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Abstract 

Abstract 

Untimely discontinuation and misuse of therapeutic agents paired with emergence of new 

strains has imparted resistivity to pathogens. This demands development of more directed 

antibacterial agents. Klebsiella pneumoniae, a Gram negative, rod shaped bacterium is a 

life threatening multi-drug resistant (MDR) pathogen primarily involved in pneumonia. 

Multi-drug resistant behaviors of this emerging pathogen, initiate the research towards the 

identification of novel drugs. Statting point of this study was to identify and characterize 

the potential druggable targets in multiple strains of K. pneumaniae via a hierarchical in 

silica genome subtraction. Druggable targets were characterized qualitatively through a 

number of filters leading to the identification of a promising drug target candidate, citrate 

lyase subunit beta (citE). Unavailability of experimentally determined structure of citE, 

directed utilization of homology modeling technique to predict the structure. Best modeled 

structure was selected and used for molecular docking studies. Molecular docking protocol 

classified compound 47, as the ligatld best able to fit the binding pocket. Molecular dy­

namics (MD) simulations are playing a promising role in the development of therapeutic 

drugs. Thus, molecular dynamics was steered to simulate citE; a seventy nanosecond MD 

simulation illustrated a steady binding pattern ofligand in the protein ' s active site. Pursuing 

this, trajectory analysis was implemented to assess various characteristics of the docked 

system in terms of function of time. Dynamical flexibility of C-terminal domain was ob­

served. It is established hom the current work that more relaxed and improved structure of 

citE was produced which can be scrutinized for further analysis. Key findings of the study 

can be employed to guide the design of targeted citE inhibitory drugs . 

IX 
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Illtroductioll Chapter 1 

1. Introduction 

Bacterial infections are the leading contributors to global mortality, affecting millions of 

people; with the issue worsened by the emerging antibiotic resistant bacterial strains 

(WHO, 2014). ESKAPE, a class of bacteria, comprising of Enterococcusfaecium, Staph­

ylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeru­

ginosa, and Enterobacter spp. are predominantly considered as the troublemakers in the 

current century due to their multi drug resistance abilities (Pendleton, et aI., 2013; Xu, et 

aI., 2014). Focus on these pathogenic species is due to their contribution to the health care 

associated infections leading to thousands of deaths (WHO, 2014). 

Centers for Disease Control and Prevention (CDC) lately took the initiative to classify ma­

jor microbial organisms that pose a threat to our health care system. The MDR Klebsiella 

pneumoniae is listed as one of the top microorganism with a serious threat level, requiring 

instantaneous attention in order to eradicate the associated health problems (CDC, 2013). 

1.1. J(lebsiella pneumoniae 

Klebsiella pneumoniae (K. pnewnoniae), a member of class gammaproteobacterium (Ber­

man, 2012), is the most prevalent and clinically significant, human pathogen amidst rod 

shaped members of the genus Klebsiella, belonging to the family Enterobacteriaceae. K. 

pneumoniae are non-motile, rod-shaped, facultative anaerobic, Gram-negative bacteria 

(Janda and Abbott, 2008). A distinctive characteristic of K. pneumoniae is a thick polysac­

charide coat, which aids its invasion of the host defenses. Inter and intra-species ' transmis­

sion of plasmids and insertion elements, is facilitated in close members of the family, that 

leads to the horizontal exchange of antibiotic resistance genes. 

Although found in the normal flora of the mouth, skin, and intestines, it can cause destruc­

tive changes to human lungs if inhaled specifically to the alveoli, resulting in bloody mu­

cus. The most prevalent diseases associated with K. pneumoniae comprise of pneumonia 

(and othcr respiratory diseases), urinary tract infections (UTIs) and blood stream infections 
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in neonates, elderl y ll lld immune-compromised pati ents (Liu, 20 11 ). In recent years, K. 

pileulll oniae has bee n labelled as one o f the 1110s1 troublesome nosocomial in fect ive agent 

(Nordlll ann , Cuzon UllJ Naas1 2009). 

I .J.l. K. pllellmoll ille Associated Mortality 

Multidrug resis tant (MDR) K. p nellll1o ll jae, associated infections exhibi t a g loball y errati c 

paUelll of prevalence and d isease associated mortali ties (Ko, ef aI. , 2002). The mortality 

rates of up to 50% have been linked with K. pllellll lO l1iae inflicted hospita l acquired infec­

tiOllS ( \-:IA ls), particularly pneullloni a, bacteracmi u, Spontaneous Bacterial Peritonitis 

(SBP) and neonate scpti caemia (WHO, 20 14). 

K. pllelllllo lliae linked infecti o ns are not restricted to some specific strain but with the pas· 

sage oftime, new strains have been identifi ed in di fte rent coulHries, with an increased mor­

tality ra te especially in Eastern Europe and Lati n America (Paterson, el aI. , 2004). Tile 

World Health Organization approximates that o ne in three newborn infan t deaths arc due 

10 pneumonia. Over two millio n children under fi ve die ead year worlJ wide. Elderly in­

dividuals, too, are at aparticular risk for pneumo nia and associated mortal ity (WHO, 20 14). 

In the Uniled States, communit y-acquired pneumo nia a ffects 5.6 million peo ple p CI' year, 

and ranks s ixth among lead ing causes o f death. Furthermore, indi v idu~ l s with underl y ing 

chro nic illnesses, ·such as Alzheimer's di sease, cystic fi brosis, emphysema, and immune 

systcm problems as well as to bacco smokers, alcoho lics, and individuals who are hosp ital­

ized for any reason, are at signi ficanll y increased ri s k of pneumonia (Alillirnll , et a I. , 1999). 

Spo ntaneous bacteri al peritoniti s (Hassan, E I ~Rehim and EL-Oin, 20 15), 100 has been re­

po rted with a high mortality ra le of th irty percent (30%), s tanding second to pneumo nia 

(Nobre, el aI., 2008), 

1. l.2. Multiplc-DI'ug Resistanc!' 

Multiple drug resistance property present in pathogens is due ro rh e presence of efflux 

pumJl genes and protei ns, which are located 0 11 plasmids o r clU'omosomes (Piddock, 20(6). 

The issue o f increas ing prevalence o f K. fJ lwlII/w n iae infections has been comple mented 

by the rapid Iransmjss ion o f res ist':lnce against all rh e major classes of iln libiotics amung 

2 



Introduction Chapter 1 

different strains (Mantzarlis, et aI., 2013). The antibiotics with high intrinsic activity, ma­

jorly the third-generation cephalosporins (e.g. cefotaxime, ceftriaxone), carbapenems (e.g. 

imipenem/ciiastatin), aminoglycosides (e.g. gentamicin, amikacin), and quinolones are 

used as a treatment for infections caused by K. pneumoniae (Tsai, et aI., 2013). More trou­

blesome is the acquirement of carbapenemases, belonging to a series of Extended Spectrum 

~-lactamases (ESBLs), capable of hydrolysing essentially all ~-lactums including the last 

resOli antibiotics, carbapenems (Mosca, et aI., 2013). ESBL phenotypes, particularly car­

bapenemase KPC2 producing strains have been associated with large scale endemics in 

health-care facilities world-wide (Shafiq, et aI., 2013). Recent researches in Pakistan have 

revealed persistence ofMDR K. pneumoniae infections in health care facilities (Saleem, et 

aI., 2013). The combination ofESBLs with KPCs in K. pneumoniae strains, impalis alarm­

ing resilience against antibacterial drugs, leaving combinatorial therapy as the only choice 

of treatment in celiain instances of severe infections. Researches have been instigated to 

evaluate the limitations of existing treatment options and to formulate novel therapeutic 

interventions against these resilient pathogens (Hirsch and Tam, 2010). 

1.1.3. Genomic Features 

Eight thiliy nine (839) strains of the pathogen, K. pneumoniae have been reported till 20 15, 

however only fOliy three (43) of these strains have been completely sequenced to date. The 

sequenced data is available on National Center for Biotechnology Information (NCBI) 

(http://www.ncbi.nbn.nih.govlgenomelgenomesI815?).This study emphasizes on explora­

tion of the genomes of the selected strains for identifying potential dmg targets. The three 

strains selected are 30660NJST258_1, 30684NJST258_2, and JM45. The genome of K. 

pneumoniae 30660NJST258 _1 complises of a single chromosome, with six plasmid repli­

cons, K. pneumoniae 30684NJST258 _2 contains one chromosome accompanied by 4 plas­

mid replicons, while K. pneUlnoniae JM45 consists of one chromosome and two plasmids. 

Detailed genomic features of the selected strains are given in the Table 1.1. 
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Table 1.1. Genomicfeatures of 30660NJST258_1, 30684NJST258_2 and JM45. 

Strain Name 

30660NJST258 1 

30684NJST258 2 

.. 

JM45 

! Size (Mb) 
i 
I 
15.54094 

, 
i 5.41722 
I 

1 5 ~60317 

i GC% 

I 

I 
. _ .... j 

I 

1.2. Applied In silico Approach 

: Genes 
i 
I . ·--i-

57.15 I 

- I 
57.43 i 

I 
- _ .. _ .. j_ ... -

57.24 I 

Protein 

5587 5598 

5468 5478 

5659 5673 

Cun-ent study incorporates sequential integration of various in silico approaches. The mod­

ular application of these methods follows the following route: genome subtraction, drug 

target selection, comparative homology modeling, molecular docking and molecular dy­

namic simulations. 

1.2.1. Genome Subtraction 

The conventional therapeutic discovery is a lengthy process, with its pace being incompa­

rable for the issues raised by rapidly growing dmg resistance issues. To complement the 

experimental procedures, computer aided drug design (CADD) plays an important role. 

