
Design and Development of Serial RISC-V Sof1rtt
Microprocessor Core ~ 6 q

ISLAMABAD

Supervisor:

Dr.Aqeel Abbas

Department of Electronics Qau

By

Abdur Rehman M.Ashraf

September-2023-M phill-Ele

Co Supervisor:

Dr.Rehan Ahmed

Seecs Nust

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of

Philosophy in Electronics (Mphill Ele)

In

Department of Electronics,

Quaid I Azam University Islamaabd,

Pakistan.

(September 2023)

/

- ,

k}
.~

. -<:.,

.......
:/

Thesis Acceptance Certificate

Certified that final copy of MPhil thesis entitled "Design and Development of Serial RISC ..

V Soft Microprocessor Core" written by Abdur Rehman, (Registration No 02102113013),

of Department of Electronicshas been vetted by the undersigned, found complete in all aspects

as per QAU Statutes/Regulations, is free of plagiarism, errors and mistakes and is accepted as

partial fulfillment for award of MPhil degree.

Signature: ~
Supervisor: Dr.Aqeel Abbas

Date: ______________ __

Signature:~~·
Co Sllpel"visor: Dr .Rehan Ahmed

Date: 21st March 2024

Signature (lIoD): __ -+-____ --'-____ _

Date: ___________ __

Approval

It is certified that the contents and form of the thesis entitled "Design and Development

of Serial RISC-V Soft Microprocessor Core' submitted by Abdur Rehman have been

found satisfadory for the requirement of the degree.

Supervisor
\-+-~~-------

Signatnre: -I-~'<F-----------

Date: ______________ __

ii

Co Supervisor: Dr .Rehan Ahmed

Signature: t;.~.
Date: __ 2_1_st_M_a_r_ch __ 20_2_4 __ __

Dedication

I dedicate this thesis to my beloved parents , Muhammad Ashraf and Shahnaz Begum, my

siblings, my teachers, my friends and to all the deserving children who do not have access to

quality education, especially young girls.

III

Certificate of Originality

I hereby declare that t his submission is my own work and to the best of my knowledge it

contains no materials previously published or written by another person , nor material which to

a substant ial extent has been accepted for t he award of any degree or diploma at Department

of Electronics QAU or at any other educational institute, except where due acknowledgement

has been made in t he thesis. Any contribut ion made to t he research by others, with whom I

have worked at Integrated Cicuit Design Lab JUST or elsewhere, is explicit ly acknowledged in

t he thesis. I also declare that the intellectual content of t his thesis is t he product of my own

work , except for t he assistance from others in the project's design and concept ion or in style,

presentation and linguistics which has been acknowledged .

iv

Author Jame: Abdur Rehman M .Ashraf

Signature: -~~

Acknow ledgments

Glory be t o Allah (S. \iV .A), t he Creator , t he Sustainer of t he Universe. There is no power except

Allah and HE is the only one who has the power to honor whom HE pleases and to abase whom

HE pleases. Verily no one can do anything without HIS will. I bear witness that there is no

worthy of worship except ALLAH, t he one alone, wit hout a partner and I bear witness that

MUHAMMAD (S .A.W.W) is his servant and Messenger. From the day, I came to QAU till the

day I came to NUST and now writ ing t his thesis, He was the only one Who blessed me and

opened ways for me and showed me the path t o success. There is nothing that can payback for

His bount ies throughout my research period to complete it successfully.

I pay my appreciation to my Advisor Dr. Muhammad Aqeel Abbas who permitted me to conduct

my research in the field I choose. And always stood with me in my decisions and guided me

throughout my research period.

And now I extend my heartfelt gratitude to the three invaluable gems in my life. [1] My co

advisor Dr.Rehan Ahmed and his two senior research assistants [2] Qazi Shahid Ullah and [3]

Shaheer Sajid. They have been a wellspring of inspiration all through this research and above all ,

during my Mphill thesis. They have consistently been an astounding pioneer and guide. Their

reliability, flexibility, and dedication have left a persuasive impact on my character. Without

there understanding and difficult work, I would not have the option t o finish my research

program. And how I overlook the deadlines set by my Co-Advisor Dr.Rehan Ahmed they stand

as a wellspring of motivation for me.

Abdur R ehman M.Ashraf

v

Contents

1 Introduction and Motivation 1

1.1 Objectives . 2

1.2 Significance 2

1.3 Background and Motivation 3

1.4 Problem Statement and Contribution. 3

2 Literature Review 5

2. 1 Microprocessor Architecture . 5

2. 1.1 Evolution of Microprocessors 5

2.1.2 Instruction Set Architecture (ISA) 6

2. 1.3 Data and Control Paths 6

2.1.4 Instruction Execution 6

2.2 Challenges in Microprocessor Design 6

2.3 Bit-Serial Execution . 7

2.3.1 Advantages and Limitations 8

2.4 RISC-V Instruction Set Architecture 9

3 Design and Methodology 11

3.1 Types of Instructions . 11

3.2 Addressing Modes 12

3.3 Architectural Overview 16

VI

CONTENTS

3.4 Bit-Serial Data Path Design

3.5 Design Consideration for Energy Efficiency

3.5. 1 Serial Execut ion: ...

3.5.2 Instruction Pipelining

4 Implementations Details

4 .1 Pipelining

4.2 Load/Store Unit

4.3 Register File to Register File

Addition: ..

Subtraction: .

Logical Operations: .

Shift Right Arithmetic (SRA):

Shift Right Logical (SRL)

Shift Left Logical (SLL)

Set Less Then(SLT) . .

4.3.1

4.3 .2

4.3.3

4.3.4

4.3 .5

4.3. 6

4.3.7

4.3.8

4.3.9

Set Less Then Unsigned (SLTU)

Load Word (LW) . . .

4.3.10 Load Half Word (Lh)

4.3. 11 Load Byte (Lb)

4.3. 12 Load Upper Immediate

4.3.13 Add Upper Immediate to P c (AUIPC)

4.4 Register F ile to Memory

4.4.1

4.4.2

4.4 .3

Store Word (S\v)

Store Half (Sh)

Store Byte (Sb) .

4.5 Control Flow

4.5.1 Jump and Link (JAL)

Vll

18

20

20

21

23

23

24

25

25

26

28

28

29

29

30

31

31

32

33

33

33

34

34

34

34

35

37

CON TENTS

4.5.2 Jump and Link Register (JALR)

4.5.3 Branch If Equals to Zero (BEQ)

4.5.4 Branch if Not Equal to Zero (BNE)

4.5.5 Branch Greater t han Equal to (BGE)

4.5.6 Branch Greater Then Equal to Unsigned(BGEU)

4.5.7 Branch Less Then (BLT)

4 .5.8 Branch Less T hen Unsigned (BLTU)

4.6 Data P ath

4.7 Microarchitectme.

4.8 Hazard Unit

4.8. 1 Structm al Hazards:

4.8.2 Data Hazards:

4.8.3 Control Hazard:

4.8.4 Handling of Structm al Hazards

4.8.5 Handling of Data Hazards

4.8.6 Handling Control Hazard

4.9 Programming and Tools

4.9.1 Tools

4.9 .2 Programming

5 Verification

5.0.1 GOOGLE DV Instruction Generator

5.0.2

5.0.3

5.0.4

Design Under Test (DUT)

Spike

P ython Script.

37

38

39

39

40

40

40

41

42

43

43

43

43

44

44

44

45

45

45

46

46

47

47

47

6 Analysis And Results 51

6.1 FPGA Implementation .. 51

viii

CONTENTS

6.2 UART Test

6.3 Power Performance Area (PPA)

6.3.1 Power

6.3.2 Performance

6.3.3 Area

7 Conclusion and Future Works

7.1 Cond usion

7.2 Future Works

7.2.1 Enhanced Architectural Features

7.2.2 Mixed Bit-Serial and Parallel Architectures

7.2.3 Multi core Design

7.2.4 Advanced Verifica.tion alld Testillg

8 References

ix

53

53

54

54

54

56

56

57

57

57

57

57

58

List of Figures

2.1 Serial vs P arallel .. 7

3.1 Conventional Parallel Branching 14

3.2 Parallel Load Instruction 15

3.3 Parallel Store Instruction 16

4. 1 Serial Addition . . 26

4.2 Serial Subtraction 27

4.3 Serial Subtraction Timing Diagram. 27

4.4 Serial Logical Operations 28

4.5 Shift Right Logical 29

4.6 Serial Set Less Then Tinung Diagram 31

4.7 Serial Jump and Link Register 38

4.8 Serial Branch Prediction 41

4.9 Serial Branch Prediction Timing Diagram 41

4. 10 Serial Branch Prediction

5.1 Verification Environment

5.2 Instruction Generator ..

5.3 Spike Result (Golden Reference)

5.4 Bit-Serial Core Result .

5.5 Questa Sim Simulation.

x

42

48

48

49

49

50

LIST OF FIGURES

6.1 FPGA Demo

6.2 Uart Test . .

6.3 Fre vs Power

6.4 Fre vs Area .

8. 1 plagrism report

X l

52

53

55

55

List of Tables

2.1 RISC-V ISA. .. 10

3.1 Operation count Parallel vs Serial. 21

4.1 Signed Ari thmetic Rules .. 30

4.2 Sign Extension. 32

4.3 Tools. 45

6.1 LUTS and Register Utilization in FPGA . 51

6.2 Frequency Power and Area .. 54

xii

Abstract

It 's a fact ! That in modern microprocessor designs, energy efficiency and performance are

two critical factors that drive research and innovation. As traditional approach to design the

microprocessor has employed parallel processing techniques to enhance performance, but such

approach often come with high power and area consumption. In recent few decades, we wit

nessed the remarkable advancement in microprocessor deign leading to increased computational

power and energy efficiency in modern computing system . Therefore, the investigation of ilmo

vative architectures that utilize bit-serial processing approach is an important field of research in

processor design . This t hesis work presents the design, implementation , and performance eval

uation of a bit-serial approach to design a 32-bi t RISC-V microprocessor. Aiming to leverage

the benefits of bit-serial processing. The proposed microprocessor deign execute t he RISC-V

instructions using bit-serial execut ion (one-bit per clock edge). This technique substant ially

reduce hardware complexity, increased energy efficiency and achieve higher clock frequency.

The proposed microprocessor is pipelined and covered almost all t he data, control and struc

tural hazards. This design is made by using Hardware descrip tive language name Verilog. And

duly verified using Coogle Design Verification Environment. And its performance evaluation

is conducted. Through a comprehensive set of benchmarks to compare the bit-serial RISC-V

microprocessor against with the conventional RISCV microprocessor and sta te of the art mi

croarchitectures. The benchmarks encompass diverse work loads, including integer arithmetic,

memory access, and control intensive t asks. Matrices such as power consumption, throughput ,

energy effi ciency and area efficiency are considered to assess the effectiveness of t he proposed

archi teet ure.

xiii

CHAPTER 1

Introduction and Motivation

In today's rapidly advancing technological landscape, microprocessor designs are continuously

playing a pivotal role in shaping computing system's performance and energy efficiency. In

the relentless pursuit of energy effi ciency, and more faster computing systems, microprocessor

architectures have evolved significant ly over the past few years. With t he constant demand for

reduced power consumption and higher computing power, we the researchers are continuously

exploring innovative architectures for microprocessors to meet t hese challenges. For this , one

such novel and potential alternative approach to tradit ional parallel processing is the bit-serial

technique, , iVhich offers us the potential for energy-efficient executions while adhering to the

open-source RISC-V instruction set architecture (ISA).

In 2010 at the University of California, Berkeley the new instructions set architecture (ISA)

was developed. The royalty-free and open-source RISC-V instruction set architecture (ISA)

gained prominence due to its fl exible and adaptable framework for a wide range of computing

devices. The purpose of developing the open-source and extensible instruction set is not only

for academic use but also for commercial products . Remember t hat it is sometimes referred to

as the "Linux" of processors. As a consequence, RISC-V received significant support from the

open-source community, due to the adaptation and development of programming tools , such as

GCC compiler with GFB support, GNU MCU Eclipse, LLVM toolchain, C libraries, and an

official ISA simulator (spike).

In terms of t he operating system , it has already support for FreeBSD, Linux Kernal, and ports

of Debian . Due to this, the list of RISC-V members includes big companies such as NVIDIA,

GOOGLE, ' iVestern Digital, Samsung, and Qualcomm. And currently V\Testern Digital and

Nvidia are working on their RISC-V microcontrollers to incorporate them in their commercial

1

C HAPTER 1: I NTR ODUCTI O AND MOTIVATION

products, as an alternative to t heir current solut ions.

T his t hesis delves into t he design, implementation, and evaluation of a Bit-Serial RISC-V Mi

croprocessor, aiming to leverage t he advantages of bit-serial execut ion while adhering to the

widely adopted RISC-V ISA. Bit-serial execut ion is a unique approach that executes data one

bit per clock edge, in contrast to conventional parallel execut ion , which handles whole vec

t or simultaneously. By execut ing data serially, bit -serial architectures can potent ially achieve

reduced hardware complexity and greater energy efficiency.

