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Abstract

This study is conducted to improve efficiency of the estimators of finite population

mean in presence of non-response using Randomized Response Technique (RRT)

to sub-sample non-respondents, assuming that non-response is due to sensitivity of

the variable the variable under study. We suggest an estimator for the finite pop-

ulation mean incorporating known coefficient of variation of the study variable in

case of quantitative sensitive variable considering a randomization mechanism on

the second call that provides privacy protection to the respondents to get truthful

information. We also propose generalized ratio and regression type estimators un-

der two-phase sampling. Secondly, we use stratified random sampling to improve

efficiency of the propose estimators are derived. Expressions for mean square er-

ror of estimators are derived and conditions for which the proposed estimators

are more efficient than the relevant estimators under scrambled response model

have been obtained in case of simple random sampling and Stratified sampling.

Numerical studies are carried out to evaluate performances of the estimators in

both sampling schemes. Thirdly, we propose estimators in case of non-response

using Ranked set sampling, Extreme Ranked set sampling and Median ranked

set sampling to sub-sample non-respondents under randomized response model.

Expressions for variances are obtain and conditions under which the proposed

estimators are preferred on their counterpart in Simple random sampling with re-

placement. We conduct a monte carle experiment to see efficiency of the proposed

estimators.
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Chapter 1

Introduction and Review of

Literature

1.1 Introduction

The purpose of survey sampling is to get a reliable information about the charac-

teristics of population under study by selecting a sample of certain size from that

population. Researcher’s interest lies in estimating unknown population param-

eters by using information contain in sample. Whatever sampling technique we

use, unfortunately, in some cases we cannot obtain complete information about

the population from selected sample i.e. some units in sample don’t give response

and this phenomena is named as ”Non-response”. In almost every field of research

related to human beings non-response problems occur when people are contacted

through telephonic, mail or direct interview. It depends on the nature of the re-

quired information whether survey is conducted on general or sensitive issues of

the society. Often in surveys related to general issues like age, income and edu-

cation etc., the non-response occurrence may be in the form of unavailability of

people, respondent not at home, unable to understand the questionnaire. When

1



Chapter 1. Introduction and Review of Literature 2

sensitive information on topics like drug addiction, gambling, illegal income etc is

required, then usually peoples hesitate to give true response and either they refuse

to answer or give false response. Consequently it estimates population parameters

significantly too high or too low. This study covers the topic of estimation of fi-

nite population mean with an improvement in precision under non-response. The

first attempt to improve efficiency is utilization of known coefficient of variation

of study character at estimation stage in SRSWOR, second is use of stratified

random sampling to improve efficiency of estimators constructed in SRSWOR and

third one is use of RSS, ERSS and MRSS.

1.2 Objectives of the study

This study is conducted in light of following objectives;

1. To enhance response rate using scrambled response model on second call to

protect confidentiality in surveys related to sensitive social issues.

2. To improve efficiency in estimation of finite population mean under scram-

bled response model, using different sampling scheme, when there is non-

response on the study variable.

3. To utilize known coefficient of variation of the study variable in case of non-

response.

4. To compare efficiency of different estimators.

1.3 Review of Literature

In order to reduce non-response bias and to estimate the unknown characteristic

of interest in a population, Hansen and Hurwitz (1946) introduced a procedure of

sub-sampling the non-respondents in which it is assumed that all respondents give
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full response on second call. Later many authors suggested different estimators for

the unknown population parameters using some auxiliary information which may

suffer from non-response, see Khare and Srivastava (1993), Khare and Srivastava

(1995), Khare and Sinha (2009) and Singh and Kumar (2010). They have consid-

ered both cases; auxilary variable with non-response and without non-response. In

case of sensitive characteristics, it is hard to get a direct truthful response even on

second call and results are in violation of the Hansen and Hurwitz (1946) assump-

tion. When survey is concerned with sensitive characteristics of a population then

it is imperative to reduce non-response bias and to get reliable information from

respondents. Some statistical techniques exist to protect the confidentiality and

privacy of respondents and to get the truthful information. These techniques are

known as Randomized Response Techniques (RRTs). Warner (1965) introduced

the RRT to estimate the proportion of population possessing sensitive attribute

which required choosing a yes or no response from a set of nominal categories.

After that many authors have contributed towards improving efficiency of the es-

timators by using this technique. These include Mangat and Singh, Shabbir and

Gupta (2005) and Diana and Perri (2009). An RRT method provides quantitative

response which depends on a random number from a known distribution. For

quantitative sensitive response models see, Pollock and Bek (1976), Eichhorn and

Hayre (1983) and Diana and Perri (2011) . Diana et al. (2014) proposed an un-

biased estimator of population mean of a quantitative sensitive variable assuming

that the people who refuse to respond on first call give scrambled response on sec-

ond call. This estimator reduces non-response bias by increasing response rate but

its variance goes up due to the use of scrambled response model for non-response

group.

Several research works exist in literature for reducing the variance of the finite

population mean estimator. Searls (1964) used the known coefficient of variation

of the study variable in estimating the population mean to improve efficiency. Us-

ing Hansen and Hurwitz (1946) technique, Khare and Srivastava (1993), Khare

and Srivastava (1995) proposed an estimator for population mean in presence of

non-response under two-phase sampling scheme. Khare and Kumar (2009) have
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proposed an estimator for population mean utilizing known coefficient of variation

of the study character using the auxiliary information in estimation under non-

response. Khare and Kumar (2011) also proposed generalized ratio and regression

type estimators for population mean in two-phase sampling in presence of non-

response.

The precision of an estimator depends on the variability among units in the popu-

lation. One possible way to estimate the population mean with maximum precision

is to divide the whole population into certain groups, called strata, which are inter-

nally homogeneous and externally heterogeneous and then selecting independent

samples of different sizes from each stratum using SRSWOR. Singh and Sukhatme

(1969) suggested method of optimum stratification. After that many authors have

suggested different types of estimators using the auxiliary information in stratified

random sampling (see Singh and Sukhatme (1973), Kadilar (2003), Kadilar (2005)

etc). In case of heterogeneous population, when non-response occurs in each stra-

tum. Khare (1987) has proposed an estimator of population mean and also obtain

the method of allocation of sample size in different strata for a fixed cost. Khare

(1995) proposed an estimator for population mean using post stratification. Later

on Okafor (1996) has proposed some estimators for population mean by using post

stratification using the auxiliary information in presence of non-response. Khare

(2013) also proposed separate generalized ratio type estimators for population

mean in presence of non-response in stratified random sampling.

Another way to improve efficiency is the use of Ranked Set Sampling (RSS). RSS

is a better alternative to simple random sampling that can sometimes offers large

improvement in precision. It was originally developed for estimating herbage yield

in agricultural researches by McIntyre (1952). In recent years it has been applied

particularly to problems in environmental science. RSS is preferred when actual

measurement of a unit is either expensive or time consuming and ranking of a

small set of experimental units is cheap and easy. Dell and Clutter (1972) proved

that even if ranking is not perfect, the ranked set sampling is still unbiased. Patil

(2002) gave a review of the theme of RSS. Many authors including Muttlak (1996)

and Samawi and Ahmed (1996) showed that RSS is better than SRSWR in term
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of accuracy. Bouza (2009) used RSS sampling to Randomized response procedure

for estimating population mean of sensitive quantitative character to protect con-

fidentiality of respondents.

Bouza (2002a) proposed an unbiased estimator of population mean using RSS in

presence of non-response. Bouza (2010) introduced an estimator for population

mean using RSS to sub-sample the non-respondents on second call by claiming

that the first visit allows information on Y for ranking the units in sub-sample

ś2 from non-response group s2 and use different RSS methods for selecting sub-

sample on second call.

Taking inspiration from all these works, firstly we propose an estimator of finite

population mean under non-response utilizing known coefficient of variation of the

study variable, using scrambled response model to sub-sample non-respondents,

in SRSWOR. It is assumed that non-response is due to sensitivity of the vari-

able under study. Moreover we suggest two-phase generalized ratio and regres-

sion type estimators to improve efficiency using Khare and Kumar (2011) esti-

mators. Secondly, we used stratified random sampling to obtain the proposed

estimators assuming that the population of interest is heterogeneous. Finally, we

apply RSS, ERSS and MRSS with randomized response technique to sub-sample

non-respondents on second call for estimating finite population mean more pre-

cisely. We conduct analytical and numerical comparisons between the proposed

and existing estimators.



Chapter 2

Estimation of population mean in

Simple Random Sampling

2.1 Introduction

Simple random sampling consist of selecting units randomly (with or without

replacement) from the whole population without imposing any restriction on pop-

ulation that is why it is easy to handle and less expensive method of selecting

a sample. As we select units from whole population without any restriction it

tends to results a high variation in estimation of characteristics of population un-

der study.Therefore researchers are primarily interested in reducing variability in

estimating population parameters. Keeping this point under consideration, the

study proposes an estimator for population mean of a sensitive quantitative vari-

able utilizing known coefficient of variation of the study variable under two-phase

sampling scheme using the RRT for sub-sampling non-respondents on the second

call; utilization of known constants in estimation stage is a good practice for im-

proving efficiency of estimators. Furthermore, using the proposed estimator, some

generalized ratio-type and regression-type estimators are constructed. As a special

6
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case, for different values of constants involve, the members of the proposed esti-

mators are identified with their properties. An empirical study is given to evaluate

the performances of the mean estimators in SRSWOR.

2.2 Estimators

Let U = (U1, U2, ....., UN) be a finite population of size N . We draw a sample of

size n from the population by using SRSWOR. Let yi and xi be characteristics

of the study variable (y) and the auxilary variable (x) respectively. Searls (1964)

proposed an estimator ȳs = aȳ for estimating the finite population mean, by using

optimum value of a i.e. aopt =

(
1 +

1− f
n

C2
y

)−1

, wheref =
n

N
and C2

y is the

coefficient of variation of y. When the population mean (X̄) of the auxiliary

variable is unknown, we use two-phase sampling scheme. In first phase, we select

a sample of size ń where ń < N by using SRSWOR to estimate (X̄) and then in

second phase, we take a smaller sample of size n from the initial ń units to obtain

sample means of the study variable (y) and the auxiliary variable (x). Suppose

that from n sampled units in phase 2 only n1 units respond on first call and n2

units do not respond. Subsequently, a sample of size r =
n2

k
, where k > 1 , is

drawn from the n2 non-responding units. Consequently the whole population U is

divided into two groups U1 (respondents) and U2(non-respondents) of size N1 and

N2 respectively. When N1 and N2 are unknown in advance, Hansen and Hurwitz

(1946) proposed an estimator for population mean Ȳ which is given by

ȳ∗srs = w1ȳ1 + w2 ´̄y2, (2.1)

where

w1 =
n1

n
, w2 =

n2

n
, ȳ1 =

1

n1

n1∑
i=1

yi and ´̄y2 =
1

r

r∑
i=1

yi.
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Also E(ȳ∗srs) = Ȳ and variance of ȳ∗ is:

V (ȳ∗) =

(
1

n
− 1

N

)
S2
y +

W2(k − 1)

n
S2
y(2),

where

S2
y =

1

N − 1

N∑
i=1

(yi − Ȳ ) and S2
y(2) =

1

N2 − 1

N2∑
i=1

(yi − Ȳ2).

By ignoring correction factor 1− f for easy of computation, we have

V (ȳ∗) =
1

n
S2
y +

W2(k − 1)

n
S2
y(2), (2.2)

Using idea of Searls (1964) and Khare and Kumar (2011), the improved Hansen

and Hurwitz (1946) estimator is ȳ∗∗ = aȳ∗, where a is Searls constant. The value

of a for which MSE(ȳ∗∗) is minimum, given as

aopt =

[
1 +

1

n
C2
y +

W2(k − 1)

n

S2
y(2)

Ȳ 2

]−1

Since
S2
y

Ȳ 2
and

S2
y(2)

Ȳ 2
don’t differ significantly, so we may approximate

S2
y(2)

Ȳ 2
∼=
S2
y

Ȳ 2
= C2

y . The estimator of aopt for known C2
y , is given by

âopt =

[
1 +

C2
y

n

{
1 +

n2

n
(k − 1)

}]−1

. (2.3)

Now improved estimator for population mean becomes

ȳ∗∗ =

[
1 +

C2
y

n

{
1 +

n2

n
(k − 1)

}]−1

ȳ∗. (2.4)
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The Bias and MSE of ȳ∗∗, is given by

Bias(ȳ∗∗) =

[{
1 +W2(k − 1)

}
C2
y

n

]
Ȳ

and

MSE(ȳ∗∗) = (1−B1)
S2
y

n
+ (1− 2B2)

W2(k − 1)

n
S2
y(2), (2.5)

where B1 =
C2

y

n
[1−W 2

2 (k − 1)2] and B2 =
C2

y

n
[1 +W2(k − 1)] .

By (2.2) and (2.5), we see that MSE(ȳ∗∗) < V (ȳ∗), if

B1

S2
y

n
+ 2B2

W2(k − 1)

n
S2
y(2) > 0.

Using the value of B1 and B2 and using assumption that S2
y
∼= S2

y(2), we get

[1 +W2(k − 1)]2 > 0,

which is true for all values of k, this shows that ȳ∗∗ is always more efficient than

ȳ∗. In case of non-response on y and incomplete or complete information on x

in a given sample of size n the conventional and alternative ratio and product

estimators under two-phase sampling (T1, T2) and (T3, T4) ( Khare and Srivastava

(1993)) and regression type estimators (Tlr1, Tlr2) ( Khare and Srivastava (1995))

for Ȳ are given as below:

T1 = ȳ∗
´̄x

x̄∗
, T2 = ȳ∗

´̄x

x̄
, T3 = ȳ∗

x̄∗

´̄x
, T4 = ȳ∗

x̄

´̄x
, Tlr1 = ȳ∗ + b∗∗(´̄x− x̄∗)

and Tlr2 = ȳ∗ + b∗(´̄x− x̄),
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where

x̄∗ = w1x̄1 + w2 ´̄x2, b
∗∗ =

s∗yx
s∗2x

, b∗∗ =
s∗yx
s2
x

, s∗2x =
1

n− 1

(
n1∑
i=1

x2
i + k

r∑
i=1

x2
i − nx̄∗2

)
,

s2
x =

1

n− 1

(
n∑
i=1

x2
i − nx̄∗2

)
, s∗yx =

1

n− 1

(
n1∑
i=1

yixi + k

r∑
i=1

yixi − nȳ∗x̄∗
)
,

x̄1 =
1

n1

n1∑
i=1

xi and ´̄x2 =
1

r

r∑
i=1

xi.

