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Abstract 

Abstract 

Human embryonic stem cells (hESCs) are derived from the inner cell mass of the 

blastocyst, an early-stage embryo, which have the capability of differentiating into 

multiple cell lineages. Human embryonic stem cells posses the ability to self renew 

under appropriate conditions to give rise to equivalent daughter cells allowing 

indefinite propagation in culture. These characteristics make embryonic stem cells 

valuable tools in the scientific research, especially in regenerative therapy for treating a 

variety of human diseases. The undifferentiated state (ploripotency) of embryonic stem 

cells is maintained by the action of ES cell-specific transcription factors including 

OCT4, NANOG, and SOX2. These three factors bind to a large number of genes many 

of which are co- occupied by at least two of these three factors including the OCT4, 

NANOG, and SOX2 genes themselves, thus suggesting auto and reciprocal regulation 

amongst themselves . SOX2 can act synergistically with OCT314 to activate Ocl- Sox 

enhancers, which regulate the expression of pluripotent stem cell specific genes, 

including Nanog, OCT314 and SOX2 itself. Nanog, along with OCT4 and SOX2, are 

core transcription factors which regulate the pluripotency and self-renewal of 

embryonic stem cells. In vitro studies have shown that SOX2 is required by ES cells 

for its Oct- Sox enhancer activity and it is likely that, SOX2 is responsible for the 

activation of these Oct- Sox enhancers. Thus the essential function of SOX2 is to 

stabilize ES cells in a pluripotent state by maintaining the requisite level of OCTJI4 

expression. This proves that these genes are crucial for the early human development. 

In present study upstream promoter region of SOX2 gene was analyzed for the 

existence of any sequence variant (polymorphism), in the two distinct population of 

Pakistan; Pakhtoon and Punjabi. Genomic DNA was extracted from blood samples 

collected from these individuals was PCR amplified by using specific primer set for 

the promoter region of SOX2 gene, followed by subsequent sequence analysis to find 

any sequence variant. Four out of 70 members showed a G to C transversion in the 

upstream promoter region of SOX2 while the remaining six members possessed normal 

sequence. Amplified DNA products in which sequence variant were detected were 

treated with specific restriction enzyme (PmeI) to confirm polymorphism. Agarose gel 

electrophoresis after 16 hours of enzyme treatment revealed that the restriction enzyme 

failed to digest the region in which variation was detected, suggesting that the 
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Abstract 

sequence variation was not a polymorphism, but a mistake in the DNA sequencing 

process. The lack of polymorphism shows that the sequence in the upstream promoter 

region of SOX2 gene is highly conserved and the evolution has not permitted any 

variation in this specific gene. 
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Chapter I Introduction 

Introduction 

Stem Cells 

Stem cells are those types of cells having the remarkable propeliies of renewing 

themselves and may be differentiate into other type of cells. For example a 

haematopoietic stem cell residing in bone maITOW able to specialize into blood cells. 

These differentiated cell types will have special functions, for example they are able 

to produce antibodies, act like scavengers against infections and transport gases. Stem 

cells have the remarkable properties to develop into a variety of cell types in the 

human body, serving as a repair system by being able to divide without limit to 

replenish other cells (Fontes and Thomson, 2009). 

Stem cells have been known to be isolated from pre-implantation embryos, fetuses, 

adults and the umbilical cord and under certain conditions these undifferentiated stem 

cells can be pluripotent having the ability to give rise to cells from all tlu'ee germ 

layers (ectoderm, mesoderm and endoderm) or multi potent (having the ability to give 

rise to a limited number of other specialized cell types) . 

There are two main types of stem cells on the basis of their differentiation potential. 

Adult stem cells (multi potent) and embryonic stem cells (pluripotent). 

Adult stem cells 

Adult stem cells are undifferentiated cells, found throughout the body. These cells are 

also known as somatic stem cells and can be found in juvenile as well as adult animals 

and humans. Adult Stem cells are multipotent and only differentiate into their specific 

lineages (Fontes and Thomson, 2009; Wianny et al., 2011). The specific roles of adult 

stem cells in a living organism are to maintain and repair the tissue in which they are 

found. Adult stem cells have been identified in many organs and tissues, including 

brain, bone maITOW, peripheral blood, blood vessels, skeletal muscle, skin, teeth, 

heart, gut, liver, ovarian epithelium, and testis. The specific area of each tissue where 

they reside is called a stem cell niche (Wright, 2000). Two well known examples of 

adult stem cells are haematopoietic and mesenchymal stem cells. 

The production and maintenance of the blood stem cells and their proliferation and 

differentiation into the cells of peripheral blood is known as hematopoisis .The 
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Chapter I Introduction 

hematopoietic stem cells are derived early in the embryogenesis. These stem cells can 

be obtained from bone marrow, peripheral blood, umbilical cord blood, and fetal liver 

(Fontes and Thomson, 2009). 

Mesenchymal stem cells are found in the nonhematopoietic bone marrow stroma. 

These stem cells are involved in the regeneration of mesenchymal tissues, such as 

bone, cartilage, muscle, ligament, tendon, adipose tissue, and stroma (Fontes and 

Thomson, 2009; Caplan, 1994). 

Embryonic stem cells 

Embryonic stem cells (ES) are pluripotent cells derived from pre-implantation 

embryos (wialIDY et ai., 2011). These stem cells have indefinite potential and ability 

to differentiate into all adult cell types (Evans and Kaufman, 1981). There are about 

220 types of cells and tissues found in human bodies which arise from a single zygote. 

In the early 1970, a promising start of the pluripotent stem cell derivation was carried 

out from early embryos. At that time it was found that tetracarcinoma developed after 

grafting early mouse embryos below the kidney capsule or in the testis of adult mice ( 

Solter el ai. , 1970; Stevens, 1970). The tetracarcinoma contained undifferentiated 

pluripotent cells known as embryonal carcinoma (EC) cells. These embryonal 

carcinoma cells have the potential that they could be expanded continuously in 

culture. They can also be differentiated in vitro in suspension cultures (Martin and 

Evans, 1975) or in vivo by grafting in histocompatible mice and were also capable to 

participate in normal embryogenesis by injection into early an embryo (Papaioannou 

et ai., 1975). Unfortunately, the efficiency of chimerism found with most EC cell line 

was significantly low, therefore the full development capacity could not be attained 

since these cells did not colonise the germ line. When the same conditions was 

implemented that were used for successful isolation and expansion of EC cells, the 

first mouse embryonic stem cells lines were isolated from the early mouse embryos 

10 years later by two groups (Evans and Kaufman, 1981 ; Martin, 1981). 

Derivation of Human Embryonic Stem Cells (hESC) 

After the successful isolation of mouse embryonic stem cells (mESC), the scientists 

were able to grow human blastocysts in the lab (Fong et ai,. 1994). Afterward human 

embryonic stem cells (hESCs) derivation was carried out by using IYF (in-vitro 
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feliilization) method. IVF is a type of reproductive technology that is specially used to 

obtain a zygote by fusing sperm and egg in a test tube or petri dish (in vitro) and the 

zygote then starts dividing and becoming an embryo. 

By applying this procedure, first the zona pellucida was removed with pronase and 

then 21 zona-free blastocyst from 9 IVF patients were cultured intact as a whole 

embryo culture on irradiated human adult oviductal epithelial fibroblasts. After 7 to 

11 days nineteen of these produced healthy rCM lumps. These lumps were 

mechanically separated from the peripheral trophectodermal (TE) cells and 

underlying feeder cells with hypodermic needles, trypsinized and passaged further on 

fresh irradiated human adult fallopian tubal feeders. In the first and second passages 

hESC cell colonies were produced. These hESCs of the first two passages showed 

typical hESC morphology, stained positive for alkaline phosphatase and had normal 

karyotypes. These cells differentiated from the third passage onwards (Fong et at,. 

1994). 