Genome subtraction is a fine example of an integrative approach which provides explora­

tion of the biological space, by identifying novel drug targets. This approach is speedy, 

powerful, and cost effective and has been successfully used to identify druggable targets in 

pathogens including: Burkholderia pseudomallei (Chong, et aI., 2006), Aeromonas hy­

drophila (Shanna, Gupta and Dixit, 2008), Clostridium botulinum (Prajapati and Bhagat, 

2012), Neisseria meningitides (Sarangi, et aI., 2009), Mycobacterium tuberculosis (Hosen, 

et aI., 2014), Staphylococcus aureus (Uddin and Saeed, 2014), Streptococcus gordonii 

(Azam and Shamim, 2014), Edwardsiella tarda (Neema, Karunasagar and Karunasagar, 

2011), Leptospira interrogans (Pradhan, et aI., 2013), Streptococcus pneumoniae (Muniku­

mar, et aI., 2013), Clostridium botulinum (Reddy and Rao, 2012) Mycoplasma genitalium 
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(Butt, et al., 2012), Salmonella typhi (Rathi, Sarangi and Trivedi, 2009) and Mycobacte­

rium leprae (Shanmugam and Natarajan, 2010). The CUlTent investigation employs the con­

cept of genome subtraction to identify novel biological drug targets within the genome of 

K. pneumoniae. 

The procedure begins with the elimination of paralogous proteins of the microorganism, 

followed by a comparative analysis of the remaining proteome ofthe pathogen and host to 

discover non homologous macromolecular entities. Subsequently, proteins that are essen­

tial to pathogenic survival are identified and their druggability potential is determined. Cy­

toplasmic proteins are preferred on other cellular localization areas, because the mode of 

action of the drugs in the cytoplasm is aided in an enhanced manner, than the membrane. 

Thus, cytoplasmic proteins are more potent candidates for drug development (Parvege, 

Rahman, and Hossain, 2014). The resulting set of proteins is essential and unique to the 

pathogen, ensuring prevention of cross reactivity when a drug is targeted against the path­

ogenic protein. 

1.2.2. Drug Target Selection 

Target selection, usually implies finding a therapeutically significant agent (Knowles and 

Gromo, 2003). Besides, a proper target identification suggests the relationship between the 

drug and the disease which can further be investigated for possible side-effects (Hughes, 

et al., 2011). Druggability is an impoliant feature that should be focused on, while probing 

for a potential target. The targets that pose both, structural and functional features of drug­

gability are the most favorable in the course of study (Russ and Lampel, 2005). In the 

current study, the druggable target is citrate lyase subunit beta (EC: 4.1.3 .34), which is a 

metalloprotein and the gene name is citE. 

1.2.3. Comparative Homology Modeling 

Proteins mainly cont'ol the important functions and behavior of living cells. However, 

function of a protein molecule is completely determined by its structure (Genheden, 2012). 

Tluee dimensional structural data oflarge molecules can easily obtained from Protein Data 

Bank (RCSB PDB), which is the central archive of experimentally obtained biomolecular 
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structures. Protein Databank (PDB) is expanding and improving each year (Berman, et al., 

2000). However, the number of structurally characterized proteins is still less compared to 

the available known protein sequences (Schwede, et aL, 2003). Therefore, the lack of ex­

perimental structures in databases can be accomplished by using various theoretical tech­

niques, including homology or comparative protein modeling. Homology modelling is 

based on the simple, yet powerful concept that similar sequences have similar structures. 

Accordingly, the three dimensional space can be explored to generate a theoretical model 

for the target protein if a known template structure with a suitable level of similarity to the 

target is available (Krieger, Nabuurs and Vriend, 2003). 

Owing to lack of crystallographic structure for citE from K. pneumoniae, the selected pro­

tein target was assessed for its suitability to be modeled through comparative modeling 

approach. To enhance objectivity of the approach, several webservers, namely, SWISS­

MODEL (Schwede, et al., 2003), ModWeb (Pieper, et al., 2004) and I-TASSER (Zhang, 

2008) were used in addition to the modeling program, MOD ELLER (Eswar, et al., 2008), 

version 9.1 0. Constructed homology models frOl:n the aforementioned sources were further 

subjected to validation check to evaluate the quality of the three dimensional protein struc­

tures, certifying that the structure is in a thermodynamically stable state (Garza-Fabre, 

Toscano-Pulido and Rodriguez-Tello, 2012). To this end, PROCHECK (Laskowski, Moss 

and Thomton, 1993), ProSA (SippI, 1993; Wiederstein and SippI, 2007), Errat value (Colo­

vos and Yeates, 1993), G-Factor and Bad Contacts (Mon-is, et al., 1992) were measured. 

The structural quality assessment is a fundamental prerequisite for accurate application of 

drug design procedure. 

1.2.4. Molecular Docking 

Improved computational power and the growing ease of data availability in protein data­

bases have led to the emergence of the field called molecular docking. It plays an essential 

role in structural molecular biology and structure-based drug designing by computationally 

simulating the molecular recognition process. It is the main tool frequently used to predict 

the binding modes in drug-receptor interactions by achieving an optimized conformation 

for receptor and ligand (Morris and Lim-Wilby, 2008). It is routinely used in modern drug 
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discovery research for hit identification, lead optimization and bioremediation. Drug dis­

covery demands altering or preventing the biochemical reaction catalyzed via target mole­

cule by identifying a potential inhibitor against a given protein which binds more strongly 

than its natural substrate (Thomsen and Christensen, 2006). It helps in the antimicrobial 

drug research, by predicting the preferred binding orientation of small molecule drug can­

didates against their macromolecular target. 

Molecular docking studies explore the possible binding modes of a substrate to a given 

receptor but lack receptor flexibility. On the contrary molecular dynamics simulations treat 

protein-ligand as flexible and explore the best conformation of receptor ligand complexes. 

MD simulations are employed in the CUlTent study to further investigate the exact binding 

conformations and time dependent behavior of protein-ligand complex. 

1.2.5. Molecular Dynamics Simulation 

Molecular dynamics (MD) simulation has been applied successfully to study the behavior 

of protein and its structural dynamics that gives even minor and specific details on the time 

scale. Advancement in this brilliant technique enables to resolve biological problems. The 

work on MD simulation was first stalied by Alder and Wainwright in 1959. First studied 

protein via MD simulation was bovine pancreatic trypsin inhibitor (BPTI) . Over the past 

years, MD simulation has become a rapidly established field and a standard tool to study 

biomolecules (McCammon, Gelin and Karplus, 1977). 

The collaborations ofMD simulation and docking studies can give realistic information on 

structural level. Binding modes, stability, and ligand conformations; in all aspects, MD 

simulation is playing its vital role. MD simulation provides insight of dynamic propeliies 

like structural compactness and confonnational changes, of the system (Azam, Uddin and 

Wadood, 2012). Therefore, in the context of drug designing, MD simulations can be con­

sidered as a very interesting application (Hansson, Oostenbrink and van Gunsteren, 2002). 

The progression in computational powers has now allowed, simulating a protein system for 

an even longer time-scale. MD simulation is based on a simple concept of mechanics which 

involves Newton's equations of motion (Binder, et aI. , 2004). Molecular dynamics simu­

lations are remarkably used to study macroscopic thermodynamics. MD simulations also 
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assist to analyze and understand experimental data. Improvements in therapeutics can be 

attained by combining MD simulations, docking and experimental data (Alonso, Bliznyuk 

and Gready, 2006). Biological processes take place at different time scales on the basis of 

their complexity and dynamic nature. The dynamic behavior of biological molecules can 

be classified over the varying time scales into tlu'ee parts. Local motions that describe the 

side chain movements, atomic fluctuations and loop motions over the time range of 10-15 

to 10-1 second with the distance of 0.01 to 5 A. Rigid body motions that cover the helix, 

domain and subunit movements over the distance of 1 to loA and time range of 10-9 to 1 

second. And large scale motions that require longer time scale usually 10-7 to 104 second 

to complete. They deal with very small movements such as folding or unfolding of proteins, 

helix coil transitions, winding and unwinding of DNA or association and dissociation of a 

receptor and its ligand (Allen and Tildesley, 1989). 

1.2.5.1. Statistical Mechanics 

MD simulation deals with the information at microscopic level which includes atomic po­

sitions and relative velocities. To extend its applicability to biological systems, microscopic 

information is transfonl1ed into macroscopic entities such as energy, pressure and temper­

ature using statistical mechanics. Macroscopic propeliies like fluctuations in binding en­

ergy or conformational changes involved in protein-ligand complex are explored using 

mathematical expressions of statistical mechanics. The objective is to investigate macro­

scopic phenomena from the propeliies of individual molecules in a system. Statistical me­

chanics prompts a sequence of points in multidimensional space as a function of time. All 

these points generated belong to the same states or microstates which are collectively re­

fened as an ensemble. Ensemble of any system is the representative of different confor­

mations of the system, having different microscopic states but same thermodynamic mac­

roscopic states (Wilde and Singh, 1998). In statistical mechanics, four major ensembles 

exist with varying characteristics (Wereszczynski and McCammon, 2012). 

1. Canonical Ensemble (NVT) is characterized by constant number of particles N, 

constant volume V and constant temperature T, in thenl10dynamic studies. 
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2. Micro canonical Ensemble (NVE) has a constant number of particles N, constant 

volume V and constant energy E. 

3. Isobalic-Isothermal Ensemble (NPT) deals with constant particle number N, con-

stant pressure P and constant temperature T. 

4. Grand Canonical Ensemble (flVT) has a constant chemical potential fl., a constant 

volume V and a constant temperature T. 

1.2.5.2. Classical Mechanics 

The treatment of microscopic systems through laws of classical mechanics gives rise to 

molecular dynamics (Tuckerman, 2010) . Classical mechanics is centered on Newton's sec­

ond law and therefore describes the dynamic motion of biological bodies over a given time 

period. It states that when a force "F " is applied on a particle " i ", having a mass "m", it 

will accelerate by a quantity "a" (McCall, 2010). Newtonian mechanics is applied at the 

molecular level by extrapolating this concept, to deduce the acceleration produced by "N ' 

particles in a system, given that force applied on them is known. A specific particle " i" 

therefore experiences a cumulative force because of all the other pmticles that interact with 

it. This force is dependent on the positioning of interacting constituents and velocities re­

sponsible for their acceleration tlu'ough the system over a certain time scale (Tuckerman, 

20 I 0). Mathematical equations, describing these concepts, allowing calculation of macro­

canonical observables, are presented below. 