Using known coefficient of variation of study variable , Khare and Kumar (2011)

proposed a generalized ratio type(t1, t2) and regression type (tlr1, tlr2) estimators

for Ȳ as :

t1 = ȳ∗∗
(
x̄∗

´̄x

)α1

, t2 = ȳ∗∗
( x̄

´̄x

)α2

tlr1 = ȳ∗∗ + b∗∗(´̄x− x̄∗)

and tlr2 = ȳ∗∗ + b∗(´̄x− x̄),

where α1 and α2 are constants. Assuming Y as a quantitative sensitive variable,

Diana et al. (2014) have made some modifications to the Hansen and Hurwitz

(1946) estimator. They assumed that one group of people give direct truthful

response on first call and the other group don’t respond on first call later on they

give scrambled response. The aim of doing so was to encourage people to respond

truthfully by ensuring them that their privacy is protected. Several scrambled

response models are available in literature including Additive, Multiplicative and

Subtractive scrambled response models etc. Diana et al. (2014) considered the

linear combination scrambled response model that was earlier defined by Diana

and Perri (2010). A slightly modified version of the Diana et al. (2014) model is

as given below.

Let Z be the scrambled response and A and B be two independent random vari-

ables unrelated to Y with known means (µA, µB) and variances (σ2
A, σ

2
B), such
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that:

Z = AY +B, (2.6)

where ER(Z) = µAY + µB and variance of Z is VR(Z) = σ2
AY

2 + σ2
B, here ER, VR

are expectation and variance with respect to randomization device .

Let ŷi be transformed scrambled response of the ith unit whose expectation under

randomization mechanism equals to true response yi.

ŷi =
zi − µB
µA

, ER(ŷi) = yi

VR(ŷi) =
σ2
Ay

2
i + σ2

B

µ2
A

= φi (2.7)

Diana et al. (2014) proposed following estimator

ˆ̄y∗srs = w1ȳ1 + w2
´̄̂y2, (2.8)

where ´̄̂y2 = 1
ń2

∑ń2

i=1 ŷi. It is easy to show that E(ˆ̄y∗) = µ using the fact that

ER(´̂y2) = ´̄y2. The variance of ˆ̄y∗ after ignoring correction factor, is given by

V (ˆ̄y∗) =
1

n
S2
y +

W2(k − 1)

n
S2
y(2) +

W2k

n

[
σ2
A

µ2
A

{
S2
y(2) + µ2

y(2)

}
+
σ2
A

µ2
A

]
.

It can also be written as :

V (ˆ̄y∗) =
1

n
S2
y +

W2(k − 1)

n
S2
y(2) +

k

nhN

N2∑
i=1

φi. (2.9)

Diana and Perri (2010) suggested two possible ways to estimate unknown µy(2),

One is to use a good guess from previous works, and the other is to use a pilot

survey so that sample estimate can supply information about the second moment

keeping in mind its sensitive nature. Comparing Equations (2.2) and (2.9), we

see that ˆ̄y∗ is less efficient than ȳ∗ but on the other hand it gives greater privacy
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protection. Diana et al. (2014) have made a trade off between efficiency and pri-

vacy by choosing a suitable scrambled response model from among several models

because efficiency and privacy move in opposite directions. So it is impossible

to simultaneously keep both of these at a desired level for a fixed sample size.

Keeping this point in mind we make an attempt to improve efficiency at a fixed

level of privacy. For this purpose we introduce an estimator for population mean

of a sensitive quantitative variable by utilizing known coefficient of variation of

the study variable which is more efficient than the Diana et al. (2014) estimator

under certain assumption. The proposed estimator is given by

ȳ∗∗ = k1ȳ
∗, (2.10)

where k1 is a constant. The optimum value of k1 which minimize MSE of ˆ̄y∗∗, is

given by

k1(opt) =

[
1 +

1

n
C2
y +

W2(k − 1)

n

S2
y(2)

Ȳ 2
+

k

nhNh

σ2
r

Ȳ 2

]−1

.

As we discussed earlier
S2
y

Ȳ 2 and
S2
y(2)

Ȳ 2 don’t differ significantly, so we may approxi-

mate
S2
y

Ȳ 2
∼=

S2
y(2)

Ȳ 2
∼= C2

y . So estimated value of k1 becomes

k̂1(opt) =

[
1 +

C2
y

n

{
1 +

n2

n
(k − 1)

}
+

k

nN

σ2
r

Ȳ 2

]−1

.

The Bias and MSE of ˆ̄y∗∗ to first order approximation, is given by

Bias(ˆ̄y∗∗) = −
[{

1 +W2(k − 1)

}
C2
y

n
+

k

nN

σ2
r

Ȳ 2

]
Ȳ (see: Appendix A) (2.11)
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and

MSE(ˆ̄y∗∗) = (1−A∗)
S2
y

n
+(1−2B∗)

W2(k − 1)

n
S2
y(2)+

k

nN
σ2
r

{
1− k

nN

σ2
r

Ȳ 2

}
, (2.12)

(see:Appendix A)

where

A∗ =
C2
y

n

{
1−W 2

2 (k − 1)2

}
+

2k

nN

σ2
r

Ȳ 2

and B∗ =
C2
y

n

{
1 +W2(k − 1)

}
+

k

nN

σ2
r

Ȳ 2
(2.13)

By (2.9) and (2.12), we see that MSE(ˆ̄y∗∗) < V (ˆ̄y∗), if

[
C2
y

n

{
1−W 2

2 (k − 1)2

}
+

2k

nN

σ2
r

Ȳ 2

]
S2
y

n
+ 2

[
C2
y

n

{
1 +W2(kh − 1)

}
+

k

nN

σ2
r

Ȳ 2

]
W2(k − 1)S2

y(2)

n
+

(
k

nN

σ2
r

Ȳ 2

)2

> 0,

as the last term is positive and assuming that
S2
y

n
∼=
S2
y(2)

n
, we get

C2

n
{1−W 2

2 (k − 1)2}+ 2
C2

n
{1 +W2(k − 1)}W2(k − 1) +

2k

nN

σ2
r

Ȳ 2
{1 +W2(k − 1)} > 0,

=>

{
1 +W2(k − 1)

}2

> 0 and

{
1 +W2(k − 1)

}
> 0.

Both conditions satisfy for all k > 1. This shows that ˆ̄y∗∗ is always more efficient

than ˆ̄y∗ To increase efficiency in estimation of finite population mean we propose

generalized ratio type estimators using Khare and Kumar (2011) estimator for the

case of non-response on x and no non-response on x as follow:

t̂1 = ˆ̄y∗∗
(
x̄∗

´̄x

)a1

(2.14)
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and

t̂2 = ˆ̄y∗∗
( x̄

´̄x

)a2

, (2.15)

where a1 and a2 are constants to be determine. The generalized ratio type esti-

mators for the case of non-response on x and no non-response on x are

t̂(lr)1 = ˆ̄y∗∗ + b∗∗
(
´̄x− x̄∗

)
(2.16)

and

t̂(lr)1 = ˆ̄y∗∗ + b∗
(
´̄x− x̄

)
, (2.17)

where b∗∗ and b∗ are defined earlier.

Now different members of these generalized ratio and regression type estimators

for certain values of constants involved are obtain. By putting a1 = a2 = −1

and a1 = a2 = 1 in (2.14) and (2.15) the estimators reduce to conventional and

alternative to two phase stratified ratio estimator and Product type estimators

respectively , using scrambled response model to non-response group using coeffi-

cient of variation of the study character.

The alternative two-phase ratio type estimators are given by:

t̂3 = ˆ̄y∗∗
(

´̄x

x̄∗

)
and t̂4 = ˆ̄y∗∗

(
´̄x

x̄

)

The alternative two-phase product type estimators are given by:

t̂5 = ˆ̄y∗∗
(
x̄∗

´̄x

)
and t̂6 = ˆ̄y∗∗

( x̄
´̄x

)

Now for k = 1, a1 = a2 = 1 and a1 = a2 = −1, the estimator in (2.14), (2.15),
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(2.16) and (2.17) reduce to conventional and alternative to two-phase stratified ra-

tio, product and regression type estimators respectively, using scrambled response

model to non-response group.

T̂3 = ˆ̄y∗
(

´̄x

x̄∗

)
, T̂4 = ˆ̄y∗

(
´̄x

x̄

)
, T̂5 = ˆ̄y∗

(
x̄∗

´̄x

)
, T̂6 = ˆ̄y∗

( x̄
´̄x

)
,

T̂(lr)1 = ˆ̄y∗ + b∗∗(´̄x− x̄∗) and T̂(lr)2 = ˆ̄y∗ + b∗(´̄x− x̄)

2.3 Mean Square Errors of different estimators

In this section, we derive expressions for MSE of different estimators. For this

purpose, we define following error terms.

Let

ê∗0 =
ˆ̄y∗ − Ȳ
Ȳ

, e∗1 =
x̄∗ − X̄
X̄

and é1 =
´̄x− X̄
X̄

such that E(ê∗0) = E(e∗1) = E(é1) = 0 and

E(ê∗20 ) =

(
1

n
− 1

N

)
S2
y

Ȳ 2
+
W2(k − 1)

n

S2
y(2)

Ȳ 2
+

k

nN

σ2
r

Ȳ 2

E(e∗21 ) =

(
1

n
− 1

N

)
S2
x

X̄2
+
W2(k − 1)

n

S2
x(2)

X̄2
, E(é2

1) =

(
1

ń
− 1

N

)
S2
x

X̄2
,

E(e∗1é1) =

(
1

ń
− 1

N

)
S2
x

X̄2
, E(ê∗0é1) =

(
1

ń
− 1

N

)
Syx
X̄Ȳ

,

E(ê∗0e
∗
1) =

(
1

n
− 1

N

)
Syx
X̄hȲ

+
W2(k − 1)

n

Syx(2)

X̄Ȳ
.
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Consider the generalized estimator t̂ in term of errors:

t̂1 = ˆ̄y∗∗
(
x̄∗

´̄x

)a1

= k1 ˆ̄y∗
(
x̄∗

´̄x

)a1

= k1Ȳ (1 + ê∗0)

[
(1 + e∗1)

(1 + é1)

]a1

t̂1 − Ȳ = (k1 − 1)Ȳ + k1Ȳ

[
ê∗0 + a1e

∗
1 − a1é1 +

a1(a1 − 1)

2
e∗21

+
a1(a1 + 1)

2
é2

1 + a1e
∗
1ê
∗
0 − a1é1ê

∗
0 − a2

1é1ê
∗
1

]

Taking square on both side and neglecting higher term from the right hand side.

(t̂1 − Ȳ)2 ∼= (k1 − 1)2Ȳ 2 + Ȳ 2

[
k2

1

{
ê∗20 + a2

1e
∗2
1 + a2

1é
2
1 − 2a1e

∗
1é1

− 2a1ê
∗
0é1 + 2a1ê

∗
0e
∗
1

}
+ k1(k1 − 1)

{
a1(a1 − 1)e∗21 − 2a2

1e
∗
1é1

+ a1(a1 + 1)é2
1 + 2a1ê

∗
0e
∗
1 − 2a1ê

∗
0é1

}]
.

Taking expectation, we have

MSE(t̂1) ∼= (k1 − 1)2Ȳ 2 + k2
1V (ˆ̄y∗) + Ȳ 2

[
k1ah1(2k1a1 − k1 − a1 + 1)

{(
1

n
− 1

ń

)
C2
x

+
W2(k − 1)

n
C2
x(2)

}
+ 2k1a1(2k1 − 1)

{(
1

n
− 1

ń

)
Cyx +

W2(k − 1)

n
Cyx(2)

}]

We have

B∗ =
C2
y

n

{
1 +W2(k − 1)

}
+

k

nN

σ2
r

Ȳ 2
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After expanding k1 and neglecting higher order terms, the optimum value of k1,

is given by

k1(opt) = 1−
[
C2
y

n

{
1 +W2(k − 1)

}
+

k

nN

σ2
r

Ȳ 2

]
.

So we can write k1
∼= 1−B∗. Similarly

k2
1
∼= 1− 2

[
C2
y

n

{
1 +W2(k − 1)

}
+

k

nN

σ2
r

Ȳ 2

]
∼= (1− 2B∗) and so on.

Substituting this result in MSE(t1) we get

MSE(t̂1) ∼= (1− 2B∗)V (ˆ̄y∗) + Ȳ 2

[
a1

{
a1 − (3a1 − 1)B∗

}{
A1C

2
x

+ A3C
2
x(2)

}
+ 2a1(1− 3B∗)

{
A1Cyx + A3Cyx(2)

}]

or

MSE(t̂1) ∼= (1− 2B∗)V (ˆ̄y∗) + a1

{
a1 − (3a1 − 1)B∗

}
R2

{
A1S

2
x

+ A3S
2
x(2)

}
+ 2a1(1− 3B∗)R

{
A1Syx + A3Syx(2)

}
, (2.18)

where

A1 =
1

n
− 1

ń
, A3 =

W2(k − 1)

n
and R =

Ȳ

X̄
.

