 Mutation Mapper showing R460Q hotspot mutation in 9 samples

Figure 9: C2CD5 Mutation Mapper showing R181Q hotspot mutation in 9 samples 
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Table 4: Top Genes after filtration along with hotspot mutations. 

Gene Mutation  MSS Per_MSS MSI-L Per_MSIL MSI-H Per_MSIH 
POLE P286R 19 45.2380 5 20.8333 1 0.346020 
APC R1114* 13 30.9523 0 0 1 0.346020 
ZNHIT6 R258* 11 26.1904 1 4.16666 1 0.346020 
C2CD5 R181Q 9 21.4285 0 0 1 0.346020 
GABRA4 R460Q 9 21.4285 1 4.16666 0 0 
NF1 R2450* 9 21.4285 1 4.16666 1 0.346020 
RFTN2 F368= 9 21.4285 2 8.33333 0 0 
ASCC3 R136Q 8 19.0476 1 4.16666 0 0 
EFR3A F351= 8 19.0476 1 4.16666 0 0 
LRRC7  S835L 8 19.0476 2 8.33333 0 0 
LYST R813Q 8 19.0476 1 4.16666 0 0 

 

Table 4 represent the name of the genes in the first column, there hotspot mutations in the 

second, number of MSS samples in which hotspot mutation is found. Whereas column 4 

represent percentage of MSS in total MSS samples and same goes for MSI-L and MSI-H 

columns. 

Even though the percentage of POLE mutations in the MSI-L category is relatively high, 

it remains an important focus for our study, particularly within hypermutated MSS 

samples. This is why it has been included as a significant target in our research. 

Based on master table, the short-listed genes were APC, POLE, ZNHIT6, C2CD5, RFTN2 

and NF1.  

3.4 DNA Polymerase Epsilon, Catalytic Subunit (POLE) 
Microsatellite stability (MSS) is often associated with mutations in the POLE gene. These 

mutations lead to a heightened mutation rate, characterized by over 100 mutations in the 

POLE and POLD1 genes per 10^6 bases [Nature, 2012; Barbari and Shcherbakova, 2017]. 

According to the Bethesda guidelines, CRC can be classified as either MSI-L or MSS based 

on instability, and modern hypermutation kits categorize samples lacking length mutations 

as MSS. 

A study conducted by Barbari and Shcherbakova in 2017 identified specific mutations in 

the POLE gene, including high-frequency somatic mutations like P286R and V411L, along 

with low-frequency germline mutations such as P286H/S, F367S, S459F, and V424L 
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[Nebot-Bral et al., 2017]. Recent research has also pinpointed somatic point mutations in 

the polymerase domain of PolE (R567C, K593C, S595P, E611K, and L621F) and deletion 

frameshifts in the middle region of the PolE gene (V1446fs *3) as pathogenic factors 

contributing to cancer [Meng et al., 2020; Min et al., 2020]. 

MSS in CRC primarily arises from a high frequency of POLE mutations and a low 

frequency of POLD1 mutations [Barbari and Shcherbakova, 2017]. While the NCI panel 

has identified seven genes in which mutations result in forms of hypermutation, there are 

still cases of hypermutation that do not exhibit mutations in any of these panel genes. 

Investigating the cause of hypermutation in these cases remains an ongoing area of 

research. Key enzymes responsible for DNA replication and repair in vivo are DNA 

polymerases (Pols). In eukaryotes, three cooperating Pols are required for DNA replication: 

Pols α, δ, and ε. Human Pol ε is a heterotetramer composed of p261 (encoded by the POLE 

gene), p59 (POLE2), p17 (POLE3), and p12 (POLE4) subunits. The p261 subunit contains 

N-terminal domains with conserved polymerase and 3′→5′ exonuclease subdomains, as 

well as a large C-terminal domain required for interaction with the three smaller subunits. 

Human Pol δ is another heterotetramer, comprising p125 (POLD1), p66 (POLD3), p50 

(POLD4), and p12 (POLD4) subunits. The p125 subunit shares similarities with the N-

terminal half of Pol ε p261, containing polymerase and exonuclease domains. POLE is 

responsible for leading strand synthesis, while POLD1 handles lagging strand synthesis in 

DNA replication. Under specific conditions, POLD1 can also synthesize the leading strand 

alongside the lagging strand [Nature, 2012; Barbari and Shcherbakova, 2017]. 

The specific mutation P286R in the POLE gene has been identified as a significant 

biomarker for cases with MSS hypermutation [Nebot-Bral et al., 2017]. To investigate the 

impact of this mutation, a comparative analysis was conducted using the cBioPortal 

platform, focusing on samples from UCEC and CRC datasets. Among the samples, 19 

carried the POLE P286R mutation, with the majority occurring in UCEC (15), while 3 

were from CRC and 1 from pancreatic adenocarcinoma (PAAD). Conversely, 23 samples 

did not possess the POLE P286R mutation, including 9 from UCEC, 11 from CRC, and 3 

from stomach adenocarcinoma (STAD). 
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Comparing the two groups across both cancer subtypes, common genes that were 

upregulated and downregulated were identified. Furthermore, to gain deeper insights into 

whether the specific mutation, POLE P286R, was responsible for observed gene expression 

changes, additional comparisons were conducted.  

3.4.1 cBioPortal Results 

In cBioPortal results the total number of upregulated genes in UCEC cancer in POLE vs 

no POLE hypermutated MSS samples (Group_1) were 44 with NOTUM as most 

upregulated gene. The total number of downregulated genes in same group were 70 with 

SCGB1A1 as most downregulated gene. Whereas in other group of POLE mutated vs non 

hyper samples (Group_2) in UCEC, 33 genes were upregulated in which CXCL9 was most 

upregulated and 60 genes were downregulated in which AOC1 was most downregulated 

gene. 

On the other hand, in Group_1 in CRC total genes were upregulated 278 and SOX2 was 

most unregulated gene and 253 genes were downregulated with SI as most downregulated 

gene. In Group_2 analysis 415 genes were upregulated with SOX2 as most upregulated 

and 388 were down regulated in which CHP2 was most downregulated gene. 

3.4.2 Common Upregulated Genes in UCEC and CRC 

Following are the tables representing common upregulated genes in CRC and UCEC of 

POLE group: 

 

Table 5: Common Upregulated Genes in UCEC, influenced by POLE Gene Mutations 

 

 

UCEC_POLE Mut VS Non-POLE Mut POLE_Mut VS MSS Non_Hyper 

GENES Log2 

Ratio 

High Expression in  GENES Log2 

Ratio 

High Expression in  

DKK4 3.14 Hyp_MSS_WITH_POLE DKK4 1.35 Hyp_MSS_WITH_POLE 

FGF20 2.13 Hyp_MSS_WITH_POLE FGF20 1.30 Hyp_MSS__WITH_POLE 

HMX2 2.07 Hyp_MSS_WITH_POLE HMX2 2.13 Hyp_MSS_WITH_POLE 
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Table 6: Common Upregulated Genes in CRC, influenced by POLE Gene Mutations 

 

 

 

 

 

Both these tables represent 3 common upregulated genes due to POLE mutation in CRC 

and UCEC. First group is comparison between hypermutated MSS POLE mutated and 

nonmutated samples and second group comparison is between POLE mutated samples with 

non-hyper samples. In each group first column represents gene name, second column 

represents its Log2Ratio value whereas third column represents the group in which gene 

expression is higher. HMX2 is highly upregulated in POLE mutated samples group. 

