Palyno-anatomical Studies of Dicot Phytodiversity in Northern Baluchistan, Pakistan

By

Wajia Noor

Department of Plant Sciences, Faculty of Biological Sciences Quaid-i-Azam University Islamabad, Pakistan 2024

Palyno-anatomical Studies of Dicot Phytodiversity in Northern Baluchistan, Pakistan

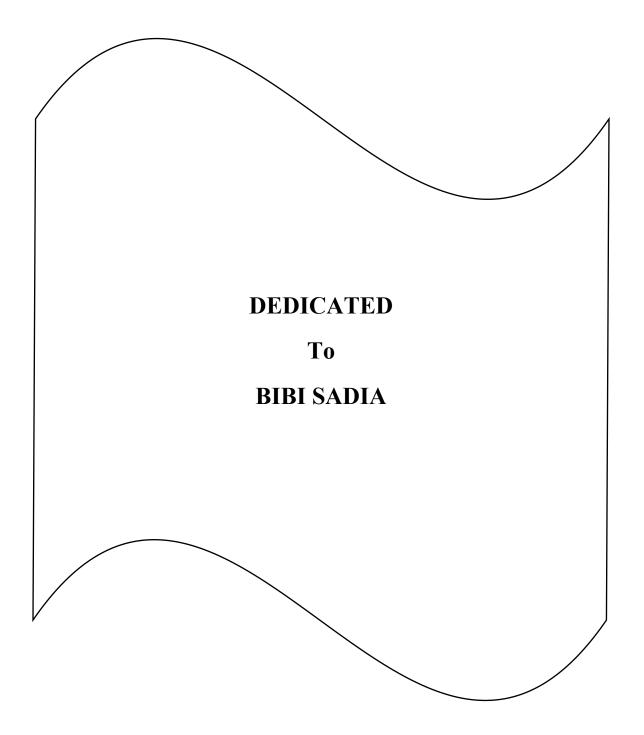
By

Wajia Noor

Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan 2024

Palyno-anatomical Studies of Dicot Phytodiversity in Northern Baluchistan, Pakistan

A thesis Submitted to the Quaid-i-Azam University in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy (Ph.D.)


In

Botany/Plant Sciences (Plant Systematics and Biodiversity)

Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan

In the name of Allah, the Most Merciful, the Most Kind

Certificate of Approval

This is to certify that the research work presented in this thesis, entitled "Palynoanatomical Studies of Dicot Phytodiversity in Northern Baluchistan, Pakistan" as conducted by Ms. Wajia Noor under the supervision of Dr. Muhammad Zafar. No part of this thesis has been submitted anywhere else for any other degree. This thesis is submitted to the Department of Plant Sciences in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Field of Plant Sciences (Plant Systematics and Biodiversity), Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan.

Student Name: Ms. Wajia Noor

Examination Committee

External Examiner 1 Dr. Asma Jabeen Environmental Sciences Department Fatima Jinnah Women University Rawalpindi

External Examiner 2 **Prof. Dr. Shaikh Saeed** Environmental Sciences Department Fatima Jinnah Women University Rawalpindi

Supervisor Dr. Muhammad Zafar Associate Professor Department of Plant Sciences Quaid-i-Azam University, Islamabad

Chairman Prof. Dr. Hassan Javed Chaudhary Department of Plant Sciences Quaid-i-Azam University, Islamabad

Dated: 03-07-2024

Signature:

Signature:

Signature:

Signature:

Signature:

FOREIGN EXAMINERS

PROF. DR. ELIZABETH M. WILLIAMSON

School of Pharmacy, Pharmacy Practice, Reading University. Whiteknights, Reading UK Post Code RG6 6AP,

United Kingdom

PROF. DR. TAKASHI WATANABE

Graduate school of Pharmaceutical Sciences,

Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973,

Japan

راعظهم إيتور

QUAID-I-AZAM UNIVERSITY Department of Plant Sciences

Islamabad, Pakistan 45320

Subject: Author Declaration

I Miss Wajia Noor hereby state that my Ph.D. thesis entitled " Palynoanatomical Studies of Dicot Phytodiversity in Northern Baluchistan, Pakistan" is my work and has not been submitted previously by me for taking any degree from the Department of Plant Sciences, Quaid-i-Azam University or anywhere in the country/world.

At any time if my statement is found to be incorrect even after my Graduate, the university has the right to withdraw my Ph.D. degree.

Jul -

QUAID-I-AZAM UNIVERSITY Department of Plant Sciences Islamabad, Pakistan 45320

Subject: Plagiarism Undertaking

I solemnly declare that the research work presented in the thesis titled " Palyno-anatomical Studies of Dicot Phytodiversity in Northern Baluchistan, Pakistan " is solely my research work with no significant contribution from any other person. Small contribution/help wherever taken has been duly acknowledged and that complete thesis has been written by me.

I understand the zero-tolerance policy of the HEC and Quaid-i-Azam University towards plagiarism. Therefore, I as an author of the above-titled thesis declare that no portion of my thesis has been plagiarized and any material used as reference is property referred/cited.

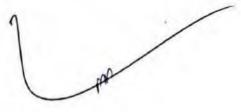
I undertake that if I am found faulty of any formal plagiarism in the abovetitled thesis even after awarding of Ph.D. degree, the University reserves the right to withdraw/revoke my Ph.D. degree and that HEC and the University has the right to publish my mime on the HEC/University website on which name of students are placed who submitted plagiarized thesis.

Student/Author Signature Wajia Noor

قاراعظ يونيور ت

QUAID-I-AZAM UNIVERSITY

Department of Plant Sciences Islamabad, Pakistan 45320


SIMILARITY INDEX CERTIFICATE

It is certified that Miss Wajia Noor has completed her Ph.D. research work and compilation of the thesis. The title of her thesis is "Palyno-anatomical Studies of Dicot Phytodiversity in Northern Baluchistan, Pakistan". Her thesis has been checked on Turnitin for similarity index and found 8% that lies in the limits provided by HEC (20%).

Dr. Muhammad Zafar Supervisor

Turnitin Originality Report Palyno-anatomical Studies of Dicot Phytodiversity In Northern Baluchistan, Pakistan by Wajia Noor. From PhD (PhD DRSML)

- Processed on 28-Feb-2024 13:45 PKT
- ID: 2306825029
- Word Count: 18659

Similarity Index 8% Similarity by Source Internet Sources: 4% Publications: 6% Student Papers: 1%

sources:

1

2

3

1% match (Internet from 28-Sep-2016) https://es.scribd.com/doc/211097470/Encyclopedia-of-World-Geography-pdf

< 1% match (Internet from 17-May-2019) https://link.springer.com/article/10.1007%2Fs00606-011-0538-8

< 1% match (Internet from 06-Sep-2019) https://link.springer.com/article/10.1007%2Fs00606-008-0062-7

4

< 1% match (Internet from 18-Aug-2022) https://link.springer.com/article/10.1007/s40415-020-00623-6?code=6787db6b-3c83-4122-bb92-08b855bdb286&error=cookies_not_supported

5

< 1% match (Internet from 05-Feb-2023) https://www.researchgate.net/publication/233353149 Unique Pollen Types in the Cae salpinioideae Leguminosae

ACKNOWLEDGEMENT

Up and above anything else, all praises to The Allah Almighty alone, the Omnipotent, the Merciful and Compassionate. Knowledge is limited and time is short to express the dignity, the Propitious, the Benevolent and Sovereignty of ALLAH, whose blessings and glories have flourished my thoughts and thrived my ambitions. Peace and blessings of Allah be upon last Prophet Hazrat Muhammad (PBUH). Trembling lips and wet eyes pray for the Holy Prophet Hazrat Muhammad (PBUH) for enlightening our conscience with an essence of faith in Allah, converging all His kindness and mercy upon him.

I gratefully acknowledge the support of the Chairman, Department of Plant Sciences, Professor Dr. Mushtaq Ahmadand and Prof. Dr. Hassan Javed Chaudhary for providing excellent spectral facilities during the entire course of my research work.

I take pride in acknowledging the insightful guidance of my Supervisor Dr. Muhammad Zafar (Associate Professor), Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan. His reliable comments, dynamic supervision, vast experience, sincere help, and erudition throughout the course of my research work, guided me in faltering steps. No words can adequately express my deep gratitude to my supervisor for all his guidance and kindness. I sincerely thank him for all his trust and support in pursuing my research work under his guidance.

In my journey towards this degree, I have found a teacher, a mentor, an inspiration, a role model, and a pillar of support in my research work; Prof. Dr. Mushtaq Ahmad, Department of Plant Sciences, Quaid I Azam University, Islamabad, Pakistan. He has been there always providing his heartfelt support and guidance and has given me invaluable guidance, inspiration, and suggestions in my quest for knowledge. Without his able guidance, this thesis would not have been possible, and I shall eternally be grateful to him for his assistance.

I wish to express my gratitude to my teachers for their active help and support. I would also like to acknowledge Professor Dr. Mir Ajab Khan and Dr. Shazia Sultana (Post Doc.) for their able guidance and continuous support throughout my Ph.D.

I have great pleasure in acknowledging my gratitude to my colleagues and fellow research scholars of Plant Systematics & Biodiversity lab, for their endless support and good wishes. I wish to express my deep sense of appreciation and gratitude to my lab fellows; Manzoor Ahmad, Waseem Galani, Dr. Shaista Jabeen, Dr. Salman Majeed, Dr. Jamil Raza, Dr. Nabila, Dr. Maria Ameen, Dr. Bibi Sadia, Dr. Shabir Ahmad, Iqra Qayyum, Aroosa Habib, Aqsa Abid, for their help and cooperation during various steps of my research. I also owe my special thanks to Mr. Sufyan and Mr. Farooq for their kind help during my research work.

Wajia Noor

S. No	Title of Content	Page #
Ι	List of Tables	v-vi
II	List of Plates	vii-xii
III	List of Figures	xiii-xiv
IV	Abstract	xv-xvi
1.	Chapter 1: Introduction	1-14
1.1	Dicot Phytodiversity Around the Globe	1
1.2	Phytodiversity of Dicot Flora: Present Day Research	2
1.2.1	Palynology	2
1.2.2	Anatomy	3
1.3	Dicot Phytodiversity in Pakistan	5
1.4	Dicot Phytodiversity: Systematics Research Trends in Pakistan	6
1.5	Brassicaceae, Fabaceae, Lamiaceae	7
1.6	Northern-Baluchistan Pakistan	10
1.6.1	Dicot Phytodiversity of Northern Baluchistan, Pakistan	12
1.7	Background and Justification of the Present Study	13
1.8	Objectives	14
2.	Chapter 2: Material and Methods	15-26
2.1	Northern Baluchistan: An Overview	15
2.2	Plant specimen: Collection and Preservation	16
2.3	Anatomical Study of Dicot Flora	18
2.3.1	Tissue Preparation	18
a)	Section Cutting	18
b)	Staining	18
2.3.2	Light Microscopy (LM) Visualization of Petiole Anatomy	19
2.4	Palynological Examinations of dicots in Northern Baluchistan	19
	Light Microscopic Observations of Pollen	19
2.4.1	Light Wheroscopic Observations of Fonen	17

Table of Contents

2.5	Statistical Analysis	21
2.6	Taxonomic Key	22
3	Chapter 3: Results and Discussion	27-56
	Section-I	
	Summary	27
	Floristic Checklist of Dicot Flora and Field Pictorial Guide	28-56
	Section-II	57-146
	Pollen micromorphology	57-140
	Summary	57
2 1	Pollen Micromorphology of Brassicaceous Flora from	50
3.1	Northern Baluchistan	58
3.1.1	Results and Discussion	58
``	Unit, symmetry, polarity, shape, and size of the Brassicaceous	50
a)	taxa	58
1.)	Exine sculpturing among the investigated Brassicaceous	50
b)	species	59
c)	Polar axis and Equatorial Diameter	61
d)	Colpi and mesocolpium	61
e)	Viability analysis	61
f)	Multivariate analysis	61
~)	Systematic implications of current palynological findings in	(2)
g)	Brassicaceae	62
3.2	Pollen Micromorphology of the Fabaceous taxa in Northern Baluchistan	91
3.2.1	Results and Discussion	91
a)	Symmetry, Polarity, and Unity of Pollen in Fabaceae	91
b)	Pollen Size and Shape of Fabaceous taxa	91
c)	Apertures with NPC classification	91
d)	Polar view, Equatorial view, Amb	92
e)	Sculpturing of Exine and Aperture membrane	93
f)	Multivariate Analysis of pollen morphological features of Fabaceae	95

3.3	Pollen Micromorphology of the Lamiaceous taxa in Northern Baluchistan	122
3.3.1	Results and Discussion	122
a)	Symmetry, polarity, and unity of Lamiaceous species	122
b)	Size, and shapes of studied Lamiaceous species	122
c)	Aperture types of the pollen of Lamiaceous species	123
d)	Exine sculpturing, surface, and aperture membrane of Lamiaceous taxa	124
e)	Polar, equatorial views, amb, and NPC classification of Lamiaceous species	125
f)	Multivariate analysis	126
	Section-III	147-225
	Anatomy	147-225
	Summary	147
3.4	Petiole anatomy of Brassicaceous Flora of Northern Baluchistan	148
3.4.1	Results and Discussion	148
a)	Petiole Outline-based Grouping of Brassicaceous Flora	148
b)	Epidermis in the Brassicaceous petioles	149
c)	Collenchyma in Brassiaceous species	150
d)	Vascularization of the petiole of Brassicaceous flora	150
e)	Multivariate analysis of petiolar anatomical features of Brassicaceous species	151
3.5	Petiole Anatomy of Fabaceous Flora of Northern Baluchistan	181
3.5.1	Results and Discussion	181
a)	Petiole outline, and wings of the Fabaceous species	181
b)	Cuticle, and Epidermal cell shape in the petiole of Fabaceae plants	182
c)	Collenchyma, Chlorenchyma, and Parenchyma of Fabaceous species	183
d)	Vascularization in the petiole of Fabaceae species	184
e)	Multivariate analysis	185

5.	Future Perspectives	228
b)	Petiole anatomical micromorphology	226
a)	Pollen micromorphology	226
4.	Conclusion	226-227
d)	Multivariate analysis	204
c)	Vascularization in the petiole of Lamiaceous flora	203
b)	Histology of Lamiaceous species	203
a)	Petiole outline, cuticle, and trichome	201
3.6.1	Results and Discussion	201
3.6	Petiole anatomy of Lamiaceous Flora from Northern Baluchistan	201

List of Tables

Table	Title of Table	Page #
Table 1	Key for the observed anatomical characters	22
Table 2	Key for the observed palynological characters	23
Table 3	The collected taxa of Brassicaceae from Northern Baluchistan	28
Table 4	The collected taxa of Fabaceae from Northern Baluchistan	30
Table 5	The collected taxa of Lamiaceae from Northern Baluchistan	32
Table 6	Size, shape and viability of pollen for studied Brassicaceous taxa	81
Table 7	Qualitative palynological characteristics among Brassicaceous taxa	83
Table 8	Quantitative palynological measurements of Brassicaceous taxa	85
Table 9	Dichotomous key based on pollen morphological characters	88
Table 10	Qualitative palynological characteristics of Fabaceous flora	110
Table 11	Size, shape and viability of pollen for studied Fabaceous taxa	113
Table 12	Quantitative palynological measurements of Fabaceous taxa	115
Table 13	Dichotomous taxonomic key based on pollen morphological characters of Fabaceous flora	118
Table 14	Size, shape and viability of pollen for studied Lamiaceous taxa	138
Table 15	Qualitative palynological characteristics of Lamiaceae	140
Table 16	Quantitative palynological measurements of Lamiaceous taxa	142
Table 17	Dichotomous taxonomic key based on pollen morphological traits of Lamiaceous flora	144
Table 18	Qualitative characteristics of selected Brassicaceous taxa	167
Table 19	Qualitative anatomical features of selected Brassicaceous taxa	169
Table 20	Quantitative data of histological properties of Brassicaceae species	172
Table 21	Dichotomous key based on petiole characters of Brassicaceous flora	177
Table 22	Qualitative anatomical traits of the Petiole of Fabaceous taxa	194
Table 23	Qualitative anatomical traits of the Petiole of Fabaceous taxa	195

Table 24	Quantitative data of histological properties of studied Fabaceous species	197
Table 25	Dichotomous key based on petiole anatomical characters of Fabaceous flora	199
Table 26	Qualitative characteristics of the petiole anatomy of Lamiaceous taxa	215
Table 27	Quantitative characteristics of the petiole anatomy of Lamiaceous taxa	217
Table 28	Qualitative features of studied Lamiaceous taxa	221
Table 29	Dichotomous key based on petiole morphological characters of Lamiacous flora	223

Plate	Title of Plate	Page #
Plate 1	Toba kakari, sulaiman mountains, in Zhob, Baluchistan	11
Plate 2	Arid-semid arid lands of Loralai, Baluchistan	12
Plate 3	Fumigation (a) (b), mounting herbarium specimen with details (c) and light microscopic analysis (d)	17
Plate 4	The study area Loralai	24
Plate 5	Pathankot, district Loralai	24
Plate 6	The study area Sanjavi	25
Plate 7	Takht-e-Sulaiman mountains range district Zhob, Baluchistan	25
Plate 8	Hazarganji Chiltan National Park in the Mastung District	26
Plate 9	Ziarat, Baluchistan	26
Plate 10	Field pictorial view (a) Aethionema <i>carneum</i> , (b), (c) <i>Alyssum desertorum</i> , (d) <i>Alyssum turkestanicum</i>	34
Plate 11	Field pictorial view (a) <i>Brassica oleracea</i> var (b) <i>Capsella</i> <i>bursa-pastoris</i> (c) <i>Cardaria chalepensis</i> (d) <i>Cardaria draba</i>	35
Plate 12	Field pictorial view (a) <i>Chorispora tenella</i> (b) <i>Clypeola</i> aspera (c) <i>Coincya tournefortii</i> (d) <i>Conringia orientalis</i>	36
Plate 13	Field pictorial view (a) <i>Descurainia Sophia</i> (b) <i>Diplotaxis griffithii</i> (c) <i>Diplotaxis harra</i> , (d) <i>Eruca sativa</i>	37
Plate 14	Field pictorial view (a,b) Farsetia hamiltonii (c) Farsetia heliophile (d) Goldbachia pendula	38
Plate 15	Field pictorial view (a) <i>Lepidium aucheri</i> (b) <i>Leptaleum filifolium</i> , (c) <i>Matthiola flavida</i> (d) <i>Meniocus heterotrichus</i>	39
Plate 16	Field pictorial view (a) <i>Nasturtium officinale</i> (b) <i>Notoceras</i> <i>bicorne</i> (c) <i>Raphanus raphanistrum</i> (d) <i>Sisymbrium</i> <i>altissimum</i>	40
Plate 17	(a) Sisymbrium irio (b) Strigosella africana (c) Strigosella cabulica (d) Strigosella intermedia	41
Plate 18	Field pictorial view (a), (b), (c), (d) Tetracme stocksii	42

List of Plates

	Field pictorial view (a) Astragalus anisacanthus (b)	
Plate 19	Astragalus crenatus (c) Astragalus hemsleyi (d)	43
	Astragalus hostilis	
	Field pictorial view (a) Astragalus oxyglottis (b) Astragalus	
Plate 20	stocksii (c) Astragalus diphtherites (d) Astragalus	44
	subumbellatus	
	Field pictorial view (a) Astragalus tribuloides (b)	
Plate 21	Caragana ambigua (c) Ebenus stellata (d) Indigofera	45
	cuneifolia	
Dista 22	Field pictorial view (a) Indigofera intricate (b) Lathyrus	16
Plate 22	oleraceus (c) Lotus corniculatus (d) Medicago polymorpha	46
Dista 22	Field pictorial view (a) Melilotus indicus (b) Onobrychis	47
Plate 23	cornuta (c) Onobrychis tavernierifolia (d) Sophora mollis	47
	Field pictorial view (a) Taverniera glabra (b) Tephrosia	
Plate 24	uniflora subsp. Petrosa (c) Trigonella monantha (d) Vicia	48
	macrantha	
D1.4. 25	Field pictorial view (a) Ajuga bracteosa (b), (c) Clinopodium	40
Plate 25	umbrosum (d) Eremostachys thyrsiflora	49
Plate 26	Field pictorial view (a) Eremostachys vicaryi (b) Isodon	50
Flate 20	rugosus (c) Lallemantia royleana (d) Marrubium vulgare	50
Dlata 27	Field pictorial view (a)Micromeria biflora (b); Nepeta	51
Plate 27	bracteata (c) Nepeta griffithii (d) Nepeta Hindostana	51
	Field pictorial view (a) Nepeta praetervisa; Aromatic (b)	
Plate 28	Origanum majorana (c) Otostegia aucheri (d) Phlomis	52
	stewartii	
Plate 29	Field pictorial view (a) Salvia cabulica (b) Salvia coccinea (c)	52
Plate 29	Salvia leucantha (d) Salvia macrosiphon	53
Plate 30	Field pictorial view (a) Salvia moorcroftiana (b) Salvia	54
Flate 50	plebeia (c) Salvia santolinifolia (d) Scutellaria linearis	54
Plate 31	Field pictorial view (a) Stachys parviflora (b); Teucrium	55
riale 31	scordium (c), (d) Teucrium stocksianum	55
Plate 32	Field pictorial view (a), (b), (c) Thymus linearis (d) Thymus	56
riale 52	linearis subsp. hedgei Jalas	
	1	1

Plate 33	SEM micrographs of pollen; (a), (b) <i>Aethionema carneum</i>, (c),(d) <i>Alyssum desertorum</i>, (e), (f) <i>Alyssum turkestanicum</i>, (g),	63
	(h) Brassica oleraceavar. capitata	
	SEM micrographs of pollen; (a), (b) Capsella bursa-pastoris,	
Plate 34	(c), (d) Cardaria chalepensis, (e), (f) Cardaria draba, (g), (h)	64
	Chorispora tenella	
	SEM micrographs of pollen; (a), (b) <i>Clypeola aspera,</i> (c), (d)	
Plate 35	Coincya tournefortii, (e), (f) Conringia orientalis (g), (h)	65
	Descurainia sophia	
	SEM micrographs of pollen; (a), (b) Dilophia salsa, (c), (d)	
Plate 36	Diplotaxis griffithii, (e), (f) Diplotaxis harra, (g), (h) Draba	66
	hystrix	
	SEM micrographs of pollen; (a), (b) Eruca sativa, (c), (d)	
Plate 37	Farsetia heliophila, (e), (f) Goldbachia pendula (g), (h) Isatis	67
	minima	
	SEM micrographs of pollen; (a), (b) Isatis stocksii, (c), (d)	
Plate 38	Lepidium aucheri, (e), (f) Leptaleum filifolium, (g), (h)	68
	Matthiola flavida	
	SEM micrographs of pollen; (a), (b) Meniocus heterotrichus,	
Plate 39	(c), (d) Meniocus linifolius, (e), (f) Notoceras bicorne, (g), (h)	69
	Physorrhynchus brahuicus	
	SEM micrographs of pollen; (a), (b) Raphanus raphanistrum,	
Plate 40	(c), (d) Sisymbrium altissimum, (e), (f) Sisymbrium irio, (g),	70
	(h) Strigosella africana	
Plate 41	SEM micrographs of pollen; (a), (b) <i>Strigosella cabulica</i> , (c),	71
1 late +1	(d) Strigosella intermedia, (e), (f) Tetracme stocksii	/1
	SEM micrographs of pollen; (a), (b) Alhagi maurorum, (c), (d)	
Plate 42	Astragalus anisacanthus, (e), (f) Astragalus brahuicus, (g),	97
	(h) Astragalus crenatus	
	SEM micrographs of pollen; (a), (b) Astragalus diphtherites,	
Plate 43	(c), (d) Astragalus hemsleyi, (e), (f) Astragalus hostilis, (g),	98
	(h) Astragalus hypoglottis	

	SEM micrographs of pollen; (a), (b) <i>Astragalus ophiocarpus</i> ,	
Plate 44	(c), (d) Astragalus oxyglottis, (e), (f) Astragalus stocksii, (g),	99
	(h) Astragalus subumbellatus	
	SEM micrographs of pollen; (a), (b) Astragalus tribuloides,	
Plate 45	(c), (d) Caragana ambigua, (e), (f) Crotalaria burhia, (g), (h)	100
	Crotalaria medicaginea	
	SEM micrographs of pollen ;(a), (b) <i>Ebenus stellata</i> , (c), (d)	
Plate 46	Indigofera cuneifolia, (e), (f) Indigofera intricata, (g), (h)	101
	Lathyrus oleraceus	
	SEM micrographs of pollen; (a), (b) Lotus corniculatus, (c),	
Plate 47	(d) Lotus garcinii, (e), (f) Medicago lupulina, (g), (h)	102
	Medicago polymorpha	
	SEM micrographs of pollen; (a), (b) Melilotus indicus, (c), (d)	
Plate 48	Onobrychis cornuta, (e), (f) Onobrychis dealbata, (g), (h)	103
	Onobrychis micrantha	
	SEM micrographs of pollen;(a), (b) Onobrychis	
Plate 49	tavernierifolia, (c), (d) Sophora mollis, (e), (f) Taverniera	104
	glabra, (g), (h) Tephrosia uniflora subsp. Petrosa	
D1 / 50	SEM micrographs of pollen; (a), (b) <i>Trigonella</i>	105
Plate 50	macrorrhyncha, (c), (d) Vicia macrantha.	
	SEM micrographs of pollen; (a), (b) <i>Ajuga alpina</i> , (c) <i>Ajuga</i>	
Plate 51	<i>bracteosa</i> , (d), (e) <i>Clinopodium umbrosum</i> ,(f), (g)	127
	Eremostachys vicaryi,(h)Isodon rugosus	
	SEM micrographs of pollen; (a), (b) Lallemantia royleana, (c)	
Plate 52	<i>Marrubium vulgare</i> , (d), (e) <i>Micromeria biflora</i> , (f), (g)	128
	Nepeta bracteata, (h) Nepeta eriosphaera	
	SEM micrographs of pollen; (a) Nepeta eriosphaera, (b), (c)	
Plate 53	Nepeta glomerulosa, (d) Nepeta griffithii, (e), (f) Nepeta	129
	hindostana, (g), (h) Nepeta juncea	
	SEM micrographs of pollen; (a), (b) Nepeta praetervisa, (c),	
Plate 54	(d) Ocimum africanum, (e) Origanum majorana, (f) Otostegia	130
	aucheri, (g), (h) Otostegia limbata	

Plate 55	 Plate 55. SEM micrographs of pollen; (a), (b) <i>Phlomis</i> <i>stewartii</i>, (c), (d) <i>Salvia cabulica</i>, (e), (f) <i>Salvia coccinea</i>, (g), (h) <i>Salvia leucantha</i> 	131
Plate 56	SEM micrographs of pollen; (a), (b) <i>Salvia macrosiphon,</i> (c), (d) <i>Salvia moorcroftiana,</i> (e), (f) <i>Salvia plebeia,</i> (g), (h) <i>Salvia santolinifolia</i>	132
Plate 57	SEM micrographs of pollen; (a), (b) <i>Scutellaria linearis</i>, (c),(d) <i>Stachys parviflora</i>, (e), (f) <i>Teucrium stocksianum</i>, (g), (h)<i>Thymus linearis</i>	133
Plate 58	Photomicrographs of petiole anatomy (a) <i>Aethionema</i> <i>carneum</i> , (b) <i>Alyssum desertorum</i> , (c) <i>Brassica oleracea</i> , (d) <i>Capsella bursa-pastoris</i> , (e) <i>Cardaria chalepense</i> , (f) <i>Cardaria draba</i>	154
Plate 59	 Photomicrographs of petiole anatomy (a) <i>Coincya</i> <i>tournefortii</i>, (b) <i>Conringia orientalis</i>, (c) <i>Descurainia Sophia</i>, (d) <i>Diplotaxis harra</i>, (e) <i>Eruca sativa</i>, (f) <i>Farsetia hamiltonii</i> 	155
Plate 60	 Photomicrographs of petiole anatomy (a) <i>Farsetia heliophila</i>, (b) <i>Goldbachia pendula</i>, (c) <i>Lepidium aucheri</i>, (d) <i>Matthiola flavida</i>, (e) <i>Meniocus linifolius</i>, (f) <i>Nasturtium officinale</i> 	156
Plate 61	 Photomicrographs of petiole anatomy (a) Notoceras bicorne, (b) Physorrhynchus brahuicus, (c) Raphanus raphanistrum, (d) Sisymbrium altissimum, (e) Strigosella africana, (f) Strigosella cabulica 	157
Plate 62	Photomicrographs of petiole anatomy (a) <i>Strigosella intermedia</i>	158
Plate 63	Petiole shapes and vascularization in Brassicaceous taxa	159
Plate 64	 Photomicrographs of petiole anatomy (a) <i>Alhagi maurorum</i>, (b) <i>Astragalus crenatus</i>, (c) <i>Astragalus purpurascens</i>, (d) <i>Caragana ambigua</i>, (e) <i>Ebenus stellata</i>, (f) <i>Indigofera</i> <i>cuneifolia</i> 	186
Plate 65	 Photomicrographs of petiole anatomy (a) <i>Indigofera intricata</i>, (b) <i>Lotus garcinii</i>, (c) <i>Melilotus indicus</i>, (d) <i>Onobrychis dealbata</i>, (e) <i>Onobrychis tavernierifolia</i>, (f) <i>Sophora mollis</i> 	187

	Distance of noticely anotomy (a) Tanamaiana alabua	
Plate 66	Photomicrographs of petiole anatomy (a) <i>Taverniera glabra</i> ,	100
	(b) <i>Trigonella macrorrhyncha</i> , (c) <i>Vicia macrantha</i> , (d,e,f),	188
	Ebenus stellata	
	Photomicrographs of petiole anatomy (a) Indigofera	
Plate 67	cuneifolia,, (b) Onobrychis dealbata, (c,d,e) Sophora mollis,	189
	(f) Taverniera glabra	
	Photomicrographs of petiole anatomy (a) <i>Ajuga alpina</i> , (b)	
\mathbf{D}_{1}	Ajuga bracteosa, (c) Eremostachys thyrsiflora, (d)	200
Plate 68	Eremostachys vicaryi, (e) Nepeta cataria, (f) Nepeta	206
	eriosphaera	
	Photomicrographs of petiole anatomy (a) Nepeta glomerulosa,	
Plate 69	(b) Nepeta Hindostana, (c) Nepeta juncea, (d) Ocimum	207
	africanum, (e) Otostegia aucheri, (f) Phlomis stewartii	
	70. Photomicrographs of petiole anatomy (a) Otostegia	
Plate 70	limbata, (b) Salvia cabulica, (c) Salvia coccinea, (d) Salvia	208
	leucantha, (e) Salvia macrosiphon, (f) Salvia moorcroftiana	
	Photomicrographs of petiole anatomy (a) Salvia plebeia, (b)	
D1 (71	Scutellaria linearis, (c) Stachys parviflora, (d) Teucrium	209
Plate 71	scordium, (e) Teucrium stocksianum, (f) Thymus linearis	
	subsp. hedgei Jalas	
	Photomicrographs of petiole anatomy (a) <i>Thymus linearis</i> , (b)	
Plate 72	Eremostachys thyrsiflora, (c,d) Eremostachys vicaryi, (e)	210
	Phlomis stewartii, (f) Salvia leucantha	
D1 / 72	Photomicrographs of petiole anatomy (a) Salvia leucantha, (b)	011
Plate 73	Scutellaria linearis	211

List	of	Figures
------	----	---------

Figure	Title of Figure	Page #
Figure 1	Graphical representation of methodology	
Figure 2	Map of Northern Baluchistan representing the study sites	16
Figure 3	Tribes of Brassicaceous taxa	72
Figure 4	Variations in pollen size among Brassicaceous taxa	73
Figure 5	Variations in length and width of colpi in Brassicaceous taxa	74
Figure 6	Mesocolpium and exine thickness among Brassicaceous taxa	75
Figure 7	Variations in colpi length and width in equatorial view	76
Figure 8	P/E ratio variations among studied Brassicaceous taxa	77
Figure 9	PCA analysis based on quantitative traits of Brassicacoues flora	78
Figure 10	UPGMA cluster analysis among Brassicacoues flora	79
Figure 11	Correlation among the quantitative traits of Brassicacoues flora	80
Figure 12	PCA analysis based on quantitative traits of Fabaceous flora	106
Figure 13	UPGMA cluster analysis of Fabaceous flora	107
Figure 14	Correlation among the quantitative traits of Fabaceous flora	108
Figure 15	Normal probability distribution among the quantitative traits	109
Figure 16	PCA analysis based on quantitative traits of Lamiaceous flora	134
Figure 17	UPGMA cluster analysis of Lamiaceous flora	135
Figure 18	Correlation among the quantitative traits of Lamiaceous flora	136
Figure 19	Box-jatter plot for quantitative traits of Lamiaceous flora	137
Figure 20	Variations in mean values of petiole length and width of Brassicaceous taxa	160
Figure 21	Variations in mean values of epidermal cells length and width of Brassicaceous taxa	161
Figure 22	Variations in mean values of chlorenchyma cells length and width of Brassicaceous taxa	162
Figure 23	Variations in mean values of vascular bundles length and width of Brassicaceous taxa	163

Figure 24	Cluster analysis of Brassicaceae taxa based on quantitative traits	164
Figure 25	Utility of petiolar features of Brassicaceae by PCA	165
Figure 26	Correlation among the quantitative traits of Brassicaceous flora	166
Figure 27	Utility of petiolar features in discriminating among Fabaceous taxa by PCA	190
Figure 28	UPGMA cluster analysis among of Fabaceous taxa	191
Figure 29	Correlation among the quantitative traits of Fabaceous flora	192
Figure 30	Normal probability distribution of the quantitative traits of Fabaceous flora	193
Figure 31	Utility of petiolar features in discriminating among species of Lamiaceae by PCA	212
Figure 32	UPGMA cluster analysis among Lamiaceous taxa	213
Figure 33	Correlation among the quantitative traits of Lamiaceous flora	214

ABSTRACT

This is the first study presenting the systematics of the dicots from northern Baluchistan, Pakistan. Field trips were conducted for the collection of dicots from different areas of Northern Baluchistan. Brassicaceae, Fabaceae, and Lamiaceae were the selected families based on their abundance. In total 107 species from three families Brassicaceae, Fabaceae, and Lamiaceae were studied using Light microscopy (LM) and scanning electron microscopy (SEM) to characterize the micromorphological features of the pollen. Light microscopy was used to examine the anatomical characteristics of the transverse sections of petioles prepared via microtomy. The statistical analysis was performed on the quantitative measurements of anatomical and palynological features. The maximum polar axis 52.95µm was noted in Salvia moorcroftiana and minimum 15.6µm in Cardaria draba. The exine thickness was maximum 4.5µm in Isatis minima and minimum 1.3µm in Crotalaria medicaginea. The largest petiole length 4995.4µm was observed in Otostegia limbate and minimum 261.2µm in Sisymbrium altissimum. Maximum length of vascular bundles 211.25µm was observed in Caragana ambigua, and minimum 34.5µm in Cardaria chalepense. Reticulate, coarsely reticulate, scabrate exine, polygonal and amorphous lumen (regular or irregular shapes), the Number, Position, and Character (NPC) of aperture was N₃P₄C₃, and petiole shapes sulcate, flat, oval, or circular with blunt or acute wings, vascular bundles collateral closed, collateral open, bi-collateral, or hadrocentric, arrangements of 1, 1+2, numerous, and trichomes unicellular, uniseriate, and multiseriate were the significant diagnostic features for pollen morphology and petiole anatomy in Brassicaceae. The distinguished palynological and petiole anatomical characters for Fabaceae were exine psilate, verrucate, macroreticulate, microreticulate, reticulate, N₃P₄C₅, Amb peritreme, and goniotreme, polar view (triangular obtuse convex, circular, triangular obtuse concave, triangular obtuse convex to straight, circular to elliptic), equatorial view (rectangular obtuse convex, oval, elliptic truncate, quadrangular, rhombic, circular), shapes subprolate, prolate spheroidal, oblate spheroidal, rarely prolate pollen, vascular bundles amphicribral, collateral closed, collateral open, and bicollateral, the number of vascular bundles 1, 1+2, 2, 3, 9, collenchyma angular, lacunar, and lamellar. Significant variations in pollen apertures (tricolpate, tricolporate, hexacolpate, hexa to multi syncolpate), exine (reticulate, macroreticulate, microrteiculate, gemmate, foveolate, gemmate verrucate, perforate, non-perforate), aperture membrane (varruacte, scabrate,

gemmate, psilate) amb (ptychotreme, peritreme, goniotreme), shape (oblate, spherical, prolate spheroidal, oblate spheroidal, sub-prolate, sub-oblate), formulas (N₆P₄C₅, N₃-₆P₄C₃, N₄-₆P₄C₃, N₄-₆P₄C₃, N₃-₆P₄C₃), petiole shape (oval, flat, sulcate, and round), collenchyma (lacunar, angular, annular, and lamellar), vascular bundles (collateral closed, collateral open, amphicribal) were observed in Lamiaceous species. The taxa of each family were taxonomically differentiated by the Principal Component Analysis (PCA), dendrogram, correlation, box-jatter plot, and normal probability distribution plot. The petiole anatomical and pollen micromorphological characteristics were employed as markers to develop the taxonomic keys for the delimitation of the examined dicot flora. The present findings may provide the baseline for correct identification of the flora of Northern Baluchistan using palyno-anatomical features in order to use for future studies at global perspectives.