The MSEof t̂2 can be obtain easily as:

MSE(t̂2) ∼= (1− 2B∗)V (ˆ̄y∗) + A1a2

{
(a2 − (3a2 − 1)B∗)R2S2

x

+ 2R(1− 3B∗)Syx

}
(2.19)
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We obtain optimum values of a1 and a2 , after differentiating (2.18) and (2.19)

w.r.t a1 and a2 respectively:

a1(opt) = −

[
B∗

2(1− 3B∗)
+

A1Syx + A3Syx(2)

R{A1S2
x + A3S2

x(2)}

]

and

a2(opt) = −
[

B∗

2(1− 3B∗)
+

Syx
RS2

x

]

Using a1(opt) and a2(opt) in Equation (2.18) and (2.19) respectively, we get mini-

mum MSE of t1 and t2

MSE(t̂1)min ∼= (1− 2B∗)V (ˆ̄y∗)− (1− 3B∗)
{A1Syx + A3Syx(2)}2

A1S2
x + A3S2

x(2)

−
B∗2R2{A1S

2
x + A3S

2
x(2)}

4(1− 3B∗)
−B∗R

{
A1Syx + A3Syx(2)

}
(2.20)

and

MSE(t̂2)min ∼= (1− 2B∗)V (ˆ̄y∗)− (1− 3B∗)
A1S

2
yx

S2
x

− B∗2R2A1S
2
x

4(1− 3B∗)
−B∗RA1Syx. (2.21)

MSE of t3 and t4, we put a1 = a2 = −1 in Equations (2.18) and (2.19) we get :

MSE(t̂3) ∼= (1− 2B∗)V (ˆ̄y∗) + (1− 4B∗)R2

{
A1S

2
x + A3S

2
x(2)

}
− 2(1− 3B∗)R

{
A1Syx + A3Syx(2)

}
(2.22)

and

MSE(t̂4) ∼= (1− 2B∗)V (ˆ̄y∗) + A1

{
(1− 4B∗)R2S2

x − 2(1− 3B∗)RSyx

}
. (2.23)
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To find the MSE of t5 and t6 we put a1 = a2 = 1 in Equations (2.18) and (2.19)

, we get:

MSE(t̂5) ∼= (1− 2B∗h)V (ˆ̄y∗h) + (1− 2B∗)R2

{
Ah1S

2
x + A3S

2
x(2)

}
+ 2(1− 3B∗)Rh

{
A1Syx + Ah3Syx(2)

}
(2.24)

and

MSE(t̂6) ∼= (1− 2B∗)V (ˆ̄y∗) + A1

{
(1− 2B∗)R2S2

x + 2(1− 3B∗)RSyx

}
. (2.25)

The MSE of regression type estimator in both cases are given by:

MSE(t̂(lr)1) ∼= (1− 2B∗)V (ˆ̄y∗) + β2

{
A1S

2
x + A3S

2
x(2)

}
− 2β(1−B∗)

{
(A1Syx + A3Syx(2)

}
(2.26)

and

MSE(t̂(lr)2) = (1− 2B∗)V (ˆ̄y∗) + A1

{
β2S2

x − 2β(1−B∗)Syx
}
. (2.27)

To obtain MSE of T̂3, T̂4, T̂5, T̂6, T̂(lr)1 and T̂(lr)2, put k1 = 1 in Equations (2.21),

(2.22), (2.23),(2.24),(2.25) and (2.26) as follows;

MSE(T̂3) ∼= V (ˆ̄y∗) +R2

{
A1S

2
x + A3S

2
x(2)

}
− 2R

{
A1Syx + A3Syx(2)

}
, (2.28)

MSE(T̂4) ∼= (1− 2B∗)V (ˆ̄y) + A1

{
R2S2

x − 2RSyx

}
, (2.29)



Chapter 2. Estimation of population mean in Simple Random Sampling 20

MSE(T̂5) ∼= V (ˆ̄y∗) +R2

{
A1S

2
x + A3S

2
x(2)

}
+ 2R

{
A1Syx + A3Syx(2)

}
, (2.30)

MSE(T̂6) ∼= (1− 2B∗)V (ˆ̄y∗) + A1

{
R2S2

x + 2RSyx

}
, (2.31)

MSE(T̂(lr)1) ∼= V (ˆ̄y∗) + β2

{
A1C

2
x + A3C

2
x(2)

}
− 2β

{
A1Cyx + A3Cyx(2)

}
(2.32)

and

MSE(T̂(lr)2) ∼= V (ˆ̄y∗) + A1

{
β2C2

x − 2β(1−B∗)Cyx
}
. (2.33)

2.4 Comparison of different Estimators

Conditions under which proposed estimators are better than relevant existing es-

timator in term of efficiency are given in this section.

Condition (i)

By (2.9) and (2.18), MSE(t̂1) < V (ˆ̄y∗)

ρ <
2B∗

C2
y

n
− A1a1{a1 − (3a1 − 1)B∗}C2

x

2a1(1− 3B∗)A1CyCx
and

ρ2 <
2B∗C2

y(2) −
R2

R2
2
a1{a1 − (3a1 − 1)B∗}C2

x(2)

2 R
R2
a1(1− 3B∗)Cy(2)Cx(2)

.

Condition (ii)

By (2.9) and (2.19), MSE(t̂2) < V (ˆ̄y∗), if

ρ <
2B∗

C2
y

n
− A1a2{a2 − (3a2 − 1)B∗}C2

x

2A1a2(1− 3B∗)CyCx
.
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Condition (iii)

By (2.22) and (2.28), MSE(t̂3) < MSE(T̂3) if

ρ <
2Cx
3Cy

+
Cy

3nA1Cx
and ρ2 <

2Cx(2)

3R2

R
Cy(2)

+
Cy(2)

3 R
R2
Cx(2)

.

Condition (iv)

By (2.23) and (2.29), MSE(t̂4) < MSE(T̂4) if

ρ <
2Cx
3Cy

+
Cy

3nA1Cx
.

Condition (v)

By (2.24) and (2.30), MSE(t̂5) < MSE(T̂5) if

ρ > −
[
Cx
3Cy

+
Cy

3nA1Cx

]
and ρ2 > −

[
Cx(2)

3R2

R
Cy(2)

+
Cy(2)

3 R
R2
Cx2

]
.

Condition (vi)

By (2.25) and (2.31), MSE(t̂6) < MSE(T̂6) if

ρ > −
[
Cx
3Cy

+
Cy

3nA1Cx

]
and

Condition (vii)

By (2.18) and (2.19), MSE(t̂1) < MSE(t̂2) if

ρ < −
[a1{a1 − (3a1 − 1)B∗} − a2{a2 − (3a2 − 1)B∗}] Cx

Cy

2(a1 − a2)(1− 3B∗)
and

ρ2 < −
{a1 − (3a1 − 1)B∗} R

R2
Cx(2)

2(1− 3B∗)Cy(2)
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Condition (viii)

By (2.18) and (2.22), MSE(t̂1) < MSE(t̂3) if

ρ < −
[a1{a1 − (3a1 − 1)B∗} − (1− 4B∗)] Cx

Cy

2(a1 + 1)(1− 3B∗)
and

ρ2 < −
{a1 − (3a1 − 1)B∗} R

R2

Cx(2)

Cy(2)

2(a1 + 1)(1− 3B∗)

Condition (ix)

By (2.19) and (2.29), MSE(t̂2) < MSE(t̂4) if

ρ < −
[a2{a2 − (3a2 − 1)B∗} − (1− 4B∗)] Cx

Cy

2(a2 + 1)(1− 3B∗)

Condition (x)

By (2.26) and (2.32), MSE(t̂(lr)1) < MSE(T̂(lr)1) if

β <
V (ˆ̄y∗)

A1Syx + A3Syx(2)

Condition (xi)

By (2.27) and (2.33), MSE(t̂(lr)2) < MSE(T̂(lr)2) if

β <
V (ˆ̄y∗)

A1Syx

Condition (i)-(xi) can easily be verified by using empirical data.

2.5 Empirical Study

We use the following data sets, for an empirical study.
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2.5.1 Data 1 [Sourc: Khare and Kumar (2011)]

Y : Number of cultivators

X: Population of villages

The proportion of non-respondents in the population is 25%, so they considered

last 24 units of population as non-respondents. It is also assumed that A and B are

two independent scrambled variables, each distributed uniformly in the interval

[0, 1]. The summary statistics are:

N = 96, n = 25, Ȳ = 185.22, X̄ = 1807.23, Ȳ2 = 128.46, X̄2 = 1571.71,

Sy = 195.03, Sx = 1921.77, Sy(2) = 97.82, Sx(2) = 1068.44, Syx = 338835.88,

Syx(2) = 93560.01, ρ = 0.904, ρ2 = 0.895, µA = 0.51, µB = 0.509, σ2
A = 0.08037

and σ2
B = 0.08597.

The results are given in Table 2.1.
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Table 2.1: MSE and PRE of different estimators w.r.t ȳ∗ and ˆ̄y∗ for different
values of k :

Estimators k = 2 k = 3 k = 4

MSE PRE MSE PRE MSE PRE

ȳ∗ 1617.15 100.00* 1712.84 100.00* 1808.53 100.00*

ȳ∗∗ 1543.28 104.78* 1636.77 104.64* 1734.45 104.27*

ˆ̄y∗ 1789.62 100.00 1971.52 100.00 2153.44 100.00

ˆ̄y∗∗ 1698.61 105.42 1867.67 105.56 2039.53 105.80

t̂1 1074.33 166.57 1114.98 176.82 1146.04 187.90

t̂2 1368.35 130.78 1537.46 128.73 1698.71 126.77

t̂3 1095.44 163.36 1149.10 171.57 1193.47 180.10

t̂4 1161.52 154.07 1278.60 154.19 1385.91 155.38

t̂lr1 1098.07 162.97 1156.51 170.47 1209.72 178.01

t̂lr2 1158.60 154.46 1275.22 154.60 1381.95 155.82

T̂3 1257.83 142.27 1367.88 144.13 1477.93 145.71

T̂4 1329.70 134.58 1511.61 130.42 1693.53 127.15

T̂lr1 1247.72 143.43 1354.05 145.60 1460.38 147.45

T̂lr2 1323.30 135.33 1505.22 130.97 1687.13 127.67

Here “*” stands for the percentage relative efficiency (PRE) of the estimators without using

RRT method. And PRE(•) =
V (ˆ̄y∗)

MSE(•)
× 100, where MSE(•) are the MSE of different

estimators.

Having a view on Table 2.1 , we see from first and third row that some efficiency has

been lost due to use of scrambled response model to sub-sample non-respondents.

But it shows that for fixed confidentiality level and fixed sample size (ń, n) the

estimator ˆ̄y∗∗ is more efficient than Diana et al. (2014) estimator ( ˆ̄y∗) for all values

of k > 1 used here. Further more generalized estimators (t̂1, t̂2) are more efficient

than the proposed estimator as well as conventional and alternative two-phase

ratio type estimators (t̂3, t̂4) using known coefficient of variation. Also two-phase
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ratio type estimators (t̂3, t̂4) and regression type estimators (t̂lr1, t̂lr2) respectively

using known coefficient of variation of the study variable are more efficient than

the corresponding estimators (T̂3, T̂4) and (T̂lr1, T̂lr2) without using coefficients of

variation under scrambled response model respectively. The PRE of different

estimators reduces as k increases but on the other hand PRE of the proposed

estimators increases.

2.5.2 Data 2 [Sourc: Khare and Kumar (2011)]

Y : Average value of product sold (Dollar thousands)

X : Average size of farms (hundreds of acres)

The proportion of non-respondents in the population is 20%. We consider last 11

units of population as non-respondents. It is also assumed that A and B are two

independent scrambled variables each distributed uniformly in the interval [0, 1].

The summary statistics are:

N = 56, n = 15, Ȳ = 61.59, X̄ = 75.79, Ȳ2 = 51.02, X̄2 = 57.60

Sy = 24.03, Sx = 12.47, Sy(2) = 13.91, Sx(2) = 10.50, Syx = −152.14,

Syx(2) = −55.32, ρ = −0.508, ρ2 = −0.379, µA = 0.506, µB = 0.477, σ2
A = 0.0655

and σ2
B = 0.0877.

The results are given in Table 2.2.
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Table 2.2: MSE and PRE of different estimators w.r.t ȳ∗ and ˆ̄y∗ for different
values of k :

Estimators k = 2.5 k = 3 k = 4

MSE PRE MSE PRE MSE PRE

ȳ∗ 42.36 100.00 43.65 100.00 46.23 100.00

ȳ∗∗ 41.90 101.09* 43.18 101.09* 45.73 101.09*

ˆ̄y∗ 73.94 100.00 78.87 100.00 93.33 100.00

ˆ̄y∗∗ 72.51 101.96 77.25 102.08 91.10 102.45

t̂1 66.71 110.83 71.01 111.05 83.59 111.65

t̂2 67.11 110.16 71.55 110.22 84.45 110.51

t̂5 64.59 114.46 64.59 122.09 64.59 144.48

t̂6 64.98 113.78 64.98 121.36 64.98 143.62

t̂lr1 66.95 110.43 71.37 110.49 84.25 110.77

t̂lr2 66.95 110.42 71.38 110.49 84.24 110.79

T̂5 69.74 106.01 74.55 105.78 88.79 105.11

T̂6 70.08 105.50 75.01 105.13 89.47 104.30

T̂lr1 69.91 105.75 74.82 105.40 89.25 104.56

T̂lr2 69.97 105.67 74.90 105.29 89.36 104.44

Here “*” stands for the percentage relative efficiency (PRE) of the estimators without using

RRT method. And PRE(•) =
V (ˆ̄y∗)

MSE(•)
× 100, where MSE(•) are the MSE of different

estimators.

From Table 2.2, it is obvious that in case of negative correlation between the aux-

iliary variable and the study variable, for fixed sample size (ń, n), the estimator

ˆ̄y∗∗ is more efficient than Diana et al. (2014) estimator ( ˆ̄y∗) for all values of k > 1

used here, but PRE of ˆ̄y∗∗ is very small. Further, generalized estimators (t̂1, t̂2) are

more efficient than conventional and alternative two phase product type estimators

(t̂5, t̂6) using known coefficients of variation. Also under two-phase sampling prod-

uct type estimators (t̂5, t̂6) and regression type estimators (t̂lr1, t̂lr2) using known
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coefficients of variation are more efficient than the respective estimators (T̂3, T̂4)

and (T̂3, T̂4) without using coefficient of variation under scrambled response model

respectively. In case of negative correlation the PRE ′s of proposed estimators

tends to increase as k increases which can be notice from left to right of the Table

2.2.

2.6 Conclusion

This chapter covers a modified Diana et al. (2014) mean estimator using known

coefficient of variation of study variable to improve efficiency of the estimator for

a fixed level of privacy. Generalized ratio and regression type estimators, using

scrambled response model to non-respondent at second call, are also obtain that are

more efficient than proposed mean per unit estimator. These proposed estimators

perform better in case of positive correlation between the auxiliary and the study

variables. This chapter concludes that use of known coefficient of variation increase

efficiency of the estimator in presence of non-response.



Chapter 3

Estimation in Stratified Random

Sampling

3.1 Introduction

Stratified random sampling consist of dividing the population into certain groups

called ”strata” and then selecting SRS’s of different sizes from different strata

using some methods of allocation. The propose of doing so is to convert a hetero-

geneous population to small homogeneous groups so that one can select an SRS

from each stratum with less variability.

In this chapter we propose an estimator for population mean of a sensitive quan-

titative character using known coefficient of variation under stratified random

sampling in presence of non-response. We also propose separate generalized type

and regression type estimators using proposed estimator. The members of these

estimators for different values of constant involved are also obtained. In Section

4 we derive the expression for MSE and in Section 5 conditions, under which the

proposed estimators are more efficient than the relevant estimators, are obtained.

An empirical study is carried out in Section 6.