Thomson et at (1988) used immunosurgery for the complete separation of the rCM 

and cultured the intact rCM on irradiated murine embryonic fibroblasts (MEFs) 

instead of human feeders . Parts of each hESC colony were then cut mechanically with 

hypodermic needles and the cell clusters grown on fresh irradiated MEFs instead of 

cell dissociation into single cells with trypsin (Thomson et al,. 1988). By using such a 

procedure some workers successfully produced the first hESC line. Later Reubinoff et 

at used immunosurgery, mitomycin-C treated MEFs and a similar mechanical transfer 

method to derive and propagate hESC lines that could be spontaneously differentiated 

into neuronal cells in vitro (Fong et at,. 2000), as shown in the figure 1.1. Amit and 

Iskovitz and Suss-toby et al later confirmed that the "whole embryo culture" was 

successfully worked as well as the immunosurgery protocol to produce hESc line 

(Amit and Itskovitz, 2002). Bongso et at reported in his work (using human feeders 

instead of MEFs) that hESC lines can be successfully derived and propagated on fetal, 

neonatal and adult human feeders (Fong et al,. 2000). 
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Chapler I Introduction 

Undifferentiated Growth of hESC 

Human embryonic stem cells (hESC) like other types of stem cells have the properties 

to self-renew without differentiation. But they are also pluripotent and capable of 

differentiating into cells of three germ layers of the embryo. There may be some 

problem occurs in propagating and maintaining undifferentiated hES cells in vitro. 

Thus the hESC require a specialized growth environment to retain its undifferentiated 

state. This specialized types of growth environment are constantly undergoing 

revision and improvements (Bondar et al,. 2004). 

As mentioned human ESCs are usually grown on a feeder cell s layer. Mitotically 

inactivated mouse embryonic fibroblast (MEFs) have been shown to be used 

successfully to support hES cell growth and maintenance. Feeder cell s are mitotically 

inactivated using irradiation or through incubation with mitomycine C. Humn ES 

grown on these feeders inactivated by irradiation or mitomycin C shows similar 

morphology and remain pluripotent in both cases. (Bondar et al,. 2004) . 

Feeders have been found to secrete soluble factors in culture medium that are 

important for maintenance of undifferentiated hES cells. According to some reports, 

undifferentiated hES cells that are grown in the absence of feeder cell s layer are 

shows differentiation unless conditioned medium from mouse fibroblast culture is 

used to supplement the hES culture medium (Inokuma et al,. 2001). The exact 

identities of the secreted factors necessary for hES cells maintenance have not yet 

been identified, various proteins have been found in the mediunm conditioned by 

mouse fibroblasts feeders as candidates proteins (JWE and Bodnar, 2002) . 

Properties of undifferentiated growth 

Before addressing factors that are involved in the growth and undifferentiated hES 

cell s, it is necessary to point out the qualities that make it possible to distinguish 

between differentiated and undifferentiated hESC. The following are some properties 

of undifferentiated hES cell s, including cell and colony morphology, cell surface 

antigens, gene expression, and pluripotency are described. 

Undifferentiated state maintains the hES cell morphology and density which in turn 

promotes healthy pluripotent cell growth, as undifferentiated hES cells have a distinct 

morphology when viewed under the microscope (Itskovitz et al,. 1988; Pera et al,. 
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2000). Every individual cell within the colony wi ll have a large nucleus and 

prominent nucleoli . Undifferentiated cell are tightly packed within the co lony and 

maintain a defined border at the periphery of the colony. Also the morphology of 

undifferent iated hES colony is sharply contrasted by that of spontaneously 

differentiating hES colonies which may acqUIres many different forms. 

Differentiating co lonies of hES cell s may appear to lose their tight border, and cell s 

within the colony begin to enlarge, fl atten, and separate. 

Human gene OCT-4 encoding a POU domain transcription factor, is highly expressed 

in undifferentiated hES cell s and is necessary for the cells to maintain the pluripotent 

state (Draper JS el al,. 2002; Inokuma el al,. 2001) . As hES cells differenti ates, OCT-

4 gene expression decreases to low levels (Maor et al,. 2001). When the express ion of 

OCT-4 decreases, the expression of the tllJee embryonic germ layers gene 

representative such as AFP, FLK-J, and NCAM increases. Some other genes may also 

expressed in undifferenti ated hES, some of which may function in the maintenance of 

pluripotency include FGF4, SOX2 , and NANOG (Meijer el al,. 2004) . Unlike mouse 

embryonic stem (mES) cells, undifferentiated hES cells do not express SSEA-l . 

Undifferentiated hES cells also positively stain for alkaline phosphatase and 

demonstrate telomerase activity (Rosier et al,. 2003). 

Stem Cells Markers 

Since the undifferentiated growth of human embryonic stem cells should be validated. 

For this purpose, several surface markers have been suggested to be used for the 

undifferenti ated, pluripotent state of ESCs. For example OCT4, NONOG and SOX2 

are the most commonly involved in thi s process. 

OCT4 is strongly expressed by human and mouse ESCs and is shown to be down 

regulated upon differentiation. It provides an excellent marker for undifferentiated 

ESCs and also OCT4 is required for maintenance of the undifferentiated state of 

hESCs which differentiate towards trophectoderm if OCT4 expression is knocked 

down by RNA interference eYing et al., 2003) . 

NANOG is another gene expressed strongly in both mice and humans ESCs . This gene 

is discovered recently and is certainly required for maintenance of the undifferentiated 

state of mESCs (Robertson et al,. 2003). It is also regulated upon the differentiation of 

hESCs. 
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Some other genes, including SOX2, REXl , TERT, UTFl and FGF4 , have also been 

known to be expressed by hESCs and to be used as markers for the undifferent iated, 

pluripotent state. For this purpose several DNA microarray expression studies of 

hESCs have also been reported and analyses of these have been used to confirm 

several genes as specific stem cell related marker genes (Jaenisch et at. , 2003 ; Miura 

et at., 2004). 

Molecular pluripotency of hESCs 

The mechanism that regulates the stem cell self-renewal and pluripotency is mostly 

unknown. Some investigation into the molecular and cellular mechanism of stem cell 

self- renewal and pluripotency help to meet these challenges and provide the 

necessary tools for the regenerative potential of ES cells for the therapeutical purpose 

(Liu el al,. 2007). 

Pluripotency of human ES cell s is regulated by some signaling pathways. Some recent 

studies (in vitro and in vivo) have revealed that there are several genetic regulators 

that may play important roles in the human and mouse ES cell s self-renewal and 

pluripotency process . For example extra signaling factors, transcription factors, 

microRNA, genes implicated in chromosomal stability, and DNA methylation etc. 

Signalling Pathways 

The following are the mainly involved pathways in human ES cells pluripotency; 

MAPK-ERK Pathway 

This signalling pathway plays an important role in the self-renewal of hESCs. It has 

been reported that thi s pathway is activated by the bFGF (basic fibroblast growth 

factor) in the medium. FGF li gands and their receptors are highly expressed in human 

embryonic stem cells . The fibroblast growth factors family has over related members 

including FGFl, FGF2, FGF and FGF8. This family has been shown to activate 

tyrosine kinase pathways (Dvorak et al., 2005).Inhibition of this signalling pathway or 

removal of FGF resultes in differentiation of human embryonic stem cells (Mitalipov 

et al., 2006), because bFGF has a key role in the activation of MAPK-ERK pathway. 

Human ES cells are most commonly cultured in the presence of bFGF either on 

fi broblast feeder layers or in the fibroblast-conditioned medium (Amit et al,. 2000 : Xu 

et al,. 2001). 
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PI3K (Phosphoinositide 3-kinase) Pathway 

This pathway has the importance in the proliferation, survival, and maintenance of 

pi uri potency in ES cell s. Activation of PI3K promotes the ES cell proliferation 

(Takahashi el al., 2005). It has been shown that the inhibition of PI3K and AKt 

induces differentiation of human ES cells in the presence feeder cells, suggesting that 

PI3K1Akt signalling is necessary for the maintenance of ES cell pluripotency (Paling 

et al., 2004). 