The introductory chapter of this t hesis lays the foundation for understanding the motivations,

objectives, and significance of t he research conducted. It presents t he rationale behind exploring

bit-serial processing, discusses the current challenges in microprocessor design, and provides an

overview of t he key cont ribut ions and organization of t he thesis.

1.1 Objectives

The primary objective of t his t hesis is to design and implement a Bit-Serial RISC-V Micro

processor that explores the feasibility of bit-serial execution within the context of the RISC-V

instruction set architecture. Specific goals include:

1. Developing bit-serial Datapath , execut ion unit, and memory subsystem tailored to t he RISC

VISA.

2. Investigating the strengths and limitations of t he bit-serial processing technique for different

types of workloads and applications.

3. Evaluating t he energy efficiency and performance of t he Bit-Serial RISC-V Microprocessor

against convent ional RISC-V processors and state-of- the-art microarchitectures through exten

sive benchmarking.

1.2 Significance

The significance of t his research lies in its potential to pave the way for more energy-effi cient

microprocessor architectures . If bit-serial processing demonstrates promising advantages over

t raditional parallel processing for certain workloads, it could be an essent ial step toward address

ing the energy consumption challenges in computing systems. Addit ionally, the implementation

of a Bit-Serial RISC-V Microprocessor could open new avenues for exploration in the design of

2

CHAPTER 1: I NTROD UCTION AND MOTIVATION

future energy-efficient processors.

1.3 Background and Motivation

TI.·aditional parallel execution techniques have long been t he backbone of microprocessor design ,

enabling high-performance gains and throughput through the simultaneous processing of multi

ple data elements. However, as microprocessors have grown more complex, power consumption

and area have become a major concern, particularly in battery-powered devices and data cen

ters. This has prompted us to seek novel approaches that strike a balance between performance

area and energy efficiency.

Bit-serial processing, as a potential alternative, offers a simplified paradigm where data is ex

ecuted one bit at a t ime. This approach has the potent ial to reduce power consumpt ion due

to its reduced hardware complexity and inherently sequential nature of execution. By explor

ing the feasibility of implement ing bit-serial processing within t he RlSC-V ISA, this research

aims to contribute to the growing body of knowledge in the area of energy and area-efficient

microprocessor design .

1.4 Problenl Statement and Contribution

The continued evolution of microprocessors now demands new innovative design approaches for

energy-efficient and high-performance microprocessors. In the pursuit of making energy efficient

computing solution the microprocessor designs tailored for low power applications has become

vital. The convent ional microprocessor designs which follow t he parallel processing of instruc

tions with increased complexity, lead to challenges in power consumption , area utilization, and

manufacturing cost. In response to overcome these challenges, we need a design that resolve

all t hese along wit h enough efficient in comput ing solutions. Hence the concept of bit-serial

microprocessor design emerged as a potential solution. \iVhich meets all these performance pa

rameters.

Now the question t hat arises here is how it will be efficient in performance while maintaining

these parameters. while bit-serial holds the promise of reduced power consumption and area

ut ilization also it int roduces new challenges regarding execut ion time and clock speed limita

tions. Therefore we have to accept the fact that we have to compromise on something to achieve

something. In the bit-serial concept for achieving low power consumption , we have to cOl11.pro-

3

CHAPTER 1: I NTRODUCTIO N AND MOTIVATION

mise a little on performance. But we can reduce t his fact by making efficient designs and using

multiple efficient solut ions in a single design like bit-serial with pipe-lining.

4

CHAPTER 2

Literature Review

2 .1 Microprocessor Architecture

The aim of t his section is to provide you with an overview of t he micro-architecture of con

vent ional microprocessors which refers to t he internal structure and design of a microprocessor ,

which serves as a central processing unit (CPU). It includes the phenomena that how the mi

croprocessor carries out t he instruction , memory management, and the communication of t he

microprocessor with slave devices. Remember that the architecture is a crucial factor in de

termining the performance, capability, and efficiency of a microprocessor . Micro-architecture

is t he implementation of Instruction Set Architecture (ISA). From Instruction fetching to the

write back data in register file.

2.1.1 Evolution of Microprocessors

A journey of continuous innovation and refinement in microprocessors. In Early eras, micro

processors were simple, single-core with limited computational power and large area. but with

advancements in semiconductor technology, transistors became smaller and more efficient, a l

lowing for the integration of multiple cores onto a single chip. This resulted in the transition

of single-core microprocessors to multi-core microprocessors, enabling parallel processing and

higher performance for tasks t hat could be divided among cores . Now t he evolut ion has reached

a point where we integrate not only a multi-core but multiple multi-cores in the same area using

the latest bit-serial technique.

5

C HAPTER 2: LITERATURE REVIEW

2 .1.2 Instruction Set Architecture (ISA)

Instruction set architecture is t he language of t he microprocessor. It provides t he information

about what the processor is capable of. It specifies the format of instruction, operations , and

addressing modes. There are two commonly known ISAs RISC and CISe. RISe is a reduced

instruction set computer and elSe is a complex instruction set computer. The choice of ISA

influences the design and performance of a microprocessor, t herefore choosing carefully and

wisely.

2.1.3 Data and Control Paths

As previously mentioned micro-architecture is the implementation of ISA, it involves two dif

ferent paths to complete the circuit known as the cont rol path and data path . Data path refers

to t he path through which data will moved from instruction memory to the decode stage then

towards the execution unit to operate and then the memory and then t he register file to write

back the result. The control path is responsible for managing the flow of instructions including

the branch prediction and jump to the instruction to be executed next. These components

would work together to ensure the correct instruction execution.

2.1.4 Instruction Execution

In early eras microprocessors were multi-cycled one instruction takes many cycles to be processed

from fetching instructions to storing data. Then after a time, a technique named pipe-lined

was introduced. "\iVhere we can process multiple instructions at a time. Hence the t iming

to process the instructions was reduced and throughput was increased. Pipe-line divides the

microprocessor into different stages. Commonly it is divided into five stages as Instruction

fetch, decode, execute, memory, and write back. But still , it's the designer 's choice in how

many stages he wants to divide its archi tecture.

2.2 Challenges In Microprocessor Design

Microprocessor design faces challenges such as clock skew, setup time violation, hold time

violation, inferred latches, hazards, and non-hardware blocks. Therefore you have to stay

focused when designing a microprocessor we have to keep in mind that each block would make

6

CHAPTER 2: LITERATURE REVIEW

hardware. t he block which will not make any hardware will not run after fabri cation or on

FPGA (Field Programmable Gate Array). For issues relat ed to t he clock, we have to properly

divide the microprocessor into equal stages, and place the register or flip-flops clear fu lly so

that not a single extra clock-edge cycle will be produced because a single extra clock cycle will

disturb your complete design. We have to keep in mind that our pipeline cycle time will be

equal to or greater than the critical path delay so that our instruction in each stage will process

correctly without any t iming violation.

2.3 Bit-Serial Execution

Bit-serial execution is a computational approach in which data is executed one bit per clock

edge. Computations will be performed on individual bits. By reducing the hardware in contrast

to increasing the execution t ime. This contrasts with parallel processing, where multiple bits or

data elements are processed simultaneously. I t implies t hat now we need just one operation block

instead of several operation blocks. In convent ional microprocessor designs where instructions

are processed parallel thirty-two operation blocks are needed for t hirty-two-bit instructions

and likewise sixty-four blocks for sixty-four bits instructions. but in bit-serial design , just one

operation block is used for eit her thirty-two bits or sixty-four bits instructions.

Parallel

(a) parallel design

Seria l

rs1

1-:"'=":-::_0::-"' --1
0

-~rs22-L--r-~

canyJn

(b) serila des ign

Figure 2.1: Serial vs P arallel

7

a

OFF

CHAPTER 2: LITERATURE R EVIEW

2.3.1 Advantages and Limitations

Advantages:

• Compact Design: Bit-serial microprocessors often have compact and simpler designs

due to t heir serial execution nature which can lead to smaller size and low manufacturing

cost .

• Parallelism: Due to its seria l nature it has a lower rate of throughput t han convent ional

parallel microprocessors , but we can increase it by introducing parallelism nature in bit

serial microprocessors. \ iVhen a microprocessor b ecomes parallel multiple st ages work on

the same clock edge and different instructions are processed in different stages at t he same

t ime which can lead to higher t hroughput.

• Low Complexity: Bit-serial microprocessor has lower complexity t han a conventional

parallel microprocessor because t he data path is now reduced from thir ty-two bit to one

bit. Also it simply t he arithmetic and logic unit from t hirty-two to one bit which can lead

to easier chip layout due to lower transistor count.

• R educed Interconnect s : Due to t he bit-serial nature of microprocessor design it re

quires less interconnect between processing elements the convent ional parallel micropro

cessors which can improve overa ll performance due to lower signa l delay.

• High Clock Frequencies: Bit-serial nature can allow us for higher clock frequency since

the complexity of processing is now one bit which is lower t han processing a whole word.

Limitations:

• Limited Data Width: bit-serial microprocessor can handle only one-bit data which can

lead to slower processing for an operation t hat requires a large data path such as complex

arithmetic and memory access .

• Complex instructions: Operations t hat can combine multiple bits can be complex and

leads microprocessors to additional pipeline stages which can lead to increased lat ency.

• Software Challe nges: Bit-serial nature of microprocessors often requires specialized

programming techniques to take full advantage of their architecture. which can limit the

portability of software and make it more difficult to optimize the code.

8

CHAPTER 2: LITERATURE R EVIEW

• Performance Trade-offs: Vl hile bit-serial microprocessor design can achieve higher

clock frequency, the performance gains might not always be proportional to conventional

parallel microprocessors due to the higher execution latency and additional pipeline stages

that will required for more complex operations.

• Limited Applicability: Bit-serial pipelined microprocessors are better suited for specific

types of workloads, such as signal processing and certain forms of cryptography. They

might not be as effective for general-purpose comput ing tasks as convent ional parallel

microprocessors .

• Bit-Level Operations: P erforming operations at t he bit level can introduce additional

overhead for certain tasks that could be more efficient ly handled by using wider data paths

in traditional microprocessors.

• Complex Hardware: The design and implementation of bit-serial microprocessors can

be complex, especially when dealing with operations that require multi-bit manipulation

or inter-bit dependencies.

2.4 RISC-V Instruction Set Architecture

As mentioned earlier ISA is t he language of any microprocessor. Therefore always choose wisely.

Vve choose RISC-V ISA due to its open source and extensible nature. And also it is easy in

micro-architecture. It has three types of operations. [1] Register fi le to Register fi le. [2] Register

file to memory. [3] control flow, to jump on different addresses or instructions .

• It has seven seven-bit opcodes to specify t he type of instructions.

• It has a small and fixed amount of registers .

• Each register has a bit address which can lead up to thirty-two registers.

• Three bits to address which function to be performed are named funct3.

• Seven bits to differentiate between the operations whos have the same funct3 bits .

• And it has a variable amount of immediate based on the type of instructions.

9

C HAPTER 2: LITERATURE REVIEW

31:25 24:20 19:15 14:12 11:7 6:0 Format

Fund7 Rs2 Rsl Funct3 Rd Opcode R

1111111[11 :0] Rsl funct3 Rd Opcode I

1111111[11:5] Rs2 Rsl Funct3 1111111[4:0] Opcode S

1111111[12110:5] Rs2 Rsl Funct3 1111m[4:11 11] Opcode B

1m111[31: 12] Rd Opcode U

1111111[201 10: 1111 119:12] Rd Opcode J

Table 2 .1: RISC-V ISA.

10

CHAPTER 3

Design and Methodology

\Vhile designing a microprocessor we were implement ing the ISA (Instruction Set Architecture).

In our design, we implemented the RISC (Reduced Instruction Set Computer) ISA. And before

go onto actual design lets concise the RISC-V ISA first.

As ment ioned earlier it has three types of operations.

• Register file to Register file.

• Register file to Memory.

• Control flow .

But t here are a lot more in ISA. It has six types of instructions and also it has three different

type of addressing modes. let's discuss these one by one.

3.1 Types of Instructions

• R: These are Register fi le to Register file type operations. Contains two source registers

and a destinations register.

• I: These are also Register file to Register file operations, but in these instructions, one

operand is source register one and second operand will be immediate/offset value and the

third operand will be destination register. But in these types of operations, one instruction

is a little different J ALR it uses a combination of Register file to Register file and control

flow operation. it stores the address of the current instruction in the destination register

and also jumps to the next instruction.

11

CHAPTER 3 : D ESIGN AND METHODOLOGY

• S: These are register fi les to Memory type operations these have one source register and

an immediate/offset value and the source register two. Source register two is the data

that will be stored in Memory.

• U: These are Register file to Register fi le operations but they have destination register

and an immediate/offset value instead of using source register one or two they used the

address of current instruction.