The equation of motion for "itll" pmticle: 

(1.1) 

Where Fi is force applied on the pmticle, "mi " is the mass of the particle "i " and " ai" is the 

acceleration produced. The acceleration is the second derivative of distance "r" and time 

"t", thus, substitution ofthese quantities gives the following equation: 

(1 .2) 
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When a force "Fi" is applied on a particle of mass "m;" it can be described in terms of 

change of potential energy "v" to give the following: 

(1.3) 

So, "F;" in equation 1.2 can be replaced by equation 1.3, and then they can be equated to 

give: 

(1.4) 

During production run, the next coordinates for every particle in a system at any given time 

can be calculated using previous coordinates "1';", velocity "v" and acceleration "a" at a 

given time "t" . 

dv 
a=­

dt 
(1.5) 

Equation 1.5 denotes that for a particle in motion, its acceleration is dependent on the rate 

of change of velocity with respect to time. 

1.2.5.3. Molecular Mechanics 

Molecular mechanics utilizes classical mechanics to model molecular systems and deter­

mines the structure and physical properties of biological molecules. Molecular mechanics 

aims at calculating the energy associated with a given conformation of the molecule. Po­

tential energy function is the sum of individual functions for angle bending, bond stretch­

ing, torsional energies and non-bonded interactions. Force field of a molecular system can 

be given by the sum of individual energy terms: 

E = Ecovalelll + Elloll-covalelll (1.6) 

Ecovalenl = Ebolld + Eallgle + Edihedral (1.7) 

Elloll-covalenl = E eleclroslalic + E"all de,. waals (1.8) 

Where the covalent interactions account the bond, angles and dihedrals while non-covalent 

interactions are the sum of electrostatic and van der Waals forces. 
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1.3. Aims and Objectives 

Progressive expansions of computer aided drug design approaches have aided in removing 

mUltiple obstacles of the drug discovery process. Current research is driven by the necessity 

to address the incessantly increasing health-risk posed by life threatening nosocomial in­

fections. Thus, this study proposes to scrutinize several strains of multiple drug resistant 

human pathogen Klebsiella pnuemoniae, and suggest a substitutive therapy to overcome 

the failure of preexisting antimicrobial treatments. With the shift from genetic to genomic 

approach, however, the conventional route to drug target mining, associated with strenuous 

procedure, is no longer desirable. In silica subtractive genomics approach was thus applied 

to explore the complete genome of three K. pneumoniae strains (30660NJST258 _1, 

30684NJST258_2, and JM45), which resulted in a common novel drug target. The result­

ing target represented a druggable protein, with the potential to be modulated by small 

drug-like inhibitors. Comparative analysis was carried out among diverse range of inhibi­

tors by using molecular docking methods to screen out, the best target binding inhibitor. 

Computational aspects of the present study are enhanced additionally by dynamic view of 

the Jocked system, provided by simulation studies catTied out. Simulated view of the target 

protein in ligand-bound f011n has substantial role in illustrating the structural conformations 

and stability. 
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2. Methodology 

In context to the cunent work, the procedural details including several computational ex­

pertise used and parametric observations made during the various phases are outlined in 

the following sections. 

2.1. System Specification 

The entire scheme comprises of four major steps; subtractive genomics, homology model­

ing, molecular docking and molecular dynamics simulations. The whole research was per­

formed on Intel (R) Core(TM) 2 Duo CPU E8600 @ 3.33 GHZ and operating system Linux 

openSUSE 11.4 was used. This computational facility was provided at Computational Bi­

ology Lab of National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pa­

kistan (Figure 2.1). Furthermore, for extension of the simulations, assistance was acquired 

from Center for Chemistry and Biomedicine (CCB), University oflnnsbruck, Austria. 

Figure 2. 1. Cluster system used/or computational studies carried out. 
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2.2. III silico Approach Overview 

The computational stream of work performed can be divided into different divisions. Each 

of these divisions implied a diverse set of tools and softwares, which were integrated to­

gether to insinuate into the pharmacologically essential, unique druggable target. This pro­

cess started wi th the exploration of complete genome of K. pneumoniae. Three strains were 

selected and the rest was performed on all three selected strains. The therapeutic candidate 

that demonstrated strong functional significance was then subjected to comparative model 

building. The inhibition mechanisms were consequently comprehended through the use of 

molecular docking. MD simulations, provided a dynamic interpretation of time dependent 

variation in the behavior of the macromolecular systems. The schematic overview of the 

performed activities is provided in Figure 2.2. 

1.Gellome 

Sabtractioa 

Complete Genome 
Refrienl from 
DDipro! 

Paralog 

ReDloyal 

Retriedng 
Homologous 

Protein 

Identification of 

Essential GeneslProteins 

Pathway Analysis 

Druggabilty 
Assesmeot (Drug Bank) 

Subcellular Localizatiou 

Prediction 

r-

.... 

2.Homology 

ModelliDg 

Model Building and 
Minimization 

ModelValidation: 

l. Ramachandran Plot 
2. Z-score 
3. Errat 

3 • l\IolecaJar 

Dockial 

Active Site 

Prediction 

U Li~~nd I Preparation 

Molecnlar 

.... Docking 

Studies 

-

1. Minimization 

2. Heating 

3. Equilibration 

Molecular Dynamics 

Simnlations 

frajectory Analysis: 

1. RMSD 
2. Rl'ISF 
3. B-Yactor 
4. Radius of Gyration 

Figure 2. 2. Schematic workflow, highlighting the major steps employed in study. 
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2.2.1. Genome Subtraction 

One of the 1110st recently used strategies for dmg target identification, in pathogens is sub­

tractive genomics approach. The subtraction process began with the extraction of complete 

ger;.{~me ofthe pathogen. UniProtKB (Boutet, et aI., 2007) was used to retrieve the genome 

ofthree completely sequenced strains, of the pathogen under study. This database consists 

of both manually curated (UniProtKB/Swiss-Prot) and automatically annotated (Uni­

ProtKB/TrEMBL) protein sequences. After complete genome retrieval, a sequential series 

of analysis were performed that are discussed below. 

2.2.1.1. Paralog Removal 

Complete genomes of multiple strains of K. pneumoniae namely 30660NJST258_1, 

30684NJST258_2, and JM45 were retrieved from Uniprot (http://www.uniprot.org/) in 

F ASTA format. In order to eliminate the redundant paralogous proteins, the web server, 

CDHIT Suite (Cluster Database at High Identity with Tolerance) was used (Li, Jaroszewski 

and Godzik, 2001). It is a user friendly web interface that accepts genomes in the FAST A 

format and removes redundant data. The cut off value was set to 0.6 (i.e 60%). 

2.2.1.2. Homolog Removal 

Next two steps were enclosed using Perl script. The Perl script saves time in exploration 

and filtration of sequences in multiple strains. These scripts were provided at Computa­

tional Biology Lab of National Centre for Bioinfonnatics, Quaid-i-Azam University Islam­

abad, Pakistan. The comparative alignment of non-homologous K. pneumoniae proteins to 

the human proteome was carried out using the protein Basic Local Alignment Search Tool 

(BLASTp) service at National Center for Biotechnology Information (NCBI) 

(http: //blast.ncbi.nlm.nih.gov/Blast.cgi). In the first step, whole proteome of the pathogen 

was searched against human proteome using Basic Local Alignment Search Tool 

(BLASTp) at threshold expectation value (E- value) of 10-4• K. pnewnoniae sequences for 

which no cOlTesponding hits were found or which showed < 35% identity with human 

proteins, were selected as non-homologous, which were subsequently subjected to essen­

tiality check. 
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2.2.1.3. Essential Proteins Identification 

Non-human homolog sequences from the preceding step were used for essential proteins' 

identification in which Database of Essential Genes (DEG) (http://tubic.tju.edu.cn/deg/) 

(Zhang, Ou and Zhang, 2004) was employed. The number of essential genes in prokaryotes 

and eukaryotes have amplified about la-fold and 5-fold, respectively in DEG (Zhang and 

Lin, 2009). BLASTp search was carried out against DEG with E-value cut off at 10-1°, bit 

score = 100 and sequence identity of >= 30%. All parameters were set to the Perl script 

and the resultant file consisted of the shOlilisted essential proteins. 

2.2.1.4. Metabolic Pathway Characterization 

The allotment of metabolic pathways to essential proteins was the next step ofthe screening 

procedure. Essential non-homologous proteins were then functionally classified through 

the use of KEGG Automatic Annotation Server (KAAS) (http ://www.ge­

nOl/lejplkegglkaasl), an analytical tool supported by the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) database (http: //www. genomejp/kegg/). KAAS server used K. pneu­

moniae genome as reference data set, to increase the accuracy of results. KAAS server 

assigns KEGG orthology (KO) IDs to the proteins using BLASTp, to search against the 

KEGG GENES repository (Kanehisa and Goto, 2000). It also allows access to analytical 

resources to transfer annotations, predict pathways and conduct similarity searches. On the 

basis of KO numbers, metabolic pathways are consigned to the set of sequences under 

study. (Moriya, et aI., 2007). Since only a part of the complete pathogen proteome was 

being assessed, single-directional best hit method was employed. The predicted pathogenic 

pathways were manually matched to the human pathways to classify them into two cate­

gories: common and unique. Common pathways were those present in both the bacterium 

and the host. Whereas, unique, were exclusive to bacterium and hence, focus of current 

work. 

2.2.1.5. Druggability Assessment using Drug Bank 

Succeeding the characterization of pathogen specific proteins, druggability screen was ap­

plied as a filtering criterion. DrugBank is an online tool comprising details regarding the 

biochemical and pharmacological properties of a drug and alongside drug targets and their 
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mechanisms. Besides this, information about the quantitative structure activity relation­

ships (QSAR) and absorption, distribution, metabolism, excretion and toxicity (ADMET) 

properties are also incorporated in DrugBank (Law, et ai., 2014) . To evaluate the drugga­

bility of potential target, DrugBank version 4.2, with default parameters, was used and only 

the proteins having a bit score > 100 or belonged to either experimental, investigational or 

approved category were selected. 

2.2.1.6. Localization Prediction 

The concluding step of the genome subtraction was prediction of subcellular location of 

the screened, Ul1lque and essential protein targets. PSORTb 3.0.2 

(http: //www.psort.org/psortbl) and subCELlular LOcalization predictor (CELLO) version 

2.5 (http://cello.life.nctu.edu.twl) were used to predict the location of the protein targets. 