Wnt/~-catenin signalling Pathway 

Wnt pathway may be involved in the maintenance of pI uri potency of h\,\ll1an ES cells. 

This pathway is activated by 6-bromoindirubin-3-oxime (BIO), a specific inhibitor of 

glycogen synthase kinase-3 (GSK-3), which maintains the undifferentiated phenotype 

in ES and also sustains the expression of the ES cells specific surface markers. Wnt 

signalling pathway has been shown to improve the c-Myc level which also the target 

gene of ST A T3 (Signal transducer and activation of transcription) . Components of the 

Wnt signalling pathway are present in human ESCs, although levels of different 

receptors varied between undifferentiated and differentiated populations. Wnt is 

believed to stimulate Human ESC proliferation (Pankratz et al., 2007) . 

TGF~ (transforming growth factor-B) Pathways 

TGF~ is known to be a prototypic member of large super family related growth and 

differentiation factors. This fami ly may have more than 40 members including TGF~, 

Activin, Nodal , and bone morphogenetic proteins (BMPs) , which are all associated 

with ES cells. TGF~ transduces signals from the membrane to the nucleus by binding 

a heteromeric complex of serine/threonine kinase receptors which are known as TGF~ 

type I and type II receptors . There is hi gh affinity of activin for the type II receptors but 

do not bind to the type I receptors in the absence of type II receptors , whereas BMPs 

have higher affinity for their type I receptors than for type II (Valdimarsdottir and 

Mummery, 2005). 

BMP4: 

It is a member of the TGF~ super fami ly, promote the differentiation of hESCs. Its 

activation is not required during the undifferentiated state of human ES cells, and it 

may be inhibited. 
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TGF~ lactivinlnodal : 

TGF~ and its correlate factors are shown to be highly expressed in undifferentiated 

human Es cell s. Activin A (which is a member of the TGF~ family) is secreted by 

mouse embryonic feeders and the respective cu lture medium is enriched with activin 

A and maintains human ES cells undifferent iated without condition medium (CM) or 

ST A T3 activation (Beattie et at., 2005). 

Notch signalling Pathway 

Notch signaling has the important role 111 maintenance of the stem cells features. 

Notch related molecules are highly expressed in the NESCs and hESCs. When this 

pathway is inhibited, the self-renewing activity and the proliferation potential may be 

significantly reduced in the resulting stem cells (Jolmston et at,. 2001) . 

In figure 1.2 the summarized roles of the different pathways are mentioned. 
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Figure 1.2: Self-renewal and undifferentiated growth of ES cells regulated by 

different signalling pathways, 
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Transcription factors 

After complete description of signalling pathways, now the question arises that how 

these pathways maintain the pluripotency of hESCs. There are certain other factors 

that play a central role in this process. According to recent studies there is a 

transcriptional regulatory circuitry, responsible for the ES cells self-renewal and 

differentiation. This circuitry involves the transcription factor Oct4, Sox2, Nanog etc. 

Some of these factors may express specifically in pluripotent cells. These 

transcription factors are switched on/off through environment signals. When these 

gene are expressed the self renewal gene are activated and the differentiated genes are 

repressed, that's why the ES maintain their pluripotency (Liu et at,. 2007). 

OCT4 is the most known member of these factors which functions to maintain 

pluripotency both in vivo and in vitro . This is a POU domain transcription factor that 

is specifically expressed in all pluripotent cells. The expression of OCT4 is known to 

be regulated by a proximal enhancer and promoter in the epiblast and a distal 

enhancer and promoter at all other stages in the pluripotent cell lineage (Perrett et at. , 

2008). 

NANOG is another member of the group of transcription factors whose functions are 

deemed essential for the process of self-renewal in human ESCs. NA NOG is a NK2-

family homeobox transcription factor and it acts by transcriptional activation, 

achieved by binding to homeobox domains in downstream target genes. Analogous to 

OCT314 and SOX2 and NANOG expression is high in human ESCs and is down 

regulated as cells differentiate. Transcription of NANOG is regulated by the binding 

of OCT314 and SOX2 to the NANOG promoter. 

SOX2 gene encodes a member of the SRY-related HMG box (SOX) family of 

transcription factors involved in the regulation of embryonic development and the 

determination of cell fate , also this gene plays an impOliant role in the maintenance of 

embryonic stem (ES) cell self-renewal and pluripotency. SOX2 is expressed in the 

brain, retina, tongue, lungs, esophagus and stomach, and plays a key role in the 

differentiation and morphogenesis of these organs (Otsubo et at., 2011). 

SOX2 Gene 

SOX2 is a gene located on chromosome 3q26.33 (Alvaro et at., 2010), which encodes 

a member of the SRY related HMG-box (SOX) family of transcription factors which 
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is involved in the regulation of embryonic development and determination of cell fate 

(Otsubo et al. , 2011). The SOX2 gene belongs to a family of genes called SOX (SRY 

(sex determining region Y)-Box) genes. It is a single-exon gene encoding a protein 

with 3 17 res idues which consists an N-terminal domain, a DNA binding high­

mobility group domain and a transcriptional activation domain in the C-terminal 

SOX2 protein (Wange at al. , 2007). The SOX2 gene provides information for making 

a protein that plays a key role in the formation of different tissues and organs during 

embryonic development (Lengerke et al., 2011). 

SOX2 protein is especially involved in the development of eyes; also this protein 

regulates the activity of some other genes by attaching the specific regions of DNA 

that's why SOX2 is called a transcription factor . 

Pluripotency Governed by SOX2 via Regulation of OCT314 

SOX2 acts in combination with OCT314 in pluripotency of human and mouse 

embryonic stem cells. The expression of most pluripotency-associated genes 

including FGF4, UTF 1, FBXO 15, LEFTYI and NANOG is regulated by an enhancer 

containing OCT314 and SOX2 binding motifs which is highly active in 

undifferentiated ES cells but not in differentiated cells. OCT314 and SOX2 , which 

bind independently to their respective binding motifs, act synergistically to activate 

these enhancers. Furthermore, the Oct-Sox enhancers are imp0l1ant in promoting the 

expression of OCT314 and SOX2 themselves, suggesting that these two transcription 

factors are regulated by a positive-feedback loop. This concept was supported by 

chromatin immunoprecipitation (ChIP) studies in both human and mouse ES cells, 

suggesting that OCT314 and SOX2 cooperatively activate or repress a set of genes 

(including OCT314, SOX2, and NANOG) through their SOX-enhancers which in turn 

results in their cooperative regulation of additional downstream genes. To determine 

the role of SOX2, Masui et aI, established an inducible SOX2-null ES cell line. SOX2 

was indispensable for maintaining ES-cell pluripotency because SOX2-null ES cells 

differentiated primarily into trophoectoderm-like cells. SOX2, however, was not 

required for the activation of Oct-Sox enhancers. These enhancers remained active 

even after the depletion of SOX2 protein. These findings suggest that SOX2 regulates 

the expression of OCT314 tlu'ough the regulation of multiple transcription factors and 

plays an important role in ES cells (Masui et al., 2007). 
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Induced Pluripotency 

A cell (Mammalian cell) can be directly reprogrammed into induced pluripotent stem 

cell by enforcing expression of a few embryonic transcription factors (Stadtfeld and 

Hochedlinger, 2010; Maherali et al,. 2007). They are similar to pluripotent embryonic 

stem cells (ESCs) and can be derived from adult somatic cells (Yamanaka, 2007; Saha 

and Jaenisch, 2009). Therefore these IPSCs have a great potential for regenerative 

medicine. ESCs and IPSCs have similarities in much phenotypic behavior. For 

example cell morphology, expression of pluripotent markers, terotoma formation, 

ability to differentiate into germ layers etc. (Okita et al,. 2007; Wernig et al,. 2007). 