• J: It is a combination of Register fi le to Register file and cont rol flow operations . It

has one destination register and like U type instructions they used the address of t he

current instruction instead of t he source register one or two. T he address of t he current

instruction will be stored on the destination register and also it calculates the address of

t he next instruction.

• B: These are pure control flow instructions. These include two source registers, which

are used for operation and based on their result processor will jump on the next ad

dress/ instruction .

3.2 Addressing Modes

1. PC-Relative: Type of addressing mode used in RISC-V ISA. In this mode, t he effective

memory address of t he next instruction is calculated as an offset using the address of t he

instruction that is current ly being executed.

PC-relative addressing mode is commonly used for control flow or branching instruction .

where the target address of instruction is relative to the address of current instruction.

This mode is particularly useful for conditional and uncondit ional branching, as it allows

the efficient encoding of small offsets in t his type of instruction format.

How it works?

• Immediate D ecoding: As I mentioned earlier it has two source registers two imme

diate/offset values and a funct3 bits to specify the function type. The notable point

in t his format is t hat we have to carefully entertain the offsets of this instruction and

carefully decode them using proper decoding against t he offset encoding.

Imm[4:1111] represents t hat the seventh bit of instruction is the eleventh bit of Im

mediate, and the rest of the bits from eight to ten bits of instructions are one to

12

CHAPTER 3: D ESIG N AND METHODOLOGY

fourth bits of Immediate.

Imm[121 10:5] same in this twenty-five to thirty bits of instructions are five to ten bits

of an immediate, and t hirty-first bit of instruction is a twelfth bit of immediate.

• Calculation: when instruction is executing based on the comparison result of in

struction Program counter will incremented. if t he comparison result is true then the

address of the current instruction in the execute stage will add with t he offset value

of the current instruction and then the program counter will jump to that address

else the program counter will be incremented as usual by adding four to the Cll-rent

address in the program counter. Note that for jump the offset and address that will

used is of the instruction presented in the execute stage.

PC-relative addressing mode is only advantageous because it reduces t he size of instruc

tions in memory, as only the immediate need to be stored instruction. Especially beneficial

for RIS C architecture because it has a smaller and typically fixed size of instruction.

A limitation of the Pc-relative addressing mode is t hat it is only beneficial for short-range

branching/jumping. because a large offset needs more bits which typically increases the

size of instruction

In summary, PC-relative addressing mode is a key mechanism in RISC ISAs for efficient

branching/jumping and control flow instructions by using immediate/offset relative to the

Program Counter, contributing to the overall speed and simplicity of RISC architectures.

2. Register Offset: addressing mode sometimes refer as "register plus" or "register index"

addressing mode. Commonly used in computer architecture including RISC architecture.

in this addressing mode effective memory address will be calculated by adding the imme

diate/offset with the data specified by one of the source operand registers of instruction.

This addressing mode is often used inLoad/Store instruction for accessing the data mem

ory.

13

C HAPTER 3: D ESIG A TD METHODOLOGY

+4

~ __ .. next_address

target_address

sign_extending unit I-- ~I

Figure 3.1: Convent ional P arallel Branching

How it works?

• Immediate Decoding: There are two types of instructions format I and S that

use this type of addressing mode. let 's discuss it one by one

(a) Load Immediate Decoding: It has a simple twelve bits offset presented all

bits t ogether from twenty fifth bit to t hirty-first bit of instruction. you have to

just sign and extend it to thirty-two bits to decode it.

(b) Store Immediate Decoding: Carefully observes t he arrangement of the bit

t hen seven to eleven bits of t he instruction are t he first four bits of immedi

ate/offset . then t he twenty-fifth to thirty-first bits are the rest bits. for decoding

care fully arrange these bits then sign extend these bits up to 32 bits.

• Calculation:

(a) Load Address Calculation: for Load instruction we have to add the data

located at the address of the source register with t he sign-extended immedi

ate/offset presented in the twelve MSB (Most Significant Bits) bits of instruction

to make t he target address for data memory.

(b) Store Address Calculation: for Store instruction we have to first arrange the

offset/immediate presented in the different bits of instruction the sign ext ends

it up to thirty-two bits t hen adds it with the data located at t he address of t he

source regist er one to get the target address of data memory.

Note : T he question arises here then what will be the purpose of the source

register two here?

14

C HAPTER 3 : D ESIGN A JD METHODOLOGY

The answer for t hat is the data locat ed at t he address of source register two is

t he data to be stored in memory.

Register offset address mode is beneficial because it gives us t he flexibility of accessing

memory without requiring separate load and store instructions, for different addressing

modes such as a store, load byte or store, load half word or st ore, load word. Also it has

the advant age t hat using register offset addressing mode we can access a large number of

location inside the dat a memory, wit hout the need of any extra bits . But ! how much there

for it has limitations based on the bits of source operand dat a and immediate bits. There

for we can access the large number of locations but also a limited number of locations.

+ address
1------1

mmediate", .1 I '"
Register_file , 1 sign_extending unit II---'~"I'V

...----.t} write_data I
rs2 data '"

~----~-~,~

Figure 3.2: Parallel Load Instruction

Data Memory

3. Absolute Addressing: In absolute addressing mode, the memory address of a data

or operand is directly specified within t he instruction itself. The instruction contains the

exact memory location where data should be stored or from where data should be fetched.

Also, one of the instructions is named Lui (Load Upper Immediate) this instruction

contains data itself t hat should be stored in t he destination register. In this Instruction

no extra logic is needed we just assign the data to the destination register directly.

In other instructions we calculat e data as its types as discussed earlier t he only difference

15

CHAPTER 3: DESIG N AND METHODOLOGY

r51_data

""" ~ ,

+ address

mmediate"",

"" Register_file r sign_extending unit ,
/ Data Memory

write_data

I rs2 data ""-, store_data

Figure 3.3: Parallel Store Instruction

is t hat we don't need any extra logic for targeted source register or memory location we

just use the immediate/offset of instruction and calculate the address or data directly.

3.3 Architectural Overview

The bit-serial microprocessor has a single-bit microarchitecture, processing/executing instruc

tions one-bit per clock edge rather than executing a whole word or byte like conventional parallel

microprocessors. It operates on a single bit sequentially. Bit-serial microprocessor follows t he

same ISA as conventional microprocessors but still , it has a different microarchitecture, due to

their serial nature. its data path is single-bit wide.

The data path for t he fetch and decoding stages are the same as convent ional parallel micro

processors t he difference in the data path started after the decoding stage. before t he decoding

stage, it has t hirty two bit wide data path but after t he decode stage data path is converted from

t hirty-two to one-bit wide. Bit-serial microprocessor required 34 clock-edges at each stage to

process the thirty-two-bit instructions. '1\"'0 cycles overhead is to handle the data dependencies.

let's discuss the main architectural components in each stage one by one.

1. Fetch Stage Used to fetch the instruction from Imem(Instruction Memory). It contains

two main components .

• Program Counter: one input and one output, used to assign t he memory address

to Instruction Memory, based on the mux output connected with the input of t he

program counter. The program counter either assigns the incremented by four or

16

CHAPTER 3: D ESIGN AND METHODOLOGY

plus four (+4) address or it assigns the next targeted address calculated by branch

or jump instructions.

• Instruction Memory: one input one out , contains pre-stored instructions. Used

to assign t he instructions to the microprocessor 's decoding unit based on the address

assigned by the program counter.

2. Decode Stage it takes the thirty-two bits instruction from instruction memory and

decode it 's all operands. and assign to their destinations. it includes

• Register File: Five inputs and two outputs, addresses of source registers and des

tination register are input and are assigned to register fi le after decoding from in

struction. \i\Trite enable signal and write data are also inputs to t he register fi le. The

regist er file provides the data located on t he source register address to the execut ion

unit .

• Control Unit: It takes the seven-bit opcode and t hree bits of funct3 and seven bits

of funct7 from the instruction t hen makes the data and cont rol signals based on the

opcode, funct3 and funct7 of instruction. which helps to control the data path of t he

microprocessor .

• Sign Extending U nit: take the immediate/offset as input and sign extend it to

the t hirty bits. As you observed in ISA different instructions have different bi ts of

immediate/ offset but remember microprocessor will operate on fixed defined bits if

the microprocessor is t hirty-two bit then it processes all data on thirty-two bits, and

the same as for 16 or sLxty-four bits. t herefore we extend t he immediate/offset to

thirty-two bits.

• Load Unit: use to sign extend the resultant data after loading from data memory.

As we have different types of load instructions such as Lh(Load half) or Lb(load

byte) there for before storing it in the destination register we have to extend it up

to t hirty-two bits.

• A lu Decoder: make the operation control bits for execution unit ALU (Arith

metic Logic Unit) based on instruction.

3. Execute Stage Contain only one component,

• Alu(Arithmetic Logic Unit): perform the operation based on the operation con

trol unit assigned by the alu decoder.

17

CHAPTER 3: DESIGN AND METHODOLOGY

4. Memory Stage It contain two component ,

• Data Memory: take alu output as t he address of location and data located as a

source register two as data to be stored .

• Store Unit: used to build the byte enable for data memory. based on which data

will be stored on the specific bits at t he located address.

5. Write Back Stage only contains a mux for selecting the data t hat will be stored on

destination register .

3.4 Bit-Serial Data Path Design

It 's clear from t he name bit-serial t hat the whole data path will be one bit wide, but in our

design not the whole data path will be one bit wide, As our design in pipelined there for our

data path is the same as conventional parallel microprocessor data path till decode stage. The

serial data path will start after the decode stage, this is to avoid the multi-cycle phenomena in

pipelined microprocessor.

Note t hat we can not fetch instruction one bit per clock edge from instruction memory and

also can not decode t he instruction on one bit per clock edge to obtain this format we have

to convert an instruction frorn whole word to bit stream and then convert the bit stream into

whole word to decode t he instruction which implies t he multi-cycle phenomena in decode stage.

Likewise, after the write back stage, we can not store the bit stream in the destinations register

one bit per clock edge there for we have to convert the bit stream into a complete word to write

it back.

Therefore when designing a bit-serial data path, we have to convert the conventional data path

that is thirty-two bit wide into one bit wide data path there for now in the bit-serial data path

all the components that are designed to process the thirty-two bits word are now design to

process the bit stream that will be one-bit per-clock-edge. 1\"'0 Key components helps us to

design the bi t-serial data path.

• Counter: responsible to to count the bits and to monitor the each stage to active for

required cycles to process the instruction. In our Design it will count up to thirty four

cycles, to process t he thirty two bits instructions, which means each stage is activate for

thirty four cycles, to process the instruction.

18

CHAPTER 3: DESIGN AND METHODOLOGY

• Shift R egist e r: It is an H eart of bit-serial data path . used to convert t he t hirty two

bit word into a bit-stream, to process one bit per-clock-edge. 1\vo types of Shift Registers

are used in our Design

1. Paralle l-In-Seria l- Out (PISO) Shift Register: take t hirty-two bit word as input

and convert it into a bit-stream of t hirty-two bits. In P SIO Shift register we have

two types of shift rigters,

(a) MSB to LSB PSIO Shift Register: it take t hirty two bit word as input and

convert into bit stream t hat will starts from MSB (Most Significant Bit) end at

last gave us LSB (Least Significant Bit).

(b) LSB to MSB PSIO Shift Register: It 's output starts from LSB (Least

Significant Bit) and ends at MSB (Most Significant Bit) .

2. Serial-In-Parallel-Out (SIPO) Shift Register: it take t he t hirty bit stream of

t hirty two bits and combine it in a thirty two bits word. Like P SIO we used two

typ es of SIPO registers .

(a) L SB First: it takes LSB first and MSB at last .

(b) M SB First: it takes MSB first and LSB at last.

As we discuss the key components of bit-serial microprocessor , now lets discuss some

important components is serial manner. As in our design seria l data path will start

after decode stage therefor t he first components will be

(a) Arithmetic and Logic Unit (ALU): in seria l manner a lu will be one bit wide

t here for t he input should be one bit wide, in bi t-serial we have one block for

each op eration, instead of using t hirty two block like in convent ional parallel

microprocessor. For this purpose we have to convert the t hirty two bit word

into a bit stream and for this we used sift registers like PISO or SIPO based

on instructions. As in convent ional microprocessor instructions are executed in

one clock cycle but in bit-serial microprocessor instructions will b e execute in

t hir ty two clock cycles, because data widt h is t hirty two bits and op eration will

perform on each individual bit, t here for in bit-serial data path ALU will be

activated for t hirty two clock cycles.

Note : In our design of bi t-serial alu most of t he instructions are executed using

addit ion block.

Here question rises how? we will discuss it in implementation chapter.

19

CHAPTER 3: DESIGN AND METHODOLOGY

(b) Data Memory (DMem): as i mentioned earlier we can not access data mem

ory using serial bit. we need complete t hirty two bits word to access t he memory.

t here for we convert t he alu result which will be the address of data memory and

rs2_data which will be the data t hat will stored in dmem, from bit stream to a

complete word, for t his purpose we will use SIPO shift register.