3.4.2.1 Dickkopf WNT Signaling Pathway Inhibitor 4 (DKK4) 

DKK4, a member of the Dickkopf protein family, that inhibits Wnt Signaling pathway by 

blocking the interaction between Wnt ligands and the Frizzled receptor. It may act as tumor 

suppressor gene and embryonic development, tissue homeostasis, and plays a part in 

disease pathways such as cancer and angiogenesis. In colorectal cancer (CRC), DKK4 

exhibits complex expression patterns. It's often upregulated due to hypermethylation but 

can be silenced in some CRC cells, while remaining active in normal colon tissues. Studies 

yield mixed results, with some indicating increased DKK4 expression in CRC compared 

to normal tissue and others showing the opposite. DKK4 correlates positively with β-

catenin and fibroblast growth factor-20 in CRC, and its knockdown leads to increased β-

catenin expression. It acts as a T-cell factor (TCF)-dependent signaling inhibitor, impacting 

CRC cell growth by arresting the G0/G1 cell cycle phase and enhancing metastasis, 

aggression, and angiogenic potential in CRC. DKK4 may also play a role beyond 

suppressing the Wnt/canonical signaling pathway, and its inhibition by 1α, 25-

dihydroxyvitamin D3 suggests potential regulatory mechanisms. (Cai et al., 2018; Lou et 

al., 2021) 

CRC_POLE Mut VS Non-POLE Mut POLE_Mut VS MSS Non_Hyper 

GENES Log2 

Ratio 

High Expression in  GENES Log2 

Ratio 

High Expression in  

DKK4 4.10 Hyp_MSS_WITH_POLE DKK4 3.51 Hyp_MSS_WITH_POLE 

FGF20 2.10 Hyp_MSS_WITH_POLE FGF20 2.68 Hyp_MSS_WITH_POLE 

HMX2 5.44 Hyp_MSS_WITH_POLE HMX2 5.23 Hyp_MSS_WITH_POLE 
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3.4.2.2 Fibroblast Growth Factor 20 (FGF20) 

FGF20, a member of the fibroblast growth factor family, plays a vital role in embryonic 

development, influencing the formation of tissues and organs such as the midbrain, inner 

ear, and limbs. FGF20 may also contribute to angiogenesis, the formation of new blood 

vessels that support tumor growth and facilitate cancer cell invasion and metastasis. The 

Mitogen-Activated Protein Kinase (MAPK) pathways regulate essential cellular functions 

like proliferation and apoptosis. When activated, FGF20 binds to its receptor known as 

FGFR1, initiating a cascade that activates the RAS protein, ultimately leading to the 

activation of the MAPK signaling pathway, which, in turn, can influence gene regulation. 

Therefore, any dysregulation in the MAPK signaling pathway can result in the upregulation 

of FGF20 and potentially contribute to the development of various carcinomas (Su et al., 

2020). In a comprehensive pancancer study, FGF20 was identified as one of the most 

upregulated members of the FGF family (Li et al., 2020). Furthermore, FGF20 has been 

found to be upregulated not only in colorectal cancer (CRC) but also in different cancer 

types such as lung adenocarcinoma (LUAD), prostate adenocarcinoma (PRAD), thyroid 

carcinoma (THCA), and lung squamous cell carcinoma (LUSC) (Li et al., 2020). In a study 

examining the expression of long noncoding RNA and coding RNA during the initiation 

of secondary hair follicles in sheep skin, FGF20 exhibited significant differential 

expression within the Wnt, Shh, Notch, and BMP signaling pathways. Notably, it was 

found to be upregulated along with Wnt2 in these pathways (Yue et al., 2016). 

3.4.3 Common Downregulated Genes in UCEC and CRC 

Following are the tables representing common downregulated genes in CRC and UCEC of 

POLE group:  

Table 7: Common downregulated Genes in UCEC, influenced by POLE Gene Mutations 

 

UCEC_POLE Mut VS Non-POLE Mut POLE_Mut VS MSS Non_Hyper 

GENES Log2 

Ratio 

High Expression in  GENES Log2 

Ratio 

High Expression in  

AKR1B10 -3.40 Hyp_MSS_NO_POLE AKR1B10 -1.87 MSS_NonHyper 

AKR1C2 -2.18 Hyp_MSS_NO_POLE AKR1C2 -0.54 MSS_NonHyper 
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Table 8: Common downregulated Genes in CRC, influenced by POLE Gene Mutations 

 

These tables, showcases common downregulated genes resulting from POLE mutations. It 

also distinguishes between two groups: hypermutated MSS POLE mutated samples and 

non-mutated samples, as well as POLE mutated samples versus non-hypermutated 

samples. It is noteworthy that AKR1B10 demonstrates the most prominent downregulation 

in the group of non-POLE mutated and non-hypermutated samples. 

3.4.3.1 Aldo-Keto Reductase Family 1 Member B10 (AKR1B10) 

AKR1B10, also known as Aldo-keto reductase family 1 member B10, is expressed in 

various tissues, including the lung, liver, and gastrointestinal tract. It has been linked to 

tumor invasion, growth, and drug resistance in different types of cancer, such as lung, 

breast, hepatic, and pancreatic carcinomas, where it is often overexpressed. The MAPK 

signaling pathway, of which ERK is a part, is involved in these processes. ERK is a kinase 

activated within the MAPK pathway and plays a role in influencing gene expression by 

phosphorylating transcription factors and other regulatory proteins (Cong et al., 2019) 

All-trans-retinoic acid (atRA), an oxidized form of vitamin A (retinol), is known to have a 

significant role in various biological processes. Each step of this pathway has been reported 

as dysregulated in colorectal cancer (CRC), leading to a clear downregulation of 

AKR1B10. Consequently, a decrease in atRA levels can disrupt normal cell activities and 

contribute to the development of CRC or other cancers (Kropotova et al., 2014). In gastric 

cancer, lower levels of AKR1B10 expression have been reported (Zhou et al., 2023). In 

more than 60% of early-stage specimens, AKR1B10 expression was reported to be 

downregulated. The significant downregulation of AKR1B10 has been suggested as a 

potential biomarker for diagnosing CRC (Kropotova et al., 2010). Conversely, 

CRC_POLE Mut VS Non-POLE Mut POLE_Mut VS MSS Non_Hyper 

GENES Log2 

Ratio 

High Expression in  GENES Log2 

Ratio 

High Expression in  

AKR1B10 -2.72 Hyp_MSS_NO_POLE AKR1B10 -2.80 MSS_NonHyper 

AKR1C2 -2.30 Hyp_MSS_NO_POLE AKR1C2 -2.63 MSS_NonHyper 
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upregulation of AKR1B10 is reported in breast cancer and hepatocellular carcinoma (Cong 

et al., 2019; Dai et al., 2021). 

3.4.3.2 Aldo-Keto Reductase Family 1, Member C2 (AKR1C2) 

The AKR1C2 gene, also known as Aldo-keto reductase family 1 member C2, encodes the 

AKR1C2 enzyme. Decreased AKR1C2 activity contributes to disease progression, while 

its dysregulation has been associated with various hormone-dependent cancers. Liu et al. 

proposed that downregulated AKR1C2 could serve as a potential predictive prognostic 

biomarker for immunotherapy in gastric cancer patients. Previous studies have reported 

that higher expression of AKR1C2 is related to a better prognosis in thyroid carcinoma and 

acute myeloid leukemia (AML), while it is associated with poor prognosis in esophageal 

squamous cell carcinoma (ESCC) (Liu et al., 2023; Jin et al., 2019). Downregulation of 

AKR1C2 is also observed in breast cancer studies, where this gene is proposed as a target 

for hormone-based therapies (Wenners et al., 2015). Li et al., in their study reported 

decreased AKR1C2 expression levels in CRC, based on their high CpG methylation levels.  

The exact function of AKR1C2 in tumorigenesis and prognosis has not been identified yet 

(Zhao et al., 2019) 

3.5 Adenomatous Polyposis Coli (APC) 
The adenomatous polyposis coli (APC) gene is a tumor suppressor gene that plays a critical 

role in the development of colorectal cancer (CRC). Approximately 80% of CRC cases are 

initiated by somatic mutations in the APC gene, highlighting the significance of 

dysregulated intracellular WNT signaling in CRC development (Grant et al., 2021). 

Interestingly, APC mutations are less frequent in early-onset CRC cases, suggesting that 

alternative pathways may drive tumorigenesis in these cases (Lieu et al., 2019; Willauer et 

al., 2010). In a recent study conducted by Grant et al. in 2021, the authors investigated the 

distinguishing characteristics of APC-mutated (APC mut+) and APC-nonmutated (APC 

mut-) MSS hypermutated CRCs. The findings revealed that early-onset CRC cases are 

more likely to be APC mut- and are often diagnosed at a later stage, beyond stage one 

(Grant et al., 2021). 
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In our own analysis of the data, we identified different APC mutations, with a total of 130 

mutations observed. Among these mutations, the R1114* mutation was the most frequent. 

Out of the 35 samples analyzed, 31.4% (11) were diagnosed in the early-onset group (less 

than 50 years), while the remaining 68.5% (24) were diagnosed in the late-onset group 

(greater than 50 years).  