Yamanaka and Takahashi converted mouse somatic cell to induced pluripotent cell by 

using only four transcription factors (Oet4, Sox2, K([4 , and e-Mye) . These iPSCs 

closely resemble ESCs as they can restore the pluripotency associated transcriptional 

circuitry and epigenetic behavior (Maher ali and Hochedlinger, 2008). These four 

types of transcription factors are not stringently necessary in iPSC reprogramming, 

but some of them can be replaced with other factors (Takahashi and Yamanaka, 

2006). Plath and colleagues find out more information about the roles of the four 

reprogramming factors. They suggested that e-Mye promoted the most prominent 

ESC like expression out of these four factors when expressed individually in 

fibroblasts, and e-Mye function more predominantly during reprogramm1l1g 

(Sridharan et al,. 2009). 

Besides these four transcription factors (OSKM) as discussed above, Thomson and 

colleagues were able to reprogram human fibroblast with some other set of 

transcription factors including OCT4, SOX2, NANOG, and LIN28. This indicates that 

KLF4 and e-MYC could be substitude with NANOG and LIN28 (Yu et al,. 2007). 

Numerous studies have demonstrated that these four types of transcription factors 

(OSKM) can be used for reprogramming of different types of somatic cells, including 

neural progenitor cells (NPCs), keratinocytes from the ectoderm, progenitor B cells 

from the mesoderm (Hanna et al,. 2008) and also the stomach cells and hepatocytes 

from the endoderm (Aoi et al,. 2008). 

Scholer and colleagues further reduced the number of factors required for the 

reprogramming (Kim et al,. 2009). Oet4 alone is also sufficient to reprogram neural 

stem cells (NSCs) to iPSCs. This finding also pointed out the role of Oet4 in the 
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reprogramming of somatic cells, which generally do not express or express very low 

levels of Oet4 . No transcription factor has yet been found to be able to replace the 

Oet4 in reprogramming (Lengner et aZ,. 2008). 

IPS mechanism proves that epigenetics is crucial for this procedure. Further more 

epigenetics playa part in the human development as well. 

Chromatin and Epigenetic Modification 

Embryonic stem cells differentiation from the pluripotent to developmentally more 

restricted state is accompanied by global changes in the genome expression patterns. 

There are some genes which are active in earlier stages and then gradually silenced at 

developmentally later stages and subsets of cell type-specific gene turned on. This is 

due to the result of active expression of transcription factors in concern with the 

chromatin remodeling and modification, includes covalent histone modification, DNA 

methylation of CpG dinucleotides and micrRNA etc (Liu et aZ,. 2007). 

Chromatin and chromatin modification 

To know more about the ES cells pluripotency many researcher have studied the 

clu·omatin. Some features of chromatin including nuclear architecture, chromatin 

structure, and hi stone modifications in ES cells are different from the somatic cells . 

For example ES cells clu'omatin shows characteristics of loosely euclu'omatin such as 

an abundance of acetylated histone modification and increase accessibility to 

nucleases (Boyer et aZ ., 2006) . ES cells undergo gene-specific remodeling of 

chromatin structure during in vitro differentiation. Histone deacetylase (HDACs) and 

methyl-CpG-binding protein (MECPs) are also expressed in ES cells and their levels 

regulated as cells undergo differentiation (Rao, 2004). As chromatin of pluripotent 

cell nuclei is an open conformation, some recent studies have shown that lineage­

specific genes replicated earlier in pluripotent cells than differentiated cells and also 

having high levels of acetylated H3K9 and methylated H3K4. This modification is 

also combined with H3K27 trimethylation which is important for prevention of gene 

expression in ES cells (Azuara et aZ., 2006; Bernstein et aZ., 2006). 

DNA methylation of CpG islands 

DNA methylation of CpG islands is another common mechanism of gene silencing. 

This is required for induction of differentiation of ES cells, which was shown 111 
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experiments with ES cells deficient either in the DNA mathyltransferases (Dnmtl , 

both Dnmt3a and Dnmt3b), or the CpG island-binding protein (CGBP) that binds to 

non-methylated DNA. These cell s show severe DNA hypermathylation and a 

complete differentiation block (Jackson et al ., 2004; Carlone et al., 2005). 

Hypermethylation at promoter region in differentiated cells typically results in 

decreased transcription of downstream genes. Hypomethylation in ES cells allows 

cell s to maintain high level of gene expression and thus keeping them in pluripotent 

state. Further more, aberrant DNA methylation has been often reported to cause 

various human diseases. 

micro-RNA 

microRNA are thought to be a large family of small non-coding RNAs, which consist 

of of more than 200 known members in the mammalian genome. They are involved in 

many biological processes. For example, cell cycle regulation, apoptosis , cell 

differentiation and maintenance of stemness (Am bros, 2004; Griffiths-lones, 2004). 

Various sets of these micrRNA are specificall y expressed in pluripotent ES cells but 

not in differentiated embryonic bodies or in adu lt tissues, which suggest a role in the 

self-renewal of ES cell s. When ES cell s differentiate, they down regulate the stem 

cells maintenance genes and activate lineage-specific genes (Houbaviy et al., 2003 ; 

Suh et al., 2004). When loss of mature micrRNA occur in Dicerl null mouse ES cells, 

failure of the respective mouse ES cell s to differentiate into the three germ layers has 

been shown to occure. This suggests the importance of microRNA for ES cells 

pluripotency (Cheng et al., 2005; Kanellopoulou et al. , 2005). 

Single Nucleotide Polymorphism (SNP) 

Single nucleotide polymorphism or 'SNP' is the variation in the sequence of the DNA 

among the individual of the same species or between paired chromosomes in an 

individuals. It is the most common variation occurs when a single nucleotide (A, T, C 

or G) in the genome is altered. For example SNP might change the DNA sequence 

AAGGCTAA to ATGGCTAA (Y. Liu et al,. 2010). 

SNPs may occur both in coding and non coding regions of the genome. About 99% of 
the human 

DNA sequences are the same and it may occur only 1 % of the human population, 

some may have no effect on the cell function but some of them have been suggested 
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by the scientists that they predispose human to diseases. They are also evolutionarily 

stable (not changing much from generation to generation), making them easier to 

follow in population studies. Further more SNPs may also act as biological markers 

and due to their high density , they are ideal for studying the inheritance of genomic 

regions (Suzuki et al,. 2001). 

Objective of the Research 

Given the importance of the Sox2 in maintaining the undifferentiated state and 

pluripotency, we intended to examine the variation in the promoter of Sox2 gene in 

different population of Pakistan. Different ethnic groups of the general population 

(Pakhtoon and non-Pakhtoon origins) were visited to and their blood samples were 

collected for the current study . For this purpose we had to analyze upto 400 base pairs 

of its up-stream promoter region. 
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Material and Methods 

Subjects 

The families presented here for research purpose were mostly visited at their residential 

areas. During blood samples collection they were also interv iewed to obtain information 

about their family background. For this purpose pakhtoon and non-Pakhtoon normal 

individuals were se lected Table 2. 1. Peripheral blood samples of 4-5 ml were collected 

from the available participants for the present study in ethy lenediaminetetraacetic acid 

tubes (BD Vacutainer®K3 EDTA, Franklin Lakes NJ, USA) and stored at 4°C. 

Extraction of Genomic DNA 

Genomic DNA from peripheral blood, stored in EDT A tubes, was extracted using Kit 

method and standard Phenol-Chloroform method (Sambrook et al., 1989). 

