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ABSTRACT 
 

The Bordetella Pertussis is a gram-negative bacterium and it belongs to the family of 

Alcaligenaceae. It is a causative agent of several types of infections mainly pertussis 

which infects human respiratory tracts. Pertussis is linked to the high degree of resistance 

to various class of antibiotics. The focus of the current study is to identify the potential 

drug target and to categorize the best drug candidate by employing subtractive 

proteomics approach and structure based virtual screening. Subtractive proteomics 

pipeline revealed that Capsular Polysaccharide Biosynthesis protein (CPS) that is a 

promising drug target. An AI based approach; Alpha fold was used for acquiring 3D 

structure of CPS. The Molecular Docking was performed against Chembridge library via 

GOLD software. Pharmacokinetic profiling was performed and several in-silico analysis 

such as ADMET and Toxicity analysis, Molecular Dynamics simulations, Radial 

Distribution Function and Binding Free Energy calculations were performed. The top 

inhibitors 10000290 and 10008002 with GOLD dock score 81 and 73 respectively, were 

used as promising drug candidates against CPS.  
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1. Introduction 
Bordetella pertussis occurs as a stringent human pathogen. Bordet and Gengou first 

reported its isolation in 1906 (Mattoo & Cherry, 2005).  B. pertussis is very 

monomorphic. Guillaume de Baillou provided the first account of an epidemic, which 

happened in Paris in 1578. The ISE IS481, which makes up 6.2% of the genome of the 

strain Tohama I of B. pertussis and is found in 238 copies (Mooi, 2010).One of the eight 

species in the Bordetella genus, B. pertussis is the main cause of pertussis. Bordetella is 

an essential genus of bacteria required for multidrug-resistance with a genomic size of 

4MB (Lin et al., 2021).   B. pertussis is oxidase and catalase-positive, with a low 

metabolic activity. It is only isolated from humans only (Lutwick et al., 2014). The cause 

of pertussis, sometimes known as whooping cough, has gram stain negative, multidrug 

resistant, requires oxygen, virulent, disease causing, fastidious and coccobacillus shape 

containing capsule around it. Numerous pathogenic species commonly linked to upper 

respiratory tract diseases in warm-blooded animals can be found in this genus resulting in 

about three hundred thousand fatalities across the world (Locht, 1999). Convulsions, 

encephalopathy, encephalitis, lifelong brain damage, and death are all complications of 

infection. Following a natural infection, acquired immunity to when B. pertussis appears, 

it provides a comparably robust defence against reinfection (Mills & Th, 2001). 

Currently, one of the top 10 infectious disease killers in the world is whooping 

cough. According to reports, severe pertussis death rates in affluent nations can range 

from 19.7 to 31%. A study of babies found that the mortality rate was 70% overall and 

84% for infants under 6 weeks (Shi et al., 2021). Although it can affect anyone at any 

age, pertussis has a significant death rate in newborns under the age of one. 95% of the 

16000000 documented victims were of this disease in worldwide developing countries, 

and the illness caused about 195,000 child deaths (Jamal et al., 2022). Despite a high 

vaccination rate, this disease has made a comeback in a number of nations and only 

humans are susceptible to the illness caused by B.pertussis, which is spread by 

respiratory droplets (Kerr & Matthews, 2000). Aerosols are used to spread B. pertussis, 

which infects the ciliated airway epithelium. B. pertussis is a mobile organism with a 
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characteristic that resembles a flagellum. The toxins filamentous haemagglutinin, 

adenylate cyclase toxin, pertactin, fimbria, and tracheal cytotoxin are some of its 

virulence components (Be et al., 2019). Adhesins and toxins fall into two broad 

categories that can be used to classify these virulence factors. The majority of virulence 

factors are coordinatedly regulated by a signal transduction system of two-components 

consisting of the regulator protein BvgA and the sensor protein BvgS. Together, the 

adhesins and toxins work to create an infection (Locht, 1999). 

The bacteria produce the following toxins: 

1. ADP ribosyltransferase pertussis toxin (Ptx), a complex hexameric protein. 

2. Adenylate cyclase toxin (ACT), which can promote apoptosis and cytotoxicity due to 

post-translational modifications. 

3. BteA, a type III secretion system effector protein, which causes rapid, non-apoptotic 

cell death. 

4. The disaccharide tetra peptide tracheal cytotoxic (TCT), which induces ciliostasis and 

harms respiratory epithelial cells, is generated from the organism's cell wall (Lutwick 

et al., 2014). 

Early in the 1960s, whole-cell pertussis vaccination was made available in China (L. 

Zhang et al., 2010). In 1997, acellular vaccinations for B.pertussis were made available in 

Australia. These vaccinations took the place of whole-cell vaccines by the year 2000. 

There was a significant pertussis outbreak between 2008 and 2012. During this time, 30 

percent of its segregates lacked pertactin (Prn) (Lam et al., 2014).  

It has been demonstrated that high PT antibody titres can predict recent B.pertussis 

infection. Between 1994 and 1998, the prevalence rate of standardised anti-pertoxin 

antibodies was assessed in few Western European nations then linked to monitoring and 

vaccination programmes having relevant data. Recent infection was significantly more 

common in adults and adolescents (10–19 years old) in countries with high coverage 

(Finland, The Netherlands, France, East Germany), while it was even more common in 

children (3–9 years old) than teenagers in nations with low coverage (Italy, West 

Germany, and the United Kingdom; 90%) (Si & Ki, 2005). Even though it is predicted 
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that after three doses, 86% of people worldwide have received the DTP vaccine, the 

World Health Organization (WHO) reported 139,786 cases of pertussis in 2014. Pertussis 

was the most newly emerging disease in the United States with too many yearly reported 

cases (Nieves & Heininger, 2016). When the DPT vaccination was released in US during 

late 1940s, number of cases gradually decreased over the decades later on (Lutwick et al., 

2014). 

 

Figure 1.1: Variants of proteins found in vaccines of pertussis 

Three stages make up the clinical course of the 6–12-week course or procedure: 

1. The insidious emergence of minor symptoms of upper respiratory tracts, such as fever, 

sneezing, and a moderate, infrequent coughing, that are comparable to rhinovirus 

infections characterize the catarrhal phase. The cough steadily worsens during the 

course of the first few of weeks. 

2. The paroxysmal phase is characterized by spasmodic coughing bouts or paroxysms of 

up to 10 or more uninspiring coughs. These spasms can occasionally be followed by a 

protracted whooping sound or posttussive vomiting. At night, paroxysmal attacks are 

more common, and eating may trigger one. Cyanosis can develop during paroxysms, 

and a spasmodic cough can lead to a variety of other health issues, such as cerebral 

hypoxia, severe alkalosis, convulsions, subcutaneous emphysema, subconjunctival 

hemorrhage, umbilical or inguinal hernias, rib fractures, and umbilical or inguinal 

hernias. Following an incident, young children and newborns may appear particularly 

agitated and worn out. Surprisingly, the child can seem fine in between assaults. This 

phase can extend up to 10 weeks, however it often lasts 2 to 6 weeks. In the absence of 

subsequent bacterial infection, fever and pharyngitis are uncommon in pertussis 

patients. 

3. The third phase, known as the convalescent phase, is when healing happens gradually. 

Paroxysms first become less frequent and then less severe, and the cough may go away 
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in two to three weeks. Other respiratory illnesses may cause paroxysmal episodes to 

recur (Lutwick et al., 2014). 

Unfortunately, there is no proven method of easing pertussis symptoms. The authors of 

the most recent Cochrane Center comprehensive review of pertussis treatment trials 

discovered no appreciable positive benefit of treatment with salbutamol (a 

bronchodilator), dexamethasone (an anti-inflammatory steroid), or diphenhydramine (an 

antihistamine).  Patients with pertussis receive macrolide antibiotics, although often only 

to stop the spread of the disease as taking antibiotics seldom alters the infected person's 

clinical course (Carbonetti, 2016). Convulsions, encephalopathy, encephalitis, lifelong 

brain damage, and death are all complications of infection. 

 For more than three decades, the generation of therapeutically significant small 

molecules had greatly benefited from computer-aided drug designing techniques. Drug 

designing aimed in the identification of potential drug candidates for the pathogenic 

bacteria (Leelananda & Lindert, 2016). Computational resources and methods had been 

widely employed to explore the biological mechanisms for discovering the new 

antibiotics and to combat the extremely drug resistant pathogens (Mahtab et al., 2021). 

The proteome analysis technique was employed to filter proteins which shows a high 

specificity to pathogens (Garg & Gupta, 2008). Advance tactics must be used to create 

the therapeutic drugs against the prospective therapeutic targets, which could have 

numerous consequences for immunologists in order to achieve a protection against B. 

pertussis. The goal of this work is to find a potential therapeutic candidate while taking 

into account the limitations of computational drug creation (Rosini et al., 2020). For the 

identification of proteins as therapeutic targets, the proteome of B. pertussis was used in 

screening process. It was then filtered based on non-human homologous nature, 

essentiality, virulence, and sub cellular localization. After drug target selection, the 

potential drug candidate was identified using in silico techniques (Jamal et al., 2022). The 

comparative analysis was performed on protein via the anti-bacterial library Cambridge. 

The pharmacokinetic profile was checked along with admet properties to check the 

reliability for effective drug against B. pertussis, and if necessary changes are 

incorporated in the drug for maintainance (Othman et al., 2022). Therefore, the results 
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suggested at the end of this study might be helpful for designing an effective therapeutic 

drug against  B.pertussis.  

1.1 Molecular Docking 
Molecular docking techniques examine the behaviour of small molecules at a target 

protein's binding site. As more experimentally determined protein structures are 

discovered using X-ray crystallography or nuclear magnetic resonance (NMR) 

spectroscopy, molecular docking is being used increasingly frequently as a tool in drug 

development (Pagadala et al., 2017). For quantification of the intensity during binding 

and accurately forecast the ligand inside binding site of receptor, docking is used (Yuriev 

& Ramsland, 2013). The number of tools available for structure-based drug design is 

expanding quickly, driven by improvements in the determination of molecular structure. 