(c) Write Back Mux: as write aback mux used for two purpose one is to write

back the data in register file, second is to handle t he hazard there for in bit-serial

we used two type of write back muxes

Parallel in Parallel Out Mux: for write back purpose.

Parallel in Serial Out Mux: for handling t he hazards, to forward the

data towards alu.

3.5 Design Consideration for Energy Efficiency

This section involves t he techniques that we use to make our design suitable for low power

applications with high efficiency.

Note: that when we improving one factor we have to compromise on other factor to gain some

thing we have to lose some t hing. As our main goal is to make our design suitable for low power

application t here for we have to compromise a little bit on through put (Efficiency). we use two

techniques.

3.5.1 Serial Execution:

we make our design bit-serial which means in our design instructions will executed serially one

bit per-clock-edge. operation will perform on each individual bits. which will make our design

smaller then convent ional parallel microprocessor design. and as the area is reduced power will

automatically be reduces because the number of components in design is reduced .

in conventional microprocessor design each operation will use thirty two operation block to

execute instruction in one clock edge which will used huge area. and each operation will have

different blocks. Such as "shift left, shift right , comparison, subtraction, addition"

each operation will required different operation block and each operations have different voltage

level. In contrast with t his our design will used single operation block of Addition for most of

instruction and as we observe from thirty two parallel block to one block area will reduce with

20

CHAPTER 3: D ESIGN AND MET HODOLOGY

large number.

Now lets do a rough comparison ,

Operation Parallel Serial

Blocks

Addition 32 1

Subtraction 32 1

Right Shift 32 1

Left Shift 32 1

Less then 32 1

Greater Then 32 1

Total 192 1

Table 3.1: Operation count P arallel vs Serial.

As you can see t hat in just a rough calculation where in convent ional parallel design number of

operation blocks are 192 and in serial its only one, and these are only six operation from thirty

two operations and diHerence in numbers is huge and if we make a supposit ion,

Suppose one operation blocks consume 1nm area t hen for t hese operations 192nm area will

required for parallel design and only 1nm are is required for serial design.

t his diHerence is only for counted operation in just ALU which is only one component of micro

processor, now just imagine area required for muxes registers and all other components t hat are

thirty two bit wide in parallel design . Now imagine how much area will be reduced by making it

serial. And power that will be required for 192 components is reduce to only for one component.

Suppose if one block use 1mv then 192mv for parallel design and only 1mv for serial design .

3.5.2 Instruction Pipelining

As i said earlier to achieve some thing we have to lose some thing, t here for in our design we

lose the effi ciency because the instruction t hat will execute in one clock cycles will now execute

in thirty two clock cycles hence time for execution is increased in contrast t he through put is

decreased.

To over come t his issue we make our Design pipe-lined. As in no-pipelined design the only one

instruction will process on thirty two clock cycles but now in pipelined design the five diHerent

instructions will process in same t hirty two clock cycles because we divide our design oin five

21

CHAPTER 3: D ESIGN AND METHODOLOGY

different stages using pipelining. hence t hroughput will increased from one to five.

22

CHAPTER 4

Implementations Details

This chapter includes the detail explanation regarding how the ISA was implemented using bit

serial and pipelining technique. Vve will discuss all three types of operations and the instructions

under these types, with complete microarchitecture and data path.

4.1 Pipelining

is fundamental concept in microprocessor design used to improve the through put and overall

performance of design, by breaking down the instruction execution process into a discrete stages.

Each stage is responsible for handling a specific part of the execution process, and allowing

the microprocessor to process multiple instruction simultaneously. This parallelism helps the

microprocessor to make better use of the hardware resources and increase the overall processing

speed. we divide our design in to a five different stages discussed as bwlowed.

1. Instruction Fetch: stage is responsible for fetching the instruction from instruction

memory based on a given address from program counter.

2. Decode Stage: responsible to decode the instruction, to identify the operation, required

register and control and data signals.

3. Execute Stage: responsible to perform the desired operation on the gievn data.

4. Memory Access: stage responsible for accessing the data memory using different Load

and Store instruction.

5. Write Back responsible for writing the data ta the destination register.

23

CHAPTER 4: I MPLEMENTATIONS DETAILS

4.2 Load/ Store Unit

one of the key components of design used to properly aligned the data before writing it at the

destination it either the register file or data memory.

• Load Unit: used in decode stage to properly aligned the data before writing at the

destination register used for LOR.d instruction. when the instruction is Load half or Load

byte, the bits we will write are either sixteen or eighth. Lh=16bits and Lb=8bits. As

we know the data we load from memory is a complete word of thirty two bits , then how

we know which of the sixteen or eighth bits will write at the destination register? this

decision will made in Load unit on the basis oflowest two bits of t he data memory address.

Load Byte:

1. dmem_address [1:O]==2'bOO the lowest eighth bits [7:0J will write at the des

tination register .

2. dmem_address [1:O] ==2'bOl from bit eight to bit fifteen [15:8J will write at

the destination register.

3. dmem_address[1:O]==2'blO from bit sixteen to bit twenty three [16:23J will

write at the destination register.

4. dmem_address [1:O] ==2'bOl from bit twenty fom to bit thirty one [31:24J will

write at the destination register.

Load half

1. dmem_address[1: O] ==2'bOO the lowest sixteen bits [15:0J will write at the

destination register.

2. dmem_address [1:O]==2'bOl the highest sixteen bits [31:16J will write at the

destination register.

- Load Word default (complete word load from memory) data will write at the des

tination register.

Remember this data will be first sign extend after selecting the desired bits

then write at the destination register

• Store unit: used in Memory stage to properly aligned the data before storing it tin the

data memory. Now the point of consideration is that at the targeted location on which

24

CHAPTER 4: IMPLEMENTATIONS D ETAILS

bits we store the data if we have t he store byte or store half instruction. Same as Load

unit t his decision will also made on the basis of address of data memory.

Store Byte:

1. dmem_address [1:O]==2'bOO data will store at t he [7: 0] bits of targeted ad

dress.

2. dmem_address [1:O] ==2'bOl data will store at the [15:8] bits of targeted ad

dress .

3. dmem_address [1:O] ==2'blO data will store at t he [16:23] bits of targeted

address.

4. dmem_address [1:O]==2 'bOl data will store at the [31:24] bits of targeted

address.

Store half

1. dmem_address [1:O]==2'bOO data will store at t he [15:0] bits of targeted ad

dress.

2. dmem_address [1:O]==2'bOl data will store at t he [31:16] bits of targeted

address.

Store Word default (given by instruction) data will store at t he targeted address.

R emember this data will not b e sign extended

4.3 Register File to Register File

t his types of operation contains all Integer and Integer-Immediate instructions with some other

instructions. It contain Basic integer and Integer Immediate instruction the process for both

type of instruction is same only t he difference is t hat we have source register two in Basic Integer

instruction, and in Integer immediate instruction we have Immediate value instead of source

register two.

4.3.1 Addition:

Addit ion is base operation of our design , and to implement the addit ion in serial manner , we

have to first make our data t hat will add from thirty two bits word to a bit stream. there for we

use PISO shift register to convert the data. then we implement the addition on each individual

25

C HAPTER 4: I MP LEMENTATIONS D ETAILS

bits .

Remember that the carry out of each individual sum will be add with the next bits with clock

edge delay because each bit will shifted after one clock-edge there for we have to sync the

carry-out with the inputs bits.

Serial

rs1 sum

Add 0 Q -carr_out

rs2 OFF
) ~

carryJn

Fig ure 4. 1: Serial Addit ion

4.3.2 Subtraction:

is also implernented using addit ion , by using twos compliment method. And remember the

twos complement will be implemented parallely with the operation so no extra clock-cycles

will required but if we first calculate the two's compliment t hen perform the subt raction the

execut ion cycles will increased from thirty two to sixty for fi rst t hirty two cycles for two 's

compliment and the next t hirty two clock cycles for adding the twos compliment wit h the data .

how the operation will perform if we have subt raction instruction .

e.g su b x5 ,x2 ,x l

as in given instruction we have x5 as destination register and x2 and x l are source register t hat

contains data to e subtracted . t his instruction implies t hat we have to subtract x l from x2

t here for we take x l 's two's compliment and add it with x2.

Adding phenomena is same as addit ion instructions carryout will be add with next bits after

one clock edge delay.

26

CHAPTER 4: IMPLEMENTATIONS D ETAILS

FF=fIip flop
rs1 = source register 1
rs2= source register 2

iI

rs
~---------1rD~---'Q

clock FF

rese

Figure 4 .2: Serial Subtraction

SUB
tOl.:n~~6 7 8 910Ili2131.(1~,e:H~~~

~--"~=== "",-~2~-

,~-,~---
Z~_!;OO""nerllotf'!.2 ----1'--

Bl~L=== urr;_Jl~
~J_,L __ ___

Figure 4.3: Serial Subtraction Timing Diagram

27

CHAPTER 4 : IMPLEMENTATIO NS D ETAILS

4.3.3 Logical Operations:

And,Or,Xor All t hese three operation will execute in same manner. we just serialize the data

using the PISO shift register and perform t he operation on each individual bits no extra logic's

are required for t hese operations.

rs1 =source register 1
rs2=source register 2

rs1

rs2

&, I, A
o/p

Figure 4 .4 : Serial Logical Operations

4.3.4 Shift Right Arithmetic (SRA):

This instruction is used to shift t he operand based on shift amount given in second operand.

ego sra x3,x2,x4

this instruction contains x3 as destination register and x2 is sources register t hat should be

shifted and the shift amount is given in the source register two which is x4.

Questions rises here how we shift individual bits based on a shift amount?

shift instructions are implemented using the shift registers. For right shift operation PISO shift

register will hold data for shift amount , then start shifting from MSB (most significant Bit)

towards LSB (Least Significant Bit) by left shift ing the data. B e Care full data should be

hold t ill shift amount cycles are not passed , other wise you will lose your data.

Now in ALU we place the MSB at the hold bits , as shift right ari thmetic operation shift the

data and place the MSB at the empty places. there for we place MSB on t he hold bits in alu.

After ALU we got the resul t but its not properly aligned we got data who 's MSB is at LSB and

28

C HAPTER 4: I MP LEMENTATIO NS D ETAILS

LSB is at MSB t here for in SIPO shift register, it takes lIISB first and shift it towards the IVISB

to properly aligned the data.

4 .3.5 Shift Right Logical (SRL)

This instruction use to shift t he operands logically towards right side. Now logical! means in

this instruction we will place the zero on t he empty places.

PISO shift register use to convert the data into a bit stream and in required alignment based

on instruction , and like SRA we need MSB first in ALU and ALU will place t he zero on the

hold bits . and remember like SRA your data should be hold for shift amount t hen PISO shift

regist er will strts shifting t he data from t he bit t hat is required first it may be either MSB or

LSB based on instruction.

Operation of SIPO shift register placed after alu will be same as in SRA.

~[

~1
"

SR
CO<.If-,ter 31 30 29 2B 27 26 .. 25 24 23 22 21 20 19 ~ 17 16 15 14 13 ;2 11 10 9 8 7 6 5 -4 3 2 1 fJ

"'~~~ 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 01

!S20 00 [) 0 0 0 0 0 0 0 0 0 000000000000000 0010

~[CO' .. mler 0 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 16 H 18 19 20 21 22 23 24 25 26 27 28 29 30 31

01' ~ ipo_s!;iiLregisler ='C~~OOOo~~~o X~o~1oQOo~~~o X~O~~OOOo~~~o X~O~]O~~OoCCOIT~O nOX1ocx::orr~o TIO:DO[Iorr~o TIo:Do~oIT~o TIoTIo~o[

Figure 4.5: Shift Right Logical

4.3.6 Shift Left Logical (SLL)

SLL used to shift t he data logically towards left. and as SRL logical means to place the zero at

empty places .

ego srl x3,x2,xl

to shift the data towards t he left side the PISO shift register will act slightly different t hen

previous one. we shift t he data Right to perform the left shift operations. initially data will

hold for shift amount then P SIO shift register will out t he LSB first by right shift ing the data.

ALU will place the zero at t he hold bits t ill t he shift amount cycles are not passed.

T hen SIPO shift register take LSB first from ALU and starts right shift ing t he data from I.ISB

to LSB and hence we got the desired data in required alignment .

29

C HAPTER 4 : I MP LEMENTATIO NS D ETAILS

For all the shift operation we have to synch all the control and data signals of

PISO shift r egister , ALU and SIPO shift Register . And the shift direction in shift

r egist er is ve r y importa nt

4.3.7 Set Less Then(SLT)

SLT is Signed Instruction. Jow what is means by Signed instructions?

Signed Instruction: Instruction that will implement under t he Signed Arit hmetic Rules. Now

what are the signed arithmetic rules?

Operands Signs Result

+ ,+ +

+ ,- -

-,+ -

-,- +

Table 4.1: Signed Arit hmetic Rules.