Kit method 

GF-I Blood DNA Extraction Kit,(Vivantis , Malaysia) was used for genomIc DNA 

extraction. The method app li ed for the genomic DNA extraction as provided in the 

protocol. In a 1.5 ml microcentrifuge tube (Axygen, Union, USA) 200 ~d of buffer BB 

(b lood lys is buffer provided in the kit) was added into a 200 III of blood samp le. After 

thoroughly mixing by pulsed-vortexing, 20111 of proteinase k was added and mixed 

immediately. Microcentrifuge tube containing these two solutions was then incubated at 

65°C for 10 min. 200lli of abso lute ethano l (BDH, Poole, England) was added; a 

homogeneous so lution was obtained after thoroughly mixing. The sample was then 

transferred into a column assemb led in a clean collection tube (provided in the kit).After 

centrifugation in a microcentrfuge (Eppendorf, Hamburg, Germany) at 5,000 rpm for I 

min, flow through was discarded. 500 III of wash buffer I provided in GF-I Blood DNA 

Extraction Kit (vivantis, Malaysia) was added to the column and centrifuged at 5,000 

rpm for I min , again through flow was discarded. Now the column was resuspended with 

500 III wash buffer2 (provided) and centrifuged at 5,000 rpm for I min, through flow was 

discarded and agai n 500~d of wash buffer2 was added to the co lumn and centrifuged at 

max imum speed (14,000 rpm) for 3 minutes. The co lumn was placed in a clean 
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microcentrifuge tube (Axygen, Union, USA).Now 1 00 ~L1 of preheated Elution buffer, a 

DNA dissolving buffer provided in the kit was added and kept for 2 min .By 

centr ifugat ion at 5,000 rpm for I min DNA was eluted and stored at 4°C. 

Phenol-Chloroform method 

In a 1.5 ml microcentrifuge tube (Axygen, Union, USA) equal vo lume (750 Ill) of the 

blood and so lution A [0 .32 M Sucrose (BDH,Poole, England), 10 mM Tri s of pH 7.5 

(BDH , Poole England), 5 mM MgC I2 (S igma-Aldrich, St Louis, MO, USA) ], 1 % v/v 

Triton X-100 (S igma-A ldrich, St Louis , MO, USA) were added and kept at room 

temperature for 10-15 minutes. The tube was then centrifuged for 1 minute at 13 ,000 rpm 

in a microcentrifuge (Eppendorf, Hamburg, Germany) and after di scarding the 

supernatant, the pellet was resuspended in 400 III of so lution A. Centrifugation was 

repeated and after di scarding the supernatant, the nuclear pellet was resuspended in 400 

III of solution B [10 mM Tris pH 7. 5, 400 mM NaCI (BDH, Poole, England) , 2 mM 

EDTA of pH 8.0 (BDH, Poole, England), 12 III of20% SDS (BDH, Poole, England)] and 

6 III of (20 mg/ml) proteinase K (Sigma-A ldrich, St Louis, MO, USA) and incubated at 

37°C overnight. On the following day , 0.5 ml of a fresh mixture of equal vo lumes of 

sol ution C comprising so lely Phenol (BDH, Poole, England) and D (24 vo lumes of 

Chloroform and 1 volume of Isoamyl alcohol (BDH, Poole, England) were added to the 

tube, mixed thoroughl y and centrifuged for 10 minutes at 13 ,000 rpm. The aqueous phase 

was transferred to a new microcentrifuge tube and equal volume of so lution D was added 

and recentrifuged at 13 ,000 rpm for 10 minutes. The aqueous phase was placed in a new 

tube and 55 ~L1 sod ium acetate (3 M, pH6) and equal volume of chilled isopropanol 

(BDH, Poole, England) was added. Tube was then inverted several times to precipitate 

the DNA and centrifugation was carried out again at 13 ,000 rpm for 10 minutes. The 

supernatant was di scarded and the DNA pellet was washed with chilled 70% ethanol 

(BDH, Poole, England) and dried in vacuum concentrator 5301 (Eppendorf, Hamburg, 

Germany) at 37°C. After evaporation of residual ethanol , DNA was disso lved in 150 III 

of DNA dissolving buffer composed ofTris-EDTA (Sigma-Aldrich, St Louis, MO, USA) 

and stored at 4°C. 
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DNA Quantification 

Genom ic DNA was quantified by taking opt ical density (00) at 260nm in GeneRay UV­

photometer 

(Biometra,Goettingen, Germany) and subsequently diluted to 40-50 ng/i-li fo r Polymerase chain 

react ion (peR react ion). 

Polymerase Chain Reaction 

Pol ymerase Chain Reaction was performed using 40 ng of human genomic DNA (I fll) in 

25 fll of reaction mi xture containing 0.3 ~t1 (10-20 pmol) of each primer, 0.2 fll (one unit) 

of Tag DNA polymerase, 0.5 ~t1 (0.2 mM) of dNTP mix, 1. 5 fll (I mM) MgCI2, 2.5 fll of 

IOXNH4S04 buffer (MBI Fermentas, Life Sciences, York, UK) and 18 .7 fll of PCR 

water. The reaction mi xture was centrifuged for few seconds for thorough mixing. The 

standard thermal cycle conditions used included one cycle of denaturation at 96°C for 5 

minutes, followed by 40 cycles of denaturation at 96°C for one minute, primers annealing 

at 50-60°C for one minute and primer extension or polymeri zation at noc for one 

minute, and final extension for 10 minutes at n°e. This included initi al denaturation 

cycle for one minute at 95°C, 48 cycles with 30 seconds denaturation at 95 °C, 30 seconds 

annealing with progress ively lowering temperature from 70 to 53°C at a rate of 1°C every 

third cycle and a primer extension of 40 seconds at n oc, followed by IS add itional 

cycles with an annealing temperature of 58°C and final extension at 72°C for ten minutes 

(Frey et al., 2008). The PCR was performed in T3000 thermocycler (Biometra,Gottingen, 

Germany). 

Gel Electrophoresis 

Agarose gel electrophoresis 

Products of PCR were analyzed on 2% a garose gel, which was prepared by di sso lving 2 

g of hi gh melting point agarose (Sigma-Aldrich, St Louis, MO, USA) in 100 ml 1 X T ri s­

Borate-EDTA (Tris 89.1 mM, Borate 88.9 mM, EDTA 2.5 mM) buffer. To facilitate 

visualization of DNA after electrophores is, 10 f-ll ethidium bromide (10 mg/ml) (Sigma-
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Aldrich, St Louis, MO, USA) was added to the gel. Before loading to wells of the gel, 4.0 

~d of PCR amplified products were mixed with equal volume of bromophenol blue dye 

(0.25% bromophenol blue in 40% Sucrose solution). Electrophoresis was performed at 

100 volts for half an hour in a horizontal ge l e lectrophoresis apparatus (Bio-Rad, 

Hercules, USA) having I XTBE buffer. PCR amplified products were visualized by 

placing the gel on UV Transilluminator (Biometra, Gottingen, Germany) . 

Genomic DNA Amplification for Sequencing 

To search for the variation in the promoter of SOX2 gene among the different individuals 

of the general population of different areas, its promoter region about 400 bp were PCR­

amplified , using primers sequences selected in that region. Primer set used for PCR with 

their optimal annealing temperature sequences given in Table 2.2. 

First sequencing peR 

First sequencing PCR reaction IS carried out at same conditions as described in 

Polymerase Chain Reaction. For first sequencing PCR reaction I /!I (100 ng) genomic 

DNA of different individual , 2.5 /!g (ng/ /!!) of forward and reverse primers of sox2 gene 

(promoter region) , 3 /!I MgCb (25 mM), 5 /!I lOX buffer (100 mM tris-HCI , 500 mM 

KCI with pH 8.3) , I /!I dNTPs (10 mM), 0.2 /!I (I unit) of DNA polymerase (Fermentas, 

York, UK) with 34.8 ~t1 of PCR water makes up a total of 50/!1 reaction mixture for first 

sequencing PCR reaction.Polymearse chaion reaction was performed following 

conditions as described under polymerase chain reaction. 