The protein sequences were submitted in F ASTA fonnat in both tools, with organism type 

set to bacterial and gram stain set to negative. Both PSORTb (Nancy, et aI., 2010) and 

CELLO (Yu, et ai., 2006) implement Support Vector Machines (SVMs), a machine learn­

ing technique that mines the curated dataset to predict the localization through the use of 

suffix tree algorithm. Similar to PSORTb, CELLO adopts functionality of SVMs at two 

levels. The preliminary classification of proteins, confen·ing to subcellular location is per­

formed on the basis of molecular descriptors derived from the protein sequence, followed 

by a final decision centered on the probability of the subcellular location. 

2.2.2. Drug Target Selection 

Subtractive genomics screening process resulted in shOlilisting a few potential proteins 

from complete proteome of K. pneumoniae. Further on, these proteins were evaluated for 

their potency of becoming probable drug targets. Out of six essential druggable proteins 

shortlisted, one protein was selected for futiher computational analysis. UniprotKB was 

used to accumulate information regarding the functional role of the proteins, active 

isoforms and catalytic requirements for enzymatic activity like dependency on co factors , 

subunit structure and associated post translational modifications. Additionally, structural 

details about the identified prospective targets were explored to establish availability of 
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experimental structures. In absence of such structures, the possibility of comparative ho­

mology based modeling was considered by assessing the template availability. The poten­

tial, druggable bacterial proteins, brought forth by the genomic screening were evaluated 

for feasibility to be carried forward towards the CADD process. The aforementioned as­

pects were considered cumulatively, which led to the selection of the most suitable dmg 

target to undergo the CADD phase. Thus, the selected druggable target was citE. 

2.2.3. Comparative Homology Modeling 

A three dimensional crystallographic structure was unavailable for the selected target hence 

comparative modeling was carried out to elucidate a homology based structure. The pep­

tide sequence for K. pneumoniae - citE (Uniprot ID: W8UQT9) was taken from UniprotKB 

and compared to PDB via alignment through BLASTp. The X-ray crystallographic stmc­

ture for mcl from Rhodobacter sphaeroides (Zarzycki and Kerfeld, 2013) having a 33% 

sequence identity, 96% coverage, and a similmity of 71 %, was chosen for model building 

procedure. An important catalytic requirement for citE, being metalloprotein, is its depend­

ency on a magnesium ion as cofactor. Therefore it was imperative that a magnesium ion 

be modeled along with the citE protein. This functionality of incorporating heteroatoms 

(metal ions, ligands etc.) in the target structure, given they are present in template, is 

uniquely inherent in the program MOD ELLER (Eswar, et aI., 2008). Therefore, it was ex­

ploited to generate citE structure with magnesium ion included. The initial alignment be­

tween target and template was can·ied out via the align2d method of MODELLER9.10. 

The model building script was then modified to include a variable that allows magnesium 

(a heteroatom) to be recognized by the program while parsing the template pdb file. MOD­

ELLER9.10 considers heteroatoms as ligid entities and uses their spatial infonnation such 

as bond distances and angles from the template pdb to place them in to the target protein 

structure (Sanchez and Sali, 2000). In addition to MODELLER9.1 0, structure for the citE 

protein, was also attained through three web servers: SWISS-MODEL (Schwede, et aI. , 

2003), ModWeb (Pieper, et aI. , 2004) and I-TASSER (Zhang, 2008) for comparative pur-

poses. 
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2.2.3.1. MOD ELLER 

MOD ELLER is used to predict three-dimensional shllctures of proteins via homology or 

comparative approach. Alignments of a sequence with known related structures are pro­

vided as input and MODELLER generates a model containing all non-hydrogen atoms. 

2.2.3.2. SWISS-MODEL 

SWISS-MODEL is an automatic server used to model teliiary and quaternary structures of 

proteins. It can be accessed through ExP ASY web server and Swiss PDB-Viewer: 

{http://swissmodel. expasy. orgll. 

2.2.3.3. 1-TASSER 

1-Tasser is an online server used for prediction of protein structures as well as their ftll1C­

tions. It is based on multiple threading alignments by LOMETS. It can be accessed from: 

http://zhanglab. eemb. med. umieh. edulJ-TASSERI. 

2.2.3.4. ModWeb 

ModWeb, an online server, is used for comparative protein structure modeling. It can be 

used via ModPipe, which is a large-scale, protein structure modeling pipeline and used for 

its proper functionality. It can be accessed from the following URL: https:llmodbase.eomp­

bio. ues! edulsegilmodweb. egi. 

2.2.3.5. Structure evaluation 

An important step that concluded the model generation procedure was the evaluation of 

model quality. To this end, an array of tools was available which helped quantification and 

therefore validation of stereochemical properties and structural constraints. Highly precise 

tools can be readily accessed at National Institute of Health (NIH) server that provides all 

major structure validation tools through (SAVES) Structural Analysis and Verification 

Server. These tools are: PROCHECK (Laskowski, Moss and Thornton, 1993), Errat (Colo­

vos and Yeates, 1993) and ProSA-web (Wiederstein and Manfred, 2007). 
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PROCHECK estimates stereochemical properties of a protein model; like Ramachandran 

plot, G-Factor and Bad Contacts. It calculates the energy of each residue of the overall 

model and the results are displayed in the form of a graph. Ramachandran plot, the graph­

ical image from PRO CHECK represents the distribution of individual protein residues 

within the predefined allowed and disallowed regions derived from evaluation of phi and 

psi angles of experimental structures (Ramakrishnan and Ramachandran, 1965). G-Factor 

and Bad Contacts are measures of the main chain reliability reflecting the relative position­

ing of non-bonded atoms relative to each other (Morris, et aI., 1992). Errat is used for 

evaluating and refining the protein model. This verification algorithm works by statistically 

inspecting the non-bonded interactions among different atom types. ProSA-web is a tool 

used for validation of protein structures on the basis of z-score. 

2.2.4. Energy Minimization 

Among the evaluated models, best structure was selected and energy optimization of the 

protein model was catTied out to improve its quality. The energy minimization procedure 

was performed by UCSF Chimera, resourceful visualization softwat·e offering various ca­

pabilities for structural analysis (Pettersen, et aI., 2004). Gasteiger charges were assigned 

to the protein and structural relaxation was achieved by application of 1500 rounds of min­

imization runs (750 steepest descent followed by 750 conjugate gradient) with a step size 

of 0.02 A, under ffD3 .r1 force field. The minimized protein structure was subsequently 

evaluated through the use of aforementioned quality assessment tools and utilized in the 

molecular docking. 

2.2.5. Molecular Docking Protocol 

Docking protocol is divided into three steps: active site identification, inhibitors/ligands 

preparation and molecular docking. Detailed methodology of these steps as follows: 

2.2.5.1. Active Site Identification 

Active pocket on a protein surface is assessed using 3D structure of a protein as structural 

information, as the role ofimpOliant active site amino acid residues in the enzyme activity, 

19 



Methodology Chapter 2 

is critical for developing enzyme-specific antibactelial drugs. Multiple computational ap­

proaches with varying accuracies have been developed for prediction of active site in a 3D 

structure of protein. Same proteins share structural features to great extent even in different 

species specifically active site residues. Active site in citE was identified via literature 

search (Zarzycki and Kerfeld, 2013) and DoGSiteScorer, which predicts binding pocket on 

the basis of druggability (Volkamer, et al., 2012) and can be accessed at http://dog­

site.zbh. uni-hamburg.del. Active site mentioned in literature was then explored in our tar­

get sequence manually and through sequence alignment. UniprotKB was also explored for 

active site residue indicators, which turned out be to the same as reported in literature. The 

conserved residues were further prospected for their role in ligand binding. 

2.2.5.2. Ligand Preparation 

Potential inhibitors against the target protein were collected from BRENDA, which is a 

database of enzymes and contains relational information for inhibitors, cofactors, reaction 

kinetics and molecular functions etc. (Schomburg, Chang and Schomburg, 2002). It is 

available at http://www.brenda-enzymes.orgl. A total of one hundred and six (106) inhibi­

tors were collected. The 2D structures of the selected inhibitors were drawn and minimized 

through ChemOffice 2012 packages (Li, et al., 2004). ChemDraw Ultra 12.0 was used for 

structure drawing while the structures were minimized via Chem3D Pro 12.0 using MM2 

force field. 

2.2.5.3. Molecular Docking 

The minimized protein and inhibitors were used to cany out molecular docking via the 

docking tools like Genetic Optimization for Ligand Docking (GOLD) (Jones, et al., 1997) 

and AutoDock Vina (Trott and Olson, 2010). Best docked complexes were characterized 

on the basis of Gold fitness score and binding affinities, respectively. For visualization of 

the docked protein complexes and to understand the interactions that contributed to binding 

of both the ligands and the metal cofactor in detail, LIGPLOT (Wallace, Laskowski and 

Thornton, 1995), Visual Molecular Dynamics (VMD) (Humphrey, Dalke and Schulten, 
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1996), UCSF Chimera (Pettersen, et aI., 2004), Discovery Studio (DS) Visualizer 3.5 (Vis­

ualizer, 2012), and ligand interaction mode of Molecular Operating Environment (MOE) 

(Chemical computing Group, Inc. , 2013) were used. 

2.2.5.3.1. Docking Via GOLD 

"Gold Genetic Optimization for Ligand Docking" (GOLD) Hennes package was used for 

docking. The standard default settings were adapted for docking poses such as population 

size was set to 100, niche size 2, selection pressure 1.1, operator weights for migrate 0, 

crossover 100, number of islands being 1, number of operations 10,000, number of dock­

ings 10, and hydrogen atoms were added in the protein model. 

Genetic Algorithm and GoldScore fitness function were implicated in this study using 

GOLD. The fitness function used in GOLD is as follows: 

(2.1) 

Where Shb_ex! represents the hydrogen bonding score between protein-ligand, SVdll'_ext repre­

sents the Van del' Waals score between protein-ligand, Shb_il1! represents intramolecular hy­

drogen bonds within the ligand, S vdll'_ il1! represents intramolecular strain within the ligand 

and S/or represents the ligand' s torsional energy. 

Gold-Score fitness function (Eq. 2.1) was used as a benchmark to pick the best confor­

mation and was taken in to account for fulther analysis. 