Chapter 1 Introduction

1.1 Dicot Phytodiversity Around the Globe

Angiosperm, that contains two leaves, or cotyledons, in the embryo of seed is considered a dicotyledon. Around 175,000 species of dicots have been identified from different areas of the world. The majority of typical garden plants, including shrubs, trees, and broad-leafed flowers like hollyhocks, magnolias, roses, and geraniums, are dicots (Kubitzki et al., 2013). Although there are some exceptions, dicots usually have flower parts (petals, stamens, pistils, and sepals) arranged in multiples of four or five. Most leaves have net veins, which implies that the structures that carry nutrients and water have a pattern resembling a mesh. The vessels in the stems are typically positioned in a continuous ring close to the stem surface (Paterson et al., 2004).

Approximately half of all dicots exhibits a yearly rise in stem diameter due to the cambium, a layer of cells that continue to divide throughout the plant's life, producing new tissue. Taproots and stem branching are common. The stomates are typically dispersed and oriented differently on the surfaces of the leaves (Raikhel and Minorsky, 2001). The pollen grains, except the more primitive families, usually have three germinal furrows or pores (tricolpate condition). In dicots vascular tissue forms a ring around the stem. Eudicots can have woody tissues or be herbaceous. Two-thirds of all flowering plants are eudicots. Some important dicot families are Brassicaceae, Lamiaceae, Boraginaceae, Fabaceae (Beans), Asteraceae (Sunflowers), Papaveraceae (Poppies), Cucurbitaceae (Squash), Fagaceae (Oaks), Rosaceae (Roses) (Kubitzki et al., 2013).

Dicotyledons are significant for several reasons. The food that both humans and animals eat is one of the primary contributions to human life. Among the main food groups that are produced from dicotyledons and are sources of nutrition are pulses, grains, legumes, nuts, fruits, vegetables, berries, tubers, and green leafy vegetables. Plant nuts and seeds are sources of oil. Pulses are a rich source of protein. Iron is abundant in several foods, including brinjal. Carrots are the source of Vitamin A, while vegetables like cabbage, cauliflower, and citrus fruits contain the essential Vitamin C (Raikhel and Minorsky, 2001).

Dicotyledon plants are important to humans not only for food but also for their wood. Timber is utilized for buildings, accessories, equipment, furniture, and transportation. Dicots have made numerous significant contributions to science and medicine. Plants are the source of therapeutic substances used in Ayurvedic, Homoeopathic, and Herbal medicine, as well as Allopathy (Paterson et al., 2004). A significant portion of human, technical, scientific, and pharmaceutical advancements can be attributed to dicots. Dicot herbs were also used to treat a wide range of ailments, such as cancer, skin disorders, joint pain, and heart problems. Important dicots such as *Berberis lycium, Ajuga bracteosa, Saussurea lapa,* and *Jurinea dolomiaea* are all extremely threatened (Bibi et al., 2015).

1.2 Phytodiversity of Dicot Flora: Present-Day Research

Plant scientists have been trying to find a precise method for classifying and identifying plants. Plant morphology remained the most valuable tool in phylogenetic trees (Khan et al., 2021). The anatomy of plants has proven to be particularly useful in distinguishing between various species and in classifying plants. The anatomical studies resulted in the categorization of various families including Papaveraceae and Capparaceae (Ahmad et al., 2022). The characteristics, including vascularisation, sclarification, cell layers, cavities, and cell diameter, including epidermis, parenchyma, collenchyma, sclerenchyma, chlorenchyma, and pith, have been successfully employed in taxonomy and evolution. The application of palynological investigations have been increased in plant taxonomy since the invention of high-resolution scanning microscopes. Pollen studies have clarified the placement of several species, for example in the genus Phyrma. The palynological features such as size, symmetry, apertures, and exine sculpturing have been used in taxonomy (Taia, 2005). Anatomy, palynology, cladistic analysis, ecotaxonomy, chemotaxonomy and serology, karyomorphology, seed morphology, phylogeny, paleobotany, and embryology are the most current trends in plant taxonomy (Khan et al., 2021).

1.2.1 Palynology

Palynology is the scientific study of pollen and spores. Palynomorphs encompass all microfossils, such as spores and pollen grains. Despite contributing to a variety of systematics studies, palynological research assisted in the identification of species via palynomorph examinations (Kailas et al., 2016; Perveen et al., 2004). The palyno-morphological investigation utilizing various microscopic techniques was carried out as an aid to morphological studies and as a crucial tool for plant taxonomists in the classification of species (Kailas et al., 2017). Scanning Electron Microscopy (SEM) has been employed to examine differences between species based on exine ornamentation, apertures, etc (Ragho et al., 2020). In recent years, the use of SEM has established significant approaches in the micro-morphological examinations of pollen (Khan et al., 2021). SEM has greatly visualized the pollen surface because of its high resolution, which provides a comprehensive view of the ultrastructure and permits micromorphological variations that were not practicable with light microscopy. Many studies have examined the pollen morphology of the Brassicaceae family, and all of them have demonstrated the importance of pollen morphology in comprehending the taxonomic status of the family (Kailas et al., 2016).

The term "palynology" originated from the Greek word "Palynein," which means flour or dust (Kayani et al., 2019). According to Halbritter et al. (2018), Europalynous pollens are heterogeneous pollens that differ from other pollens in terms of size, shape, aperture, and exine ornamentation (Kailas et al., 2020). The study of pollen using scanning electron microscopy has also led to the development of innovative terms for defining pollen ornamentation, statistical techniques for pollen sculpture, and ultimately a computational examination of the exine (Qureshi et al., 2019).

1.2.2 Anatomy

Anatomy is one of the important areas of plant research. Anatomy is essential in providing a link between several important fields of modern plant sciences when conducting taxonomic research. Some organs in plants are less affected by environmental influences and are highly significant in systematics (Barthlott, 1981). Comparative plant epidermal studies have shown to be reliable in taxonomy and systematics (Ogunkunle and Oladele, 2008). The significance of anatomical characteristics for taxonomy has been highlighted by Naik and Nigrude (1981), Adedeji (2004), and Metcalfe and Chalk (1950, 1979). These characters help in plant identification and classification when paired with other traits.

The anatomical characteristics of vegetative parts are of great importance (Bahadur et al., 2020). When distinguishing plants, different comparative anatomical characteristics were frequently employed in angiosperms to determine their taxonomic levels and their relationships with other taxa. (Song and Hong, 2018; Stuessy, 2009). From a taxonomic and diagnostic point, comparative anatomical examinations of the petiole have been proven effective at various levels for classifications (Talip et al., 2017). Taxonomy has progressively utilized anatomical approaches in recent years (Ozcan and Eminagaoglu, 2014). The anatomy of petioles has been researched concerning the fossil genus *Heleophyton* (Jehanzeb et al., 2020).

Plant anatomy is important to plant taxonomy. The objective is to develop a categorization system for plants that systematically lists all of the differences and similarities (Okeke et al., 2015). Adedeji (2004) has highlighted the taxonomic significance of anatomical features, which, when paired with other characters, are useful for plant identification and classification. One notable characteristic is the petiole anatomical features, which were used to differentiate plants that belong to different species, genera, and families and are significant for the identification and classification of many plant families (Metcalfe and Chalk, 1979). Furthermore, some authors have emphasized that there is actual taxonomic importance to the arrangement of vascular bundles in distinct petiole parts (Ekeke and Ogazie, 2020).

The petiole's central vascular bundle played a significant role in identifying plants. In the petiole of R. discoid, there were fewer vascular bundles than at the base of the leaf (Matias et al., 2007). According to Song and Hong (2018), the petiole vascular bundles in *M. caerulescens* were delimited by the pericycle, comprising a pair of layers of lignified cells. For taxonomic investigations within the tribes, some anatomical traits, such as cuticles. pericyclic fiber patterns, vascular patterns, trichomes, and crystals provide important details. The evolutionary importance of wood anatomy has drawn more inferences. Cell kinds, vessel elements, length and width, types of perforation plates, thickness, and pitting of the lateral wall were the taxonomically important traits (Matias et al., 2007).

Carlquist (1996) worked on the anatomy of the Lamiaceae, sympetalous families, Cucurbitaceae, and Chloranthaceae, in addition to the Aristolochiaceae, Sabiaceae, Caryophylaceae, Rananculaceae, Berberidaceae, Menispermaceac, Resedaceae, Portulaceaceae, and the genera *Rivina* and *Petiveria* of Caryophyllales. They all have far more extensive taxonomy than many other families. They found that anatomy can help with the taxonomy and phylogeny of the studied taxa. Baas et al. (1982) explored the anatomy of the Dicotyledons and their use in the taxonomy of angiosperms and highlighted its significance. Recently anatomical characteristics have been used in the taxonomy (Agbagwa and Ndukwu, 2004; Kharazian, 2007) such as

the distinctions between genera and species were made based on the petiole's structure (Olowokudejo, 1987; Shaheen, 2007; Eric et al., 2007). In the Lamiaceae family, the petiole's anatomical structures played a significant role (Metcalfe and Chalk, 1972).

1.3 Dicot Phytodiversity in Pakistan

A flora is a collection of all plant species that are found growing in a certain area. The earth's surface is not evenly covered with plants, and each geographic zone has its specific plant species that are not found in other regions. Floristic surveys are helpful in precisely identifying plant species, enabling their methodical and scientific use. The identification of local flora is important in addition to providing a description of the place, as it can identify specific species found there and provide details about their occurrence, growing season, and distinctive qualities. Additionally, it can be used to detect new species and draw attention to how local vegetation is affected by climatic variables like drought and overgrazing (Ali, 2008). There are currently 414,000 flowering plants in the world, more than 200 families, and about 6000 flowering plant species known to exist in Pakistan. The northern and western highlands of Pakistan are home to over 80% of the country's endemic flowering plants (Ali and Qaiser, 1986). Floristic phytodiversity offers a basis for accurate plant identification and sustainable plant use (Thakur et al., 2012).

In Pakistan, the majority of floristic research has been done in the province of Sindh. Chaudhary et al. (1981) conducted an initial floristic survey of Sindh's Thar Desert. From the research region, 122 species of dicots were reported. According to Rajput et al. (1991), 40 dicot plant species from 23 families in the Thar Desert are used as medicinal herbs to treat a variety of illnesses. Bhatti et al. (2001) carried out a study for the botanical survey of the Nara desert, which is located in the northeastern region of the larger Thar Desert. A total of 149 plant species from 110 genera and 42 families were identified. Qureshi (2004) presented floristic expertise and incorporated numerous floral aspects from the same region. A few other books have also been published by the Nara Desert authors (Qureshi, 2009). The floristic composition of Gorakh hill (Khirthar range) was reported by Perveen and Hussain (2007). Out of 62 genera and 34 families, they identified 74 species. Ansari et al. (1993) created a Floristic List of the District of Khairpur. Their work served as an inventory. From the Potohar range, the published

data is scarce regarding dicot phytodiveristy. Furthermore, there is a huge gap, that requires research to update and digitize the entire flora of the country.

1.4 Dicot Phytodiversity: Systematics Research Trends in Pakistan

The higher-level systematic study of dicot Phyto diversity, particularly the interrelationships of tribes, genera, and species, has been the main focus of research conducted in Pakistan. These investigations have revealed evolutionary processes of dicot phytodiversity by determining their morphology, seed chemistry, and chromosome number. These studies helped reconstruct and realign the placements of several tribes in the taxonomic classification scheme that Bentham and Hooker in 1865 had originally established (Shah et al., 2018). According to Akhtar et al. (2021), one of the key methods for differentiating between closely related taxa is a palynological and anatomical study (Albrecht-Buehler, 1994). The concurrent reduction in nonmolecular cell biological investigations has left a gap between the ability to study biology at a lower classification level.

Pollen morphology provided information on the structural characteristics and was widely used in plant taxonomy (Holt et al., 2014). It is beneficial for discrimination as well as identification and categorization of taxa at species and generic levels, and it may also be utilized as a key for taxonomic traits (Mildenhall et al., 2006). Exine sculpture diversity can be used as an aid in the separation of closely related species. Both qualitative and quantitative pollen characteristics can be used to differentiate between taxa at a specific level (Khan et al., 2020). Several important studies on the pollen of various families were carried out by Erdtman (1952), Barth (1964), Barth et al., (1975). These studies showed an extensive variety in pollen morphological characters of Fabaceous species, emphasizing the importance of pollen for identifying different species or groups, as well as aiding in the resolution of problematic taxa in the family (Ahmad et al., 2023).

Petioles anatomical characters played an important role in taxonomic investigations and in studying biodiversity as it helped in the identification of plant species of an area (Muhammad et al., 2006). Anatomical features can help in the separation of morphologically similar plants. Akhtar et al. (2022) conducted a study on the Western Himalayan region's Asteraceae family's petiole anatomy. They discovered that the primary diagnostic anatomical characteristics that aided in the identification of

plants at the species level were petiole anatomical traits, such as cell morphologies, petiole form, pith, and trichomes. Researchers have examined the petiole anatomy of plants from a variety of plant groups and floristic zones. Petiole anatomy has been studied in several plant families, including the Crucifereae (Gorovoy et al., 2011), Asteraceae (Akhtar et al., 2022), Cucurbitaceae (Aguoru and Okoli, 2012), Rubiaceae (Kocsis and Borhidi, 2003), Lamiaceae (Jehanzeb et al., 2020), and Euphorbiaceae (Tadavi and Bhadane, 2014), and Rutaceae (Ferreira et al., 2022).

Perveen et al. (2004) carried out extensive research on the pollen morphology of the family Brassicaceae in Pakistan. The Pollen morphology of the family Brassicaceae genera *Arabidopsis*, and *Alyssum* were explored in several ecoregions of Pakistan (Khan, 2004). Since the flora of Baluchistan (44% by land) has not been studied, there is still a huge gap in available knowledge of the pollen morphology of the Brassicaceae family (Umber et al., 2022).

1.5 Brassicaceae, Fabaceae, Lamiaceae

Brassicaceae (mustard family) is dicot group, with 338 genera and 3709 species. It has a monophyletic lineage (Al-Shehbaz, 2012). Around the globe, it is abundant in the Saharo-Sindian, Mediterranean, and Irano-Turanian regions (Hedge, 1976). There are 250 species and 92 genera of Brassicaceae in Pakistan. The Brassicaceae family contains some important species that produce oil. Analytical, palynological, and seed morphological traits analyses aided in the characterization and identification of complex species within the Brassicaceae family (Amina et al., 2020). When morphological data was insufficient, micromorphological and anatomical characters assisted in determining the taxonomical location of the species (Yigit, 2016). Diverse vegetative anatomical traits aid in taxonomic classification and identification by providing boundaries (Olowokudejo, 1987). According to their relatedness, ambiguous taxa were grouped using morphological trait analysis (Amina et al., 2019).

Petiole anatomical analyses of the showed divergence among Brassicaceous species. Its shape varied, ranging from rectangular to half-round (Gorovoy et al., 2011) or subcircular with wings on either side. The vascular bundle might be oval or round, the conductive tissues were distributed collaterally, and the number of parenchyma rows outside the phloem were two to four. The tribe Alysseae had flat, sulcate, or round petiole morphologies. According to Karaismailoğlu (2020), there were 1 (*Berteroa*

mutabilis) to 9 (*Alyssum strictum*) VBs, with varying numbers of lobes. Studies of the presence or absence of several features in petiole anatomical analysis, such as pith, collenchyma, chlorenchyma, epidermis, and its surface, mesophyll types, were diagnostic in the identification of species in the Brassicaceae family (Qader, 2018). In plant systematics, To precisely define species, taxonomists employ morphology, anatomy, and palynology, among other disciplines (Hameed et al., 2022; Jehanzeb et al., 2020; Shah et al., 2019; Ullah et al., 2021).

The Fabaceae (Leguminosae) family, also commonly termed as pea or bean family, contains approximately 770 genera and 19500 species (Beech et al., 2017). After Asteraceae and Orchidaceae, it constitutes the third-largest angiosperm family concerning diversity and ranks second in the context of revenue to agriculture. It is also recognized as the most represented family in the Neotropics and Africa's tropical rainforests and arid woods (Lattar et al., 2020). Taxonomically, Fabaceae has been subdivided into different subfamilies such as Caesalpinioideae (Mimosoideae), Faboideae (Papilionoideae), Duperquetioideae, Dialioideae, Detarioideae and Cercidoideae (Gomes et al., 2018). Worldwide subfamilies Faboideae (Papilonoideae) and Mimosoideae account for around 9.4% of the eudicot population (Uzma et al., 2012). The diverse family Fabaceae contains predominantly perennial as well as annual herbs, shrubs, and trees that are identifiable by their typical legume (fruit), a diagnostic character of Fabaceae, besides their compound stipulated leaves (Christenhusz et al., 2016).

Members of the Fabaceae family typically exhibit xerophytic characteristics. Their root system predominantly consists of a taproot that often branches extensively. The stem is primarily herbaceous or woody, erect in growth habit, and may possess climbing capabilities facilitated by tendrils. Leaves within this family are characterized as simple, pinnately compound trifoliate, or palmate in arrangement, always positioned alternately, and typically feature leafy stipules. The inflorescence configuration is typically racemose, occasionally solitary (Lashin, 2006). Flowers in Fabaceae are perigynous, displaying zygomorphic symmetry, being bisexual, irregular in shape, and exhibiting complete floral structures. Legumes of the Fabaceae family may either be dehiscent or indehiscent, and they commonly display marginal placentation. Seeds may be present with or without endosperm. The fruit type is typically a legume or pod. Pollen grains in Fabaceae are largely uniform, primarily characterized by radial

symmetry, isopolarity, tricolporate apertures, and a prolate shape. Their surface ornamentation typically takes the form of a reticulate, perforate, and regular pattern (Lashin, 2006).

Fabaceae family is considered cosmopolitan because to the large number of species, which are mostly found in tropical climates. It is however most likely to occur in dry woods of America and Africa, while certain varieties of the family are also present in tropical rainforests (Bruneau et al., 2008). They are abundant in Pakistan's temperate, sub-temperate, grassland, and timber grassland habitats, as well as subtropical locations (Ghafoor, 2002). Plants of the Fabaceae family are widely distributed in dry grasslands. In Pakistan, this family holds the third position among flowering plants with 104 genera and 514 species (Jahan et al., 1994). Many plants of the Fabaceae subfamily are significant in agriculture and food, including *Phaseolus* spp. (beans), *Medicago sativa* L. (alfalfa), *Glycine max* L. (soybean), *Cicer arietinum* L. (chickpeas), *Pisum saivum* L. (pea) etc. *Glycyrrhiza glabra* L., *Crotolaria albida* Heyne ex Roth, *Mucuna pruriens* var. *utilis* are medicinal plants that have been used to treat a variety of disorders for years. Few species of this family, for instance, *Lathyrus odoratus* L., *Butea frondosa* (Lam) Taub, *Lupinus hirsutus* L. are ornamental plants of Fabaceae (Wojciechowski et al., 2004; Rahman & Parvin, 2014).

The Lamiaceae is called the mint family one of the biggest families of plants on earth. Mint family representatives are prevalent in temperate warm and climate areas of the world. The mint family is one of the families present widespread in the world. This family comprises about 3000 species and 200 genera. It is recognized by 53 genera and 360 species present in Central Asia (Yusupova, & Baratjon, 2022). The largest genera reported are *Nepeta* (200), *Salvia* (900) *Hyptis* (280), *Coleus* (325), *Thymus* (220), *Teucrium* (250), *Scutellaria* (360), *Plectranthus* (300), and *Clerodendrum* was once contain about genus 400 species (Venkateshappa and Sreenath, 2013), but in year of 2010, it had been reported to about 15 genera (Yuan et al., 2010).

The mint family is frequently common in Mediterranean countries with the fact that many of them release essential oils in maximum amounts which enables them to survive in warm seasons of summer Rama Rao et al. (2015). It is almost cosmopolitan in spreading and is used in culinary, medicinal plants, and as a vegetable all over the world (Naghibi et al., 2022). Traditionally, this family has been considered closely

associated with the Verbenaceae (Venkateshappa & Sreenath, 2013). In the 1990s, the studies of phylogeny recommended that many genera classified in the Verbenaceae related to the Lamiaceae (Cantino et al., 1992: Wagstaff et al., 1989). This family member inhabits approximately all climatic conditions. In biochemical studies, mint is characterized by the occurrence of essential oils, contain medicinal properties and have been utilized in the pharmaceutical, perfume industry and cosmetics (Sharma and Bhadange, 2013).

The Lamiaceae medicinal plants have great importance in medicinal, sociocultural, and spiritual use in tribal and rural people. About 70% to 80% of family used by the global population for their therapeutic and medicinal effects (Venkateshappa and Sreenath, 2013). Many family members are widely cultivated, for aromatic qualities as their cultivation is easy. As well also grown for their decorative and edible leaves, and some are grown for food purposes and foliage such as *Coleus* (Raja, 2012). The members are a great source of biologically active compounds containing saponins, aromatic essential oils, organic acids, and tannins, the family consists of medicinal plants that, have a lot of medicinal usages having antispasmodic, sedative, tonic, diuretic, antifungal, anti-inflammatory and antimicrobial and antiseptic properties (Rao et al., 2015; Sharma and Bhadange, 2013; Rai et al., 2013).

1.6 Northern-Baluchistan Pakistan

Baluchistan's boundaries are located at 24° north latitude and 60° east longitude. The province makes up 347190 km², or 44%, of the country's total land area (Provincial Census Report, 1998). It extends from the Gomal River in the northeast to the Arabian Sea in the south, and from the borders of Iran and Afghanistan in the west and northwest to the Sulaiman Mountains and Kirthar Hills in the east. Baluchistan can be divided into two distinct regions. (i) To the northeast, a long range of rocky hills is positioned between Afghanistan and the Indus plains. This area is surrounded by the Sulaiman range in the east and the Toba-Kakar range in the northwest. (ii) The Sulaiman main range, which gradually drops in height from north to south, is the primary geographical feature in northeastern Baluchistan. Baluchistan is blessed with a diverse range of flora and wildlife due to its unique ecological conditions (Anonymous, 1998).

Plate 1. Toba kakari, the southern offshoot of the sulaiman mountains, in Zhob, Baluchistan

There are 33 districts in the province, with Quetta, Pishin, Killa Abdullah, Zhob, Loralai, Harnai, Sibi, Ziarat, and Musakhel making up the northern Baluchistan district. Pakistan's hotspots for indigenous and medicinal plants include the mountains of Northern Baluchistan (Bibi et al., 2015). With more than 44% of its total land area, Baluchistan is Pakistan's largest province. Climate range from arid to semiarid, with tropical coastal regions and mild transitional zones to the north. The principal ecological zones include desert, dry temperate forest, subtropical forest, tropical dry mixed deciduous woodland, and mangrove forest. As a result of its different biological conditions, Baluchistan is fortunate to have a wide range of plants and animals (Ahmed et al., 2020; Saifullah et al., 1997).

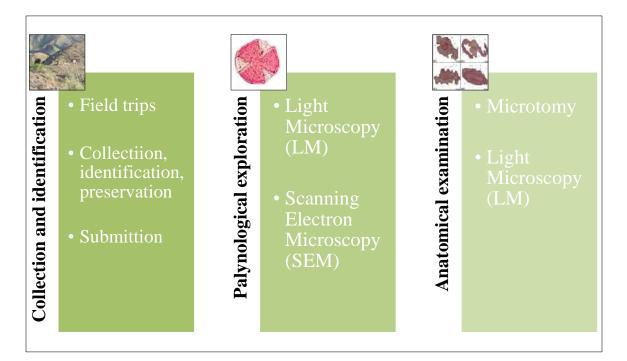
Plate 2. Arid-semid arid lands of Loralai, Baluchistan

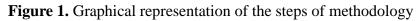
1.6.1 Dicot Phytodiversity of Northern Baluchistan, Pakistan

The important dicot families of Baluchistan are Asteraceae, Fabaceae, Lamiaceae, Boraginaceae, Polygonaceae, Chenopodiaceae, Ranunculaceae, Berberidaceae, Brassicaceae, Rosaceae, Mimosaceae, Zygophyllaceae, Euphorbiaceae, Malvaceae, and Myrtaceae (Rafay et al., 2013). These families included many important genera such as Astragalus, Berberis, Launaea, Heliotropium, Alyssum, Lepidium, Nepeta, Salvia, Artemisia, Peganum, Indigofera, Tephrosia, Euphorbia, Malva, Tamarix, Lappula, Withania, Plantago, Cucumis, Centaurea, Cousinia, Jurinea, and *Pulicaria*. Few studies have been conducted in Baluchistan in the past by different scholars, such as from Quetta city, Hingol National Park, Barkhan, Derabugti, Makran, Musakhel, Barkhan, Kalat, Khuzdar, and southern Baluchistan (Shah et al., 2006; Bibi et al., 2015; Qureshi, 2012; Manzoor et al., 2013). However, none of these studies have included a report on anatomical and palynological determination. *Periploca aphylla*, Tecoma undulata, Prosopis spicigera, Withania coagulans, Taverniera nummularia, and Tamarix gallica are found in low-lying locations with water availability. In addition, a large number of medicinal plants are also found in Balochistan; some of these are: *Calotropis procera*, *Cynodon dactylon*, *Malvastrum coromandelianum*, *Melilotus alba*, and *Portulaca oleracea* L. (Baloch et al., 2000).

1.7 Background and Justification of the Present Study

Baluchistan is blessed with a diversity of wild plants, but modern systematic studies (e.g., anatomical studies, pollen atlases) are scarce in the literature. The flora of northern Baluchistan is not documented in palynological or anatomical records (Ali, 2008). The morphology of monocot and dicot species in flora and literature is incomplete due to insufficient characters. Keeping in mind, additional characteristics including palynology, anatomy, and seed morphology are required for accurate identification. Plant species have been classified using both the morphological traits of the pollen and the micromorphological traits of the pollen grains (Talebi et al., 2012). Additionally, pollen features such as exine sculpturing, Amb, NPC, aperture details, polarity, symmetry, polar region, apocolpium, and spine details can be useful in the taxonomic studies of dicot families of Baluchistan at both generic and infra-specific ranks because they exhibit certain variations not covered in previous research (Taia, 2005). There are currently no reports on the petiole anatomy of the different plant families in the area under study. The distinction of similarities and differences between the various taxa of the dicot flora based on the petiolar anatomical features, including new insights regarding vascularization and histology (Taia, 2005) is significant taxonomically. According to Akinnubi et al. (2013), petiole anatomy is significant since it may be used to identify and categorize plants as well as track the effects of the environment.


The macromorphological and micromorphological characteristics of the pollen have been used in the taxonomy of plant species (Talebi et al., 2012). Baluchistan is home to a vast array of wild plants. This study intended to collect data on the dicot flora of the Baluchistan region for further investigation. Due to the lack of characteristics, necessary for a more reliable identification of plants belonging to various families, the morphology of the species described in the literature and flora is incomplete. The detailed morphological characteristics is significant in the precise identification. Anatomical approaches are valuable in taxonomic research because they provide insights into petiole anatomy and aid in plant identification and classification (Akinnubi et al., 2013). Since the petiole anatomy of many plant species in the study area has not been investigated before, this research is significant for the systematics of the flora of the area. The research is important in the precise identification of the similarities and variances of the dicots under examination by comparing different species of collected families based on petiole anatomical features, providing new insights on vascularization and sclerification.


1.8 Objectives

- Collection of dicotyleden flora of Baluchistan throughout the flowering and seedbearing stages. Identification using renowned taxonomists, herbariums, and internet flora, and then deposited at the Herbarium of Pakistan, (ISL) QAU.
- Selection of leading families based on the abundance of species.
- Using LM and SEM to investigate the palynological, petiole/leaf base anatomical aspects of selected families of wild species from Northern Baluchistan.
- Applying palynological, and anatomical features to construct taxonomic keys, dendrograms, correlation and loading plots, and PCA to show relatedness and differences across the taxa of selected families.
- Characterization of palynological and anatomical traits as significant taxonomic aids for identifying, differentiating, and defining wild dicotyledon flora from Northern Baluchistan.

Chapter 2 Material and Methods

The study was conducted in the Plant Systematics and Biodiversity Lab, Department of Plant Sciences, and Herbarium of Pakistan Islamabad (ISL), Quaid-i-Azam University, Islamabad. The selected flora of Northern Baluchistan, Pakistan with special emphasis on palynology and anatomy was the subject of the study. The research was divided into two main sections of systematics studies: (i) Petiole anatomy (LM) and (ii) Palynology (LM and SEM) (qualitative and quantitative).

2.1. Northern Baluchistan: An Overview

This research work was carried out across the different areas of Northern Baluchistan Pakistan. Baluchistan is located at 60 degrees east longitude and 24 degrees north latitude. The area of Baluchistan is 44% (347190 km²) of the total land area of Pakistan (Provincial Census Report, 1998). It stretches from the borders of Iran and Afghanistan in the west, northwest to the Sulaiman Mountains, Kirthar Hills in the east, and from the Gomal River in the northeast to the Arabian Sea in the south. Baluchistan can be separated into two distinct areas. (i) Long ridges of rugged hills stretch to the northeast, sandwiched between Afghanistan and the plains of the Indus. (ii) The Toba-Kakar range in the northwest and the Sulaiman range in the east. The main topographical

feature in northeastern Baluchistan is the Sulaiman main range. Baluchistan is blessed with a variety of flora and wildlife (Anonymous, 1998). Northern Baluchistan include Quetta, Pishin, Killa Abdullah, Zhob, Loralai, Harnai, Sibi, and Ziarat (Bibi et al., 2015). Less than 8 inches (20 cm) of rain falls in Baluchistan each year; in the northeast, it rises to around 15 inches (38 cm), and in the northwest, it drops to less than 3 inches (7.6 cm). Due to western disturbances, most of the rain falls, throughout the winter. The summer monsoon is significant in the northeast only. The coastal areas experiences mild summer temperatures, little precipitation, and a constant sea wind (Jan et al., 2021).

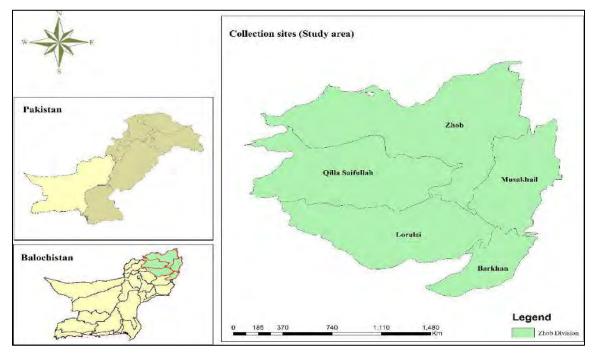
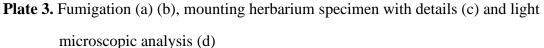



Figure 2. Map of Northern Baluchistan representing the study sites

2.2. Plant specimens: Collection and Preservation

Field trips were carried out from March 2022 to May 2023 to collect specimens from different phytogeographical regions of Northern Baluchistan. Followed the 'Manual of All Taxa Biodiversity Inventories and Monitoring's approved and detailed standard field protocols' during the collection (Eymann et al., 2010). More than two specimens of most species were collected. For a few rare species, only one or two specimens were collected. The mounting and preservation of the specimens were done following the standard protocols of Eymann et al. (2010), and Judd et al. (2002). Quetta, Loralai, Ziarat, Zhob, Sanjavi, Pathankot, Qilla-saifullah, Hanna Lake, Pathankot, Chiltan National Park, and Otmanzai were the study sites. Fresh plant specimens were collected with both floral and vegetative parts. Plant specimens were dried, compressed, and then placed in blotting sheets and newspapers. A digital camera (Sony, DSC W800) was used to take field photographs of plants and the collection sites. The field notes included comprehensive information about the plants, such as the collection date, voucher number, place, flowering period, geographic coordinates, habitat, and habit. After the collection, the specimens were preserved using ethanol (50 mL absolute) and mercuric chloride before being fumigated.