28
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3.2 Notations

Consider a finite population U = (U1, U2, U3, ....., UN) of size N and is divided

into L strata, each of size Nh for (h = 1, 2, ....L), such that
∑L

h=1Nh = N . Let

(yhi, xhi) be the observed values of (y, x) on the ith unit of the hth stratum, where

(h = 1, 2, ....., L) and (i = 1, 2, 3, ...., Nh). We select a sample of size nh from

the hth stratum by using SRSWOR. When stratum mean of the auxiliary variable

X̄h is unknown then we use two-phase stratified random sampling scheme. In first

phase, select a sample of size ńh(ńh < Nh) from the hth stratum by using SRSWOR

to estimate X̄h and in second phase, take a sub-sample of size nh(nh < ńh) from

ńh selected units. Proportional allocation is used to allocate the sample size in

different strata on both phases. Now suppose that from nh sampling units only nh1

units respond on first call and (nh2) units don’t respond. So we select a sub-sample

of size rh = nh2

kh
(kh > 1) from nh2 non-responding units by making an extra effort.

Consequently whole population is divided into two groups U1 (respondents) and

U2 (non-respondents). Some more symbols are given below:

Nh1 : Number of units in response group of the hth stratum.

Nh2 : Number of units in non-response group of the hth stratum.

Ph = Nh

N
: Stratum weight of the hth stratum .

fh = nh

Nh
: Sampling fraction of the hth stratum.

Ȳh = 1
Nh

∑Nh

i=1 yhi: Population mean of the study variable for the hth stratum

X̄h = 1
Nh

∑Nh

i=1 xhi: Population mean of the auxiliary variable for the hth stratum

S2
yh = 1

Nh−1

∑Nh

i=1(yhi − Ȳh)2: Population variance of the study variable for the hth

stratum.

S2
xh = 1

Nh−1

∑Nh

i=1(xhi− X̄h)
2: Population variance of the auxiliary variable for the

hth stratum.

Syxh = 1
Nh−1

∑Nh

i=1(yhi − Ȳh)(xhi − X̄h): Population covariance between the study

variable and the auxiliary variable for the hth stratum.

S2
yh(2) = 1

Nh2−1

∑Nh2

i=1 (yhi − Ȳh2)2: Population variance of the study variable for

non-response group in the hth stratum.

S2
xh(2) = 1

Nh2−1

∑Nh2

i=1 (xhi− X̄h2)2: Population variance of the auxiliary variable for
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non-response group in the hth stratum.

Syxh(2) = 1
Nh2−1

∑Nh2

i=1 (yhi − Ȳh2)(xhi − X̄h2): Population covariance between the

study variable and the auxiliary variable for non-response group in the hth stratum.

ȳh1 = 1
nh1

∑nh1

i=1 yhi: Sample mean of the study variable of units respond on first

call in the hth stratum.

x̄h1 = 1
nh1

∑nh1

i=1 xhi: Sample mean of the auxiliary variable of units respond on first

call in the hth stratum.

´̄yh2 = 1
rh

∑rh
i=1 yhi: Sample mean of the study variable of units respond on second

call in the hth stratum.

´̄xh2 = 1
rh

∑rh
i=1 xhi: Sample mean of the auxiliary variable of units respond on

second call in the hth stratum.

3.3 The Estimators

Using Hansen and Hurwitz (1946) technique, the estimator for population mean

of the hth stratum, is given by:

ȳ∗h = wh1ȳh1 + wh2 ´̄yh2,

where wh1 = nh1

nh
and wh2 = nh2

nh
. The sample mean estimator in stratified sampling,

is given by:

ȳ∗st =
L∑
h=1

Phȳ
∗
h. (3.1)

The variance of ȳ∗st, is given by

V (ȳ∗st) =
L∑
h=1

P 2
h

[
1− fh
nh

S2
yh +

Wh2(kh − 1)

nh
S2
yh(2)

]
.
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After ignoring the correction factor (1− fh) for ease of computation, we have

V (ȳ∗st) =
L∑
h=1

P 2
h

[
1

nh
S2
yh +

Wh2(kh − 1)

nh
S2
yh(2)

]
. (3.2)

Assuming that the coefficient of variation in each stratum is known, so Equation

(3.1) becomes

ȳ∗∗st =
L∑
h=1

Phȳ
∗∗
h , (3.3)

where ȳ∗∗h = ahȳ
∗
h and the value of constant ah for which MSE of ȳ∗∗st is minimum,

is given by

ah(opt) =

[
1 +

1− fh
nh

C2
yh +

Wh2(kh − 1)

nh
C2
yh(2)

]−1

.

Since
S2
yh

Ȳh
and

S2
yh(2)

Ȳh
don’t differ significantly, so we may approximate

S2
yh(2)

Ȳh
∼= S2

yh

Ȳh
=

C2
yh. The estimated value of ah after ignoring the correction factor (1−fh) is given

by :

âh(opt) =

[
1 +

C2
yh

nh

{
1 +

nh2

nh
(kh − 1)

}]−1

.

Now improved estimator becomes:

ȳ∗∗st =
L∑
h=1

Ph

[
1 +

C2
yh

nh

{
1 +

nh2

nh
(kh − 1)

}]−1

ȳh
∗.

The MSE of ȳ∗∗st , is given by

MSE(ȳ∗∗st ) =
L∑
h=1

P 2
h

[
(1−B1h)

S2
yh

nh
+ (1− 2B2h)

Wh2(kh − 1)

nh
S2
yh(2)

]
, (3.4)
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where

B1h =
C2
yh

nh

[
1−W 2

h2(kh − 1)2
]

and B2h =
C2
yh

nh
[1 +Wh2(kh − 1)] .

By Equations (3.2) and (3.4), we see that MSE(ȳ∗∗st ) < V (ȳ∗st), if

L∑
h=1

P 2
h

[
B1h

S2
yh

nh
+ 2B2h

Wh2(kh − 1)

nh
S2
yh(2)

]
> 0.

Using the value of B1h and B2h and using the assumption S2
yh
∼= S2

yh(2), we get

L∑
h=1

P 2
h

C2
yhS

2
yh

n2
h

[
1 +Wh2(kh − 1)

]2

> 0.

This indicates that ȳ∗∗st is always more efficient than ȳ∗st.

Assuming (Y ) as a quantitative sensitive variable, Diana et al. (2014) have made

some modifications in Hansen and Hurwitz (1946) estimator. They assumed

that one group of people give direct truthful response on first call and the non-

respondent group gives scrambled response on second call. They have considered

the linear combination scrambled response model that was earlier defined by Di-

ana and Perri (2010). Now we assume that (Yh) is a sensitive quantitative variable

for all h. We use a slightly modified version of Diana et al. (2014) mean estimator

in stratified random sampling.

Let Zh be the scrambled response in stratum h based on two independent scram-

bled random variables Ah and Bh which are unrelated to Yh with known means

(µAh, µBh) and variances (σ2
Ah, σ

2
Bh) in the hth stratum such that:

Zh = AhYh +Bh, (3.5)

where ER(Zh) = µAhYh + µBh with variance

VR(Zh) = σ2
AhY

2
h + σ2

Bh for (h = 1, 2, ....., L). (3.6)
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Here (ER, VR) are expectation and variance with respect to randomization device.

It is assumed that the interviewer is completely unaware of the number generated

by respondents from the scrambling distribution. This assumption increases con-

fidentiality of respondents. Let ŷhi be the transformed randomized response of the

ith unit in the hth stratum, whose expectation under randomization mechanism

coincides with response yhi i.e

ŷhi =
zhi − µBh
µAh

,

where ER(ŷhi) = yhi and the variance of ŷhi, is given by

VR(ŷhi) =
σ2
AhY

2
hi + σ2

Bh

µ2
Ah

= φhi. (3.7)

We propose an estimator in stratified random sampling as:

ˆ̄y∗st =
L∑
h=1

Ph ˆ̄y∗h, (3.8)

where ˆ̄y∗h = wh1ȳh1 + wh2
´̄̂yh2, E(ˆ̄y∗st) = Ȳ with variance

V (ˆ̄y∗st) =
L∑
h=1

P 2
h

[
1− fh
nh

S2
yh +

Wh2(kh − 1)

nh
S2
yh2 +

kh
nhNh

Nh2∑
i=1

φhi

]
,

where

1

Nh2

Nh2∑
i=1

φhi =
σ2
Ahµyh(2) + σ2

Ah

µ2
Ah

, µyh(2) = S2
yh(2) + Ȳ 2

h2.

There are two possible ways to obtain unknown µyh(2). One is to use a guess from

previous work or pilot survey, otherwise sample estimate has to supply informa-

tion about second moment keeping in mind its sensitive nature. After ignoring
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correction factor (1− fh), we have

V (ˆ̄y∗st) =
L∑
h=1

P 2
h

[
1

nh
S2
yh +

Wh2(kh − 1)

nh
S2
yh(2) +

kh
nhNh

S2
hr

]
. (3.9)

where S2
hr =

∑Nh2

i=1 φhi.

From (3.2) and (3.9), it is obvious that ˆ̄y
∗
st is less efficient than ȳ∗st but former

gives greater privacy protection than later. In this paper our concern is to obtain

efficiency of the estimators. Therefore by keeping confidentiality at fixed level we

try to improve efficiency of the estimator. For this purpose we utilize known coef-

ficient of variation of study character to propose an estimator of finite population

mean under stratified random sampling scheme, which gives more efficient results

than the estimator proposed by Diana et al. (2014).

The proposed estimator is:

ˆ̄y∗∗st =
L∑
h=1

Ph ˆ̄y∗∗h , (3.10)

where ˆ̄y∗∗h = kh1 ˆ̄y∗h. The optimum value of kh1 which minimize MSE of ˆ̄y∗∗st , is

given by

kh1(opt) =

[
1 +

1

nh
C2
yh +

Wh2(kh − 1)

nh

S2
yh(2)

Ȳ 2
h

+
kh

nhNh

S2
hr

Ȳ 2
h

]−1

.

As we discussed earlier
S2
yh

Ȳ 2
h

and
S2
yh(2)

Ȳ 2
h

don’t differ significantly, so we may approx-

imate
S2
yh

Ȳ 2
h

∼=
S2
yh(2)

Ȳ 2
h

∼= C2
yh. So estimated value of kh1 becomes

k̂h1(opt) =

[
1 +

C2
yh

nh

{
1 +

nh2

nh
(kh − 1)

}
+

kh
nhNh

S2
hr

Ȳ 2
h

]−1

.
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Now proposed estmator for optimum value of kh1 becomes

ˆ̄y∗∗st =
L∑
h=1

Ph

[
1 +

{
1 +

nh2

nh
(kh − 1)

}
C2
yh

nh
+

kh
nhNh

S2
hr

Ȳ 2
h

]−1

ˆ̄y∗h. (3.11)

The Bias and MSE of ˆ̄y∗∗st to first order approximation, are given by

Bias(ˆ̄y∗∗st ) ∼= −
L∑
h=1

Ph

[{
1 +Wh2(kh − 1)

}
C2
yh

nh
+

kh
nhNh

S2
hr

Ȳ 2
h

]
Ȳh (3.12)

and

MSE(ˆ̄y∗∗st ) ∼=
L∑
h=1

P 2
h

[
(1− A∗h)

S2
yh

nh
+ (1− 2B∗h)

Wh2(kh − 1)

nh
S2
yh2

+
kh

nhNh

S2
hr

{
1− kh

nhNh

S2
hr

Ȳ 2
h

}]
, (3.13)

where

A∗h =
C2
yh

nh
{1−W 2

h2(kh − 1)2}+
2kh
nhNh

S2
hr

Ȳ 2
h

and B∗h =
C2
yh

nh
{1 +Wh2(kh − 1)}+

kh
nhNh

S2
hr

Ȳ 2
h

.

By (3.9) and (3.13), we see that MSE(ˆ̄y∗∗st ) < MSE(ˆ̄y∗st), if

L∑
h=1

P 2
h

[
A∗h

S2
yh

nh
+ 2B∗h

Wh2(kh − 1)S2
yh(2)

nh
+

(
kh

nhNh

S2
hr

Ȳ 2
h

)2
]
> 0,

where the last term is definitely positive. Now putting values of A∗h and B∗h and

assuming that
S2
yh

nh
∼=
S2
yh(2)

nh
, we get

L∑
h=1

P 2
h

S2
yh

nh

[
C2
h

nh

{
1 +Wh2(kh − 1)

}2

+
2kh
nhNh

S2
hr

Ȳ 2
h

{
1 +Wh2(kh − 1)

}]
> 0.
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This shows that ˆ̄y∗∗ is always more efficient than ˆ̄y∗.

The generalized ratio and regression type estimators using Khare and Kumar

(2011) estimator under stratified two-phase sampling scheme in case of complete

and incomplete information on xh are given by:

tst1 =
L∑
h=1

Phth1, tst2 =
L∑
h=1

Phth2, t(lr)st1 =
L∑
h=1

Pht(lr)h1, t(lr)st2 =
L∑
h=1

Pht(lr)h2,

where

th1 =ˆ̄y∗∗h

(
x̄∗h
´̄xh

)ah1

, th2 = ˆ̄y∗∗h

(
x̄h
´̄xh

)ah2

, t(lr)h1 = ˆ̄y∗∗h + b∗∗h
(
´̄xh − x̄∗h

)
,

t(lr)h2 = ˆ̄y∗∗h + b∗h
(
´̄xh − x̄h

)
.

Here ah1 and ah2 are constants to be determined , b∗∗h =
s∗yxh
s∗2

xh
and b∗h =

s∗yxh
s2xh

. Also

s2
xh and s∗2xh denote the estimates of S2

xh based on nh and (nh1 + rh) observations

respectively.

Now different members of these generalized ratio and regression type estimators

for different values of constants involved are obtained. By putting ah1 = ah2 = −1

and ah1 = ah2 = 1 in th1 and th2 the estimators reduce to conventional and alter-

native stratified two phase ratio and product type estimators respectively, using

scrambled response model to non-response group using coefficient of variation of

the study character.

The alternative stratified two-phase ratio type estimators are given by:

tst3 =
L∑
h=1

Phth3, tst4 =
L∑
h=1

Phth4, tst5 =
L∑
h=1

Phth5, and tst6 =
L∑
h=1

Phth6

where

th3 = ˆ̄y∗∗h

(
´̄xh
x̄∗h

)
, th4 = ˆ̄y∗∗h

(
´̄xh
x̄h

)
, th5 = ˆ̄y∗∗h

(
x̄∗h
´̄xh

)
, and th6 = ˆ̄y∗∗h

(
x̄h
´̄x h

)
.

