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Abstract 

Regression to the mean (RTM) occurs when measurement/observations tends 

toward the mean of the population upon re-measurement . In pre-post studies 

interventions are applied to subjects based on some cut-off points or baseline 

criteria. The change in the difference of the pre-post means after the application 

of an intervention is known as the total effect which is the sum of RTM and 

intervention effects. The total effect needs to be accounted for the RTM effect 

to unbiasedly estimate the intervent ion effect. In this work, we have derived the 

RTM effect for bivariate generalized Poisson lindley distribution with a particular 

emphasis on positive correlated count variables . Expressions for t he total effect 

are derived for a model and then partitioned into RTM and intervention effect. 

Maximum likelihood estimators are derived and its properties are verified via 

simulations. Finally, using the bivariate accident count data of 122 shunters, RTM 

and intervention effect are estimated. 
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Chapter 1 

Introduction 

Regression toward t he mean (RTM) is a statistical phenomenon observed when 

multiple measurements are taken from the same subject at different t imes and 

the calculated observations are found closed to the mean. In such cases, if an 

initial observation deviates significant ly from the true mean, it tends to shift 

closer to the true mean when a second measurement is made. In the year 1886, 

the concept of "regression toward the mean" (RTM) was initially introduced by 

Sir Francis (Galton, 1886) Galton's observation illustrated that parents who had 

heights significantly taller than the average population height tended to have 

children with heights closer to the population average. Conversely, parents wit h 

heights notably shorter than the population mean tended to have children whose 

heights were also closer to the population average. 

A simple illustration of RTM is shown in figure 1.1, which uses a fictitious but 

realistic distribution of high-density lipoprotein (HDL) levels in a single person. 

A normal distribut ion of t he subject's observations is shown in t he first panel. 

Practically speaking, we don't know the true mean value for this subject , which is 

shown as 50 mg/dL here, and we presume it stays constant throughout time.We 

assume that the oscillations are due only to random error , which could be caused 

by differences in the HDL cholesterol readings or dietary decisions made by the 

subjects. 

We display the observed HDL cholesterol value for this person in the second 

panel , which is 30 mg/ dL, which is on the low side. It is more likely that the 

number, as indicated in the third panel, will be more than 30 mg/ dL if we were to 

take another reading from the same person. Alternatively put, as the third panel 

shows, the subsequent observed value should be more in line with t he 50 mg/dL 

mean. 

Generally, we find that highly extreme (very high or very low) observations tend 

to be followed by less extreme measurements that are closer to the genuine mean 

or actual average of the topic when we examine many measurements obtained from 

1 
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the same subject . RTM presents a practical challenge in that it must be possible to 

discern between an actual change and the expected change resulting from natural 

variation. For instance, looking at the third panel of Figure 1.1 , we might assume 

that the subject 's HDL cholesterol has gone up, but in reality, the subject 's true 

mean HDL cholesterol has stayed the same and the first measurement was just 

abnormally low. 

20 II 40 50 Ii{) 70 8020 1I40 50 60 70 8020 30 40 50 60 70 80 
HDl c.OOIesterol IlYJIdI Hot. dlolester~ m!1d1 HDL cholesterol mWdl 

Figure 1.1: RTM effect on baseline and follow-up measurements of high density 
lipoprotein (HDL) cholesterol with true mean and variation. 

Regression to the Mean (RTM) is a concept that originates from random 

measurement errors that happen when multiple observations are made on the same 

subject at different times (Barnett et al. , 2005). The pre-post variables will have 

perfect correlation and the RTM effect won't exist in the absence of random error. 

RTM is a common phenomenon because data are rarely observed error-free and 

generally contain some sort of error. 

James (1973) examined the effects of RTM in uncontrol clinical trials without a 

control group, in which observations were made both before and after a treatment 

was administered. He came to the conclusion that there were regression effects, two 

of which were caused by measurement variation and biological variation over time. 

The author made a compelling case for randomized clinical trials and emphasized 

the value of the control group. To prevent drawing incorrect conclusions, it is 

crucial to isolate the RTM and treatment effects. 

Prior et al. (2005) addressed the challenge of mitigating the regression to the 

mean (RTM) effect while working on the reduction of cardiovascular risk factors 

through health programs involving the implementation of minor interventions 

in the field of medicine. Notably, there was no control group in their study. 

The researchers concluded that the intervention had a significant impact and 
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resulted in a decrease in cardiovascular risk. This reduction was achieved through 

improvements in diastolic blood pressure, lower smoking rates, and lower levels of 

hypercholesterolemia in high-risk individuals. Nonetheless, RTM was the reason 

for the low-risk patients' decreased systolic blood pressure. 

Using the Alcohol Use Disorders Identification Test (AUDIT) results, (McCam­

bridge et al. , 2014) looked into a cohort study with 967 alcoholic participants.After 

six months of intervention follow-up, the study found that participants with lower 

baseline scores tended to have higher AUDIT scores. After the intervention's 

six-month follow-up , participants with high baseline scores tended to have lower 

AUDIT scores, indicating that the RTM effect is probably the reason for the 

decline. 

The amount of RTM in evaluating the placebo response in clinical trials 

for Raynaud's Phenomenon (RP) was examined by (Roustit et al. , 2022). By 

calculating the difference between intake at baseline and after treatment, the 

authors were able to estimate the placebo effect. The outcome was significant with 

a placebo response at baseline, according to the authors, suggesting the presence 

of RTM, which was later confirmed by Galton squeeze plots on individual data. 

In a free-living cohort of adults with newly diagnosed diabetes and intermediate 

hyperglycemia, (Schmidt et al. , 2021) estimated the glycemic regression both before 

and after adjusting the RTM. The study found that accounting for the RTM effect 

decreased the number of diabetes cases from 526 to 94, the IH defined by the 

American Diabetes Association (ADA) from 6,182 to 5,711, and the IH defined by 

the World Health Organization (WHO) from 3,118 to 1,986. 

The RTM effect is not limited to the medical field; it also exists in economics 

and the determination of market capital efficiency (Bush et al. , 2006),economic 

forecasting (Pritchett and Summers, 2014),and measurements of geographic atrophy 

growth rate (Biarnes and Mones , 2020). Among the other study areas include 

sports (Lee and Smith, 2002) , road accidents (Retting et al. , 2003), birth weight 

(vVilcox et al. , 1996), anemia research of hemoglobin (Cochrane et al. , 2020),blood 

pressure (Kario et al. , 2000),cholesterol measurement (Schectman and Hoffmann, 

1988) etc. Since the RTM was discovered to be the likely cause of the treatment 

effect's effectiveness, it should be taken into account to prevent drawing incorrect 

conclusions. 

1.1 Some Existing methods 

Initially, strategies for dealing with (RTM) were developed under the assumption 

that the data followed a normal distribution. To estimate the regression to mean 

effect for bivariate normal distribution in uncontrolled clinical studies, (James, 1973) 



Chapter 1. Introduction 4 

and (Gardner and Heady, 1973) used pre-post variables that had stationary mean 

and variance and were positively correlated. (Davis, 1976) developed a strategy to 

reduce the Regression to the Mean (RTM) effect. This method entailed measuring 

subjects multiple times before administering the treatment. Davis expanded on 

this approach by estimating RTM in scenarios where multiple measurements were 

taken prior to treatment application, providing a more complete understanding 

of the RTM phenomenon. (Shahane et al. , 1995) expanded on previous research 

by addressing situations in which researchers may be interested in more than one 

variate both before and after treatment application. They developed a formula 

to estimate the regression to the mean (RTM) effect, used the same model as 

(Gardner and Heady, 1973) and (Johnson and George, 1991). 