Table 9: APC samples separated on basis of early and late onset 

Late-Onset APC Mutated Samples Early Onset APC Mutated Samples 
Sample-ID Diagnosis 

Age 
Sample-ID Diagnosis 

Age 
TCGA-A5-A0GP-01A 83 TCGA-AA-3510-01A 37 
TCGA-A5-A2K5-01A 56 TCGA-AA-3977-01A 43 
TCGA-AG-3892-01A 50 TCGA-AA-3977-01A 43 
TCGA-AG-3892-01A 50 TCGA-AA-3984-01A 36 
TCGA-AG-A002-01A 51 TCGA-AA-3984-01A 36 
TCGA-AJ-A5DW-01A 57 TCGA-AZ-4315-01A 35 
TCGA-AP-A0LM-01A 61 TCGA-BR-8680-01A 33 
TCGA-AX-A05Z-01A 57 TCGA-CA-6717-01A 45 
TCGA-B5-A0JY-01A 57 TCGA-CA-6718-01A 34 
TCGA-B5-A11R-01A 83 TCGA-EI-6917-01A 46 
TCGA-BK-A6W3-01A 65 TCGA-ND-A4WC-01A 33 
TCGA-BS-A0UF-01A 76 
TCGA-D1-A16X-01A 64 
TCGA-E6-A1M0-01A 52 
TCGA-EO-A22X-01A 70 
TCGA-EO-A3AV-01A 56 
TCGA-EO-A3B0-01A 58 
TCGA-EY-A1G8-01A 56 
TCGA-EY-A1GD-01A 61 
TCGA-EY-A1GI-01A 65 
TCGA-F5-6814-01A 51 
TCGA-FI-A2D5-01A 55 
TCGA-IB-7651-01A 51 
TCGA-QF-A5YS-01A 54 

 

Furthermore, the study by Grant et al. also suggested that BRAF and RNF43 mutations are 

associated with the progression of MSS APC mut- CRCs. The mutation and expression 
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data indicated that CRCs with APC mut- tend to exhibit dysregulation of genes involved 

in responding to extracellular WNT signaling.  

For upregulating and downregulating genes same analysis was performed using cBioPortal 

as for POLE gene. Out of total APC R1114* hotspot mutated 13 hypermutated MSS 

samples, 3 were UCEC and 10 were CRC. While on the other hand, 29 were total 

hypermutated MSS samples without APC R1114* mutation, from which 21 were UCEC, 

3 were CRC, 3 STAD and for UCS and PAAD one each.  

3.5.1 cBioPortal Results 

In the results obtained from cBioPortal, when comparing hypermutated MSS samples with 

and without APC mutations (Group_1) in UCEC cancer, we identified 269 upregulated 

genes, with MMP10 being the most prominently upregulated. Additionally, we found 88 

downregulated genes, with SCGB1A1 being the most significantly downregulated gene. In 

the same context, when examining APC mutated samples versus non-hypermutated 

samples (Group_2) in UCEC, we observed 145 upregulated genes, with MMP10 being the 

most highly upregulated. Furthermore, we identified 175 downregulated genes, with 

HOXB13 as the most prominently downregulated gene. 

Shifting to CRC, within Group_1, there were 175 upregulated genes, with DEFA6 ranking 

as the most upregulated gene, while 148 genes were downregulated, with UGT1A8 as the 

most significantly downregulated gene. In Group_2 analysis for CRC, we noted 86 

upregulated genes, with CALB1 standing out as the most upregulated, and 83 genes were 

downregulated, with XPNPEP2 as the most notably downregulated gene. 
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3.5.2 Common upregulated Genes in UCEC and CRC  

Following are the tables representing common upregulated genes in CRC and UCEC of 

APC group: 

Table 10: Common upregulated Genes in UCECC, influenced by APC Gene Mutations 

 

Table 11: Common upregulated Genes in CRC, influenced by APC Gene Mutations 

 

UCEC_APC Mut VS Non-APC Mut APC_Mut VS MSS Non_Hyper 

GENES Log2 

Ratio 

High Expression in  GENES Log2 

Ratio 

High Expression in  

TSIX 3.14 MSS_HYP_WITH_APC TSIX 2.69 MSS_HYP_WITH_APC 

GNG4 3.23 MSS_HYP_WITH_APC GNG4 2.51 MSS_HYP_WITH_APC 

GSTM1 3.18 MSS_HYP_WITH_APC GSTM1 1.31 MSS_HYP_WITH_APC 

ALDH1A1 2.73 MSS_HYP_WITH_APC ALDH1A1 2.66 MSS_HYP_WITH_APC 

CHIT1 2.54 MSS_HYP_WITH_APC CHIT1 3.21 MSS_HYP_WITH_APC 

CPS1 2.39 MSS_HYP_WITH_APC CPS1 1.13 MSS_HYP_WITH_APC 

NELL2 2.24 MSS_HYP_WITH_APC NELL2 1.57 MSS_HYP_WITH_APC 

RNF212 2.22 MSS_HYP_WITH_APC RNF212 1.11 MSS_HYP_WITH_APC 

COMP 2.15 MSS_HYP_WITH_APC COMP 1.30 MSS_HYP_WITH_APC 

GABRE 2.09 MSS_HYP_WITH_APC GABRE 0.05 MSS_NonHyper 

EPYC 2.09 MSS_HYP_WITH_APC EPYC 2.23 MSS_HYP_WITH_APC 

CRC_APC Mut VS NonAPC Mut APC_Mut VS MSS Non_Hyper 

GENES Log2 

Ratio 

High Expression in  GENES Log2 

Ratio 

High Expression in  

TSIX 3.05 MSS_HYP_WITH_APC TSIX 0.22 MSS_HYP_WITH_APC 

GNG4 2.15 MSS_HYP_WITH_APC GNG4 2.13 MSS_NonHyp 

GSTM1 2.62 MSS_HYP_WITH_APC GSTM1 1.40 MSS_HYP_WITH_APC 

ALDH1A1 3.17 MSS_HYP_WITH_APC ALDH1A1 1.45 MSS_HYP_WITH_APC 

CHIT1 2.51 MSS_HYP_WITH_APC CHIT1 1.02 MSS_HYP_WITH_APC 

CPS1 3.37 MSS_HYP_WITH_APC CPS1 2.50 MSS_HYP_WITH_APC 

NELL2 2.05 MSS_HYP_WITH_APC NELL2 0.89 MSS_HYP_WITH_APC 

RNF212 2.73 MSS_HYP_WITH_APC RNF212 1.81 MSS_HYP_WITH_APC 

COMP 2.02 MSS_HYP_WITH_APC COMP 0.23 MSS_NonHyp 

GABRE 2.84 MSS_HYP_WITH_APC GABRE 0.91 MSS_NonHyper 

EPYC 2.41 MSS_HYP_WITH_APC EPYC 1.43 MSS_HYP_WITH_APC 



Chapter 03  Results 

Page | 53  
Hypermutation in Microsatellite Stable Cancers 
  

These tables display the common genes that experience upregulation due to APC 

mutations. They further differentiate between two distinct groups: hypermutated MSS APC 

mutated samples and their non-mutated counterparts, as well as APC mutated samples 

versus those without hypermutation. Of particular note is the significant upregulation of 

GNG4 in UCEC and CPS1 in CRC observed in the APC mutated sample group. 

3.5.2.1 X-Inactive Specific Transcript (TSIX) 

TSIX is a long non-coding RNA gene known for its involvement in X chromosome 

inactivation. In a 2020 study by Salama et al., limited evidence suggested TSIX's role as a 

tumor suppressor. Moreover, TSIX has been identified as a potential biomarker for 

immunotherapy in breast cancer due to its upregulation. Interestingly, this study found that 

high PD-L1 expression in lymph nodes was significantly associated with TSIX 

downregulation (Salama et al., 2020). 

Studies have also revealed TSIX's role in regulating mRNA stability associated with 

collagen. In normal skin cells, TSIX contributes to maintaining stable collagen levels, 

while in systemic sclerosis (SSc)-affected skin cells, it appears to be involved in the 

dysregulation of collagen production. This dysregulation is characteristic of SSc, a 

condition marked by excessive scarring and collagen production. Consequently, TSIX has 

been reported to be upregulated in scleroderma dermal fibroblasts (Wang et al., 2016). 

TSIX is known to have a strong correlation with XIST, another long non-coding RNA. 

TSIX acts as an antisense or complementary sequence to XIST, and their expression levels 

are inversely related. When TSIX is upregulated, XIST is downregulated, and vice versa. 

Increased TSIX expression blocks X-chromosome inactivation, while increased XIST 

expression leads to X chromosome activation (Katopodis et al., 2020). 