There for we have to be very care full when implementing comparison instructions either they

are signed or unsigned .

e.g sIt x3 ,x2,xl

this instruction compare the data located at the source register one and source register two, if

the dat a of source regist er one is less then the data of source register two then it will write the

one (1) at the destination register. other wise zero (0).

for implement ing the comparison instructions like t his we perform the addit ion operation on

data of source register one with the twos compliment of data of source register two, long story

short we implement the subtraction operation for implementing t he set less then instruction.

And the result will be accumulate on the basis of MSBs of source register one and source register

two data, and the subt raction results MSB.

Note: result will accumulate pal"alley and required combinational logic which means it does

30

CHAPTER 4: IMPLEMENTATIONS D ETAILS

not required any extra cycles . and hence instruction will execute in thirty two clock cycles.

"LT
co.:r.ter 0 1 2 3 4 5 6 7 8 9 10 11 ;2 13 14 15 16 17 19 19 20 21 22 23 24 25 26 27 28 29 30 ;)1

~ [,,2= 199B ----.l '---J 1 ""'1L',2 ~'--__ -1~I..... ____ --1

.~ l 'bi' ~'--_________________________________ _

carry_In ---.l
ADD

Carry_oul ___________ ----1

Figure 4.6: Serial Set Less Then Timing Diagram

4.3.8 Set Less Then Unsigned (SLTU)

SLTU instruction is same sa SLT the only difference is that SLT is compute under signed

arithmetic rules, but SLTU will no compute under singed arithmetic rules. SLTU will also

implement using Subtraction but now the logic for computing the result is changed.

As in SLT instruction for computing the result under signed a rithmetic rules we used the MSB

of subtraction result , but in unsigned comparison we compute the result on the basis of source

operands data and t he carry-out bit that will obtain after MSB subtraction. And same as SLT

and output will calculate parallely and logic will be pure combinational b ecause we have to

calculate result in thirty two bits, no extra cycles will needed using combinational logic.

4.3.9 Load Word (LW)

Load word instruction used to load the whole thirty two bit data from the data memory memory

placed at targeted address in the destination register.

e.g lw x3,xl,108

• Address Calculation: Targeted address of data memory was calculated by adding the

data in source register one with the sign extended immediate/offset value. as immediate

has twelve bits only but to execute the instruction we need each operand of thirty two bits

there for we have to extend it up to thirty two bits. Now Sign extend refer to extend

the MSB bit up to remaining thirty two bi ts. now both operands are of thirty two bits

now we can easily add them to calculate the targeted address. After perform the addition

we have to convert the data from bit stream to a vector form(thirty two bit word). As

31

CHAPTER 4 : IMPLEMENTATIONS DETA ILS

Immediate Sign Extended

11 'bl0l00000000l 31 'blllllllllllllllllllll0l000000001

Table 4.2 : Sign Extension.

i mentioned earlier we can not access the data memory with one bit per clock edge data

or address. now as we have data in vector form there for now we can load the data from

memory and write back it at the destination register.

• Write Back: But before write it to destination register we have to pass it t hrough the

load unit. Load unit is used to extend the data up to thirty two bits if its not , and as LW

instruction load the whole thirty two bit word from data memory there for t he Load unit

will gave us the same data at t he output as it was at input.

4.3.10 Load Half Word (Lh)

Load half word instruction is used to load the half word from data memory and write it back at

t he destination register. But! t he Question rises ere that how can e load the half word from

data memory? lets discuss it one by one. First the address calculation .

e.g lh x2,x3,1 08

• Address Calculation: The target address will calculate same as Lw Instruction. the

source register one is added with the sign extended immediate/offset , and addit ion was

performed one bit per-clock-edge. t hen we convert the data from bit stream to a vector.

Pass it to the data memory and data memory gave us the whole thirty two bit word as

output.

• Write Back: before writ ing it to t he destination register we pass it to the load unit now

load unit will decide it which of the sixteen bits are use to write as the destination register.

Sixteen bits because the instruction is Load Half there for it load only half word and

half word is of sixteen bits . But we can not write the sixteen bits at destination register

there for load uni t select the sixteen bits and also sign extend it up to thirteen bits, for

writing at destination register.

32

CHAPTER 4 : I MPLEMENTATIO NS DETAILS

4.3.11 Load Byte (Lb)

Load byte instruction is used to load t he one byte data from data memory and write it back to

the destination register .

e.g lb x2,x3,10 8

• Address Calculation: Address calculation is same as other load instruction. first convert

the data in to a bit stream. Sign extend the immediate/offset and then add it with the

data of source register one.

• Write Back: Same as other instruction before writing it at the destination register we

have to pass it through the Load unit for selecting the desired byte that should be write

at destination register. And t hen sign extend this byte up to thirty two bits, then write

it at the destination register.

4.3.12 Load Upper Immediate

instruction used to to load the twenty bits of immediate/offset value in the destination register

after sign extending it to the destination register. in load upper immediate instruction we will

not sign extend t he immediate value because in t his instruction we have to write t he twenty

bits of immediate value along with twelve zero bits at t he LSB.

IMM[19:0j ,12 'bO like this. to perform this type of operation we have two ways

• Either you perform the logical left shift operation as discussed earlier for the amount of

ten bits and then write it back to t he destination register.

• Or we can just assign the immediate after write back stage to t he load unit and then make

the data by making the lower twelve bit zero and write it back to the register.

4.3.13 Add Upper Immediate to Pc (AUIPC)

instruction use to implement the PC-relative addressing mode. in this instruction we will make

the immediate first like Lui instruction IMM[19:0j ,12 'bO . and now add this immediate with

the address of current instruction. and the write the result at t he destination register.

33

CHAPTER 4: IMPLEMENTATIONS DETAILS

4.4 Register File to Memory

4.4.1 Store Word (Sw)

As it's clear from the name the instruction is used to store t he whole word of thirty two bytes

in the data memory at the desired location. The format of instruction is

e .g Sw x3,x2,108

in t his instruction we don't have any destination register as we are are writing the data in t he

memory not in the register file. There for no need of destination register.

• Address Calculation: Address calculation for store word is same as load word we

serialise the data sign extend the immediate/offset and add source register one with the

immediate / offset .

• Store Data: for writ ing the data we now pass the data from the store unit , Store unit

will select t he bits and sign extend it and the we store it at the targeted address . But! in

store word case we don't need of this because we store the complete thirty two bits t here

for store unit will out the default data as it was a input.

4.4.2 Store Half (Sh)

store half instruction used to store the half word of data at t he targeted address.

e.g sh x3,x4,109

• Address Calculation: same as Store word.

• Store Data: before storing the data we pass it t hrough t he store unit now store unit will

select the sixteen bits that will store in t he data memory, and sign extend it up to thirty

two bits. then we store the data at t he targeted address.

4.4.3 Store Byte (Sb)

store byte instruction used to store the one byte of data at the targeted address .

e .g sb x3,x4,109

34

CHAPTER 4: IMPLEMENTATIONS DETA ILS

• Address Calculation: same as Store word.

• Store Data: same as store half and store word before storing the data we pass it t hrough

the store unit now store unit will select the eight bits t hat will store in the data memory,

and sign extend it up to thirty two bits. t hen we store t he data at the targeted address.

Note: for storing the data in data memory we need parallel data instead of serial

data because we cant store data one-bit per-clock-edge or i say serially.

4.5 Control Flow

these instruct ion are used to control the fl ow of instruction in instruction memory.

Question: How? these instructions decides whta will be the next instruction that will exe

cute. lets discus it using example.

Vve want to display This core is running on RV-32i ISA using UART (Universal asyn

chronous receiver-transmitter) . Jow each alphabet has different ASCII and different Hexadec

imal number now we run a bunch of instruction. t he flow of instruction will used control flow

instruction for making the data because data should be in some bits of instruction and we have

to made it properly by using continuous loop of instruction and , and loop of instruction will

be implemented using t he control flow instructions. t he instruction pattern given below will

print the desire data this core is running on RV -32i ISA and the data will accumulate in

the store word instruction and if you notice that store word instruction is in loop of made by

using different control flow instructions, and hence like t his we control the flow of instruction

in instruction memory using control flow instructions.

1. 00011197 auipc

2. 82818193 addi

35

CHAPTER 4: IMPLEMENTATIONS DETAILS

3. 00018117 auipc

4. FF810113 addi

5. 00010433 add

6. 00010637 lui

7. 00160613 addi

8. 008006B7 lui

9. 00060713 addi

10. 05400793 addi

11. 00F6A023 sw

12. 00170713 addi

13. FFF74783 lbu

14. FE079AE3 bne

15. FE9FF06F jal

16. 008007B7 lui

17. OOA 7 A023 sw

18. 00008067 jalr

19. 00054783 lbu

20. 00078E63 beq

21. 00150513 addi

22 . 00800737 lui

23. 00F72023 sw

24. 00150513 add

25. FFF54783 lbu

26. FE079AE3 bne

36

C HAPTER 4: IMPLEMENTATIONS D ETAILS

27. 00008067 jalr

Now lets discuss each control flow instruction one by one. / / we have two types of

cont rol flow instructions, condit ional and unconditional jumps.

4.5.1 Jump and Link (JAL)

e.g jal x2 ,-108

as mentioned earlier JAL is a combination of register file to register file and control flow type.

Because it writes the data at the register file also it use to jump t o the targeted address .

• Write Back: it writes t he address of t he current instruction plus four (Pc+4) at t he

destination register. For writing this type of data we have two possible ways .

1. Either you hard encode the four in thirty-two bits and t hen add t hese bits with the

address of t he current instruction.

2. Or you can directly assign the updated address to the register file.

Note: we used t he second method because hard enoded in design is not a good option .

• Jump address calculation: In Jal's instruction the immediate/offset is encoded in

mult iply of twos form, and also its a signed offset . T here for before adding the offset with

the address we fir st make it in mult iplies of two's form by making its LSB zero and then

sign extend it up to thirty two bits. Then we add the address now the obtained result is

the next instruction address . where microprocessor will jump.

4.5.2 Jump and Link Register (JALR)

e.g jalr x2,xl,0

it 's also a combination of register file to register file and cont rol flow type .

• Write Back: same as JAL instruction.

• Jump address calculation: the method of calculating the target address is slightly

different t hen Jal instruction , here in JALR we extend the offset up to thirty-two bits and

add it wit h t he address of the cunent instruction. when we got the result we set t he LSB

37

CHAPTER 4: IMPLEMENTATIONS DETAILS

of the result to zero for aligned it with the word boundary.

Note: in our design we don't wait for getting the whole result and t hen set t he LSB to

zero because we have an SIPO shift register after ALU where we get the complete result

and then m aking LSB zero will take an additional cycle because SIP O is sequential clock

based, there for when adding t he operands we send t he zero at t he p lace of LSB addition,

but remember if you are sending t he zero you still have to add the LSBs b ecause we need

carry-out for next bit addit ion else t he result will be wrong.

caTTy_ out,sum=rsl +rs2+caTTy_ in;

sum = count_alu=O ? 0: sum;

Note: JAL and JALR are unconditional jumps, means they dont need any condition

on which bases they w ill jump, they just jump

PISO=Paraliel in Serial out
SIPO=Serial in Parallel out
temp=temporary variable to
store 32 bits of add

PISO
shift

Register

rs1

rs2

address
SIPO shift register

ifUalr)
temp[O]=1 'bO

Figure 4.7: Serial Jump and Link Register

4.5.3 Branch If Equals to Zero (BEQ)

output

implement to jump a t t he targeted address based on t he condition t hat if the source operand one

is equal to the source operand two only then j ump to t he targeted address. In t his instruction

three adder blocks will work together . One for checking t he equali ty and rest of the two for

calculating the targeted address . Two address?

one is PC plus signed extended offset (Pc+sext(offset)) and other one is Pc plus four(Pc+4).

• Equality: equality was checked by subtracting t he source operand two from source

operand one. \"'e take two compliment of source operand two and add it with the source

38

CHAPTER 4: I MP LEMENTATIONS DETAILS

operand one. Now as we have serial data there for we need counter which will count on

the basis of t he result of sub traction. If t he result is zero t he counter will count plus one

and at t he end if counter will reached to the t hirty two it means result is zero and its

implies t hat rs1 is equal to the rs2 . because only then we get zer result of subtraction if

both are equal else not.

• Address Calculation: We can calculate both address at t he same t ime otherwise, we

need extra clock cycles for calculating both address on each clock edge we will calculate

P c+4 and P c+offset and remember offset will be sign extended up to t hirty two bits.

Jaw at which address Pc will jump, this will decide on the basis of counter result if its t hirty

two t hen P c will jump to the Pc+ offset address else it will jump to P c+4 address.

4.5.4 Branch if Not Equal to Zero (BNE)

Branch not equal to zero is the opposite of BEQ now the P c will Jump if and only if source

register one is not equal to source register two .

• Equality: Now as we check the equality for BEQ the same process will fo llow for BNE,

only te difference here in B E is PC will jump if t he counter will not reach to thirty two,

because only then we can say t hat the both operands are not equal.