Not all data set follows a normal distribution. In response to this situation, 

(Das and Mulder , 1983), (John and Jawad, 2010), (Muller et al. , 2003), and 

(Beath and Dobson, 1991) developed estimation methods for RTM. (Das and 

Mulder, 1983) developed a simple formula for regressing toward the mode in the 

case of arbitrary continuous measurements based on the assumption of pre-post 

variable stationarity. Their findings suggest that when data have a uni-modal 

distribution, the regression tends to align with the mode. In the context of non­

normal populations , (Beath and Dobson, 1991) investigated two approximation 

methods (Edgeworth and saddlepoint) for estimating the regression to the mean 

(RTM). However , the Edgeworth approximation has limitations in that it is not 

applicable for all values of skewness and kurtosis , and it has the potential to 

produce negative or multi-modal results (Barton and Dennis , 1952). As a result, 

the Saddlepoint approximation was chosen due to its property of always being 

positive, but it is more computationally difficult. To adapt (Das and Mulder, 

1983) method to empirical distributions, (John and Jawad, 2010) investigated 

density kernel estimation approaches while maintaining the same error component 

assumptions. 

Not all variables in a study have continuous characteristics in practice; some 

are discrete, representing count data or binary responses governed by discrete 

probability distributions. (Khan and Olivier , 2018, 2019) addressed this issue by 

developing formulas to estimate the RTM effect for such discrete data types. Their 

interest extends to scenarios in which variables represent counts or events. They 

proposed methods for dealing with the RTM effect in these discrete contexts, based 

on bivariate Poisson and binomial distributions . 
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1.2 Objective of the thesis 

RTM occurs in all disciplines and must be accounted for to unbiasedly estimate an 

intervention effect. The aim of this thesis is to propose and estimate RTM effect 

within count models , particularly addressing positive correlations between pre-post 

count variables. 

1.3 Structure of thesis 

In order to fulfill the aforementioned objectives, the structure of this thesis is 

outlined as follows. In chapter 2 the literature of existing methods for quantifying 

the RTM effect is discussed. Chapter 3 presents the derivation of the regression to 

mean (RTM) formula for bivariate generalized Poisson-Lindley (BGPL) distribution 

as introduced by (Aryuyuen and Bodhisuwan, 2023). This formulation accounts for 

both positive and negative correlations within the distribution. Chapter 4 contain 

the conclusion. 



Chapter 2 

Literature Review 

Formulas for Regression to the Mean (RTM) have been developed by researchers to 

estimate its effects under various situations. While conducting pre and post studies, 

some researchers employ various methods to mitigate the RTM effect. RTM is 

observed when measurements are taken on the same subject at multiple points in 

time (Barnett et al. , 2005).The details of existing literature is discussed below. 

2.1 RTM Effect Under Bivariate Normal Disri­

bution 

Originally, approaches to address RTM were formulated under the assumption of a 

normal distribution. They are briefly outlined below. 

2.1.1 James's Method 

In clinical studies, (James , 1973) conducted early research on the RTM effect in 

the context of bivariate normal distribution. He claimed that the observed variable 

is made up of true and random error components. The author proposed this 

relationship by denoting Xi as the effect size on the i-th measurement of the same 

subject, Xo as the true measurement and ei as the error. 

The true component Xo follows a normal distribution with a mean ~l and a 

variance 0'6. The error components are independent, identically distributed, and 

have a normal distribution with a mean of 0 and a variance of 0'; . Both Xo and the 

error components are mutually independent. Consequently, the observed variable 

Xi is normally distributed with a mean ~ and a variance 0'2, where 0'2 = 0'6 + 0'; . 

6 
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The correlation between Xi and Xj is denoted as p, with a value of (76/(72 , and it 

is greater than O. 

For a right cut-off Xo for both below and above measurements, the joint 

probability density function (PDF) of Xl and X 2 is given by: 

Consider random variables Xl and X 2 , where Xo < Xl < 00 and -00 < X 2 < 00. 

where <PC) denote the cumulative distribution function (CDF) of the standard 

normal distribution. Define Zo = (Xo - J-l)/(7 , where J-l is the mean and (7 is the 

standard deviation. The mean and variance of the distribution of the difference 

d = E(X2 - Xl I Xl > X o) , truncated such that Xl 2:: Xo, were derived as follows: 

¢(zo) 
J-ld = 1 _ <P(zo) (7(p - 1) 

and 

( [ 
¢(zo ) ¢(zo ) ( ] 2 

(7 d = 1 - p) 1 _ <P ( zo) (zo - 1 _ <P ( zo) ) 1 - p) + 2 (7 

James (1973) developed the RTM effect under bivariate normality, which is defined 

as the difference between the conditional means of two identically distributed 

variables, Xl and X2 . 

R(xo) = (7(1 - p)¢(zo ) = (7~ . ¢(zo ) 
1 - <P( zo) V(76 + (7~ 1 - <P(zo) 

(2.1) 

Here, ¢(zo) represents the probability density function (PDF) of the standard 

normal distribution. The total proportion reduction (TPR) in the mean of Xl, 

which is attributed to both (RTM) and the treatment effect, is defined as, 

T P R = Xl - ,PXl = 1 _ ,p 
X l 

The proportional reduction observed in the mean difference is solely due to regres­

sion to the mean (RTM) and is expressed as, 

Proportion of Reduction due to RTM = 1 - P 

J ames (1973) used the moments method of estimation to compute parameter 

estimates from sample data. 
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~1 = Xl - loff 

5;1 = ff(lo(xo - lo) + 1) 

5;2 = ff C?p210(XO - lo) + i 2p2 + (1 _ p2)) 

where 

lo = </>(zo) 
1 - <l?( zo) 
, b 
,=-;: 

p 

James (1973) demonstrated that when there is a weak correlation between pre 

and post treatment measurements) the magnitude of the RTM effect increases) 

emphasizing the importance of the control group. Furthermore) when dealing with 

non-normally distributed data) the robustness of the estimate may be compromised) 

necessitating a recommendation for further investigation. 

2.1.2 Gardner's Method 

Like (James , 1973), (Gardner and Heady, 1973) who focused on deriving the 

RTM effect, the authors extended their exploration beyond bivariate measures 

to investigate the impact of multiple measurements on RTM. The authors made 

the assumption that the pre-post variables follow a normal distribution with a 

correlation coefficient (p) equal to (70/ J (75 + (7r. The subjects, chosen based on the 

right cut-off point, i.e., Xi > Xo, exhibit a univariate truncated normal distribution 

with a mean; 

(
xo - I-L) E(XiIXi > xo) = ~t + (7V (7 

Where v(zo) = </> (·)/1 - <l?(.). The truncated distribution and conditional 

expectation of Xi given Xi > Xo is, 

f OO f( x· xo) dx· 
f(X .IX. ) - xo • ~, ~ 

~ t > Xo - foo 
Xo f(Xi) dXi 
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(j 2 

E(XoIXi > XO) = f-l + -1. v(ZO) 
(j 

Comparing E(XiIXi > xo) and E(XoIXi > xo) , it becomes evident that the mean 

of observed values will consistently exceed the mean of true values unless the 

variance of the error term equals zero. For multiple observations on the same 

subject, (Gardner and Heady, 1973) derived the formula of RTM effect as , 

and the formula for n = 1 reduces to the RTM equation derived by (James, 1973). 