In the context of cancer, TSIX has been reported to be upregulated in lung adenocarcinoma 

(LUAD) and breast cancer. It is considered an important target in immunotherapy, 

including in the treatment of gastric cancer (Katopodis et al., 2020; Samir et al., 2021; Shen 

et al., 2021; Sun et al., 2021). However, TSIX's exact role in cancer is not yet fully 

understood. 
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3.5.2.2 G-Protein Subunit Gamma 4 (GNG4) 

Guanine nucleotide-binding protein gamma subunit-4 (GNG4) is a member of the guanine 

nucleotide-binding protein complex. The role of GNG4 in tumors is not yet fully 

understood, but several studies have shown high expressions of GNG4, which may enhance 

the proliferation ability of cancer cells and affect their epithelial-mesenchymal 

transformation status, leading to changes in invasion and migration abilities. These factors 

can result in phenotypic changes that contribute to a poor prognosis (Zhou et al., 2021). 

Upregulation of GNG4 has been reported to be associated with poor prognosis in 

gallbladder cancer and colorectal cancer, with a negative correlation with overall survival 

rates. Silencing of GNG4 leads to increased apoptosis, potentially inhibiting cell 

proliferation. Reduction in GNG4 expression can also cause colorectal cancer (CRC) cells 

to become arrested in the S phase of the cell cycle. Studies by Yang et al. and Liang et al. 

have suggested that the upregulation of GNG4 in CRC may influence tumor prognosis 

through the PI3K-signaling pathway (Liang et al., 2021). However, clear evidence of the 

involvement of any specific pathway in GNG4's role in tumors is not yet known. 

3.5.2.3 Glutathione S-Transferase Mu 1 (GSTM1) 

GSTM1 refers to the Glutathione S-Transferase Mu 1 gene, which is responsible for 

producing the Glutathione S-Transferase Mu 1 enzyme. This gene is highly polymorphic, 

and one of the common variations is the GSTM1 null genotype, which results in the 

absence of GSTM1 enzyme production. This absence is associated with an increased risk 

of various cancers, including lung, colorectal, breast, bladder, cervical dysplasia, and head 

and neck cancers (Chen et al., 2012; Guo et al., 2012; Ryk et al., 2021). Downregulation 

of GSTM1 is frequently observed in different cancer types. 

In the treatment of cervical cancer, a drug called doxorubicin is used, and it has been 

reported that this drug can upregulate GSTM1. This upregulation may be associated with 

drug resistance in some individuals. However, GSTM1 null individuals have shown a 

better response in breast and ovarian cancer (Drozd et al., 2016). Additionally, Ay et al. 

reported in their study that GSTM1 plays a role in cancer prevention, such as in colorectal 

cancer, through its involvement in the neutralization process. They also noted upregulation 

of GSTM1 in certain contexts. 
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When studying the association between the GSTM1 null genotype and specific 

populations, various studies have concluded that Turkish, Asian, Malaysian, Caucasian, 

Saudi Arabian, and Brazilian populations with homozygous GSTM1 deletions are at a 

higher risk of breast cancer, colorectal cancer, and other cancer types (Ay et al., 2021). 

However, the exact pathways and mechanisms underlying these associations are not yet 

clearly understood.  

3.5.2.4 Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) 

ALDH1A1 is involved in the synthesis of retinoic acid and plays a crucial role in cellular 

metabolism. It has diverse functions in tumorigenesis, contributing to stem cell cancer, 

tumor progression, chemotherapy resistance, and prognosis. Overexpression of ALDH1A1 

is associated with poor clinical outcomes in breast, lung, liver, and ovarian cancer (Yong 

et al., 2018; Li et al., 2018; Moreb et al., 2017; Visus et al., 2011). 

A study by Condello et al. reported that β-catenin, a protein involved in cell adhesion and 

gene transcription through the β-catenin pathway, regulates ALDH1A1. In ovarian cancer, 

up-regulation of ALDH1A1 has been reported, and abnormal activation of β-catenin is 

associated with tumor growth and prognosis. Therefore, targeting ALDH1A1 has been 

proposed as a potential treatment option in ovarian cancer, with the aim of inhibiting its 

activity (Condello et al., 2014). It is also considered a potential target for breast cancer 

treatment (Wang et al., 2018). 

Upregulation of ALDH1A1 has been linked to chemotherapy resistance in various cancers, 

including breast, cervical, lung, and colorectal cancers (Poturnajova et al., 2021). While 

the clear mechanisms of ALDH1A1 are well-documented in colorectal cancer (CRC) and 

uterine corpus endometrial carcinoma (UCEC), different pathways have been reported in 

other cancers, such as the retinoic acid pathway in cancer stem cells (Yue et al., 2022). 

Moreover, overexpression of ALDH1A1 has been found to play an important role in 

obesity, diabetes, and other diseases (Poturnajova et al., 2021). 

3.5.2.5 Carbamoyl-Phosphate Synthase 1 (CPS1) 

The CPS1 (carbamoyl phosphate synthase 1) gene encodes an enzyme called carbamoyl 

phosphate synthetase 1, which plays a crucial role in the metabolic pathway known as the 
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urea cycle. The urea cycle is responsible for removing toxic ammonia from the body. In 

several studies involving hepatic, colorectal, and pancreatic cancers, altered expression of 

CPS1 has been observed. Dysregulation of CPS1 has been linked to cell proliferation (Tsai 

et al., 2017; Biancur et al., 2017; Watanabe et al., 2016). 

In particular, upregulation of CPS1 has been reported in various cancers, including 

stomach, melanoma, sarcoma, B cell lymphoma, lung cancer, glioma, and glioblastoma 

(GBM). In non-small cell lung carcinoma (NSCLC), KRAS mutation is responsible for the 

upregulation of CPS1. Conversely, silencing CPS1 has been shown to induce cell death 

and inhibit tumor growth. Furthermore, CPS1 upregulation beyond NSCLC has been 

associated with the loss of the P53 gene, as P53 is involved in CPS1 regulation. 

Studies have demonstrated that the suppression of neurotensin (NTS), interleukin-6 (IL-6), 

or IL-6 signal transducer (IL6ST) can lead to the suppression of CPS1. Consequently, 

suppressing CPS1 expression is considered a potential biomarker and therapeutic target in 

the treatment of NSCLC (Hajaj et al., 2021). 

3.5.3 Common Downregulated genes in UCEC and CRC 

Following are the tables representing common downregulated genes in CRC and UCEC of 

APC group: 

Table 12: Common downregulated Genes in UCEC, influenced by APC Gene Mutations 

 

 

 

 

 

Table 13: Common downregulated Genes in CRC, influenced by APC Gene Mutations 

UCEC_APC Mut VS NonAPC Mut APC_Mut VS MSS Non_Hyper 

GENES Log2 

Ratio 

High Expression in  GENES Log2 

Ratio 

High Expression 

in  

HOMER2 -2.8 MSS_Hyp_NO_APC HOMER2 -1.78 MSS_NonHyper 

FGF19 -2.04 MSS_Hyp_NO_APC FGF19 -1.70 MSS_NonHyper 

CRC_APC Mut VS NonAPC Mut APC_Mut VS MSS Non_Hyper 

GENES Log2 

Ratio 

High Expression in  GENES Log2 

Ratio 

High Expression in  

HOMER2 -4.83 MSS_Hyp_NO_APC HOMER2 1.34 MSS_HYP_WITH_APC 

FGF19 -2.46 MSS_Hyp_NO_APC FGF19 -0.52 MSS_NonHyper 
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These tables reveal the shared downregulated genes resulting from APC mutations. They 

also discern between two specific groups: one composed of hypermutated MSS APC 

mutated samples and non-mutated samples, and the other comparing APC mutated samples 

with those lacking hypermutation. Notably, FGF19 exhibits substantial downregulation 

within the group of non-APC mutated samples. 

3.5.3.1 Homer Scaffold Protein 2 (HOMER2) 

HOMER2 (Homer Protein Homolog 2) is a gene that plays a crucial role in synaptic 

signaling and neuronal plasticity. Its function in cancer appears to be complex and context-

dependent. In hepatocellular carcinoma (HCC), for example, HOMER2 is found to be 

downregulated, suggesting a potential tumor suppressive role (Luo et al., 2021). However, 

contradictory findings have been reported in endometrioid endometrial adenocarcinoma 

patients, where higher HOMER2 expression was associated with a better response 

(Mhawech et al.). Likewise, in Rectal Cancer (RC), increased HOMER2 expression was 

correlated with reduced overall survival (Sun et al., Luo et al., 2021). These studies suggest 

that HOMER2's function may differ in different types of carcinomas. 