The plant specimens were identified through comparison and with the help of herbarium specimens from the Quaid-e-Azam University Herbarium (QAU), Islamabad, Pakistan, and other related flora, such as China (Chen and Craven, 2007), North America (Torrey and Grey, 1969), and Pakistan (Nasir and Ali, 1971; Stewart et al., 1972).

Furthermore, the plants were authenticated by expert services of well-known taxonomists Professor Dr. Mushtaq Ahmad (Quaid-e-Azam University) and Dr. Amir Sultan (Director National Herbarium NARC). The Plant List (TPL) and the International Plant Name Index (IPNI) were used to confirm the accepted names of plants. Specimens were then mounted and annotated with the location, date, and name of the collector on standard herbarium sheets. Each specimen was given an accession number and submitted to the Herbarium of Pakistan (ISL) QAU.

2.3 Anatomical Study of Dicot Flora

2.3.1 Tissue Preparation

a) Section Cutting

The petioles were treated for four-hours with a 10% saline formal solution (the solution being changed twice). Subsequently, the samples were treated for one hour with varying concentrations of methanol (70%, 80%, 90%, 100%, and 100% again). Removed the methanol (dealcoholization) with two applications of xylol (one hour each). The samples were then impregnated with wax twice for one hour at 58–62 $^{\circ}$ C. The samples were embedded by section cutting using microtomy at 3–5-micron thickness. The melting of the prepared slides was completed at 62 $^{\circ}$ C (Akhtar et al., 2022).

b) Staining

The samples were deparaffinized twice for five minutes using xylol. Then rehydrated by applying methanol at 100%, 90%, and 70% concentrations for one minute each. Then washed for one minute with tap water. Haematoxylin, a basic stain, was applied for five minutes and then rinsed with tap water for one minute. After that, the slides were dipped in 1% acid alcohol and washed again for one minute with tap water. The slides were then treated with 1% eosin for 30–60 seconds and washed for one minute with tap water for cleaning. For the final dehydration the slides were treated with 70%, 80%, 90%, 100%, and 100% methanol for 30 seconds. The xylol was applied for one minute to clean the prepared slides (two treatments). The sections were mounted on the

slides using Dibutylphthalate Polystyrene Xylene (DPX). Labelled the slides and used light microscopy to examine them (Akhtar et al., 2022).

2.3.2 Light Microscopy (LM) Visualization of Petiole Anatomy

Under light microscope, petiole anatomical were recorded for Brassicaceous, Fabaceous and Lamiaceous species. Using a calibrated eyepiece, the qualitative and quantitative characters were observed (Arnold, 1973). The description of traits was accomplished by Metcalfe and Chalk (1979); Metcalfe (1973); Heneidak and Shaheen (2007); Chen et al. (2008). The length and width of different cell types, cell layers, and other characteristics were noted. Table 2.1 provided the key for the anatomical parameters that were observed.

2.4 Palynological Examinations of dicots in Northern Baluchistan

2.4.1 Light Microscopic Observations of Pollen

The procedure described by Moore et al. (1991) was used for pollen extraction, as well as the chemical preparation methods. The anthers were separated from the flowers and the pollen morphology was visualized under light microscopy. Before the acetolysis process, the pollen grains were boiled in 10% KOH for around 6–10 minutes to help in aperture opening and to assess the aperture features (Reitsma, 1969). With certain modifications, pollen slides were prepared using the standard acetolysis method (Erdtman, 1969) (Zafar et al., 2007). On a glass slide, anthers were placed using needles and forceps. Using a glass rod, smashed the anthers on the glass slides after adding two or three drops of acetic acid for 4–8 minutes to expose the sculpturing patterns and clean the outer pollen surface. The debris was removed with the help of a needle. The samples were dyed and mounted with glycerine jelly. The pollen samples were sealed using the coverslip, and transparent nail polish, and then labeled the slides. The terminologies for the characteristics of pollen were noted provided by Punt et al. (2007) and Grant-Downton (2009).

The prepared slides were observed under LM at different resolutions. The photos were taken with a Leica Light Microscope (Model 1000) equipped with a digital camera, the Infinity 1-5 C-MEL (Canada). For the qualitative and quantitative palynological characters, twenty readings were noted. The terms used to describe the pollen characters were taken from Grant-Downton (2009) and Punt et al. (2007). Many palynological characteristics, including pollen fertility, polar axis, P/E ratio, exine thickness, pore length, pore width, colpus length, and width were observed. The findings were tabulated to provide the maximum, and minimum values along with mean \pm standard error.

2.4.2 Scanning Electron Microscopy (SEM) of Pollen

The methodology of Bahadur et al. (2020) was used for the scanning electron microscopy (SEM). Using a needle, two drops of acetic acid were applied to the anthers to remove the debris. A double-coated Scotch tape was used to attach the samples to the counterfoil. An additional gold palladium sputter coating was applied to the specimen. Micromorphological features of the pollen were analyzed under SEM at the University of Peshawar, Pakistan's Central Resource Library (CRL), Department of Physics. A Polaroid P/N 655 film that was placed in the SEM was used to capture the photos of the pollen. Both qualitative and quantitative characters were examined using a standard check sheet (for diagnostic features). Table 2.2 provides the key for the features that have been observed.

P/E ratio (Quantitative analysis)

Ratio of P/E was determined using the given formula below.

P/E × 100

where E is the equatorial diameter and P is the polar axis. The size and shape of pollen were examined based on the P/E ratio (Hussain et al., 2019). The largest axis, which may be the highest value of the polar axis or the equatorial diameter, was used to assign the size of the pollen. The nomenclature used for the pollen size and shape classes was that of Erdtman (1963). Erdtman (1963) classified the grains into six size classes, ranging from very small (<10 μ m) to giant (>200 μ m), and eight shape classes.

Viability

Using the provided formula, the vitality of the pollen was calculated quantitatively.

F/F+S*100

F = Fertility

S = Sterility

The number of fertile pollens was represented by F, and the amount of sterile pollen by S.

Number Position Characters (NPC) Classification

The NPC-System classification was used for the name and formula of the pollen, based on its apertures, Number (N-whether single or two or many), Position (P-polar: distal or proximal; global; meridional), and Characters (C-circular or elongated). In this method, keys for the classification of pollen grains have been developed using the term "treme," which denoted an opening. Words like mono, di, and tri were used to describe the number of apertures. The positions of apertures were labeled as cata, ana, zono, and so on. A variety of aperture types, including porate, colpate, colporate, and pororate, were noted in the character (Erdtman, 1969).

2.5 Statistical Analysis

Plant systematics relies heavily on the evaluation of both qualitative and quantitative information in the distinction of species, genera, and tribes. The study employed SPSS-16 to determine the mean and standard values for the quantitative palynological and anatomical parameters. PAST (version 4.11), NCSS (20230), and Origin (2023) were utilized to investigate principal component analysis (PCA), dendrogram Un-weighted Pair Group Clustering Method (UPGMA), and correlation (p<0.05) (Iamonico et al., 2023). The general distribution and an analysis of the mean differences are presented in the box plot.

2.6 Taxonomic Key

A dichotomous taxonomic key that aids in species identification was developed using qualitative palynological and anatomical features.

Table 1. Key for the observed anatomical traits

S/	Overlite time tracits	Quantitative traits		
No	Qualitative traits	Quantitative traits		
1	Wings of petiole	Petiole size		
2	Groove in the upper surface	Epidermal cell number of layers		
3	Trichomes	Epidermal cell size		
4	Shape / outline (culm, petiole)	Collenchyma cell number of layers		
5	Cuticle	Collenchyma cell size		
6	Epidermal cell shape	Chlorenchyma cell number of layers		
7	Subepidermal ring of collenchyma	Chlorenchyma cell size		
8	Collenchyma cell shape	Parenchyma cell number of layers		
9	Chlorenchyma cell shape	Parenchyma cell size		
10	Parenchyma cell shape	Sclerenchyma cell number of layers		
11	Sclerenchyma cell shape, presence	Sclerenchyma cell size		
	in hypodermis			
12	Vascular bundle arrangement	Vascular bundle number		
13	Xylem vessel shape	Xylem vessel size		
14	Phloem shape	Phloem cell size		
	Xylem and phloem parenchyma			
15	Sclerenchyma presence in vascular			
	bundles			

S /	Qualitative traits	Quantitative traits			
No	Quantative traits				
1	Symmetry	Polar axis			
2	Polarity	Equatorial diameter			
3	Unity	P/E			
4	Size class	Mesocolpium			
5	Shape class	Number of apertures			
6	Operculum	Polar width of colpi			
7	Polar view	Polar length of colpi			
8	Equatorial view	Equatorial length of colpi			
9	Exine sculpturing	Equatorial width of colpi			
10	Exine surface	Pore length			
11	Colpi apex	Viability			
12	Aperture membrane	Exine thickness			
13	Pore orientation				
14	Colpi apex				
15	Arrangement of apertures				
16	Lumen shape				
17	AMB				
18	NPC classification (Name and formula)				

Table 2. Key for the observed palynological characters

Plate 4. The study area Loralai is a range land region, with arid-semiarid weather

Plate 5. The picnic point Pathankot, a comparatively green area with specific flora in contrast to its district Loralai

Plate 6. The study area Sanjavi has a unique flora even in the highly stony soil

formations

Plate 7. View of Takht-e-Sulaiman mountains range in district Zhob, Baluchistan

Plate 8. Hazarganji Chiltan National Park is a national park in the Mastung District of western Baluchistan Province of Pakistan

Plate 9. Ziarat, Baluchistan. Some mature trees are thought to be 4,000 –5,000 years old, they are known as living fossils

Chapter 3 Results and Discussion

Section-I

Summary

The northern Baluchistan, Pakistan is blessed with diverse dicot flora. Phytogeographically, it is one of the important floristic regions on earth. Most of the flora of this area is used medicinally. Baluchistan is also home to many endemic plants. This research was carried out in different areas of northern Baluchistan, Pakistan. These areas were explored for the first time for palynological and anatomical studies of dicots.

- In the first part of this section, the details about the collected 107 dicots, belonging to three families, Brassicaceae, Fabaceae, and Lamiaceae are provided. The checklist for each family is given, including the accepted botanical name with author citation, accession number, the areas from where they were collected, their collector's name, habitat, and elevation.
- The second part of this section includes the field photographs of the collected dicots of three selected families. Botanical names are given along with some information on each plant noted during the field.

S. No	Name of Species	Accession No	Locality	Habitat	Elevation (m)	Collector Name
1.	Aethionema carneum (Banks & Soland.) B.Fedtsch.	133144 (ISL) QAU	Loralai	Sandy soil	(III) 850	Wajia Noor
2.	Alyssum desertorum Stapf	133145(ISL) QAU	Loralai	Gravely soil	928	Wajia Noor
3.	Alyssum turkestanicum Regel & Schmalh.	133170(ISL) QAU	Loralai	Stony ground	1555	Wajia Noor
4.	Brassica oleraceavar. capitata Linn	133146(ISL) QAU	Loralai	Agriculture field	1153	Numan
5.	Capsella bursa-pastoris (L.) Medik.	133147(ISL) QAU	Loralai	Sandy soil	1302	Wajia Noor
6.	Cardaria chalepensis (Linn.) HandMazz.	133148(ISL) QAU	Loralai	Moist sandy	1433	Wajia Noor
7.	Cardaria draba (L.) Desv.	133149(ISL) QAU	Loralai	Muddy soil	1050	Wajia Noor
8.	Chorispora tenella (Pall.) DC.	133171(ISL) QAU	Ziarat	Stony hill	2123	Wajia Noor
9.	<i>Clypeola aspera</i> Turrill	133172(ISL) QAU	Loralai	Stony ground	1586	Numan
10.	<i>Coincya tournefortii</i> Gouan) Alcaraz, T.E.Díaz,	133150(ISL) QAU	Loralai	Gravely soil	1208	Numan
11.	Conringia orientalis (L.) Andrz.	133151(ISL) QAU	Loralai	Soil crevics	1563	Wajia Noor
12.	Descurainia sophia (Linn.)	133152(ISL) QAU	Zhob	Gravely soil	1497	Wajia Noor
13.	Dilophia salsa Thomson	133173(ISL) QAU	Loralai	Saline	870	Wajia Noor
14.	Diplotaxis griffithii (Hook. f. & Thomson) Boiss.	133174(ISL) QAU	Nushki	Gravelly soil	944	Wajia Noor
15.	Diplotaxis harra (Forssk.) Boiss.	133153(ISL) QAU	Qilla Saifullah	Mountain slope	1280	Wajia Noor
16.	Draba hystrix Hook. f. & Thomson	133175(ISL) QAU	Chaman	Silt	1408	Wajia Noor
17.	Eruca sativa Mill.	133154(ISL) QAU	Zhob	Gravely soil	1366	Wajia Noor

Table 3. The collected taxa of Brassicaceae from Northern Baluchistan, Pakistan.

18. Farsetia hamiltonii Royle	133155(ISL) QAU	Zhob	Sandy soil	1421	Wajia Noor
19. Farsetia heliophila Bunge ex Coss	133156(ISL) QAU	Zhob	Gravely soil	1271	Wajia Noor
20. Goldbachia pendula Botsch.	133157(ISL) QAU	Zhob	Gravely soil	1213	Wajia Noor
21. Isatis minima Bunge	133176(ISL) QAU	Pishin	Sandy soil	1496	Sadia
22. Isatis stocksii Boiss.	133177(ISL) QAU	Loralai	Sandy soil	950	Sadia
23. Lepidium aucheri Boiss.	133158(ISL) QAU	Pathankot	Sandy soil	1301	Wajia Noor
24. Leptaleum filifolium DC.	133178(ISL) QAU	Quetta	Mountain slope	2126	Wajia Noor
25. Matthiola flavida Boiss.	133159(ISL) QAU	Zhob	Sandy soil	1130	Wajia Noor
26. Meniocus heterotrichus Hadač & Chrtek	133179(ISL) QAU	Chaman	Sandy clay	1326	Wajia Noor
27. Meniocus linifolius (Stephan ex Willd.) DC.	133160(ISL) QAU	Zhob	Gravely soil	1051	Wajia Noor
28. Nasturtium officinale W.T.Aiton	133161(ISL) QAU	Zhob	Mountain slope	1056	Wajia Noor
29. Notoceras bicorne (Aiton) Amo	133162(ISL) QAU	Loralai	Gravely soil	966	Wajia Noor
30. Physorrhynchus brahuicus Hooker f.	133163(ISL) QAU	Zhob	Gravely soil	988	Wajia Noor
31. Raphanus raphanistrum Linn.	133164(ISL) QAU	Zhob	Sandy soil	833	Wajia Noor
32. Sisymbrium altissimum Linn.	133165(ISL) QAU	Zhob	Gravely soil	761	Wajia Noor
33. Sisymbrium irio L.	133180(ISL) QAU	Ziarat	Stony soil	1788	Wajia
34. Strigosella africana (L.) Botsch.	133166(ISL) QAU	Shirani	Mountain slope	2128	Wajia Noor
35. Strigosella cabulica Boiss.	133167(ISL) QAU	Loralai	Aquatic	697	Wajia Noor
36. Strigosella intermedia (C.A. Mey) Botsch.	133168(ISL) QAU	Zhob	Sandy soil	1064	Wajia Noor
37. Tetracme stocksii Boiss.	133169(ISL) QAU	Loralai	Moist sandy	1525	Wajia Noor

S.No	Name of Species	Accession No	Locality	Habitat	Elevation (m)	Collector Name
1.	Alhagi maurorumMedik.	133182(ISL) QAU	Pishin	Sandy soil	1476	Wajia Noor
2.	Astragalus anisacanthus Boiss.	133183(ISL) QAU	Ziarat	Stony soil	1765	Wajia Noor
3.	Astragalus brahuicus Bunge	133184(ISL) QAU	Kalat	Gravely soil	1930	Sadia
4.	Astragalus crenatus Schult.	133185(ISL) QAU	Sanjavi	Saline marches	890	Wajia Noor
5.	Astragalus diphtherites Fenzl	133186(ISL) QAU	Ziarat	Stony soil	1765	Nauman
6.	Astragalus hemsleyi Aitchison & Baker ex Aitchison	133187(ISL) QAU	Ziarat	Stony soil	1765	Wajia Noor
7.	Astragalus hypoglottis Hook.	133188(ISL) QAU	Loralai	Moist sandy soil	1433	Wajia Noor
8.	Astragalus ophiocarpus Benth. ex Boiss.	133189(ISL) QAU	Quetta	Muddy soil	1532	Wajia Noor
9.	Astragalus oxyglottis Steven ex M. Bieb.	133190(ISL) QAU	Naushki	Stony	918	Wajia Noor
10.	Astragalus stocksii Benth. Ex Bunge	133191(ISL) QAU	Sanjavi	Muddy soil	980	Wajia Noor
11.	Astragalus subumbellatus Klotzsch	133192(ISL) QAU	Ziarat	Stony soil	1796	Wajia Noor
12.	Astragalus tribuloides Delile	133193(ISL) QAU	Loralai	Gravely soil	1208	Wajia Noor
13.	Astragalus hostilis Boiss.	133194(ISL) QAU	Loralai	Soil crevics	1563	Wajia Noor
14.	Astragalus purpurascens Bunge	133195(ISL) QAU	Ziarat	Stony soil	1796	Wajia Noor
15.	Caragana ambigua Stocks	133196(ISL) QAU	Zhob	Gravely soil	1515	Wajia Noor
16.	Crotalaria burhia BuchHam. ex Benth.	133197(ISL) QAU	Sibi	Clay	135	Wajia Noor
17.	Crotalaria medicaginea DC.	133198(ISL) QAU	Sibi	Clay	147	Wajia Noor

Table 4. The collected taxa of Fabaceae from Northern Baluchistan, Pakistan.

18.	Ebenus stellata Boiss.	133199(ISL) QAU	Zhob	Gravely soil	1527	Wajia Noor
19.	Indigofera cuneifolia Eckl. & Zeyh.	133200(ISL) QAU	Hazarganji	Mountain slope	2223	Wajia Noor
20.	Indigofera intricata Boiss.	133201(ISL) QAU	Hazarganji	Mountain slope	2223	Wajia Noor
21.	Lathyrus oleraceus Lam.	133202(ISL) QAU	Zhob	Gravely soil	1271	Wajia Noor
22.	Lotus corniculatus L.	133203(ISL) QAU	Zhob	Gravely soil	1213	Wajia Noor
23.	Lotus garcinii DC. ex Ser	133204(ISL) QAU	Pishin	Sandy soil	1496	Wajia Noor
24.	Medicago lupulina L.	133205(ISL) QAU	Loralai	Sandy soil	950	Wajia Noor
25.	Medicago polymorpha L.	133206 (ISL) QAU	Loralai	Sandy soil	1315	Wajia Noor
26.	Melilotus indicus (L.) All.	133207(ISL) QAU	Loralai	Sandy soil	1299	Wajia Noor
27.	Onobrychis cornuta (L.) Desv.	133208(ISL) QAU	Zhob	Sandy soil	1130	Wajia Noor
28.	Onobrychis dealbata Stocks	133209(ISL) QAU	Ziarat	Stony soil	1788	Wajia Noor
29.	<i>Onobrychis micrantha</i> Schrenk ex Fisch. & C.A. Mey.	133210(ISL) QAU	Ziarat	Stony soil	1696	Wajia Noor
30.	<i>Onobrychis tavernierifolia</i> Stocks ex Boiss.	133211(ISL) QAU	Ziarat	Stony soil	1766	Wajia Noor
31.	Sophora mollis Span.	133212(ISL) QAU	Sanjavi	Saline marches	876	Wajia Noor
32.	Taverniera glabra Boiss.	133213(ISL) QAU	Sherani	Clay soil	1671	Wajia Noor
33.	<i>Tephrosia uniflora subsp. Petrosa</i> (Blatt. & Hallb.) J. B. Gillett & Ali	133214(ISL) QAU	Hingol	Muddy, sandy soil	123	Wajia Noor
34.	Trigonella monantha C.A. Mey.	133215(ISL) QAU	Hazarganji	Gravely soil	761	Wajia Noor
35.	Vicia macrantha Jurtzev	133216(ISL) QAU	Loralai	Sandy, Gravely	838	Wajia Noor

S. No	Name of Species	Accession No	Locality	Habitat	Elevation (m)	Collector Name
1.	Ajuga alpina Vill.	133218 (ISL) QAU	Dhana Sar	Sandy, clay soil	1771	Wajia Noor
2.	Ajuga bracteosa Benth.	133219(ISL) QAU	Sherani	Sandy, clay soil	1571	Wajia Noor
3.	Clinopodium umbrosum (M.Bieb.) K.Koch	133220(ISL) QAU	Ziarat	Sandy soil	1799	Wajia Noor
4.	Eremostachys thyrsiflora Benth.	133221(ISL) QAU	Chaman	Silt	1408	Wajia Noor
5.	Eremostachys vicaryi Benth.	133222(ISL) QAU	Pishin	Sandy soil	1496	Wajia Noor
6.	Isodon rugosus (Wall.) Codd	133223(ISL) QAU	Quetta	Mountain slope	2090	Wajia Noor
7.	Lallemantia royleana (Benth.) Benth.	133224(ISL) QAU	Zhob	Gravely soil	1025	Wajia Noor
8.	Marrubium vulgare L.	133225(ISL) QAU	Sanjavi	Gravely	810	Wajia Noor
9.	<i>Micromeria biflora</i> (BuchHam. ex D. Don) Benth.	133226(ISL) QAU	Quetta	Sandy soil	1543	Wajia Noor
10.	Nepeta bracteata Benth.	133227(ISL) QAU	Zhob, Ziarat	Gravely sandy	1000-1850	Wajia Noor
11.	Nepeta cataria L.	133228(ISL) QAU	Ziarat	Gravely soil	1573	Wajia Noor
12.	Nepeta eriosphaera Rech. f. & Köie	133229(ISL) QAU	Quetta	Gravely soil	1583	Wajia Noor
13.	Nepeta glomerulosa Boiss.	133230(ISL) QAU	Quetta	Silt	1520	Wajia Noor
14.	Nepeta griffithii Hedge	133252(ISL) QAU	Barikot	Clay muddy	620	Wajia Nooi
15.	<i>Nepeta Hindostana</i> (B. Heyne ex Roth) Haines	133231(ISL) QAU	Quetta	Sandy soil	1490	Wajia Nooi
16.	Nepeta juncea Benth.	133232(ISL) QAU	Quetta	Sandy clay soil	1574	Wajia Noo

Table 5. The collected taxa of Lamiaceae from Northern Baluchistan, Pakistan.

17.	Nepeta praetervisa Rech. f.	133233(ISL) QAU	Loralai	Gravely soil	1604	Wajia Noor
18.	Ocimum africanum Lour.	133234(ISL) QAU	Quetta	Gravely soil	1540	Wajia Noor
19.	Origanum majorana L.	133235(ISL) QAU	Loralai	Sandy soil	1600	Wajia Noor
20.	Otostegia aucheri Boiss.	133236(ISL) QAU	Sanjavi	Sandy clay soil	1540	Wajia Noor
21.	Otostegia limbata (Benth.) Boiss.	133237(ISL) QAU	Dhana sar	Clay muddy	1790	Wajia Noor
22.	Phlomis stewartii Hook. f.	133238(ISL) QAU	Loralai	Sandy soil	1600	Wajia Noor
23.	Salvia cabulica Benth.	133239(ISL) QAU	Sherani	Clay and sandy	1720	Wajia Noor
24.	Salvia coccinea L.f.	133240(ISL) QAU	Ziarat	Sandy soil	1760	Wajia Noor
25.	Salvia leucantha Cav.	133241(ISL) QAU	Quetta	Sandy soil	1550	Wajia Noor
26.	Salvia macrosiphon Boiss.	133242(ISL) QAU	Ziarat	Sandy soil	1830	Wajia Noor
27.	Salvia moorcroftiana Wall. ex Benth.	133243(ISL) QAU	Sanjavi	Gravely soil	1445	Wajia Noor
28.	Salvia plebeia R.Br.	133244(ISL) QAU	Quetta	Stony soil	1590	Wajia Noor
29.	Salvia santolinifolia Boiss.	133245(ISL) QAU	Makran	Clay to muddy	1520	Wajia Noor
30.	Scutellaria linearis Benth.	133246(ISL) QAU	Loralai	Sandy, gravely	1405	Wajia Noor
31.	Stachys parviflora Benth.	133247(ISL) QAU	Sanjavi	Sandy soil	1590	Wajia Noor
32.	Teucrium scordium L.	133248(ISL) QAU	Ziarat	Sandy soil	1829	Wajia Noor
33.	Teucrium stocksianum Boiss.	133249(ISL) QAU	Sherani	Clay, sandy	1400, 1596	Wajia Noor
34.	Thymus linearis Benth.	133250(ISL) QAU	Ziarat	Sandy soil	1800	Wajia Noor
35.	Thymus linearis subsp. hedgei Jalas Benth.	133251(ISL) QAU	Ziarat	Sandy, gravely	1792	Wajia Noor

Plate 10. Field pictorial view (a) Aethionema *carneum* (b), (c) *Alyssum desertorum* (d) *Alyssum turkestanicum*

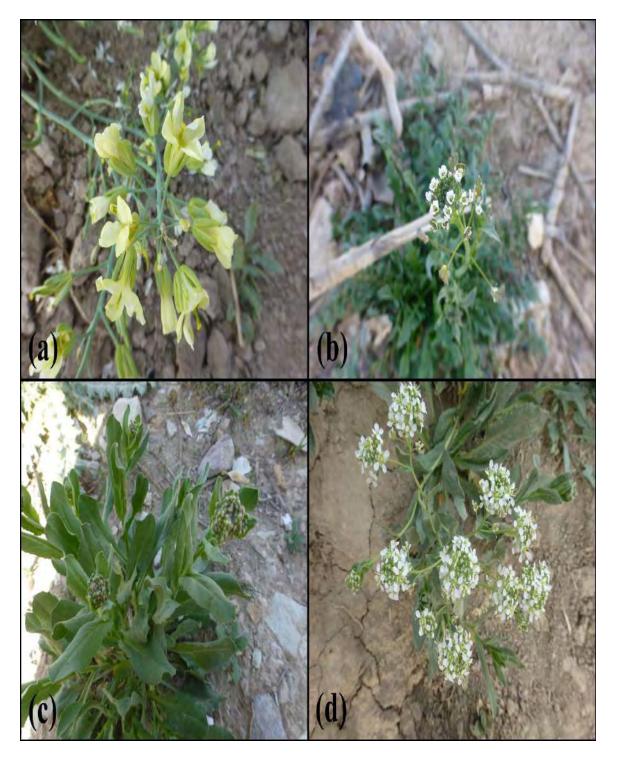


Plate 11. Field pictorial view (a) *Brassica oleracea*var (b)*Capsella bursa-pastoris* (c) *Cardaria chalepensis* (d) *Cardaria draba*

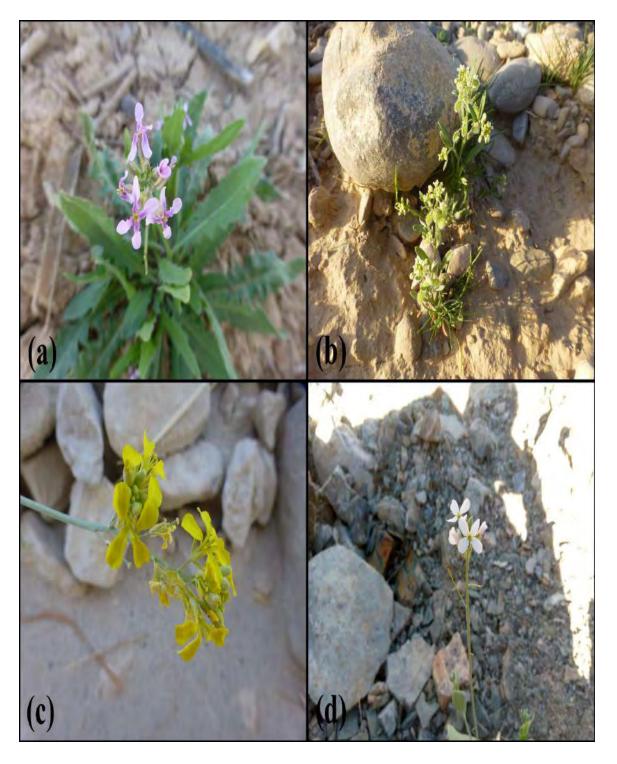


Plate 12. Field pictorial view (a) *Chorispora tenella* (b) *Clypeola aspera* (c) *Coincya tournefortii* (d) *Conringia orientalis*

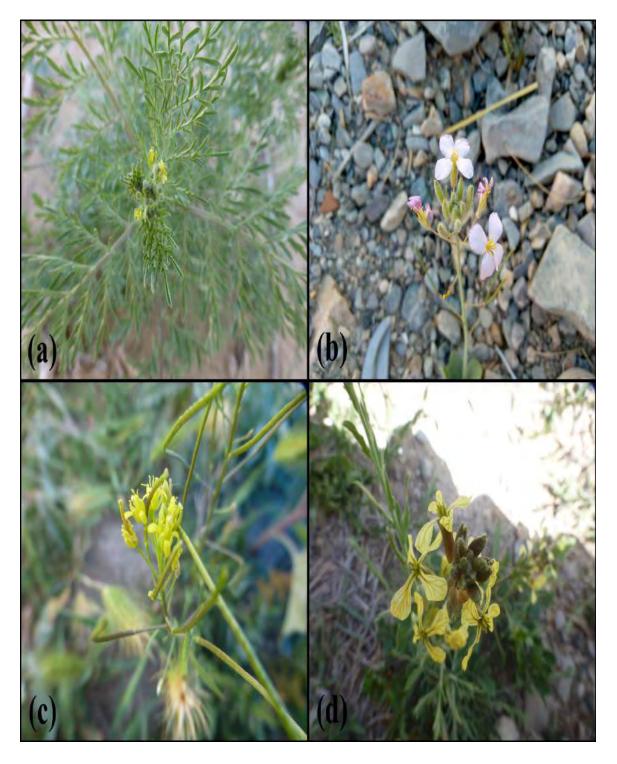


Plate 13. Field pictorial view (a) *Descurainia Sophia* (b) *Diplotaxis griffithii* (c) *Diplotaxis harra* (d) *Eruca sativa*

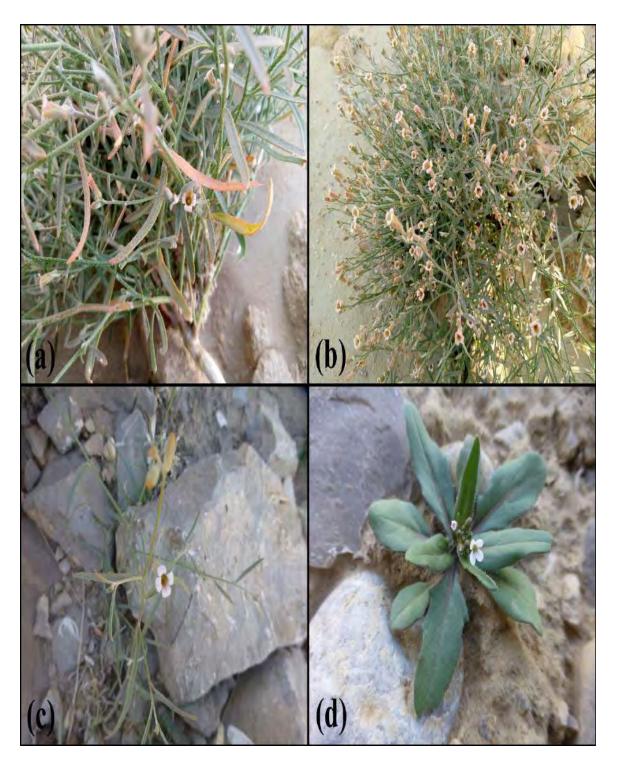


Plate 14. Field pictorial view (a,b) *Farsetia hamiltonii* (c) *Farsetia heliophila* (d) *Goldbachia pendula*

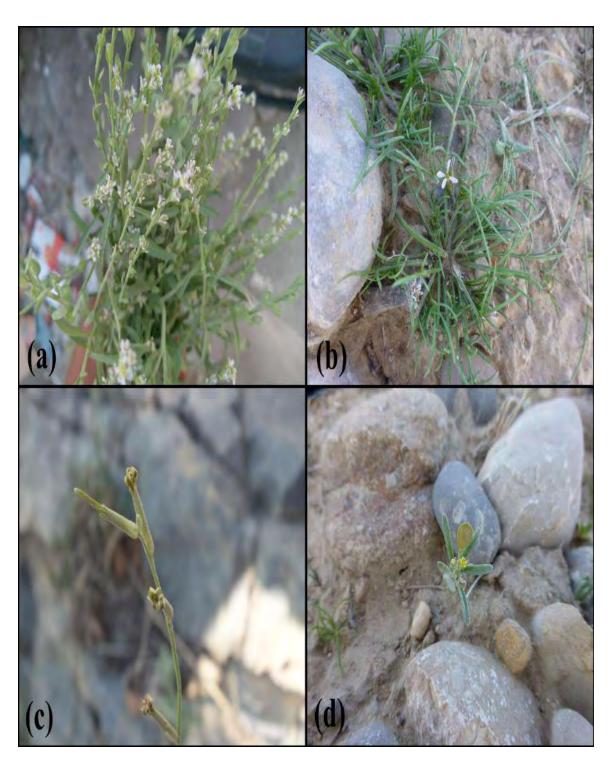


Plate 15. Field pictorial view (a) *Lepidium aucheri* (b) *Leptaleum filifolium* (c) *Matthiola flavida* (d) *Meniocus heterotrichus*