An appealing substitute for high-throughput random screening is lead discovery using 

molecular docking techniques to scan ligand databases (Knegtel et al., 1997). The 

preferred orientation of the bound molecules can be used to predict the strength and 

stability of complexes, as well as their energy profile (such as their   binding free energy). 

Utilizing the molecular docking scoring function, this is possible. These days, molecular 

docking is frequently used to predict how tiny compounds (drug candidates) would bind 

to their targets including biomolecules such as proteins, carbohydrates, and nucleic acids, 

in order to establish their preliminary binding characteristics (Agarwal, 2016). 

For molecular docking, the chembridge-5900 library of compounds as an anti-bacterial 

target was used along with the drug target protein via the gold score algorithm of GOLD 

and 2D interactions using DS (Discovery Studio). After docking, the top compounds 

were selected and subjected to MD Simulations for exploring behavior in functions and 

structure of the protein-ligand inclusion complexes.  

1.2 Molecular Dynamic Simulations 
Biomolecular structures are alive through MD simulation, which also provides insights 

into the natural dynamics of biomolecules in solution on various timescales. Second, MD 

simulation provides molecular property thermal averages (Hansson et al., 2002). 

Molecular dynamic simulations help to comprehend the dynamics of protein and drugs in 
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bacteria and human. MD simulations can be used to observe the protein folding pattern, 

conformational changes, and protein stability (Hospital et al., 2015).  

The three approaches upon which MD simulation is based are as follows: 

1. Classical Mechanics 

2. Molecular Mechanics 

3. Statistical Mechanics 

1.2.1 Classical Mechanics 

In MD simulations, laws of classical mechanics are employed to handle tiny systems. 

(Phys, 2021). Classical mechanics uses Newton’s 2nd law of motion. It states when a 

force field is given to the body of mass ‘m’, acceleration ‘a’ produces. Classical 

mechanics effectively explain the behavior for ‘N’ number of particles. A specific 

particle ‘i’ facing a cumulative force ‘F’ due to the interaction of all other particles with 

it. The force depends upon the position of interacting particles moving with velocities ‘v’ 

which produces acceleration ‘a’ through the system over a certain timescale.  

 

The following equation expresses Newton’s 2nd Law of Motion for ‘ ith particles: 

 

Fi = miai    ………………………… (1.1) 

Here ‘Fi’ represents the force exerted on particle ‘i’, while mass and acceleration are 

represented by ‘mi’ and ‘ai’ respectively.  

Second derivative for acceleration represented by distance ‘r’ and time ‘t’ can be 

substituted by these quantities and the above equation is represented as follows: 

 

Fi = mid^2ri/dt^2 …………………….. (1.2) 

 

A force Fi when applied on particle of mass mi in terms of potential energy ‘v’ it can be 

described to give the following equation: 

 

Fi = -dv / dri ………………………................ (1.3) 
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As both equations represent the expression of force, equation 1.3 and 1.2 can be equated 

to give the following equation: 

 

-dv/dri = mid^2ri/dt^2 …………………………. (1.4) 

 

So, equation for the next set of coordinates for particles in the system from the previous 

set of coordinates is given as follows: 

 

A = dv/dt ……………………………………  (1.5) 

 

1.2.2 Molecular Mechanics 

Energy calculation of the system and dynamic behavior of protein both aspects are dealt 

by molecular mechanics. The biological system’s potential energy can be computed 

based on non-bonded interaction, dihedral and torsion angles, and bond stretching. The 

sum of individual energy can be used to describe the force field of molecular mechanics 

as follows: 

Etotal = Ecovalent + Enon-covalent …………………………….. (1.6) 

 

Ecovalent = Ebond + Eangle + Edihedral  ……………………… (1.7) 

 

             Enon-covalent = Eelectrostatic + Evanderwaals  ………………… (1.8) 

 

1.2.3 Statistical Mechanics 

The thermodynamic behavior of the biological system like volume, temperature, energy, 

heating is described by statistical mechanics. In statistical mechanics, there are four 

ensembles that are used to highlight the thermodynamic properties, which are listed 

below: 

1. Canonical Ensemble (NVT) – fixed volume, fixed atoms, and constant temperature.  
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2. Micro Canonical Ensemble (NVE) – fixed volume, fixed atoms, fixed energy amount 

E. 

3. Isothermal isobaric Ensemble (NPT) – fixed pressure and atoms, and constant value 

of temperature.  

4. Grand Canonical Ensemble (uVT) – fixed volume, constant chemical potential with 

constant temperature.  

 

1.3 Aims and Objectives 
 This study includes in silico techniques applied on the extensively drug resistant 

pathogen, B. Pertussis with four key objectives: 

1. Identifying the potential drug target protein by employing the subtractive 

proteomics approach.  

2.  Structure prediction of protein via computational approaches.  

3. Molecular Docking and Simulation of protein 

4. Designing a therapeutic drug against the target protein Capsular Polysaccharide 

Biosynthesis (CPS) or UDP-N-acetylglucosamine C4 epimerase (UDP-GlcNAc).  

5. Comparative dynamics and drug targeting against B.pertussis. 
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Figure 2.1: Flowchart of the methodology used in current study 
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2.1 SUBTRACTIVE PROTEOMICS 

2.1.1 Proteome Retrieval and Drug Candidate Prioritization 

The study consists of retrieval of pan proteome of B. Pertussis reference strain Tohama I 

from uniprot database (Consortium, 2015). The proteome was then analyzed by various 

standard criterias for an effective therapeutic drug against multidrug resistant B. 

Pertussis. The proteome was then clustered through CD-Hit web server which removed 

redundant protein. This programme is frequently used in grouping and comparing 

biological sequences in order to remove sequences showing identity greater than 

threshold value and enhance the efficiency of other sequence studies as it is fast and 

reliable (Fu et al., 2012). The CD-HIT was applied using Perl script. The percentage 

identity threshold was set at 0.8% so the sequences with identity greater than 80% will be 

clustered reducing the redundancy (Ã & Godzik, 2006). The chosen protein sequences 

were BLAST with respect to the reference human proteome, with 9606 as taxonomic ID, 

according to BLASTp of NCBI, which has eliminated the proteins with a sequence 

identity of greater than 30 (Telkar et al., 2013). Genes essential to maintain life of cells 

are known as essential genes. These genes make up the basic gene set needed by a live 

cell. All the proteins showing no homology or the sequence identity < 30% were 

BLASTp against DEG (R. Zhang et al., 2004). The proteins considered essential for the 

survival of pathogens were shortlisted by Geptop server crucial for cell survival. Finding 

essential proteins, it is believed they play a role in cell viability. The value used as cutoff 

for essentiality, considered as 0.24. Geptop offers a platform for determining which 

proteins are necessary for bacteria through comparison of the proteins' orthology and 

phylogeny to DEG that have been created experimentally (Shahid et al., 2018). That 

information is used by Geptop (DEG). Geptop 2.0, predicts gene essentiality having a 

mean value of 0.84 and is most recent and stable version available (Wen et al., 2019). 

The threshold for essentiality was set at a sequence identity > 30% for the proteins and 

highest bit score in druggability greater than 100 was considered to be pathogen essential 

proteins. The next essential step was to check if any of the essential protein shares the 

same human metabolic pathway. The identified pathogen proteins were all mapped to the 

metabolic pathway in the next phase (Prioleau & MacAlpine, 2016). KAAS was 

employed to map pathways of protein metabolism (Moriya et al., 2007). Successively, the  
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protein was shortlisted by applying the virulence analysis. All the virulent proteins were 

screened as they help the pathogen to adhere, colonize, and disrupt the host immune 

system. For this purpose, the VFDB was used (Chen et al., 2012).  

2.1.2 Virulent Factors and Sub-Cellular Localization Analysis 

After that, the filtered proteins were examined for virulence by being compared to the 

database of virulence factors (VFDB). This check is crucial because pathogenic proteins 

are thought to be potential vaccine targets due to their capacity to spread illness. 

Additionally, they support the bacterium's ability to survive in a hostile environment. The 

presence of these proteins on the surface can initiate linkage, preserve the pathogenic cell 

as carbohydrates, and support the pathogenicity of the bacterium as hydrolytic enzymes 

and toxins. Even in small amounts, these proteins may enable the bacterium to reproduce 

and continue growing in the cells. Proteins with identity levels above 50% and maximum 

bit scores above 100 were chosen (Chen et al., 2005). Proteins were then evaluated 

according to their sub cellular localizations. The cytoplasmic proteins were prioritized as 

they are the attractive target of drug agents. Localization of proteins was then checked 

using PSORTb which is the localization prediction tool. It shortlists the proteins confined 

in the cytoplasm. The results were then crosschecked and verified with CELLO and 

CELLO2GO (C. Yu et al., 2014). Gneg-mPLoc is also used predict the localization of 

proteins in bacteria (Shen & Chou, 2010).  

2.1.3 Physicochemical Properties of Filtered Proteins 

The next step was evaluation of the physicochemical properties of the proteins validated 

on the basis of atomic composition, weight, instability, and GRAVY (Sahay et al., 2020). 

The protein sequences were then used in ExPASy Protparam which computes several 

physical as well as chemical properties of a protein (Suhaibun et al., 2020). The 

instability index, which was set at 40 and used as the key measurement in this 

representation, was the key factor. Sequences having instability > 40 were not stable. 