2.2.5.3.2. Docking Via AutoDock Villa 

Binding affinities of ligands along with GoldScore were calculated using AutoDock Vina. 

Vina implements Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for local optimiza­

tion, which is a fast method and combines both scoring functions and its derivatives (Trott 

and Olson, 2010). In the current study, the protocol adopted for AutoDock Vina included 

the ligand and protein pdbgt files; while the size of the grid set for docking was 30 A x 30 

A x 30 A, which was centered at x,y,z dimensions with the values of -5.056, 39.457 and 

95 .677, respectively with a grid box spacing of 1 A. All the grid box parameters were 

defined for protein and ligand in the configuration file. Raccoon (F orli , 2010) was used to 
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makc pdbqt files for ligands. One hundred and six ligands were docked via this setting and 

their binding affinities were calculated. Ligands with lowest binding affinity were ex­

tracted to make poses with receptor, which were used for fmiher assessment. 

2.2.6. Molecular Dynamics Simulation 

Molecular dynamics (MD) simulations is a significant approach to get insight into the con­

formational aspects of biological systems and also to get considerable understanding of 

protein-ligand interactions and conformational changes involved in the process. MD sim­

ulations for the best docked complex were perfol1ned using SANDER module in Assisted 

Model Building with Energy Refinement (AMBER) program (Weiner and Kollman, 1981). 

Simulation ofbiomolecules is performed in four steps, followed by the trajectory analysis, 

which are shown in Figure 2.3 

Figure 2. 3. Steps involved in molecular dynamics simulations. 
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2.2.6.1. System Preparation 

MD simulations were performed using SANDER (Simulated Annealing with NMR De­

rived Energy Restraints) module in AMBER (Assisted Model Building with Energy Re­

finement) 12.0 suite of molecular dynamics program. The tLEaP module in Amber12 tools 

was employed to record the topology of the protein and the ligand. tLEaP, an AMBER 12 

module, is an interface for primary coordinates and topology files preparation. Force fields 

used were f£D3.rI, GAFF and f~9SB (Salomon-Ferrer, Case and Walker, 2013) and the 

system was solvated with three-point transferable intermolecular potential (TIP3P) water 

box with 8.0 A (Figure 2.4). Ten (10) sodium (Na+) ions were added in order to neutralize 

the system. The parameters for magnesium ion (Mg+2
) were explicitly available in the an­

techamber program and therefore the cofactor library was loaded automatically. MD stud­

ies were carried out to investigate the conformations of protein receptor, compute the ac­

curate energies and optimize the structures of docked complexes. 

Figure 2. 4. Solvation box surrounding docked protein. 
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2.2.6.2. Minimization, Heating, Equilibration and Production 

Functionality of tLEaP was extended to carry out minimization procedure of the docked 

system where a total of 5000 steps, split between 2500 steps of steepest descent and 2500 

steps of conjugate gradient minimization were performed. For heating, equilibration and 

production run, periodic boundary conditions with a cut off value of 8.0 A were used while 

maintaining a constant volume, temperature (300K) and pressure (1 atm) (Berendsen, et aI., 

1984). During the production run, SHAKE algorithm (Ryckaert, Ciccotti and Berendsen, 

1997) was applied to restrain hydrogen bond lengths of the system. Since canonical en­

semble was used i.e. constant temperature, Langevin dynamics were employed with colli­

sion frequency set to 3.0. 

Heating was performed for 10 picoseconds while equilibration was done for 100 picosec­

onds. The production run was performed in the similar manner using SANDER module to 

obtain trajectories. A total of70 ns simulation run was obtained for the docked target. The 

analysis files were saved after 2 picosecond time step. 

2.2.6.3 . Simulation Trajectory Analysis 

The trajectories generated as a result of simulation procedure were subjected to detailed 

analysis using PTRAJ module of AMBER to calculate four different quantities, namely, 

Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Beta fac­

tor (B factor) and Radius of gyration (Rg). Graphical representations of these quantities for 

analytical purpose were viewed using Xmgrace (Vaught, 1996). 

2.2.6.3.1. Root Mean Square Deviation 

The coordinates of alpha carbon (Ca) are generally perceived as the representatives of the 

position of an amino acid in the three dimensional space. RMSD is a measure that allows 

comparison of relative positions of protein Ca atoms by computation of their averaged 

distances over a specific time interval (Maiorov and Crippen, 1994). RMSD is mathemat­

ically represented as: 

RMSD 
(2.2) 
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Where N is number of compared atoms, di is the distance between the if I! pair of atoms. 

2.2.6.3.2. Root Mean Square Fluctuation 

Root mean square fluctuation (RMSF) is defined as the root mean-square average distance 

of the given residue from its mean position (Kuzmanic and Zagrovic, 2010). The fluctua­

tion of carbon alpha is calculated for each residue using the following equation: 

T L.tk (Xi (tic) -X) 

T (2.3) 
RMSF 

In this equation, Xi is position of C-a, X is averaged position and T is the time interval of 

that atom. 

2.2.6.3.3. Beta factor 

Beta factor is a term that is closely linked to the RMSF and measures the spatial displace­

ment of atoms around their mean positions, generated as a consequence of the local vibra­

tional and thermal movements (Kuzmanic and Zagrovic, 2010) . Since they measure fluc­

tuations they can be equated in tenns ofRMSF: 

(Srr2) jJ Factor = RMSF 2 
-3-

(2.4) 

2.2.6.3.4. Radius of Gyration (Rg) 

Radius of gyration is a measure of the overall packing quality and density of a structure 

(Goodfellow, 1990). It is a physical property that can also be experimentally calculated, 

often tlu·ough the application of small-angle X -ray scattering (SAXS) (Hong and Lei, 

2009). Quantification of the compactness of macromolecular systems was achieved by the 

implementation of the following equation: 

I~=l nli(ri-rcm)2 

I~lmi (2.5) 

Where N is the total number of atoms, mi is the mass of atom 'i " ri is the position vector of 

atom '; " and r ell1 is the center of mass of the molecule under consideration. 
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3. Results 

The procedural strategy of the drug discovery process aimed at the identification of K. 

pneu7noniae potential targets led to conspicuous findings at various stages. Subtractive ge­

nomic strategy screened out the potential targets at the end of each step. The productive 

outcomes achieved during this course of study are elucidated below. 

3.1. Subtractive Genomics Approach 

The subtractive genomics approach is divided into various steps which screen the genome 

of the organisms under study. In the current study, genornes of three strains of K. pneu­

moniae were screened and the proteins were sifted at each step on the basis of some user­

defined thresholds. This approach helped in identi.fying potential drug targets, common to 

all the three strains. An overview of the progressive subtractive genomic screening proce­

dure is shown in Figure 3.1. 

5{):GO 

S1J!GO 

4U1JO 

1 00 

o ._-
• Total no. 0 - Proteins 

• 
Klebsie lla 

pn eumo niae 
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30584~JJSif2SB _2. 

Non-paralogs (Cd-Il t ) 
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• Dr llggalJle TCf'gets 

Figure 3. 1. Overview of the screened proteins obtained at the end of each step of sub-

tractive genOinics. 
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3.1.1. Genome Retrieval 

K. pneumoniae strains namely, 30660NJST258_1 , 30684NJST258_2, and JM45 were se­

lected for current subtractive genomics study. These strains are completely sequenced and 

their genome was retrieved from UniProtKb. Genomics features of the selected strains are 

mentioned in Table 1.1. 

3.1.2. Non-Paralogous Proteins 

After the genome retrieval, the first step was to remove the non-paralogous proteins from 

the genomes of selected strains. It was performed by CD-HIT application. This led to the 

identification of 77, 112 and 719 paralogs (duplicated proteins/genes) 111 

30660NJST258_1, 30684NJST258_2, and JM45 K. pneumoniae strains, respectively. The 

remaining non-paralogous proteins I.e. 5521 111 30660NJST258 1, 5366 in 

30684NJST258_2 and 4954 in JM45 were then subjected to further subtraction analysis. 

3.1.3. Non-Homologous Proteins 

Using Perl scripts, BLASTp was performed against human proteome to identify non-ho­

mologous proteins and a total of 729, 723 and 696 homologous proteins were removed 

from the proteome of30660NJST258_1, 30684NJST258_2, and JM45 , leaving only 4793 , 

4643 and 4258 proteins in three strains, respectively. 

3.1.4. Pathogen Essential Proteins 

This search was performed against the DEG database to identify essential proteins in the 

pathogen, which were imperative for their survival. After the DEG screening, essential 

genes identified were 1367 in 30660NJST258_1 , 1364 in 30684NJST258_2 and 1323 in 

JM45, with 3224, 3076 and 2731 non-essential proteins left, respectively. The non-essen­

tial proteins were not included in the further analysis, due to their insignificance in bacterial 

survival. 

3.1.5. Metabolic Pathway Analysis 

K. pneumoniae essential proteins obtained from the previous step, were subjected to KAAS 

that was used to annotate the essential pathogen proteins, in order to identify the metabolic 
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pathways in which these proteins were involved. KASS identified 628, 623 and 597 pro­

teins involved in 30660NJST258_1, 30684NJST258_2, and JM45 respective pathways. 

3.1.6. Druggability Assessment 

To ascertain the relation between screened targets and their drug binding ability, DrugBank 

4.2 was used and 257,255 and 253 druggable targets while 378,379 and 365 non-essential 

druggable targets were identified in 30660NJST258_1, 30684NJST258_2, and JM45, re­

spectively. During this screening procedure, many novel target proteins were also identi­

fied, for which no hit was scored in DrugBank. 

3.1.7. Subcellular Localization 

Durggable targets were then fmiher processed for subcellular localization predictions and 

6, 9 and 10 cytoplasmic proteins were identified in 30660NJST258 _1, 30684NJST258 _ 2, 

and JM45, respectively. Remaining proteins in the respective strains were either periplas­

mic or membranous. Cytoplasmic proteins were considered to be a potent candidate for 

being a putative drug target as the cytoplasmic proteins are usually enzymatic in nature, 

and thus aid bacterial growth. 