Plate 16. Field pictorial view (a) Nasturtium officinale (b) Notoceras bicorne (c) Raphanus raphanistrum (d) Sisymbrium altissimum

Plate 17. Field pictorial view (a) Sisymbrium irio (b) Strigosella africana (c) Strigosella cabulica (d) Strigosella intermedia

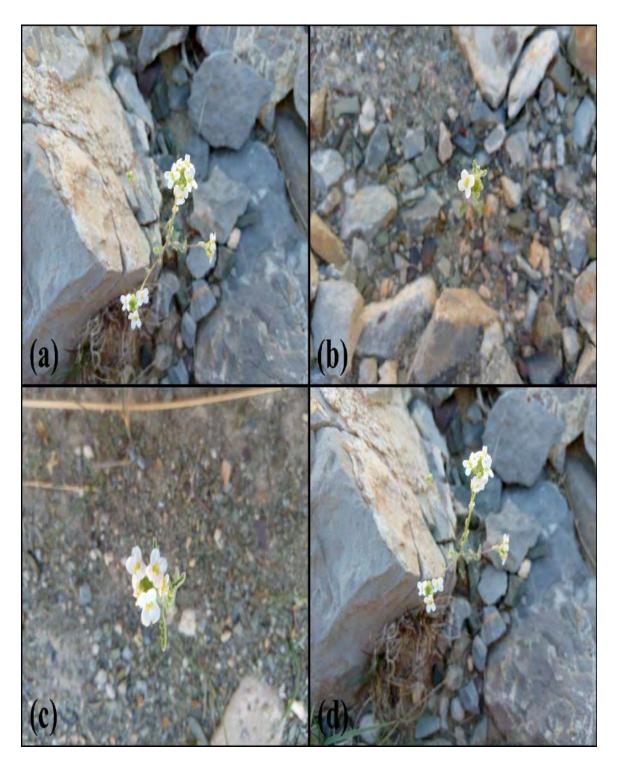


Plate 18. Field pictorial view (a), (b),(c),(d) Tetracme stocksii

Plate 19. Field pictorial view (a) *Astragalus anisacanthus* (b) *Astragalus crenatus* (c) *Astragalus hemsleyi* (d) *Astragalus hostilis*

Plate 20. Field pictorial view (a) Astragalus oxyglottis (b) Astragalus stocksii (c) Astragalus diphtherites (d) Astragalus subumbellatus

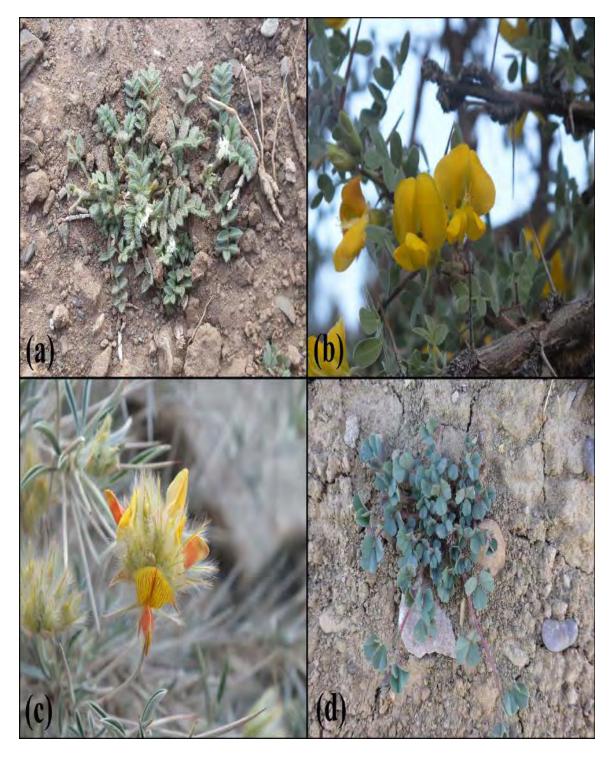


Plate 21. Field pictorial view (a) Astragalus tribuloides (b) Caragana ambigua (c) Ebenus stellata (d) Indigofera cuneifolia

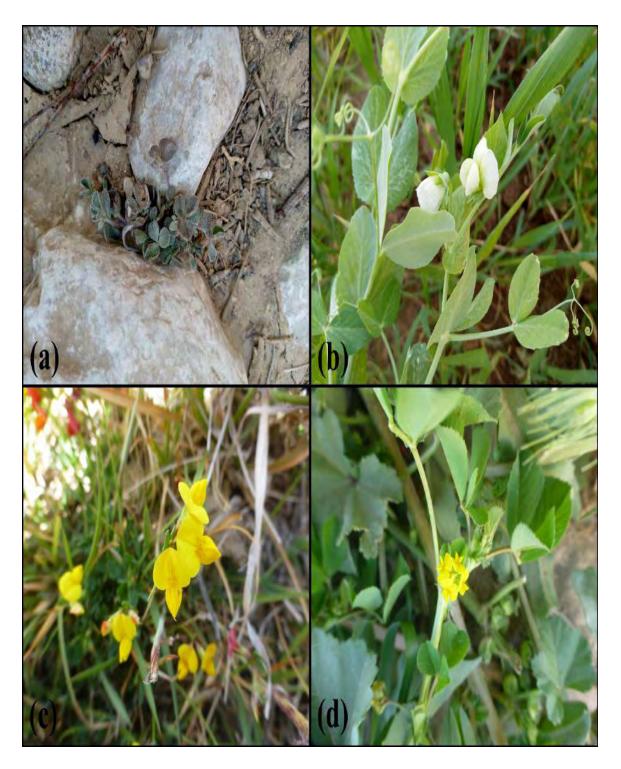


Plate 22. Field pictorial view (a) *Indigofera intricata* (b) *Lathyrus oleraceus* (c) *Lotus corniculatus* (d) *Medicago polymorpha*

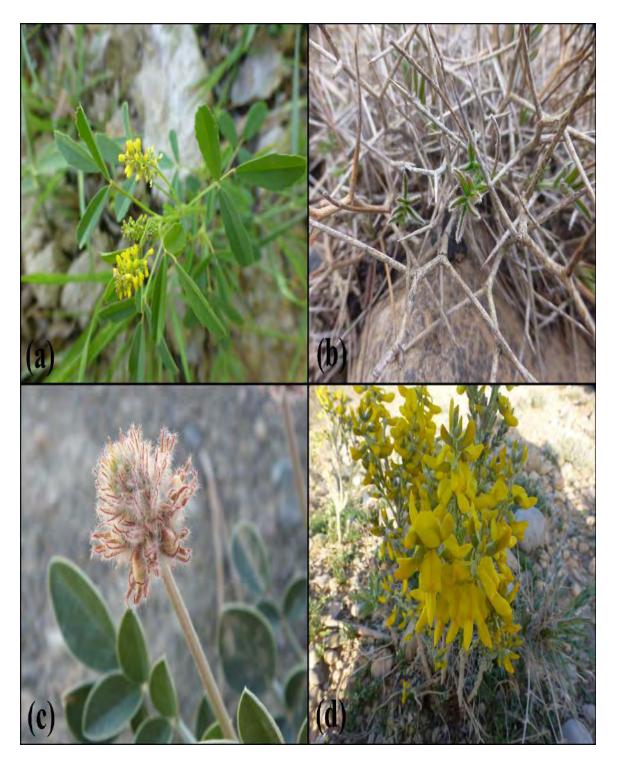


Plate 23. Field pictorial view (a) *Melilotus indicus* (b) *Onobrychis cornuta* (c) *Onobrychis tavernierifolia*; (d) *Sophora mollis*

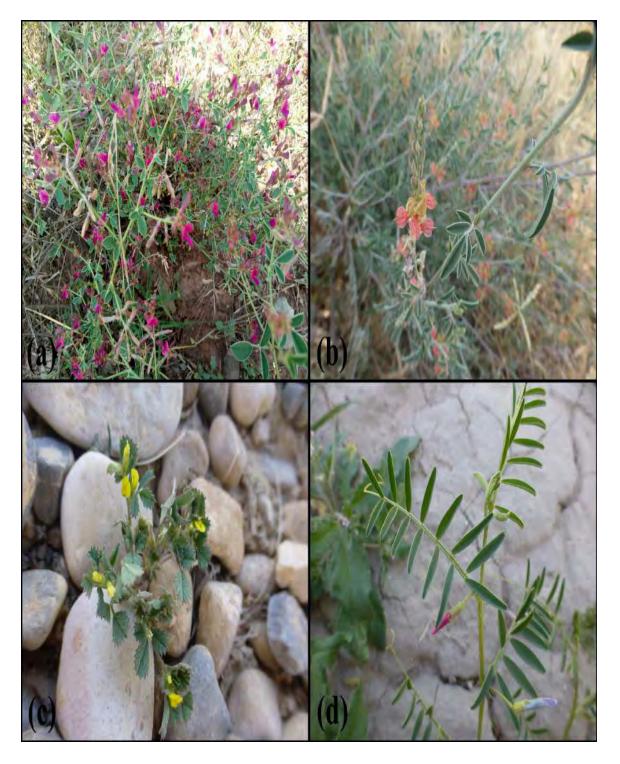


Plate 24. Field pictorial view (a) *Taverniera glabra* (b) *Tephrosia uniflora subsp. Petrosa* (c) Trigonella monantha (d) Vicia *macrantha*

Plate 25. Field pictorial view (a) *Ajuga bracteosa* (b),(c) Clinopodium umbrosum (d) *Eremostachys thyrsiflora*

Plate 26. Field pictorial view (a) *Eremostachys vicaryi* (b) *Isodon rugosus* (c) *Lallemantia royleana* (d) *Marrubium vulgare*

Plate 27. Field pictorial view (a) *Micromeria biflora* (b) *Nepeta bracteate* (c) *Nepeta griffithii* (d) *Nepeta Hindostana*

Plate 28. Field pictorial view (a) Nepeta praetervisa (b) Origanum majorana (c) Otostegia aucheri (d) Phlomis stewartii

Plate 29. Field pictorial view (a) Salvia cabulica (b) Salvia coccinea (c) Salvia leucantha(d) Salvia macrosiphon

Plate 30. Field pictorial view (a) Salvia moorcroftiana (b) Salvia plebeia (c) Salvia santolinifolia (d) Scutellaria linearis

Plate 31. Field pictorial view (a) *Stachys parviflora* (b) *Teucrium scordium* (c),(d) *Teucrium stocksianum*

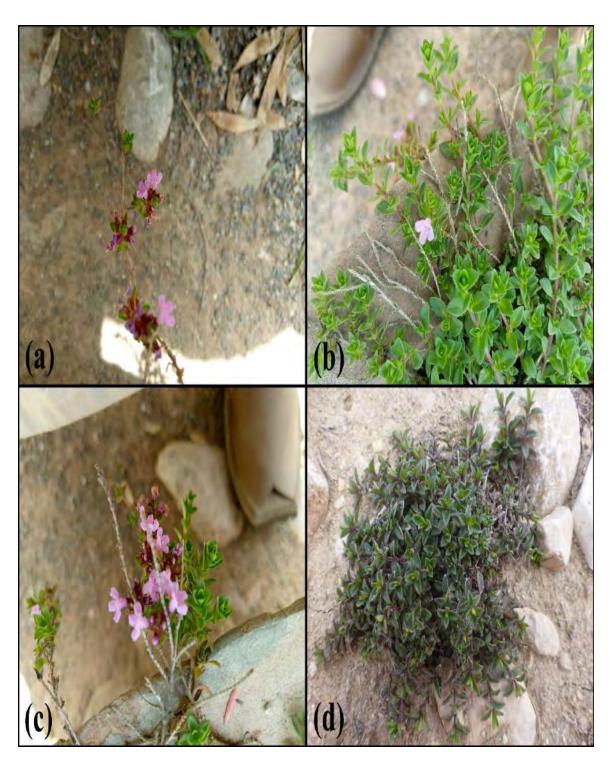


Plate 32. Field pictorial view (a), (b), (c) *Thymus linearis* (d) *Thymus linearis subsp.* hedgei Jalas

Section-II

Pollen micromorphology

Summary

The second section comprised the pollen micromorphology of dicots from Northern Baluchistan, Pakistan. The study included 35 Brassicaceous, 34 Fabaceous, and 31 Lamiaceous species. Light and scanning electron microscopy were used to analyze the qualitative and quantitative characteristics of pollen.

- Qualitative characters included: symmetry, polarity, unity, size, shape, number of apertures, aperture orientation, exine sculpturing, exine surface, lumen shape, aperture membrane, amb, NPC classification, and formula.
- Quantitative features were: Exine thickness, polar axis (length and width), equatorial diameter (length and width), equatorial width and length of colpi, polar width and length of colpi, mesocolpium, and viability.

The variations in the qualitative features were used to develop taxonomic keys that helped discriminate among the examined species of each family. The distinguished palynological attributes were exine sculpturing, shape, and aperture membrane. The multivariate analysis of the quantitative aspects was carried out by principal component analysis, hierarchal cluster analysis, and correlation plots.

3.1 Pollen Micromorphology of Brassicaceous Flora from Northern Baluchistan

3.1.1 Results and Discussion

The discipline of plant taxonomy gradually evolves from simple to complex (Ranjbar and Karami., 2023; Anjum et al., 2022). In the plant taxonomy, the incorporation of new trends such as seed micromorphology, palynology, petiole, and foliar anatomy proved to be helpful (Jabeen et al., 2023; Ameen et al., 2022). A precise, systematic method to identify the relationship between families, genera, and species levels remained a subject of research (Taia, 2005). Species placement within the tribe can be resolved using pollen characteristics. The Brassicaceous tribe, genus, and species were distinguished by differences in their exine ornamentation (Kownacki et al., 2015). This study documented an atlas of pollen from 35 Brassicaceous plants for the first time, including an endemic plant, *Draba hystrix*.

The observed qualitative characteristics were symmetry, polarity, pollen size, shape, aperture type and orientation, amb view, colpi, exine sculpturing, and lumen shape. Pollen features like shape, size, exine sculpturing, colpi, and lumen were found significant. Pollen characteristics provided additional palynomorphic keys for the separation of Brassicaceous species. The morphological details of the pollen of 35 species of Brassicaceae are summarized in Table 6-9 and illustrated in Plate 33-41. The examined taxa belong to 15 tribes, with the leading tribe; Brassiaceae, Alysseae and Euclidieae.

a) Unit, symmetry, polarity, shape, and size of the Brassicaceous taxa

The size of the pollen of the analyzed species (based on the P/E ratio) was small in 30 plants, and medium in 5, contributing 86% and 14% of the total studied species respectively. It is significant to consider the size and shape of the examined pollen when determining systematic affinities among various taxa. Similar findings were studied for size, shape and symmetry of the pollen of endemic taxa of the Andaman Islands (Kailas et al., 2018). The Brassicaceous taxa in this research were categorized as N₃P₄C₃, revealed that all species possessed three apertures (N₃), along the equatorial position (P₄), with aperture type 3-colpate (C₃) (Table 6) (Erdtman, 1960). All plants exhibited radial symmetry (plane passing through central axis of pollen and divides it into similar parts) and were isopolar (both planes are equal and equatorial plane divide the pollen in two equal halves) (Table 6). In this study the observed shapes of the pollen were oblate spheroidal (12 taxa), prolate spheroidal (8 taxa), subprolate (6 taxa), suboblate (5 taxa) and prolate (2 taxa) (Plate 33-41). In polar view the constriction of colpi resulted the appearance of pollen in lobate, triangular or round amb. In polar view the pollen were lobate in 18 species, round in 10 species and triangular in 7 taxa (Table 2).

The size of pollen played a significant role in the plant reproduction since it is important in the dispersal of flowering species (De Storme et al., 2013). Demirpolat (2022) reprted that the Aethionema membranaceum was separate species from Aethionema sancakense based on the large pollen size. The pollen size has been successfully employed in differentiating the varieties of *Brassica rapa*, *Brassica napus*, and Brassica juncea (Saha and Begum, 2020). Kownacki et al. (2015) also reprted oblatespheroidal, prolatespheroidal, subprolate and suboblate shapes of pollen in genus Clypeola (Brassicaceae) in Brassicaceae. Previously, Alyssum desertorum and Descurainia sophia were reported to be prolate to prolatespheroidal from other localities of Pakistan (Kownacki et al., 2015). In the present study, the pollen of Alyssum desertorum and Descurainia sophia were oblate spheroidal. These insights aided for docmenting changes that can be taken into consideration for taxonomic placement of problematic taxa as well as for determining any potential ecological consequences caused by the differences that have been documented. Amina et al. (2020), studied the pollen morphology of Brassicaceae via LM and SEM and reported prolate, and subprolate to prolate spheroidal pollen shapes in Brassicaceous species.

The polarity, symmetry, and unity were similar in all examined species. Pollen in all studied species were isopolar and radial, and monad. Kownacki et al. (2015), Pinar et al. (2009),Ceter and Tug (2009) documented Brassicaceous taxa with radial symmetry and isopolar polarity. The amb of pollen in polar view categorized the examined taxa into lobate, round and triangular types. Highest numbers of pollen in polar view were observed with lobate amb. Kownacki et al. (2015), reported the lobed and circular amb in Camelineae of Brasicaceae. Amb and polar axis were significant taxonomic parameters in the discrimination of endemic Noccaeae species of Brassicaceae (Atasagun, 2022). Previously, round and elliptical shapes were studied in species of the *Malcolmia* genus (Brassicaceae) (K1z1lpinar et al., 2012).

b) Exine sculpturing among the investigated Brassicaceous species

Reticulate sculpturing (resembling a net or network) was the main type of exine ornamentation in Brassicaceae. Three types of reticulation were visualized in this study. Reticulate, coarsely reticulate, and scabrate. Exine and other characters variations were proven to be useful both at generic and specific level (Amina et al., 2020). Simple reticulation was observed in 24 taxa. Similar observations were reported by Kownacki et al. (2015). Coarse reticulation (large and irregular) existed in 10 taxa and scabrate type of exine sculpturing was only observed in *Dilophia salsa*. The lumen shape in most taxa was either regular or irregular polygonal. The irregular amorphous lumen shape was also observed in some species such as *Eruca sativa* and *Strigosella intermedia*. Exine thickness ranged from a minimum of 1.85 µm in *Notoceras bicorne* and *Lepidium aucheri* to a maximum of 4.5 µm in *Isatis minima*. Exine in the genus *Strigosella* ranged from a minimum of 2.15 µm to a maximum of 2.95 µm. The thickness of the exine ranged from 1.95 µm to 3.1 µm in members of the genus *Meniocus*.

The ornamentation of pollen was significant in the taxonomy of species of the genus *Hesperis* (Brassicaceae) reported by Pinar et al. (2009). They reported a large and irregular (coarsely) reticulate type in 13 Brassicaceous taxa. Kownacki et al. (2015), reported 84% simple reticulate and 16% coarsely reticulate types in varieties of the genus *Brassica*. Previously the psilate type was observed in *Eruca vesicaria* from Esakhail, Pakistan (Kownacki et al., 2015). Lumen shapes ranged from regular polygonal (13 species), irregular polygonal (9 species), irregular amorphous (5 species). Based on the shape of the lumen, the pollen of the Brassicaceae family was separated into three types (Kownacki et al., 2015). Exine ornamentation and lumen shape separated the tribes Brassiceae, Conringieae, Isatideae, and Plagiolobeae. Further, *P. crenulata* belonging to the Zuvanda tribe was placed in the Plagioloba tribe, and *I. planisiliqua* that belongs to the tribe Conringia was moved to the Iljinskaea tribe, based on the changes in the surface micro-sculpturing (Ranjbar and Karami, 2023).

The variations in the shape of lumen shape indicated to be potential diagnostic feature analyzed by Ranjbar et al. (2023) in tribe Camelineae. Similarly taxonomic strength of differences in quantitative data of muri width and lumina diameter was reported by Kownacki et al. (2015). The LM and SEM study of the pollen showed diversity in the colpi orientations. The colpi orientation appeared as sunken concave (2), sunken convex (6), raised convex (12), and raised concave (15). Colpi orientation has been studied for its ability to help identify different Mimosaceous species and weed

pollen flora. Apices/ends of colpi were acute in 12 taxa and blunt in 11 taxa, assisting in the building of diagnostic taxonomic keys (Khan et al., 2021). Fused apices were noted in synocolpate pollen. Round apices were only present in 4 species. Separation of Brassicaceous taxa based on pollen morphological attributes and assessing the status of species in particular ecoregions by analyzing pollen viability were significant contributions made by the pollen atlas of Brassicaceous taxa from Northern Baluchistan.

c) Polar axis and Equatorial Diameter

A minimum mean value 15.6 μ m of polar axis was observed for *Cardaria draba* and a maximum 33.05 μ m in *Dilophia salsa*. Equatorial diameter varied from 14.75 μ m in *Diplotaxis griffithii* to 36.75 μ m in *Capsella bursa-pastoris* (Table 7).

d) Colpi and mesocolpium

The tricolpate aperture was observed in 26 species. Nine species have trisyncolpate (three colpi joining at the ends at the polar ends) aperture. The observed pollen in this research were placed in the first and second groups of classification as provided by Dogan et al. (1990). Similar findings were documented by Pinar et al. (2009) in the genus *Hesperis*. In genus *Malcolmia* all studied taxa exhibited tricolpate pollen grains (Kızılpınar et al., 2012). Brassicaceous taxa from central Punjab werfe reported with tricolpate aperture type (Kownacki et al., 2015; Amina et al., 2020). The length and width of colpi were measured both in polar and equatorial views. The minimum and maximum width of colpi in polar view were 2.45 µm Capsella bursapastoris and 7.65 µm Coincya tournefortii, respectively. The length of colpi in polar view ranged from a minimum of 4.05 µm Strigosella africana to a maximum of 12.15 µm Lepidium aucheri. The width of colpi in equatorial view was minimum in Strigosella intermedia 2.15 µm and maximum at 10.95 µm in Dilophia salsa. The length of the colpi ranged from 3.7 µm Meniocus linifolius to 20.55 µm Strigosella africana. The largest mean length of mesocolpium observed was in Dilophia salsa (18 μ m), while the minimum was in *Meniocus linifolius* (6.05 μ m).

e) Viability analysis

Maximum fertility of pollen was calculated for *Meniocus linifolius* (98.1%) and minimum in *Dilophia salsa* (80.1%).

f) Multivariate analysis

The variation in the quantitatively analysed features were analysed statistically. The quantitatively analysed characters were the polar axis, equatorial diameter, length, and width of colpi in polar and equatorial view, exine thickness, and mesocolpium. The principle component analysis (PCA) ordination was observed (Figure 9). The characters significantly differentiated the analysed species. Hierarchical cluster (UPGMA) was consctructed based on the quantitative characters of pollen (Figure 10). The cluster analysis results showed one major and three subclusters. There were three distinct clusters of six species in subclusters. Multiple variable subclusters were distinguished from major clusters. The majority of the variables were found to be positively correlated, with a small number of negatively linked features. Characters that were negatively associated were displayed red, and those that were positively correlated were blue in the plot. The polar axis and equatorial diameter were found to have a positive correlation 0.75. There was also a positive correlation between the length of colpi in the equatorial view and mesocolpium (Figure 11). In the polar view, however, there was a negative correlation between the width and length of the colpi -0.36 and the polar axis -0.32.

g) Systematic implications of current palynological findings in

Brassicaceae

There are taxonomically problematic taxa in the Brassicaceae. Palynological information is an additional source for identifying variations among Brassicaceous taxa, in addition to other systematic methods. Colpi orientation was raised and concave with round apices in the species of *Alyssum i.e.* in *Alyssum turkestanicum* and *Alyssum desertorum*. *Alyssum turkestanicum* and *Alyssum desertorum* have regular amorphous and irregular polygonal lumen shapes, respectively, which further distinguish the two species. *Cardaria* species possessed sunken colpi with concave orientation and acute apex (*Cardaria chalepensis*) and convex orientation and blunt end (*Cardaria draba*) types, along with polygonal lumen shape but with regular (*Cardaria chalepensis*) and irregular (*Cardaria draba*) types, providing a scientific approach in systematics. These palynological studies also served as the basis for characterizing species of the same genus i.e., *Diplotaxis, Isatis, Meniocus, Sisymbrium, Strigosella*. Endemic plant *Draba hystrix* pollen has been characterized as small, oblate spheroidal, tricolpate pollen with NPC formula N₃P₄C₃, raised and concave colpi orientation, blunt apices of colpi, amb triangular, having reticulate exine sculpturing with irregular amorphous lumen.

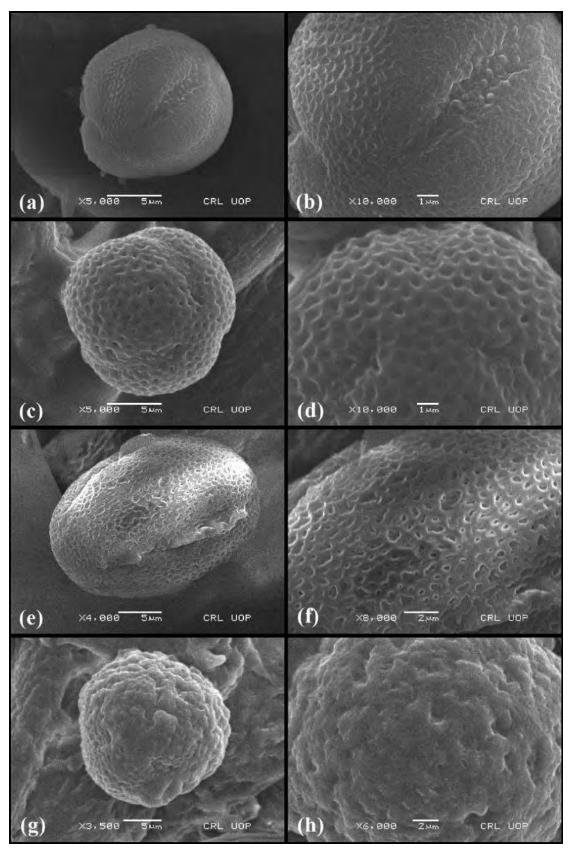


Plate 33. SEM micrographs of pollen (a),(b) *Aethionema carneum*, (c), (d) *Alyssum desertorum*, (e), (f) *Alyssum turkestanicum*, (g), (h) *Brassica oleracea*var. *capitata*

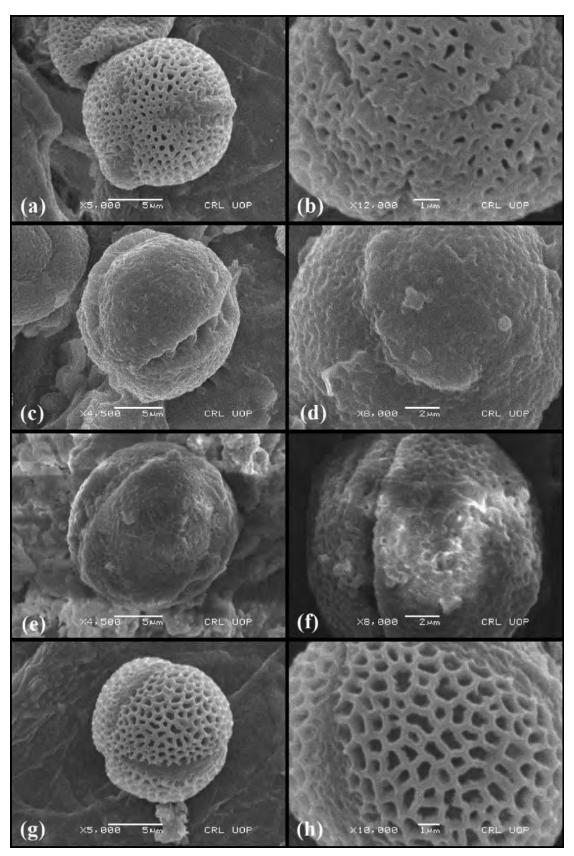


Plate 34. SEM micrographs of pollen (a),(b) *Capsella bursa-pastoris*, (c), (d) *Cardaria chalepensis*, (e), (f) *Cardaria draba*, (g), (h) *Chorispora tenella*

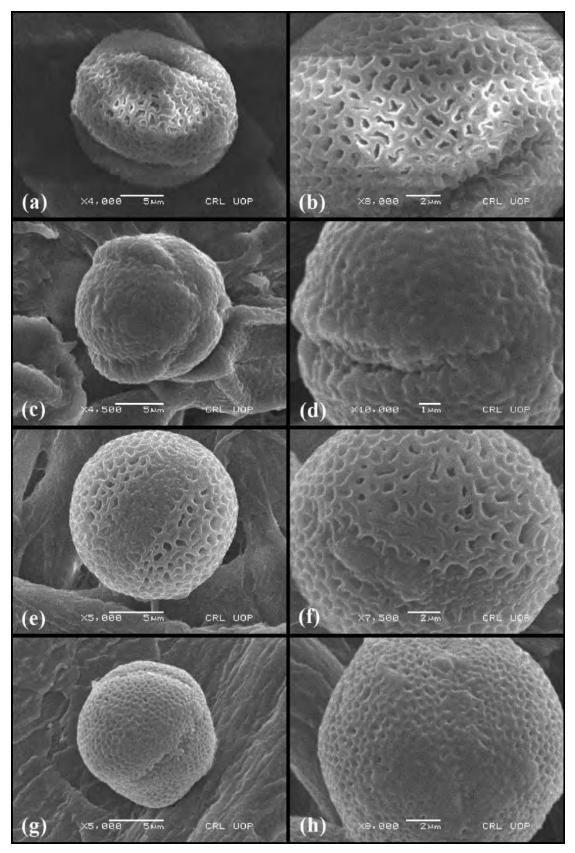
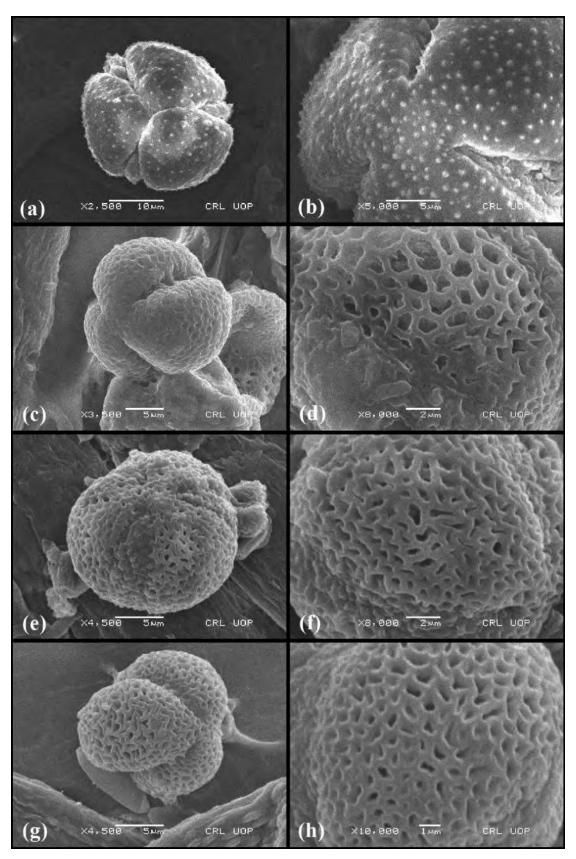



Plate 35. SEM micrographs of pollen (a),(b) *Clypeola aspera*, (c), (d) *Coincya tournefortii*, (e), (f) *Conringia orientalis*, (g), (h) *Descurainia sophia*

Plate 36. SEM micrographs of pollen (a),(b) *Dilophia salsa*, (c), (d) *Diplotaxis griffithii*, (e), (f) *Diplotaxis harra*, (g), (h) *Draba hystrix*

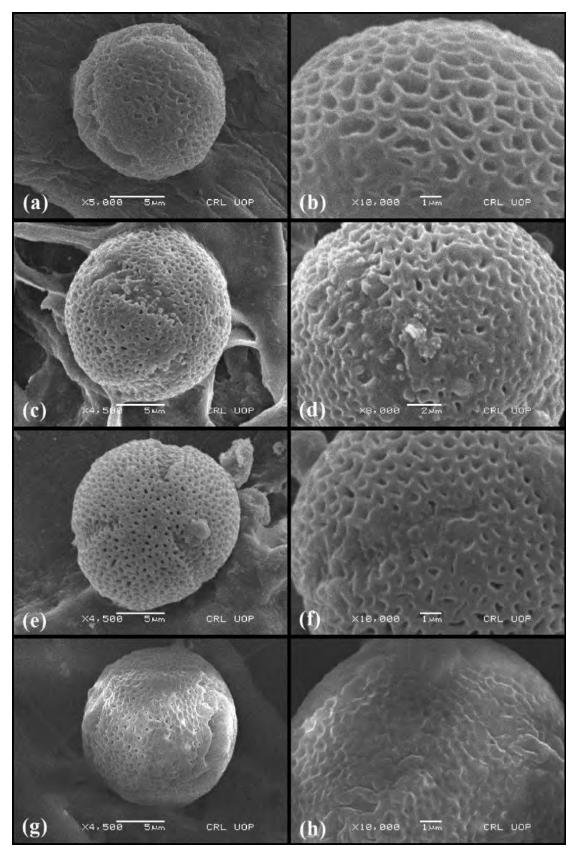


Plate 37. SEM micrographs of pollen (a),(b) *Eruca sativa*, (c), (d) *Farsetia heliophila*, (e), (f) *Goldbachia pendula*, (g), (h) *Isatis minima*