Effective and efficient pharmacological targets are thought to have molecular weights 

below 110 kDa, preferably between 50 and 60 kDa  (Sahay et al., 2020). 
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2.1.4 Drug Target Selection 

Druggability of the shortlisted proteins can be checked through drugbank (Wishart et al., 

2018). It is a special bioinformatics database used to combine drug target (protein) 

information to detailed data of drugs. Among greater than 4100 drug listings in the 

database are >800 small molecule and biotech pharmaceuticals that have received FDA 

approval, as well as >3200 investigational drugs. Additionally, these medication entries 

are connected to about 14,000 protein or drug target sequences (Wishart et al., 2006). By 

running BLASTp against the drugbank database, all hypothetical, non-homologous, and 

non-essential protein sequences are screened (Wadood et al., 2018). A number of proteins 

targets with IDs of medicines approved by the FDA are included in the drug bank 

database. The drugs having a maximum bit score greater than 100 and the highest 

sequence identity and coverage in the druggability study can be referred to as drug 

targets. The literature was cross-checked and used to confirm a protein's druggability 

(Rahman et al., 2020). 

2.2 Cellular Interactome Analysis 
Protein protein interaction (PPIs) was employed to check the importance, validity, 

essentiality and necessity of the chosen target protein through above mentioned 

parameters. The STRING database was used for determining the interactions of target 

protein (Mering et al., 2003).  A complex web of functional relationships between 

biomolecules is essential for cellular life. Due to their variety, selectivity, and 

adaptability, protein-protein interactions among these associations are highly significant 

(Szklarczyk et al., 2021). It offers access to information about expected and experimental 

interactions with a remarkably thorough coverage. STRING interactions are having a 

confidence score as well as auxiliary data like protein domains and 3D structures 

(Szklarczyk et al., 2011). 

2.3 Structure Modeling and Validation 
A protein's 3D structure is required for Molecular Dynamic Simulations (Bliznyuk & 

Gready, 2006). As PDB does not provide the 3D structure of Capsular Polysaccharide 
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CPS or UDP-N-acetyl glucosamine C4 Epimerase, structure prediction method were used 

for determining the structure of proteins (Angamuthu & Piramanayagam, 2017). Two 

main strategies prior to the development of the Alpha Fold algorithm were homology 

modeling and ab-initio. The most successful and popular approach is homology modeling 

(or template-based approach). AlphaFold structures are the most accurate.  Alpha Fold 

structures has at 95% residue coverage and 95% confidence interval (Ronneberger et al., 

2021). It  is an Artificial Intelligence based approach, Deep mind used to determine the 

3D structure of protein. For this purpose, AlphaFold Deepmind Database is used in this 

study. Residues with 90 < pLDDT are categorised confident, while those with 

pLDDT>90 are model with very high confidence. Low confidence are those having 

pLDDT<70. pLDDT scores that have very low confidence have recently been shown to 

be correlated with increased propensities for intrinsic psychopathology. The Alpha Fold 

technique also produces the Predicted Aligned Error (PAE). If the predicted along with 

actual structures are aligned on residue y, it shows the anticipated positioning error at 

residue x (Varadi et al., 2022). The 3-Dimensional structure was also predicted by 

different web based automated modeling tools for comparative analysis of all the models. 

Parallel to Alpha Fold, SWISS-MODEL and Phyre2 tools were also used for the 

prediction. Thermodynamic stability of all the predicted models was evaluated using 

online tools such as Verify3D, ERRAT, PROCHECK and ProsA-web for the least Z-

score (Hema et al., 2021). The structure in the Ramachandran plot that has the most 

residues in core area, highest quality factor, most residues in favourable area, and the 

fewest amino acid residues in the unfavourable one is thought to be the most appropriate 

and correct (Read et al., 2011). 

2.4 Minimization of Protein Structure 
The energy minimization was performed using UCSF Chimera of the selected model to 

improve the quality of structure by eradicating steric clashes. Minimization was a two-

way process, in first get rid of any unfavourable clashes and in next we remove the 

remaining ones (Sarkar & Id, 2020).  After that, the 3D model was rearranged and 

structurally optimized using 750 steepest descent minimization steps (step size of 0.02 

A), 750 conjugate gradient steps (step size of 0.02 A), with the AMBER ff14SB force 
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field (Pourseif et al., 2019). Tripos Force Field was employed to perform the 

minimization with a step size at 0.02 A (Keser & Stupp, 2000).  

2.5 Binding Site Prediction 

2.5.1 Active Site Prediction 

The active sites of enzymes are complex environments created by a variety of functional 

groups that enable the catalysis of activities with unmatched selectivity and efficiency. A 

group of residues present in the active site that has evolved having different purposes, to 

stabilise the protein or to assist production, may have led to the catalytic function (Sun et 

al., 2001). If 3D structure of the protein is present in the PDB, then active site residues 

can easily be identified. While in the absence, there are various computational tools. 

However, the literature also explores active site residues of a relevant protein during drug 

designing (Abduljalil, 2022). The active site of the CPS was also predicted using 

computational tools such as CASTp, DoGSiteScorer, Prankweb, Motif Finder and Prosite 

(Hulo et al., 2006; Jendele et al., 2019; W. Tian et al., 2018; Volkamer et al., 2012).  

2.6 Antibacterial Library Preparation 
For this study, two datasets were used which are: FDA approved drug library and 

chembridge-5600 antibacterial library. The FDA approved drugs were taken from the 

drugbank with the possibility that they could be considered as potential drug candidates 

against CPS. The FDA library consists of 2000 inhibitors (Kocisko et al., 2003). 

Chembridge library was comprised of 5600 compounds. A specific force field was 

employed for the minimization of these compounds (Brokl et al., 2013).  

2.7 Molecular Docking 
Chembridge library was docked against minimized GOLD (Zou et al., 2019). For 

docking in GOLD software, grid size was 10 Å. The docking was performed using active 

site residues A209, N195,  S306, S143, S142, K170, Y166, S103, G102, Q201 as cavity 

residues, for binding of the inhibitors. Total ten iterations were used for each inhibitor. 

Finally, the top docked complexes showing highest GOLD scores were selected for 
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further evaluation (Onodera et al., 2007). The 20 protein complexes of top scores were 

imported. In order to visualize the docking results, UCSF-Chimera, Discovery Studio 

(DS) Visualizer and Ligplus were used (Pettersen et al., 2004), (Modeling, n.d.), (Siraj et 

al., 2015).  

2.8 Pharmacokinetic Profile Evaluation 

2.8.1 ADMET and Toxicity Analysis 

After docking, the top compounds from library were further analyzed for  drug likeliness 

with respect to Lipinski’s rule of 5 using PH, LogP value, M.W, H.B.A, H.B.D’s and 

refractivity as well as other parameters (Lagorce et al., 2017). After implementing 

Lipinski rule of five, the compounds were analyzed by using ADMET properties for the 

gastrointestinal absorption, solubility, plasma protein binding ability, hepatotoxicity, 

Inhibition of cytochrome P450 and BBB (Nuez & Rodríguez, 2008). Swissadme was 

used for finding various properties essential for meeting criteria of drug designing like 

Canonical SMILES, Formula, MW, Rotatable bonds, H.B.A, H.B.D, TPSA, all LOG 

values, gastrointestinal absorption, permeable BBB, CYP2D6 inhibitor, log Kp (skin 

permeability), Lipinski #violations, Score for Bioavailability and Synthetic Accessibility 

(Aqeel & Majid, n.d.). A better drug candidate should have appropriate ADMET 

properties. As a result, numerous in silico models are created to predict the features of 

chemical ADMET.  This study includes the ADMET-score, a scoring system to assess a 

compound's drug-likeness as these properties together have a huge impact on the 

pharmacology and pharmacokinetics of a drug  (Kaplita et al., 2005). 

Toxicity is another step to perform for selection of reliable therapeutic drug. The toxicity 

analysis was done using ProTox-II: a webserver for the toxicity in chemicals (Banerjee et 

al., 2018). This web server takes Canonical Smiles as input and evaluates several tests as 

shown in table in results section. Toxim is a small molecule toxicity prediction tool 

developed using chemoinformatics and machine learning techniques .Any molecule with 

a categorization score of 0.8 or higher is regarded as toxic, according to Matthews' 

correlation coefficient on 10-fold cross-validation (0.84), and according to the logarithm 
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of water solubility (LogS) , LogPapp - Logarithm of caco-2 permeability (range from -

3.65 to -7.49) (Sharma et al., 2017). 

2.9 2D Interaction Analysis 
Discovery studio was used to visualize the hydrogen bonds, Vander Waals forces, 

electrostatic interactions, and hydrophobic interactions involved in top docked protein-

ligand complexes. However, ligplus was also used to explore the interactivity (Sadeghi et 

al., 2021).  

2.10 Molecular Dynamics Simulation 
The dynamic nature of the complex and the dynamic behavior of ligand present in the 

active region of the protein were investigated using MD simulation. AMBER 16, a 

software tool (Case et al., 2017) was used to simulate an antibacterial drug target 

complex of 100 ns for each top docked CPS complexes. For system preparation, the 

antechamber leap software was used to analyze the geometry of a complex using an 

ff14SB as a force field. The addition of Na+ and Cl- ions neutralize the system during 

preparation. After being neutralized, the system was placed in a TIP3P water box to study 

protein dynamics in a real-time environment. The system was then preprocessed, which 

included a number of stages. The first step in preprocessing is to minimize the docked 

complex to remove steric clashes caused by atom movement using a steepest descent 

algorithm and conjugate gradient algorithm of 750-steps. The heating of 10 picoseconds 

using dynamics of Langevin, with the (NVT) ensemble maintaining a constant 

temperature and volume, then pre-equilibrated for 100 picoseconds with a 2 fs time step. 

NVT ensemble, a run of 100 ns production for docked complexes with an 8.0 cut-off 

value for non-bonded interactions. The CPPTRAJ package of AMBER (Roe &amp; 

Cheatham, 2013) was used to examine the trajectory after the production run analysis, 

and the stability of the ligand was depicted using VMD (Humphrey, W., Dalke, A., 

&amp; Schulten, 1996). Different parameters including RMSD, RMSF, Rg, and B-Factor 

were measured, and graphical representations were done in Xmgrace and Qtgrace to 

validate the conformational stability of ligand in protein complexes. 