• Address Calculation: same as BEQ we calculate both addresses at the same t ime

else we need extra thirty-two cycles to execute this instruction. There we calculate both

addresses at the same t ime.

now the decision of Target address will made on not reaching t he counter to thirty-two, if the

counter reaches to thirty-two then the next address will be Pc+4 else if Pc not reaches to thirty

two then the next address will be P c+immediate.

4.5.5 Branch Greater than Equal to (BGE)

BGE is a signed instruction and jumps only if source register one is equal to or greater t he source

register two. As it is a signed instruction there for it will execute under signed arit hmetic rules

t hat we discussed earlier .

39

CHAPTER 4: IMPLEMENTATIONS DETAILS

• Condition Check:

1. Great er T h en: As now we have greater t han condit ion, followed by signed arith

metic rules , we used the same phenomena as BLT but in opposite manner, the

condition on t he basis of which we decides the less then we can use it in opposite

manner and use t hem as greater t hen.

And same as BLT decision was made on source register one MSB , source register two

MSB, and the MSB bit of result.

2. Equal To: Equal to the condition will check using the same phenomena as used in

BEQ or BNE.

• Address Calculation: Address calculation is t he same as BEQ or BNE.

4.5.6 Branch Greater Then Equal to Unsigned(BGEU)

All the procedure is the same as BGE the only difference is that now we don't check the

greater than condition under signed ari thmetic rules, now its simple and decision will made on

the MSBs of source register one, source register two and carry out bit.

4.5.7 Branch Less Then (BLT)

Branch less t hen instruction is signed instruction and used to jump the Pc if and only if sour~e

register one is less then source register two.

• Condition Check: less then the condition will check same as SLT instruction same

process will used here.

• Address Calculation: Same as BEQ or BNE.

4.5.8 Branch Less Then Unsigned (BLTU)

Same as Bit the Pc will jump only if rs1 is less t he rs2 but now we don 't care of signed arithmetic

rules.

• Condition Check: less t hen the condit ion will check same as SLTU instruction same

process will used here.

40

CHAPTER 4: IMPLEMENTATIO IS D ETAILS

• Address Calculation: Same as BEQ or BNE .

Sipo= Serial in parallel out
FF= Flip flop

I comparison logics I r---------..:~)";!;7

c
.g

~

~'

rs1

r51

Imm

carryJn

I address calculation I
rs1

+

branch counter
if(sublracl--1'bO
counl=counl+1'b1

Figure 4.8: Serial Branch Prediction

COOfi l e.r=~6

,,2 ---..l
"",-,,2 ------'-___ ...1

3ranch
10 11 12 13 14 15 16 17 18

SIPO
Shift

register

"~I ______
2·s_compfin\enl ~~=\--;::====================================

(51 ---.l
add

Cil!l}'Jn -----.l--~r=======================================

~~\L ______________________ ~ __ _

.,~------~~---------------------------------------
4~,--__ ___

alu_oUl...p< ~~ ________ ____________________________ _

Figure 4.9: Serial Branch Prediction Timing Diagram

4.6 Data Path

• Register file to Register File Instructions: data path will start after the instruction

memory but before that, we have a Program counter that will make the address for the

41

CHAPTER 4: IMPLEMENTATIONS D ETAILS

instruction memory. Then instruction memory will fetch the instruction and pass it to

t he PIPO Shift register , after t hat instruction will decode the cont rol unit will make the

control signals register fi le gave us the data located at the addresses of source registers sign

extend extend t he immediate/offset t hen these all data and signals will pass to the PISO

shift register t he out will goes to the hazard control muxes and t hen AL U for execution

after t hen the output of ALU will pass to the SIPO shift register to make the data vector ,

then pass to the memory if load instructions is in process after then write back mux and

then load unit for sign extension then write back again to the register file.

• Register file to Memory: same procedure as regist er file to register fi le but it will stop

at data memory that 's it.

• Control Flow: same as t he Register file to Register fi le t ill t he execut ion stage after

t hen when t he instruction is executed in ALU then it will forward back to t he Program

Counter for jump and then Pc will jump to the given instruction.

4.7 Microarchitecture

Below given diagram shows the complete microarchitecture of serial RISC-V (RV-32i) design.

Which involves all t he necessary components required for the bit-serial microprocessor deign.

PIPO"pilrali elln paraliel out shUt registe r

PISO"parallel in serial oul 5hlft register
~ 1 ·sou rce regis lerl

rs2"source reglster2
rd=destlnaUon register addreSli

Im m= Immediate

rs1 DECODING UINT

Register file
rd ' conirolunll

p • Sign_cxtendif)~LUnit J2biI
o imm • Sign_extend_load_Uni -

Figure 4.10: Serial Branch Prediction

42

CHAPTER 4 : IMPLEMENTATIO NS DETAILS

4.8 H azard Unit

The most important unit of pipelined microprocessor design. Responsible for the proper flow

of instructions in pipelines and rest of the core, by detecting and handling the different types

of hazards in the design.

Note: stay focused when designing this unit a single mistake can fail your whole

design

there are three different types of hazards in pipelined microprocessor design such as

4.8.1 Structural Hazards:

This occurs when multiple instruction need in use of the same resource or component in the

design then this hazard will occur. e.g when two instructions require access of same execution

unit at the same time.

4.8.2 Data Hazards:

Occurs when instruction needs the result of an other instruction that is still in the pipeline . we

face three types of data Hazards in pipeline design. ADD RI, R2, R8 ; RI = R2 + R8

SUB R4, RI, R9 ; R4 = RI - R9

MUL RI , R4, RIO; RI = R4 * RIO

1. Read-After-Write(RAW): when instruction needs to read the data t hat's no ready till

yet. As MUL depends on the ADD instruction.

2. Write-After-Read (WAR): When t he instruction is read before the other instruction

write the data. As we can see SUB reads from rs1 and MUL writes at rs1.

3. Write-After-Write (WAW) When both instruction writes the data at the same location

hazard occur if the not executed in t he correct order. As ADD and MUL both write at

rs1.

4.8.3 Control Hazard:

These types of hazards occurs when there is a change in flow in instructions due to control flow

instructions, such as JUMP and BRANCH.

43

CHAPTER 4: I MP LEMENTATIONS D ETAILS

T hese hazards or say dependencies t hat we will face in p ipeline design . J ow t he Quest ion rises

here what do we do when face t hese hazards?

4.8 .4 Handling of Stru ctural H azards

• Resource Duplication: duplicate t he resources t hat commonly caused t he structural

hazard. Such as if ALU causes t he t he structural hazards to double t he ALU. This method

caused the increase in area.

• B y passing: Bypass t he data from any stage t hat causes t he structural hazard , b efore

wait ing for writ ing at t he destination.

4.8.5 Handling of Data Hazards

• St a lling : stalling means holding t he instruction in t he same stage for a number of cycles

required to process t he instruction properly.

• Forwarding: or we say bypassing the data from one stage to another stage .

1. Forwarding from E xecut e Stage: if t he source register at the Decode stage is

t he same t he destination register in the Execute Stage. T hen forward data from t he

execute stage.

2. Forward from Memory Stage: if t he source register at t he Execute st age is t he

same as the destination register in Memory Stage t he forward data to t he Execute

stage, also if source regist er is t he same at decode stage is same as destination register

in memory stage t hen forward t he data from Memory stage to Decode Stage.

4.8.6 Handling Control Hazard

Cont rol hazard detects a t t he execute stage only.

• Stalling: Stall t he decode stage and fetch st age for one clock cycle.

• Flushing when a control hazard occurs it means the new instruction will be at t he

targeted address and t he rest of t he two instructions in t he decode stage and t he fetch

stages are useless t here for we have to flush t hese stages to maintain t he flow of instruction.

44

CHAPTER 4: IMPLEMENTATIO S D ETAILS

4.9 Programming and Tools

4.9.1 Tools

Front-end Back-end

Intel's Quartus 21.1 Cadence's Genus

Mentors Graphic's Cadence's !run Sirn

Questa Sirn

Table 4.3: Tools

4.9.2 Programming

1. Hardware: Used Verilog Hardware descriptive language as Front-end to design the bit

serial core.

2. Software: Used C and Python as Back-end to run the simulation and various multiple

script such as for dumping t he core results.

45

CHAPTER 5

Verification

The verification process involves confirming that t he microprocessor core design meets its spec

ification and functions correctly. All the instructions are working properly, and no hazards

occurs. The design meets the timing requirements. And also write data and store the data is at

the Right t ime. Verification is a crit ical step in microprocessor design to ensure that the final

product behaves as intended and is free from errors or bugs.

To verify our Design we use the Design Verification Environment ever made bu Coogle named

GOOGLE DV. \Ve integrate our design with the verification environment and compare the

core result wit h t he predicted result of the verification environment .

5.0.1 GOOGLE DV Instruction Generator

Instruction generator is used to make the different combinations of thousands of instructions.

That will pass to the core and the Golden Reference. In our case, we use six different types

of test instructions.

1. Basic Arithmetic Test: contains basic arithmetic tests in the manner that hazards will

occur because only then we can test our design on different dependencies.

2. Jump Stress: as shown by a name its li terally a stress, containing the different types in

uncondit ional and condit ional jumps along with the other instructions.

3. Loop Stress: it contains the instructions that form the loop.

4. Memory Str ess: contains the load and store instructions along wit h t he jump and other

instructions.

46

CHAPTER 5: VERIFICATION

5. Random Instructions: contains random instruction by combining all the instructions

wit h a little touch of jump instructions.

6. Random Jump Instructions: contain random instructions with a high number of jump

instructions.

All tests include ten (10) seed s . Each seeds contain a minimum amount of eighth

thousand instructions. And in result , we test approximately six lac instructions

which contains a high number of d ependencies.

5.0.2 Design Under Test (DUT)

includes t he core that will be verified and a 'ITacer IP.

• Core: core is our case is a bit-serial microprocessor.

• Tracer IP use to dump write-back data, address of destination address, instruction ad

dress and instructions for comparison with the expected result.

5.0.3 Spike

it is a RISC-V ISA Simulator and in our case, it's our Golden Reference. All t he instructions

that pass to t he core also pass to the spike and it gave us the correct expected result t hat will

be used for comparison with t he core result.

5.0.4 Python Script

used to compare the results given by the core and the golden reference. As we can see the core

results are for 34 t ime its just for testing the functionality in actual it only write for once and

python scripts takes it only for once to compares the instructions, address, write back data, and

the destination register address of core with the spike. If all things are matched pythons script

gave us t he message PASS else FAIL.

47

CHAPTER 5: VERIFICATION

Google DV
instruction
generator

..... , "'1 '""'

15 core 0;
16 core 0:
17 core 0:
18 core 8:
19 core 0:
20 core 0:
21 core 0:
22 core 0:
23 core 0:
24 core 0:
25 core 0:
26 core 0:
27 core 0:
28 core 0 :
29 core 0:
30 core 0:
31 core 0 <
32 core 0:
33 core 0:
34 core 0:
35 core 0:
36 core 0:

Design under test

Serial RISC-V -- Tracer
core Ip

Python script

Spike
RISC-V Isa Simulator
(golden Reference)

Figure 5.1: Verification Environment

0x80000008 (0x00628263) beq
3 0x80000008 (0x00628263)
0x8090000c (0x09000117) auipc
3 8x8008000c (0x008001I7) X 2
0x80000010 (0x00cI0I13) addi
3 0x80000010 (0x00cI01I3) X 2
0x80000014 (9x00010067) jr
3 0x80000014 (0x00010067)

to, tl, pc + 4

sp , 0x0
0x8000000c

sp, sp, 12
0x80000018

sp

0x80000018 (ex40000a37) lui 54, 0X4000~
3 0x80000018 (0x400Sea37) x20 0x40000000
0x809000Ic (0xI00a0aI3) addi 54, 54, 256
3 0x8000001c (0xI00a0aI3) x20 0x40000100
0x80000020 (0x30IaI073) C5rw misa, 54
3 0x80000020 (0x301aI073) c769_mi5a 0x40140100
0x80000024 (9x0002a817) auipc a6, 0x2a
3 0x80000024 (0x0002a8I7) xI6 0x8002a024
0x80000028 (0xcc080813) addi a6, a6, - 832
3 0x80000028 (0xcc 0808I3) xI6 0x80029ce4
0x8090002c (0x00007aI7) auipc 54, Ox7
3 0x8000002c (0x00007aI7) x20 0x8000702c
0x80000030 (0x2dOa0aI3) addi s4, 54, 720
3 0x80000030 (0x2d0a0aI3) x20 0x800072fc