The dysregulation of the Homer protein family, including HOMER2, has been validated 

through various studies in multiple carcinomas. Therefore, the dysregulation of HOMER2 

itself could potentially serve as a prognostic biomarker. 

Aside from its role in cancer, HOMER2 is also involved in the regulatory processes of 

muscle cells. Muscle cells continuously undergo protein degradation of damaged proteins, 

and HOMER2 has been reported to have a significant effect on this degradation process. 

Decreased levels of HOMER2 enhance this degradation process, which can impact muscle 

health (Bortoloso et al., 2013; Kamal & Lawler, 2023). 

3.5.3.2 Fibroblast Growth Factor 19 (FGF19) 

FGF19 collaboratively interacts with various signaling pathways, including the epidermal 

growth factor receptor, Wnt/β-catenin, endoplasmic reticulum-related signaling pathway, 

STAT3/IL6, RAS, and extracellular signal-regulated protein kinase, which are involved in 

the development of primary liver cancer (Chen et al., 2021). 
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Inhibiting FGF19 holds promise as a treatment strategy for malignancies associated with 

FGF19, including colon and liver cancers (Desnoyers et al., 2007). In breast cancer, FGF19 

upregulates the AKT signaling pathway and downstream PI3K/AKT signaling. Therefore, 

targeting FGF19 could be a potential treatment for basal-like breast cancer (Tiong et al., 

2016). 

In lung squamous cell carcinoma (LSCC), downregulation of FGF19 has been shown to 

significantly inhibit tumor cell growth and enhance apoptosis (Zhang et al., 2017). In 

ovarian cancer, FGF19 activates the p38 MAPK pathway, leading to increased 

chemoresistance. This suggests that FGF19 could be a promising therapeutic target for 

ovarian cancer (Zhu et al., 2023). 

3.6 Zinc Finger HIT-Type Containing 6 (ZNHIT6) 
ZNHIT6 is a protein coding gene that plays a role in breast cancer antigen immunogenicity 

and is involved in coding for the Nop56 protein, which is part of the box C/D small 

nucleolar RNA (snoRNA) complex (Souza Melo et al., 2015). It belongs to the zinc finger 

HIT protein family and is crucial for the proper biogenesis of small nucleolar 

ribonucleoproteins (snoRNPs) involved in ribosomal RNA modification and processing. 

The ZNHIT6 protein interacts with the R2TP pathway for snoRNP biogenesis (Verheggen 

et al., 2015; Cloutier et al., 2017).  

Next, we performed pathway analysis for all these genes, including ZNHIT6, using the 

DAVID tool and validated the results through literature review. Interestingly, annotations 

were found for the other genes, indicating their involvement in various pathways. However, 

no pathway association was reported for ZNHIT6 in conjunction with any of the 

upregulated or downregulated genes within the same pathway. 

These findings suggest that ZNHIT6 may have distinct functions or interactions that are 

not yet fully understood or reported in relation to the identified set of upregulated and 

downregulated genes. Further investigation is needed to elucidate the specific role of 

ZNHIT6 in the context of these pathways and its potential implications in MSS 

hypermutated samples. 
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3.6.1 cBioPortal Results 

In the cBioPortal results, when comparing UCEC cancer samples with hypermutated MSS 

that have ZNHIT6 mutations to those without (Group_1), we identified a total of 89 

upregulated genes, with LINC02381 being the most prominently upregulated. 

Additionally, there were 127 downregulated genes, and PIGR was the most significantly 

downregulated gene. In the same vein, when analyzing UCEC samples, specifically 

comparing those with ZNHIT6 mutations to non-hypermutated samples (Group_2), we 

found 234 upregulated genes, with TUBB2B being the most highly upregulated. Moreover, 

there were 100 downregulated genes, and CXCL9 was the most markedly downregulated 

gene. 

Shifting our focus to CRC, within Group_1, we observed 256 upregulated genes, with 

GABRB2 ranking as the most upregulated gene. In contrast, 94 genes were downregulated, 

and ANKRD30B was the most significantly downregulated gene. Conversely, in the 

Group_2 analysis for CRC, we noted 167 upregulated genes, with CALB1 as the most 

prominently upregulated, and 166 genes were downregulated, with SLC39A5 being the 

most notably downregulated gene. 
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3.6.2 Common Upregulated Genes in UCEC and CRC 

Following are the tables representing common upregulated genes in CRC and UCEC of 

ZNHIT6 group: 

Table 14: Common upregulated Genes in UCEC, influenced by ZNHIT6 Gene 
Mutations 

 

 

 

 

 

 

 

 

 

UCEC_ZNHIT6 Mut VS NonZNHIT6 Mut ZNHIT6_Mut VS MSS Non_Hyper 

GENES Log2 
Ratio 

High Expression in  GENES Log2 
Ratio 

High Expression in  

DPT 2.81 MSS_HYP_WITH_ZNHIT6 DPT 3.11 MSS_HYP_WITH_ZNHIT6 

FDCSP 2.97 MSS_HYP_WITH_ZNHIT6 FDCSP 2.66 MSS_HYP_WITH_ZNHIT6 

HOXC4 2.03 MSS_HYP_WITH_ZNHIT6 HOXC4 0.58 MSS_HYP_WITH_ZNHIT6 

HOXC5 3.23 MSS_HYP_WITH_ZNHIT6 HOXC5 1.47 MSS_HYP_WITH_ZNHIT6 

LMO3 3.43 MSS_HYP_WITH_ZNHIT6 LMO3 1.15 MSS_HYP_WITH_ZNHIT6 

LRRN4 2.37 MSS_HYP_WITH_ZNHIT6 LRRN4 1.45 MSS_HYP_WITH_ZNHIT6 

PCOLCE2 2.29 MSS_HYP_WITH_ZNHIT6 PCOLCE2 0.16 MSS_HYP_WITH_ZNHIT6 

RELN 2.19 MSS_HYP_WITH_ZNHIT6 RELN 1.38 MSS_HYP_WITH_ZNHIT6 

RTN4RL1 2.26 MSS_HYP_WITH_ZNHIT6 RTN4RL1 1.29 MSS_HYP_WITH_ZNHIT6 

SLC16A7 2.5 MSS_HYP_WITH_ZNHIT6 SLC16A7 1.88 MSS_HYP_WITH_ZNHIT6 

SLITRK5 2.63 MSS_HYP_WITH_ZNHIT6 SLITRK5 2.17 MSS_HYP_WITH_ZNHIT6 
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Table 15: Common upregulated Genes in CRC, influenced by ZNHIT6 Gene Mutations 

CRC_ZNHIT6 Mut VS NonZNHIT6 Mut ZNHIT6_Mut VS MSS Non_Hyper 

GENES Log2 
Ratio 

High Expression in  GENES Log2 
Ratio 

High Expression in  

DPT 2.03 MSS_HYP_WITH_ZNHIT6 DPT -0.17 MSS_NonHyp 

FDCSP 2.17 MSS_HYP_WITH_ZNHIT6 FDCSP 1.45 MSS_HYP_WITH_ZNHIT6 

HOXC4 2.55 MSS_HYP_WITH_ZNHIT6 HOXC4 1.54 MSS_HYP_WITH_ZNHIT6 

HOXC5 2.01 MSS_HYP_WITH_ZNHIT6 HOXC5 1.96 MSS_HYP_WITH_ZNHIT6 

LMO3 3.29 MSS_HYP_WITH_ZNHIT6 LMO3 -0.15 MSS_NonHyp 

LRRN4 3.57 MSS_HYP_WITH_ZNHIT6 LRRN4 1.78 MSS_HYP_WITH_ZNHIT6 

PCOLCE2 2.66 MSS_HYP_WITH_ZNHIT6 PCOLCE2 1.93 MSS_HYP_WITH_ZNHIT6 

RELN 2.8 MSS_HYP_WITH_ZNHIT6 RELN 1.24 MSS_HYP_WITH_ZNHIT6 

RTN4RL1 2.59 MSS_HYP_WITH_ZNHIT6 RTN4RL1 1.76 MSS_HYP_WITH_ZNHIT6 

SLC16A7 2.87 MSS_HYP_WITH_ZNHIT6 SLC16A7 2.22 MSS_HYP_WITH_ZNHIT6 

SLITRK5 2.24 MSS_HYP_WITH_ZNHIT6 SLITRK5 0.75 MSS_HYP_WITH_ZNHIT6 

 

These tables highlight common upregulated genes attributed to ZNHIT6 mutations, while 

also distinguishing between two distinct groups: hypermutated MSS ZNHIT6 mutated 

samples versus non-mutated samples, and ZNHIT6 mutated samples versus non-

hypermutated ones. Notably, within the group of non-ZNHIT6 mutated and non-

hypermutated samples, LMO3 in UCEC and LRRN4 in CRC stands out as the genes with 

the most pronounced upregulation. 