Now putting kh1 = 1, ah1 = ah2 = 1 and ah1 = ah2 = −1, in th1 , th2, t(lr)h1

and t(lr)h2, we get conventional and alternative stratified two-phase ratio, product

and regression type estimators respectively, using scrambled response model to
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non-response group.

Tst3 =
L∑
h=1

PhTh3, Tst4 =
L∑
h=1

PhTh4, Tst5 =
L∑
h=1

PhTh5, Tst6 =
L∑
h=1

PhTh6,

T(lr)st1 =
L∑
h=1

PhT(lr)h1, and T(lr)st2 =
L∑
h=1

PhT(lr)h2,

where

Th3 = ˆ̄y∗h

(
´̄xh
x̄∗h

)
, Th4 = ˆ̄y∗h

(
´̄xh
x̄h

)
, Th5 = ˆ̄y∗h

(
x̄∗h
´̄xh

)
, Th6 = ˆ̄y∗h

(
x̄h
´̄xh

)
,

T(lr)h1 = tlrh1 = ˆ̄y∗h + b∗h
(
´̄xh − x̄∗h

)
, and T(lr)h2 = ˆ̄y∗h + b∗h

(
´̄xh − x̄h ).

3.4 The Mean Squared Errors

In order to obtain the expressions for mean squared errors, we define:

ê∗0h =
ˆ̄y∗h − Ȳh
Ȳh

, e∗1h =
x̄∗h − X̄h

X̄h

and é1h =
´̄xh − X̄h

X̄h

such that E(ê∗0h) = E(e∗1h) = E(é1h) = 0 and

E(ê∗20h) =

(
1

nh
− 1

Nh

)
S2
yh

Ȳ 2
h

+
Wh2(kh − 1)

nh

S2
yh(2)

Ȳ 2
h

+
kh

nhNh

∑Nh2

i=1 φhi
Ȳ 2
h

E(e∗21h) =

(
1

nh
− 1

Nh

)
S2
xh

X̄2
h

+
Wh2(kh − 1)

nh

S2
xh(2)

X̄2
h

, E(é2
1h) =

(
1

ńh
− 1

Nh

)
S2
xh

X̄2
h

,

E(e∗1hé1h) =

(
1

ńh
− 1

Nh

)
S2
xh

X̄2
h

, E(ê∗0hé1h) =

(
1

ńh
− 1

Nh

)
S2
yxh

X̄hȲh
,

E(ê∗0he
∗
1h) =

(
1

nh
− 1

Nh

)
S2
yxh

X̄hȲh
+
Wh2(kh − 1)

nh

S2
yxh(2)

X̄hȲh
.
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Consider the estimator th1 in term of errors:

th1 = ˆ̄y∗∗h

(
x̄∗h
´̄xh

)ah1

= kh1 ˆ̄y∗h

(
x̄∗h
´̄xh

)ah1

= kh1Ȳh(1 + ê∗0h)

[
(1 + e∗1h)

(1 + é1h)

]ah1

th1 − Ȳh = (kh1 − 1)Ȳh + kh1Ȳh

[
ê∗0h + ah1e

∗
1h − ah1é1h +

ah1(ah1 − 1)

2
e∗21h

+
ah1(ah1 + 1)

2
é2

1h + ah1e
∗
1hê
∗
0h − ah1é1hê

∗
0h − a2

h1é1hê
∗
1h

]
.

Squaring and neglecting higher order terms, we have

(th1 − Ȳh)2 ∼= (kh1 − 1)2Ȳ 2
h + Ȳ 2

h

[
k2
h1

{
ê∗20h + a2

h1e
∗2
1h + a2

h1é
2
1h − 2ah1e

∗
1hé1h

− 2ah1ê
∗
0hé1h + 2ah1ê

∗
0he
∗
1h

}
+ kh1(kh1 − 1)

{
ah1(ah1 − 1)e∗21h

− 2a2
h1e
∗
1hé1h + ah1(ah1 + 1)é2

1h + 2ah1ê
∗
0he
∗
1h − 2ah1ê

∗
0hé1h

}]
.

Taking expectation, we get MSE of th1

MSE(th1) ∼= (kh1 − 1)2Ȳ 2
h + k2

h1V (ˆ̄y∗h) + Ȳ 2
h

[
kh1ah1(2kh1ah1

− kh1 − ah1 + 1)

{(
1

nh
− 1

ńh

)
C2
xh +

Wh2(kh − 1)

nh
C2
xh(2)

}
+ 2kh1ah1(2kh1 − 1)

{(
1

nh
− 1

ńh

)
Cyxh +

Wh2(kh − 1)

nh
Cyxh(2)

}]
.

Expanding kh1 and neglecting higher order terms, the optimum value of kh1, is

given by

kh1(opt) = 1−
[
C2
yh

nh

{
1 +Wh2(kh − 1)

}
+

kh
nhNh

S2
hr

Ȳ 2
h

]
,

where kh1
∼= 1−B∗h and B∗h =

C2
yh

nh
{1 +Wh2(kh − 1)}+ kh

nhNh

S2
hr

Ȳ 2
h
.

Similarly k2
h1
∼= 1− 2

[
C2

yh

nh

{
1 +Wh2(kh − 1)

}
+ kh

nhNh

S2
hr

Ȳ 2
h

]
∼= (1− 2B∗h) and so on.
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Substituting these results in MSE(th1), we get:

MSE(th1) ∼= (1− 2B∗h)V (ˆ̄y∗h) + Ȳ 2
h

[
ah1

{
ah1 − (3ah1 − 1)B∗h

}{
Ah1C

2
xh

+ Ah3C
2
xh(2)

}
+ 2ah1(1− 3B∗h)

{
(Ah1Cyxh + Ah3Cyxh(2)

}]

or

MSE(tst1) ∼=
L∑
h=1

P 2
h

[
(1− 2B∗h)V (ˆ̄y∗h) + ah1

{
ah1 − (3ah1 − 1)B∗h

}
R2
h

{
Ah1S

2
xh

+ Ah3S
2
xh(2)

}
+ 2ah1(1− 3B∗h)Rh

{
Ah1Syxh + Ah3Syxh(2)

}]
, (3.14)

where

Ah1 = (
1

nh
− 1

ńh
), Ah3 =

Wh2(kh − 1)

nh
and Rh =

Ȳh
X̄h

.

Similarly we obtain MSE(tst2) as ;

MSE(tst2) ∼=
L∑
h=1

P 2
h

[
(1− 2B∗h)V (ˆ̄y∗h) + Ah1ah2

{
(ah2 − (3ah2 − 1)B∗h)R

2
hS

2
xh

+ 2Rh(1− 3B∗h)Syxh

}]
. (3.15)

The optimum values of ah1 and ah2 , are given by

ah1(opt) = −

[
B∗h

2(1− 3B∗h)
+

Ah1Syxh + Ah3Syxh(2)

Rh{Ah1S2
xh + Ah3S2

xh(2)}

]

and

ah2(opt) = −
[

B∗h
2(1− 3B∗h)

+
Syxh
RhS2

xh

]
.
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Using ah1(opt) and ah2(opt) in (3.14) and (3.15) respectively, we get minimum

MSE of tst1 and tst2,

MSE(tst1)min ∼=
L∑
h=1

P 2
h

[
(1− 2B∗h)V (ˆ̄y∗h)− (1− 3B∗h)

{Ah1Syxh + Ah3Syxh(2)}2

Ah1S2
xh + Ah3S2

xh(2)

−
B2
hR

2
h{Ah1S

2
xh + Ah3S

2
xh(2)}

4(1− 3B∗h)
−BhRh

{
Ah1Syxh + Ah3Syxh(2)

}]
(3.16)

and

MSE(tst2)min ∼=
L∑
h=1

P 2
h

[
(1− 2B∗h)V (ˆ̄y∗h)− (1− 3B∗h)

Ah1S
2
yxh

S2
xh

− B2
hR

2
hAh1S

2
xh

4(1− 3B∗h)
−BhRhAh1Syxh

]
. (3.17)

The MSE of tst3 and tst4 can be obtained by putting ah1 = ah2 = −1 in (3.14) and

(3.15) respectively

MSE(tst3) ∼=
L∑
h=1

P 2
h

[
(1− 2B∗h)V (ˆ̄y∗h) + (1− 4B∗h)R

2
h

{
Ah1S

2
xh + Ah3S

2
xh(2)

}
− 2(1− 3B∗h)Rh

{
Ah1Syxh + Ah3Syxh(2)

}]
(3.18)

and

MSE(tst4) ∼=
L∑
h=1

P 2
h

[
(1− 2B∗h)V (ˆ̄y∗h) + Ah1

{
(1− 4B∗h)R

2
hS

2
xh

− 2(1− 3B∗h)RhSyxh

}]
. (3.19)
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To find the MSE of tst5 and tst6 we put ah1 = ah2 = 1 in (3.14) and (3.15), we get:

MSE(tst5) ∼=
L∑
h=1

P 2
h

[
(1− 2B∗h)V (ˆ̄y∗h) + (1− 2B∗h)R

2
h

{
Ah1S

2
xh

+ Ah3S
2
xh(2)

}
+ 2(1− 3B∗h)Rh

{
Ah1Syxh + Ah3Syxh(2)

}]
(3.20)

and

MSE(tst6) ∼=
L∑
h=1

P 2
h

[
(1− 2B∗h)V (ˆ̄y∗h) + Ah1

{
(1− 2B∗h)R

2
hS

2
xh

+ 2(1− 3B∗h)RhSyxh

}]
. (3.21)

The mean square errors of regression type estimator in both cases are given by:

MSE(t(lr)st1) ∼=
L∑
h=1

P 2
h

[
(1− 2B∗h)V (ˆ̄y∗h) + β2

h

{
Ah1S

2
xh + Ah3S

2
xh(2)

}
− 2βh(1−B∗h)

{
(Ah1Syxh + Ah3Syxh(2)

}]
(3.22)

and

MSE(t(lr)st2) =
L∑
h=1

P 2
h

[
(1− 2B∗h)V (ˆ̄y∗h) + Ah1

{
β2
hS

2
xh − 2βh(1−B∗h)Syxh

}]
.

(3.23)

To obtain mean square errors of Tst3, Tst4, Tst5, Tst6, T(lr)st1 and T(lr)st2, put kh1 = 1

in Equations (3.18), (3.19), (3.20),(3.21),(3.22) and (3.23) respectively as follows;

MSE(Tst3) ∼=
L∑
h=1

P 2
h

[
V (ˆ̄y∗h) +R2

h

{
Ah1S

2
xh + Ah3S

2
xh(2)

}
− 2Rh

{
Ah1Syxh + Ah3Syxh(2)

}]
, (3.24)



Chapter 3. Estimation of population mean in Stratified Random Sampling 42

MSE(Tst4) ∼=
L∑
h=1

P 2
h

[
(1− 2B∗h)V (ˆ̄yh) + Ah1

{
R2
hS

2
xh − 2RhSyxh

}]
, (3.25)

MSE(Tst5) ∼=
L∑
h=1

P 2
h

[
V (ˆ̄y∗h) +R2

h

{
Ah1S

2
xh + Ah3S

2
xh(2)

}
+ 2Rh

{
Ah1Syxh + Ah3Syxh(2)

}]
, (3.26)

MSE(Tst6) ∼=
L∑
h=1

P 2
h

[
(1− 2B∗h)V (ˆ̄y∗h) + Ah1

{
R2
hS

2
xh + 2RhSyxh

}]
, (3.27)

MSE(T(lr)st1) ∼=
L∑
h=1

P 2
h

[
V (ˆ̄y∗h) + β2

h

{
Ah1S

2
xh + Ah3S

2
xh(2)

}
− 2βh

{
Ah1Syxh + Ah3Syxh(2)

}]
(3.28)

and

MSE(T(lr)st2) ∼=
L∑
h=1

P 2
h

[
V (ˆ̄y∗h) + Ah1

{
β2
hS

2
xh − 2βh(1−B∗h)Syxh

}]
. (3.29)

3.5 Efficiency comparison

The conditions under which the proposed estimators are more efficient than the

existing estimators are given below

Condition (i)
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By (3.9) and (3.14), MSE(tst1) < V (ˆ̄y∗h) if

L∑
h=1

P 2
h

[
− 2B∗hV (ˆ̄y∗h) + ah1

{
ah1 − (3ah1 − 1)B∗h

}
R2
h

{
Ah1S

2
xh

+ Ah3S
2
xh(2)

}
+ 2ah1(1− 3B∗h)Rh

{
Ah1Syxh + Ah3Syxh(2)

}]
< 0.

Condition (ii)

By (3.9) and (3.15), MSE(tst2) < V (ˆ̄y∗h) if

L∑
h=1

P 2
h

[
−2B∗hV (ˆ̄y∗h) + Ah1ah2

{
ah2 − (3ah2 − 1)B∗h

}
R2
h

{
S2
xh

+ 2ah2(1− 3B∗h)RhSyxh

}
< 0.

Condition (iii)

By (3.18) and (3.24), MSE(tst3) < MSE(Tst3) if

L∑
h=1

P 2
h

[
−B∗hV (ˆ̄y∗h)− 2B∗hR

2
h

{
Ah1S

2
xh + Ah3S

2
xh(2)

}
+ 3B∗hRh

{
Ah1Syxh + Ah3Syxh(2)

}
< 0.

Condition (iv)

By (3.19) and (3.25), MSE(tst4) < MSE(Tst4) if

L∑
h=1

P 2
h

[
−B∗hV (ˆ̄y∗h)− Ah1B

∗
h

{
2R2

hS
2
xh − 3B∗hRhSyxh

}]
< 0.

Condition (v)

By (3.20) and (3.26), MSE(tst5) < MSE(Tst5) if

−
L∑
h=1

P 2
hB
∗
h

[
V (ˆ̄y∗h) +R2

h

{
Ah1S

2
xh + Ah3S

2
xh(2)

}
+ 3Rh

{
Ah1Syxh + Ah3Syxh(2)

}]
< 0.



Chapter 3. Estimation of population mean in Stratified Random Sampling 44

Condition (vi)

By (3.21) and (3.27), MSE(Tst6) < MSE(Tst6) if

−
L∑
h=1

P 2
hB
∗
h

[
V (ˆ̄y∗h) + Ah1

{
R2
hS

2
xh + 3RhSyxh

}]
< 0.

Condition (vii)

By (3.14) and (3.15), MSE(tst1) < MSE(tst2) if

L∑
h=1

P 2
h

[{
ah1

(
ah1 − (3ah1 − 1)B∗h

)
− ah2

(
ah2 − (3ah2 − 1)B∗h

)}
R2
h

{
Ah1S

2
xh

+ Ah3S
2
xh(2)

}
+ 2 (ah1 − ah2) (1− 3B∗h)Rh

{
Ah1Syxh + Ah3Syxh(2)

}]
< 0.