 Chapter 2                                                                                                                  Methodology  
 

17 
 

2.10.1 Root Mean Square Deviation 

RMSD is used to calculate the similarity between atomic coordinates of two 

superimposed structures, which can be implemented by using the formula as follows:                                     

RMSD =  ∑ 𝑑𝑖𝑁
𝑖=1

𝑁
……....................................  (2.1) 

Here in the formula N represents the total number of atoms, while root mean square 

distance between two structures is represented by di. 

2.10.2 Root Mean Square Fluctuation 

 RMSF is used to calculate C atoms in individual residues on the receptor–ligand docked 

complex. The variation of C atoms in each residue was calculated from the mean 

position. Following formula is used. 

RMSF = √∑ 𝑗=1 (𝑥𝑖(𝑡𝑗)−𝑥)𝑇
𝑡

𝑇
……...…………… (2.2) 

While in formula, xi represents the position of C-alpha atoms, x represents the atom's 

average location, and T represents the atom's time interval. 

2.10.3 Beta-Factor 

The beta factor, also known as atomic pressure, is a measurement of the disordered 

changes in a system that occurs as a result of an atom's temperature-dependent 

oscillation. Calculated in the same way as RMSF, but with a tiny difference in  the 

squared fluctuation is multiplied by (8/3) π2. Beta-factor can be calculated the following 

formula:                           

Beta-factor = √
∑ 𝑗=1 (𝑥𝑖(𝑡𝑗)−𝑥)((

8

3
)𝜋2)𝑇

𝑡

𝑇
……...... (2.3) 

2.10.4 Radius of Gyration 

It represents the compactness involved in protein structure and dictates shape, and is 

calculated using the formula: 

Rg =∑ 𝑟2𝑚

∑ 𝑚
................................................... (2.4) 
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2.10.5 Hydrogen Bond Analysis 

The hydrogen bond graphs of the docked complexes were calculated using the AMBER 

16 CPPTRAJ module. The hydrogen bond requires fractional analysis of both the donor 

and acceptor atoms with a cut-off value of ≥ 0.005.  X-axis represents the timescale, and 

Y-axis represents donor or acceptor atoms. 

2.10.6 Radial Distribution Function 

RDF is the probability to find a group involving N inhibitor atoms of r (distance) from 

any other specific atom in protein in r (radius) (Hemmer et al., 1999). Conformation of 

amino acids close to a protein and its ligand's active site is calculated using the 

CPPTRAJ.  RDF is represented as: 

g( r) = 𝑝𝑖𝑗(𝑟)

<𝑝𝑗>
 = 𝑛𝑖𝑗(𝑟)

<𝑝𝑗>4𝜋𝑟𝜎𝑟
……………...(2.5) 

2.10.7 Binding Free Energy Calculation 

The molecule's binding free energy is the sum of Gsolv, Ggas, Evdw, and electrostatic 

forces of interactions in MM (PBSA) as well as MM (GBSA) methods (Homeyer & 

Gohlke, 2012). In computational drug design, predicting the binding free energy of a 

ligand to a protein has become overly important since it enables the discovery of new 

compounds that can bind to a target and serve as therapeutic medications (Woo & Roux, 

2005).  

MMGBSA and MMPBSA compute binding energies of individual frames of top 

complexes of proteins using MMPBSA.py module/package in AMBER 16. Van der 

Waals interactions, electrostatics forces of interactions and changes in solvation energy in 

relation to ligand and protein binding affinity are all included in the MMPBSA approach 

(Wang et al., 2016). The Ante-MMPBSA.py script was used to construct the ligand, 

receptor,andcomplextopologyfiles(prmtop).
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3.1 SUBTRACTIVE PROTEOMICS 

3.1.1 Retrieval of Proteome and Drug Candidate Prioritization 

Proteome of a bacterium was examined using subtractive proteomics methods. To start, 

the entire pan proteome of the B. pertussis strain Tohama I, which contained 4021 

proteins, was downloaded from uniprot as a reference proteome (Consortium, 2021). To 

remove sequence redundancy and enhance the effectiveness, biological sequences are 

often grouped using the CD-HIT tool (Fu et al., 2012). This tool generated a file with 

non-redundant 3825 proteins and 90% sequence identity. The output of the redundancy 

check now only contains sequences that are found in the whole proteome after the vast 

numbers of similar protein sequences were deleted. The creation of drugs and vaccines is 

thought to benefit most from the use of non-redundant protein sequences as precursors. 

After that, BLASTp was run for these non-redundant proteins. It was used to make sure 

that none of the non-redundant protein sequences that we filtered out in the previous 

phase shared any similarities with the human proteome. It was crucial to do a homology 

study in order to choose the non-human homologues. When doing BLASTp on these 

protein sequences, Homo Sapiens (taxid: 9606) was used for the organism check and 

reference non-redundant proteins in the database check. The number of proteins was 

further decreased. This stage must be carefully completed since if the human homologues 

are chosen, the autoimmunity will be triggered, negatively damaging the host's tissues 

and cells (Brennan et al., 2010).  

Executing the essentiality check of non-homologue proteins was a crucial next step in the 

pipeline. The proteins that are known to be essential are taken from the entire set of 

previously chosen human non homologous proteins since they form the basis of 

therapeutic targets. The remaining 3825 proteins' essential genes are found using DEG, 

423 were proven essential by the geptop server when the essential genes were compared 

to the geptop database (Hua et al., 2016). The percentage was set as the result having 

percentage identity >= 30% are considered. These proteins are vital to life and are 

frequently expressed by cells, making them well-known as potent therapeutic targets. 

These proteins are recognised as being crucial due to their localization in pathogens and 

ability to overcome effective immune response against infection. A total of 33 proteins 
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participating in metabolic pathways were mapped using the KAAS KEGG (Okuda et al., 

2008).  

Using the VFDB (Virulent Factor Database), which offers easy access to virulent factors 

and proteins in bacterial pathogens, a filter for virulence factors was applied on clustered 

proteome sequence. The VFDB identified 172 pathogenic proteins, while the remaining 

ones were disregarded because no hits were found (Chen et al., 2012). Virulent proteins 

are crucial therapeutic and vaccine targets since they are fascinating in the development 

of infections and initiating pathological conditions. The pathogen can survive 

inhospitable environmental circumstances because of the virulent proteins. The bacteria 

could reproduce, attack, and survive in the host cells with just a tiny amount of these 

proteins. These proteins are positioned on the cell surface to attract adhesion, protect 

bacterial cells with carbohydrates, and bestow pathogen pathogenicity with hydrolytic 

enzymes and toxins. 63 non-homologous proteins were detected as a result of BLASTp 

involved in an unique metabolic pathway (Peer-reviewed, 2020). 

 

Figure 3. 1: Subtractive proteomics analysis of the proteome of bacterium executed by 
servers and databases 

4021 3825

423 172 63 1
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3.1.2 Sub-cellular Localization Analysis 

The virulent and essential proteins were then subjected to shortlist the proteins which 

were confined in the cytoplasmic space via PSORTb, sub-cellular localization prediction 

tool. 35 shortlisted protein sequences were uploaded on PSORTb under the check of 

negative gram strain bacteria. Subcellular localization of proteins revealed that total 14 

proteins which were localized in the cytoplasmic space (N. Y. Yu et al., 2010).  CELLO 

and CELLO2GO  predictors were used to cross-check the localizations predicted by 

PSORTb and the results are the same (C. Yu et al., 2014). Cytoplasmic proteins are 

typically enzymatic in nature hence all the cellular processes are catalyzed by these 

proteins. Also they have hydrophobic pockets for ligands/substrates as well as drugs and 

they are able to modulate biological functions.  

3.1.3 Physicochemical Properties of Target Proteins 

To extract the appropriate targets that can be used for the development of drug, various 

physicochemical properties are measured. The various physical and chemical properties 

of these remaining virulent proteins which was performed using ExPASy Protparam tool 

(Sahay et al., 2020). Tools for analysis include Calculate Protparam to determine various 

physicochemical characteristics and pI/Mw to predict the protein isoelectric point and 

molecular weight of molecules (Gasteiger et al., n.d.). It allows calculation of various 

parameters like atomic composition, instability index, amino acid, estimated half-life, 

aliphatic index, extinction coefficient, and grand average of hydropathicity. The protein 

stability is another vital factor to be measured using instability index calculator by 

envisaging the existence of specific dipeptides, absent in vivo unstable protein but 

present in protein having stability. The cut-off value for the protein instability index is set 

at 40. The protein showing prediction value > 40 are categorized as unstable. Proteins 

having low molecular weight are easy to purify and isolate to identify their structure and 

function. Higher stability proteins are preferred. The isoelectric points (PI) are estimated 

for the proteins. GRAVY values are calculated for virulent cytoplasmic proteins. Some 

protein show positive GRAVY values and some negative. For example, Acyl-CoA 

synthetases has 0.031 and capsular polysaccharide biosynthesis protein has -0.150 
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GRAVY value. Positive GRAVY value specifies hydrophobic nature whereas negative 

value specifies hydrophilic value.  

Table  3. 1: Physicochemical properties of selected proteins 

S. 