2.1.3 Johnson's Method 

Johnson and George (1991) adopted the model initially proposed by (Gardner 

and Heady, 1973), wherein the variables Xl and X2 represent the pre and post 

observations, respectively, characterized by a true value Xo and an error component 

e. Gardner and Heady (1973) posited the assumption that variability arises 

solely from independent measurement errors. However, in practical situations, this 

assumption may not hold true, and additional sources of variability could be present 

in the measurements. In a real-world context, the measurement of individuals' 

blood pressure, which exhibits constant fluctuations over time, is influenced by 

various factors such as the individual's emotional state and other variables. This 

introduces within-subject variability. Johnson and George (1991) integrated this 

factor into the model by, 

Xi = Xo + Si + Di for i = 1,2, ... , m 

where Xi and Xo represent the observed and true values, respectively. Si denotes 

the subject effect, which has a normal distribution with a mean of zero and a 

variance of (j;. Importantly, Si is unaffected by either Xo or Di. The correlation 

between Si and Sj is denoted as Ps and is equal to a positive value , where i #- j. 

Then, the correlation and RTM formulae are 
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and 

where V(Zl) = ¢(zl)/ l - <D(zd, and Zl = Xo -It/ J176 + 17: + 17~. 
Suppose repeated measurements of n replicates at m different times are taken, 

then , 

X ij = Xo + 5 i + Dij , for i = 1,2, . . . , m, j = 1,2, ... , n 

where, 

Xo rv N(p" (75), (51 " .. , 5m ) rv N(O, L:;), L:; is a symmetric matrix 

Let X be the sample mean calculated as ~n 2:::7:1 2:::7=1 Xij, representing the 

mean of individual observations X ij from an experiment involving m subjects, each 

contributing n observations. Assume this mean is calculated for values exceeding 

a truncated point Xo. The variance of the sample mean, denoted as Var(X), is 

determined by the formula: 

If a new observation X * is taken after the treatment , the correlation between this 

new observation and the sample mean can be expressed as follows: 

and the total RTM effect is expressed as follows 

R ( ) _ (1- Ps)17; +17;/n () T Xo - . V Z2 
m· var(X) 

The function V( Z2 ) is defined as ¢(z2 )/1 - <I>( Z2 )' where Z2 = Xo - p,/var(X), and 

"T" in the subscript denotes total. "When decomposing the total RTM effect, it is 

equal to the sum of RTM due to subject and measurement error. 
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Because of the independent error, raising the number of repeated measurements 

and/ or replications could help to reduce the RTM effect. Furthermore, by increasing 

the number of measurements at different time points, the RTM of subject variability 

can be reduced, and the RTM of measurement error can be reduced by replicating 

the measurement at a given time point. 

2.1.4 Shahane's Approach 

In the preceding literature, the authors examined the RTM effect for a single 

variable that had been truncated at a specific cut-off point . (Shahane et al. , 1995) 

examined the scenario in which truncation occurred for two variables. For example, 

a researcher may be interested in studying the IQ level of second generation 

immigrants by drawing a sample from first generation parents whose IQ exceeds 

the truncated point. Let X = (Xl, X 2 , Yi, Y2 ) be the random vector from the 

multivariate normal distribution (MND). Subsequently, the mean, variances, and 

correlations can be expressed as follows: 

In clinical trial studies, let (Xl , Yl ) represent the measurements before treatment 

application, and (X2 , Y2) represent the measurements after treatment application. 

(Tallis , 1961 ) used the moment generating function for the bivariate normal dis­

tribution to derive expressions for expected values of truncated variables . The 

expression for the truncated RTM effect on M is as follows: 

O"y 
E(Yl - Y2IM) = 02 + P(M) ((1- pyy)¢((3)<I>(B)), 

where M = [Xl> ml U Yl > m2], <I>(w) = 1 - J: ¢(u) du, a = ml - J-ll/ax, 

(3 = m2 - ~l2/ay , A = f3 - PXya/ Jl- p~y, and B = a - PXy(3/ Jl - p~y. 
The equations above indicate that the conditional difference can be expressed 

as the sum of the true treatment effect and the expected effect for each variable 

or variate. The regression effect is zero when the correlation is 1 and reaches its 

maximum when the correlation is O. Within the framework of the (Gardner and 

Heady, 1973) model assumptions, the RTM effect can be expressed in a simplified 

form as follows: 
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R(Y2IM) = CYeA)(j3 )CI>(B) 
cyyP(M) 

12 

When utilizing the averages of n replicates and subsequently obtaining the (n+ l)th 

measurement after the treatment, the RTM effects can be characterized as : 

R(y' 1M) = CYeA)(j3)CI>(B) 
n+l n nCYyP(Mn)' 

where Mn = [Xn > ml UYn > m2], a = ml - J-Lt/CYX, and j3 = m2 - J-L2/CYy , 

A = j3 - Pkya/ ..)1 - ply, B = a - Pkyj3/ ..)1 - Ply , CYk = CY~l + CY~l/n, 
CYy = CY~2 + CY~2/n and Pky = PuCYulCYu2/CYkCYY' 

Shahane et al. (1995) demonstrated that by maximizing replicates, it is possible 

to minimize RTM caused by within-subject variability. Furthermore, by raising 

the number of replicates and the frequency of repeated measurements n, the RTM 

effect due to measurement error can be minimized. 

2.2 RTM for bivariate discrete distributions 

Recent research has focused on deriving and estimating RTM effect in the context 

of bivariate discrete distributions. The key findings are summarized below: 

2.2.1 Bivariate Poisson 

The Poisson distribution is widely used in real-world scenarios, particularly when 

dealing with variables that represent counts of specific characteristics of interest . 

Furthermore, the Poisson distribution can be used to approximate a wide range of 

other probability distributions. (Khan and Olivier, 2018) derived the expression for 

the RTM effect in the context of the bivariate Poisson distribution. They consider 

the successive random variables for the same subject Xl and X 2 as 

If Xi follows a Poisson distribution with parameter ao + ai for i = 1,2, where 

Yo represents the true number of occurrences and Yl and Y2 denote the counting 

errors, and further, Yo, Yi, and Y2 are independent with rates of occurrence ai for 

i = 0,1 , 2, (Khan and Olivier, 2018) utilized the bivariate Poisson distribution. 

This distribution, originally discussed by (Campbell, 1934), is given by 

P(X = x X = x ) = e- (OO+0 1 +02 ).~L~ ",mm Xl ,X2 y! ~ (Xl) ( X2 ) Xl x2 . ( ) ( ) YO 

1 1 , 2 2 Xl! X2 ! L....yo=O 0 01 02 XO Xo 
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The covariance between Xl and X 2 is denoted as COV(Xl' X 2 ) = ao, then the 

correlation cor(Xl ' X 2 ) can be expressed as, 

ao 
cor( Xl, X 2) = -r;=====;=::;=====7 

J(ao + ad(ao + a2) 

(Khan and Olivier , 2018) derived formulae for the total effect considering cut-off 

points in both the right and left tail of the distribution as, 

Tr(xo;a) = al (1- F (xo - 1 ) / (1 - F ( Xo ))) - a2 
ao + al ao + al 

Tl(xo; a) = a2 - al (F ( Xo - 1 ) / F ( Xo )) 
ao + al ao + al 

The recursive relationship proposed by (Teicher, 1954) is employed for solving 

systems of equations. The Maximum Likelihood Estimators (MLE) for the right 

and left (RTM) are provided as follows, 

The average intervention or treatment effect is mathematically defined as the 

expected difference between successive variables. 