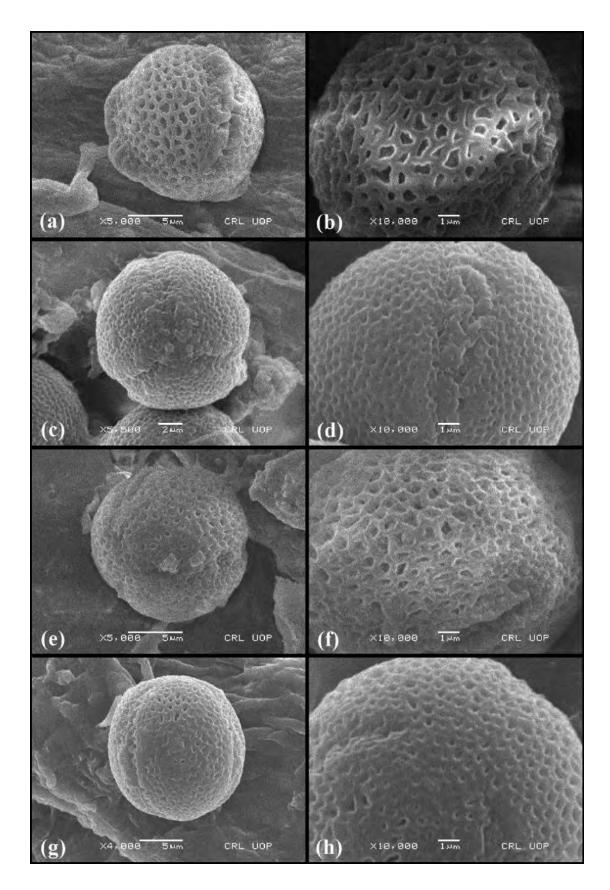


Plate 38. SEM micrographs of pollen (a), (b) *Isatis stocksii*, (c), (d) *Lepidium aucheri*, (e), (f) *Leptaleum filifolium*, (g), (h) *Matthiola flavida*

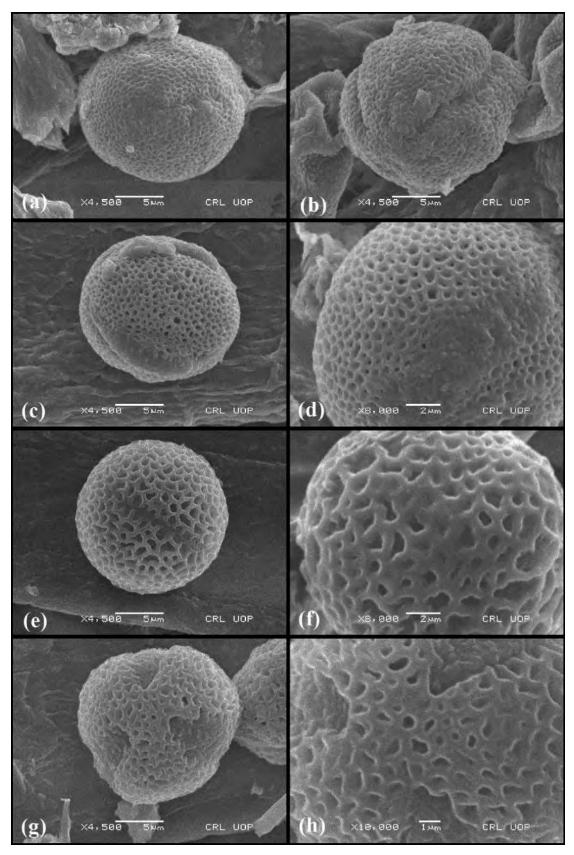


Plate 39. SEM micrographs of pollen (a),(b) Meniocus heterotrichus, (c), (d) Meniocus linifolius, (e), (f) Notoceras bicorne, (g), (h) Physorrhynchus brahuicus

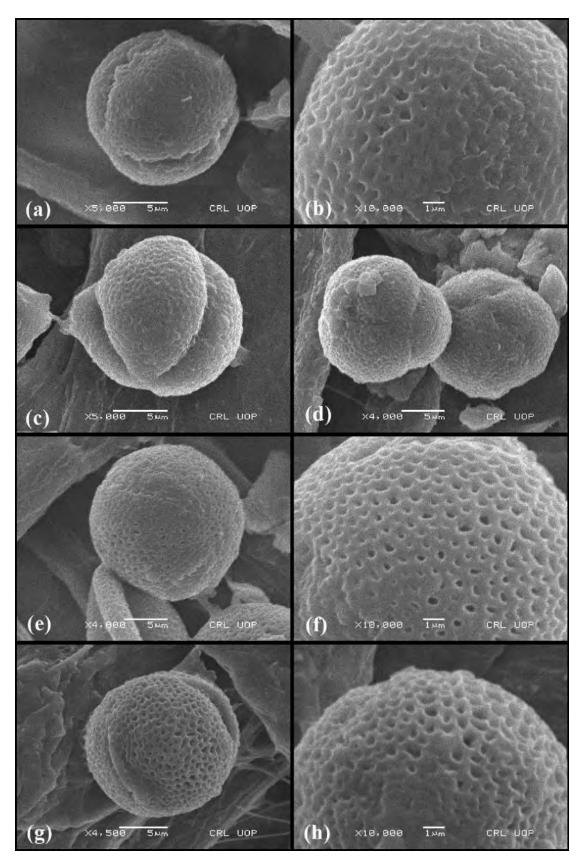


Plate 40. SEM micrographs of pollen (a),(b) *Raphanus raphanistrum*, (c), (d) *Sisymbrium altissimum*, (e), (f) *Sisymbrium irio*, (g), (h) *Strigosella africana*

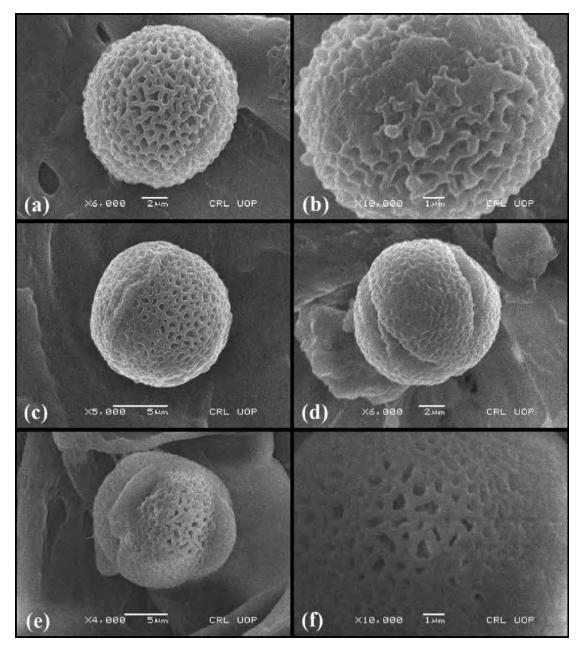


Plate 41. SEM micrographs of pollen (a),(b) *Strigosella cabulica*, (c), (d) *Strigosella intermedia*, (e), (f) *Tetracme stocksii*

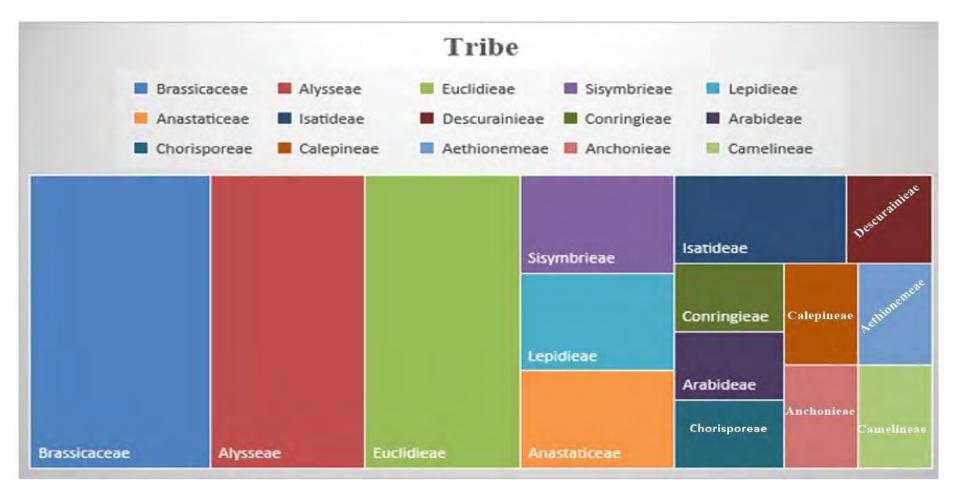


Figure 3. Brassicaceous taxa (size of the box representing of species in this study from each tribe)

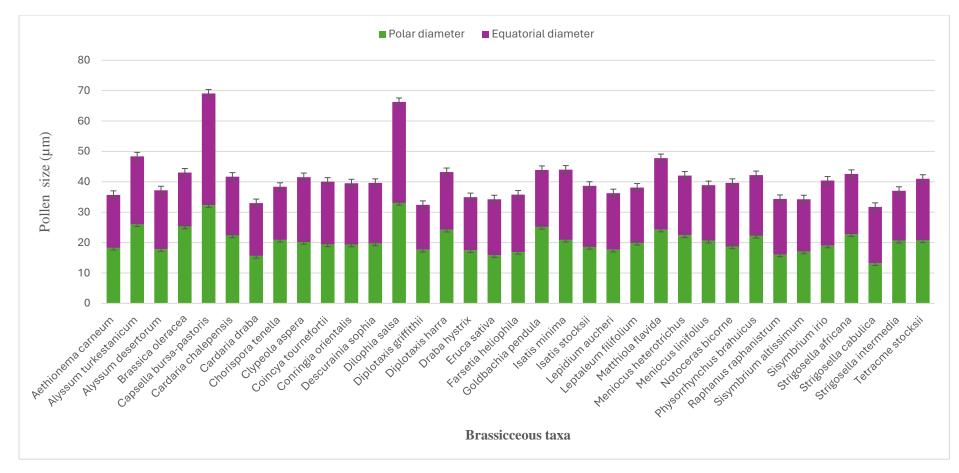


Figure 4. Variations in mean values of pollen size among Brassicaceous taxa (polar diameter and equatorial diameter)

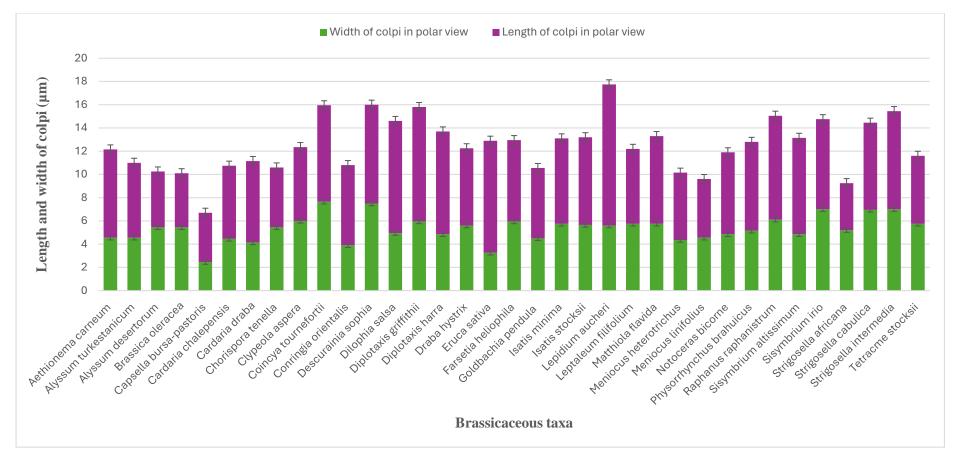


Figure 5. Variations in mean values of length and width of colpi in polar view among Brassicaceous taxa

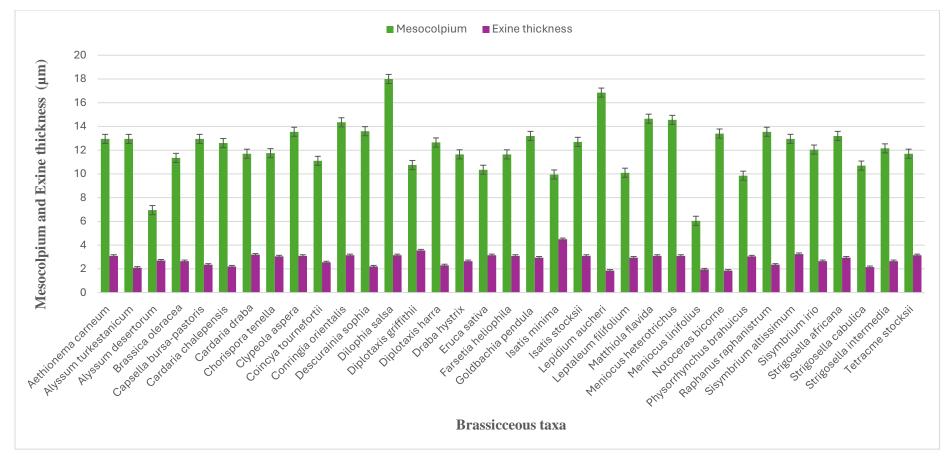


Figure 6. Variations in mean values of mesocolpium and exine thickness among Brassicaceous taxa

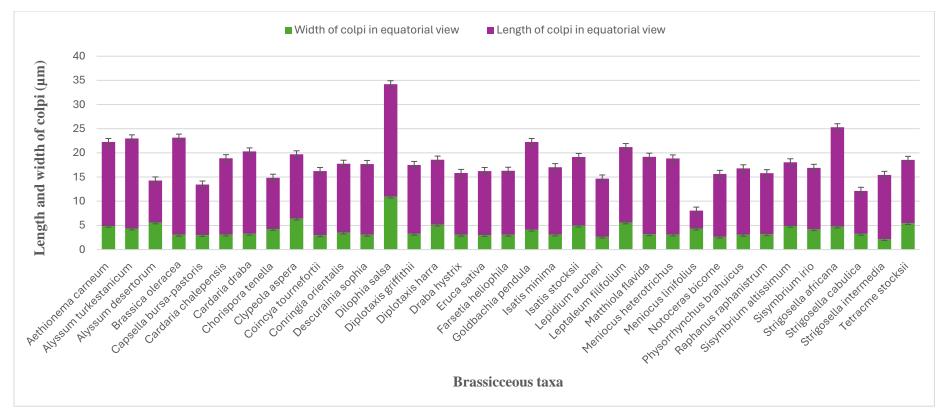


Figure 7. Variations in mean values of colpi length and width in equatorial view

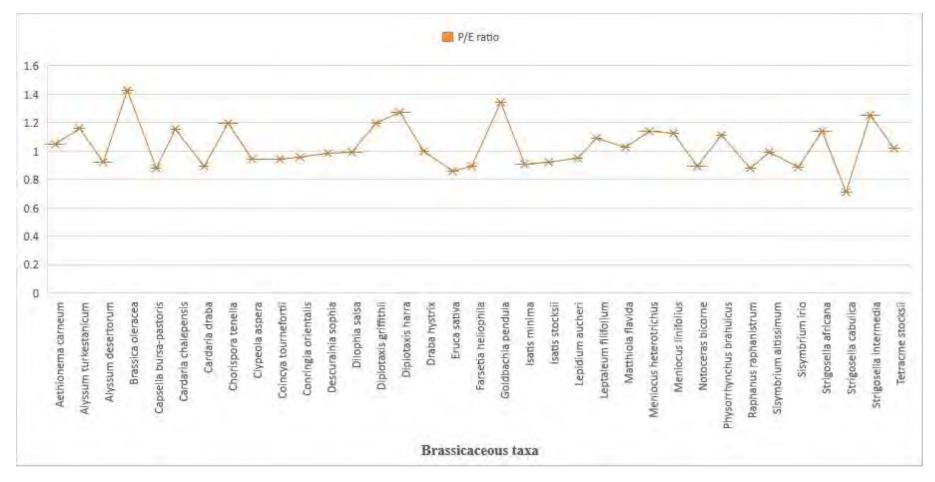
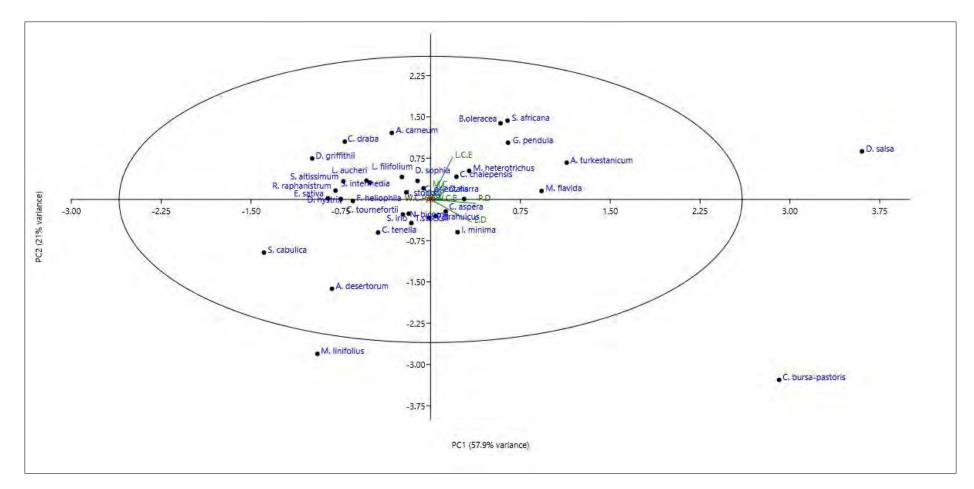



Figure 8. P/E ratio variations among studied Brassicaceous taxa

Figure 9. PCA analysis based on quantitative traits; polar axis, equatorial diameter, width and length of colpi in polar view, width and length of colpi in equatorial view, mesocolpium, exine thickness of Brasicaceous flora

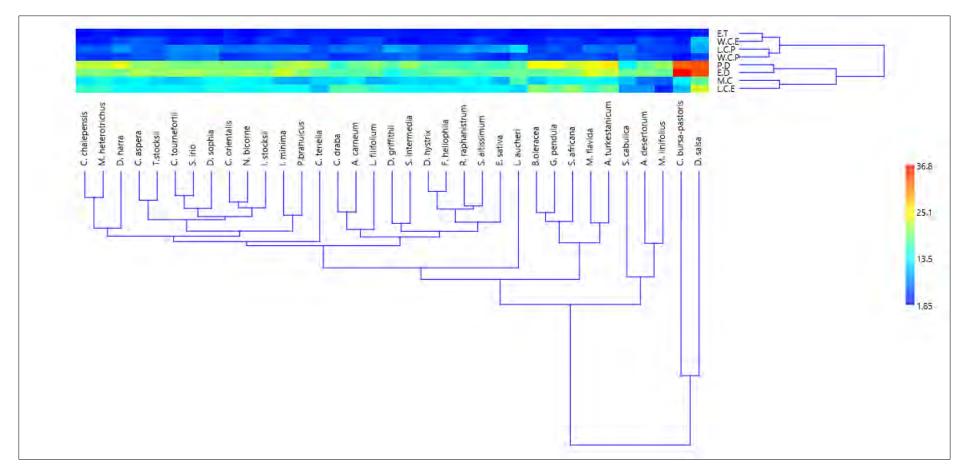
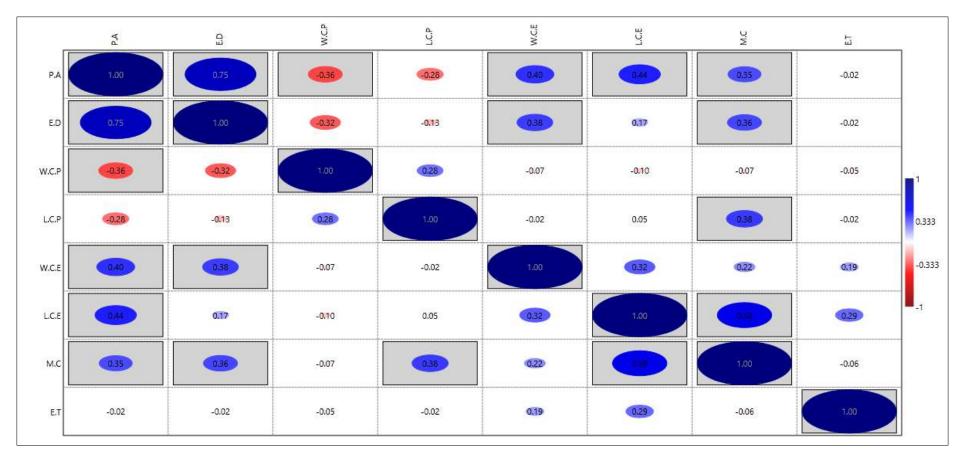



Figure 10. UPGMA cluster analysis based on quantitative traits; polar axis, equatorial diameter, width and length of colpi in polar view, width and length of colpi in equatorial view, mesocolpium, exine thickness of Brassicacoues flora

Figure 11. Correlation among the mean values of polar axis (P.A), equatorial diameter (E.D), width and length of colpi in polar view (W.C.P, L.C.P), width and length of colpi in equatorial view (W.C.E, L.C.E), mesocolpium (M), exine thickness (E.T) of Brassicacoues flora

S. No	Name of Species	Polar diameter (µm)	Equatorial diameter (µm)	Pollen Size	P/E ratio	Pollen Shape	Viability%
1.	Aethionema carneum	18.25	17.45	Small	1.045	Prolate spheroidal	92.6
2.	Alyssum desertorum	17.85	19.35	Small	0.922	Oblatespheroidal	87.8
3.	Alyssum turkestanicum	26	22.35	Medium	1.163	Subprolate	92.6
4.	Brassica oleracea	25.3	17.75	Medium	1.425	Prolate	87.8
5.	Capsella bursa-pastoris	32.3	36.75	Medium	0.878	Suboblate	90.7
6.	Cardaria chalepensis	22.35	19.35	Small	1.155	Subprolate	89.8
7.	Cardaria draba	15.6	17.4	Small	0.896	Oblatespheroidal	91.1
8.	Chorispora tenella	20.9	17.45	Small	1.197	Subprolate	86.3
9.	Clypeola aspera	20.2	21.35	Small	0.946	Oblatespheroidal	88.1
10.	Coincya tournefortii	19.4	20.65	Small	0.939	Oblatespheroidal	91.8
11.	Conringia orientalis	19.35	20.15	Small	0.960	Oblatespheroidal	89.8
12.	Descurainia sophia	19.7	19.95	Small	0.987	Oblatespheroidal	90.3
13.	Dilophia salsa	33.05	33.2	Small	0.995	Oblatespheroidal	80.1
14.	Diplotaxis griffithii	17.65	14.75	Medium	1.196	Subprolate	90.5
15.	Diplotaxis harra	24.2	19	Small	1.273	Subprolate	91.4
16.	Draba hystrix	17.45	17.5	Small	0.997	Oblatespheroidal	94.2
17.	Eruca sativa	15.85	18.4	Small	0.861	Suboblate	93.5

 Table 6. Size, shape and viability of pollen for studied Brassicaceous taxa

Farsetia heliophila	16.9	18.9	Small	0.894	Suboblate	94.3
Goldbachia pendula	25.15	18.75	Small	1.341	Prolate	91.9
Isatis minima	20.9	23.1	Medium	0.904	Oblatespheroidal	93.3
Isatis stocksii	18.55	20.15	Small	0.920	Oblatespheroidal	90.8
Lepidium aucheri	17.65	18.6	Small	0.948	Oblatespheroidal	91.8
Leptaleum filifolium	19.9	18.2	Small	1.093	Prolate spheroidal	87.5
Matthiola flavida	24.25	23.55	Small	1.029	Prolate spheroidal	94.4
Meniocus heterotrichus	22.4	19.65	Small	1.139	Prolates pheroidal	84.6
Meniocus linifolius	20.6	18.3	Small	1.125	Prolate spheroidal	98.1
Notoceras bicorne	18.7	20.95	Small	0.892	Oblatespheroidal	92.4
Physorrhynchus brahuicus	22.2	20	Small	1.11	Prolate spheroidal	88.6
Raphanus raphanistrum	16.05	18.3	Small	0.877	Suboblate	92.6
Sisymbrium altissimum	17.05	17.2	Small	0.991	Oblatespheroidal	80.8
Sisymbrium irio	19	21.4	Small	0.887	Suboblate	84.3
Strigosella africana	22.7	19.9	Small	1.140	Prolatespheroidal	90.8
Strigosella cabulica	13.2	18.55	Small	0.711	Oblate	89.9
Strigosella intermedia	20.6	16.45	Small	1.252	Subprolate	89.9
Tetracme stocksii	20.7	20.3	Small	1.019	Prolate spheroidal	92.9
	Goldbachia pendula Isatis minima Isatis stocksii Lepidium aucheri Leptaleum filifolium Matthiola flavida Meniocus heterotrichus Meniocus linifolius Notoceras bicorne Physorrhynchus brahuicus Raphanus raphanistrum Sisymbrium altissimum Sisymbrium irio Strigosella africana Strigosella cabulica	Goldbachia pendula25.15Isatis minima20.9Isatis stocksii18.55Lepidium aucheri17.65Leptaleum filifolium19.9Matthiola flavida24.25Meniocus heterotrichus22.4Meniocus linifolius20.6Notoceras bicorne18.7Physorrhynchus brahuicus22.2Raphanus raphanistrum16.05Sisymbrium altissimum17.05Sisymbrium irio19Strigosella africana22.7Strigosella cabulica13.2Strigosella intermedia20.6	Goldbachia pendula25.1518.75Isatis minima20.923.1Isatis stocksii18.5520.15Lepidium aucheri17.6518.6Leptaleum filifolium19.918.2Matthiola flavida24.2523.55Meniocus heterotrichus22.419.65Meniocus linifolius20.618.3Notoceras bicorne18.720.95Physorrhynchus brahuicus22.220Raphanus raphanistrum16.0518.3Sisymbrium altissimum17.0517.2Sisymbrium irio1921.4Strigosella africana22.719.9Strigosella cabulica13.218.55Strigosella intermedia20.616.45	Goldbachia pendula25.1518.75SmallIsatis minima20.923.1MediumIsatis minima20.923.1MediumIsatis stocksii18.5520.15SmallLepidium aucheri17.6518.6SmallLeptaleum filifolium19.918.2SmallMatthiola flavida24.2523.55SmallMeniocus heterotrichus22.419.65SmallMeniocus linifolius20.618.3SmallNotoceras bicorne18.720.95SmallPhysorrhynchus brahuicus22.220SmallSisymbrium altissimum17.0517.2SmallSisymbrium irio1921.4SmallStrigosella africana22.719.9SmallStrigosella intermedia20.616.45Small	Goldbachia pendula 25.15 18.75 Small 1.341 Isatis minima 20.9 23.1 Medium 0.904 Isatis stocksii 18.55 20.15 Small 0.920 Lepidium aucheri 17.65 18.6 Small 0.920 Lepidium aucheri 17.65 18.6 Small 0.948 Leptaleum filifolium 19.9 18.2 Small 1.093 Matthiola flavida 24.25 23.55 Small 1.029 Meniocus heterotrichus 22.4 19.65 Small 1.139 Meniocus linifolius 20.6 18.3 Small 1.125 Notoceras bicorne 18.7 20.95 Small 0.892 Physorrhynchus brahuicus 22.2 20 Small 0.877 Sisymbrium altissimum 17.05 17.2 Small 0.877 Sisymbrium irio 19 21.4 Small 0.887 Strigosella africana 22.7 19.9 Small 1.140 Strigosella africana 22.7 19.9 Small 0.711 <td>Goldbachia pendula25.1518.75Small1.341ProlateIsatis minima20.923.1Medium0.904OblatespheroidalIsatis stocksii18.5520.15Small0.920OblatespheroidalLepidium aucheri17.6518.6Small0.948OblatespheroidalLeptaleum filifolium19.918.2Small1.093Prolate spheroidalMatthiola flavida24.2523.55Small1.029Prolate spheroidalMeniocus heterotrichus22.419.65Small1.139Prolate spheroidalMeniocus linifolius20.618.3Small1.125Prolate spheroidalNotoceras bicorne18.720.95Small0.892OblatespheroidalPhysorrhynchus brahuicus22.220Small0.877SubolateSisymbrium altissimum17.0517.2Small0.991OblatespheroidalSisymbrium irio1921.4Small0.887SubolateStrigosella africana22.719.9Small1.140ProlatespheroidalStrigosella intermedia20.616.45Small0.711OblateStrigosella intermedia20.616.45Small0.711OblateStrigosella intermedia20.616.45Small0.711OblateStrigosella intermedia20.616.45Small0.711OblateStrigosella intermedia20.616.45Small0.711Oblate</td>	Goldbachia pendula25.1518.75Small1.341ProlateIsatis minima20.923.1Medium0.904OblatespheroidalIsatis stocksii18.5520.15Small0.920OblatespheroidalLepidium aucheri17.6518.6Small0.948OblatespheroidalLeptaleum filifolium19.918.2Small1.093Prolate spheroidalMatthiola flavida24.2523.55Small1.029Prolate spheroidalMeniocus heterotrichus22.419.65Small1.139Prolate spheroidalMeniocus linifolius20.618.3Small1.125Prolate spheroidalNotoceras bicorne18.720.95Small0.892OblatespheroidalPhysorrhynchus brahuicus22.220Small0.877SubolateSisymbrium altissimum17.0517.2Small0.991OblatespheroidalSisymbrium irio1921.4Small0.887SubolateStrigosella africana22.719.9Small1.140ProlatespheroidalStrigosella intermedia20.616.45Small0.711OblateStrigosella intermedia20.616.45Small0.711OblateStrigosella intermedia20.616.45Small0.711OblateStrigosella intermedia20.616.45Small0.711OblateStrigosella intermedia20.616.45Small0.711Oblate

Таха	Tribe	No. of apertures	Aperture orientation	Colpi apex	Amb	Exine sculpturing	Lumen shape
Aethionema carneum	Aethionemeae	Tricolpate	Sunken convex	Blunt	Lobate	Reticulate	Regular polygonal
Alyssum desertorum	Alysseae	Tricolpate	Raised concave	Round	Round	Coarsely reticulate	Irregular polygonal
Alyssum turkestanicum	Alysseae	Tricolpate	Raised concave	Round	Round	Reticulate	Regular amorphous
Brassica oleracea	Brassiceae	Tri- Synocolpate	Raised convex	Fused apices	Lobate	Reticulate	Regular polygonal
Capsella bursa-pastoris	Camelineae	Tricolpate	Raised convex	Blunt	Triangular	Coarsely reticulate	Irregular amorphous
Cardaria chalepensis	Alysseae	Tricolpate	Sunken concave	Acute	Lobate	Coarsely reticulate	Regular polygonal
Cardaria draba	Lepidieae	Tricolpate	Sunken convex	Blunt	Round	Coarsely reticulate	Regular polygonal
Chorispora tenella	Chorisporeae	Tricolpate	Sunken convex	Acute	Lobate	Reticulate	Regular polygonal
Clypeola aspera	Alysseae	Tricolpate	Raised concave	Blunt	Lobate	Reticulate	Regular polygonal
Coincya tournefortii	Brassiceae	Tri- Synocolpate	Raised concave	Fused apices	Triangular	Reticulate	Regular polygonal
Conringia orientalis	Conringieae	Tricolpate	Raised convex	Blunt	Round	Reticulate	Regular polygonal
Descurainia sophia	Descurainieae	Tricolpate	Raised convex	Acute	Lobate	Reticulate	Irregular amorphous
Dilophia salsa	Euclidieae	Tricolpate	Raised concave	Round	Round	Scabrate	Regular polygonal
Diplotaxis griffithii	Brassiceae	Tricolpate	Sunken convex	Acute	Round	Reticulate	Irregular amorphous
Diplotaxis harra	Brassiceae	Tricolpate	Raised concave	Acute	Lobate	Coarsely reticulate	Regular polygonal
Draba hystrix	Arabideae	Tricolpate	Raised concave	Blunt	Triangular	Reticulate	Irregular amorphous
Eruca sativa	Brassiceae	Tricolpate	Raised convex	Blunt	Triangular	Coarsely reticulate	Regular amorphous

 Table 7. Qualitative palynological characteristics of the investigated taxa of Brassicaceae

Farsetia heliophila
Goldbachia pendula
Isatis minima
Isatis stocksii
Lepidium aucheri
Leptaleum filifolium
Matthiola flavida
Meniocus heterotrichus
Meniocus linifolius
Notoceras bicorne
Physorrhynchus
brahuicus
Raphanus raphanistrum
Sisymbrium altissimum
Sisymbrium irio
Strigosella africana
Strigosella cabulica
Strigosella intermedia
Tetracme stocksii

.