No  

Protein Subcellular 

Localization 

Bit-score /Percentage 

Identity 

Physiochemical 

characterization 

1 Acyl-CoA synthetases  Cytoplasmic 212.616 

/39.44% 

Stable 

2 Capsular polysaccharide 

biosynthesis protein 

Cytoplasmic 485.723/70.71% Stable 

3 Acyl-CoA dehydrogenase fadE12 Cytoplasmic 105.531/29.32% Unstable 

4 Short chain dehydrogenase Cytoplasmic no matches/ 

34.87% 

Stable 

5 High-affinity amino acid 

transport ATP-binding protein 

Cytoplasm 75.8702/ 

51.91% 

Stable 

6 ATP-binding component of ABC 

transporter protein 

Cytoplasmic 87.8113/ 45.8% Unstable 

7 Chemotaxis methyltransferase Cytoplasmic 147.517/ 

64.22% 

Stable 

8 Protein-glutamate 

Omethyltransferase 

Cytoplasmic 146.747/ 63.71% Stable 

9 Short chain dehydrogenase Cytoplasmic no matches/ 

34.87% 

Stable 

10 LysR family regulatory protein Cytoplasmic No matches/ 28.9% Stable 

11 family regulatory protein Cytoplasmic No matches /36.3% Unstable 

12 Putative LysR family 

transcriptional regulator 

Cytoplasmic no matches/ 

28.26% 

Stable 

13 Probable two-component 

response regulator 

Cytoplasmic 53.5286/ 

35.84% 

Unstable 

14 Cyclopropane mycolic acid 

synthase 1 

Cytoplasmic 161.77 / 

35.5% 

Unstable 
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3.1.4 Drug Target Selection 

Druggability of all the filtered proteins can be checked easily by exploring all the protein 

in drugbank database (Murugan et al., 2020). Drug Bank is special bioinformatics 

database which combines thorough target (protein) information with detailed drug (i.e. 

chemical) data. Among greater than>4100 drug listings in the database are >800 small 

molecule and biotech pharmaceuticals that have received FDA approval, as well as 

>3200 investigational drugs. Additionally, these medication entries are connected to 

about 14 000 protein sequences. Several protein targets for drugs that have received FDA 

approval are included in the Drug bank database (Wishart et al., 2006). Druggability of 

all the proteins was determined in order to identify the best therapeutic target with highest 

druggability bit-score. Bit score > 100 and identity > 30 can be suitable drug targets. 

However, a protein having score upto 485.723 with query coverage 99% and identity 

70.71% as in case of capsular polysaccharide biosynthesis protein can be considered as a 

best target. CPS shows involvement in essential pathway, resides in cytoplasm, having a 

reliable GRAVY index, theoretical PI, molecular weight, and instability index. Several in 

silico approaches such as structure modeling, docking, and molecular dynamic 

simulations provide an excellent platform to design an antibiotic against the target 

protein, CPS. However, the druggability of the protein was also cross checked in 

literature and it was confirmed that CPS is a good anti-bacterial target.  

          Table  3. 2: Physicochemical characterization of  best selected protein 

Protein Subcellular 

Localization  

Drugbank 

Bit-score  

Physiochemical 

characterization  

Capsular Polysaccharide 

biosynthesis protein 

Cytoplasmic 485.723 Stable 

3.2 CPS Drug Target Proteins 
CPS or UDP-N-acetyl glucosamine C4 epimerase for which structural and biochemical 

data is available is WbpP (Demendi et al., 2005) . WbpP has super family involving 
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short-chain dehydrogenases and reductases, including variety of oxidoreductases. WbpP 

has been identified as an actual UDP-GlcNAc 4-epimerase involved in interconversion of 

N-acetylated UDP-linked galactose and glucose (Udp-hexose et al., 2004). WbpP is made 

up of two domains in three dimensions. The domain at N-terminal has (residues ranging 

from 1-192 and 238-264). It has a modified Rossmann fold made up of nine helices on 

either side parallel-sheets having seven-strands. The UDP-linked hexose substrate is held 

in C-terminal domain (residues ranging from 193-237 and 265-343) which also has a 

/motif made up of four -helices and four-strands. WbpP has a structural resemblance to 

UDP-Gal 4-epimerases. 

3.2.1. Role of Capsular Polysaccharide Proteins 
PS capsules, which are the outermost covering of few bacteria, are crucial for defending 

them against hostile or unfavorable circumstances. The ability of bacterial capsules to 

mediate interactions of host-pathogen and immunity, resistance in antimicrobes, inhibits 

neutrophils recruitment, phagocytosis resistant and complement killing resistant, has been 

recognised as an important virulence determinant in addition to serving as a physical 

barrier for protection. Additionally, capsules also have stages of complex biofilm 

structures that are highly resistant to antibiotics. In BvgS-mediated signal transduction, 

transport machinery of capsule spanning across the envelope of cell presumably plays a 

role (Hoo et al., 2014). Humans lack the biosynthetic machinery necessary to produce the 

CP (capsular polysaccharide), making it a prime target for those seeking to combat 

bacteria like S. aureus. S. aureus can live in the blood of an infected host by building up a 

thick layer of sugars on the cell surface known as CP. The bacteria acquire anti-

phagocytic properties from this layer  (Miyafusa et al., 2013). 

3.2.2. Mode of action of CPS 

When PS haptens are covalently coupled to protein carriers, they acquire the ability to 

elicit humoral immune reactions that exhibit T cell-dependent antigen-like properties: 

responses in children's memory, affinity maturation, and most importantly, 

immunogenicity (Finn, 2004). Apart from the fact that CPS is a suitable target for 

vaccines, unencapsulating bacteria might be a good drug design technique by interfering 

with the process for CPS production and surface assembly. A Gram-negative bacterium 
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produces CPS through ATP-dependent and Wzy-polymerase dependent mechanisms. 

CPS provides protection from phagocytosis, and component of the innate immunological 

response of the host. It prevents the beginning of the phagocytic process by decreasing 

opsonin binding and obscuring ligand for phagocytic cell attachment (Sachdeva et al., 

2017). 

3.2.3 Unique Metabolic Pathway 

CPS is involved in unique metabolic pathways of Galactose metabolism, Amino sugar 

and nucleotide sugar metabolism derived from KEGG analysis.  

3.3 Cellular Interactome Analysis 
The target protein CPS can be seen involved in a string interaction network via STRING. 

The total 10 interactions were observed and the proteins involved in this interaction with 

interaction scores as BP3144(0.832), BP3145(0.811), BP3151(0.611), BP3146 (0.804), 

Glycosyltransferase (0.877),BP3147(0.906),WbpO(0.957),WbpT(0.453), BP3148(0.854), 

BP3149, WbpO(0.748). Query protein is shown in the interactome is displayed by red 

bubble and the remaining color nodes represent interacting proteins. The wideness of 

blue interacting lines depict strength of association whereas the confidence score greater 

than 0.8 indicates functional significance of target protein (Szklarczyk et al., 2021).  
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Figure 3. 2: Protein-protein interactions of target protein 

3.4 Structure Modeling and Validation 
The protein three-dimensional structure is required for performing molecular docking, 

simulations, trajectory analysis, and binding free energy. The 3D structure of a protein 

CPS is predicted using structure prediction methods. Swiss Model, Phyre2 and Alpha 

fold is used to predict the 3D structure of protein (Ruff & Pappu, 2021), (Kelley et al., 

2015), (Kiefer et al., 2009). Stereo chemical  properties of all the modeled 3D structures 

is compared for selecting the reliable model of the protein. The model which shows 

maximum favorable region in Ramachandran plot is selected. Along the Ramachandran 

plot, the model which shows maximum ERRAT and Verify3D score from Saves is 

preferred to be selected as the 3D structure of CPS as its overall quality factor is 95.7958 

and 96.48% respectively. Based on the quality evaluation criteria, the Alpha Fold 

predicted 3D structure is selected as 93.3% core residues in the favorable region. The 

score is 6.4% in allowed, 0.3% in generally allowed and 0.0% disallowed.  ProSA has -

8.96 Z-score. The 3D structure of Alpha fold comes out to be the most reliable and 
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optimal model for the screening of antibiotics. It is given by Alpha fold protein structure 

database on the basis of Pl used to determine an intra domain confidence which was very 

high (pLDDT> 90) indicating that the structure is modeled to high accuracy with high 

confidence level and (pLDDT<50) shows low confidence and accuracy with ribbon like 

appearance with a high inclinations for intrinsic disorder whereas PAE is used for 

determining confidence level between the domains and chains of a protein.  

Table  3. 3: Structural evaluation of predicted 3D structures 

Structure 

Resources 

Ramachandran 

Plot Analysis 

Verify-3D 

 

Errat 

Quality 

Factor  

ProSA-Z 

score 

Alpha-Fold 93.3%  core 96.48% 95.7958 -8.96 

Swiss-model 92.1% core   90.74% 94.8758 -8.85 

Phyre2 90.9% core 91.50% 91.2913 -9.02 

 

 

Figure 3. 3: A) Predicted 3D structure of CPS B) Ramachandran plot of CPS showing 
residues in favoured, allowed and disallowed region 
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Figure 3. 4: Errat Plot with overall quality factor 

 

Figure3. 5: A) shows the Z-score B) shows the energy calculated for the predicted model 

3.5 Minimization of Modeled Structure 
The selected model is then minimized to improve the structure quality by eradicating 

steric clashes. For the minimization of protein model, UCSF Chimera is used. 

Minimization is executed in a two step-way process; in first one, the protein is undergone 

750 steps of steepest descent to get rid of any unfavorable clashes, succeeded by the 750 

steps of conjugate gradient method to remove the clashes left during the first phase of 

minimization. Tripos Force Field is employed to perform the minimization with a step 

size at 0.02A (Pettersen et al., 2004). 
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3.6 Functional Domains of the CPS Protein 
Epimerase_deHydtase (19-264) belongs to Rossmann-fold domains (14-339). WbpP is 

made up of two domains in three dimensions, N-Terminal domain and C-terminal 

domain. 

3.7 Prediction of Binding Site 

3.7.1   Active Site Prediction 

Active site of the protein involves sequence of amino acids involved in catalytic process 

and substrate binding. Therefore, known active site is a vital step to understand the 

protein structure and ultimately its function. The active site of CPS is predicted using 

computational tools such as CASTp, DoGSiteScorer, and Prankweb (W. Tian et al., 

2018), (Volkamer et al., 2012), (Jendele et al., 2019). The active site residues is verified 

by literature A209, N195, S306, S143, S142, K170, Y166, S103, G102, Q201. 