3.2. Drug Target Selection 

Unique pathways along with the number of proteins that were identified in Klebisella pnue­

maniae are listed in Figure 3.2. These pathways were common in all three strains. A total 

of 10 proteins involved in these pathways were common to all three strains. Out of these 

drug targets, six proteins were short listed with their evident parameters outlined in Table 

3.1 . Out of the six shOlilisted drug targets, for the current study "Citrate lyase subunit beta"; 

citE, a metalloprotein (EC: 4.1.3.34), was selected for CADD analysis . CitE is critical pro­

tein for bacterial pathogenesis, as it is essential for anaerobic energy metabolism (Gould­

ing, et ai., 2007). CitE is involved in two-component pathway, which allows the organisms 

to adapt to a wide range of environments and growth conditions including antibiotic stress 

(Srinivasan, et ai., 2012). 
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Figure 3. 2 Number of proteins involved in the unique metabolic pathways of K. pneu­
moniae. 
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Table 3.1. Features used to identify feasibility of targets for CADD analysis. 
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3.4. Comparative Homology Modeling 

The CADD process begins with the structural availability of the chosen protein. Since ex­

perimental structure was unavailable for citE, comparative model building was carried out. 

At the sequence level, K. pnewnoniae citE protein showed 96% coverage and 33% identity 

to the template structure PDB ID: 4L9Y, chain A. Using the template as a guide, structural 

models were generated through MODELLER9.10 and a variety of web servers. MODEL­

LER 9.10 was used to generate five models along with Discrete Optimized Protein Energy 

(DOPE) score calculation. A thorough comparison of the stereochemical properties was 

subsequently can-ied out to select the best modeled structure (Table 3.2). 

Based on the quality assessment measures obtained for the various homology models, 

Model number 3 generated via MODELLER9.10 was selected for fmiher processing. In 

addition to providing significant coverage, Model 3 exhibited strong stereochemistry (Ta­

ble 3.3). TlM-ban·el structure was observed in citE which is considered as one of the most 

common conserved protein fold. It controls the enzymatic catalysis and maintains the struc­

ture of the protein (Nagano, Orengo and Thornton, 2002). The K. pneumoniae citE struc­

ture has the (~/a)8 TIM-barrel fold with an additional a-helix (Figure 3.7). TIM-banel 

domain, showed the same depiction as in template structure. Moreover, when superim­

posed, the backbone atoms showed RMSD of 0.281 A which is representative of high ac­

curacy of the model. Another consideration made while selecting the model was that MOD­

ELLER9.10 fulfills the requirement of Mg +2 in the target protein structure. Since the web 

servers did not extend the capability of cofactor addition, Model 3 from MODELLER9.1 0 

was selected for further processing. The model building procedure was followed by energy 

minimization in order to relax the overall structure and allow adjustment of side chains to 

remove steric clashes. An added benefit of optimization procedure was the improvement 

in the Errat quality factor which increased from 76.63 to 87.63 (Figure 3.3). Also, the op­

timization reduced the z-score from -5 .1 to -5.9 (Figure 3.4). An illustrative view of the 

superimposed target-template structures depicting the accurate placement of the metal co­

factor is shown in Figure 3.5. The homology model served as a staliing point for the dock­

ing and subsequent simulation procedures. 
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Table 3. 2. Stereo-chemical properties of comparative homology modeled structures. 

-.-.- -_.- ---" - '_._._----- ---.---- - .. -- .-- - ._--------

Structure Resource Number of Residues , G Factor Errat Z Score 

- -_ ... 

[A,B,L] [a,b,l,p] [-a,-b,- l,-p] Disallowed 

Allowed region Additionally Generously 
region 

allowed region allowed re-

gion 

-- , .• - --- - _.- -..- - - --
MODELLER (1) 91.6% 7.3% 1.1% 0.0% -0.61 80% -6.18 

----_._-----: ------- . __ ._---------- --------+- ---. --_ .. _---_._-. 
MODELLER (2) 89.7% 8.4% 1.9% 0.0% -0.57 78.5% -5.44 

. --.-- ._----------_._-. 

, MOD ELLER (3) 92.0% 6.1% 1.5% 0.4% , -0.80 87.63% -5.90 

- _ .. -.--. - '" -- _. ________ . .1_ 
MOD ELLER (4) 90.8% ' 6.9% 1.9% : 0.4% -0.44 82% ' -6.02 

... _.- _____ 0 ______ ---_ •• _--- _. ______ . _____ . _____ .. __________ " ___ .,0_._ .. __________ ._._. ____ _ 
------~ 

MODELLER (5) 90.8% 8.0% 1.1% 0.0% -0.52 72.2% -4.95 

-,---- - ._ .. _-- ------_._------ -----------
I-TASSER 67.6% 25.6% 5.2% , 1.6% 0.11 64% -11.1 

- - -- - -- - - -- - --.--- --,. --- - ----- - - --- - - -

ModWeb 87.5% 5.3% 1.5% ' 0.4% -0.27 71% -9.03 

.' .... - .--- .-.-- ----"- --"_. --' _.' .... - ... _._--------- .. _-----------. __ .. _. __ . --._-----------------_ .. _---. --"-- -------- ---
SWISS-MODEL 89.2% 7.8% 0.4% 10.8% -0.28 70% -10.65 

-- .-----------------.. -------------
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Figure 3. 3 En-at plot of the selected MODELLER protein after minimization. 
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Figure 3. 4 Z-score plot of the selected MODELLER protein after minimization. 
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RlVISD=O.281 

Figure 3. 5 Superimposed structures of template 4L9Y (light green) and target citE (light 

brown) with magnesium ion. 
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Table 3. 3. Physicochemical properties of citE using ExPASy ProtParam tool. 

Physicochemical Propeliies 

Number of amino acids 

Molecular weight 

Theoretical Pi 

Total number of negatively charged 
residues (Asp + Glu) 

Total number of positively charged 
residues (Arg + Lys) 

Aliphatic index 

Instability index 

Grand average of hydropathicity 
(GRAVY) 

3.5. Molecular Docking 

Values 

293 

31780.4 

5.10 

42 

30 

102.29 

31.72 (Stable) 

0.054 

The information about the domain organization within the citE protein combined with iden­

tification of the active site guided the molecular docking procedure. 

3.5.1. Active Site Identification 

Active site of citrate lyase subunit beta was identified via literature search and also recon­

firmed using DoGSiteScorer (Volkamer, et aI., 2012) . DoGSiteScorer predicted thirteen 

pockets and fl.-om the first pocket active residue was selected which was the same as cited 

in literature. The active site of citE constitutes of negatively charged amino acid residues, 

glutamic acid and aspartic acid, coupled with a positively charged magnesium ion 

(Zarzycki and Kerfeld, 2013), illustrated in Figure 3.6. The selected amino acid residue in 
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the CUlTent course of study is Asp 160. A conserved active site is observed in different 

orthologues of citE. 

N-terminal 
Domain 

I TIM-barrel 

Figu,.e 3. 6 Topological view of citE, C and N-terminal domains with Mg +2 represented 
in the vicinity o/the active site residue i.e AspJ60. 
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Figure 3. 7 Topological view of citE highlighting the TIM-barrel through the Bendix rep­
resentation. 

3.5.2. Inhibitors Selection 

The inhibitors selected to be docked into the active site of citrate lyase subunit beta, were 

mostly selected from the literature. Compounds £i'om literature, and their analogues were 

used as potential inhibitors against citrate lyase subunit beta (Aoshima, Ishii and Igarashi, 

2004). In the current study, the inhibitors were accessed £i'om the BRaunschweig ENzyme 

Database (BRENDA) (Schomburg, Chang and Schomburg, 2002) and a total of one hun­

dred and six (106) inhibitors were docked into the active site of citE. 

3.5.3. Interaction Analysis 

A total of 106 ligands were docked into the active site of the target, using GOLD and 

AutoDock Vina for calculation of GOLDScore and binding affinities, respectively. Along 

with this, preferred binding pocket orientation of active compounds was also identified. 

Conezyme-A (CoA) was the top scoring compound in both GOLD and Vina docking re­

sults. Current docking results depict the IT-interactions and hydrogen bonding between the 

potential inhibitor and active site residues. 
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3.5.4. Active Site Binding Analysis 

The prepared ligand molecules were docked into the active site of the target using GOLD. 

Conesponding binding affinities were also calculated using AutoDock Vina. The highest 

GoldScore of 102.8 was achieved for compound 47, with a binding affinity of -8.0 

kcallmol. Docking scores and respective binding affinities for top 10 compounds, arranged 

in descending order of GoldScore values are provided in Table 3.4. Detailed visualization 

analysis calTied out through UCSF Chimera, LIGPLOT and MOE revealed the confonna­

tional details and preferred orientation of the ligand binding. Additionally it was seen that 

the metal ion, Mg+2 confened no visible changes upon ligand binding. A graphical repre­

sentation of the docked ligand via GOLD and Vina, positioned within the active site is 

outlined in Figure 3.8 and Figure 3.9, respectively. 

Table 3. 4. Docking results of top ten docked inhibitors in descending order of GOLD 

Score with the corresponding binding affinities. 

1 GoldScore 
---.~ -

r Binding Affinity i ' Sr. No. Compound No. 
r I 
i (kcallmol) ! 

l. 47 102.8 • -8.0 

2. 55 196.5 . -7.9 

3. 10 : 94.1 i -7.9 
! 

4. 33 ' 91.0 
, 

-6.5 
i 

5. 105 , 90.6 ' -7.1 
I 

. 6. 
I i 

61 190.5 i -6.9 

, 7. 157 I 89.3 i -7.5 
I 

8. 52 187.9 i -7.3 
! 

! 

_.- - - -
' 9. 92 87.1 -6.8 

10. 78 85.4 i -7.5 
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Figure 3. 8 Best docked inhibitor (spring green) in the active site of citE with Mg+2 also 
shown to be a part of the active site. 