Condition (viii)

By (3.14) and (3.18), MSE(tst1) < MSE(tst3) if

L∑
h=1

P 2
h

[{
ah1

(
ah1 − (3ah1 − 1)B∗h

)
− (1− 4B∗h)

}
R2
h

{
Ah1S

2
xh + Ah3S

2
xh(2)

}
+ 2 (ah1 + 1) (1− 3B∗h)Rh

{
Ah1Syxh + Ah3Syxh(2)

}]
< 0.

Condition (ix)

By (3.15) and (3.19), MSE(tst2) < MSE(tst4) if

L∑
h=1

P 2
hAh1

[{
ah2

(
ah2 − (3ah2 − 1)B∗h

)
− (1− 4B∗h)

}
R2
hS

2
xh

+ 2 (ah2 + 1) (1− 3B∗h)RhSyxh

]
< 0.
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Condition (x)

By (3.14) and (3.20), MSE(tst1) < MSE(tst5) if

L∑
h=1

P 2
h

[{
ah1

(
ah1 − (3ah1 − 1)B∗h

)
− (1− 2B∗h)

}
R2
h

{
Ah1S

2
xh + Ah3S

2
xh(2)

}
+ 2 (ah1 − 1) (1− 3B∗h)Rh

{
Ah1Syxh + Ah3Syxh(2)

}]
< 0.

Condition (xi)

By (3.15) and (3.21), MSE(tst2) < MSE(tst6) if

L∑
h=1

P 2
hAh1

[{
ah1

(
ah2 − (3ah2 − 1)B∗h

)
− (1− 2B∗h)

}
R2
hS

2
xh

+ 2 (ah2 − 1) (1− 3B∗h)RhSyxh < 0.

Condition (xii)

By (3.22) and (3.28), MSE(t(lr)st1) < MSE(T(lr)st1) if

L∑
h=1

P 2
h

[
− V (ˆ̄y∗h) + βh

{
Ah1Syxh + Ah3Syxh(2)

}]
< 0.

Condition (xiii)

By (3.23) and (3.29), MSE(t(lr)st2) < MSE(T(lr)st2) if

L∑
h=1

P 2
h

[
− V (ˆ̄y∗h) + βhAh1Syxh

]
< 0.

3.6 Numerical Study

We use the following data sets for efficiency comparison.

Population 1(Source[1])

Y : County-wise number of Non employer establishment .
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X: County-wise number of Non farm establishment.

We take five states of USA (Kansas, Iowa, Kentucky, Indiana, Illnois), having

different number of counties, as strata. Assuming different non-response rate in

different strata. Information for all strata are given in Table 1.

Table 3.1: Summary Statistics for Data 1:

h Nh W2h ńh nh Ȳh X̄h Ȳ2h X̄2h Syh Sxh

1 105 0.14 61 20 1043.5 407.80 441.20 174.13 1394.4 566.86

2 98 0.18 57 19 1767.7 700.30 2293.1 925.33 2027.7 860.60

3 120 0.24 70 23 2293.6 745.73 1727.6 520.17 4992.3 1934.7

4 93 0.20 54 18 3585.1 1313.7 2545.2 1059.5 4772.7 1782.4

5 98 0.22 57 19 3141.6 1205.4 3910.3 1508.7 4772.2 1862.0

h Sy2h Sx2h Syxh σyx(2)h ρh ρ2h µAh µBh σ2
Ah σ2

Bh

1 328.38 119.07 760247.6 37017.4 0.962 0.9467 0.520 0.48 0.0744 0.076

2 2435.3 1106.1 1722564 2648316 0.987 0.983 0.540 0.490 0.0882 0.085

3 1706.6 582.21 9620257 966310.2 0.996 0.972 0.489 0.480 0.0876 0.083

4 2523.6 1267.0 8395327 3124659 0.9868 0.977 0.480 0.476 0.0761 0.074

5 4885.5 1895.4 2823171 9192888 0.993 0.993 0.510 0.550 0.071 0.084

.

We obtain PRE’s of different estimators in Table3.2 .



Chapter 3. Estimation of population mean in Stratified Random Sampling 47

Table 3.2: PRE of diferrent estimators using Data 1:

Estimators 2,2,1.5,1.5,1.5 1.5,1.5,1.5,2,2 2.5,2.5,2,2,2 3,3,2,2,2

ȳ∗st 100.00 100.00 100.00 100.00

ȳ∗∗st 117.18 117.73 117.60 117.63

ˆ̄y∗st 100.00 100.00 100.00 100.00

ˆ̄y∗∗st 118.63 119.99 120.16 120.00

t1st 437.58 441.89 477.11 480.34

t2st 382.23 365.44 376.98 375.06

t3st 430.05 431.33 450.69 458.00

t4st 372.87 355.81 357.68 356.68

T3st 255.49 249.00 248.46 252.40

T4st 227.57 211.55 205.86 206.31

tlr1(st) 369,78 390.32 401.36 406.32

tlr2(st) 344.32 330.81 329.84 329.01

Tlr1(st) 261.76 254.63 254.06 256.26

Tlr2(st) 232.24 215.37 209.38 209.86

The PRE in first two rows are calculate on the w.r.t of ȳ∗st and the remaining

are calculated w.r.t ˆ̄y∗st. Table 3.2 shows that the generalized ratio and regression

estimators perform better for all combination of k. The relative efficiency tend

to increase as we move from left to right of the Table 3.2 so we can say for

the combination of k with larger values tend to yield more efficient result. The

numerical values of conditions are obtain in Table 3.3.
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Table 3.3: Condition values using Data 1:

kh(h = 1, ..., 4.) kh(h = 1, ..., 4.) kh(h = 1, ..., 4.) kh(h = 1, ..., 4.)

Conditions 2,2,1.5,1.5,1.5 1.5,1.5,1.5,2,2 2.5,2.5,2,2,2 3,3,2,2,2

(i) −69271.7 < 0 −73207.2 < 0 −76769.7 < 0 −77448.48 < 0

(ii) −66094.5 < 0 −68484.4 < 0 −71048.6 < 0 −71366.89 < 0

(iii) −14493.5 < 0 −15858.5 < 0 −17291.7 < 0 −17486.06 < 0

(iv) −15621.7 < 0 −17919.3 < 0 −19748.9 < 0 −20066.33 < 0

(v) −8.93646 < 0 −23.9570 < 0 −27.6459 < 0 −29.76850 < 0

(viii) −1254.48 < 0 −1511.20 < 0 −3062.41 < 0 −3061.005 < 0

(ix) −1205.59 < 0 −1390.06 < 0 −2859.56 < 0 −2861.156 < 0

(xii) −7201.84 < 0 −7931.53 < 0 −8516.81 < 0 −8617.698 < 0

(xiii) −4538.35 < 0 −3114.98 < 0 −2766.72 < 0 −2529.706 < 0

All conditions are satisfied for Data 1.

Population 2(Source [2])

Y : Price of Diamond

X: Depth of diamond

We divide the data into four groups according to clarity of diamond i.e. IF (“in-

ternally flawless”), VVS1 (“very very slightly imperfect), VVS2( very very slightly

imperfect type 2) VS1(very slightly imperfects) having different number of stones,

as strata. Assuming different non-response rate in different strata. Information

for all strata are given in Table 3.4.
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Table 3.4: Summary Statistics for Data 2

h Nh W2h ńh nh Ȳh X̄h Ȳ2h X̄2h Syh Sxh

1 100 0.30 64 21 36.23 66.44 36.01 62.84 45.16 23.06

2 44 0.20 28 9 42 65.25 39.03 61.48 152.94 41.24

3 71 0.25 45 15 40.57 65.55 49.64 61.04 204.6 21.6

4 20 0.20 13 5 47.63 62.87 47.48 62.82 452.82 9.31

h Syh(2) Sx2h Syxh Syxh(2) ρh ρ2h µAh µBh σ2
Ah σ2

Bh

1 84.02 33.02 -9.15 -15.84 -0.283 -0.174 0.508 0.510 0.085 0.091

2 116.3 10.53 -20.23 -1.42 -0.255 -0.578 0.457 0.490 0.071 0.093

3 488.8 5.84 -17.99 -12.77 -0.270 -0.337 0.420 0.557 0.081 0.088

4 732.2 1.77 -15.61 -0.171 -0.240 -0.433 0.530 0.520 0.045 0.071

.
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Table 3.5: PRE of different estimators using Data 2:

Estimators 2.5,2.5,2,2 1.5,1.5,2,2 2.5,2.5,3,3 2.5,3,3,3.5 4, 4, 3.5 ,3.5

ȳ∗st 100 100.00 100.00 100.00 100.00

ȳ∗∗st 102.26 102.36 102.85 103.15 103.01

ˆ̄y∗st 100.00 100.00 100.00 100.00 100.00

ˆ̄y∗∗st 103.73 104.62 104.96 107.96 108.23

t1st 108.83 110.77 110.92 115.60 117.81

t2st 108.38 110.45 110.37 115.08 117.16

t5st 108.75 110.67 110.85 115.56 117.81

t6st 108.33 110.36 110.32 115.06 117.16

T5st 101.35 101.42 101.31 101.15 101.09

T6st 101.00 101.13 100.83 100.75 100.58

tlr1(st) 108.97 110.94 111.10 115.79 118.02

tlr2(st) 108.49 110.56 110.47 115.2 117.28

Tlr1(st) 101.54 101.64 101.50 101.30 101.25

Tlr2(st) 101.12 101.31 101.00 100.85 100.67

The PRE in first two rows are calculate w.r.t ȳ∗st and the remaining are calculated

w.r.t ˆ̄y∗st. Table 3.5 confirm that the generalized ratio and regression type estima-

tors perform better in case of negative correlation between the study and auxiliary

variable. The numerical values of conditions are obtain in Table 3.6
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Table 3.6: Condition values using Data 2

kh kh kh kh kh

Conditions 2.5,2.5,2,2 1.5,1.5,2,2 2.5,2.5,3,3 2.5,3,3,3.5 4,4,3.5,3.5

(i) −0.4863 < 0 −0.4245 < 0 −0.7655 < 0 −0.8574 < 0 −1.3606 < 0

(ii) −0.4615 < 0 −0.4082 < 0 −0.7285 < 0 −0.8206 < 0 −1.3068 < 0

(v) −0.3939 < 0 −0.3414 < 0 −0.6600 < 0 −0.7525 < 0 −1.2351 < 0

(vi) −0.3958 < 0 −0.3425 < 0 −0.6635 < 0 −0.7558 < 0 −1.2424 < 0

(vii) −0.002 < 0 −0.0015 < 0 −0.0055 < 0 −0.0057 < 0 −0.0086 < 0

(x) −0.0215 < 0 −0.0201 < 0 −0.0274 < 0 −0.0274 < 0 −0.0316 < 0

(xi) −0.0142 < −0.0142 < 0 −0.0129 < 0 −0.0124 < 0 −0.0115 < 0

(xii) −0.3912 < 0 −0.3385 < 0 −0.6562 < 0 −0.7481 < 0 −1.2305 < 0

(xiii) −0.3929 < 0 −0.3396 < 0 −0.6595 < 0 −0.7515 < 0 −1.2375 < 0

All conditions satisfied for Data 2.

3.7 Conclusion

In this chapter we proposed an estimator in stratified random sampling under

proportional allocation using Diana et al. (2014) estimator. To improve efficiency

of the estimators co-efficient of variation of the study character is used by assuming

that it is known in all strata. Table 3.2 and Table 3.5 show that for fixed sample

sizes (ńh, nh) in all strata, the estimator ˆ̄y∗∗st is more efficient than Diana et al.

(2014) estimator ˆ̄y∗st for all kh(h = 1, 2, 3, 4) for both data sets. Further generalized

ratio type estimators t1st, t2st are more efficient than other estimators. In this paper

we have discussed only linear scrambled response model used by ? because our

concern is only in improvement of efficiency of the estimators for a fixed level of
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privacy protection. We can also use different models to increase privacy protection

as well.



Chapter 4

Estimation of Population Mean in

Ranked Set Sampling

4.1 Introduction

Ranked set sampling basically includes, selecting m samples of size m from a

specified population. Ranked each sample with some expert judgment without

measuring them (it may be ranked on bases of some auxiliary variable). Retain

the smallest unit from 1st sample and retain the other, select the second smallest

unit from the second sample and so on. Continue the process until m order units

are measured to obtain one cycle. repeat the process r time to obtain rm units.

In this chapter an estimator for finite population mean is proposed assuming that

non-response is due to sensitivity of the study character. We use simple random

SRSWR to select to select a sample of size n on first call. To obtain a sub-sample

on second call, we select ń2 samples of size ń2 from a n2 non-respondents. Ranked

each ń2 units, using information obtain on first call, without measuring them.

Retain the smallest unit from 1st sample and retain the other, select the second

smallest unit from the second sample and so on. Continue the process until m

53
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order units are measured to obtain ń2 units. It also uses Extreme Ranked Set

Sampling(ERSS) and Median ranked set sampling (MRSS) to subsample the non-

respondents. Expressions for variances of different estimators are derived. Use of

RSS improves efficiency and use of RRT improves confidentiality so in this way

we can obtain these twin objectives at same time therefore proposed estimators

perform better than Diana and Perri (2011) estimator, in term of accuracy, and

Bouza (2010) estimator in term of confidentiality. A Monte carlo experiment is

carried out to see the efficiency of proposed estimators.

4.2 Estimation of mean Using SRSWR in Non-

response

Let U = (U1, U2, U3, ....., UN) be a finite population of size N and yi be the observed

values of the study variable y on the ith unit. We select a sample of size n by using

SRSWR. Now suppose that from n sampling units only n1 units respond on first

call and n2 units don’t respond. Consequently whole population divides into two

groups U1(respondents)and U2 (non-respondent). So we select a sub-sample of size

ń2 = n2

k
(k > 1) from n2 non-responding units by using SRSWR. ? estimator in

SRSWR, is given by

ȳ∗srs = w1ȳ1 + w2 ´̄y2, (4.1)

where ȳ1 = 1
n1

∑n1

i=1 yi and ´̄y2 = 1
ń2

∑ń2

i=1 yi. Also E(ȳ∗srs) = µ and variance of ȳ∗srs

is:

V (ȳ∗srs) =
1

n
σ2 +

W2(k − 1)

n
σ2

2, (4.2)

where W2 = N2

N
is fraction of non-respondent in population, σ2 and σ2

2 are pop-

ulation variances of the study character for whole population and population of

non-respondents respectively. If non-response is due to sensitivity of the study
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character then it is difficult to obtain a truthful response again on second call.