 

Figure 3. 6: Active site residues of WbpP-CPS protein in light blue 

3.8 Anti-bacterial Library Preparation and Molecular Docking 
A library chembridge-5900 is docked against CPS in GOLD. Active site residues arouse 

for molecular docking as mentioned above. Total ten iterations are produced for each 
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inhibitor. The Top 20 complexes having highest GOLD scores are imported. However, 

they are shortlisted on the basis of 2D interaction analysis and Swissadme tool analysis. 

For visualization of  the docking results in order to find the interactions among the ligand 

and protein in complexes, UCSF-Chimera, VMD, and Discovery Studio (DS) visualize 

was used (Modeling, n.d.).  

         Table  3. 4: Compounds with the highest GOLD scores 
 

Compounds Structure Compound Name/formula GOLD 

score 

 

 

 

N-[[2-[3-[(2,5-dimethylfuran-3-

carbonyl)amino]phenyl]-5-methyl-1,3-

oxazol-4-yl]methyl]-2-methyl-5-propan-

2-ylpyrazole-3-

carboxamide/C26H29N5O4 

 

 

 

 

81 

 

 

N-cyclopropyl-5-[3-(1H-indol-3-

yl)propanoyl]-1-[(3-

methoxyphenyl)methyl]-6,7-dihydro-

4H-pyrazolo[4,3-c]pyridine-3-

carboxamide/ C29H31N5O3 

 

 

 

73 

https://pubchem.ncbi.nlm.nih.gov/#query=C26H29N5O4
https://pubchem.ncbi.nlm.nih.gov/#query=C29H31N5O3
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N-Cyclooctyl-N'-[1-(2-furyl)ethyl]-4-

oxo-1-[2-(2-pyridinyl)ethyl]-1,4-

dihydro-3,5-

pyridinedicarboxamide/C28H34N4O4 

 

 

 

 

 

       77 

 

 

ZINC11838605 

5-methoxy-N-{[2-(4-{[3-(4-

methoxyphenyl)propanoyl]amino}ph

enyl)-5-methyl-1,3-oxazol-4-

yl]methyl}-2-furamide / C27H27N3O6 

 

 

 

 

 

       75 

 

 

 

3-[(2,3-Dihydro-1-benzofuran-5-

ylmethyl)amino]-5-

(dimethylsulfamoyl)-N-methyl-N-[1-

(2-pyridinyl)ethyl]benzamide / 

C26H30N4O4S 

 

 

 

       74 

https://pubchem.ncbi.nlm.nih.gov/#query=C27H27N3O6
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3.9 Pharmacokinetic Profile Evaluation 

3.9.1 ADMET analysis 

Following docking, the top compounds from the library are further tested for ADMET 

characteristics. Top-docked compounds in the library include ADMET descriptors and 

the Lipinski Rule of Five. The medicine will be deemed perfect if it complies with LR05 

for physical and chemical parameters. It reveals if a chemical compound is drug-like or 

not, i.e., whether it has biological action intended for oral administration. A drug-like 

chemical compound should have hydrogen bond donors (HBD) > 5, molecular weight 

(MW) 500g/mol, hydrogen bond acceptors (HBA) sites >10, and log p-value 5 

representing hydrophobicity of a compound, according to rule of thumb (RO5).. 

According to rule of thumb (RO5), a drug like chemical compound should have hydrogen 

bond donors > 5, molecular weight< 500g/mol, hydrogen bond acceptors (HBA) sites 

>10, and log p-value <5 represents hydrophobicity of a compound. The other parameters 

are  bonds of rotation < 12 and a polar surface area < 140Å which are simultaneous with 

the drug flexibility and permeability, respectively. The ADMET properties calculates 

absorption, distribution, metabolism, elimination, and toxicity (Lagorce et al., 2017).   

The ADMET absorption descriptor predicts the human intestinal absorption (HIA). The 

solubility of each chemical molecule that resembles a medication in water at 25 °C is 

predicted using the ADMET aqueous solubility. The ADMET blood-brain barrier is used 

to assess the blood brain barrier (BBB) penetration of a chemical substance following 

oral digestion. The ADMET plasma protein binding descriptor is used to determine if a 

medicinal molecule would demonstrate strong bonding to the blood carrier protein. A 2D 

chemical structure of a molecule is used to determine a cytochrome P450 2D6 enzyme 

inhibition using the ADMET CYP2D6 binding model. The ADMET hepatotoxicity test 

quantifies the likelihood that a wide range of structurally different substances will cause 

hepatotoxicity in humans (Kaplita et al., 2005). The logP value must be between -0.4 and 

+5.6. The typical range of -8.0 to -1.0 applies to the log Kp for skin permeability. The top 

drug candidates from the library show good ADMET properties. Also, the results of 

Lipinski Rule of 5 of all the inhibitors are mentioned in the table. 
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Table 3. 5: Predicted Lipinski descriptors of all selected top compounds 

Name M.W H.B.D H.B.A Rotatable 

Bonds 

GI absorption 

Chem-1 475.54 2 6 9 High 

Chem-2 497.59 2 4 10 High 

Chem-3 491.6 3 4 10 High 

Chem-4 489.52 2 7 12 High 

Chem-5 495.61 2 5 9 High 

Name BBB per - 

Meant 

TPSA logKp 

(cm/s) 

ILOGP CYP2D6 

Inhibitors 

Chem-1 No 120.07 -8.64 -3.12 No 

Chem-2 No 90.43 -7.98 0 No 

Chem-3 No 111.41 -6.72 0 No 

Chem-4 No 123.16 -7.91 4.4 No 

Chem-5 No 101.47 3.62 -7.28 Yes 

 

3.9.2 Toxicity Analysis 

For Rodent Oral Toxicity, ProTox-II and toxim is employed to check the toxicity of all 

the inhibitors from the library. Toxicity analysis of all the compounds is done to check 

the following properties like Molecular Refractivity, LogP, Hepatotoxicity, 

Carcinogenicity, and Immunotoxicity. Toxicity results depicted that the top compounds 

filtered from the docking results on the basis of GOLD score is found to be a good target 

for drug designing. The toxicity results are mentioned in the table. However, the further 

analysis during MD simulations will confirm the potency of these candidates to be used 

as a drug target against CPS. 
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      Table  3. 6: Toxicity properties of top five docked compounds 

3.10 2D Interaction Analysis 
The hydrogen bonds and hydrophobic interactions in the CPS and its corresponding 

ligand atoms are analyzed in Discovery Studio and LigPlus. After docking, it is essential 

to find out the interactions which hold the ligand in binding pocket of protein. Therefore, 

in order to perform 2D interaction analysis, the 2D diagram is generated. Significant 

interactions including hydrogen and hydrophobic bonds are observed between proteins 

and ligands. For complex1, the hydrogen bond residues are Asn195 (A), Phe27 (A) while 

hydrophobic residues are Ala209, Val104, Ser143, Arg234, Val303, Ser144, Thr51, 

Tyr193, Val196, Gly29, Gln98, Ile28, Gly23, Asp302, and Gly26. Second top docked 

score complex has Arg299, Tyr166, Gln98, Asn195 residues forming hydrogen bonds 

with hydrophobic residues as Ala209, Arg234, Ser306, Pro105, Ser103, Ala208, Tyr193, 

Ala100, Val196, Tyr207, Ser143, Thr51, Ile28, Phe27. Next complex has hydrogen bond 

residues Ser142, Ser143, Asn195 with hydrophobic residues Gln98, Ile28, Ala100, 

Thr51, Tyr166, Tyr193, Val196, Ala209, Ala140, Arg234, Phe194, Asp235. Complex 1 

has Tyr166, Asn195 residues as hydrogen bond while hydrophobic one as Arg299, 

Pro105, Gly301, Val104, Ala300, Arg234, Ser143, Asp302, Phe194, Ser142, Tyr193, 

Name Molecular 

Refractivity  

LogP Hepatoto

xicity 
Carcinog

enicity 

Immunoto

xicity 

Chem-1 132.36 4.57 True True False 

Chem-2 152.8 2.6 False True True 

Chem-3 139.04 4.61 False False True 

Chem-4 133.25 5.23 False False False 

Chem-5 136.26 4.29 True False False 
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Ala209, Ile28, Phe27. The next complex has Gln201, Tyr207, Ser103, Tyr166 hydrogen 

bond residues and Gly102, Ala208, Asp202, Arg106, Ala209, Asp302, Ser142, Val104, 

Arg299, Gly301 as hydrophobic residues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.82D interaction of CPS thro 

 

 

 

Figure 3. 7: 2D interactions of Top complexes using Discovery Studio 

 

 

 

 

 

A B 

C D 
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3.11 Molecular Dynamics Simulations 
The conformational dynamics of a protein molecule are equally vital to its function. A 

protein's structure contains all of the information necessary for the protein to perform its 

function. The detailed knowledge and better understanding of a structure of a protein and 

its conformational dynamics is important for its functional evaluation and variability. The 

top two complexes were undergone MD simulations which were CPS/ CHEM-10000290, 

CPS/CHEM-10008002. MD simulation of 100 ns were employed to understand the 

dynamics of the protein-ligand complexes, protein-ligand interactions, dynamical shifts, 

conformational fluctuations and hydrogen bond residues, hydrophobic residues and other 

amino acid residues of a protein playing crucial role in protein-ligand binding.  

Several analysis were performed such as trajectory analysis, root mean square deviation 

(RMSD), root mean square fluctuations (RMSF), radius of Gyration (Rg) and beta factor 

were calculated.  