Figure 5.2 : Instruction Generator

48

result

CHAPTER 5 : V ERIFICAT IO N

........ _ _ ... _ _ .•........ _•.... -.................•........................ -........ -.......... _-_ __ .. _ _ ...•......• -................ _._ .. __ ... __ ._• __ ._._ _ _ ... __ _ .. _. __ - . -----
1 pc, inst r, gpr , cs r , binary , mode, in5t r _s tr, operand, pad
2 80000000 , , to: 00000000 , ,f14022f3, 3 , "c5rr to , mha r tid" "
3 80000004 " t1: 00000000 , , 00000313 , 3 , "U tl , 0" "
4 8000000C,, 5 p:8000000c,, 000001I7 , 3 , "avipc 5P, 0xO" "
5 80000010 , ,sp: 800000I8 , ,00c10113 , 3 , l'addi 5P, 5p, 12" "
6 I:N;N:i:II:I , , s4: 40000000 , , 40000a37 , 3 , "1 v i 54, 0x40000" "
7 8000001c,,54: 40000I00 ,,100a0a13 , 3 , "addi 54, 54, 256" "
8 80000024 , ,a6: 8002a024, ,0002a817, 3 , " all i pc a6 , 0x2a" "
9 80000028 , ,a6:80029ce4, ,cc080813, 3 , "addi a6, a6, -832" "

10 8000002c, ,54: 8000702c, , 00007a17, 3 , "alli pc 54 , 0x7" "
11 80000030 , ,s4:800072fc, ,2d0a0a13, 3 , "addi 54 , 54, 720" "
12 80000034 , , s4:800072fc, ,000a6a13, 3 , "ori 54, 54, 0" "
13 8000003c, ,54: 8000003c, , 00000a17, 3 , "auipc 54 , 0xO" "
14 80000040 "s4: B0000064 ,,028a0a13, 3 , "add i 54 , 54 , 40" "
15 8000004c, ,54: 00002 000 , , 00002a37 , 3 , "1 ui 54, 0x2 H , ,

16 8000005 0 ,,54: 00001800 ,,800a0a13, 3 , "add i 54 , 54, -2048" "
17 80000058 .. 54: 00000000 . . 00000a13. 3 . "U 54 . 0"

Figure 5 .3: Spike Result (Golden Reference)

76 80000018 , lui, 54: 40000000 , , 40000a37, , "lui
77 80000018 ,lui,s4: 40000000 , ,40000a37, , "lu i
78 80000018 ,lui,54: 40000000 ,,40000a37, , "lui
79 80000018 ,lui,s4: 40000000 ,,40000a37, , "lui
80 B0000018 ,lui,s4: 40000000 ,,40000a37, , "lui
81 80000018 , lui, 54: 40000000 , ,40000a37, , "lui
82 80000018 ,lui,s4: 40000000 , ,40000a37, , "lui
83 80000018 ,lui,S4: 40000000 ,,40000a37,, "lui
84 80000018 ,lui,S4: 40000000 . ,40000a37,, "lu i
85 80000018 .1ui.54: 40000000 ,.40000a37,, "lu i
86 80000018 .1ui,54: 40000000 ,,40000a37,, "lui
87 80000018 .1ui,54: 40000000 , ,40000a37 , , "lu i
88 80000018 ,lui,S4: 40000000 ,.40000a37,, "1ui
89 80000018 .1ui,s4: 40000000 , ,40000a37,, "lui
90 B0000018 .1ui,54: 40000000 ,,40000a37,, "lui
91 80000018 . lui, 54: 40000000 • • 40000a37 •• "lu i
92 80000018 .1ui,54: 40000000 , ,40000a37,, "lu i
93 B0000018 ,lui , 54: 40000000 "40000a37,, "lui
94 80000018 .1ui,s4: 40000000 , ,40000a37,, "lui
95 80000018 ,lui,S4: 40000000 , ,40000a37,, "lu i
96 80000018 ,lui,54: 40000000 , ,40000a37, , "lu i
97 80000018 .1ui,s4: 40000000 , ,40000a37,, "lui
98 80000018 ,lui,s4: 40000000 , ,40000a37,, "lui
99 80000018 ,lui,s4: 40000000 , ,40000a37,, "lu i

100 B0000018 ,lui,S4: 40000000 , ,40000a37,, "lui
101 80000018 , lui, 54: 40000000 , • 40000a37, , "lu i
102 80000018 ,lui,54: 40000000 , ,40000a37,, "lu i
103 80000018 ,lui,s4: 40000000 , ,40000a37,, "1ui
104 80000018 ,lui,S4: 40000000 , .40000a37,, "lu i
105 B0000018 ,lui,S4: 40000000 , , 40000a37,, "lui
106 80000018 ,lui.s4: 40000000 , , 40000a37 , , "lu i
107 80000018 , lui, 54: 40000000 , • 40000a37, , "lu i
108 80000018 ,lui,54: 40000000 ,,40000a37,, "lu i
109 80000018 .1ui,s4: 40000000 , ,40000a37,, " l ui

x20,Ox40000" , "s4,Ox40000" ,
x20,0X40000" , "s4,Ox40000" ,
x20,Ox40000" , "s4,Ox40000· ,
x20,0x40000" , DS4,Ox40000" .
x20 , Ox40000" , "s4,0x40000" .
x20,Ox40000" , "s4,Ox40000" ,
x20,0x40000· , "S4,0x40000 " ,
x20,Ox40000 s4,0x40000· ,
x20,Ox40000" , "s4,Ox40000" ,
x20,0x40000" , "s4,0x40000" ,
x20,Ox40000" , "54,Ox40000· ,
x20,0x40000" , "s4,Ox40000" ,
x20,Ox40000" , "s4,Ox40000" ,
x20,0x40000" , "s4,0x40000" .
x20,Ox40000" , "s4 , 0x40000 " ,
x20,Ox40000" , "s4,0x40000" .
x20,0x40000" , "54,Ox40000" ,
x20 , Ox40000" , "s4,Ox40000" ,
x20,0x40000" , "s4 , 0x40000" ,
x20,Ox40000" , "s4.0x40000· ,
x20,0x40000" , "s4 , Ox40000" ,
x20,0x40000" , "s4,0x40000" ,
x20,Ox40000" , "s4 , Ox40000" ,
x20,Ox40000" , "s4 , Ox40000" ,
x20 , Ox40000" , "s4,Ox40000" ,
x20,Ox40000" , HS 4 , Ox40000" ,
x20,Ox40000" , "s4,0x40000" ,
x20,Ox40000" , "s4 , Ox40000" ,
x20,Ox40000" , "s4,0x40000" ,
x20,Ox40000" , "s4,0x40000- ,
x20,0x40000" , "s4,Ox40000" .
x20,Ox40000· , "s4,0x40000· ,
x20 , 0x40000" . "s4,Ox40000" ,
x20,0x40000" , "s4 , 0x40000" ,

Figure 5 .4: Bit-Serial Core Result

49

CHAPTER 5: VERIFICATION

F ig ure 5.5 : Questa Sim Simulation

50

CHAPTER 6

Analysis And Results

In this chapter , we will discus the findings of the implementation discussed in chapter four. Aud

will discuss the PPA(Power Performance Area) graph.

6.1 FPGA Implementation

Test our core on FPGA to validate it working on hardware. Implementa tion was performed

on Intel DEI SoC FPGA board on 50Mhz frequency and displayed the results on its HEX

display. The FPGA consumed 2301 LUTS Loookup table used to implement all the com

binational logic of the core. And Total Number of registers was 2284 used to implement the

sequent ial logic. The number of luts and registers were high due t o pipeline fashion. T he

maximum achievable frequency was 600MHz but FPGA is only capable of 50MHz therefor the

entioned frequency in the table is 50MHz.

Decimal numbers displayed on the HEX display of FPGA is the half part of write back stage

instruction due to only six HEX dsiplay we first display the six msbs of instruction and next

cycle we display the remaining bits . This verified that each stage form fetch to write back all are

completely synthesizeable because the instruction only reaches at write abck stage if it process

through all st ages in the hardware.

Operating Frequency Number of LUTS Number of Registers

50MHz 2301 2284

Table 6.1: LUTS and Register Utilization in FPGA

51

CHAPTER 6: ANALYSIS AND RESULTS

Figure 6.1: FPGA Demo

52

CHAPTER 6: A NALYSIS A ND RESULTS

6.2 UART Test

UART (Universal Asynchronous Receiver-Transmitter) hardware interface communication pro

tocol used for serial communication between microprocessor , micro controller , and various other

peripheral devices. ' iVE perform this t est to validate our core speed and time, and to validate

t he communication of microprocessors with peripherals and slave devices such micro-controller .

For t his , we write a C program which priints a message displayed on GUI and use the infinite

loop to see wether its working or got some bug after some t ime. Then we use RISC-V GCC

to compile t hat C program and convert it from C to a .hex fil e which contains the instructions

in hexadecimal form . Then pass those instructions to core and from the core to UART with

a specific display address. Also, we use basic interconnect between core and uart in which we

specify some address based on which uart will get input and display t he output.

C Tlle<l!1:!'i1 h 0

Ountl .. lord Sur t u FPGA [o:! i!iort-64 1021.2

fit £::1. "1" ~ ~_ ~ st-" ~p. !.¥Y ""',.u ~ t"fI

ii' ~ · ~ g jj!,\ "1i:.:1::.! 1'0 - ~ f;.li' j~ ~ ~). ~.?: "~ .I.r,;< ·)(,:i .! .. ~~. t!l ~ ~n.·\fJ -i2. ~ __ ~~ ~l! ~.,ni~ t ... 1l.!-~~1: .. :4 ~ ,.~ ~ .I ~ :~_ ~.~ ''!j t ~ t I t · a · ,t " .. ~_:~ .. --~.i
!! ~!U~ '!i
"q . .. , . ~..g, . ", T0iUO~" f'.sT: ~f..;t =)

• I.
R.......,. __
• ts.. •• ,. Un .. It ~"" __ _ ''''' _ _ ' ' ' __ • _ _ ' . _1_ ... ;co ,_~ __ __ _ --'-?:1.' .. I •• ' • • · ... '"'U: ~, 1M'

• •• ~I .. " {nll._!l:.!;1 1'JIC!l:II:'! - hrt .u. I'll _ "". -.ot",oc'"''''' .,u. :1 1 f~, ~ · '*1t.UT_"..t·. ,..,. i"n. _1 'nUI< O't, •• I .• /!" ;,,<_Il ... _,.,, '.~.nf""'_"".'~_'~'II .•• t~l •
. ' t ,n.' ~ f' IU":'''~' 11 1 ... 1.&:; f U._ • ..,_·."f .'r.>.:_I ... _' ... t O! _I""_I~ti .. . _J>Ul_n_~too:l_u",.. !'H., •• I .• I • • i "":",'l.'.n :.:."., ill .
i' .• >ln Dla1 ' cnl.»-l'::, !l'..-:;XI - kTI Uu CJlt _...-, "",.., """",,,,:UOlI " •• I II :n J-=\ · .~h"'_l:>·. 1'loo p:-u ""1U>Jt.l."" 10 ." .• i . .• 'r' J.~_U""_~"ln . .. '~_...,.,~..r~:; . .,.,.,.
jj: ., :~.: ,~,,~~:~~~;~~~;~ ~;,;~:~1~a:7~7~O~;:~~~::.:,~~,<~.; ::;;~;:,~~~; : .. ~.;;;":;~~:~-,;: ::: ~ ~~:.IPI;o_I _ •• P~.,.! _ _ ,"<.,._'.'.' ''! ll.

II! :: ~§tl:~:~\lil~!~~~ i~~~;g~~~~~~:§~~:l\\l:;jg~~~~~lls.ijjt:'::~i~§1~~;ti:~:':;:~~~:~:=:::::::::~::.::.:: , .
! ! ~ :: ~§d:~:~ml~jtf.~:§~ ii~~~~~~1:;~~;:~~~~~~~~~~~fY52~;;§~t~~i: ~:t:§::ili~i~§ 1i~i:: ;;;: :::~~:::~::~~~::~:~~~:._' .. 1. ,-1'1.

i: .' !~ .. ::,,:, r;"'~~:~~~;k~~':';:~ ~~~.·~I~:::~~;;~:: ' ::;::;:~~~'~~~~~-::~~;:-~:~:_ ~~:: . 'r:.;.~; ~"'~~:~~~;~ I~':~: : ~ !~ .f m~u •• ' .. -".lI ... , 11).
i' Tlr .. ,' I" H .. ,att,,"," btU", .. , I t=_.""_...,. I _t<p_'''''''; __ t<r_''''-' 'l •• T..,.,..._ E~_'''''t r ile' •. 1 •• 1 • • 1""'11'.:171 ••• u ... , IU~

• •• ur i ' C"'1b--Itl'l IlUIX:) -,.,,, .t:o u, ""'" ro l ut<1l <»=<"=Uco , ,,~ !IH t=. p><:~ ~ I:aa_'''' · ."l":>o;>on a:.o,U"" h.:.' •• ' •• I,:'u:., ... _UI1 < ... 'IfI.
• no.e. t I" l u .. U~ •• 1"",,,,:.0;, 1I~_."._'""Pr _\,p_' .. ,t; .""_I<op_:"'-\ t l.o. •,,,"e_r.u*'<1_~l nI. , •. I .• I •• I-..:I .~J7.J..," U , 1114
, .. IILI""'''' '''''_''''1 jlc;lX ! -"'" 0'" ti l ""'" .~, .-.ott'll-::U ... ' :0' jUj I '- · I . _r:.: l_ '-~~'. ~.~!'<"'- ",,{1..H,.,.. h . " • . I .• I& . .. <<l'." ... d_n il ... pOj.