When considering the impact of a null intervention, the before-after observations 

are distributed identically. By letting at = a2, an expression for the RTM effect 

can be obtained. 

The total effect is the sum of the RTM and intervention/treatment effects, expressed 

as: 

T(xo; a) = (al (1 - F ( Xo - 1 ) / (1 - F ( Xo ))) - at) + (al - a2) 
ao + a l ao + al 

(Khan and Olivier, 2018) conducted a simulation study to evaluate properties 

and derivation, comparing the true RTM effect with its estimated RTM. Distinct 

behavior was observed in both homogeneous and in-homogeneous RTM effects. 
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2.2.2 Bivariate Poisson Yousaf et aI, (2023) 

Yousaf et aI, (2023) formulated an expression for the RTM effect in the context 

of count data, specifically Poisson data, in their study. They consider Al and A2 

represent the Poisson parameters, i. e., the mean occurrence rate, C = 1 - e-l, and 

e is a known constant ensuring !(XI , X2 ) is non-negative for all Xl , X2 2 O. Yousaf 

et aI, (2023) employed the bivariate Poisson distribution, initially introduced by 

(Lakshminarayana et al. , 1999) and defined as, 

The correlation coefficient between Xl and X2 is determined by 

The correlation can be positive or negative depending on the choice of e. The e 
must lie in the range 

lei < 1 
- (1 - e-Al c)(l - e- A 2C ) 

In their research, Yousaf et al. (2023) derived formulas for the total effect, incorpo­

rating cut-off points in both the right and left tail of the distribution. 

where, 

D= 

where, 

x l=xo + l 

- Al \ Xl -X l e Al e 

X l! 

the expected difference between the pre and post observations or subject measure­

ments. Its can be written as, 

For a null intervention effect, the measurements before and after the study follow 

identical distributions , with equivalent conditional means when Al is set equal to 
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A2. Expressing t his condition provides a formulation for the RTM effect , 

For a non-null intervent ion effect, the pre and post measurements are not identically 

distributed.To achieve a non-null intervent ion effect , the RTM can be derived as 

follows: 

Rr(xo; A) = T r (xo; A) - Ar(A) 

R ( . \) = Ai [1- F(xo - 1I Al)] + e- C
)., 2 A2C()D _ \ [ () -C().,1 + ).,2) ] _ (\ _ \ ) 

r xo, 1\ 1 _ F(xoIAl) 1\2 1 + ce 1\1 1\2 

The total effect is det ermined by the sum of RTM and intervent ion/ treatment 

effects, and it is expressed as: 

= Ai [1- F( xo - lIAl)] + e-
C

)., 2 A2C()D -A [1 + () -C().,1 + ).,2) ] - (A -A )+(A -A ) 
1 _ F(xo IAl) 2 ce 1 2 1 2 

Yo usaf et aI, (2023) evaluated the propert ies and derivation through simulation 

study and compared the proposed and existing RTM on different sample size. 



Chapter 3 

RTM under The Bivariate 

Generalized Poisson Lindley 

Distribution 

The bivariate Poisson distributions and processes are used to model count data. 

In literature, authors suggested different types of bivariate Poisson distribution. It 

is worth noticing that the form they reported does not account for the positive 

correlation. In this chapter, RTM formulae are derived for the bivariate generalized 

Poisson lindley model that generalizes the count variables for all range of the 

correlation coefficient. 

3.1 Bivariate Generalized Poisson Lindley Distri­

bution 

Aryuyuen and Bodhisuwan (2023) developed a bivariate generalized Poisson lindley 

distribution as a product of marginal generalized Poisson lindley distribution with 

a multiplicative factor. The correlation of bivariate genralized Poisson lindley 

distribution which can be either, positive, zero or negative depending upon the 

value of multiplicative factor parameter. The probability mass function (PMF) of a 

bivariate generalized Poisson Lindley distribution is typically expressed as follows, 

f( ) 
- ai(1 + al + (31 + (3lXl) a~(1 + a2 + (32 + (32 X 2) 

Xl, X2 - . 
(al + (31)(1 + a l)Xl+2 (a2 + (32 )(1 + a2)X2+2 (3.1) 

. [1 + e(e-X1 - ml)(e-X2 - m2)] , Xj = 0, 1,2, . .. 

16 
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where aj > 0, {3j > 0 for j = 1,2, -00 < e < 00, and 

T he BGPL distribut ion is characterized by five parameters: {3l and {32 serve as 

shape parameters, while a I , 0'.2, and e act as scale parameters. The marginal pmf 

of X l and X 2 are the univariate generalized Poisson lindley with parameter a j 

and (3j, respectively, for j=I ,2 The respective mean and variance, of the univariate 

generalized Poisson lindley distribut ion are 

2{3; (1 + a j) + 0'.; (1 + a j) + (3ja j(4 + 3a j) 
Var (X j ) = 2({3)2 

a j j + a j 
2 

= O"j' 

The covariance of bivariate generalized Poisson lindley distribution is 

where, 
_ a; (aj + 2{3j - e- l + l) e- l 

m ··- j = l ,2 
JJ (aj + {3j )(aj - e- l + 1)3 ' 

Therefore, the correlation coefficient for Xl and X 2 is 

(3 .2) 

vVhen e = 0, random variables Xl and X2 are independent . For e > 0, the variables 

X l and X 2 exhibit a positive correlation , while for e < 0, they demonstrate a 

negative correlation. 

3 .2 RTM , total, and treatment effects 

In medical, clinical, or intervent ion studies, measurements at some specified t run­

cation or cut-off points Yo are selected for treatment or intervention . Let Yi and 

Y2 be the counts of a characteristic of interest before and after the application of 

a treatment . Then , t he joint distribut ion of Yl and Y2 at t runcation point Yo is 

given by, 
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In the context of fT(Yl , Y2), where the subscript t represents truncation, the total 

effect T(yo , e) is defined as the conditional expectation of the difference between 

pre- post treatment variables. Mathematically, it is expressed as: 

T(yo , e) = E[Yl - Y2 \Yl > Yo, e] 

= 1~ 1: (Yl - Y2)f(Yl , Y2 \Yl > Yo) dY2 dYl 
(3.3) 

In equation 3.3, e represents the vector of parameters, T(yo , e) can be obtained for 

a bivariate discrete distribution by replacing integrals with summations. 

The total effect, T(yo , e) , is either totally or partially due to RTM, depending the 

effectiveness of treatment effect. When both Yl and 12 are identically distributed, 

the treatment effect is zero, i.e., E(Yl - 12) = O. In such cases, the conditional 

expectation of the difference between Yl and Y2 is defined as the RTM effect and 

is given by: 

(3.4) 

The treatment effect is defined as the difference between the unconditional means 

of Yl and Y2 , and is given by 

Hence, the total effect T(yo , e) can be expressed as: 

T(yo , e) = R(yo , e) + 8(>'), 

Here, )) X' represents a function of the means of Yl and Y2 . 

Researchers have introduced a range of expressions to estimate the effects 

of RTM and intervention, as discussed in of the literature. Up until 2018, these 

expressions were primarily grounded in normality or relied on approximate methods 

for non-normal data. In 2018, Khan and Olivier (2018) proposed expressions for 

estimating the RTM effect specifically for Poisson data. The probability mass 

function (pmf) utilized by Khan and Olivier (2018) is rooted in a trivariate reduction 

technique, which presupposes that bivariate Poisson data should be equi-dispersed, 

and variables should exhibit positive correlations. 