Figure 3. 9 An overview of compound 47 docked into the active site domain of the se­
lecetd target, citE (VINA). 
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The binding of compound 47 was observed at the active site of the protein and residues 

involved in electrostatic interactions were Va1l97, Met163, Asp160, Phe159, Va1l58, 

Glu133, Lys98, Arg95, Arg70, Ala40, Asp39, Glu38, Asp36, Pro15, IIe14 and Phe13 (Fig­

ure 3.10) . Besides this Va1225, Val196, Va1162, Ala158, Ala131 and Pro97 showed n­

interaction with ligand, depicted in Figure 3.11. Moreover, LIGPLOT image i.e. Figure 

3.12 illustrated the presence of hydrogen bonds between the ligand and the target. The 

Mg+2 interactions at the active site of citE were also illustrated using LIGPLOT and can be 

viewed in Figure 3.13. Ligand oxygen moiety formed two hydrogen bonds with the active 

residue Lys98 having 2.29 A and 3.86 A distance and nitrogen atoms of the ligand devel­

oped hydrogen bonding with Arg95, Glu133 and Asp160 residues of the protein, at a dis­

tance of3.23 A, 2.91 A and 3.46 A, respectively. Besides that, Mg+2binding site exhibited 

hydrogen bonding with Glu38, Asp39, Glu133 and Asp160 residues. Hydrogen bonding 

depicted by Mg+2 did not alter after the docking of ligand in the active site. The hydrogen 

bonds present between the ion and the above mentioned residues had 1.87 A, 1.85 A, 1.87 

A and 1.88 A distances, respectively (Figure 3.14). Along with these, hydrogen bond de­

tails ofligand with the target residues are given in Table 3.6. 
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Figure 3. 10 MOE ligand interaction image showing bonded and non-bonded interac­
tions of inhibitor bound citE. 
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Figure 3. 11 DS Visualizer 2D depiction of compound 47 representing hydrogen bonds 
and 7[ interactions. 
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Figure 3. 12 Interaction of ligand with citE, highlighting interacting residues through 
LIGPLOT. 
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Figure 3. 13 LIGPLOT illustration of Mg+2 interactions with their surrounding protein 
residues. 

Figure 3. 14 The placement of Mg +2 in the active binding pocket of citE. 
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Table 3. 5. Hydrogen bond details of best docked compound with important interacting 

residues. 

Protein Interacting 
I -

1 Distance (A) 1 Ligand Interacting 
Atom i Atom I I 1 

36ASP 002 I UNK H I 3.20 

I UNK N 38 OLU OE1 13.72 
1 I UNK-- H --

-- ----- -- _.-

39ASP OD2 2.75 

70ARONH2 3.85 I UNK H 
I 

70 ARONH1 ! UNK H 
1

3
.
20 

I UNKH 95ARONH2 i 2.57 
I 

95 ARONH2 _l UNK_H 
I 
/ 3.39 

- -

1
3

.
23 95AROHH22 I UNKN 

I 

98 LYS HZ1 I UNKO 

1

229 
---- --. _. ----- ._ ... 

98 LYS HE2 UNKO 3.86 

98 LYS NZ UNKO 1 3.29 
i 
I I 

98 LYS NZ I UNKH I 3.71 

133 OLU H02 I UNKN 
1

2.91 

-1--- - .. ------ ._- I 
133 OLU OE1 UNKH 2.37 

133 OLU OE2 UNK H 2.78 

160ASP 001 ' UNKH 3.00 

I UNK -H 160 ASP 001 2.57 
I 

-- --
160 ASP H UNK N 3.46 

! 160ASP 001 UNK N 3.40 
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3.6. Molecular Dynamics Simulation 

The docking study provided meaningful insights into the structural basis of druggability 

potential of K. pneumoniae citE. However, it provided this information within the context 

of a static environment. In order to infiltrate the dynamic behavior of citE, simulation pro­

tocol was canied out followed by trajectory analysis to assess various properties of the 

ligand bound protein. Simulation studies not only comprehend the dynamic behavior of 

proteins but also highlight impOliant residues which play critical role in dynamic behavior 

(Azam, et aI., 2013) Propeliies including the RMSD, RMSF, B-factor and radius of gyra­

tion were plotted as a function of time to understand the biomolecular movements within 

a solvated environment. Analysis of protein in ligand bound form led to evaluation ofstruc­

tural transfonnation and underlying atomic level transitions. It helped unravel ligand in­

duced variability and the dynamic role of co-factor in the presence or absence of inhibitor. 

3.6.1. Root Mean Square Deviations (RMSD) 

The deviation of the backbone Ca atoms was noticed for the entire production run of the 

docked protein for a time period of70 ns. The RMSD behavior of the inhibitor bound citE, 

over the studied time scale is mostly stable with an average value of 3.13 A reaching the 

maximum value of 4.58 A at the 151h ns (Figure 3.15). Overall, the pattern of RMSD rep­

resents a single extensive domain shift within the shllctural framework of the protein-lig­

and complex, where a ~-hairpin transforms into a loop (Figure 3.16), which occurs at the 

beginning (around 15 ns) of the simulation and continues till the end. The ligand placement 

was well complemented within the active site during the simulation and does not destabi­

lize the protein (Figure 3.17). 
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Figure 3. 15 RMSD plot of docked citE protein complex/or 70 ns simulation run 
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(b)15ns 

(c) 35ns 
(d) 70ns 

Figure 3. 16 Snapshots of docked citE over a time lapse of 0 ns, 15 ns, 35 ns and 70 ns. 
The helices are depicted in spring green color, sheets in blue and the loops in pink color. 

Figure 3. 17 Ligand placement within the active site of citE between 0 ns and 70 I1S. 
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3.6.2. Root Mean Square Fluctuations (RMSF) 

As a measure of atomic fluctuations, RMSF provides a means to recognize and compre­

hend the structurally flexible and rigid regions of the drug target. The average Co. fluctua­

tion for the ligand-bound protein was observed to be 2.48 A (Figure 3.18). The maximum 

value ofRMSF for the ligand bound protein was 9.93 A. Detailed analysis of the trajecto­

ries led to identification of those protein substructures that are responsible for the obtained 

RMSF trend. The most important observation in this context was that higher fluctuations 

were observed for regions that form loops and turns and are solvent exposed. In patiicular, 

the residues forming the C .. tenninal region, ranging between residues 257-271 exhibit a 

transient behavior where the ~-hairpin transforms into a loop region, connecting two heli­

ces. The active site pocket inclusive of residues 36, 39, 95, 98, 129, 133, 157 and 160, had 

an RMSF value of less than 2.0 A signifying the stability during the production run. 

20.----------------------------------------------------. 
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u.. 
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5 
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Figure 3. 18 RMSF plot of docked citE protein over 70 ns simulation run. 
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3.6.3. ~-Factor Analysis 

Beta factor is a quantity that is measured in terms ofRMSF. Its value is therefore dependent 

on the level of localized atomic fluctuations which collectively contribute to the global 

vibrational movements of the protein and its thermal stability. The pattern of beta factor 

for citE is consistent with the RMSF trend. Regions having greater fluctuations as identi­

fied in the RMSF analysis exhibit beta factor of greater than 178 A2 with the maximum 

value for tenninal residues: 2739.81 A2 (Figure 3.19). 

3000 .------------------------------------------------------. 

.... 
o 
u 

2500 

2000 

& L500 
£3 
u 
~ 

LOOO 

SOD 

50 LOO 150 200 250 300 
Residuc Numbcr 

Figure 3. 19 fJ-Factor graph of docked citE protein over 70 ns simulation run. 

3.6.4. Radius of Gyration (Rg) 

As an evaluation parameter of the structural compactness, radius of gyration was calculated 

as a time function for the 70 ns simulation of the ligand-protein complex. The average 

value of 20.23 A was observed that denotes the stability of the protein structure (Figure 

3.20). 
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Figure 3. 20 Radius of gyration of docked protein citE over 70 ns simulation time period. 

3.6.5. Cofactor Coordination Dynamics 

A vital aspect, central to the functionality of citE is the presence of cofactor Mg+2 in its 

active site. The molecular dynamics simulation study helped to gain an understanding of 

the structural adjustments made upon ligand introduction into the system. However, the 

ligand addition, visibly did not affect the metal ion placement within the active site. No 

changes occurred in the binding pattern of the Mg+2 and it occupied the same location dur­

ing the 70 ns simulation run (Figure 3.21). 
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Figure 3.21 The co:factor Mg+2 in the superimposed poses of the docked protein at a 
leap of 0 ns and 70 ns. 
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4. Discussion 

The emergence of ongoing antibiotic resistance infections are a punitive epidemic to the 

global world. This phenomenon is not just because of high rate of bacterial genome reshap­

ing by mutation but also triggered by antibiotics' imposed selective pressures. Mortality 

rates owing to infectious diseases caused by these resistant bacteria are increasingly affect­

ing millions of people. Failures of antimicrobial drugs have been catastrophic. Thus, all 

these bottlenecks demand newer, specific and more potent therapeutic agents. Progressive 

expansion ofbioinfol111atics based in silica techniques successfully are, therefore, assisting 

in overcoming different obstacles in drug discovery process. 

The current work emphasizes on the identification of potential druggable candidates of K. 

pneuTnaniae, a Gram negative multidrug resistant, nosocomial pathogen (Berman, 2012). 