First pUI'ification 

The amplified PCR product was tested on 2% agarose gel and purified by PureLink ™ 

PCR purification kit (Invitrogen, CA, USA). Two hundred microliters of binding solution 

(H I, Concentrated Guanidine, HCI, EDTA, Tris-HCI and isopropanol) was added to 

amplification reaction mixture in eppendorf, the eppendorf containing amplification 

reaction mixture and H I solution was applied to a spin at 13 ,000 rpm for two minutes in a 

microcentrifuge (Eppendorf, Hamburg, Germany), after spin the whole reaction mixture 

ofeppendorfwas transferred to a cartridge containing silica based membranes (where the 

double stranded DNA is selectively adsorbed) a column was also attached to bottom of 
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cartridge. 500 fl l of alcohol containing H2 so lution or washing so lution (NaCI, EDT A, 

Tris-HCI) was added to cartridge that specificall y removes unreacted primers and dNTPs. 

The cat1rid ge was subj ected to a spin of two minutes at 13,000 rpm in microcentrifuge 

(Eppendorf, Hamburg, Germany). As a result of centri fugation wash buffer settles down 

in co lumn along w ith undesired elements and purified double stranded DNA was trapped 

in silica based membrane of cartridge. This trapped DNA was eluted by adding elution 

buffe r (10 mM Tris-HCI, 0.1 mM EDTA with pH 8.0) earlier placed at 65°C in a heater in 

cartridge. The cartridge was again centrifuged in a microcentri fuge (Eppendorf, 

Hamburg, Germany) at 13 ,000 rpm for I minute, with an empty eppendorf placed 

beneath the cartridge for co llection of pw-ified DNA eluted from cartridge. 

Second sequencing peR 

The purified PCR products were subjected to cyc le sequencing using ABI Prism Big Dye 

Terminator Cyc le Sequencing Ready Reaction Kit v3.1 (PE Appli ed Biosystems) . 10 fll 

sequencing PCR reaction contained 25 ng DNA template, 10 pmol forward or reverse 

primer, I fll 5X sequencing buffer, I fll ready reaction mix (RR) and 6 fll distill ed water. 

Thermo-cycling conditions for sequencing included initial denaturation at 96°C for 3 

minutes, followed by 30 cycles of denaturation at 96°C for 30 seconds, primer annealing 

at 50-60°C for 30 seconds, primer extension or polymerization at nOc for 4 minutes and 

final extension for 10 minutes at nOc. 

Second purification 

The PCR products were purified by ethanol precipitation in 1.5 ml microcentrifuge tube, 

containing 16 fll of distilled water and 64 fll 100% ethano l. Tubes were kept at room 

temperature for 10 minutes, and centrifuged at 13,000 rpm for 15 minutes. Supernatant 

was di scarded and 200 fll of 70% ethanol was added into the tubes. After thorough 

mi xing, tubes were again centrifuged at 13 ,000 rpm for 10 minutes. Supernatant was 

di scarded and the pe ll et was resuspended in IS fll of Hi-Di Form amidc and transferred 

into 0. 5 ml septa tubes to be directl y sequenced in an ABI Prism 310 Automated DNA 

Sequencer (P E, Appl ied Biosystems , Foster City, CA, USA) . Sequencing data was 

compared with sequences from National Center of Biotechnology Information (NCBI) 

Analysis of the Up-stream Region of SOX2, Emblyonic Stem Cells SpeC(jic Gene, in the General 
P~u~ioo 21 



Chapter 2 Materials and Methods 

database to identify the causative variants through bioedit, sequence alignment software 

with bioedit editor version 6.0.7. 

Variation Analysis 

DNA sequence and chromatograms were obtained from ABI Prism 310 Automated DNA 

Sequencer, which was compared with wild type genomic sequence of SOX2 gene 

obtained from Ensemble Genome browser to identify any nucleotide change 

(www.ensemble.org/index.htm). 

Digestion with Restriction Enzyme 

Restriction enzyme was used to digest the variation observed in the sequence of promoter 

area of SOX2 of different individuals. MssI (PmeI) was found as a specific restriction 

enzyme through NeB Cutter software which cut the sequence at the respective 

nucleotides where variation was observed. Enzyme (PmeI) source is Methylobacterium 

species of Dd 5-732, (Fermentas, Life Sciences, York, UK Lot# 00084391) and the 

protocol for digestion of PCR products directly after amplifi cation was used as provided 

by the supp li er. 

In a 1.5 ml microcentrifuge tube (Axygen, Union, USA), 10 III of PCR reaction mixture 

(0. 1-0.5 Ilg of DNA), 18 III of Nuclease-free water, 2 III of lOx buffer B (Fermentas, 

USA), 2 III of MssI were added. After mixing the tube was spin down for few seconds 

and then incubated at 37°C for 16 hours . The digested product was run on agarose gel to 

see the bands and compare it with the bands of normal PCR product. 
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Table 2.1: List of initial individuals selected for present study with their ethnic group, 

gender and residential areas. F. stands for female and M. for male individuals. 

S.No. Ethnic group Gender Age Residential Area 

(years) 

1. Pakhtoon M 26 Malakand Agency, K.P.K. 

2. Pakhtoon M 26 Upper Dir, K.P.K. 

3. N on-Pakhtoon M 26 DI Khan, K.P.K . 

4. Pakhtoon M 25 Distt. Mardan, K.P.K. 

5. Pakhtoon M 25 Malakand Agency, K.P.K. 

6. Non-Pakhtoon F 25 Sialkot, Punjab. 

7. Non-Pakhtoon F 25 Lahore, Punjab. 

8. Pakhtoon F 26 DI Khan, Punjab 

9. Non-Pakhtoon F 26 Sargodha, Punjab. 

10. Pakhtoon F 26 Peshawar, KPK 
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Table2 .2: List of primer sequences used to amplify SOX2 gene promoter region. 

No Primer Sequence Product Ta 

name 

1 Sox2 Pro F 5' CGTCCCATCCTCATTTAAGC 3' -

400bp 53 °C 

2 Sox2 Pro R 5' GGTTTCTAGCGACCAATCAG "I ' ,) - -

F = forward or left primer, R = reverse or ri ght primer, bp = base pairs, Ta= optimal 

annealing temperature, DC = degree centi grade 
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Results 

The individuals selected for the current study were from different areas of Pakistan. A 

total of seventy (70) samples were used to carry out the current study, but primarily 

we only performed on the 10 samples. Details are given in the table 2. 1. The 

individuals selected for the blood samples collection were mostly the members of 

Pakhtoon and Punjabi families of different areas including Dir, Malakand Agency, 

Swat, Dera Ismail Khan, District Mardan, Sargodha, and Chakwal. 

The DNA was extracted and the sequence of the Sox2 promoter regIOn was 

sequenced. Only four of all these samples showed sequence variations 

(Polymorphism) when their sequencing was carried out and compared with wild type 

genomic sequence of Sox2 gene promoter region obtained from Ensemble Genome 

browser. But the remaining samples possessed no variation and their sequences were 

the same as downloaded from the Ensemble. 

The following are the detail description and result of those samples where we found a 

single nucleotide change in the promoter region of sox2 gene. 

Sample 1 

This male individual lives in Bat khela, Malakand Agency, a well known area in 

North of Pakistan. Basically this is the province, Khyber Pakhtoon Khwa (KPK) 

where almost Pathan are resides. Blood sample of this person was collected for the 

current study to find out the sequence variation of Sox2 promoter region if exist. To 

know about the family of this individual , this person has a normal family back ground 

having no abnormality . Basically they have average body weight and height. 

Genomic DNA of this individual ' s blood sample was extracted (Figure: 3.1,3.2), and 

the upstream promoter region (sequence shown in the figure 3.3) was PCI' amplified 

(as shown in Figure: 3.4). After genomic sequencing, variation was observed in the 

sequence of Sox2 promoter region at 741 bp upstream region from the transcription 

start site, as in the wild type sequence the 'G' nucleotide was replaced with 'C' in the 

sequence obtained after sequencing of the respective gene region (Figure: 3.SA). This 

analysis was performed through BioEdit software. 
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Sample 4 

As li sted in the table 2. 1, the area to which the blood donors basically belong is Dist. 