It's worth noting that truncation is specifically applied to the pre-measurements 

of the same variable. This is done to assess the treatment and RTM effects on the 

post-variables, whether they are above or below the cut-off point. 
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3.2.1 Total effect derivation with a right cut-off point 

Suppose an intervention is applied to subjects under the condition that their initial 

count, denoted as Xl, exceeds a specified cut-off point , say Xo, the corresponding 

joint truncated distribution is as follows 

(3 .5) 

To find the total effect, we start by determining the conditional expectation as 

given in equation 3.3, Xl given Xl > Xo. 

After some algebraic manipulation, the expectation simplifies to 

E(XI I Xl > xo) = 1 F( I (3) ~ + f3 )(1 + )xo+2 · [(al + 2f3l)(al + 1) xo+2 
- Xo aI, 1 . al al 1 al 

- (-aixo - al(l + al) + ai(al + l) XO + al(l + al)Xo ) . (1 + al + f3l) 

- f3laix~ + (-2adJlXO - alf3l - 2f3l) . (1 + al) + (aif3l + 3alf3l + 2f3l) 

. (1 + al)XO] (3.6) 

where 

is the cumulative distribution function (CDF) of the univariate generalized Poisson 

lindley distribution. ow considering the conditional expectation of X2 I Xl > Xo 

as 



Chapter 3. RTM under The Bivariate Generalized Poisson Lindley 
Distribution 20 

After solving for E(X2 I Xl > xo), the expression is found to be 

where 

c= 
Xt=xo+l 

e-Xt 
• af( l + al + /31 + /31xd 

(al + /31)(1 + al)Xt+2 

(3 .7) 

To get t he total effect for t he right cut-off point under t he bivariate genralized 

poisson lindley distribution, substitut ing the results of 3.6 and 3.7 in equation 3.3. 

(3 .8) 

The D is defined as the condit ional expectation of X l given Xl > xo, and t his is 

represented by the equation 3.6. And the subscript r stands for t he right cutt-off 

point . 

3.2.2 Total effect derivation with a left cut-off point 

When the subj ects selected for treatment fall in the left tail or end of a distribution, 

meaning Xl S xo , t he truncated probability distribution function of Xl and X 2 

becomes, 

(3.9) 

The conditional expectation of X l given the event X l S Xo is, 
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Following similar steps as for t he right cut-off point , the conditional expectation 

upon simplification becomes 

1 
E ( XI I Xl < Xo) = ---:---,---...,..---:------:-------:---:---:-------,--------=-

- F(xo IO'l' (31) . 0'1(0'1 + (31 )(1 + 0'1)xo+2 

X [(-O'ixo - 0'1(1 + 0'1) + O'i(O'l + l) XO + 0'1(1 + O'lYo ) . (1 + a 1 + (31 ) 

- (31aix6 + (- 2a1(31x O - a 1(31 - 2(31) . (1 + ad 

+ (ai(31 + 3a1(31 + 2(31) . (1 + ( 1) XO j. (3.10) 

For the conditional expectation of X 2 given Xl ::; Xo , the expression is as follows 

Upon solving for E(X2 IX1 ::; xo) , we obtain: 

(3 .11) 

where 
E = f e-Xt . O'i( l + a1 + (31 + (31 X 1) 

Xt=O (a1 + (31 )(1 + (1)Xl+
2 

The total effect at the left cut-off point is defined as 

The expression for '1l(xo; a, (3) at the left cut-off point, denoted by the subscrip t l , 

is obtained by subtracting equation 3.11 from equation 3.10 

(3.13) 

The variable ltV is defined as the conditional expectation of X l given Xl ::; X o , and 

this is represented by the equation 3.10. 
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3.3 Variance of total effect 

To enable statistical inferences, it is essential to have an expression for the variance 

of total effect .The derivation of this variance involves combining the variances 

of pre-post measurements conditional on t he cut-off point Xo and considering the 

covariance, as outlined by the following formula 

var(XI-X2 \ Xl > Xo) = var(XI \ Xl > xo)+var(X2 \ Xl > Xo) - 2COV(XI , X2 \ Xl > xo) , 

(3.14) 

and 

var(X2-XI \ Xl ::; Xo) = var(XI \ Xl ::; xo) + var(X2 \ Xl ::; Xo) - 2COV(XI ' X2 \ Xl ::; xo), 

(3.15) 

where 

var(XI \ Xl > xo) = E(XI(XI-1) \ Xl > xo)+E(XI \ Xl > xo) - [E(XI \ Xl > xoW , 

(3.16) 

var(X2 \ Xl > xo ) = E(X2(X2- 1) \ Xl > xO)+E(X2 \ Xl > xo)-[E(X2 \ Xl > xoW , 
(3 .17) 

COV (XI ' X 2 \ Xl > xo) = E(XIX2 \ Xl > xo) - E(XI \ Xl > XO )E(X2 \ Xl > xo )· 
(3 .18) 

The expression with the left cut-off (Xl > Xo) will be replaced by (Xl ::; Xo ) to 

obtain equations 3.14 and 3.15 . The required results, along with the conditional 

expectations discussed and derived earlier. For the right cut-off, 

00 00 

E(XI(XI - 1) \ Xl > xo) = L L Xl (Xl -l)P(XI = Xl , X2 = X2 \ Xl > Xo) 
xl=xo+l X2=O 

Using the definition of CDF, the above expectation can be simplified to 

where 

00 00 

E(X2(X2 - 1) \ Xl > xo) = L L X 2(X2 - l)P(XI = Xl , X2 = X2 \ Xl > Xo) 
x l=xo+l X2=O 
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00 00 

E(X2(X2 - 1) I X l > xo) = L L X 2(X2 - l)P(X l = Xl , X2 = X2 I Xl > Xo) 

where 

And t he cross product moment simplifies to 

where 
00 

xl=xo+l 

Xl . (Xi(l + (Xl + f31 + f31Xl) 
((X l + (31)(1 + (X l)Xl+2 

Now for the left cut-off point , 

xo 00 

E(Xl(Xl - 1) I Xl :S Xo) = L L Xl(Xl - l)P(Xl = Xl , X2 = X2 I Xl :S Xo) 

xo 00 

E(X2(X2 - 1) I Xl :S Xo) = L L X 2(X2 - l)P(Xl = Xl , X2 = X2 I Xl :S Xo) 
X l = O X2= O 

where 

P2, ml and m 2 have been defined earlier . 
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and the cross product moment reduces to 

where 
~ Xl . ai(1 + al + /31 + /3lxd 

HI = ~ (al + Ih)(1 + ad X1 +2 ' 

~ e-x1xl . ai(1 + al + /31 + /3lXl) 
H2 = ~o (al + (31)(1 + al)Xl+2 ' 

The expressions for the variance, pertaining to a right cut-off (> Xo), can be derived 

by substituting the values from equations 3.16, 3.17, and 3.18 into equation 3.14. 