3.6.2.1 Homeobox C5 (HOXC5) 

HOXC5 is a member of the highly conserved homeobox family of transcription factors, 

and its primary role is in embryogenesis and development. Generally, HOX proteins are 

known to be involved in the regulation of various noncoding RNAs, contributing to 

chemoresistance. This family has been reported to play a role in cancer resistance, 

specifically in lung cancer, breast cancer, hepatocellular carcinoma (HCC), and myeloid 
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leukemia. Interestingly, overexpression of HOXC5 has been found to suppress cancer cell 

growth. 

In squamous cell carcinoma cells, HOXC5 overexpression has been observed compared to 

normal tissues. Further confirmation of HOXC5 upregulation was obtained by analyzing 

TCGA data, which revealed a similar pattern not only in oral squamous cell carcinoma 

(OSCC) but also in head and neck squamous cell carcinoma (HNSCC) cells. Detailed 

analysis results indicated that HOXC5 upregulation is correlated with oral carcinogenesis 

and significantly contributes to OSCC development. Therefore, HOXC5 may serve as a 

robust biomarker for OSCC (Moon et al., 2012). 

Additionally, HOXC5 upregulation has been reported in other cancer types, including 

cervical cancer, breast cancer, prostate cancer, and bladder cancer (Bhatlekar et al., 2014) 

3.6.2.2 LIM Domain Only 3 (LMO3) 

LIM domain only 3 (LMO3) interacts with P53 and regulates its function. It also interacts 

with transcription factors to regulate targeted genes during embryonic development, 

thereby playing a role in nervous system development. In hepatocellular carcinoma (HCC), 

upregulation of LMO3 has been reported. LMO3 promotes HCC cell invasion by 

suppressing the Hippo signaling pathway. In gastric cancer, it induces cell invasion through 

the Akt-mTOR/GSK3β signaling pathway. LMO3's interaction with other genes, such as 

HEN2, also promotes cell growth in neuroblastoma. As a result, LMO3 holds promise as 

a potential therapeutic target for cancer treatment in the future (Cheng et al., 2018). 

LMO3 is involved in cell proliferation in papillary thyroid carcinoma through the 

regulation of LIMK1-mediated cofilin and the β-catenin pathway. In almost all of these 

cancers, upregulation of LMO3 has been reported. Consequently, knocking down LMO3 

has been shown to suppress cancer cell proliferation. In glioma cells, LMO3 knockdown 

promotes apoptosis (Qiu et al., 2018; Zhang et al., 2020). 
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3.6.3 Common Downregulated Genes in UCEC and CRC 

Following are the tables representing common downregulated genes in CRC and UCEC of 

ZNHIT6 group: 

Table 16: Common downregulated Genes in UCEC, influenced by ZNHIT6 Gene 
Mutations 

UCEC_ZNHIT6 Mut VS NonZNHIT6 Mut ZNHIT6_Mut VS MSS Non_Hyper 

GENES Log2 
Ratio 

High Expression in GENES Log2 
Ratio 

High 
Expression in 

IHH -2.74 Hyp_MSS_NO_ZNHIT6 IHH -1.91 MSS_NonHyper 

UGT2B7 -2.51 Hyp_MSS_NO_ZNHIT6 UGT2B7 -1.48 MSS_NonHyper 

OGDHL -2.22 Hyp_MSS_NO_ZNHIT6 OGDHL -2.21 MSS_NonHyper 

 

Table 17: Common downregulated Genes in CRC, influenced by ZNHIT6 Gene 
Mutations 

CRC_ZNHIT6 Mut VS NonZNHIT6 Mut ZNHIT6_Mut VS MSS Non_Hyper 

GENES Log2 
Ratio 

High Expression in  GENES Log2 
Ratio 

High 
Expression in  

IHH -2.21 Hyp_MSS_no_ZNHIT6 IHH -3.11 MSS_NonHyper 

UGT2B7 -2.6 Hyp_MSS_no_ZNHIT6 UGT2B7 -1.31 MSS_NonHyper 

OGDHL -2.58 Hyp_MSS_no_ZNHIT6 OGDHL -0.17 MSS_NonHyper 

 

These tables present a collection of common genes that undergo downregulation as a 

consequence of ZNHIT6 mutations. They further differentiate between two specific 

groups: hypermutated MSS ZNHIT6 mutated samples compared to non-mutated samples, 

and ZNHIT6 mutated samples contrasted with those lacking hypermutation. Worth noting 

is that OGDHL in UCEC and IHH in CRC displays significant downregulation, particularly 

within the subset of non-ZNHIT6 mutated samples. 
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3.6.3.1 Indian Hedgehog (IHH) 

Indian Hedgehog (IHH) is involved in embryonic development, tissue maintenance, bone 

growth, and differentiation. It also plays a crucial role in regulating cellular processes such 

as cell differentiation and proliferation. Dysregulation of IHH has been linked to the 

development of cancer, including its involvement in the self-renewal of cancer stem cells.  

In endometrial cancer, the downregulation of IHH inhibits the IHH pathway, subsequently 

leading to the activation of the Wnt pathway. This activation is accompanied by the 

suppression of its negative regulator, Wif1, which is responsible for tumor development 

(Lian et al., 2006). Similarly, IHH is downregulated in colon cancer, to the extent that its 

diminished expression serves as an early indicator of tumor development. Intriguingly, it 

has been observed that all colon cells exhibiting downregulation of IHH also harbor APC 

mutations, which are pivotal components of the Wnt signaling pathway. Therefore, it has 

been suggested that the upregulation of IHH, leading to the blockage of the Wnt pathway, 

could represent a potential target for cancer treatment (Fu et al., 2006).  

3.6.3.2 UDP Glucuronosyltransferase Family 2 Member B7 (UGT2B7) 

UDP-glucuronosyltransferase 2B7 (UGT2B7) is an enzyme involved in the 

glucuronidation process, which plays a crucial role in eliminating endogenous and 

exogenous compounds from the body. It helps regulate the levels of various substances, 

including steroid hormones, bile acids, and retinoids, all of which have implications in 

various diseases.  

In endometrial cancer patients, downregulation of UGT2B7 has been reported to disrupt 

estrogen homeostasis and estrogen metabolism (Zhao et al., 2020). Similarly, in patients 

with hepatocellular carcinoma (HCC), UGT2B7 downregulation has been documented. 

Additionally, there have been reports of altered enzymatic activities of UGT2B7 in ovarian 

cancer and colorectal cancer (CRC) (Shen et al., 2019). An experimental study conducted 

on renal cell carcinoma (RCC) shed light on the downregulation of UGT2B7 in mRNA 

expression. This downregulation was associated with changes in its enzymatic activity and 

responses in RCC patients. These findings suggest that UGT2B7 may serve as a potential 

biomarker for endometrial cancer and renal cell carcinoma (Matsumoto et al., 2022).  
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3.7 C2 Calcium-Dependent Domain Containing 5 (C2CD5) 
C2CD5 is essential for insulin-stimulated glucose transport. Strong clinical and 

epidemiological evidence indicates a significant association between hyperinsulinemia, 

obesity-related factors, and the development of various cancers, including breast, 

endometrial, colon, liver, esophageal, kidney, and pancreatic cancers. Insulin resistance 

resulting from excessive fat accumulation leads to elevated insulin levels, which promote 

tumor growth by enhancing cell proliferation and inhibiting cell growth regulation 

mechanisms. Moreover, elevated levels of Insulin-like growth factors (IGFs), chronic low-

grade inflammation, and adipose tissue secretion further exacerbate hyperinsulinemia, 

contributing to cancer progression. (Kasprzak, 2021; Hua et al., 2020; Poloz &amp; 

Stambolic, 2015) A modeling analysis of insulin signaling in insulin resistance states and 

cancer in 2016 suggests that disrupted insulin signaling, and insulin resistance play 

significant roles in tumor growth and progression. Elevated insulin levels in insulin 

resistance states activate pathways that promote cell growth, increase cell proliferation, and 

hinder cell death mechanisms, creating an environment conducive to cancer cell survival. 