Mardan, KPK of Pakistan, where almost Pathans resides . As mentioned for the 

previous individuals, this person is also having normal family back ground, 

possessing normal characteristics of life . Blood sample was there fore collected for 

the current study. 

As usual genomic DNA extraction was performed, bands were obtained on agarose 

gel (Figure : 3. 1, 3.2). Sox2 up-stream region was PCR amplified (Figure : 3.4) to 

proceed the process further towards our main objectives. After amplification genomic 

sequencing was performed to see any nucleotide change in the whole sequence of 

Sox2 up-stream region. While ali gning through BioEdit software a single nucleotide 

change was observed at the same region i. e. 741 bp up-stream region from the 

transcription start site, as it was observed for the sample l. Here also the ' G' 

nucleotide of the wild type genomic sequence was replaced by 'C' after sequencing 

(Figure 3.SB). 

Sample 5 

This member also resides in the same area of Malakand agency as explained for the 

sample 1 (shown in the table: 2. 1). Family has normal back ground history as; they 

are all basically normal individuals, having normal body height and weight. Blood 

sample was collected to study the Sox2 up-stream region status . 

Genomic DNA extraction was performed for fUlther analysis, the bands were 

successfully observed on agarose gel (Figure: 3.1, 3.2), following by PCR to amplify 

the respective region (Figure: 3.3). peR product (Figure: 3.4) was subjected to 

sequence the Sox2 up-stream region to see if there is any variation in any of the 

nucleotide of the whole genomic sequence. In this case also the vari ation was 

observed in the same area of the Sox2 up-stream region. The nucleotide 'G' of wild 

type genome was replaced by ' C' according to the data obtained after analyzing 

through BioEdit (Figure: 3.SC). 
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Sample 10 

This sample was taken from a female individual basically resident of Peshawar (also 

shown in the table 2. 1), a well known city in KPK, Pakistan. This individual belong a 

Path an fami ly, hav ing normal features as discussed for the above members. They have 

a normal body structure, weight and height. Blood sample was taken from thi s person 

for the current study. 

Genomic DNA extraction was successfully performed phenol chloroform method. 

The DNA bands were analyzed as shown in the figure (Figure: 3.1, 3.2), then the 

DNA was subjected to amplify the Sox2 promoter area through PCR (Figure: 3.4), to 

see the nucleotide change in the sequence of the respective gene part, the genomic 

sequencing was carried out. The sequenced data was fUlther analyzed through 

BioEdit. Interestingly the variation was found again exactly at the same nucleotide at 

741 bp up-stream region of the transcription start si te, and the ' G' was replaced by ' C' 

nucleotide as shown in the figure 3.50 . 

DNA Extraction (Comparison between Kit and Manual Method) 

Genomic DNA was extracted by both i.e. Kit and Phenol Chloroform (Manual) 

method. During the analysis of DNA bands on the agarose gel, some comparative 

points were noted as follow: 

• DNA extracted by following kit method, having bands less visible on agarose 

gel as compared to the bands of DNA we extracted by performing with 

manual method (shown in the figure 3.1, 3.2). The reason is that kit method 

provides us less concentrated DNA whi le that of manual method having more 

concentration. 

• Kit method of DNA extraction involves more centrifugation steps due to 

which degradation of DNA may occurs whi le manual procedure involves less 

centrifugation i.e. less chances of DNA degradations. 

• The kit method have a benefici al feature as it take less time (1-2 hours) to 

extract the genomic DNA while, by performing through manual method it 

takes 2-3 days to complete the whole extraction process. 
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Hence the manual DNA extraction method gives us more yields of DNA and more 

bright bands on agarose gel as compared to the Kit method, so later on this method 

was followed for further DNA extraction. 

Samples 1-10 (kit method) 

1 2 3 4 5 6 7 8 9 10 

Figure 3.1: Electropherogram of ethidium bromide stained I % agarose gel of 

Genomic DNA, extracted by Kit method for sample I -10.The serial number 1 to 10 

indicates the individual number as listed in the table 2. 1 

Samples 1-10 (Phenol-chloroform Method) 

Figure 3.2: Electropherogram of ethidium bromide stained I % agarose gel of 

Genomic DNA, extracted by manual method for sample 1-10.The serial number 1 to 

10 indicates the individual number as listed in the table 2 .1 
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About 400 bp of up-stream promoter region of SOX2 was PCR amplified by using 

two sets of Primers selected in the respective region, as shown in the figure 3.3. The 

sequence highlighted shows the primers sequences. 

FP -.·liiiiiiiiiiiiiiiirl ACCCTGCACCAAAAAGT AAATCAATA IT AAGTTI AAAGAA 

AAAAAAACCCACGTAGTCITAGTGCTGTTIACCCACTTCCTTCGAAAAGGCGTGTGGTGT 

GACCTGITGCTGCGAGAGGGGATACAAAGGTTICTCAGTGGCTGGCAGGCTGGCTCTGGG 

AGCCTCCTCCCCCTCCTCGCCTGCCCCCTCCTCCCCCGGCCTCCCCCGCGCGGCCGGCGGC 

GCGGGAGGCCCCGCCCCCTTICATGCAAAACCCGGCAGCGAGGCTGGGCTCGAGTGGAGG 

AGCCGCCGCGcdiiiiiiiiiiiiiiiii +--- RP 

Figure 3.3: Sequence of SOX2 promoter region. The arrow indicates forward and 

reverse primers respectively. 

1 2 3 4 5 6 7 8 9 10 

Figure 3.4: Electropherogram of ethidium bromide stained 2 % agarose gel of the 

PCR amplified product, showing samples 1 to 10. The serial number indicates the 

individual number as listed in the table 2.1. 

Sequencing Results 

As discussed previously, single nucleotide change (G-+ C) observed in the sequence 

of samples at serial number; 1,4,5, and 10 (Figure: 3.5). Concentrating on the whole 

population we studied, it is concluded that this variation was only observed in the 

samples we collected from Pakhtoon origins, and the remaining samples possessed no 

variation at any nucleotide and their sequences were the same as shown through 

Ensemble. 
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Sample 1 

• T T TAAAC AAAAAAAAA C C CA C O T A O T C T T A O T O C T O T T T A C C CA C 

~ 
A 

Sample 4 

t 
T T TAAA N AAAAAAAAA C C CA C O T A O T C T T A O T O C T O T T T A C C CA C 

~ 
B 

Sample 5 

• T T TAAAC AAAAAAAAA C C CA C O T A O T C T T A O T O C T O T T T A C C CA C 

C 

Sample 10 

• T T TAAA N AAAAAAAAA C C CA C O T A O T C T T A O T O C T O T T T A C C CA C 

I~ ~ 
D 

Figure 3.5: Sequence analysis of Sox2 promoter in different individuals .The arrow 
shows variation at respective nucleotide of the up-stream promoter sequence; (A) 
Sequence analysis of sample 1 (B) Sequence analysis of sample 4 (C) Sequence 
analysis of sample 5 (D) Sequence analysis of sample 10 
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II ................ ~ACCCTGCACCAAAAAGTAAATCAATATTAAGTTTAAAGAA 
AAAAAAACCCACGTAGTCTTAGTGCTGTTTACCCACTTCCTTCGAAAAGGCGTGTGGTGT 

GACCTGTTGCTGCGAGAGGGGATACAAAGGTTTCTCAGTGGCTGGCAGGCTGGCTCTGGO 

AGCCTCCTCCCCCTCCTCGCCTGCCCCCTCCTCCCCCGGCCTCCCCCGCGCGGCCGGCGGC 

GCGGGAGGCCCCGCCCCCTTTCATGCAAAACCCGGCAGCGAGGCTGGGCTCGAGTGGAGG 

AGCCGCCGCGlcq ............ . 

Figure 3.6: Sox2 up-stream promoter sequence. The region highlighted as red shows 

the enzyme specificity for that region. The downward arrow indicates the exact 

nucleotide (at 741 bp up-stream region from the start site) 'G' replaced by 'e'. 