3.11.1 Root Mean Square Deviation 

RMSD is an essential parameter for estimating the deviation of the backbone Cα atoms of 

proteins is observed for the complete simulation run. The mean RMSD calculated for the 

inclusion complex1 (CPS/ CHEM-10000290) and complex2 (CPS/CHEM-10008002) are 

2.31 Å whereas maximum RMSD of 3.1536.  Its highest peaks were 2.91 Å at 14ns, 

2.97Å at 22ns, 2.98 Å at 27, 3.04 Å at 31ns, 3.1 at 45ns and 59ns. The other complex has 

1.49 Å at 24 ns and max 2.1 Å at 44ns. Highest peaks were 2.05 Å at 21ns, 2.1 Å at 31ns 

and 2.1 Å at 53 respectively. Both complexes shows highest peaks at 2.98 Å at 22ns 

(coinciding peak), 3.06 Å at 31ns, 3.1 Å at 45ns, 2.7 Å at 81ns and 2.8 Å at 98ns. No 

extensive structural rearrangements were observed that explicates the complex stability 

and second complex is even more stable.  

3.11.2 Root Mean Square Fluctuation 

RMSF is an important factor in MD simulations to measure the fluctuations and motion 

of each residue in protein which explains protein flexibility during simulation. The 



Chapter 3                                                                                                                              Results 
 

 
37 

 

maximum RMSF for CPS/complex1 was 5.6696 Å and minimum was 0.3492 Å. The 

mean RMSF reported for complex1 was 0.837 Å. the mean RMSF for second complex 

was 0.78 Å with minimum at 0.3312 Å and maximum at 4.3493 Å. The regions depicting 

higher oscillations are highly flexible regions showing systematic conversion of helix 

into loop and loop into helix. The higher peak of the graph in all complexes specifies 

higher oscillations and fluctuations. As both complexes are stable throughout the 

simulation period because the active site residues are not showing prominent fluctuations 

as the binding pocket of the protein is stable. However, the second complex is more 

stable. Almost all the fluctuations were present in chain’s loop and endpoints.  

3.11.3 Beta-factor 

The backbone and side chains of the proteins are in constant motion due to possession of 

thermal and kinetic energy of the atoms. With reference to RMSF, the thermal 

disorderness and the structural stability of a protein at an atomic level can be calculated 

by Beta-factor which provides essential information about the protein dynamics, as it 

measures the protein atomic fluctuations about their regular position. The graph pattern 

of beta-factor is coherent with the pattern of RMSF graph by identifying the same 

flexible regions which indicates the flexibility of a protein. The mean value of Beta-factor 

for first and second complex is 25.1838 Å and 20.3548 Å respectively. The minimum 

Beta-factor calculated for complex1 (CPS/ CHEM-10000290) is 3.2088 Å whereas the 

maximum is 846.007 Å. The minimum Beta-factor calculated for complex2 

(CPS/CHEM-10008002) is 2.8875 Å whereas the maximum was 497.851 Å.  

3.11.4 Radius of Gyration 

Stability and compactness of protein structure is further examined by the calculation of 

another essential parameter of trajectory analysis which is radius of gyration (Rg). Rg 

represents the mass-weighted scalar length of each atom from the center of the mass of 

molecule. The higher Rg value indicates less compact structure whereas the lowest value 

illustrates the tight packing of a protein structure. It helps to understand the protein 

equilibrium conformation. The minimum Rg is 19.5184 Å for complex1 (CPS/ CHEM-

10000290) whereas the maximum is 20.3657 Å. The mean value is 20.0487 Å. The 
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minimum Rg for complex2 (CPS/10008002) is 19.5798 Å whereas the maximum is 

20.0727 Å. The mean value is 19.8174 Å. 

Almost both the complexes shows similar Rg.  The pattern of Rg is stable during the 

simulation run despite few variations in the graph (coherence with the results of RMSD) 

that could be due to some flexible loop regions of the protein. 

 

Figure 3. 8: Superimposed A) Root Mean Square Deviation B) Root Mean Square 
Fluctuation C) Beta-Factor D) Radius of Gyration of top two complexes 

3.12 Hydrogen Bond Analysis 
Hydrogen bond plays an essential role in the formation of stable and actively favorable 

receptor-ligand inclusion complex. To evaluate and analyze the influence and impact of a 

ligand on inhibitory mechanism of an enzyme, the complex conformation is required. To 
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better understand the interaction of CPS with the inhibitory library, both complexes are 

further analyzed for the hydrogen bond interactions among them. In inclusion complex1, 

Tyr-166, Arg-234, Val-196 and Gly29 are involved in hydrogen bonding. Arg-234:N3 

and Tyr-166:O3 shows strong bonds from 12ns to 30ns and then fades at 100ns. Val-

166:N2 has little hydrogen bonds with fading patterns and some prominent lines from 

10ns to 35ns contributing to less stability of a complex. 

In inclusion complex2, Arg-234, Asn-195, Val-196, Ser-142, Ser-143, Tyr-166 are 

mainly involved in hydrogen bonding. It is observed that Ser142 and Ser143, Tyr-166 

and Arg-234 shows consistency of hydrogen bonds and minimal breakpoints are noticed 

between these bonds. Ser-143:O1 and Ser-142:O2 is involved in the stability of a 

complex at 5ns and kept the bonding intact at 100ns. ASN-195:H2 shows bands from 

18ns to 38ns and then fades a little, at 100ns continuous bonds are shown with a little 

distortion at 58ns. Other significant interactions such as Van der waals interactions are 

also present giving stability to the complex as well as maintained a ligand in the binding 

pocket of CPS.  

A) 

 

 

 



Chapter 3                                                                                                                              Results 
 

 
40 

 

B) 

 

Figure 3. 9: Hydrogen Bond Analysis of A) CPS/CHEMBRIDGE-10000290 and B) 
CPS/CHEMBRIDGE-10008002 

3.13 Radial Distribution Function 
Both the complexes showing residues with constant and strongest hydrogen bonding are 

further subjected to radial distribution function (RDF) analysis. To reveal the interactions 

that mainly governs the protein-ligand affinity and complex stability, RDF is used by 

analyzing the interactions at the start, middle, and end of MD simulations. Therefore, 

depending on strong, continuous and stable hydrogen bonds, CPS/CHEMBRIDGE-

10000290 and CPS/CHEMBRIDGE-10008002 are further subjected to radial distribution 

frequency analysis.  

In case of CPS/ CHEMBRIDGE-10000290 in dataset operations, the N3 of 

CHEMBRIDGE -10000290 bonded with NE of Arg234 at 100ns is showing maximum 

peak at 0.21 at 4.95 Å, 0 at 0.025 Å while mean value of 0.032 at 2.5 Å. At 10ns, the 

minimum value is 0 at 0.025 Å, while maximum of 0.088376 at 4.975 Å. The mean value 

is 0.00734745 at 2.5 Å. At 100ns, H18 of CHEMBRIDGE -10000290bonded with N of 

Gly29 is showing minimum peak of 0 at 0 Å, 0 at 0.475 Å while mean value of 0 at 0.025 

Å. At 10ns, the RDF is 0 at 0.025 Å at its minimum peak, and 0.150494 at 4.975 Å, the 
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mean value is 0.0327431 at 2.5 Å. At 50ns, the N3 of CHEMBRIDGE -10000290 bonded 

with NE of Arg234 is showing its minimum peak at 0.025 at 0 Å, and maximum peak of 

RDF of 0.130188 at 4.975 Å. The mean value is 0.0222468 at 2.5 Å. At 50ns, H18 of 

CHEMBRIDGE -10000290 bonded with N of Gly29, the minimum value is 0 at 0.025 Å 

and the maximum value of RDF is 0.038872 at 4.975 Å. The mean value is 0.00512696 

at 2.5 Å.   

The N3 of CHEMBRIDGE-10000290 bonded with NE of Arg234 at 100ns, shows 

highest peak at 0.21 at 3.22 Å and lowest at 0.021 at 4.86 Å. At 10ns, 0.088 at 3.016 Å is 

observed at maximum and minimum of 0.0036 at 3.612 Å. The maximum peak observed 

is 0.129 at 3.776 Å at 50ns while the minimum is 0.004 at 2.82 Å. The H18 of 

CHEMBRIDGE -10000290-bonded with N of Gly29, shows its highest peak at 0.062 at 

4.12 Å, and lowest at 0.042 at 4.41 Å at 100ns. At 10ns, 0.15 at 2.96 Å for highest one 

and 0.035 at 4.81 Å  for lowest one. At 50ns, RDF is 0.037 at 4.421 Å at its highest one, 

while lowest at 0.007 at 3.866 Å.  

In case of CPS/CHEMBRIDGE-10008002, the H2 of CHEMBRIDGE -10000290-

bonded with N of Asn195, the highest peak is observed at 0.229 RDF at 2.66 Å at10ns, 

0.028 RDF at 4.797 Å was shown as the lowest peak. At 10ns, the O1 bonded with OG of 

Ser142 shows its highest peak 0.59 at 2.67 Å while lowest at 0.014 at 4.135 Å. At 50ns, 

the H2 bonded with N of Asn195, shows its highest peak at 0.659 at 2.763 Å and lowest 

at 0.01 at 3.56 Å. At 50ns, the O1 bonded with OG of Ser142 shows its highest peak, 

1.24 at 2.61 Å (the highest one in entire RDF) and lowest at 0.066 at 3.024 Å. At 100ns, 

the H2 bonded with N of Asn195, the highest peak observed was 0.561 at 2.624 Å and 

0.561 at 2.79 Å. At 100ns, the O1 bonded with OG of Ser142 shows its highest peak, 

1.154 at 2.60 Å while lowest at 0.014 at 3.114 Å.  

The data set operations  shows 0 at 0.025 Å at minimum of the H2 of CHEMBRIDGE -

10000290bonded with N of Asn195 at 10ns while maximum at 0.232677 at 4.975 Å. The 

mean observed was 0.041 at 2.5 Å. At 50ns, it showed 0 at 0.025 Å for minimum and 

0.654 at 4.975 Å for maximum, the mean value was 0.0611 at 2.5 Å.  At 100ns, it also 
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shows 0 at 0.025 Å at minimum while maximum of 0.566 at 4.975 Å, the same mean 

value 0.060 at 2.5 Å.  