(Bertuzzi et al., 2016)  

In 2019, Molinaro et al. investigated insulin-driven PI3K-AKT signaling in hepatocytes 

and its regulation by PI3K isoforms (PI3Kα and PI3Kβ) and RAS. The study revealed that 

both PI3Kα and PI3Kβ redundantly transmit insulin signals, while RAS activation 

amplifies PI3K and AKT activation, promoting insulin signaling. These findings provide 

insights into the understanding and potential targeting of insulin signaling pathways in 

hepatocyte-related conditions such as diabetes and liver cancer. (Molinaro et al., 2019) 

Metabolic health is crucial for breast cancer development, and insulin signaling, and 

resistance may contribute to this association. Studies have identified insulin as a potential 

factor in breast cancer pathogenesis, highlighting the importance of considering metabolic 

health in cancer research. (Yee et al., 2020)  

3.8 Raftlin Family Member 2 (RFTN2)  
RFTN2 is a protein that plays a role in immune responses. When stimulated by bacterial 

lipopolysaccharide, it facilitates the internalization of TLR4, a receptor involved in 
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recognizing pathogens, in dendritic cells. This internalization process involves clathrin and 

leads to the activation of TICAM1-mediated signaling, ultimately resulting in the 

production of IFNB1, an important immune response molecule. RFTN2 is also associated 

with the regulation of B-cell antigen receptor (BCR)-mediated signaling. (Chaudhari et al., 

2020) The BCR is expressed on the surface of B cells and is responsible for binding 

antigens. The BCR signaling pathway has been implicated in positive leukemia, and efforts 

have been made to target the BCR-ABL signaling pathway in therapy-resistant 

Philadelphia chromosome-positive leukemia. These studies highlight the importance of 

understanding and modulating these pathways in the context of immune responses and anti-

tumor effects. (Hare T et al., 2011)  

3.9 Neurofibromatosis Type 1 (NF1) 
Mutations in the NF1 gene result in the loss of neurofibromin, a negative regulator of the 

RAS signaling pathway (Pearson et al., 2020). In breast cancer, NF1 mutations have been 

identified as drivers of increased tumor growth and resistance to endocrine therapy (Sokol 

et al., 2019).  

These mutations lead to dysregulated signaling pathways involved in cell cycle regulation, 

DNA repair, and cell survival, contributing to enhanced tumor growth and therapy 

resistance (Pearson et al., 2020). The dysregulated RAS signaling pathway has emerged as 

a crucial driver in NF1 mutated tumors, and targeted therapies aimed at this pathway, such 

as RAS pathway inhibitors, are being developed to improve treatment outcomes (Tao et 

al., 2020). Understanding the molecular mechanisms and signaling pathways associated 

with NF1 mutations offers potential strategies for personalized and more effective 

treatments in breast cancer patients with NF1 mutations.  

In pancreatic cancer, oncogenic KRAS activation has been found to engage the RSK1/NF1 

pathway, leading to the inhibition of wild-type RAS signaling and promoting tumor growth 

(Cheng et al., 2021). This intricate interplay between oncogenic KRAS and the RSK1/NF1 

pathway provides insights into the complex regulation of RAS signaling in pancreatic 

cancer and may hold promise for identifying therapeutic targets (Cheng et al., 2021). 

Furthermore, the loss of NF1 function has been implicated in acquired resistance to 
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endocrine therapy in lobular breast cancer (Sokol et al., 2019). These findings highlight the 

clinical significance of NF1 mutations and suggest that targeting NF1 or its associated 

signaling pathways could potentially overcome endocrine therapy resistance and improve 

treatment outcomes in lobular breast cancer patients (Sokol et al., 2019). Continued 

research in these areas may pave the way for tailored therapeutic approaches and 

personalized medicine strategies in NF1-mutated tumors.  

In a study by Zheng et al. (2020), NF1 frameshift and nonsense mutations were found to 

be associated with a higher risk of breast cancer recurrence and death in ER+ patients. 

Among these mutations, R2450* was the most frequently observed non-silent NF1 

mutation, leading to the absence of a small portion of the NF1 protein at the C-terminus 

(Ellison-Zelski &amp; Alarid, 2010).  

Other studies have also identified the R2450* mutation in patients, demonstrating reduced 

protein expression and non-functional NF1 protein (Whittaker et al., 2013; Gibney &amp; 

Smalley, 2013). Additionally, a genomic analysis of endometrioid endometrial carcinoma 

(EEC) in Chinese patients revealed NF1 mutations in nine EEC patients, including the 

recurrent mutational site p.R2450 (Wang et al., 2019). These findings highlight the 

significance of NF1 mutations, particularly the R2450 mutation, in breast cancer and EEC, 

providing insights into their potential impact on disease progression and treatment 

response.  

3.10 Empirical analysis of digital gene expression data in R 
(EdgeR) Results 
Result of EgdeR script execution showed that common downregulated genes found in MSS 

group of UCEC, CRC and STAD are CXCL5 and MUC5AC. 

3.10.1 C‐X‐C Motif Chemokine Ligand 5 (CXCL5) 

CXCL5 belongs to chemokines class that functions with G-coupled proteins. It is involved 

in angiogenesis. CXCL5 has the capacity to attract immune cells like T/B lymphocytes and 

eosinophils to specific locations during immune responses. Moreover, it plays a role in 

facilitating the adhesion and restructuring of connective tissues. The expression of CXCL5 

is reported higher in CRC, GC and HCC. It is reported to be induced by interleukin‐17A 
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(IL‐17A) or interleukin‐1β (IL1β). It promotes programmed cell death protein 1 (PD‐L1) 

in tumor cells. In breast cancer, CXCL5 secretion promotes tumor development. CXCL5 

recruits and regulates the functions of neutrophils. Blockage of transforming growth factor‐

β (TGF‐β) signaling, promotes tumor growth in melanomas and breast cancers. CXCL5 is 

secreted in RCC, NSCLC, GC, BC, prostrate, cervical, lung cancers, hepatoblastoma, and 

osteosarcoma is associated with proliferation. Blockage of CXCL5 through PI3K inhibitor 

in AKT and GSK‐3β signaling pathway inhibits invasive behavior of tumor cells (Zhang 

et al., 2020).  

3.10.2 Mucin 5AC (MUC5AC) 

Mucin 5AC (MUC5AC), a member of the glycoprotein family, is expressed in epithelial 

cells in various locations, including the upper and lower respiratory tracts, stomach, and 

endocervix. Its interaction with integrin β4 has been implicated in facilitating lung cancer. 

Deregulation of p53 and β-catenin enhances colorectal cancer (CRC), and repression of 

apoptosis has been reported in pancreatic cancer. However, low or absent expression of 

MUC5AC has been observed in renal cancer, breast cancer, prostate cancer, sarcomas, 

lymphomas, endocrine tumors, and various skin tumors. Interestingly, many of the cancers 

associated with MUC5AC are found in organs where it is normally expressed. The 

regulation of cancer by MUC5AC involves MAPK and Akt/PI3K pathways. Its presence 

in multiple cancers suggests its potential utility as a biomarker for treatment (Rico et al., 

2021).  

3.10.3 Pathway Analysis  

The pathway analysis of edgeR common genes found in UCEC, CRC and STAD on 

DAVID revealed only signal pathway common in both the genes I.e., MUC5AC and 

CXCL5 named IL-17 signaling pathway was found.   

3.10.3.1 Interleukin-17 Signaling Pathway (IL-17) 

I Interleukin-17 (IL-17) is a protein in our body that's involved in immune responses and 

inflammation. It's made by certain immune cells called T-helper 17 cells. Among its family 

members, IL-17A is the one we know most about. IL-17 can cause inflammation in tumors, 

which can affect cancer in different ways.  
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One important role of IL-17 in cancer is promoting the spread of cancer cells to other parts 

of the body. It does this by changing how cancer cells behave, making them better at 

moving around. It can also help cancer cells grow more and resist dying, which makes 

cancer worse. IL-17 can activate signals that support cancer cell growth, and it can make 

the body create substances that help tumors grow blood vessels. These blood vessels bring 

tumors the nutrients and oxygen they need to get bigger (Li et al., 2020).  

In the IL-17 process, two other molecules, MUC5AC and CXCL5, are involved. When IL-

17 connects with its receptor on target cells, it sets off a chain reaction. This leads to the 

creation of various molecules, including MUC5AC. So, when we see more MUC5AC, it 

can be because of IL-17 causing inflammation.  