Digestion with Restriction Enzyme (RE) 

The variation showed at the nucleotide 'e' created a site for the restriction enzyme. 

The enzyme found for the respective site has the specificity shown in the figure 3.7. 

This site is also mentioned in the Sox2 promoter sequence downloaded through 

Ensemble genome browser shown in the figure 3.6, highlighted as red. The arrow 

indicates G to e transition (G -+ e). 

5 •••• GTTT +AAAC ... 3' 

3' .... CAAAt TTTG .•.. 5' 

Figure 3.7: Restriction enzyme (PmeI) sequence. Arrows indicates the specific 

digestive sites. 

Other population of 60 individulas was also subjected for the current study and their 

peR Products were treated with Restriction Enzyme (PmeI) according to the protocol 

discussed in chapter 2. The purpose of the enzyme treatment was to search for the 

variation existence in other groups of the general population. Many samples were 

treated with the respective enzyme to see the digested bands on the agarose gel if 

there is change in the same nucleotide exist where we found earlier. 

After treatment with the RE, no digestion has been observed (Figure: 3.8).The RE 

activity was also tested by repeating the same process for those samples where we had 

already the variation occurred (sample 1, 4, 5, and 10), but again no digestion 
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occurred (Figure: 3.9). The process was repeated 4-5 times to confirm for the 

existence of variation in the Sox2 up-stream region, but no digestion occurred. 

Hence, it shows that the observed polymorphism in the sequence of sample 1, 4, 5, 

and 10 was due to the error in the sequencing as the enzyme didn ' t cleave the peR 

product fro m the observed polymorphic samples. 

2 3 4 5 6 7 8 9 10 

Figure 3.8: Electropherogram of ethidium bromide stained 2 % agarose gel, showing 

no activity of the restriction enzyme. Samples 1 to 10 are the peR amplified products 

treated with restriction enzyme (PmeI) . 

4 5 10 

Figure 3.9: Electropherogram of ethidium bromide stained 2 % agarose gel, showing 

no activity of the restriction enzyme. Samples 1, 4, 5, and 10 are the peR amplified 

products (of individuals having variation observed previously) treated with restriction 

enzyme (PmeI). 
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Discussion 

Human embryonic stem (ES) cells, derived from the inner cell mass of the mammalian 

blastocyst are pluripotent cells that can differentiate into multiple cell lineages and can 

give rise to the three germ layers (endoderm, mesoderm and ectoderm). ES cells have 

the capacity of self renewal and because of these characteristics, ES cells are ideal 

models for studying molecular mechanisms that determine cell fate, and have the 

potential to be utilized in replacement and regenerative therapy for treating a variety of 

human diseases . 

Pluripotency of ES is maintained by a limited set of transcription factors, designated 

"core" pluripotency factors and when introduced in combination can re-program 

differentiated cell s back to a pluripotent state (Okita et aZ. , 2007; Takahashi and 

Yamanaka, 2006; Wernig et aZ., 2007; Yu et aI., 2007). The key pluripotency factors 

include Oet4, Sox2, Nanog, and Klf4 target genes and function in an extensive 

regu latory circuit that si lences the expression of transcription factors required for 

differentiation and activates the expression of genes important for maintenance of 

pluripotency (Jiang et aZ., 2008 ; Kim et aZ. , 2008; Loh et aZ,. 2006). Other important 

factors, including c-Myc, regulate a distinct set of genes and can enhance 

reprogramming of adult cells to the pluripotent state. The delicate balance between 

gene activation and repression may be regulated by the extent of promoter co­

occupancy by the four different pluripotency factors. Si lent promoters are generally 

bound by a single factor while actively transcribed promoters are simultaneously 

bound by multiple pluripotency factors (Kim et aZ., 2008). The correlation between 

promoter occupancy by pluripotency factors and gene expression also coincides with 

specific chromatin modifications (Kim et aZ., 2008). 

In present study upstream promoter region of ESC pluripotency factor, SOX2 gene was 

analyzed for the existence of any sequence variant (po lymorphism) in general 

Pakistani population. Seventy normal individuals were included in study subject 

selected from different ethnic groups. Genomic DNA was extracted from blood 

samples collected from these individuals. The sequence variant was hunted by using 

specific primer set for the promoter region of SOX2 gene. After PCR amplification, 

sequence analysis was carried out to find any sequence variation. Four Pakhtoon 

groups showed G to C transition in the upstream promoter region of SOX2 while the 
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remammg members possessed normal sequence. PCR amplified DNA products in 

which sequence variant were detected were treated with specific restriction enzyme 

(Pmel) to confirm polymorphism. Agarose gel electrophoresis after 16 hours of 

enzyme treatment revealed that the region in which variation was detected is not 

digested by restriction enzyme, suggesting that the sequence variation was not a 

polymorphism but it would be due to any sort of error in sequencer reading. 

SOX2 is a single-exon gene that lies in an intron of the SOX20T (SOX2 overlapping 

transcript) gene on chromosome 3q26.33 encoding a 317-amino acid protein (Fantes et 

al., 2003; Stevanovic et al. , 1994). Sox2 is one of the key transcription factors required 

in induced pluripotent stem cells (Zhao et al. , 2008). As forced Oct4 expression 

induces pluripotency in Sox2-null cells, a group of researchers concluded that the 

primary role of Sox2 in induced pluripotent stem cells is controlling Oct4 expression, 

and they perpetuate their own expression when expressed concurrently (Masui et al., 

2007). 

SOX2 coexpresses with OCT4 stmiing very early in embryogenesis. These factors are 

found within the imler cell mass (ICM) of the blastocyst of the pre-implantation 

embryo. Expression of both factors persists within the epiblast, the tissue that 

differentiates into the embryo and germ cells after blastocyst implantation. SOX2 and 

OCT4 are also expressed in Embryonic Stem Cells (ES) which are typically, but not 

always, derived from the ICM of blastocysts. The importance of SOX2 and OCT4 as 

regulators of pluripotency has been dramatically illustrated by the demonstration that 

these factors together with c-Myc and Klf4 or Nanog and LIN28 can induce the 

dedifferentiation of somatic cells into induced pluripotent stem cells (iPS) with many 

of the features of embryonic stem cells (Takahashi and Yamanaka, 2006; Wernig et al., 

2007; Yu et al., 2007). The successful replacement of embryonic stem cells with 

induced pluripotent stem cells for scientific research and as candidates for clinical 

therapies will require an extensive knowledge of the roles played by SOX2 and OCT4 

as gate-keepers of tot i- and pluripotency. 

SOX2 and OCT4 bind DNA tluough their HMO and POU domains , respectively. SOX2 

and OCT4 regulate the expression of each other which is essential for stabilization of 

pluripotency within cells, such as ES cells (Masui et al., 2007). SOX2 and OCT4 

regulate the expression of Nanog, a transcription factor that co-occupies many of the 
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same genes promoters (Rodda et al. , 2005). Nanog is al so a very important earl y 

regulator of pluripotency. Together SOX2, OCT4 and Nanog co-regulate a growing list 

of downstream target genes. Target genes include YES] , FGF4, UTF] , Fbx]5, Zic3 

and ZFP 206, but this is only a sampling of the hundreds of genes that are involved. 

The targets of SOX2, OCT4 and Nanog have recently been identified using time course 

microarray and genome-wide immunoprecipition data (Sharov et al. , 2008). 

Loss of function SOX2 mutations have been linked to the rare disease microphthalmia 

syndrome type 3, small eye (MeOPS3) (Ragge et al., 2005; Verma and Fitzpatrick, 

2007). 

Conclusion 

In present study we suggested that SOX2 is very important gene, especially involved in 

the regulation of embryonic stem cells pluripotency and play a key role in the 

developmental process during embryonic stages. The lack of polymorphism shows that 

sequence in the upstream promoter region of SOX2 gene is highly conserved. Because 

of its more importance in the human embryos, the evolution has not allowed any 

variation in it. 
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