Diana et al. (2014) suggested an estimator for population mean using scrambled

response model to overcome this deficiency.

Let Z be the scrambled response and A and B are two independent random vari-

ables unrelated to Y with known means (µA, µB) and variances (σ2
A, σ

2
B), such

that:

Z = AY +B (4.3)

where ER(Z) = µAY + µB and variance of Z is VR(Z) = σ2
AY

2 + σ2
B, here ER, VR

are expectation and variance with respect to randomization device .

Let ŷi be transformed scrambled response of the ith unit whose expectation under

randomization mechanism equals to true response yi i.e.

ŷi =
zi − µB
µA

, ER(ŷi) = yi

VR(ŷi) =
σ2
Ay

2
i + σ2

B

µ2
A

. (4.4)

Diana et al. (2014) proposed following estimator

ˆ̄y∗srs = w1ȳ1 + w2
´̄̂y2, (4.5)

where ´̄̂y2 = 1
ń2

∑ń2

i=1 ŷi. It is easy to show that E(ˆ̄y∗srs) = µ using the fact that

ER(´̂y2) = ´̄y2. The variance of ˆ̄y∗srs, is given by

V (ˆ̄y∗srs) =
1

n
σ2 +

W2(k − 1)

n
σ2

2 +
W2k

n

[
σ2
A

µ2
A

{
σ2

2 + µ2
2

}
+
σ2
B

µ2
A

]
. (4.6)

The estimator in (4.5) is better than (4.1) in terms of privacy protection but it

is obvious from (4.2) and (4.6) that former is less efficient than the later. So our

objective is to increase efficiency of the estimator. For this purpose we use the

RSS scheme which gives more efficient result than SRSWR.
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4.3 Estimation of mean using RSS to sub-sample

non-respondents

Bouza (2010) introduced a procedure for selecting sub-sample Ś2(rss) of size ń2

from S2 group having size n2 who don’t respond at first call by using RSS. The

procedure consist of selecting ń2 sub-samples by using SRSWR. The units are

ranked accordingly with the variable closely related with variable of interest Y .

We have ń2 independent random samples

Y11, Y12, ....Y1ń2 ;Y21, Y22.....Y2ń2 ; ...........;Yń21, Yń22, ...., Yń2ń2 .

After ranking, we get;

Y(1:1), Y(1:2), ....Y(1:ń2);Y(2:1), Y(2:2).....Y(2:ń2); ...........;Y(ń2:1), Y(ń2:2), ...., Y(ń2:ń2),

where Y(j:t) is the jth order statistics (OS) of the tth sample, j = 1, 2, ....ń2 and

t = 1, 2, ....ń2. We obtain following sample:

Y(1:1), Y(2:2), ....Y(ń2:ń2).

The estimate of µ2 is made by using the estimator ´̄y2(rss) =
1

ń2

∑ń2

j=1 Y(j:j) .

Also E(Y(j:j)|n2) = µ(j) where j = 1, 2, ...ń2. Now the estimator introduced by

Bouza (2010) using (Hansen and Hurwitz, 1946) technique , is given by

ȳ∗rss =
n1

n
ȳ1 +

n2

n
´̄y2(rss), (4.7)

with E(ȳ∗rss) = µ and variance

V (ȳ∗rss) =
σ2

n
+
W2(k − 1)

n
σ2

2 −
W2k

n
42

2(M),
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where 42
2(M) = E{ 1

ń2

∑ń2

j=142
2(j)}

V (ȳ∗rss) = V (ȳ∗srs)−
W2k

n
42

2(M) . (4.8)

Since V (ȳ∗rss) < V (ȳ∗srs) as 42
2(M) > 0. Hence ȳ∗rss is more efficient than ȳ∗srs.

In some cases it is difficult to rank all units, results in large error. Detecting only

some units with distinct ranks may be easier and more accurate. Keeping this

point in mind Samawi and Ahmed (1996) used a RSS sampling procedure called

Extreme Ranked Set Sampling (ERSS). The procedure includes identification of

two extreme values Y(1:j) and Y(ń2:j) from the jthsample. The extreme ranked set

sampling in case of ranked set sampling works as follow. Select Y2(e:j) such that:

Y2(e:j) =

 Y2(1:j) for j = 1, ... ń2

2

Y2(ń2:j) for j = ń2

2
+ 1, ....ń2,

where

E(Y2(e:j)) =

 µ2(1) for j = 1, ... ń2

2

µ2(ń2)) for j = ń2

2
+ 1, ....ń2,

and

V (Y2(e:j)) =

 σ2
2(1) for j = 1, ... ń2

2

σ2
2(ń2)) for j = ń2

2
+ 1, ....ń2,

an estimate of µ2 is:

´̄y2(erss) =
1

ń2

ń2∑
j=1

Y(e:j) =
Y2(1) + Y2(ń2)

2
,

where E(´̄y2(erss)) =
µ2(1) + µ2(ń2)

2
6= µ2.

Hence it is a biased estimator of µ2. It will be unbiased if µ2(1) = µ2(ń2). It is

possible only in case of symmetric distribution. Now Hansen and Hurwitz (1946)



Chapter 4. Estimation of Population Mean in Ranked Set Sampling 58

estimator in ERSS, is given by

ȳ∗erss =
n1

n
ȳ1 +

n2

n
´̄y2(erss). (4.9)

The Bias of the estimator ȳ∗erss is given by

Bias(ȳ∗erss) = W2

(µ2(1) − µ2) + (µ2(ń2) − µ2)

2
, (4.10)

which is almost negligible in case of near to symmetric distribution, its variance

is given by

V (ȳ∗erss) =
σ2

n
+
W2(k − 1)

n
σ2

2 −
W2k

n
42

2(e),

where 42
2(e) =

42
2(1) + E42

2(n2)

2
. The above expression can also be written as :

V (ȳ∗erss) = V (ȳ∗srs)−
W2k

n
42

2(e) . (4.11)

ERSS will be preferred on RSS if 42
2(e) > 42

2(M).

Bouza (2010) used another modification to RSS that include selecting medians of

all ranked set samples. Assuming ń2 as even, select Y2(m:j) such that:

Y2(m:j) =

 Y
2(

ń2
2

:j)
for j = 1, ... ń2

2

Y
2(

ń2
2

+1:j)
for j = ń2

2
+ 1, ....ń2

where

E(Y2(m:j)) =

 µ
2(

ń2
2

)
for j = 1, ... ń2

2

µ
2(

ń2
2

+1)
for j = ń2

2
+ 1, ....ń2

and

V (Y2(m:j)) =


σ2

2(
ń2
2

)
for j = 1, ... ń2

2

σ2

2(
ń2
2

+1)
for j = ń2

2
+ 1, ....ń2,
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The estimator for µ2 using Median Ranked Set Sampling (MRSS) is;

´̄y2(mrss) =
1

ń2

ń2∑
j=1

Y(m:j) =
Y

2(
ń2
2

)
+ Y

2(
ń2+2

2
)

2
,

where

E(´̄y2(mrss)) =
µ

2(
ń2
2

)
+ µ

2(
ń2+2

2
)

2
6= µ2.

Hence it is a biased estimator of µ2. It will be unbiased if µ
2(

ń2
2

)
= µ

2(
ń2+2

2
)
. Now

Hansen and Hurwitz (1946) estimator in MRSS, is given by

ȳ∗mrss =
n1

n
ȳ1 +

n2

n
´̄y2(mrss), (4.12)

The Bias of the estimator ȳ∗mrss is given by

Bias(ȳ∗mrss) = W2

(
µ

2(
ń2
2

)
− µ2

)
+
(
µ

2(
ń2+2

2
)
− µ2

)
2

, (4.13)

which is almost negligible in case of approximately symmetric distribution, its

variance, is given by

V (ȳ∗mrss) =
σ2

n
+
W2(k − 1)

n
σ2

2 −
W2k

n
42

2(m),

where42
2(m) = E

{42

2(
ń2
2

)
+42

2(
ń2+2

2
)

2

}
. The above expression can also be written

as :

V (ȳ∗mrss) = V (ȳ∗srs)−
W2k

n
42

2(m) . (4.14)

MRSS will be preferred over RSS if 42
2(m) > 42

2(M). Also MRSS will be preferred

over ERSS if 42
2(m) > 42

2(e).
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4.4 Proposed Estimators

When the study variable is sensitive in nature than non-response occurs due to

sensitivity of the character under study, consequently the estimators in (4.7),(4.9)

and (4.12) fail to estimate population mean of the study character as it is hard

to find a sub-sample on second call. Taking motivation from Diana et al. (2014)

estimator, we use a randomized response model in RSS, ERSS and MRSS for

sub-sampling non-respondents to overcome this difficulty. From (4.3) a ranked set

sampled jth scrambled response in the jth sample is given as follow when ranking

is performed on Y :

Z[j:j] = AjY(j:j) +Bj, (j = 1, 2, .....ń2), (4.15)

where ER(Z[j:j]) = µAY(j:j) +µB and variance of Z[j:j] is VR(Z[j:j]) = σ2
AY

2
(j:j) + σ2

B,

here ER, VR are expectation and variance with respect to randomization device .

Let ŷ[j;j] be transformed scrambled response of the jth unit in the jth sample whose

expectation under randomization mechanism equals to true response y(j;j).

ŷ[j:j] =
z[j:j] − µB

µA
, ER(ŷ[j:j]) = y(j:j)

VR(ŷ[j:j]) =
σ2
Ay

2
[j:j] + σ2

B

µ2
A

. (4.16)

The estimate of µ2 using this technique is, ´̄y2(rss) =
1

ń2

∑ń2

j=1 ŷ2[j:j] . The proposed

estimator using this technique to sub-sample non-respondents is given by.

ˆ̄y∗rss =
n1

n
ȳ1 +

n2

n
´̄̂y2(rss), (4.17)
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with expected value

E(ˆ̄y∗rss) =E1E2

[
w1ȳ1 + w2ER{ ´̄̂y2(rss)}

]
=E1E2

[
w1ȳ1 + w2 ´̄y2(rss)

]
, as ER(´̄̂y2(rss)) = ´̄y2(rss),

=µ.

Hence ˆ̄y∗rss is an unbiased estimator of µ and variance of ˆ̄y∗rss, can be derived as

follow:

V (ˆ̄y∗rss) = E1

[
V2{ER(ˆ̄y∗rss)}+ E2{VR(ˆ̄y∗rss)}

]
(4.18)

Take

E1

[
V2{ER(ˆ̄y∗rss)}

]
=E1 [V2 (ȳ∗rss)] ,

=
σ2

n
+
W2(k − 1)

n
σ2

2 −
W2k

n
42

2(M) . (4.19)

Now for another part,

VR
(
ˆ̄y∗rss
)

=
w2

2

ń2
2

ń2∑
j=1

VR

[
ŷ2[j:j]

]

=
w2

2

ń2
2

ń2∑
j=1

[
σ2
Ay

2
(j:j) + σ2

B

µ2
A

]

E2{VR(ˆ̄y∗rss)} =
w2

2

ń2
2

[
σ2
A(
∑ń2

j=1 σ
2
2(j) +

∑ń2

j=1 µ
2
2(j)) + ń2σ

2
B

µ2
A

]
=
w2

2

ń2
2

[
σ2
A{ń2σ

2
2 −

∑ń2

i=142
2(j) +

∑ń2

j=1 µ
2
2(j)}+ ń2σ

2
B

µ2
A

]
.

Hence

E1E2{VR(ˆ̄y∗rss)} =
W2k

n

[
σ2
A{σ2

2 + µ2
2(M)}+ σ2

B

µ2
A

− σ2
A

µA
42

2(M)

]
, (4.20)
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where µ2
2(M) = E{ 1

ń2

∑ń2

j=1 µ
2
2(j)} and 42

2(M) is defined earlier. Substituting (4.19)

and (4.20) in (4.18), we get:

V (ˆ̄y∗rss) =
σ2

n
+
W2(k − 1)

n
σ2

2 −
W2k

n
42

2(M) +
W2k

n

[
σ2
A{σ2

2 + µ2
2(M)}+ σ2

B

µ2
A

− σ2
A

µ2
A

42
2(M)

]
V (ˆ̄y∗rss) =V (ˆ̄y∗srs)−

W2k

n
42

2(M) θ, (4.21)

where θ = 1 +
σ2
A

µ2
A

and θ > 1. Hence

GEff (rss) =
W2k

n
42

2(M) θ > 0,

where GEff (rss)) denotes the gain in efficiency due to RSS.

Taking idea used by Bouza (2010), we propose an estimator of population mean

by using ERSS with scrambled response model. Because it is more easy to identify

only extreme units from a sample than ranking all units. The scrambled response

is given by

Z[e:j] = AjY(j:e) +Bj, (j = 1, 2, .....ń2), (4.22)

where ER(Z[e:j]) = µAY(e:j) +µB and variance of Z[e:j] is VR(Z[j:e]) = σ2
AY

2
(j:e) + σ2

B,

Let ŷ[e:j] be transformed scrambled response from extreme units in the jth sample

whose expectation under randomization mechanism equals to true response y(e:j).

ŷ[j:e] =
z[e:j] − µB

µA
, ER(ŷ[e:j]) = y(e:j)

VR(ŷ[e:]) =
σ2
Ay

2
[e:j] + σ2

B

µ2
A

= φ[e:j]. (4.23)
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The estimate of µ2 using this technique is:

´̄̂y2(erss) =
1

ń2

ń2∑
j=1

ŷ(e:j) =
Ŷ2(1) + Ŷ2(ń2)

2
, where

E{ER(´̄̂y2(erss))} = E(´̄̂y2(erss)) =
µ2(1) + µ2(ń2)

2
6= µ2.