3.4 The effect of cut-off point, Xo, on RTM 

It is well known that the selection criterion of subjects for inclusion in an interven­

tion study plays an important role in the magnitude of RTM. Using Rr(xo; a, (3) 

and R I (xo;a ,/3), a graph for different cut-off points is given in figure 3.1. The 

variables Xl and X 2 are considered for demonstrative purposes if they are nega­

tively correlated and have specific values of al = 1.5, a2 = 3, /31 = 1, /32 = 1, and 

() = -2. and if they are positively correlated and have specific values of al = 1.5, 

a2 = 3, /31 = 1, /32 = 1, and () = 2. The graph visualization revealed that for 

both positive and negative correlation situations, the RTM effect increases with 

increasing cut-off point for the right cut-off, while the RTM effect is higher for 

farther left cut-off points, decreases in the tail of the distribution as the cut-off 

point increases. When there is a negative correlation between variables Xl and 

X 2 , the RTM effect is slightly larger in magnitude than when there is a positive 

correlation. The result is depicted in Figure 3.1. The farther is the cut-off point in 

the tail of a distribution the more severe is the RTM effect. 
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Figure 3.1: Graph of the derived formula of RTM for greater than or less than 
cut-off points when the underlying distribution is Aryuyuen and Bodhisuwan 
(2023)'s bivariate generalized Poisson Lindley distribution. Left panel: Positive 
correlation; Right panel: Negative correlation 

3.5 RTM as a function of e or correlation 

The RTM as a function of () is given in Figure 3.2. A fixed cut-off point Xo = 3 

and specific values of parameters (Q1 = 1.5, Q2 = 3, (31 = (32 = 1) are considered 

for demonstration purposes. As discussed by (Aryuyuen and Bodhisuwan, 2023), 

the () parameter is responsible for the correlation between the variables, such 

that a positive value of () results in positive correlation between the variables, 

and a negative value of () gives rise to a negative correlation. For the specified 

parameter values, () varies between -5 and 5. The RTM effect is computed using 

equations 3.8 and 3.13 and is visualized in Figure 3.2. For negative values of () 

(correlations) -5, the RTM effect is maximum and then starts decreasing as the 

value of () (correlation) approaches to zero. The RTM effect is small for both right 

and left cut-off point when the value of () is 5. From the graph depicted in 3.2, it 

is evident that RTM is a linear function of () 
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Figure 3.2: Graph illustrating the RTM effect, varying the parameter () while 
keeping the cut-off point Xo constant. Set 01 = 1.5, 02 = 3, and {31 = {32 = 1. 

3.6 Maximum Likelihood Estimation (MLE) 

Let (Xll' X21), (X12' X22), . .. ,(X1n, X2n) be pairs of pre and post observations of 

size n sampled from a BGPL(8), where 8 = (01,{3b02,{32,B), as proposed by 

Aryuyuen and Bodhisuwan (2023). Let Pt(X1 , X2) represent the truncated bivariate 

probability distribution. The likelihood function can then be expressed as follows 

n 

£(8) = II f(X1i, X2i; 8) 
i=l 

and the log likelihood function is 
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n 

i=l 
n 

= 2n log (X2 + 2n log (Xl - (2 + Xli) L 10g(1 + (Xl) - n log(.82 + (X2) 

i=l 
n 

i=l 
n n 

i=l i=l 

To estimate the unknown parameters 8 we take the partial derivat ives with respect 

to the parameters (Xi, .8i and B for i = 1, 2 and equating the obtained results to zero 

yields five estimating equations. However, the above equations are not provided 

in closed forms and cannot be explicitly solved for the involved parameters . So a 

direct maximization of the £(8) would make it easier to obtain maximum likelihood 

estimates of the parameters. To achieve t he objective , the log likelihood function 

has been maximized using the optim built in function R. 

To find the Maximum Likelihood Estimate (MLE) of parameters for the t run­

cated bivariate generalized Poisson Lindley distribution, a set of random numbers of 

size 10,000 is generated from the bivariate generalized Poisson Lindley distribution 

with (Xl = 1.5, (X2 = 1.5, .81 = 3,.82 = 3, and B = 2. The observation above cut-off 

point 3 are considered and the true parameters are estimated from the truncated 

density. 

The log-likelihood plot depicted in figure 3.3 displays the log-likelihood values 

corresponding to parameters (Xl, (X2 , .81, .82 , and B. Notably, the plot suggests 

estimated values of 1.5 for (X l , 1.5 for (X2, and 2 for B. However, a notable discrepancy 

is observed in the log-likelihood plot for the estimated parameter .81, where the value 

is 10, deviating significantly from t he true value of 3. This discrepancy indicates 

a potential inadequacy in accurately estimating the .81 parameter. Similarly, the 

same behavior of the .82 parameter . Therefore, we fixed both parameters .81 and 

fJ2, which are equal to 1. 
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Figure 3.3: The log-likelihood plot depicts the maximum likelihood estimates of the 
parameters for a bivariate Generalized Poisson Lindley distribution, the estimates 
are represented by blue points. 

The MLE has large sample property that when the sample size increase then 

the estimated values approach true values. In Fig. 3.4 the sample size between 

125 and 250 also gives reasonable estimates but when the sample size increases up 

to 500 or above then the estimates are getting close to the true value. In Fig. 3.4 

the estimated value is plotted against sample size n which shows that the values 

approach dashed lines that represent true values. 
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Figure 3.4: Large sample property of MLE 

3.7 Data Generation and Simulation Study 

One of the key goals before starting a simulation study is to generate data. Data 

generation from the bivariate generalized Poisson lindley distribution of Aryuyuen 

and Bodhisuwan (2023) is an important and tricky task. · To generate the data, 

first a random sample on Xl was generated from a univariate generalized Poisson 

lindley distribution. As in the current study the variables are not independent from 

each other, so the conditional pmf from the joint pmf of Aryuyuen and Bodhisuwan 

(2023) bivariate Poisson pmf was used to generate data on the second random 

variable X 2 . To achieve the purpose of generating the bivariate data, conditional 

sampling method is adopted by first generating sample for the univariate generalized 

Poisson and then from the conditional pmf given as follow. 
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The built in R function can facilitate to generate pseudo random numbers for 

simulation from the conditional distribution which is given below. 

sample(x, size, replace = TRUE, prob) 

For some specific values of parameters of the truncated bivariate generalized poisson 

lindley distribution a simulation study was conducted in order to compare the 

estimated RTM with true RTM effect to check its performance. Following are 

the steps taken to generate sets of observation, considering as a pre and post 

observation of intervention study. 

1. A random sample was generated from univariate generalized Poisson Lindley 

with parameter al,(31 

2. In the conditional pmf, each datum Xi was substituted along with other 

parameters a2, (32, and () . The built-in R function sample (x, size, replace = 
TRUE, prob) was used to generate pseudo-random numbers for simulation from 

the mentioned conditional distribution. 

3. These sample realizations were denoted by Xij for i = 1,2, and j = 

1,2, ... , nl. 

4. Xlj and X2j were considered as pre and post observations of an intervention 

study. 

5. The first n number of observations of Xlj beyond/below a truncation point 

Xo and the corresponding X2j observations were then considered a random sample 

from Aryuyuen and Bodhisuwan (2023) truncated bivariate generalized Poisson 

lindley distribution. 

6. This sampling procedure was repeated 1000 times and for each sample, the 

RTM effect was estimated using the maximum likelihood estimation. 

The sampling distribution of Rk(xo, Xl, X2) using normal quantile-quantile is shown 

in Figure 3.5. The visualization is appealing; the sampling distributions for sample 

sizes 100 and 200 are both approximately normal. Sampling distributions of RTM 

at different cut-off points and parameters were also found to be normal but are 

not given for brevity. 
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Figure 3.5: Normal Q-Q plot of the sampling distribution of RTM effect for 
C¥1 = 1.5, C¥2 = 3, (31 = (32 = 1, e = 2 and Xo = 3. Left panel: n = 100; Right panel: 
n = 200 

3.7.2 Empirical unbiasdness and consistency of Rk(XQ, Xl, X2) 

Figure 3.7 shows the comparison of estimated and actual RTM (the red dotted 

line) for various sample sizes. The mean of estimated RTM (the blue line segments) 

are very close to the actual RTM for different sample sizes, as can be seen in figure 

3.7, demonstrating the unbiasedness of RTM estimator. Increasing the sample size, 

from 50 to 250, minimizes the variation from the mean or center, implying that 

the RTM estimator is also consistent. 
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Figure 3.6: Estimates of RTM and its sampling distribution for different sample 
choices and parameters Xo = 3, al = 1.5, a2 = 3, f31 = f32 = 1, and () = 2. 