Calepineae

Isatideae

Isatideae

Lepidieae

Euclidieae

Anchonieae

Alysseae

Alysseae

Brassiceae

Brassiceae

Euclidieae

Euclidieae

Euclidieae

Euclidieae

Tricolpate Anastaticeae Tricolpate Tricolpate Tri-Synocolpate Tri-Synocolpate Tricolpate Tri-Synocolpate Tri-Synocolpate Tricolpate Anastaticeae Tricolpate Tri-Synocolpate Tri-Synocolpate Tri-Sisymbrieae Synocolpate Sisymbrieae Tricolpate Tricolpate Tricolpate Tricolpate Tricolpate

Raised concave Raised convex Raised convex Raised convex Raised concave Raised convex Raised concave Sunken convex Raised convex Raised convex Raised concave Sunken concave Raised concave Raised convex Raised convex Raised concave Raised concave Raised convex

Lobate Triangular Triangular Round Lobate Lobate Lobate Lobate Triangular Lobate Round Lobate Lobate Round Lobate Lobate Lobate Round

Acute

Acute

Acute

Fused

apices

Fused

apices

Blunt

Fused

apices

Fused

apices

Acute

Blunt

Blunt

Fused

apices

Fused

apices

Blunt

Round

Acute

Acute

Acute

Reticulate Reticulate Reticulate Reticulate Reticulate Reticulate Coarsely reticulate Reticulate Coarsely reticulate Coarsely reticulate Reticulate Reticulate Coarsely reticulate Reticulate Reticulate Reticulate Reticulate Reticulate

Irregular amorphous Regular amorphous Irregular polygonal Regular polygonal Regular polygonal Irregular polygonal Irregular polygonal Irregular amorphous Regular polygonal Regular polygonal

Regular polygonal Irregular amorphous **Regular** amorphous Irregular polygonal Irregular polygonal Regular amorphous Irregular polygonal

Plant Species	P.D μm	E.D	W.C.P	L.C.P	W.C.E	L.C.E	Μ	E.T
Min-Max=Mean±	SE							
Aethionema carneum	17- 19.75=18.5±0.5	16- 18.5=17.45±0.4	1.25- 4=5.25±4.55	3-5.5=8.5±7.6	1-4.5=5.5±4.9	3- 15.75=18.75±17.3	4- 10.5=14.5±1.2	12.75=3.7±3
Alyssum turkestanicum	24.5- 28=26±0.64710 8955	21- 23.75=22.35±0. 503736042	1.5- 3.75=5.25±4.55	1.75- 5.5=7.25±6.45	1.5- 3.75=5.25±4.35	3.5- 17.25=20.75±18.6	4.25- 10.25=14.5±12 .95	1- 1.75=2.75±2
Alyssum desertorum	17-19=17.85 ±0.358817502	17.5-20.25= 19.35±0.49117	5-5.75= 5.45±0.1457	4.5-5=4.8 ±0.093541435	5.25-6.25= 5.6±0.187082	7.75-9.5= 8.7±0.320156212	6.25-7.5= 6.95±0.215	2.25-3.25= 2.7±0.1658
Brassica oleracea var. capitata	24.5- 26=25.3±0.289	17- 18.5=17.75±0.2	4.75- 6=5.45±0.215	4.25- 5.25=4.65±0.16	2.75- 3.5=3.05±0.14	19.5- 20.75=20.1±0.21	10.25-13.75= 11.35±0.714	2-3.25= 2.65±0.23
Capsella bursa- pastoris	31- 33.25=32.3±0.3	35.5- 38=36.75±0.48	2-3=2.45±0.183	3.75- 4.75=4.25±0.17	2.75- 3.25=3±0.11180	10.25- 10.75=10.45±0.09	10.25- 15.5=12.95±1	1.75- 3=2.35±0.2
Cardaria chalepense	21.75- 23=22.35±0.231 840462	18- 20.5=19.35±0.5 15994186	3.5- 5.25=4.45±0.28 9395923	5.5- 7=6.3±0.266926 956	2.75- 3.5=3.1±0.1274 75488	14.75- 16.5=15.8±0.3102 41841	10.25- 13.75=12.6±0. 610327781	1.75- 2.75=2.2±0. 16
Cardaria draba	15.25- 16.25=15.6±0.1	16.25- 18.75=17.4±0.4	1.5- 3.25=4.75±4.15	1.75-6.25=8±7	1- 2.75=3.75±3.25	2-16=18±17.05	5-2.75= 10.2±13 11.7	1- 2.75=3.75±3
Chorispora tenella	20.25- 21.5=20.9±0.21 7944947	17- 18=17.45±0.183 711731	4.75- 6=5.45±0.21505 8132	4.5- 5.75=5.15±0.23 1840462	3.25- 5.25=4.25±0.35 3553391	9.75- 11.25=10.6±0.269 25824	10.25- 12.75=11.75±0 .425734659	2.75- 3.5=3.05±0. 145773797
Clypeola aspera	18.75- 21.75=20.2±0.5 38516481	20.25- 22.75=21.35±0. 484767986	1-5.5=6.5±6	1.75- 5.5=7.25±6.35	1.75- 5.25=7±6.4	1.25- 12.75=14±13.3	5.5- 10.25=15.75±1 3.55	0.75- 2.75=3.5±3. 1
Coincya tournefortii	17.75- 20.5=19.4±0.50 9901951	19.5- 21.75=20.65±0. 392109679	6.25- 8.5=7.65±0.407 737661	7.75- 9=8.3±0.215058 132	2.75- 3.25=2.95±0.09 3541435	12.75- 14=13.3±0.21505 8132	10.25- 12.75=11.1±0. 444409721	2- 3=2.55±0.18 3711731
Conringia orientalis	17.25- 20.75=19.35±0. 605185922	19.5- 20.75=20.15±0. 231840462	3- 4.5=3.9±0.2573 90754	5.25- 8=6.9±0.491172 068	3- 4=3.5±0.176776 695	13.5- 15.25=14.25±0.30 6186218	13.5- 15.25=14.35±0 .302076149	2.75- 3.75=3.15±0 .16955825

 Table 8. Quantitative palynological measurements of Brassicaceous taxa

Descurainia Sophia	18.75- 20.75=19.7±0.3 74165739 30.25-	18.75- 20.75=19.95±0. 365718471 30.25-	6.5- 8.5=7.5±0.3791 43772 4.25-	7.75- 9.5=8.5±0.3061 86218 9.25-	2.75- 3.5=3.05±0.145 773797 10.25-	13.25- 15.5=14.65±0.392 109679 22.75-	10.25- 15.75=13.6±0. 986154146 10.25-	1.75- 2.75=2.2±0. 16583124 2.75-
Dilophia salsa	35.25=33.05±0.	35.5=33.2±0.98	5.5=4.95±0.242	10.25=9.65±0.1	11.5=10.95±0.2	23.75=23.25±0.17	24.5=18±2.287	3.5=3.15±0.
	982344135	2344135	383993	6955825	15058132	6776695	192602	127475488
Diplotaxis griffithii	17- 18.25=17.65±0. 231840462 23.75-	13.75- 15.5=14.75±0.3 06186218 18-	5.25- 6.5=5.95±0.215 058132 4.25-	8.75- 10.75=9.85±0.3 31662479 7.75-	2.75- 3.75=3.25±0.17 6776695 4.5-	13.25- 15.2=14.25±0.353 553391 12.75-	10.25- 11.25=10.75±0 .176776695 10.25-	2.75- 4.25=3.55±0 .254950976 1.75-
Diplotaxis harra	24.5=24.2±0.14	19.75=19±0.306	5.5=4.85±0.231	10.5=8.85±0.53	5.75=5.15±0.23	14.5=13.45±0.310	14=12.65±0.63	2.75=2.3±0.
	5773797	186218	840462	9675829	1840462	241841	5413251	2
Draba hystrix	15.25-	17.25-	4.75-	5.25-	2.75-	12.25-	10.25-	2-
	19.5=17.45±0.7	18=17.5±0.1581	6.25=5.6±0.269	8.5=6.65±0.635	3.25=3.05±0.09	13.25=12.8±0.165	12.75=11.65±0	3.25=2.65±0
	0445014	13883	25824	413251	3541435	83124	.451386752	.231840462
Eruca sativa	15.25-	17.75-	2.75-	9.25-	2.75-	12.25-	9.75-	2.75-
	17=15.85±0.302	19.25=18.4±0.2	3.75=3.25±0.17	10.25=9.65±0.1	3.25=3±0.11180	14=13.25±0.3061	11=10.35±0.20	3.75=3.15±0
	076149	6925824	6776695	6955825	3399	86218	310096	.16955825
Farsetia heliophila	16.25- 17.25=16.9±0.1 87082869	17.75- 20.25=18.9±0.4 71699057	5.25- 6.5=5.95±0.215 058132	6.25- 7.75=7±0.25	2.75- 3.5=3.05±0.145 773797	12.75- 13.75=13.25±0.17 6776695	10.25- 13.25=11.65±0 .578791845	2.75- 3.5=3.1±0.1 27475488
Goldbachia pendula	24.25- 26=25.15±0.340 954542	18- 20.25=18.75±0. 395284708	3.5- 5.25=4.5±0.285 043856	5.5- 6.75=6.05±0.21 5058132	3.25- 5.25=4.1±0.35	17.25- 18.75=18.15±0.25 7390754	10.25- 15.5=13.2±0.8 63857627	2.75- 3.25=2.95±0 .093541435
Isatis minima	19.75-	22.25-	5.25-	6.75-	2.75-	13-	9.25-	2.75-
	22.25=20.9±0.4	23.75=23.1±0.2	6.25=5.75±0.17	8=7.35±0.23184	3.5=3.1±0.1274	14.75=13.95±0.32	10.5=9.95±0.2	10.25=4.5±1
	30116263	6925824	6776695	0462	75488	0156212	42383993	.440486029
Isatis stocksii	17.75- 19.5=18.55±0.3 48209707	18- 22.25=20.15±0. 700892288	1.5- 4.75=6.25±5.65	1.25- 6.75=8±7.55	1.5- 4.25=5.75±4.95	4.25- 12.25=16.5±14.2	3.25- 10.25=13.5±12 .7	0.75- 2.75=3.5±3. 1
Lepidium aucheri	17- 18.25=17.65±0. 231840462	17.75- 19.5=18.6±0.32 2102468	3.75- 7=5.6±0.610327 781	10.75- 13.25=12.15±0. 430116263	2- 3.25=2.65±0.23 1840462	11.25- 13=12.05±0.3201 56212	15.75- 17.75=16.85±0 .340954542	1.5- 2.25=1.85±0 .127475488
Leptaleum	18.75-	17.75-	5.25-	5.75-	5.25-	15.25-	9.5-	2.75-
filifolium	20.5=19.9±0.31	18.75=18.2±0.2	6.25=5.75±0.17	7.25=6.45±0.28	6=5.6±0.1274	16.25=15.6±0.18	10.7=10.1±0.2	3.5=2.9±0.1

Matthiola flavida Meniocus heterotrichus	23.75- 24.5=24.25±0.1 21.75- 23.25=22.4±0.2 6925824	23- 24=23.55±0.18 18.25- 21.25=19.65±0. 551135192	5.25- 6.25=5.75±0.1 3- 5.25=4.35±0.37 5832409	7-8=7.55±0.183 5.5- 6.25=5.8±0.145 773797	2.75- 3.5=3.15±0.127 2.75- 3.5=3.1±0.1274 75488	14.5- 17.25=16.05±0.58 15.25- 16.25=15.75±0.17 6776695	10.25- 16.5=14.6±1.1 10.25- 16=14.55±1.08 2243041	2.75- 3.5=3.1±0.1 2.75- 3.5=3.1±0.1 27475488
Meniocus linifolius	20.25- 21.25=20.6±0.1 87082869	18- 18.75=18.3±0.1 45773797	3.75- 5.25=4.55±0.24 2383993	2.75- 7.25=5.05±0.73 058196	4- 4.75=4.35±0.12 7475488	3- 4.25=3.7±0.21505 8132	4.5- 10.25=6.05±1. 064776972	1.5- 2.25=1.95±0 .145773797
Notoceras bicorne	18-19.5= 18.7±0.26692	20.25-22= 20.95±0.310	4.25-5.5= 4.85±0.2318	6.25-7.75= 7.05±0.266	2-3.25= 2.65±0.2318	12.5-13.5= 13±0.176776695	12.25-14.75= 13.4±0.44440	1.5-2.25= 1.85±0.127
Physorrhynchus brahuicus	21.5- 23=22.2±0.2893 95923	18.75- 20.75=20±0.353 553391	4.5- 5.75=5.15±0.23 1840462	7- 8.25=7.65±0.23 1840462	2.75- 3.5=3.05±0.145 773797	12.75- 14.5=13.75±0.325 96012	8.75- 10.5=9.85±0.3 22102468	2.75- 3.5=3.05±0. 145773797
Raphanus raphanistrum	15.25- 17=16.05±0.289 395923	18- 18.75=18.3±0.1 45773797	5.25- 7=6.1±0.322102 468	8- 9.75=8.95±0.32 0156212	2.75- 3.5=3.15±0.127 475488	12- 13.25=12.65±0.23 1840462	12.75- 14.5=13.55±0. 320156212	1.75- 3=2.35±0.23 1840462
Sisymbrium altissimum	16- 18.25=17.05±0. 365718471	15.75- 18.25=17.2±0.4 21307489	1.25- 4.25=5.5±4.85	2- 7.25=9.25±8.3	1.5- 4.25=5.75±4.9	0.75- 12.75=13.5±13.15	4- 10.25=14.25±1 2.95	1- 2.75=3.75±3 .25
Sisymbrium irio	18.5- 19.5=19±0.17	20.75- 22.25=21.4±0.3	6.25- 7.75=7±0.25	7- 8.75=7.75±0.32	3.25- 5=4.2±0.32	12-13.5=12.7±0.2	11.25- 13=12.05±0.36	2-3.25= 2.65±0.231
Strigosella africana	20.5- 25.25=22.7±0.9 2668765	17.75- 21.25=19.9±0.6 96419414	4.25- 5.75=5.2±0.254 950976	3.25- 5.25=4.05±0.36 5718471	3.75- 5.5=4.75±0.306 186218	18.25- 22.75=20.55±0.81 929848	10.25- 15.25=13.2±0. 815475322	2.75- 3.25=2.95±0 .093541435
Strigosella cabulica	12.75- 14.25=13.2±0.2 78388218	18- 19.25=18.55±0. 215058132	6.25- 7.75=6.95±0.26 6926956	6.25- 8.75=7.5±0.418 330013	2.75- 3.75=3.25±0.17 6776695	8- 9.75=8.9±0.34095 4542	10.25- 11.25=10.7±0. 2	1.75- 2.75=2.15±0 .16955825
Strigosella intermedia	19.75- 21.5=20.6±0.30 2076149	15.5- 17.75=16.45±0. 413823634	6.25-7.75=7 0.25	6.25- 7.75=7±0.25	1.75- 2.75=2.15±0.16 955825	12.75- 14=13.3±0.21505 8132	10.25- 13.25=12.15±0 .527967802	2- 3.25=2.65±0 .231840462
Tetracme stocksii	20.25- 21.25=20.7±0.1 6583124	19 21.25=20.3±0.3 20156212	3.25- 4.=7.75±5.75	0.75- 5.5=6.25±5.85	1.75- 4.5=6.25±5.45	2-12=14±13.1	2.5- 10.25=12.75±1 1.7	1.25- 2.75=4±3.15

(P.D: polar diameter; E.D: equatorial diameter, L.C.P, W.C.P, L.C.E, W.C.E: length and width of colpi in polar and equatorial view, M: mesocolpium, E.T: exine thickness)

Link character	Present (+) /absent (-)	Diagnostic characters	Species name
1	+	Small, prolate spheroidal, lumen shape regular polygonal	Aethionema carneum
	-	Medium, subprolate, lumen shape regular amorphous	2
2	+	Reticulate	Alyssum turkestanicum
	-	3	
3	+	Alyssum desertorum	
	-	Prolate, colpi apex fused, Amb lobate, lumen shape regular polygonal	4
4	+	Trisynocolpate	Capsella bursa- pastoris
_	-	Suboblate, colpi apex blunt, Amb triangular, lumen shape irregular amorphous	5
5	+	Medium, colpi raised convex,	Cardaria chalepensis
	-	Subprolate, colpi sunken concave, colpi apex acute, Amb lobate	6
6	+	Coarsely reticulate,	Cardaria draba
	-	Oblate spheroidal, colpi apex blunt, Amb round,	7
7	+	Lumen shape regular polygonal	Chorispora tenella
	-	Subprolate, colpi apex acute	8
8	+	Colpi sunken convex	Clypeola aspera
	-	Oblate spheroidal, colpi apex blunt	9
9	+	Tricolpate, Amb lobate, reticulate	Coincya tournefortii

Table 9. Dichotomous parallel taxonomic key based on pollen morphological traits of Brassicaceous flora

	-	Trisynocolpate, colpi apex fused, Amb triangular, coarsely reticulate,	10
10	+	Colpi raised concave	Descurainia sophia
	-	Amb round, colpi apex blunt, reticulate	11
11	+	Lumen shape Regular polygonal	Eruca sativa
	-	Amb lobate, psilate reticulate, lumen shape irregular amorphous	12
12	+	Colpi raised convex	Farsetia hamiltonii
	-	Coarsely reticulate, colpi raised concave, colpi apex round, lumen shape regular polygonal	13
13	+	Small, oblate spheroidal	Farsetia heliophila
	-	Colpi sunken convex, reticulate, lumen shape irregular amorphous	14
14	+	Medium, Amb round	Goldbachia pendula
	-	Coarsely reticulate, lumen shape regular polygonal	15
15	+	Subprolate, colpi apex acute	Lepidium aucheri
	-	Oblate spheroidal, colpi apex blunt, reticulate, lumen shape irregular amorphous	16
16	+	Colpi raised concave	Matthiola flavida
	-	Colpi raised convex, lumen shape regular amorphous	17
17	+	Amb triangular, colpi apex blunt	Meniocus linifolius
	-	Colpi raised concave, Amb lobate, reticulate, lumen shape irregular amorphous	18
18	+	Suboblate	Nasturtium officinale
	-	Prolate, lumen shape regular amorphous	
19	+	Small	Notoceras bicorne
	-	Medium, reticulate, lumen shape irregular amorphous	20
20	+	Tricolpate, Amb triangular, colpi apex acute,	Physorrhynchus brahuicus

	-	Coarsely reticulate, Amb round	21
21	+	Colpi raised convex	Raphanus
	-	Colpi raised concave	raphanistrum 22
22	+	Oblate spheroidal, trisynocolpate, colpi apex fused, lumen shape regular polygonal	Sisymbrium altissimum
	-	Tricolpate, colpi raised convex, colpi apex blunt	23
23	+	Reticulate	Strigosella africana
	-	Colpi raised concave, coarsely reticulate,	24
24	+	Lumen shape irregular polygonal,	Strigosella cabulica
	-	Colpi sunken convex, reticulate, lumen shape irregular amorphous	25
25	+	Trisynocolpate, Amb lobate, colpi apex fused	Strigosella intermedia
	-	Colpi apex acute, Amb triangular, coarsely reticulate, lumen shape regular polygonal	26
26	+	Prolate spheroidal	Meniocus linifolius
	-	Oblate spheroidal, Amb lobate,	27
27	+	Tricolpate, colpi raised convex	Notoceras bicorne
	-	Prolate spheroidal, colpi raised concave	28
28	+	Colpi apex blunt	Physorrhynchus
	-	Suboblate, colpi sunken concave, lumen shape regular polygonal	brahuicus 29
29	+	Lumen shape regular polygonal	Raphanus
	-	Oblate spheroidal, colpi raised concave, colpi apex fused, coarsely reticulate, lumen shape irregular amorphous	raphanistrum 30

3.2 Pollen Micromorphology of the Fabaceous taxa in Northern Baluchistan

3.2.1 Results and Discussion

a) Symmetry, Polarity, and Unity of Pollen in Fabaceae

The microscopic visualization of pollen is one of the important techniques for systematics studies. The light and scanning electron microscopy successfully added to the distinction and separation of numerous taxa of different families. The present research work was carried out to determine the palynomorph of Fabaceous taxa for the first time from Northern Baluchistan. The description of variations within characters was noted following Erdtman (1952), Graham et al. (1980), Ferguson and Banks (1994), Silvestre-Capelato and Melhem (1997), Perveen and Qaiser (1998), Banks and Lewis (2009), Buril et al. (2011), and Matos et al. (2020). All the studied taxa were radially symmetrical, isopolar, and monad. The shape and arrangement of the apertures were similar on both poles. Thus, traits such as polarity, symmetry, and unity were non-significant taxonomically.

b) Pollen Size and Shape of Fabaceous taxa

Medium size of pollen was observed in 29 species (Table 11). The pollen in 5 species were small in size. Pollen in three *Astragalus* species were small. *Alhagi maurorum* and *Crotalaria burhia* also observed with small size pollen. The shape of the pollen was determined from the P/E ratio. Variations were observed within the shape and found significant in the distinction of the Fabaceous taxa. The shape of pollen in 18 species was subprolate. The prolate-spheroidal shape was investigated in 9 species including *Astragalus stocksii* and *Astragalus tribuloides*. In 6 species the shape was prolate, including *Astragalus subumbellatus*. Similar results were reported by Liao et al. (2022) for the presence of a range of pollen shapes, including suboblate, spheroidal, subprolate, and prolate in *Astragalus and Sophora*. The shape oblate-spheroidal was observed in *Lathyrus oleraceus*.

c) Apertures with Number Position Character (NPC) Classification

Tricolporate, tricolpate, and trisynocolpate apertures were observed in the examined 34 Fabaceous species. Tricolporate aperture was noted in 25 species. The

tricolpate aperture was observed in 7 species. Trisynocolpate aperture was present in two species. The edges of the colpi merged at the apices in trisynocolpate aperture. The number, position, and character of aperture (NPC) determined two types trizonocolpate $N_3P_4C_3$ and trizonocolporate $N_3P_4C_5$. The three significant variable traits in this study for the examined species were: polar view, equatorial view, and exine sculpturing. Liao et al. (2022) described the genera such as *Astragalus, Sophora* as taxonomically problematic. In the present study, pollen in all examined (12) species of *Astragalus* were tricolporate.

Although Liao et al., (2022) concluded that palynological analyses can offer some helpful information for identifying these taxa, pollen morphology alone is insufficient to clarify or rebuild taxonomic relationships within these genera. They examined 11 species of *Sophora* as tricolporate (occasionally six-aperture). In this study, it was examined that the additional pollen features such as polar and equatorial view, amb, sculpturing were found significant to aid in the systematics of problematic taxa. The apertures in *Sophora mollis* were tricolporate. The species of genera *Crotalaria, Ebenus, Indigofera, Onobrychis, Vicia* were characterized by tricolpate apertures. The colpi in *Vicia macrantha* were adjoining, created specific trisynocolpate type of aperture.

d) Polar view, Equatorial view, Amb

Significant variations were observed in the polar view, equatorial view, and amb of the pollen of examined Fabaceous species. The circular polar view was observed in pollen of 16 species. Triangular obtuse convex polar view of pollen was present in 7 species. Triangular obtuse concave polar view was noted in the pollen of three species. Other observed types in polar view were circular to triangular obtuse convex, triangular obtuse convex to straight, circular to elliptic, circular to oval, and circular to triangular. Variations were observed in the equatorial view of the pollen in the examined species. 12 species were observed with rectangular obtuse convex equatorial view. Pollen in five species were oval in the equatorial view. In seven species, the appearance of pollen in the equatorial view was elliptic to oval. The elliptic truncate equatorial view was observed in six species. The quadrangular equatorial view was present in the pollen of two species. The rhombic equatorial view was observed in *Sophora mollis*. In *Medicago* *lupulina* the equatorial view was circular. The alterations in the polar and equatorial view of the pollen were significant in the distinction of Fabaceous species.

The amb of the pollen also added to the separation of studied Fabaceous species. The observed amb of pollen was peritreme in 22 species. The goniotreme amb was found in 12 species (Table 10). Though there were only two types of observed amb, but this feature was not genus-specific. The amb varied from species to species. The differences in the palynological traits of *Lotus corniculatus* and *Lotus garcinii* were significant for the separation of these taxa. The pollen in *Lotus corniculatus* was circular to triangular obtuse convex in polar view, elliptic truncate in equatorial view, psilate exine and aperture membrane, with amb goniotreme. In *Lotus garcinii*, the pollen was circular in polar view, elliptic truncate equatorial view, psilate to reticulate exine sculpturing, with psilate aperture membrane and peritreme amb. Similarly, in both of the *Medicago* species the pollen was similar psilate exine and aperture membrane, with goniotreme amb. The polar view and equatorial view were different in *Medicago* species. In *Medicago lupulina*, the pollen were triangular obtuse convex polar and circular in equatorial view. While in *Medicago polymorpha* the pollen were triangular obtuse convex polar and oval in equatorial view.

e) Sculpturing of Exine and Aperture membrane

The ornamentation of the exine was important in the distinction of the species. The exine in three species *Alhagi maurorum, Indigofera cuneifolia, and Indigofera intricata* was microreticulate. The 'reticulate, psilate at the polar end' type of sculpturing was observed in four *Astragalus* species. The simple reticulate sculpturing was present in four species. *Astragalus subumbellatus* was noted with distinct psilate verrucate exine. The macroreticulate exine was present in six species. The combinations of reticulate, psilate, and verrucate exine were also observed within the pollen of the studied species. The observed variations in the exine sculpturing separated the Fabaceous species. Similarly, the aperture membrane was psilate, verrucate, or a combination of these two types of sculpturing (Plate 42-50).

The analysis of qualitative and quantitative features revealed significant variations for taxonomic studies (Ferguson et al., 1994; Zhao et al., 2007; Liao et al., 2022). The family Fabaceae is eurypalynous, with variation in the pollen size, aperture, exine sculpturing and other characters. Lattar et al. (2020) stated one tribe of Fabaceae,

Aeschynomeneae as eurypalynous and the second one Adesmieae as stenopalynous. Soares et al. (2021) concluded that the pollen morphology significantly differentiated among the subfamilies of Fabaceae i.e Caesalpinioideae and Detarioideae. Soares et al. (2021) documented that pollen of the Fabaceous species can be distinguished from one another by differences in the following: type of endoaperture (lolongate, circular, or lalongate); position of apertures (angulaperturate, planaperturate, subplanaperturate, or fossaperturate); size (small to large); amb (circular to triangular); shape (oblate to prolate); details of the polar area (very small to large); and exine ornamentation (psilate, scabrate, microreticulate, or reticulate heterobrochate).

The pollen micromorphological traits of the genus *Onobrychis* were relatively homogenous, similar observations were reported by Talebi et al., (2020). *Onobrychis* species slightly differ in the qualitative palynological characters. The polar view varied from circular to oval. Whereas equatorial view appeared as rectangular obtuse convex. The exine sculpturing existed in reticulate to microreticulate, and macroreticulate forms. The *Onobrychis cornuta* was observed as reticulate to microreticulate, oval polar view, rectangular obtuse convex equatorial view. Talebi et al. (2020) reported the *Onobrychis* as obtuse convex in equatorial view and circular in polar view with reticulate ornamentation. Earlier studies specified the *Onobrychis* species with reticulate exine (Pavlova and Manova 2000; Amirabadizadeh and Ghanavati, 2012; Avci et al., 2013).

Crotalaria species were observed with similar palynomorphic features in this study. The difference occurred in the exine structure. In *Crotalaria burhia* the exine was reticulate whereas in *Crotalaria medicaginea* macroreticulate. Bahadur et al., (2023) denoted the variations from reticulate to psilate in the exine sculpturing, and the aperture surface membrane morphology i.e scabrate, gemmate, verrucate as significant variations for the separation of species. *Indigofera cuneifolia* was observed with verrucate to psilate exine while *Indigofera intricata* exine was psilate. The *Astragalus* genus was noted with verrucate or psilate aperture membrane. Ceter et al. (2013) examined the aperture membrane as granulate or verrucate in colpi whereas the operculum membrane as verrucate, granulate, rugulate and reticulate in the *Astragalus* L. section Hololeuce Bunge. They also observed variations in the exine sculpturing from granulate to perforate, reticulate, perforate polar section, and perforate, reticulate,

microreticulate, microreticulate to perforate, microrugulate to perforate, perforate to granulate, microrugulate to microreticulate, microreticulate to granulate.

Astragalus species varied in the appearance of polar and equatorial views, ornamentation of exine, surface of aperture membrane and quantitative variables. Ceter et al. (2013), also reported the same that there were differences in the pollen characteristics of *Astragalus*, including pollen form, aperture type, and ornamentation. In particular, pollen surface ornamentation on the polar and equatorial views was useful in differentiating the Fabaceous species. Earlier, Bagheri et al., (2019) reported the genus *Astragalus* as tricolpate and micro reticulate exine. The general morphological traits in the *Astragalus* expressed homogeneity. In this study the variations in the amb, polar and equatorial view, and aperture membrane aid in the discrimination of species. In several species of the genus *Sophora*, echinate exine was previously documented by Liao et al. (2022). In the current study exine in *Sophora* was reticulate to verrucate with psilate aperture membrane.

f) Multivariate Analysis of pollen morphological features of Fabaceae

Principal component analysis identified the variables and aided in the visualization of data set trends (Kim et al., 2015). Based on the PCA plot, the mesocolpium, polar length of colpi, polar width of colpi, and equatorial width of colpi were found significant in the discrimination of species (Figure 12). Uga et al. (2009) determined the link between the micromorphological features using PCA plots. The correlation plots, PCA, and loading plots revealed significant variations in the quantitative features (Kim et al. 2015). A correlation plot helped in determining the relationship and strengthened the principal component analysis. The highest positive correlation 0.85 observed between the polar axis and equatorial diameter. The equatorial length of the colpi and equatorial diameter were also positively correlated 0.61 (Figure 14). A negative correlation -0.24 was observed between mesocolpium and the polar length of the colpi. The UPGMA dendrogram distinguished and highlighted the variations among the taxa of the same genus (Figure 13). Tephrosia uniflora subsp. Petrosa was distinctly placed from the major cluster. The major cluster included 27 species, whereas 7 species were in the small cluster. The quantitative traits significantly separated the species in the dendrogram. The normal probability plot determined the data distribution along the plot of normal order statistics medians. The exine thickness was normally distributed. The variations were observed in the polar axis, equatorial diameter, polar width of colpi, and equatorial width of colpi (Figure 15). Conclusively there were statistically significant differences between the means of the parameters that were examined, this can be utilized as a methodical approach to taxonomic studies. The combination of statistical analysis with micromorphological pollen features provided valuable insights into the differentiation of the Fabaceous species. The variation in the exine sculpture, surface, operculum, exine thickness, pollen shape, aperture shape, and pollen size significantly aided in the differentiation of Fabaceous species.

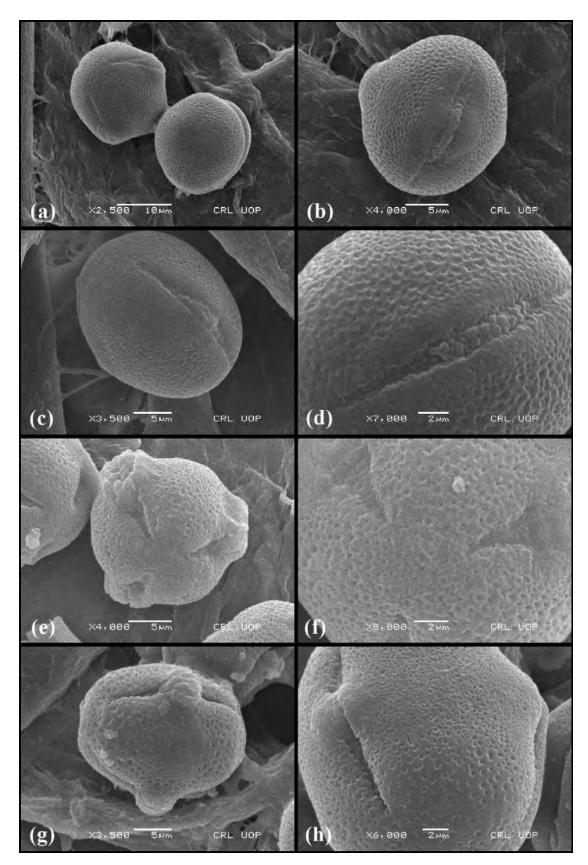


Plate 42. SEM micrographs of pollen (a), (b) *Alhagi maurorum*, (c), (d) *Astragalus anisacanthus*, (e), (f) *Astragalus brahuicus*, (g), (h) *Astragalus crenatus*

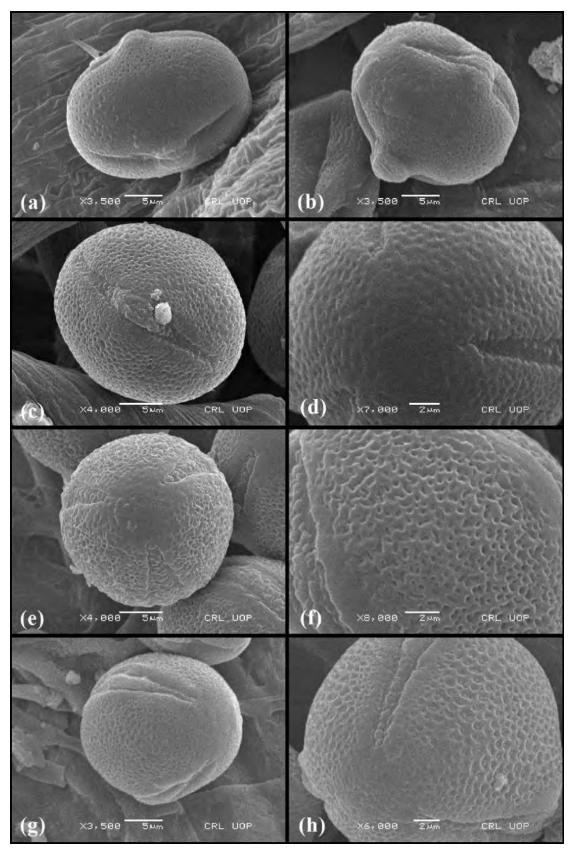


Plate 43. SEM micrographs of pollen (a), (b) *Astragalus diphtherites,* (c), (d) *Astragalus hemsleyi,* (e), (f) *Astragalus hostilis,* (g), (h) *Astragalus hypoglottis*

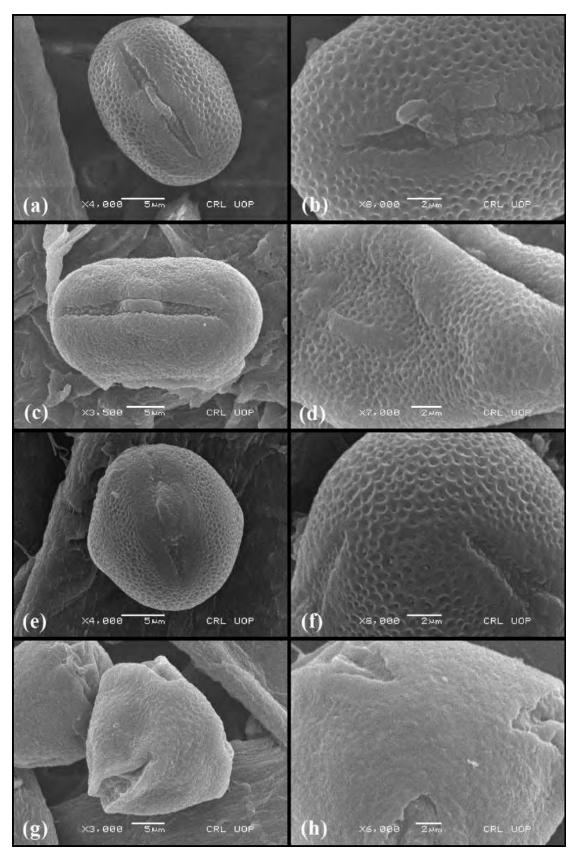


Plate 44. SEM micrographs of pollen (a), (b) *Astragalus ophiocarpus*, (c), (d) *Astragalus oxyglottis*, (e), (f) *Astragalus stocksii*, (g), (h) *Astragalus subumbellatus*