At 10ns, the O1 bonded with OG of Ser142, shows its minimum RDF of 0 at 0.025 Å, 

and maximum of 0.598 at 4.975 Å. The mean value is 0.0547 at 2.5 Å. At 50ns, RDF is 0 

at 0.025 Å, as a minimum value while maximum is 1.249 at 4.975 Å. The mean value is 

0.065 at 2.5 Å. the 100ns, the minimum value is 0 at 0.025 Å, maximum of 1.1529 at 

4.975 Å. The mean value is 0.0653.  

(A) 
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B)

 

Figure 3. 10: A) Radial Distribution Function of CPS/CHEMBRIDGE-10000290 and B) 
CPS/CHEMBRIDGE-10008002 

3.14 Binding Free Energy Calculation 
The binding affinity between the ligand and the protein molecule in all the inclusion 

complexes is investigated by MMGB/PBSA based binding free energy (∆Gbind). 

MMGB/PBSA is a package of AMBER16 which is applied on MD simulation 

trajectories of both complexes. The electrostatic interaction (∆EEL), van der Waals 

interaction (∆VDW), and the ∆Gbind values of MMGB/PBSA are calculated. Following 

values shows the binding free energy calculations for both complexes.  
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Table  3. 7: Binding Free Energy Calculations of selected complexes via MM/GBSA 

Contribution 

(GB) 

Energy values (kcal/mol)of 

CHEMBRIDGE-10000290-

40.4_81 

Energy values (kcal/mol of 

CHEMBRIGE-10008002-

720_73 

∆Evdw -10.5500 -6.8932 

∆Eele -111.1270 -102.3875 

∆Ggas -45.6847 -35.0992 

∆Gsolve 42.9649 34.4252 

∆Gtotal -2.7198 -0.6740 

 

Table  3. 8: Binding Free Energy Calculations of selected complexes via MM/PBSA 

Contribution(PB) Energy values (kcal/mol) of  

CHEMBRIDGE-10000290-

40.4_81 

Energy values (kcal/mol) of 

CHEMBRIGE-10008002-

720_73 

∆Evdw -10.5500 -6.8932 

∆Eele -111.1270 -102.3875 

∆Ggas -45.6847 -35.0992 

∆Gsolve 39.1813 30.8535 

∆Gtotal -6.5034 -4.2458 
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4. Discussion 
In this study, an in silico subtractive proteomic approach was employed to categorize and 

identify potential drug targets. The cause of pertussis, sometimes known as whooping 

cough, is a gram-negative, aerobic, pathogenic, encapsulated coccobacillus, opportunistic 

pathogen, extremely drug resistant, nonfermentative and catalase positive of the genus 

Bordetella that causes serious human infections. It belongs to the family of 

Alcaligenaceae. It is responsible for upper respiratory tracts, such as fever, sneezing, and 

a moderate and infrequent coughing. cerebral hypoxia, severe alkalosis, convulsions, 

subcutaneous emphysema, subconjunctival hemorrhage, umbilical or inguinal hernias, rib 

fractures, and umbilical or inguinal hernias, a light, infrequent cough (babies do not do 

this) newborns and young children who experience apnea, which are potentially fatal 

breathing pauses, and cyanosis, which is a blue or purple coloration. The bacteria 

Bordetella pertussis is the cause of pertussis, an acute respiratory illness that is extremely 

contagious. There are three stages to this condition: catarrhal, paroxysmal, and 

convalescent. The proteome wide identification begins with the retrieval of the proteome 

of B.Pertussis from uniprot which comprised of 4021 proteins. The complete proteome 

was used to identify the essential, virulent, and therapeutic protein by applying several in 

silico methods. After the removal of non-essential and homologous proteins, 423 

essential proteins, involved in different pathways were discovered. The virulence factors, 

localization, druggability, and physicochemical properties of proteins were checked to 

identify a protein involved in the cytoplasmic space of pathogen and found to be the most 

druggable target. By applying the various subtractive proteomics filters, CPS was 

discovered and selected. The CPS has a virulent nature therefore; it can be used as a 

target of interest for the development of novel therapeutic drug against B.Pertussis. It has 

various unique functions, such as protection and primarily by interfering with host 

opsonophagocytic clearance processes, plays a crucial part in pathogenicity which 

ultimately disrupts the host immune system. The 3D structure of the protein was Alpha 

fold predicted using AI based approach which is recent cutting edge technology for the 

best modeling with refined results. SWISS-MODEL and Phyre2 were utilized for 
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structure validation of the CPS protein. By comparing these three models developed by 

different tools, the model created for Alpha Fold was selected because of its high 

credibility. The hypothesized structure was minimized and optimized with 750 steps of 

steepest descent and 750 steps of conjugate gradient method to remove any unfavorable 

clashes by using Tripos Force Field. CASTp, DoGSiteScorer, and Prankweb were 

employed to predict the catalytic site of CPS. The active site residues A209, N195, S306, 

S143, S142, K170, Y166, S103, G102, and Q201 were present in CPS with epimerase 

domain. Chembridge-5900 Library of inhibitor compounds was created. The binding 

poses and interactions between inhibitors and protein were determined using GOLD. The 

top inhibitors on the basis of GOLD scores were then evaluated for ADMET, Lipinski 

Rule of Five, and toxicity analysis. The top five inhibitors were shortlisted. The aim of 

this study, was to perform the comparative analysis on novel inhibitors from Chembridge 

library. The top compounds of chembridge ( IUPAC name:  N-[[2-[3-[(2,5-

dimethylfuran-3-carbonyl)amino]phenyl]-5-methyl-1,3-oxazol-4-yl]methyl]-2-methyl-5-

propan-2-ylpyrazole-3-carboxamide/C26H29N5O4,N-cyclopropyl-5-[3-(1H-indol-3-

yl)propanoyl]-1-[(3 methoxyphenyl)methyl]-6,7-dihydro-4H-pyrazolo[4,3-c]pyridine-3-

carboxamide/ C29H31N5O3 ) were undergone MD simulations of 100ns to examine the 

dynamics. The structural deviations were analyzed using trajectory analysis which 

includes RMSD, RMSF, Radius of Gyration, and Beta-Factor. The RMSD graph of both 

complexes exhibited variations at different nanoseconds which explain the structural 

changes in the backbone of CPS. Second complex showed more stability as mentioned in 

the results section. By interpreting all the graphs, it was concluded from trajectory 

analysis, that both the complexes were showing the constant pattern of fluctuations 

because of alterations in loop, helix, and Beta sheets but the ligand remained at the 

targeted site. Further, the hydrogen bond analysis was performed. Both the complexes 

had hydrogen bonds bit second one was showing more stable hydrogen bond at different 

nanosecond scale as explained in results section. The both complexes has shown strong 

interactions and binding with water and ligand. Although second complex hydrogen bond 

was more stable, both were further subjected to RDF analysis. The results of RDF were 

showing compatibility the results of docking and MD simulations. The binding free 

energy of both the complexes was calculated using MMGB/PBSA approaches. The 

https://pubchem.ncbi.nlm.nih.gov/#query=C26H29N5O4
https://pubchem.ncbi.nlm.nih.gov/#query=C29H31N5O3
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strong binding affinity of both the complexes for ligand and receptor was observed. The 

more negative values indicate more binding. Consequently, it is concluded that they can 

be used as a potential drug targets to inhibit the growth of multidrug resistant B.Pertussis 

by inhibiting the function of CPS. The simulations results indicate that giving stability to 

the complex can be used as a therapeutic drug target. The complexes showed the best 

binding at the active site of CPS predicted in this study. Therefore, by incorporating the 

changes in their structure, its absorption, solubility, and pharmacokinetic profile can be 

maintained so that it can be used as a therapeutic drug against CPS in future. Thus, this 

study helps us to understand how to choose a potential drug target protein by using 

comparative dynamics, proteome wide identification technique and to develop a 

therapeutic drug to inhibit the pathogen growth by inhibiting the target protein function. 
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CONCLUSION 
 

Alcaligenes is a phylogenetic subcategory of proteobacteria comprised of diverse species. 

B.Pertussis belongs to the family of Alcaligenaceae. It is a gram-negative bacterium and 

extremely drug resistant pathogen that causes serious human infections. It causes 

infections of respiratory tracts, vomiting, whooping cough, urinary infections and blood 

stream infections. In the current study, proteome wide identification approach, 

comparative dynamics and subtractive proteomics was used that highlighted CPS as a 

promising drug target. The 3D structure of the protein Alpha Fold predicted and 

comparison with other structures predicted via Swiss-Model and Phyre2 further validated 

and emphasized the credibility of the model generated by Alpha Fold. To perform the 

comparative analysis and identify the potential drug candidates, the top inhibitors from 

Chembridge library were undergone in silico analysis which includes Docking, ADMET 

and Toxicity Analysis, MD simulations, Trajectories, Hydrogen Bond Analysis and 

Radial Distribution Function. The results showed more stability of second complex as 

indicated by hydrogen bonding and binding free energy calculations. The in silico study 

revealed that both complexes can be used as potential drug targets to inhibit the role of 

CPS. The binding of the inhibitor at the domain of Capsular Polysaccharide protein will 

inhibit its activity thus halting the virulence and protection mechanism ultimately killing 

the extensively drug resistant B.Pertussis. As the ligand is fixed at the binding site and 

did not move away from the binding, it exhibited prominent interactions with the solvent, 

therefore it can be subjected to further investigation. These results revealed that both 

inhibitor complexes can be used as a potential therapeutic drug against CPS after 

improving and analyzing their pharmacokinetic profile. Although these inhibitors showed 

good binding efficacy for the CPS, the experimental in-vivo and in-vitro validation is still 

required to authenticate the therapeutic and prophylactic effects of these drugs. 
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