The procedure commenced with the differential proteome analysis whereby the obtained 

potential drug candidates reflected two important features: firstly, they were exclusive to 

the pathogen thereby avoiding cross reactivity issues; secondly, they were essential to the 

pathogen metabolism. Therefore, if targeted, their inhibition may have a bactericidal effect 

(Bakheet and Doig, 2010). Subtractive genomics is a thriving in silica approach that filters 

out pathogenic novel drug targets from complete genome. 30660NJST258 _1, 

30684NJST258_2, and JM45 are K. pneuTnoniae strains which were targeted to combat 

multiple strains with the same drug. Initially a total of 5598,5478 and 5673 proteins were 

present in the three strains, respectively. CD-HIT tool removed all the duplicated sequences 

from pathogen genome so that the drug molecule can bind to the specific target. Futiher­

more, it was ensured that the host and pathogen have no homologous sequences, so the 

drug may not affect the host. BLASTp performed against RefSeq database filtered non­

homologous pathogen sequences. Essentiality of non-homologous sequences for bacteria 

was investigated through homology search. Pathogen essential proteins are of great impact 

for interfering the pathogen survival within the host system thus endangering the bacterial 

growth. Essential proteins were thus subjected to metabolic pathways association predic­

tions. During pathway analysis, a total of thirty eight unique bacterial pathways were iden­

tified which could be targeted. Conservation ofthese pathways among different pathogenic 
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strains suggests the impoliance of their constihlent proteins in bacterial virulence and sur­

vival (Hosen, et aI., 2014). Among the unique bacterial pathways higher number of unique, 

essential, non-homologous genes were present in "Two-component system", "Biosynthesis 

of secondary metabolites" , "Phospho transferase system", "Photosynthesis" and "Pepti­

doglycan biosynthesis". The unique proteins identified from the selected pathways were 

subjected to another round of analysis which incorporated a two-step evaluation where 

druggability was assessed followed by subcellular localization assessment. Protein func­

tionality is highly dependent on its proper localization in living cell. Detennination of tar­

get localization is impoliant as, the drug has to agglomerate with the intended target. Cy­

toplasmic proteins can act as possible therapeutic targets, while membrane proteins are 

used to design vaccines (Barh, et aI., 2011). Finally, towards the end of the subtractive 

genomics steps, 6, 9 and 10 potential drug target proteins were shortlisted in the three 

strains, respectively. Of the obtained potential drug targets, 5 cytoplasmic, bacterial enzy­

matic proteins were shortlisted. CitE, a critical protein for bacterial pathogenesis was se­

lected as a therapeutic candidate, as it is essential for fatty acid biosynthesis or anaerobic 

energy metabolism (Goulding, et aI. , 2007). CitE is involved in two-component pathway, 

which serves as a basic stimulus-response coupling mechanism to allow organisms to sense 

and adapt to a wide range of environments, stressors, and growth conditions including an­

tibiotic stress (Srinivasan, et aI., 2012). This gene was common to all the three strains and 

was fuliher extended to homology modeling and molecular docking to determine the bind­

ing modes of ligands. 

At the sequence level, K. pneumoniae citE protein showed a 96% coverage to the template 

structure PDB ID: 4L9Y, chain A. Using the template as a guide, structural models were 

generated through MODELLER9.1 0 and a variety of web servers. The models were then 

evaluated with different tools like PRO CHECK, Errat and ProSA-web, which tested the 

quality of structures generated. Based on the quality assessment measures obtained for the 

various homology models, Model number 3 generated via MODELLER9.1 0 was selected 

for further processing. In addition to providing significant coverage, Model 3 exhibited 

strong stereochemistry. ModWeb generated a model with stereochemistry and quality com­

parable to that of MOD ELLER model. However, citE is a magnesium dependent metallo-
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enzyme, incorporation of Mg+2 in the structural model was a feature supported by MOD­

ELLER alone, thereby guiding the selection ofthe most structurally relevant as well a good 

quality model. RMSD has been established as an important structural measure that is di­

rectly representative of model quality, particularly in cases where the ultimate goal is mo­

lecular docking (Rodrigues, et aI., 2013). When the template and target were superimposed, 

the backbone atoms showed RMSD of 0.281 A, which is representative of high accuracy 

of the model. Model building procedure was followed by energy minimization in order to 

relax the overall structure and allow adjustment of side chains to remove steric clashes. An 

added benefit of optimization procedure was the improvement in the Errat quality factor 

which increased from 76.63 to 87.63. Also the optimization reduced the z-score from -5.1 

to -5.9. TIM-barrel structure was observed in citE which is considered as one of the most 

common conserved protein fold. It controls the enzymatic catalysis and maintains the struc­

ture of the protein. The TIM-barrel domain, showed the same depiction as in template 

structure. 

The homology model served as a staliing point for the docking and subsequent simulation 

procedures. The ligand molecules were docked into the active site of the target using 

GOLD.and AutoDock Vina. The highest GoldScore of 102.8 was achieved for compound 

47, with a binding affinity of -8.0 kcallmol. In addition to highlighting the preferred ligand 

binding modes, it provided insight into the underlying chemical basis of interaction and 

type of inhibition. The binding of compound 47 was observed at the active site of the pro­

tein and the polar end of the ligand was establish interactions with residues, namely, 

Va1197, Met163 , Asp160, Phe159, Va1158, Glu133, Lys98, Arg95, Arg70, Ala40, Asp39, 

Glu38, Asp36, Pro15, Ile14 and Phe13. The phenomenon of hydrogen bond formation has 

immense impOliance in relation to structural folding and stability and has been well docu­

mented with respect to protein interaction with ligand (Saenger and Jeffrey, 1991). Within 

the active site, ligand oxygen moiety fonned two hydrogen bonds with the active residue 

Lys98 having 2.29 A and 3.86 A distance, respectively. While nitrogen atoms ofthe ligand 

developed hydrogen bonding with Arg95, Glu133 and Asp160 residues of the protein, at a 

distance of 3.23 A, 2.91 A and 3.46 A, respectively. Besides that, Mg+2 binding site ex­

hibited hydrogen bonding with Glu38, Asp39, Glu133 and Asp160 residues. Hydrogen 
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bonding depicted by Mg+2 did not alter after the docking of the ligand in the active site. 

Hydrogen bonds present between the Mg+2 and the above mentioned residues had 1.87 A, 
1.85 A, 1.87 A and 1.88 A distances, respectively. 

The docking study further needed an understanding of the stmctural adjustments made 

upon ligand introduction into the system. However, it provided this information within the 

context of a static environment. In order to allude the dynamic conduct, simulation protocol 

was carried out that provided eloquent insights into the stmctural basis of dmggability po­

tential of citE. Under physiological conditions, essentially all cellular processes are medi­

ated within a hydrated environment. In this context, the next phase of molecular dynamics 

simulation facilitated the dmg design approach by not only computationally placing the 

docked protein within solvated sUlToundings but also reflecting the time dependent behav­

ior of the system. The biological impOliance of water is well known in relation to a range 

of biochemical process. Specifically, within the context of protein dynamics, several stud­

ies emphasize the impOliance of water in dictating the activity and the dynamic behavior 

of the protein paIiicularly with reference to catalytic activity and functional inhibition 

(Suresh, et aI., 2008). Analysis of protein, whilst in ligand bound fonn helped unravel the 

ligand induced variability and led to evaluation of organizational alterations ofthe protein­

ligand system. The application of simulation to the K. pneumoniae citE, however, stipu­

lated structural stability of system over the studied time scale. 

Stability of the docked protein-ligand complex was explained by calculation of physical 

propeliies over a time period of 70 ns. The RMSD behavior of the inhibitor bound citE, 

over the studied time scale was mostly stable with an average value of3.13 A. The general 

pattern of RMSD represented a single extensive domain shift within the structural frame­

work of the protein-ligand complex, where a ~-hairpin transfonned into a loop, which oc­

curred at the 15th ns, and persisted till the end of simulation. Overall, the ligand-bound citE 

showed a stable symmetry. This was accompanied by a well complemented ligand place­

ment within the active site during the simulation. Also, the structural compactness of the 

ligand-bound citE, measured as radius of gyration (Rg) averaged at a value of20.23 A. 
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The RMSD plot was additionally analyzed for the fluctuations at the atomic levels, reveal­

ing the individual residues, being the cause ofthe alterations in the simulated protein-ligand 

complex. The average RMSF for the ligand-bound protein was observed to be 2.48 A that 

helped in distinguishing the structurally flexible and rigid loci of the drug target. Higher 

fluctuations were observed for regions that formed loops and turns and were solvent ex­

posed. In particular, residues fonning the C-terminal region, ranging between residues 257-

271 exhibited a transient behavior where the ~-hairpin transfOlmed into a loop region, con­

necting two helices. Amino acid residues that incur the fluctuations are away from the 

active site pocket of the protein. The active site pocket inclusive of residues 36-39, 95-98, 

129-133 and 157-160, had an RMSF value ofless than 2.0 A signifying the stability during 

the production run. The pattern of beta-factor for citE was seen to be consistent with the 

RMSF trend. Changes in the RMSD and RMSF plots, thus illustrate the fact that the con­

formational deviations and alterations are in a way wOlthy for the protein-ligand complex. 

The unwavering active site residues ascertain the active site locus to remain stable through­

out the simulation. All these changes however, are a requirement of the catalytic process 

and may depend on the nature of the protein whether it is enzymatic or not (Patel, Kumar 

and Durani, 2007). 

In silica strategy adopted during the current project provided eloquent information at var­

ious stages of analysis. Collectively, the infelTed knowledge about essential catalytic mech­

anisms, cofactor dynamics and effects of structural variability on inhibitor binding can be 

extended to increase efficacy of novel K. pneumaniae citE inhibitors in order to halt the 

lethal infections caused by the studied pathogen. 
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Conclusion 

The current study highlights the route adopted for the identification of therapeutic candi­

dates in multiple strains ofthe emerging Gram negative, MDR bacterial pathogen, K. pneu­

moniae. The subtractive approach has delivered findings of great phamucological im­

pOliance to aid in paving the way for development of putative drug candidates. The sub­

traction lead to a smaller subset of the functional genome, dispensing survival essential 

proteins for the pathogen. It was concurred that the potent drug target has no counterpart 

in human. The study characterized 6 putative druggable compounds common to genomes 

of three different strains of K. pneumoniae. CitE, the selected Mg+2 dependent metallopro­

tein affirms its pharmacological importance in antibacterial therapies targeting Gram neg­

ative bacteria. Thus, drugs can be developed against this pathogenic bacteria in order to 

block the infections it causes. Comparative homology modeling was applied to attain a 

high quality model for structurally uncharactelized citE. Molecular docking protocol clas­

sified compound 47 as the best potential inhibitory agent against citE. Insights from mo­

lecular docking and MD simulations led to the deduction that citE undergoes specific con­

formational changes explaining the dynamic behavior of the ligand-bound protein. Besides 

the side chain fluctuations and a sheet to loop transformation, stability of inhibitor and 

target protein complex was observed. The metal ion cofactor Mg+2lying at the active site 

of citE, maintains its position and 4-fold coordination. Consequently, implying the molec­

ular interactions in docked citE complex, it can be concluded that compounds mimicking 

the chemical structure of compound 47 can be employed to destabilize the target. It is con­

cUlTed that molecular docking studies in combination with MD simulations can be useful 

in the discovery and development of more potent inhibitors and thus, specific and efficient 

drugs against MDR K. pneumoniae. 
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