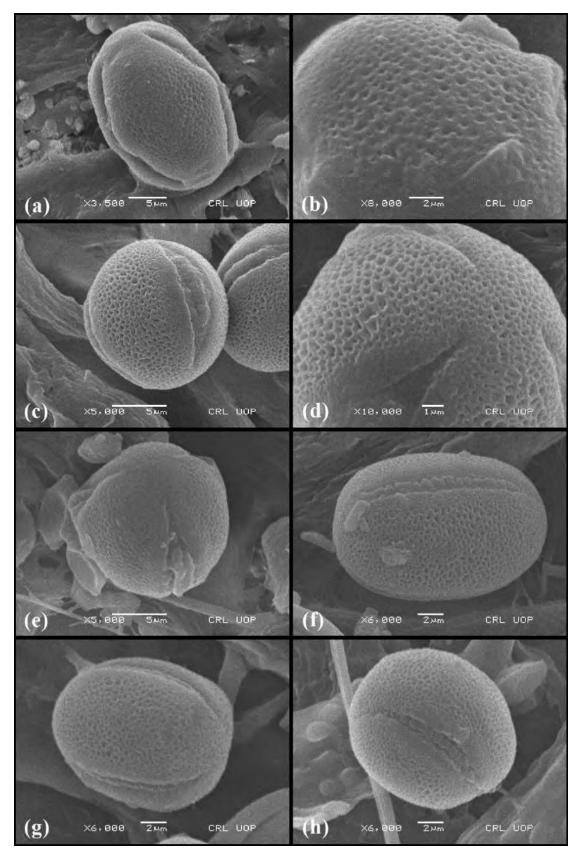


Plate 45. SEM micrographs of pollen (a), (b) Astragalus tribuloides, (c), (d) Caragana ambigua, (e), (f) Crotalaria burhia, (g), (h) Crotalaria medicaginea

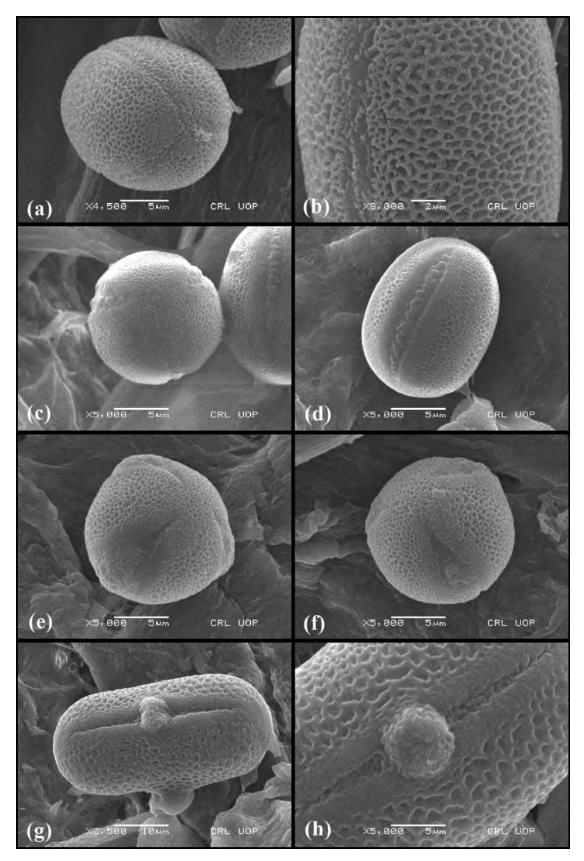


Plate 46. SEM micrographs of pollen (a), (b) *Ebenus stellata*, (c), (d) *Indigofera cuneifolia*, (e), (f) *Indigofera intricata*, (g), (h) *Lathyrus oleraceus*

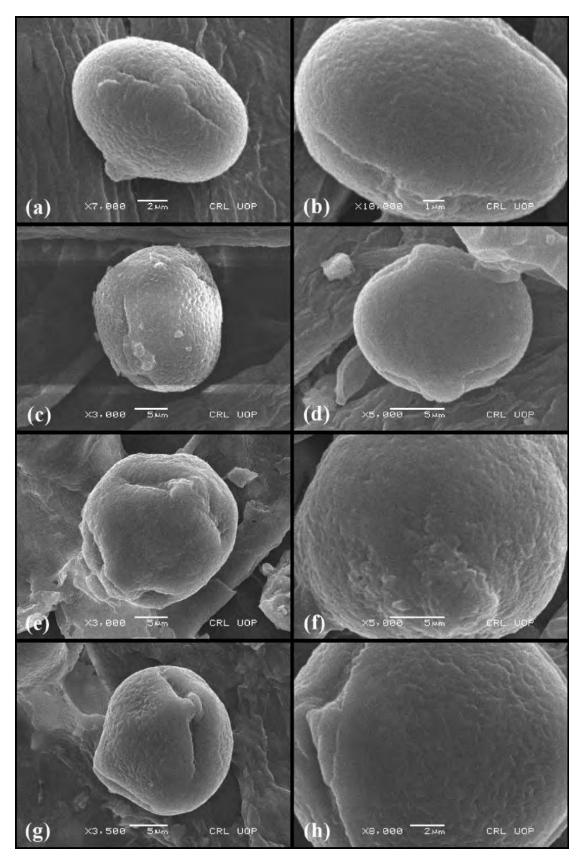


Plate 47. SEM micrographs of pollen (a), (b) Lotus corniculatus, (c), (d) Lotus garcinii, (e), (f) Medicago lupulina, (g), (h) Medicago polymorpha

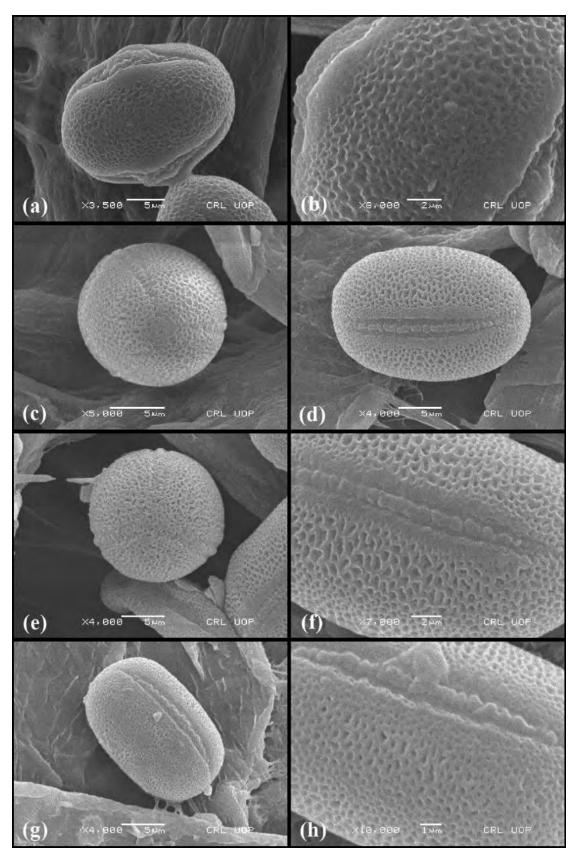


Plate 48. SEM micrographs of pollen (a), (b) Melilotus indicus, (c), (d) Onobrychis cornuta, (e), (f) Onobrychis dealbata, (g), (h) Onobrychis micrantha

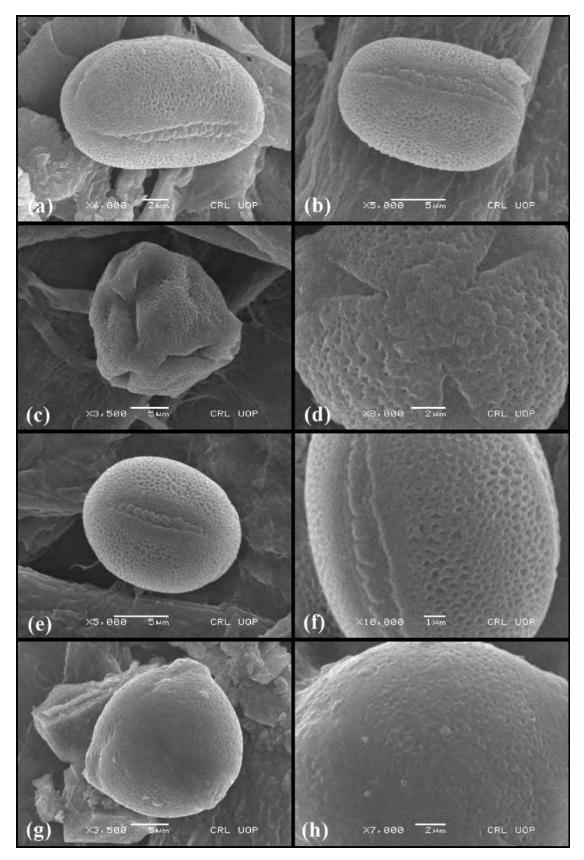


Plate 49. SEM micrographs of pollen (a), (b) *Onobrychis tavernierifolia*, (c),
(d) *Sophora mollis*, (e), (f) *Taverniera glabra*, (g), (h) *Tephrosia uniflora subsp. Petrosa*

Palyno-anatomical Studies of Dicot Phytodiversity in Northern Baluchistan, Pakistan

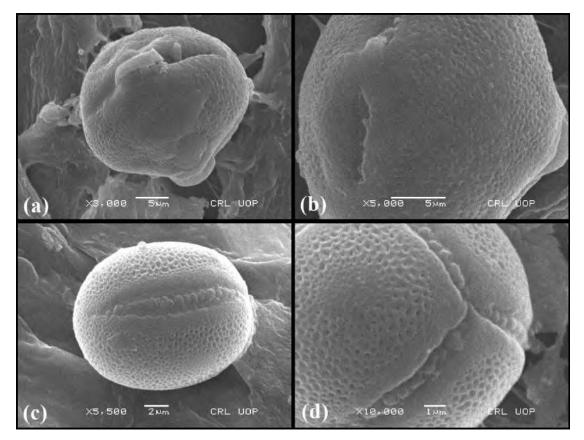
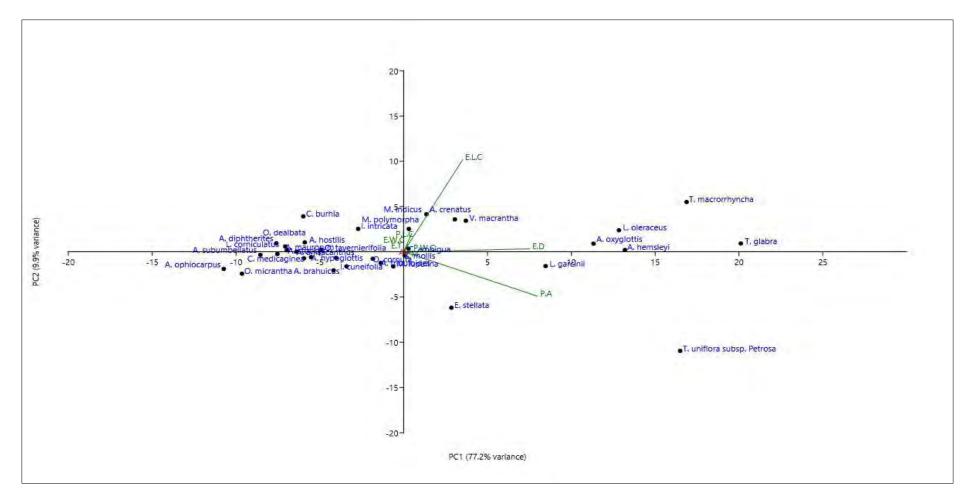



Plate 50. SEM micrographs of pollen (a), (b) *Trigonella macrorrhyncha*, (c), (d) *Vicia macrantha*.

Figure 12. PCA analysis based on quantitative traits; polar axis, equatorial diameter, width and length of colpi in polar view, width and length of colpi in equatorial view, mesocolpium, exine thickness of Fabaceous pollen

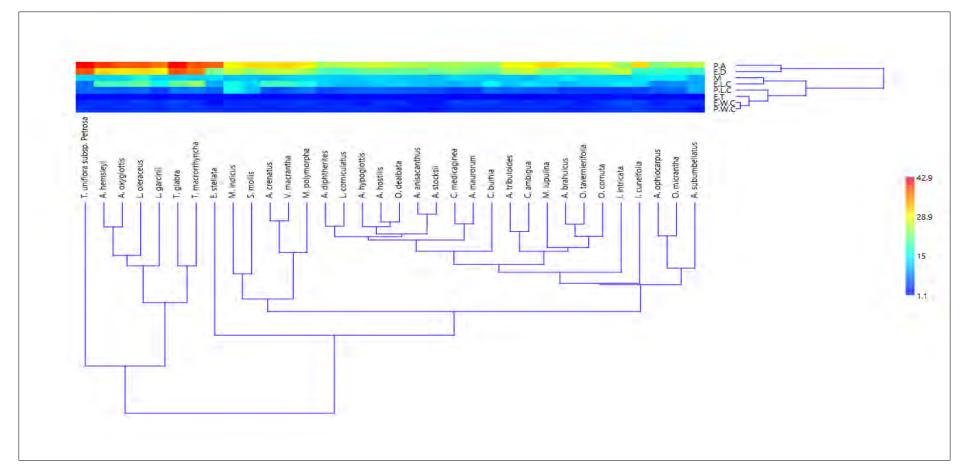
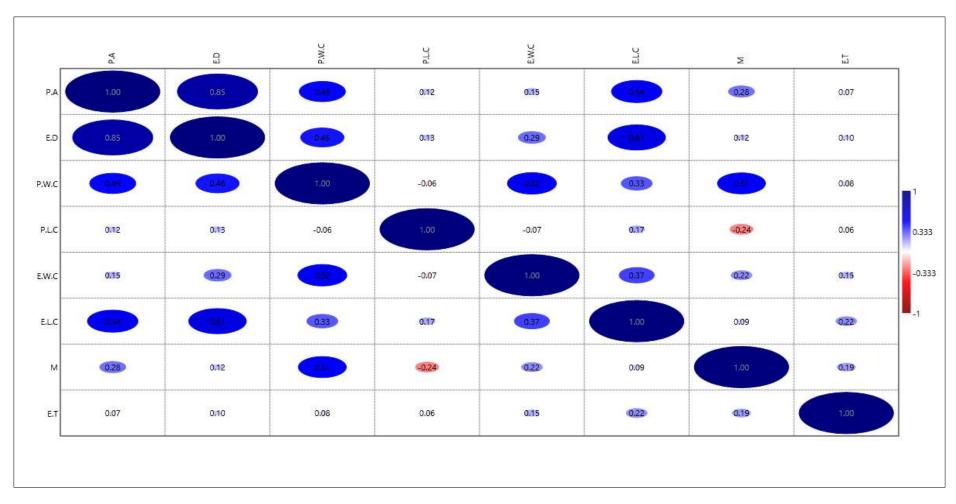



Figure 13. UPGMA cluster analysis based on quantitative traits; polar axis, equatorial diameter, width and length of colpi in polar view, width and length of colpi in equatorial view, mesocolpium, exine thickness of Fabaceous pollen

Figure 14. Correlation among the mean values of polar axis (P.A), equatorial diameter (E.D), width and length of colpi in polar view (W.C.P, L.C.P), width and length of colpi in equatorial view (W.C.E, L.C.E), mesocolpium (M), exine thickness (E.T) of Fabaceous pollen

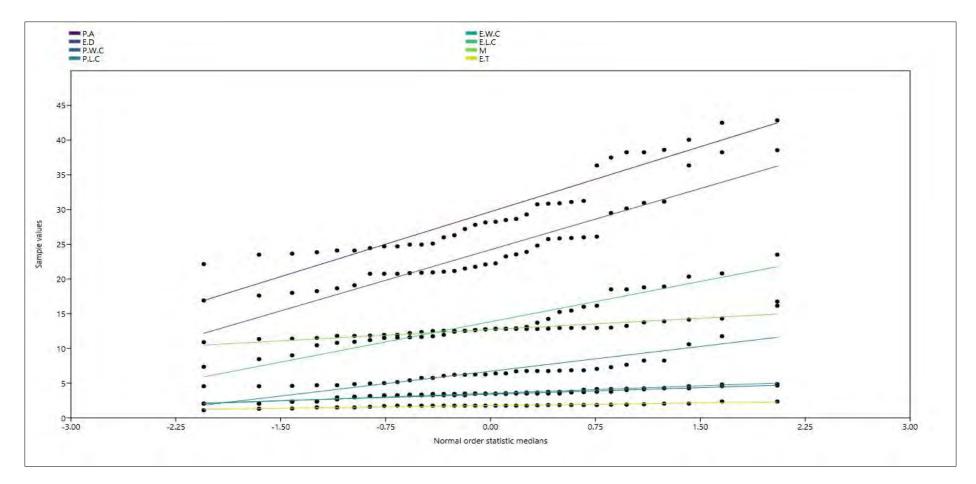


Figure 15. Normal probability distribution among the mean values of polar axis (P.A), equatorial diameter (E.D), width and length of colpi in polar view (W.C.P, L.C.P), width and length of colpi in equatorial view (W.C.E, L.C.E), mesocolpium (M), exine thickness (E.T) of Fabaceous pollen

Таха	Symmetry	Polarity	TI-site-	No. of	Polar	Equatorial	Exine	Aperture	Amb	NPC classification	
Taxa	Symmetry	Polarity	Unity	apertures	view	view	sculpturing	membrane	AIID	Name	Formula
Alhagi maurorum	Radial	Isopolar	Monad	Tricolporate	Triangular obtuse convex	Oval	Microreticulate	Psilate	Peritreme	Trizonocolporate	N ₃ P ₄ C ₅
Astragalus anisacanthus	Radial	Isopolar	Monad	Tricolporate	Circular	Rectangular obtuse convex	Reticulate, psilate at the polar end	Verrucate	Peritreme	Trizonocolporate	$N_3P_4C_5$
Astragalus brahuicus	Radial	Isopolar	Monad	Tricolporate	Triangular obtuse convex	Elliptic to oval	Reticulate, psilate at the polar end	Psilate	Goniotreme	Trizonocolporate	$N_3P_4C_5$
Astragalus crenatus	Radial	Isopolar	Monad	Tricolporate	Circular	Elliptic to oval	Reticulate psilate	Psilate	Goniotreme	Trizonocolporate	$N_3P_4C_5$
Astragalus diphtherites	Radial	Isopolar	Monad	Tricolporate	Circular	Elliptic to oval	Reticulate to psilate	Psilate	Peritreme	Trizonocolporate	$N_3P_4C_5$
Astragalus hemsleyi	Radial	Isopolar	Monad	Tricolporate	Triangular obtuse convex	Elliptic to oval	Reticulate, psilate at the polar end	Psilate to verrucate	Peritreme	Trizonocolporate	$N_3P_4C_5$
Astragalus hypoglottis	Radial	Isopolar	Monad	Tricolporate	Triangular obtuse convex	Oval	Reticulate to psilate	Verrucate	Peritreme	Trizonocolporate	N3P4C5
Astragalus ophiocarpus	Radial	Isopolar	Monad	Tricolporate	Circular	Rectangular obtuse convex	Macroreticulate	Psilate to verrucate	Peritreme	Trizonocolporate	$N_3P_4C_5$
Astragalus oxyglottis	Radial	Isopolar	Monad	Tricolporate	Triangular obtuse concave	Rectangular obtuse convex	Psilate to reticulate and verrucate	Verrucate	Goniotreme	Trizonocolporate	$N_3P_4C_5$
Astragalus stocksii	Radial	Isopolar	Monad	Tricolporate	Triangular obtuse convex	Elliptic truncate	Reticulate	Psilate	Goniotreme	Trizonocolporate	$N_3P_4C_5$
Astragalus subumbellatus	Radial	Isopolar	Monad	Tricolporate	Triangular obtuse convex to straight	Oval	Psilate verrucate	Psilate	Goniotreme	Trizonocolporate	N ₃ P ₄ C ₅

Table 10. Qualitative palynological characteristics of the investigated taxa of Fabaceae

Astragalus tribuloides	Radial	Isopolar	Monad	Tricolporate	Circular to elliptic	Rectangular obtuse convex	Psilate to reticulate	Psilate	Goniotreme	Trizonocolporate	N ₃ P ₄ C ₅
Astragalus hostilis	Radial	Isopolar	Monad	Tricolporate	Circular	Elliptic truncate	Reticulate, psilate at the polar end	Verrucate to psilate	Peritreme	Trizonocolporate	$N_3P_4C_5$
Caragana ambigua	Radial	Isopolar	Monad	Tricolporate	Circular	Oval	Reticulate	Psilate	Peritreme	Trizonocolporate	$N_3P_4C_5$
Crotalaria burhia	Radial	Isopolar	Monad	Tricolpate	Circular	Rectangular obtuse convex Bostongular	Reticulate	Verrucate	Peritreme	Trizonocolpate	N ₃ P ₄ C ₃
Crotalaria medicaginea	Radial	Isopolar	Monad	Tricolpate	Circular	Rectangular obtuse convex	Macroreticulate	Verrucate	Peritreme	Trizonocolpate	N3P4C3
Ebenus stellata	Radial	Isopolar	Monad	Trisynocolpate	Circular	Rectangular obtuse convex	Macroreticulate	Verrucate to psilate	Peritreme	Trizonocolpate	$N_3P_4C_3$
Indigofera cuneifolia	Radial	Isopolar	Monad	Tricolporate	Triangular	Quadrangular	Microreticulate	Verrucate to psilate	Peritreme	Trizonocolpate	$N_3P_4C_3$
Indigofera intricata	Radial	Isopolar	Monad	Tricolporate	Triangular	Quadrangular	Microreticulate	Psilate	Peritreme	Trizonocolpate	$N_3P_4C_3$
Lathyrus oleraceus	Radial	Isopolar	Monad	Tricolporate	Circular	Rectangular obtuse convex	Macroreticulate, psilate at the polar ends	Verrucate to psilate	Peritreme	Trizonocolporate	N3P4C5
Lotus corniculatus	Radial	Isopolar	Monad	Tricolporate	Circular to triangular obtuse convex	Elliptic truncate	Psilate	Psilate	Goniotreme	Trizonocolporate	N ₃ P ₄ C ₅
Lotus garcinii	Radial	Isopolar	Monad	Tricolporate	Circular	Elliptic truncate	Psilate to reticulate	Psilate	Peritreme	Trizonocolporate	$N_3P_4C_5$
Medicago lupulina	Radial	Isopolar	Monad	Tricolporate	Triangular obtuse convex	Circular	Psilate	Psilate	Goniotreme	Trizonocolporate	$N_3P_4C_5$
Medicago polymorpha	Radial	Isopolar	Monad	Tricolporate	Triangular obtuse concave	Oval	Psilate	Psilate	Goniotreme	Trizonocolporate	$N_3P_4C_5$
Melilotus indicus	Radial	Isopolar	Monad	Tricolporate	Circular	Elliptic truncate	Macroreticulate	Psilate to verrucate	Peritreme	Trizonocolporate	N3P4C5

Onobrychis cornuta	Radial	Isopolar	Monad	Tricolpate	Oval	Rectangular obtuse convex	Reticulate to microreticulate	Verrucate	Peritreme	Trizonocolpate	N ₃ P ₄
Onobrychis dealbata	Radial	Isopolar	Monad	Tricolpate	Circular	Rectangular obtuse convex	Macroreticulate	Verrucate	Peritreme	Trizonocolpate	N ₃ P ₄
Onobrychis micrantha	Radial	Isopolar	Monad	Tricolpate	Circular	Rectangular obtuse convex	Reticulate to microreticulate	Verrucate	Peritreme	Trizonocolpate	N ₃ P ₄
Onobrychis tavernierifolia	Radial	Isopolar	Monad	Tricolpate	Circular to oval	Rectangular obtuse convex	Macroreticulate	Verrucate to psilate	Peritreme	Trizonocolpate	N ₃ P ₄
Sophora mollis	Radial	Isopolar	Monad	Tricolporate	Triangular obtuse convex	Rhombic	Reticulate to verrucate	Psilate	Goniotreme	Trizonocolporate	N ₃ P ₄
Taverniera glabra	Radial	Isopolar	Monad	Tricolpate	Circular	Elliptic to oval	Reticulate	Verrucate	Peritreme	Trizonocolpate	N ₃ P ₄
Tephrosia uniflora subsp. Petrosa	Radial	Isopolar	Monad	Tricolporate	Circular to triangular	Elliptic to oval	Microreticulate to psilate	Psilate to verrucate	Goniotreme	Trizonocolporate	N ₃ P ₄
Trigonella macrorrhyncha	Radial	Isopolar	Monad	Tricolporate	Triangular obtuse concave	Elliptic to oval	Psilate to reticulate	Psilate	Goniotreme	Trizonocolporate	N ₃ P ₄
Vicia macrantha	Radial	Isopolar	Monad	Trisynocolpate	Circular	Elliptic truncate	Reticulate	Verrucate	Peritreme	Trizonocolpate	N ₃ P ₄

S/No	Таха	P/E ratio	Size	Shape	Viability %	
1	Alhagi maurorum	1.12	Small	Subprolate	80	
2	Astragalus anisacanthus	1.18	Medium	Subprolate	78	
3	Astragalus brahuicus	1.31	Medium	Subprolate	88	
4	Astragalus crenatus	1.19	Medium	Subprolate	85	
5	Astragalus diphtherites	1.26	Small	Subprolate	69	
б	Astragalus hemsleyi	1.28	Medium	Subprolate	78	
7	Astragalus hypoglottis	1.25	Medium	Subprolate	82	
8	Astragalus ophiocarpus	1.21	Small	Subprolate	90	
9	Astragalus oxyglottis	1.26	Medium	Subprolate	80	
10	Astragalus stocksii	1.13	Small	Prolate-spheroidal	78	
11	Astragalus subumbellatus	1.41	Medium	Prolate	80	
12	Astragalus tribuloides	1.13	Medium	Prolate-spheroidal	80	
13	Astragalus hostilis	1.26	Medium	Subprolate	70	
14	Caragana ambigua	1.10	Medium	Prolate-spheroidal	88	
15	Crotalaria burhia	1.13	Small	Prolate-spheroidal	87	
16	Crotalaria medicaginea	1.10	Medium	Prolate-spheroidal	65	
17	Ebenus stellata	1.72	Medium	Prolate	68	
18	Indigofera linifolia	1.19	Medium	Subprolate	88	

Table 11. Size, shape and viability of pollen of studied Fabaceous taxa

19	Indigofera oblongifolia	1.71	Medium	Prolate	86
20	Lathyrus oleraceus	0.93	Medium	Oblate-spheroidal	89
21	Lotus corniculatus	1.24	Medium	Subprolate	80
22	Lotus garcinii	1.34	Medium	Prolate	70
23	Medicago lupulina	1.23	Medium	Subprolate	89
24	Medicago polymorpha	1.39	Medium	Prolate	90
25	Melilotus indicus	1.22	Medium	Subprolate	86
26	Onobrychis cornuta	1.09	Medium	Prolate-spheroidal	89
27	Onobrychis dealbata	1.20	Medium	Subprolate	80
28	Onobrychis micrantha	1.46	Medium	Prolate	76
29	Onobrychis tavernierifolia	1.26	Medium	Subprolate	80
30	Sophora mollis	1.32	Medium	Subprolate	88
31	Taverniera glabra	1.11	Medium	Prolate-spheroidal	92
32	Tephrosia uniflora subsp. Petrosa	1.11	Medium	Prolate-spheroidal	85
33	Trigonella macrorrhyncha	1.05	Medium	Prolate-spheroidal	88
34	Vicia macrantha	1.19	Medium	Subprolate	78

Plant Species	P.A	E.D	W.C.P	L.C.P	W.C.E	L.C.E	Μ	E.T
Mean± Stander en	ror							
Alhagi	23.5±0.3061865	20.95±0.215054	3.25±0.176772	4.6±0.34095454	4.3±0.2284999	11.95±0.456844	12.5±0.5700871	1.75±0.176774
maurorum	4	5	98	214	322	22	23	42
Astragalus	24.7±0.2893959	20.9±0.3020761	2.05 ± 0.215058	5.75±0.1767766	2.3±0.2669269	11.75±0.176776	11.8±0.4213074	1.75±0.176776
anisacanthus	23	49	132	95	56	695	89	695
Astragalus	27.8±0.5884301	21.15±0.340954	3.05±0.145773	4.55±0.2150581	3.55 ± 0.215058	11.2±0.2150581	13.9±0.9861541	1.75±0.176776
brahuicus	15	542	797	32	132	32	46	695
Astragalus	30.75±0.176776	25.75±0.176776	2.95 ± 0.215058	5.4±0.47169905	3.65±0.322102	18.5±0.1767766	11.4±0.3316624	1.75±0.176776
crenatus	695	695	132	7	468	95	79	695
Astragalus	24.1±0.2318404	19.1±0.3020761	3.7±0.2150581	4.95±0.1837117	3.15±0.169558	12.75±0.285043	12.75±0.637377	1.5±0.1767766
diphtherites	62	49	32	31	25	856	439	95
Astragalus	40.05±0.532681	31.15±0.231840	3.25±0.176776	6.75±0.1767766	3.75±0.176776	18.8±0.2150581	12.55±0.649037	1.75±0.176776
hemsleyi	894	462	695	95	695	32	749	695
Astragalus	26±0.176776695	20.75±0.176776	3.75±0.176776	6.8±0.14577379	2.35 ± 0.231840	11.55±0.310241	12.55±0.588430	1.7±0.1457737
hypoglottis		695	695	7	462	841	115	97
Astragalus	22.15±0.322102	18.25±0.306186	3.45 ± 0.215058	6.4±0.25739075	2.95±0.215058	8.45±0.3482097	14.15±1.020416	1.75±0.176776
ophiocarpus	468	218	132	4	132	07	582	695
Astragalus	38.25±0.176776	30.15±0.257390	3.75±0.176776	6.2±0.21505813	3.5±0.1767766	18.9±0.3409545	12.8±0.6585969	1.8±0.1457737
oxyglottis	695	754	695	2	95	42	94	97
Astragalus	23.85±0.527967	21.05±0.215058	2.05 ± 0.215058	5.75±0.1767766	2.05 ± 0.215058	11.5±0.3535533	11.35±0.302076	1.9 ± 0.1274754
stocksii	802	132	132	95	132	91	149	88
Astragalus	24.95±0.365718	17.6±0.6451743	2.35±0.231840	10.6±0.2692582	3.65±0.302076	10.45±0.215058	10.9±0.3316624	1.35±0.127475
subumbellatus	471	95	462	4	149	132	79	488
Astragalus	28.15±0.257390	24.8±0.3657184	3.5±0.1767766	6.75±0.1767766	3.25±0.176776	11.65±0.257390	12.2±0.6144102	1.75±0.176776
tribuloides	7	71	95	95	695	754	86	695
Astragalus hosti	26.3±0.4430011	20.85±0.231840	3.25±0.176776	6.75±0.1767766	3.75±0.176776	12.55±0.242383	12.8±0.6585969	1.85±0.127475
lis	29	462	695	95	695	993	94	488
Caragana ambi	28.65±0.231840	25.9±0.1274754	3.5±0.1767766	6.2±0.34820970	3.45±0.215058	13.7±0.3297726	11.5±0.3535533	1.1±0.2031009
gua	462	88	95	7	132	49	91	6

Table 12. Quantitative palynological measurements of Fabaceous taxa

Crotalaria burhia Crotalaria medicaginea Ebenus stellata Indigofera cuneifolia	$\begin{array}{c} 23.65 \pm 0.231840 \\ 462 \\ 24.45 \pm 0.339116 \\ 499 \\ 37.5 \pm 0.3535533 \\ 91 \\ 30.9 \pm 0.5220153 \\ 25 \end{array}$	20.75 ± 0.176776 695 22.1 ± 0.4301162 63 21.75 ± 0.586301 97 18 ± 3.877015605	3.45 ± 0.215058 132 3.5 ± 0.1767766 95 3.25 ± 0.176776 695 4.65 ± 0.203100 96	7.3 ± 0.53851648 1 4.55 ± 0.2150581 32 6.85 ± 0.2573907 54 5.15 ± 0.2318404 62	$\begin{array}{c} 4.15 \pm 0.257390 \\ 754 \\ 4.25 \pm 0.176776 \\ 695 \\ 2.05 \pm 0.215058 \\ 132 \\ 4.55 \pm 0.215058 \\ 132 \end{array}$	15.25±0.637377 439 10.95±0.365718 471 10.8±0.2 13.1±0.8162413 86	11.95 ± 0.483476 99 12.95 \pm 0.686476 511 13.25 \pm 0.858778 202 13.75 \pm 0.897914 25	$\begin{array}{c} 1.5 \pm 0.1767766\\ 95\\ 1.3 \pm 0.2150581\\ 32\\ 1.75 \pm 0.176776\\ 695\\ 1.85 \pm 0.15\end{array}$
Indigofera	24.1±0.2318404	25.85±0.257390	3.65±0.257390	4.7±0.21505813	4.85±0.231840	14.25±0.176776	12.8±0.6585969	2.35±0.231840
intricate Lathyrus oleraceus	62 38.6±0.4847679 86	754 30.95±0.348209 707	754 4.25±0.176776 695	2 7.05±0.2150581 32	462 4.15±0.257390 754	695 20.8±0.5884301 15	94 16.75±1.629800 601	462 1.75±0.176776 695
Lotus corniculatus	25.1±0.4227883	18.65±0.231840 462	3.45±0.215058 132	6.05±0.2150581 32	3.45±0.215058 132	11.6±0.2692582 4	11.95±0.520816 666	1.75±0.176776 695
Lotus garcinii	36.35±0.257390 754	402 29.5±0.2850438 56	3.15±0.127475 488	52 5±0.223606798	3.5±0.1767766 95	4 15.45±0.215058 132	13±0.702673466	095 1.5±0.1767766 95
Medicago	31.1±0.3221024	22.25±0.353553	3.5±0.25	6.25±0.3952847	3.35±0.127475	12.85±0.340954	12.85 ± 0.673609	1.95±0.145773
lupulina	68	391		08	488	542	679	797
Medicago	29.3±0.3657184	23.9±0.2318404	3.25±0.176776	8.25±0.1767766	4.2±0.4138236	16.15±0.302076	12.8±0.6585969	2.35±0.231840
polymorpha Melilotus	71 28.5±0.1767766	62 26±0.176776695	695 3.25±0.176776	95 16.15±0.302076	34 3.25±0.176776	149 16±0.353553391	94 11.8±0.4213074	462 1.9±0.1274754
indicus	28.3±0.1767766 95	20±0.170770093	5.25±0.176776 695	16.13±0.302076 149	5.23±0.176776 695	10±0.5555555591	11.8±0.4215074 89	1.9±0.1274754 88
Onobrychis cornuta	28.25±0.935414 347	23.55±0.348209 707	4±0.176776695	4.7±0.21505813 2	4.05±0.348209 707	12.65±0.231840 462	12.8±0.6585969 94	1.75±0.176776 695
Onobrychis dealbata	24.95±0.365718 471	20.75±0.176776 695	2.35±0.231840 462	6.4±0.26925824	3.6±0.3122499	12.85±0.610327 781	12.35±0.562361 094	1.85±0.127475 488
Onobrychis micrantha	24.7±0.3570714 21	16.9±0.3588175 02	3.45±0.165831 24	6.85±0.2573907 54	3.5±0.1767766 95	9±0.176776695	14.3±1.0259142 26	1.85±0.127475 488
Onobrychis	27.2±0.4286607 05	21.5±0.3061862 18	3.1±0.2692582 4	4.85±0.2318404 62	2.65±0.231840 462	12.4±0.2692582 4	12.95±0.686476 511	2.05±0.215058 132
tavernierifolia Sophora mollis	30.85±0.392109 679	18 23.25±0.176776 695	4 3.25±0.176776 695	62 11.75±0.176776 695	462 3.35±0.231840 462	4 12.9±0.1870828 69	511 11.85±0.539675 829	132 1.75±0.176776 695
Taverniera glabra	42.5±0.3535533 91	38.25±0.176776 695	4.55±0.215058 132	7.65±0.2318404 62	4.8±0.2	20.35±0.407737 661	12.95±0.686476 511	2.05±0.215058 132