3.8 Comparison via simulations study 

Simulation study was performed with various sample sizes while keeping the param­

eters fixed and utilizing a specific right cut-off point . The outcomes are presented 

in Table 3.1 , indicating that as the sample size increases, the estimated RTM and 

treatment values approach the true RTM and treatment values. The simulation 

results strongly suggest that the proposed expressions provide estimations of the 

treatment effect that closely align with the true values. Similar conclusions were 

drawn for the RTM and treatment effect associated with the left cut-off point using 

various parameters, although these results are not presented here for brevity. 
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Table 3. 1: Comparison of estimate and true RTM for Different Sample Sizes 

Parameters: a1 = 2, a2 = 2, /31 = /32 = 1, e = 2, Xo = 3 

Sample Size True Estimate 

Treatment RTM Treatment RTM 

100 0 3.3373 -0.1746 3.3063 

200 0 3.3373 -0.1140 3.3285 

300 0 3.3373 -0.0306 3.3290 

400 0 3.3373 0.0716 3.3150 

500 0 3.3373 0.0204 3.3304 

700 0 3.3373 0.0042 3.3321 

Parameters: a1 = 2, a2 = 3, /31 = /32 = 1, e = 2, Xo = 3 

Sample Size True Estimate 

Treatment RTM Treatment RTM 

100 0.5166 3.5874 0.8199 3.7538 

200 0.5166 3.5874 0.7230 3.6489 

300 0. 5166 3.5874 0.6235 3.6085 

400 0.5166 3.5874 0.6056 3.6068 

500 0.5166 3.5874 0.5762 3.5981 

700 0.5166 3.5874 0.5380 3.5953 

Parameters: a1 = 3, a2 = 2, /31 = /32 = 1, e = 2, Xo = 3 

Sample Size True Estimate 

Treatment RTM Treatment RTM 

100 -0.5166 3.2857 -0.6563 3.2334 

200 -0.5166 3.2857 -0.6243 3.2563 

300 -0.5166 3.2857 -0.5952 3.2792 

400 -0.5166 3.2857 -0. 5696 3.2761 

500 -0.5166 3.2857 -0.5564 3.2710 

700 -0.5166 3.2857 -0.5413 3.2913 
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3.9 Data Example 

The data set includes accident data from 122 experienced shunters, with random 

variables X and Y representing the number of accidents from 1937-1942 and 

1943-1947, extracted from Aryuyuen and Bodhisuwan (2023) as shown in table 

3.2 is used to quantify the RTM effect. The statistics calculated from the data 

are x = 1.2705, Y = 0.9754, 0"; = 1.6535, 0"; = 1.2969, Cov(x, y) = 0.37860, 

and Cor(x, y) = 0.2585 . Aryuyuen and Bodhisuwan (2023) used the method of 

moments to estimate the parameters. In this work, the parameters are estimated 

using the maximum likelihood method of estimation considering all data points, 

i.e., no truncation. The estimated parameters were found to be al = 1.5540, 

C¥2 = 1.9843, (31 = 44.091, (32 = 30.548, and e = 1.5579. On the basis of these 

estimated parameters the total, RTM, and treatment effect at different cut off 

points is shown in Figure 3.7. The RTM effect is increasing with the increase in 

the cut off point for right truncation as the total effect is increasing. 

Table 3.2: Bivariate accident count data of 122 shunters 

X 
Y 

Total 
0 1 2 3 4 5 6 7 

0 21 13 4 2 0 0 0 0 40 
1 18 14 5 1 0 0 0 1 39 
2 8 10 4 3 1 0 0 0 26 
3 2 1 2 2 1 0 0 0 8 
4 1 4 1 0 0 0 0 0 6 
5 0 1 0 1 0 0 0 0 2 
6 0 0 1 0 0 0 0 0 1 

Total 50 43 17 9 2 0 0 1 122 
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Figure 3.7: RTM effects for points greater than Xo. 

As the cut-off point moves further into the tail, the RTM effect increases, 

leading to an increase in the average total effect while maintaining a constant 

average treatment effect. As a result, an observed average increase or decrease, 

which is the additive effect of the RTM and treatment, may be misinterpreted as a 

true change. 

3.10 Discussion 

RTM is a natural phenomenon which occur when repeated measurements are 

observed at different times. In pre post studies intervention are applied to the 

subjects of the studies based on some threshold point i.e., below or above and RTM 

can potentially effect the conclusions made about the interventions. Therefore, its 

quantification is an important statistical research problem. In literature, a number 

of methods are available to quantify RTM in bivariate Poisson distribution have 

negative correlated count variables. Poisson data may exhibit positive correlations 

among the study variables. 

Aryuyuen and Bodhisuwan (2023) developed a bivariate generalized Poisson 

lindley distribution having flexible correlation structure and is used to formulate 

expression for RTM for the bivariate Poisson count data exhibiting flexible correla-
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tion. Our derivations assuming bivariate generalized Poisson lindley discussed by 

Aryuyuen and Bodhisuwan (2023) showed similar behavior with that of bivariate 

normal in terms of the covariance. The RTM is linearly related with the correlation 

and is maximum for the negative correlation. 

Moreover, The maximum likelihood estimators were obtained by maximizing 

the log likelihood function using the optim function in R. The simulation study 

revealed that the maximum likelihood (ML) estimators of RTM are unbiased and 

consistent. The comparison of the proposed expression of RTM with actual values 

via simulations study revealed that as the sample size increases the proposed RTM 

approach to actual values. 



Chapter 4 

Conclusion 

In practical scenarios, various situations arise where interventions or treatments 

are implemented on participants to assess improvements in study variables, aiming 

for betterment. When these interventions are administ ered to individuals with 

measurements at the extremes , either below or above a designated cut-off point , 

the conclusions regarding the effectiveness of the intervention or treatment effect 

may potentially be influenced by the regression to the mean effect (RTM) .Thus, 

an ineffective intervention could be considered effective due the RTM effect if 

overlooked. Such erroneous conclusions have been reported in vast research areas 

such as business, economics, public health, sports, and managements as discussed 

in the introduction and are not limited to the clinical studies. 

An accurate estimation of the RTM effect is needed in the intervention studies 

for accurate estimation of the intervention effect. So far , researchers have developed 

many methods to estimate the RTM effect , but existing methods are based on 

restricted assumptions, such as normality of the bivaraite data which may not be 

the case in real life. On the other hand, for non-normal populations t he model or 

methods have limitation of in-applicability to empirical distribution, computational 

inconvenience and multi-modality problems. 

In pre-post studies RTM effect could occur when a treatment is applied to 

individuals or subjects selected on the basis of a cut-off point for inclusion in a 

study. Intervention effect can be then estimated accurately by accounting for the 

RTM effect which could be a part of the total effect. 

In this study, we delve into the estimation of both regression to the mean (RTM) 

and intervention effects. This is examined through the ut ilization of bivariate 

generalized Poisson lindley distributions, which permit consideration of positive 

correlation. 