: .. ~!..~~: ,~ ... ~~:~~;'";~~.::~ ~:~ .. ~,:::. ~~<:;;~:: '~~:~:~~~~~77 .. w:..~s.,.~:~~.~~!:~.~;ii::·:~~:: 1~~~~:'1!' !~, .. ' .. ;~ ' ''<l':U'''''_.!Ut . I.: a,.
! rt ... , t I" H II '. lut.ooeo., ; t=_.I7'_<L7 I"""_ ... L ' ;.....,_l<f'_, ! I-",._ s_~." ru .. , .. 1 .. 1 •• J_ ',.ru.s. U ... , :lH
, ., "H~"" 1 ... ~It." Ii'a;//'I; l - ~n ti l a.cs utn ~II~ 010& [I:, l:1 v.-<' ·"_,u_,,,,_,aU·. n.~ fr.n ... !1!UI.!_! • • u •• ' .. i 1II! .uu4_." ,J.,.
fa ' t p n~ .. 'j. ... ' t lu,,,,,", ;1~_.""'_:r.pi~_~<,,_:"' •• i _~""_: ... ~ I I ""\.,.,..._lU.' ~_ a f ll." .. / .. / . .J~ '" JH. r: U .. , ''''

i ~ : .' ~~~n:. r!v: :~;::;~!..!~·I~!.~:.:~ ~:~:.~!~i:.:.,:~~:~~~.~=:~::,~..:~: ~,,~;:!.e;:~~~~_~~'~;~~"':~~::f :~~::~~;;~!t ~~~. : :~ .. 1 . . 1 M~ ~_~~'t.niJII.
u: -. ~;~~i 'J ... ::~:::!..;~~!.;.~~ ;:~:.!!:L~~:;.:.~::,;,'"=:::;:::: :;l :!;!. ~:~ ~:,·~::~::;;';,~il~"~!.~~~;""" :· •. , .. fI'.o ... ur. v(':I.
i,' •• ",.a:..." , ... , ... 11, '1 1I,,:wq - "":t I U . !'I O<:fl uru 'A:t1t;<l H'-" ,I;, ~", 'ml_uo_ '·. :",. P"" ""' : 1J:; I"~ II . 11 •• (fn :.," .. ' v'UI.
ii' :1_, t F" I b u llO'" I l .. ,.""u h~_' :;.::_l"'. _ _ .""_ ''''IO •• <C_.''''_.A.l/lau'_' t T' : e ' • .I .. ! .. I.,.;, U !.n 1., .. , uc~

!j: .. ;~!i·f! .. · :~;:~;:.,~~~;.; .~:; :~~.;.::t~:;~:c;~:~t=:::::,~:~~t~!~~~~ r:~,':j~:-7:J::~~il~;..~~:- ;~;,.': .. 11 Of •• • ltn:!t 'u · : ... ·"C. ·, .
H; <b".:·~:i:-
;;. _ .. _-_.-
]!; :.~':;~;:t::'-~~~~'~7:-;,:;~:~::!!:.t:'(li~:.~""~l-"'i ~nc:..' I ,", u~ ... "a<c_t,...._~_m •• l'"

il ~ Em~~ ~m~ ~§§i~~i~ E~~~E~m~~~:
ilt ". .. :_ .. d..:br A:,.'l'=~v.i fl,a t~ ,. 1Iu='~ _ lE'{ In: !. .. • ii' "" .. .!_ .. . 10, ,,,.,. ~'''UUJI ~~.,~ a """'~I~J _ t~ r il l: ••

,!
-=-~ _U.SI. _. ___ ."

Figure 6.2: Uart Test

6.3 Power Performance Area (PP A)

..",j.

. - . - . - (I D

- . ~-;:r

Three critical factors of any digital hardware design, need to be balanced carefully. When a

designer start to design any hardware the will set their goal in this term what they want and

in contrast what t hey sacrifice .

53

CHAPTER 6: ANALYSIS A ND RES ULTS

6.3.1 Power

specified t he application for what you are designing your hardware, eit her t he application in low

power or high power, we need to set t his in starting otherwise at the end it is out of the hands

to change the power. In our case, t he goal was low power, and t here we choose the bit-serial

approach to reduce the overall power of design. and through t his technique, we exceedingly

reduce the power against the conventional parallel microprocessor.

6.3.2 Performance

Performance sp ecifies the speed of t he core. In contrast to conventional parallel microproces

sors bit-serial achieve higher frequency, due to its reduced data width which means generally

shorter propagation delay, and smaller area, but perform means data process in time. And it is

obvious the p erformance of conventional parallel microprocessors are greater the the bit-serial

microprocessor , because they can process the whole 32-bit vector in just one cycle, rather then

bit-serial microprocessors which process 32-bit vectore in at least 32 cycle. but we can reduce

its impact by using pipelining technique along with bit-serial.

6 .3.3 Area

Bit-serial microprocessor cores have smaller areas then conventional parallel microprocessor

designs due to t heir single bit data path and single-bit operating resources.

Frequency Power Area

(MHz) (W) (um2
)

50 1.33843e- 3 40665

100 2.49871e- 3 40672

200 4.8285ge-3 40753

Table 6 .2: Frequency Power and Area

54

CHAPTER 6: ANALYSIS AND RESULTS

5 .. .,..
Frequency vs Power 0

45 .. 4.a ·····

4

3.5

3·t :

2.5 -

.. 2..4.

1.3

1 -4
i 0.5 -" .. --.. -.. -..... --.-.. --.... -.-..... - ... -.-.... - _.---.-... __ .. -... -.-....... -.-... __ - ... -........ .

O ~;---------------------,--------------------·~-----------r-----------
o 50 100 Frequen~Hz) 200 250 300

Figure 6 .3 : Fte vs Power

Frequency vs Area

40760

40750 •
40740

40730

40720

40710

40700

40690

40680

40670 • • 40660
0 50 100 150 200 250

Figure 6.4: Fre vs Area

55

CHAPTER 7

Conclusion and Future Works

7.1 Conclusion

In this t hesis, we embarked on a journey to design, analyze, and evaluate t he capabilit ies of a

low-power bit-serial RIS C-V microprocessor. The objective was to explore t he potential benefits

of bit-serial architectures in achieving efficient processing while minimizing power consumption.

Through a rigorous research process, we have arrived at several significant findings that shed

light on t he strengths and limitations of such an approach. ,"Ie implemented the RISC-VISA

(instruction Set Architecture) serially by making its data path from thirty-two-bit to one-bit

wide. Using different types of shift register such as PIPO or PISO. Implemented most of the

instructions using one addition block.

Our findings illuminate the potential advantages in terms of power effi ciency, as the narrow data

paths and reduced capacitance offer promising avenues for optimizing power consumption. ,"Ie

observed t hat t he reduced complexity of t he bit-serial data path design could indeed translate

into improved energy efficiency, particularly in scenarios where parallelism is not a primary

requirement.

However , our exploration also brought to light t he inherent limi tations of bit-serial architectures.

The constrained parallelism, complex synchronization, and specialized design considerations

necessitate a careful assessment of application suitability. Vle recognized that the applicability

of bit-serial RISC-V microprocessors thrives in domains where the advantages of minimized area

and energy efficiency align with the specific requirements of the workload.

In conclusion, this thesis underscores the value of investigating unconventional architectural

paradigms such as bit-serial designs in the pursuit of energy-efficient microprocessors . Our work

56

CHAPTER 7: CONCLUSION AND FUTURE VYORKS

offers a stepping stone towards a more nuanced comprehension of low-power microprocessor

design and encourages the exploration of innovative pathways for achieving efficient processing

capabilities.

7.2 Future Works

While this thesis has provided valuable insights into the design and analysis of a low-power bit

serial RISC-V microprocessor , there remain several avenues for further research and development

in this domain. The following directions offer potential opportunities for expanding upon the

current study and advancing the field:

7 .2.1 Enhanced Architectural Features

Extend the architecture to incorporate t he additional instructions or costume functional units

optimized for bit-serial processing. Investigate how these enhancements impact both energy

efficiency and performance for specific workloads.

7.2.2 Mixed Bit-Serial and Parallel Architectures

Explore hybrid architecture that combines both parallel and bit-serial design. Analyze how

such mixed architecture can provide a balanced trade-off: between power consumption and per

formance across a diverse range of work loads.

7.2.3 Multi core Design

Extend t his single core up to mult i-core design and analyze the performance effect foe the

specific workloads in-contrast with power consumption.

7.2.4 Advanced Verification and Testing

As we verified it using the Google Dv environment, now in the future try to verify it with the

latest technologies such as UVM (Universal Verification lethod) and find out the corner cases

and their impact on design.

57

CHAPTER 8

References

1. Stangherlin , K. and Sachdev, M. , 2022. Design and implementation of a secure RISC-V

microprocessor. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 30(11),

pp .1705-1715.

2. Serrano, R. , Sarmiento, M. , Duran , C. , Nguyen, K.D. , Hoang, T.T. , Ishibashi , K. and

Pham, C.K. , 2021, October. A low-power low-area SoC based in RISC-V processor for

loT applications. In 2021 18th International SoC Design Conference (ISOCC) (pp . 375-

376). IEEE.

3. Wu , B.C. and V'ley, I.C. , 2017. Parallel balanced-bit-serial design technique for ultra-low

voltage circuits with energy saving and area efficiency enhancement. IEEE Transactions

on Circuits and Systems 1: Regular Papers, 65(1), pp.141-153.

4. Risikesh , R.K. , Sinha, S. and Rao, N., 2021, December. Variable Bit-Precision Vector

Extension for RISC-V Based Processors. In 2021 IEEE 14th International Symposium on

Embedded Mult icore/Many-core Systems-on-Chip (MCSoC) (pp. 114-121). IEEE.

5. Verma, G. , 2020, October. Design and analysis of ALU for low power lOT centric pro

cessor architectures. In 2020 Global Conference on Wireless and Optical Technologies

(GC\iVOT) (pp. 1-5). IEEE.

6. 'D.-abel' , A., Zaruba , F. , Stucki , S., Pullini , A., Haugou, G., Flamand, E., Gurkaynak, F.K.

and Benini , L., 2016 , J anuary. PULPino: A small single-core RISC-V SoC. In 3rd RISCV

Workshop.

7. Li, Z., Huang, Y., Tian, L., Zhu, R. , Xiao, S. and Yu, Z., 2021. A low-power asynchronous

58

CHAPTER 8: REFERENCES

RISC-V processor with propagated timing constraints method. IEEE Transactions on

Circuits and Systems II: Express Briefs, 68(9) , pp.3153-3157.

8. Patsidis, K ., Konstantinou, D. , Nicopoulos, C. and Dim.itrakopoulos, G. , 2018. A low-cost

synthesizable RISC-V dual-issue processor core leveraging the compressed Instruction Set

Extension. Microprocessors and Microsystems, 61 , pp.1-10.

9. Santos, D.A., Luza, L.M. , Zeferino, C.A., Dilillo , L. and Melo, D.R. , 2020, April. A

low-cost fault-tolerant RISC-V processor for space systems. In 2020 15th Design and

Technology of Integrated Systems in Nanoscale Era (DTIS) (pp. 1-5). IEEE.

10. Santos, D.A., Luza, L. :M., Zeferino, C.A. , Dilillo, L. and Melo, D .R. , 2020, April. A

low-cost fault-tolerant RISC-V processor for space systems. In 2020 15th Design and

Technology of Integrated Systems in Nanoscale Era (DTIS) (pp. 1-5). IEEE.

11. Cilardo, A. and Mercogliano, S., 2022. F lexible privilege management for micro controller

class RISC-V cores. Microelectronics Reliability, 137, p.1l4771.

C HA PTER 8: R EFERENCES

Mphill Thesis

SlMILARIlYINDEX INTERl'.£TSOURCES PUBUCATlONS SlUOENT PAPERS

nuu. ... R'I'SOUA:ll

II Submitted to Higher Education Commission 2%
Pakistan
StudentPapt'J

II www.ci fr. edu.au 1% Internet SOUrce

II www.coursehero.com <1% InlKne;; SOurce .. trace.tennessee.edu <1% 'ntemE-1SC\4JICE'

II docplayer.net <1 % tnl~ne1 SOUn;:e

II ir.mu.ac.ke:8080 <1% Inttmer SOUrce

II Maria Markstedter. "Memory Access <1%
Instructions". Wiley. 2023
publlcaUoo .. Submitted to University of The Gambia <1% Student Paper

Figure 8.1: plagrism report