CXCL5, on the other hand, is like a messenger in the IL-17 pathway. When IL-17 binds to 

its receptor, it tells cells to produce CXCL5. Then, CXCL5 acts like a signal, calling 

immune cells like T and B lymphocytes and eosinophils to come to the place where there's 

inflammation. This is the body's way of fighting infections and repairing damaged tissue, 

and CXCL5 helps coordinate this process.  

The IL-17 pathway has emerged as a potential target for cancer therapy. Blocking IL-17 or 

its receptors may be a strategy to mitigate the pro-tumorigenic effects of this pathway, 

studies on this topic are in progress. Particularly in immunotherapy, its blockage improves 

the efficacy of immunotherapy (Zhang et al., 2020; Shuai et al., 2020)
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The major findings of this research include the identification of multiple biomarkers in 

hypermutated microsatellite-stable cancers, the upregulation or downregulation of which 

can be potentially used as therapeutic agents for treatment. There is reported evidence of 

the involvement of these biomarkers in different pathways, which gives us a better 

understanding of how these biomarkers work and how they could be used in 

immunotherapy 

Hypermutation in cancer refers to an elevated number of mutations compared to normal 

cells. It is divided into two main categories based on molecular subtyping: microsatellite 

instability (MSI) and microsatellite stability (MSS). MSI occurs when mutations in 

microsatellite regions result from a deficient mismatch repair mechanism. Hypermutated 

microsatellite stability is associated with germline or somatic mutations in the POLE gene. 

This gene plays a critical role in the DNA mismatch repair mechanism, which corrects 

errors in DNA sequences that occur during replication. Any malfunction in this repair 

mechanism can lead to an accumulation of mutations, increasing the risk of cancer (Nature, 

2012; Barbari and Shcherbakova, 2017). Among the reported mutations, somatic mutations 

are the most common. Notably, P286R and V411L are among the highly reported somatic 

mutations in the POLE gene and are recognized as driver mutations in various types of 

cancer. These in-depth studies aim to discover better treatment options for cancer patients. 

Immunotherapy, the latest and most advanced treatment method for cancer, is side-effect-

free. It involves preparing an individual's immune system to combat cancer through oral or 

intravenous injections. Immunotherapy is significantly more effective in MSI patients than 

in MSS patients. One reason for this is the higher number of mutations in MSI, resulting 

in more available biomarkers to target. In contrast, MSS tumors are stable and have fewer 

mutations, leading to a lack of suitable biomarkers for immunotherapy targeting 

In this study, we focused on seven cancers: UCEC, COAD, READ, STAD, PAAD, UCS, 

and ESCA. These cancers were selected based on previous reports highlighting their status 

as highly hypermutated cancers. We obtained their TCGA data from the GDC data portal. 

After separating the hypermutated MSS samples from the others, we found that POLE had 

the highest number of mutations, reaffirming its importance in MSS cancers. We 

shortlisted some genes from a total of 42 hypermutated MSS samples based on a literature 



Chapter 04  Discussion 

Page | 72  
Hypermutation in Microsatellite Stable Cancers 
  

review. To identify new biomarkers specifically for hypermutated MSS cancers, we 

conducted a detailed analysis of POLE, APC, and ZNHIT6. APC is a tumor suppressor 

gene involved in the Wnt signaling pathway, often associated with early-onset CRC. 

ZNHIT6 is a zinc finger HIT family gene that plays a crucial role in the biogenesis of small 

nucleolar ribonucleoproteins. POLE, on the other hand, is the major gene responsible for 

MSS status. 

In the cBioPortal transcriptomic analysis of these genes, we focused on UCEC and CRC 

cancers, as they had the highest number of hypermutated MSS samples in our data. Among 

POLE-mutated samples, a total of three genes—DKK4, FGF20, and HMX2—were found 

to be consistently upregulated. While their involvement in different cancers, including 

CRC, has been reported, significant literature suggests their association with UCEC cancer. 

Similarly, among APC-mutated samples, TSIX, GNG4, GSTM1, ALDH1A1, and CPS1 

were consistently upregulated. While their involvement in cancer has been reported, there 

is no significant evidence linking them to specific pathways that could confirm their role 

in cancer. For ZNHIT6-mutated samples, HOXC5 and LMO3 were commonly 

upregulated. Although there is insufficient evidence of their involvement in CRC and 

UCEC cancers in the literature, our cBioPortal analysis results suggest that similar 

mechanisms could be at play in these cancers. Additionally, the up and downregulation 

observed in our results may be influenced by hotspot mutations in the reference genes used 

or vice versa, including POLE P286R, APC R1114*, and ZNHIT6 R2588*. While clear 

evidence is lacking, our results suggest a potential role for these genes in CRC and UCEC. 

Because of time constraints and the absence of conclusive evidence regarding the 

significant roles of other genes and their hotspot mutations in cancer, additional mRNA 

analysis for other genes was not carried out.  

Likewise, the presence of a POLE P286R mutation corelated the downregulation of 

AKR1B10 and AKR1C2, while an R1114* APC mutation corelated with downregulation 

of HOMER2 and FGF19. Furthermore, an R258* ZNHIT6 mutation was associated with 

the downregulation of IHH, UGT2B7, and OGDHL. Consequently, the modulation of the 

expression levels of these genes due to specific mutations found in cancer holds promise 

as a potential avenue for therapeutic interventions. 
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For additional assurance and the identification of potential biomarkers in various cancers 

through differential gene expression analysis, EdgeR, a commonly used tool in Next-

Generation Sequencing (NGS) studies, was employed. As a result, CXCL5 and MUC5AC 

were identified as common downregulated genes in hypermutated MSS samples of Uterine 

Corpus Endometrial Carcinoma (UCEC), Colorectal Cancer (CRC), and Stomach 

Adenocarcinoma (STAD). CXCL5 plays a vital role in immune responses by attracting 

T/B lymphocytes and eosinophils to specific locations, and it has been associated with 

programmed cell death of tumor cells. Additionally, its higher expression in CRC is 

induced by the IL-17A pathway. On the other hand, MUC5AC, typically expressed in both 

upper and lower respiratory tracts, has been implicated in the MAPK pathway. 

Dysregulation of this pathway is known to contribute to cancer development. Specifically 

in CRC, MUC5AC is involved in the deregulation of P5, a tumor suppressor gene.  

Subsequently in pathway analysis, both MUC5AC and CXCL5 were found to share a 

common pathway, namely, the interleukin-17 (IL-17) signaling pathway. This pathway 

possesses a pro-inflammatory core that can either bolster or inhibit tumor growth, 

contingent on various contributing factors. In the context of inflammation induced by IL-

17, MUC5AC has a propensity to overexpress. Consequently, it may have a role to play in 

cancer development. In contrast, CXCL5 is more directly linked to IL-17 and its role in 

promoting apoptosis. Elevated levels of CXCL5 have also been reported in the presence of 

IL-17. Hence, while MUC5AC's connection to the IL-17 pathway is indirect, CXCL5 could 

be considered a more direct participant in IL-17-mediated processes, including its potential 

involvement in cancer. 
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Conclusion 

Immunotherapy is currently one of the most effective treatment methods for cancer. 

However, a major hurdle in its application to hypermutated microsatellite stable (MSS) 

cancers is the lack of biomarkers. Identifying more biomarkers is crucial to overcome this 

challenge. 

Based on transcriptomic analysis, we observed the upregulation of certain genes as 

potential biomarkers. Upregulation of DKK4, FGF20, and HMX2 associated with POLE 

P286R mutation, upregulation of TSIX, GNG4, GSTM1, CPS1, and ALDH1A1 

interconnected with the R1114* mutation of APC, and upregulation of HOXC5 and LMO3 

interconnected to R258* ZNHIT6 mutation were noted. Additionally, downregulation of 

AKR1B10 and AKR1C2 corelated with POLE P286R mutation, downregulation of 

HOMER2 and FGF19 corelated with  R1114* APC mutation, and downregulation of IHH, 

UGT2B7, and OGDHL corelated with R258* ZNHIT6 mutation were observed. These 

gene expression patterns may serve as therapeutic biomarkers for immunotherapy. 

Furthermore, in transcriptomic analysis, we identified CXCL5 and MUC5AC, and their 

potential roles in the IL-7 signaling pathway as potential biomarkers for immunotherapy. 

However, it's worth noting that these genes are not directly affected in this pathway. 

Therefore, an in-depth study is required to understand the exact mechanism. 
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