Moreover, as the right and left cut-off points increases, the RTM was observed 

to be monotonically increasing and decreasing, respectively. In cases of correlated 

and non-dispersed data the RTM intersects at some point for the right and left 

37 
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cut-off points, while for the bivariate generalized Poisson lindley distributions , 

which allow for dispersed data and positive correlation, it showed opposite behavior 

with no intersect ion. 

The maximum likelihood estimators of the RTM and intervention effects were 

derived in the current work. The properties such as unbiasedness , consistency and 

asymptotic normality were verified through simulations for the bivariate generalized 

Poisson lindely distributions which allow for positive correlation. 

The intervention and RTM effects were estimated using maximum likelihood 

estimation utilising data on the bivariate accident count data of 122 shunters. It 

was demonstrated that t he observed change was driven by the RTM effect and 

should be accounted for to accurately estimate t he intervention effect. 



References 

Aryuyuen, S. and Bodhisuwan, W. (2023) . On new bivariate poisson-lindley 

distribution with application of correlated bivariate count data analysis. Thailand 

Statistician, 21(2):228- 243 . 

Barnett , A. G. , Van Der Pols, J. C., and Dobson, A. J. (2005). Regression to the 

mean: what it is and how to deal with it. International journal of epidemiology, 

34(1):215- 220. 

Barton, D. and Dennis, K. (1952) . The conditions under which gram-charlier and 

edgeworth curves are positive definite and unimodal. Biometrika, 39(3/4):425-

427. 

Beath, K. J. and Dobson, A. J. (1991). Regression to the mean for nonnormal 

populations. Biometrika, 78(2):431- 435 . 

Biarnes, M. and Mones, J. (2020) . Regression to the mean in measurements of 

growth rates in geographic atrophy. Ophthalmic Research, 63(5):460- 465. 

Bush, H. F. , Canning, M. D. , et al. (2006). Regression towards the mean versus ef­

ficient market hypothesis: An empirical study. Journal of Business fj Economics 

Research (JBER) , 4(12) . 

Campbell, J. (1934). The poisson correlation function. Proceedings of the Edinburgh 

Mathematical Society, 4(1):18- 26. 

Cochrane, K. M. , Williams, B. A., Fischer, J. A. , Samson, K. L., Pei , L. X. , and 

Karakochuk, C. D. (2020). Regression to the mean: A statistical phenomenon of 

worthy consideration in anemia research. Current Developments in Nutrition, 

4(10):nzaa152. 

Das, P. and Mulder , P. (1983) . Regression to the mode. Statistica N eerlandica, 

37(1) :15- 20 . 

Davis, C. (1976). The effect of regression to the mean in epidemiologic and clinical 

studies . American journal of epidemiology, 104(5):493- 498. 

39 



References 40 

Galton, F. (1886) . Regression towards mediocrity in hereditary stature. The 

Journal of the Anthropological Institute of Great Britain and Ireland, 15:246- 263. 

Gardner , M. and Heady, J . (1973) . Some effects of within-person variability in 

epidemiological studies. Journal of Chronic Diseases, 26 (12) :781- 795 . 

James, K E. (1973). Regression toward the mean in uncontrolled clinical studies . 

Biometrics, pages 121- 130. 

John, M. and Jawad , A. F. (2010) . Assessing the regression to the mean for non­

normal populations via kernel estimators. North American Journal of M edical 

Sciences , 2(7):288. 

Johnson, VV. D. and George, V. T . (1991) . Effect of regression to t he mean in the 

presence of within-subject variability. Statistics in Medicine, 10(8) :1295- 1302. 

Kario , K , Schwartz, J. E. , and Pickering, T. G. (2000). Changes of nocturnal blood 

pressure dipping status in hypertensives by nighttime dosing of a-adrenergic 

blocker, doxazosin: results from the halt study. Hypertension, 35(3 ):787- 794. 

Khan, M. and Olivier , J . (2018). Quantify ing the regression to the mean effect in 

poisson processes. Statistics in Medicine, 37(26) :3832- 3848. 

Khan, M. and Olivier , J. (2019) . Regression to the mean for the bivariate binomial 

distribution. Statistics in m edicin e, 38(13):2391- 2412. 

Lakshminarayana, J. , Pandit , S. N. , and Srinivasa Rao, K (1999). On a bivari­

at e poisson distribution. Communications in Statistics- Theory and M ethods, 

28(2):267- 276. 

Lee, M. and Smith, G. (2002). Regression to the mean and football wagers. Journal 

of B ehavioral Decision Making , 15(4) :329- 342 . 

McCambridge, J ., Kypri , K. , and McElduff, P. (2014). Regression to the mean and 

alcohol consumpt ion: a cohort study exploring implications for the interpreta­

tion of change in control groups in brief intervention trials. Drug and alcohol 

dependen ce, 135 :156- 159 . 

Mtiller, H .-G., Abramson, 1. , and Azari , R. (2003) . Nonparametric regression to 

the mean. Proceedings of the National Academy of Sciences, 100(17):9715- 9720. 

Prior , J . 0 ., van Melle, G., Crisinel, A. , Burnand, B ., Cornuz, J. , and Darioli, R. 

(2005). Evaluation of a inulticomponent worksite health promotion program for 

cardiovascular risk factors-correcting for the regression towards the mean effect. 

Preventive m edicine, 40(3):259- 267. 



References 41 

Pritchett, L. and Summers, L. H. (2014) . Asiaphoria meets regression to the mean. 

Technical report , National Bureau of Economic Research. 

Retting, R. A., Ferguson, S. A. , and Hakkert , A. S. (2003) . Effects of red light 

cameras on violations and crashes: a review of the international literature. Traffic 

injury prevention, 4(1): 17- 23. 

Roustit , M. , Jullien, A., Jambon-Barbara, C. , Goudon, H., Blaise, S., Cracowski, 

J.-L., and Khouri , C. (2022) . Placebo response in raynaud's phenomenon clinical 

trials: The prominent role of regression towards the mean: Placebo response in 

raynaud 's phenomenon. In Seminars in Arthritis and Rheumatism, volume 57, 

page 152087. Elsevier. 

Schectman, G . and Hoffmann, R. G. (1988). A history of hypercholesterolemia 

influences cholesterol measurements. Archives of internal medicine, 148(5):1169-

1171. 

Schmidt, M. 1. , Bracco, P., Canhada, S., Guimaraes , J. M. , Barreto, S. M. , Chor , 

D. , Griep, R. , Yudkin, J. S., and Duncan, B. B. (2021). Regression to the mean 

contributes to the apparent improvement in glycemia 3.8 years after screening: 

the elsa-brasil study. Diabetes Care, 44(1):81- 88. 

Shahane, A., George, V., and Johnson, W. D. (1995). Effect of bivariate regression 

toward the mean in uncontrolled clinical trials . Communications in Statistics­

Theory and Methods , 24(8):2165- 2181. 

Tallis , G. M. (1961). The moment generating function of the truncated multi­

normal distribution. Journal of the Royal Statistical Society Series B: Statistical 

M ethodology, 23(1):223- 229. 

Teicher, H. (1954). On the multivariate poisson distribution. Scandinavian Actuarial 

Journal, 1954( 1) :1- 9. 

Wilcox, M. A. , Chang, A. M. , and Johnson, 1. R. (1996). The effects of parity 

on birthweight using successive pregnancies. Acta obstetricia et gynecologica 

Scandinavica, 75(5):459- 463. 