In case of symmetric distribution it will be unbiased as µ2(1) = µ2(ń2) . The

proposed estimator using this technique to sub-sample non-respondents is given

by

ˆ̄y∗erss =
n1

n
ȳ1 +

n2

n
´̄̂y2(erss). (4.24)

The Bias of proposed estimator is ,

E
(
ˆ̄y∗erss

)
=E1E2

[
w1ȳ1 + w2ER{ ´̄̂y2(erss)}

]
=E1E2

[
w1ȳ1 + w2 ´̄y2(erss)

]
, as ER(´̄̂y2(erss)) = ´̄y2(erss),

⇒ Bias(ˆ̄y∗erss) =W2

(
µ2(1) − µ2

)
+
(
µ2(ń2) − µ2

)
2

, (4.25)

which is almost negligible in case of near to symmetric distribution, its variance

is given by

V (ˆ̄y∗erss) = E1

[
V2{ER(ˆ̄y∗erss)}+ E2{VR(ˆ̄y∗erss)}

]
. (4.26)

consider first part

E1

[
V2{ER

(
ˆ̄y∗erss

)
}
]

=E1 [V2(ȳ∗erss)] ,

=
σ2

n
+
W2(k − 1)

n
σ2

2 −
W2k

n
42

2(e) . (4.27)
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consider second part

VR
(
ˆ̄y∗erss

)
=
w2

2

ń2
2

ń2∑
j=1

[
σ2
Ay

2
(j:e) + σ2

B

µ2
A

]

E2{VR
(
ˆ̄y∗erss

)
} =

w2
2

ń2
2

[
σ2
AE2( ń2

2
y2

2(1) + ń2

2
y2

2(ń2)) + ń2σ
2
B

µ2
A

]

=
w2

2

ń2
2

[
σ2
A{ ń2

2
(σ2

2(1) + µ2
2(1)) + ń2

2
(σ2

2(ń2) + µ2
2(ń2))}+ ń2σ

2
B

µ2
A

]

=
w2

2

ń2
2

[
σ2
A{ ń2

2
τ1 + ń2

2
τń2}+ ń2σ

2
B

µ2
A

]
,

where τ1 = σ2
2 −42

2(1) + µ2
2(1) and τń2 = σ2

2 −42
2(ń2) + µ2

2(ń2). Hence

E1E2{VR(ˆ̄y∗erss)} =
W2k

n

[
σ2
A

µ2
A

{
σ2

2 −
1

2

(
42

2(1) + E142
2(ń2)

)
+

1

2
(µ2

2(1) + E1µ
2
2(ń2))

}
+
σ2
B

µ2
A

]
(4.28)

Using (4.27) and (4.28) in (4.26) , we get

V (ˆ̄y∗erss) =
σ2

n
+
W2(k − 1)

n
σ2

2 −
W2k

n

[
42

2(e) +
σ2
A

µ2
A

{σ2
2 −42

2(e) + µ2
2(e)}+

σ2
B

µ2
A

]
=
σ2

n
+
W2(k − 1)

n
σ2

2 +
W2k

n

[
σ2
A{σ2

2 + µ2
2(e)}+ σ2

B

µ2
A

]
− W2k

n
42

2(e) θ

=V (ˆ̄y∗srs)−
W2k

n
42

2(e) θ, (4.29)

where µ2
2(e) =

1

2
(µ2

2(1) + E1µ
2
2(ń2)) and 42

2(e) is defined earlier in previous section.

The gain in efficiency due to ERSS is

GEff (erss)) =
W2k

n
42

2(e) θ > 0.
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Since θ > 0. ERSS will give more efficient result than RSS if:

42
2(e) > 42

2(M)

We propose an estimator of population mean by using scrambled response model

in MRSS. The scrambled response is given by

Z[m:j] = AjY(m:j) +Bj, (j = 1, 2, .....ń2), (4.30)

where ER(Z[m:j]) = µAY(m:j) + µB and variance of Z[m:j] is

VR(Z[m:j]) = σ2
AY

2
(m:j) + σ2

B.

Let ŷ[m:j] be transformed scrambled response from median units in the jth sample

whose expectation under randomization mechanism equals to true response y(m:j).

ŷ[m:j] =
z[m:j] − µB

µA
, ER(ŷ[m:j]) = y(m:j)

VR(ŷ[m:j]) =
σ2
Ay

2
[m:j] + σ2

B

µ2
A

= φ[m:j]. (4.31)

The estimate of µ2 using this technique is:

´̄̂y2(mrss) =
1

ń2

ń2∑
j=1

ŷ(j:m) =
Ŷ

2(
ń2
2

)
+ Ŷ

2(
ń2
2

+1)

2
, where

E{ER(´̄̂y2(mrss))} = E(´̄̂y2(mrss)) =
µ

2(
ń2
2

)
+ µ

2(
ń2
2

+1)

2
6= µ2
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It will be unbiased if µ
2(

ń2
2

+1)
= µ

2(
ń2
2

)
which is possible only in case of symmetric

distribution. The proposed estimator using this technique to sub-sample non-

respondents given bellow.

ˆ̄y∗mrss =
n1

n
ȳ1 +

n2

n
´̄̂y2(mrss). (4.32)

The Bias of proposed estimator ˆ̄y∗mrss is given by

E(ˆ̄y∗mrss) =E1E2

[
w1ȳ1 + w2ER(´̄̂y2(mrss))

]
=E1E2

[
w1ȳ1 + w2(´̄y2(mrss))

]
, as ER(´̄̂y2(mrss)) = ´̄y2(mrss),

⇒ Bias(ˆ̄y∗mrss) =W2

(
µ

2(
ń2
2

)
− µ2

)
+
(
µ

2(
ń2
2

+1)
− µ2

)
2

, (4.33)

which is almost negligible when the distribution tends to symmetric, its variance

using law of total variance, is given by

V (ˆ̄y∗mrss) = E1

[
V2{ER(ˆ̄y∗mrss)}+ E2{VR(ˆ̄y∗mrss)}

]
. (4.34)

First part of (4.34) is:

E1[V2{ER(ˆ̄y∗mrss)}] =
σ2

n
+
W2(k − 1)

n
σ2

2 −
W2k

n
{42

2(m)}. (4.35)

Also second part of (4.34) is

VR(ˆ̄y∗mrss) =
w2

2

ń2
2

ń2∑
j=1

{
σ2
Ay

2
(j:m) + σ2

B

µ2
A

}

E2{VR(ˆ̄y∗mrss)} =
w2

2

ń2
2

[
σ2
A{ ń2

2
T1 + ń2

2
T2}+ ń2σ

2
B

µ2
A

]
,



Chapter 4. Estimation of Population Mean in Ranked Set Sampling 67

where T1 = σ2
2 −42

2(
ń2
2

)
+ µ2

2(
ń2
2

)
and T2 = σ2

2 −42

2(
ń2
2

+1)
+ µ2

2(
ń2
2

+1)
. Therefore

E1E2{VR(ˆ̄y∗mrss)} =
W2k

n

[
σ2
A

µ2
A

{
σ2

2 −42
2(m) + µ2

2(m)
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σ2
B
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(4.36)

where µ2
2(m) =

1

2
(µ2

2(
ń2
2

)
+ E1µ

2

2(
ń2
2

+1)
and 42

2(m) is defined in previous section.

Using (4.35) and (4.36) in (4.34) , we get

V (ˆ̄y∗mrss) =
σ2

n
+
W2(k − 1)

n
σ2

2 +
W2k

n

[
σ2
A{σ2

2 + µ2
2(m)}+ σ2

B

µ2
A

]
− W2k

n
42

2(m) θ

V (ˆ̄y∗mrss) =V (ˆ̄y∗srs)−
W2k

n
42

2(m) θ. (4.37)

Gain in efficiency due to MRSS is

GEff (mrss)) =
W2k

n
42

2(m) θ > 0.

MRSS will give more efficient result than RSS if: 42
2(m) > 42

2(M).

Also MRSS will give more efficient result than ERSS if: 42
2(m) > 42

2(e).

4.5 Empirical Study

To compare the efficiency of proposed estimators in RSS to the corresponding es-

timators in SRSWR, we conduct a simulation study. The hypothetical population

consist of 1000 observations on two variables X and Y . The values of X is gener-

ated from Normal (µ = 0, σ2 = 1), exponential (λ = 5) and Uniform (a = 0, b = 1)

distributions. After that Y is computed such that Y = rX + e, where r is co-

efficient of correlation between X and Y and e ∼ N(0, 1) is the error term. Table

1 gives relative efficiency of different estimators for the above mentioned distribu-

tions of X using different combinations of k and W2.
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The last three columns of Table 1 give relative efficiency of proposed estimators

with respect to Diana et al. (2014) estimator. We can see that relative efficiency

of proposed estimators tend to decreases for larger k. This means for small sub-

sample size proposed estimators give greater precision. It can also be inferred

from Table 1 that relative RSS perform better in case of Uniform distribution as

compared to other two distributions. In all cases MRSS perform better than RSS

under scrambled response model. But relative efficiency of ERSS is smaller than

RSS and MRSS for all cases.
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Table 4.1: Efficiency comparison values

Distribution W2 k RSS(1) ERSS(1) MRSS(1) RSS(2) ERSS(2) MRSS(2)

Normal

0.1
2 1.1250 1.0609 1.0935 1.3513 1.2867 1.3946

4 1.1013 1.1049 1.2241 1.2122 1.2088 1.2862

6 1.1013 1.1049 1.2241 1.2122 1.2088 1.2862

0.2

2 1.2728 1.1763 1.2138 2.1318 1.6430 2.2981

4 1.4389 1.2135 1.3260 1.9032 1.6060 2.1399

6 1.3291 1.1242 1.3359 1.5354 1.2804 1.7114

0.3

2 1.4455 1.0917 1.1437 3.1526 1.5960 3.4264

4 1.6438 1.4535 1.5430 2.7307 1.9072 3.2724

6 1.6769 1.2640 1.4570 2.2765 1.8958 2.7598

0.4

2 1.6160 1.2031 1.2515 4.5716 2.1163 5.1349

4 1.9228 1.6177 1.7300 3.4769 2.1427 4.3755

6 2.0375 1.2540 1.4467 3.0449 1.5971 3.8519

Exponential

0.1
2 1.1170 1.0543 1.0828 1.6186 1.6780 1.6661

4 1.1123 1.1098 1.2265 1.3107 1.5030 1.4821

6 1.1123 1.1098 1.2265 1.3107 1.5030 1.4821

0.2

2 1.2596 1.1517 1.1909 3.1984 1.8218 3.3736

4 1.3659 1.1088 1.2214 2.4734 2.4532 2.7109

6 1.3584 1.1875 1.3860 1.9270 1.7200 2.0568

0.3

2 1.4439 1.1188 1.1682 5.2756 1.4882 5.6374

4 1.5923 1.4473 1.5372 3.8759 2.0581 4.4753

6 1.7389 1.3048 1.5143 3.0151 2.8765 3.4168

0.4

2 1.6419 1.1481 1.1986 7.7175 1.6036 8.6775

4 1.9136 1.5654 1.6774 5.0912 1.8970 5.9705

6 1.9693 1.3389 1.5237 3.9496 1.7195 4.7537

Uniform

0.1
2 1.1138 1.0674 1.0977 1.6765 1.6903 1.7198

4 1.1204 1.1017 1.2161 1.3577 1.5053 1.4567

6 1.1204 1.1017 1.2161 1.3577 1.5053 1.4567

0.2

2 1.2533 1.1726 1.2050 3.2788 1.9403 3.5413

4 1.3812 1.1515 1.2621 2.4932 2.4591 2.7205

6 1.3049 1.1039 1.3151 1.8869 1.7240 2.0569

0.3

2 1.4491 1.1234 1.1726 5.5418 1.6480 6.1193

4 1.6808 1.5261 1.6343 4.0407 2.2174 4.7350

6 1.5325 1.2022 1.3913 2.8012 2.8716 3.3526

0.4

2 1.6165 1.2146 1.2635 8.2002 1.6974 9.1755

4 1.9746 1.6667 1.7758 5.5181 2.1727 6.3218

6 2.0436 1.2798 1.4815 4.2700 1.8340 5.0032
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4.6 Conclusion

This chapter presented an estimation of population mean in non-response where

one can obtain twin objectives of survey sampling; (i) one is to give greater confi-

dentiality to the respondents which results increment of response rate, (ii) another

is gain in precision of estimates involve in study. By assuming that non-response

is due to sensitivity of the study character we proposed three estimators using

scrambled response model by selecting a ranked set sample, extreme ranked set

sample and median ranked set sample. It is proved both mathematically and nu-

merically that the estimators of population mean perform better in RSS, ERSS

and MRSS than SRS.



Chapter 5

Conclusion and Suggestion

5.1 Conclusion of the study

This study includes estimation of finite population mean of sensitive study variable

in presence of non-response. In case of sensitive variable, non-response (or refusal)

occurs because people hesitate while giving direct response to the questions asked

by interviewer. Therefore it is hard to get truthful response again on second call.

We discussed two important aspects one is use of randomization technique for pri-

vacy protection, which help us in obtaining truthful response on second call, and

the other is reduction in variation in estimation of finite population mean as the

variance increased due to use of randomized response model. Use of randomization

mechanism results increment in response rate and it is inevitable on second call to

collect information from those respondents who refused to answer on first call. In

this study we only used a linear scrambled response model to protect confidential-

ity of respondents but our concern is reduction in variance. We have made three

basic attempts to improve efficiency of the estimator of finite population mean

using scrambled response model to sub-sample non-respondents on second call.

From Chapter 2, we conclude that the proposed estimator using known coefficient

71
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of variation of the study variable and generalized ratio and regression type esti-

mators, constructed on the basis of the proposed estimator, perform better than

Diana et al. (2014) estimator in term of efficiency for a fix level of privacy protec-

tion. In Chapter 3, it is obvious that use of stratified sampling results in gain in

efficiency of the proposed estimators when population of interest is heterogeneous.

The generalized ratio and regression estimators are more efficient than the corre-

sponding simple mean estimator in both SRSWOR and stratified random sampling

.This implies that use of auxiliary variable (with two-phase sampling scheme when

population mean of the auxiliary variable is not known) renders us more efficiency.

Chapter 4 provide that use of RSS, ERSS and MRSS with randomized response

technique for sub-sampling non-respondents utilizing the information on first call

for ranking purpose. It is shown both mathematically and empirically that ranked

set sampling is at least as efficient as SRSWR so one should prefer to select a

sample using RSS when ranking is easy and less expensive.

5.2 Suggestion for further Study

Further work can be done to improve privacy protection by using different scram-

bled response models i.e. Additive, Subtractive and Optional scrambled response

model for sub-sampling purpose on second call. This work can also be extended

to further reduce variance of mean estimator using different ranked set schemes

with auxiliary variable i.e one can construct ratio, product and regression type

estimators.
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Derrivation of Bias and MSE

Bias of Proposed Estimator
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Ȳ 2

]−1

ˆ̄y∗

=

[
1−

{
1 +

n2

n
(k − 1)

}
C2
y

n
− k

nN

σ2
r
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MSE of Proposed Estimator
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Using this value of E(ˆ̄y∗∗2) in A.3 and canceling out same terms we get we get

MSE of ˆ̄y∗∗ as :
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