Tephrosia uniflora subsp.	42.85±0.302076 149	38.55±0.165831 24	4.1±0.2692582 4	6.7±0.21505813 2	3.5±0.1767766 95	7.35±0.2318404 62	12.95±0.721976 454	1.6±0.2318404 62
petrosa								
Trigonella	38.25±0.176776	36.35±0.322102	4.25±0.176776	8.25±0.1767766	3.75±0.176776	23.5±0.1767766	12.65±0.635413	1.85±0.127475
macrorrhyncha	695	468	695	95	695	95	251	488
Vicia	31.25±0.325960	26.1±0.2573907	3.5±0.1767766	6.25±0.1767766	3.45±0.215058	18.5±0.1767766	12.55±0.588430	1.75±0.176776
macrantha	12	54	95	95	132	95	115	695

(P.A: polar axis; E.D: equatorial diameter, L.C.P, W.C.P, L.C.E, W.C.E: length and width of colpi in polar and equatorial view, M: mesocolpium, E.T: exine thickness)

Link Character	Leads	Characters	Taxa/ Go to link character
1	a	Trisynocolpate colpi	2
	b	Colpi other than trisynocolpate	3
2	a	Equatorial view rectangular obtuse convex	Ebenus stellata
	b	Equatorial view elliptic truncate	Vicia macrantha
3	a	Tricolpate pollen	4
	b	Tricolporate pollen	11
4	a	Oval in polar view	Onobrychis cornuta
	b	Circular in polar view	5
5	a	Reticulate	6
	b	Reticulate with combination	7
6	a	Rectangular obtuse convex in equatorial view	Crotalaria burhia
	b	Elliptic to oval in equatorial view	Taverniera glabra
7	a	Aperture membrane verrucate to psilate	Onobrychis tavernierifolia
	b	Aperture membrane verrucate	8
8	a	Reticulate to microreticulate	9
	b	Mcroreticulate	10
9	a	Pollen shape prolate-spheroidal	Onobrychis cornuta
	b	Pollen shape Prolate	Onobrychis micrantha

Table 13. Dichotomous (single access) bracketed / parallel taxonomic key based on pollen morphological traits of Fabaceous flora

10	а	Prolate-spheroidal pollen	Crotalaria medicaginea
	b	Subprolate	Onobrychis dealbata
11	а	Goniotreme amb	12
	b	Peritreme amb	22
12	а	Psilate exine	13
	b	Exine other than psilate	15
13	а	Circular to triangular obtuse convex polar view	Lotus corniculatus
	b	Triangular obtuse convex	14
14	а	Circular equatorial view	Medicago lupulina
	b	Oval equatorial view	Medicago polymorpha
15	a	Aperture membrane verrucate	Astragalus oxyglottis
	b	Aperture membrane psilate	16
16	a	Rhombic equatorial view	Sophora mollis
	b	Equatorial view not rhombic	17
17	а	Prolate-spheroidal shape	18
	b	Subprolate shape	19
18	а	Circular to triangular polar view	Tephrosia uniflora subsp. Petrosa
	b	Triangular obtuse concave polar view	Trigonella macrorrhyncha
19	a	Circular to elliptic polar view	20
	b	Triangular obtuse convex polar view	21

20	а	Prolate-spheroidal pollen shape	Astragalus tribuloides
	b	Subprolate pollen	Astragalus crenatus
21	a	Psilate verrucate exine	Astragalus subumbellatus
	b	Psilate exine	Astragalus brahuicus, Astragalus stocksii
22	a	Quadrangular equatorial view	23
	b	Equatorial view not quadrangular	24
23	a	Pollen shape subprolate	Indigofera cuneifolia
	b	Pollen shape prolate	Indigofera intricata
24	a	Triangular obtuse convex polar view	25
	b	Circular polar view	27
25	a	Microreticulate exine	Alhagi maurorum
	b	Exine reticulate to psilate or reticulate, psilate at the polar end	26
26	a	Elliptic to oval equatorial view	Astragalus hemsleyi
	b	Oval polar view	Astragalus hypoglottis
27	a	Small pollen size	Astragalus ophiocarpus
	b	Medium pollen size	28
28	а	Prolate pollen shape	Lotus garcinii
	b	Pollen shapes other than prolate	29
29	а	Prolate-spheroidal pollen	Caragana ambigua
	b	Subprolate pollen	30

3.3 Pollen Micromorphology of the Lamiaceous taxa

in Northern Baluchistan

3.3.1 Results and Discussion

The pollen micromorphology of 31 Lamiaceous species was studied via LM and SEM. Qualitative characteristics such as polarity, aperture types, exine sculpturing, amb, and quantitative features like polar axis, equatorial diameter, colpus width and length were observed. The terminologies for pollen features were observed from the standard provided by Erdtman (1969).

a) Symmetry, polarity, and unity of pollen of Lamiaceous species

Symmetry, polarity, and unity of the pollen of Lamiaceous species were homogenous. These characters were found non-significant in the discrimination of taxa. The examined pollen were radial, isopolar and monad (Table 14). Pollen features studied via LM and SEM were genetically specified, consistent, and unique to each species (e.g., exine). These characteristics aided in species differentiation (Mert, 2010). Soares (2018), demonstrated that the pollen traits were highly valuable in the taxonomy of Lamiaceous species. Erdtman (1945) divided the Lamiaceae into the Lamioideae and Nepetoideae groups based on the number of apertures and pollen nuclei.

b) Size, and shapes of pollen of Lamiaceous species

The medium size pollen were noted in 27 species. Small size pollen were observed in *Nepeta praetervisa*. Large pollen were present in three species *Salvia cabulica, Salvia moorcroftiana,* and *Nepeta glomerulosa*. The shapes of the pollen were prolate spheroidal (8), oblate-spheroidal (8), sub- oblate (5), spherical (5), oblate (3), and sub- prolate (2). *Nepeta glomerulosa, Clinopodium umbrosum,* and *Salvia cabulica* pollen were oblate. *Ajuga alpina* was noted with prolate pollen. Pollen in *Scutellaria linearis* and *Salvia leucantha* were sub-prolate (Table 15). Previously, spheroidal pollen were reported with six zonocolpate and three zonocolpate aperture. Doaigey et al. (2017), classified the Lamiaceous pollen into two groups, based on the number of colpi: hexa-zonocolpate group, and tri-zonocolpate group. The pollen of the studied species has a heterocolpate character, which was consistent with previous findings (Erdtman,

1971; Raj, 1974). Kar (1993) concluded that the size of pollen varied greatly between Lamiaceous species from the Indian subcontinent. Earlier studies documented that the Nepetoideae pollen varied in size from small in *S. plebeia* to large in *O. americanum* (Lens et al., 2005). In the present study the size varied from small (*Nepeta praetervisa*), to medium (five species), and large (*Nepeta glomerulosa*) in the *Nepeta* genus. Pollen size varied within the Nepetoideae taxa (Özler et al., 2011).

c) Aperture types of the pollen of Lamiaceous species

Variations were observed in the pollen aperture types in the present study. The number of colpi and pores were varied even within the pollen of a single species. The observed pollen types were tricolpate, tricolporate, hexacolpate, hexacolporate, tetra-hexacolpate, hexa to multi syncolpate, and tri to hexacolpate. Pollen of 8 species of Lamiaceae were tricolpate. *Marrubium vulgare* and *Otostegia limbate* were observed with tricolporate pollen. Hexacolpate aperture was determined in 10 Lamiaceous species. The hexacolporate aperture type was observed in 6 taxa. The pollen in *Salvia santolinifolia* were tri to hexacolpate. Tetra to hexacolpate apertures were observed in 6 taxa. Distinct aperture type hexa to multi syncolpate type was observed in *Salvia leucantha*. This pollen was observed with six to many colpi. The colpi were fused at the apices in synocolpate type (Plate 51-57).

The observed pollen in *Nepeta* genus were tricolpoate, hexacolpate, tetra to hexacolpate. Azizian et al. (2001) also documented the haxacolpate aperture in genus *Nepeta*. Sultan et al. (2021) reported the *Nepeta praetervisa* as hexacolpoate, in the present study, tetra to hexacolpate aperture were noted. Celenk et al. (2008) documented hexacolpate, radially symmetrical, isopolar, microreticulate, bireticulate pollen in *N. congesta var. cryptantha, N. heliotropifolia, N. isaurica, N. cataria, N. meyeri,* and *N. fissa*. Pollen morphology of *N. cataria, N. nuda, N. racemosa,* and *N. viscida* were studied by Moon et al. (2008) and Jamzad et al. (2003). Presently, significant variations were observed in the aperture (hexacolpate, hexacolporate, tricolpate, and tetra to hexacolpate) in the *Nepeta* genus. Similarly, *Stachys parviflora* was observed as trizonocolpate, the results were consistence with *Stachys aegyptiaca*. Hexacolpate, microreticulate, and perorate pollen were observed in *Micromearia biflora*. Reticulate perforate pollen in *Micromeria imbricata* (Doaigey et al., 2018).

Tricolpate, tetracolpate, hexacolpate, heptacolpate, and octacolpate pollen were reported in Lamiaceae earlier by Myoung et al. (2012), Cantino et al. (1992), Boi et al. (2013), Kremer et al. (2014). In the present study, six aperture types were observed. Multisyncolpate aperture was observed in Salvia leucantha. In the Lamiaceae, suprareticulate (bireticulate) exine was apomorphic, while in the Lamioidae subfamily, the pollen were plesiomorphic (Cantino, 1992). Pollen in the Lamioidae sub family were documented as psilate, granulate, rugulate, and suprareticulate to rugulate sculpturing patterns (Abu-Asab and Cantino, 1994). In the current study, hexacolpate, and tri to hexacolpate aperture were noted in Salvia species. Similar results were reported by Hassan et al. (2009), Firat et al. (2017). Hexacolpate pollen was prominent in Salvia species, with tetra-, penta, hepta, or octacolpate pollen. Aperture heteromorphism was documented in S. coccinea (Trudel and Morton, 1992), S. barrelieri, S. eremostachya, S. leucantha, S. splendens, and S. uliginosa (Moon et al., 2008), S. recognita (Özler et al., 2011), S. palaestina (Moon et al., 2008). Presently, the hetromorphism was observed in Salvia santolinifolia. Aperture heteromorphism can be caused by normal ecological conditions.

d) Exine sculpturing, surface, and aperture membrane of

Lamiaceous taxa

The macroreticulate (12 species), and reticulate (12 species) exine was observed in the Lamiaceous species. Distinct sculpturing foveolate was present in *Marrubium vulgare* and *Stachys parviflora*, reticulate-gemmate in *Lallemantia royleana*, reticulatestriate in *Thymus linearis*, reticulate and gemmate in *Salvia santolinifolia*, roughlyreticulate in *Phlomis stewartia*. The exine surface was non-perforte, perforate, microperforate, macroperforate (whole pollen), and reticulate in different species. The differences in the aperture membrane of pollen of Lamiaceous species further aided in the discrimination and separation. The aperture membrane was verrucate, scabrate verrucate, gemmate-psilate, scabrate, and psilate (Harley, 1992; Lens et al., 2005; Moon et al., 2008; Schols et al., 2004). The apertures were deeply sunken (in some species) and appeared as a line on the pollen surface (Plate 51-57). Dinç et al. (2009) also reported reticulate (micro and macro). Gemmate-verrucate exine was observed in *Teucrium stocksianum*, consistent with findings by Navarro et al. (2004) for *Teucrium* *oliverianum* granulate pollen. The exine in *Origanum majorana* was reticulate macroperforate, similar was reported for *Origanum syriacum* by Yildiz et al. (2009).

The variations in the shape of primary lumina and muri as well as the number of perforations within the reticulation aided in the taxonomy of Lamiaceous species. Atalay et al. (2016) concluded that *Lamium* species have angular primary lumina and non-undulate muri, with or without perforations. Reticulate tectum was the most prevalent exine type in the Lamiaceae (Perveen and Qaiser, 2003). Earlier studies (Mousavi 2014; Rashid et al., 2018; Ullah et al., 2018) have also documented the significance of SEM of pollen in distinguishing and establishing phylogenetic relationships of various problematic taxa. Pollen morphological variations significantly assisted in the distinction of species and genera within the Lamiaceae (Kandemir et al., 2019; Shah et al., 2019; Ullah et al., 2018). The taxonomic key was developed based on the analyzed pollen features of Lamiaceous species (Table 17). Exine sculpturing of *Ocimum* species was bireticulate-perforate (Harley et al., 1992), these variations resulted in the replacement of various species within the genus. Özler et al. (2011) reported bireticulate exine in *Salvia* species.

e) Polar and equatorial view, amb, and NPC classification of Lamiaceous species

Significant variations were observed within the polar and equatorial view of pollen of studied Lamiaceous species. The terminologies were noted from the types provided by Erdtman (1969). The pollen of Lamiaceae appeared as circular, circular to quinquangular obtuse, circular to quinquangular obtuse, triangular to circular, triangular obtuse, circular to triangular obtuse convex, and triangular shapes in the polar view. The equatorial view was elliptic truncate, elliptic obtuse, circular, circular to elliptic, circular to slightly elliptic, and elliptic to rhombic obtuse truncate. Celenk et al. (2008) reported suboblate, and circular equatorial view in the Lamiaceous species. In the present study, variations were observed in the polar and equatorial views. These variations were successfully employed in the construction of a taxonomic key for the separation of the studied species. The amb of the pollen of Lamiaceous species were ptychotreme in 14 species, ptychotrem- peritreme in 3 taxa, peritreme in 12 members. *Salvia santolinifolia* pollen were peritreme-goinotreme. Pollen amb in *Otostegia*

aucheri was goniotreme. The *Salvia* genus was noted elliptic to circular in polar view (Sebsebe and Harley, 1992; Lens et al., 2005).

f) Multivariate analysis

The analysis of quantitatively measured features in the form of PCA, dendrogram, correlation plots demonstrated their significance in taxonomic studies (Figure 16). The PCA determined the 62.4% and 23.6% variance between PC1 and PC2 respectively. Most of the examined characters were positively correlated. The highest positive correlation 0.78 was noted between the polar axis and the equatorial diameter. While least positive correlation 0.04 was observed between exine thickness and polar width of colpi. The maximum negative correlation -0.31 was revealed between the exine thickness and equatorial length of colpi (Figure 18). The exine thickness was also negatively correlated -0.01 with the polar length of colpi. The quantitative variables significantly created the phylogenetic association among the taxa via dendrogram. Salvia leucantha and Salvia plebeian were found closely placed in the phylogenetic tree. Similarly, the two Otostegia species were in the same lineated cluster. The boxjatter plot determined the trends in the data set for the quantitative features. The outliers in the data were represented by black dots (Figure 19). The color box represented the mean data values for each trait while the standard error was shown by the straight black line. The quantitative aspects significantly discriminated the analyzed Lamiaceous species.

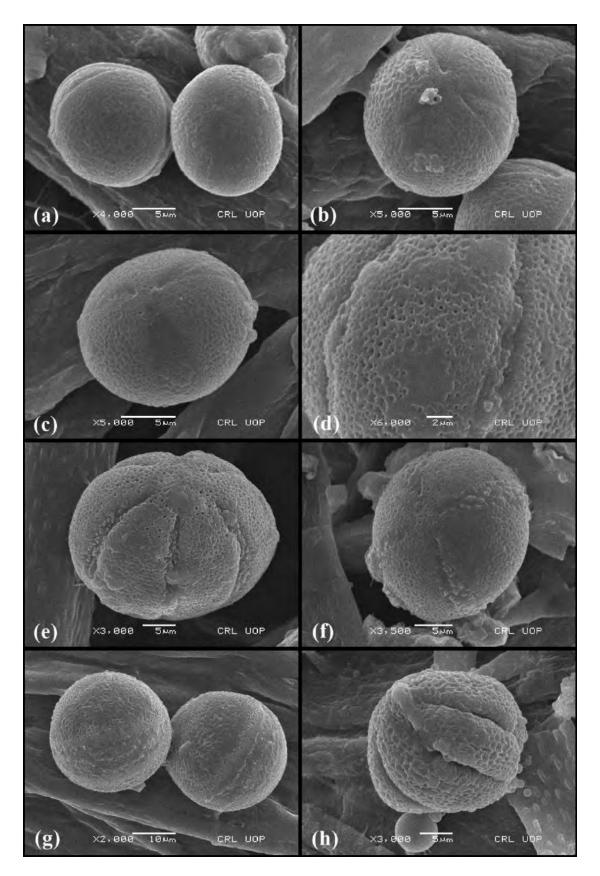


Plate 51. SEM micrographs of pollen; (a), (b) *Ajuga alpina*, (c) *Ajuga bracteosa*, (d), (e)*Clinopodium umbrosum*,(f),(g)*Eremostachys vicaryi*,(h)*Isodon rugosus*

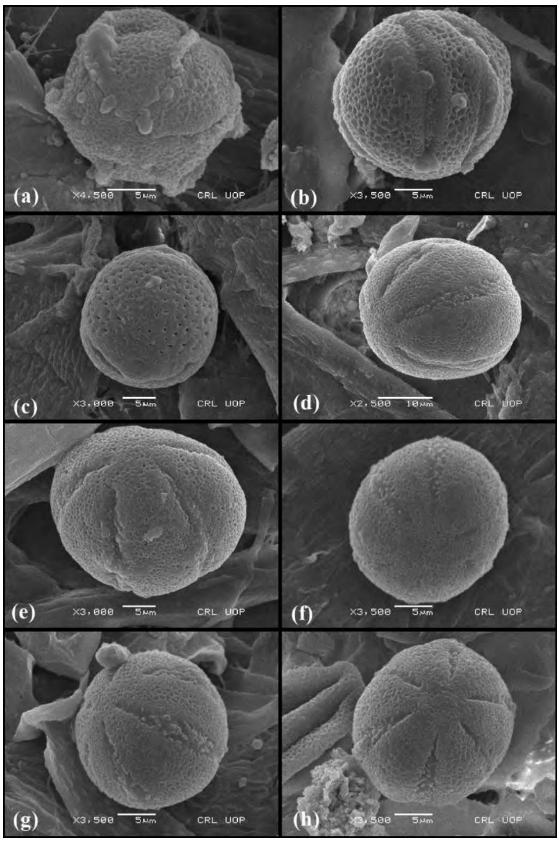


Plate 52. SEM micrographs of pollen (a), (b) Lallemantia royleana, (c) Marrubium vulgare, (d), (e) Micromeria biflora, (f), (g) Nepeta bracteata, (h) Nepeta eriosphaera

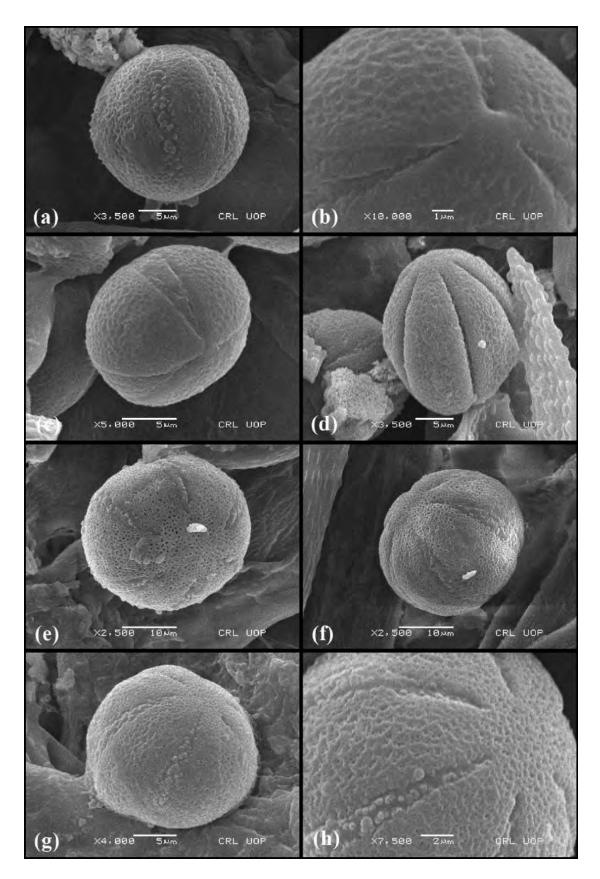


Plate 53. SEM micrographs of pollen (a) *Nepeta eriosphaera*, (b), (c) *Nepeta glomerulosa*, (d) *Nepeta griffithii*, (e), (f) *Nepeta hindostana*, (g), (h) *Nepeta juncea*

Palyno-anatomical Studies of Dicot Phytodiversity in Northern Baluchistan, Pakistan

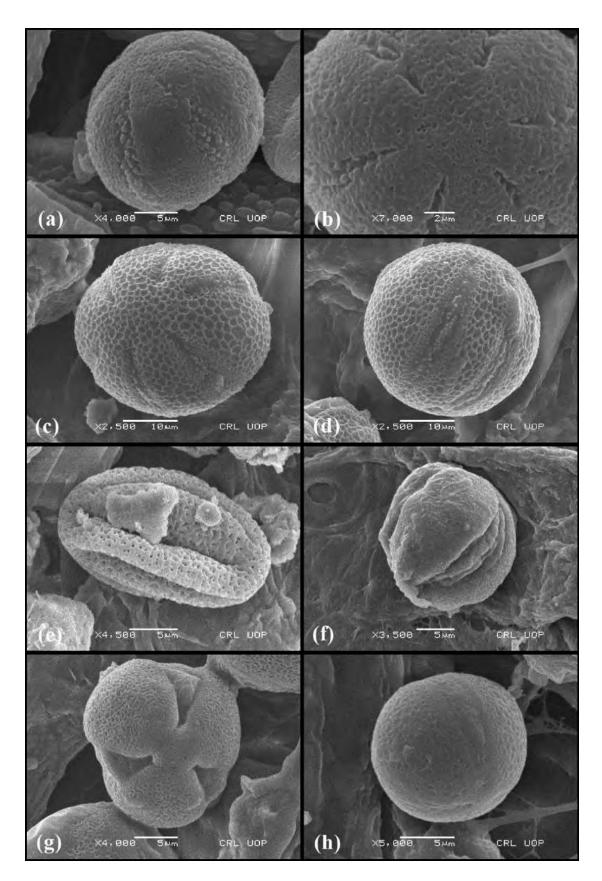


Plate 54. SEM micrographs of pollen (a), (b) Nepeta praetervisa, (c), (d) Ocimum africanum, (e) Origanum majorana, (f) Otostegia aucheri, (g), (h) Otostegia limbata

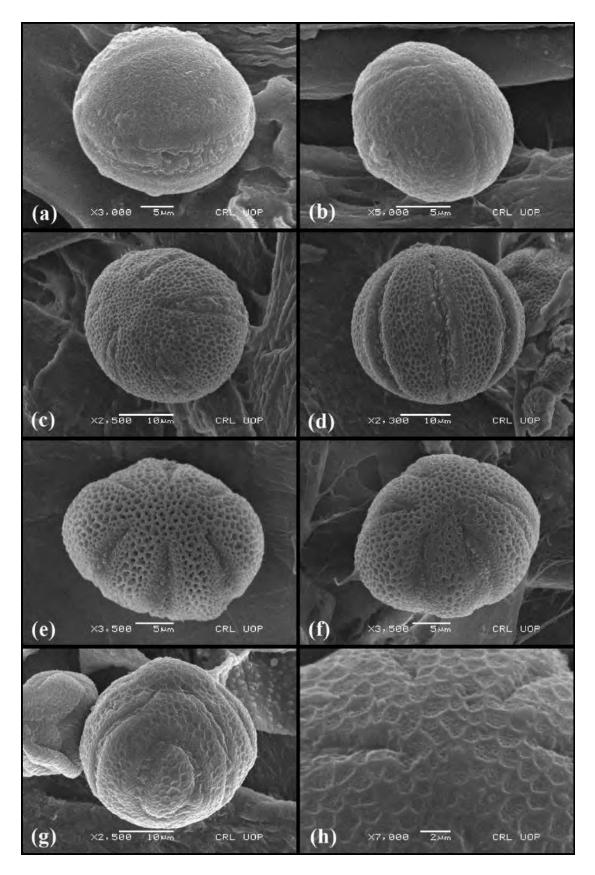


Plate 55. SEM micrographs of pollen (a), (b) *Phlomis stewartii*, (c), (d) *Salvia cabulica*, (e), (f) *Salvia coccinea*, (g), (h) *Salvia leucantha*

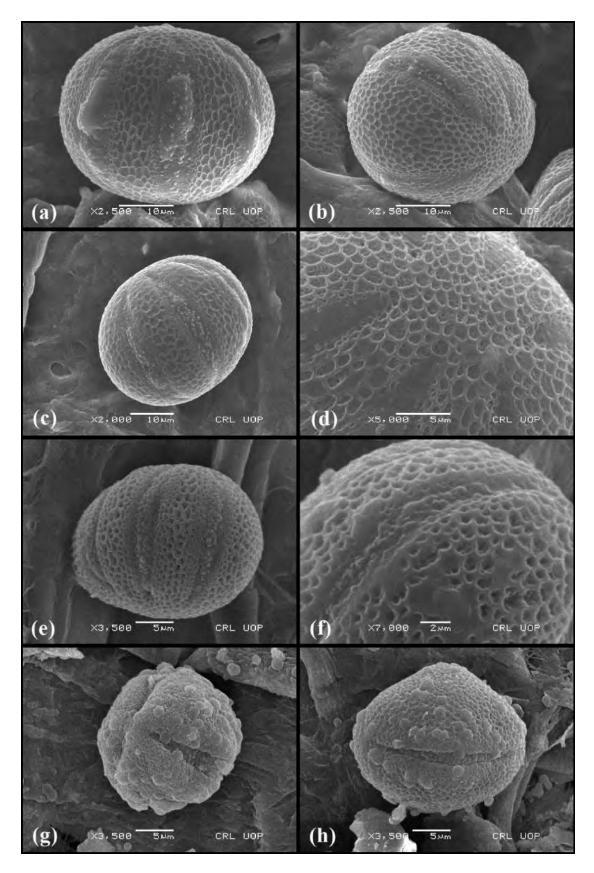


Plate 56. SEM micrographs of pollen (a), (b) *Salvia macrosiphon*, (c), (d) *Salvia moorcroftiana*, (e), (f) *Salvia plebeia*, (g), (h) *Salvia santolinifolia*

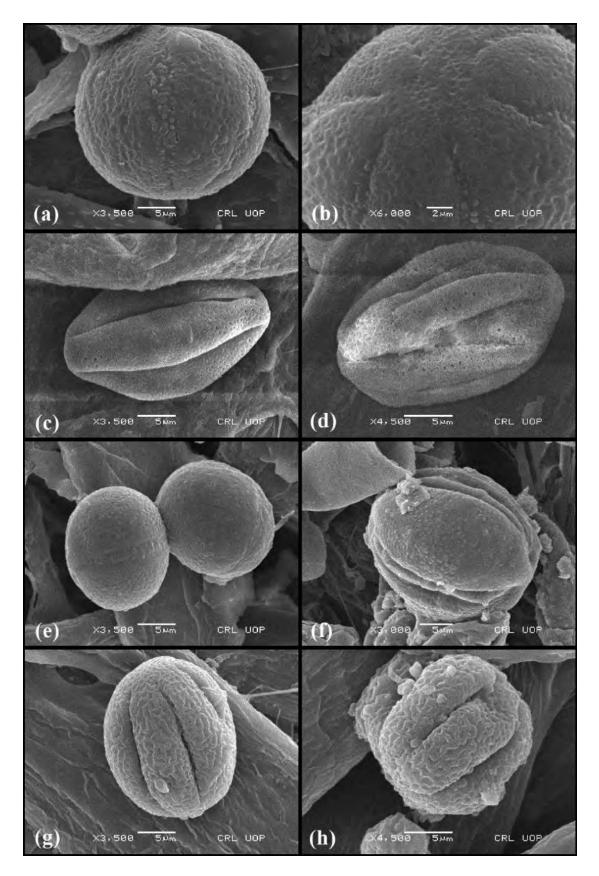


Plate 57. SEM micrographs of pollen (a), (b) *Scutellaria linearis*, (c), (d) *Stachys parviflora*, (e), (f) *Teucrium stocksianum*, (g), (h) *Thymus linearis*

Palyno-anatomical Studies of Dicot Phytodiversity in Northern Baluchistan, Pakistan

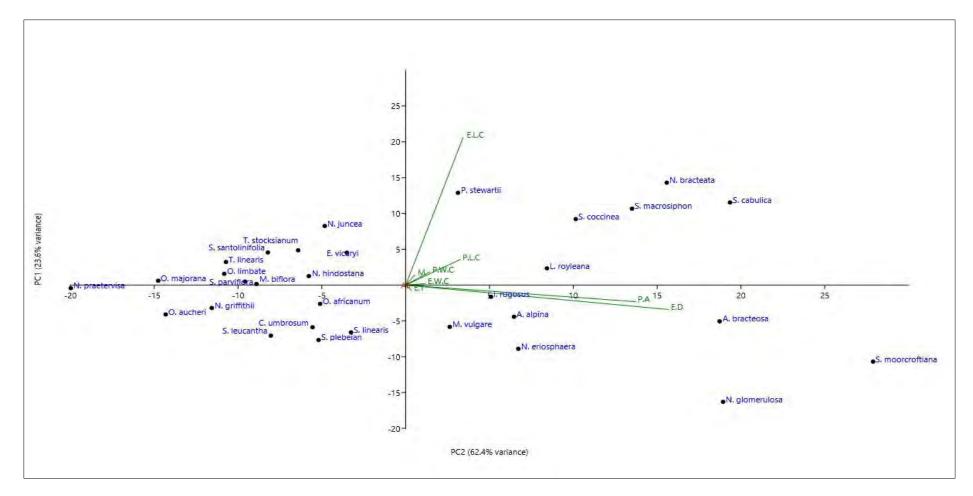


Figure 16. PCA analysis based on quantitative traits; polar axis, equatorial diameter, width and length of colpi in polar view, width and length of colpi in equatorial view, mesocolpium, exine thickness of Lamiaceous pollen

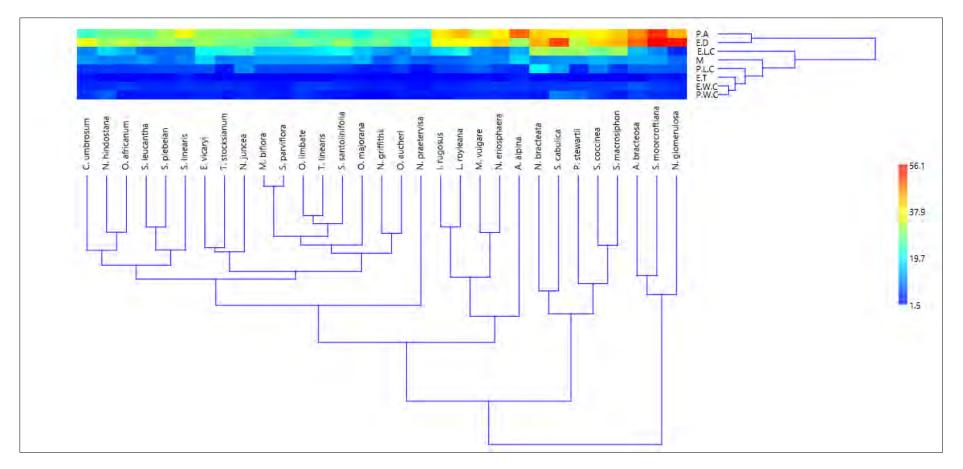
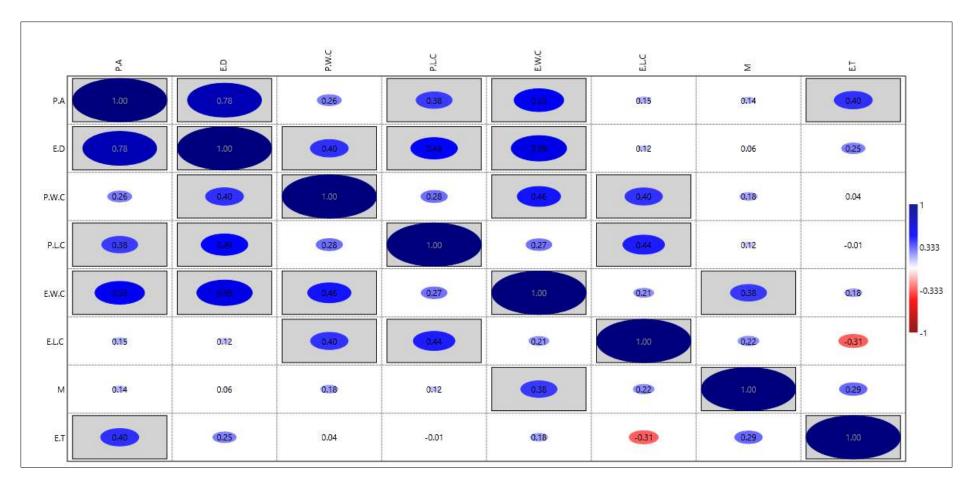
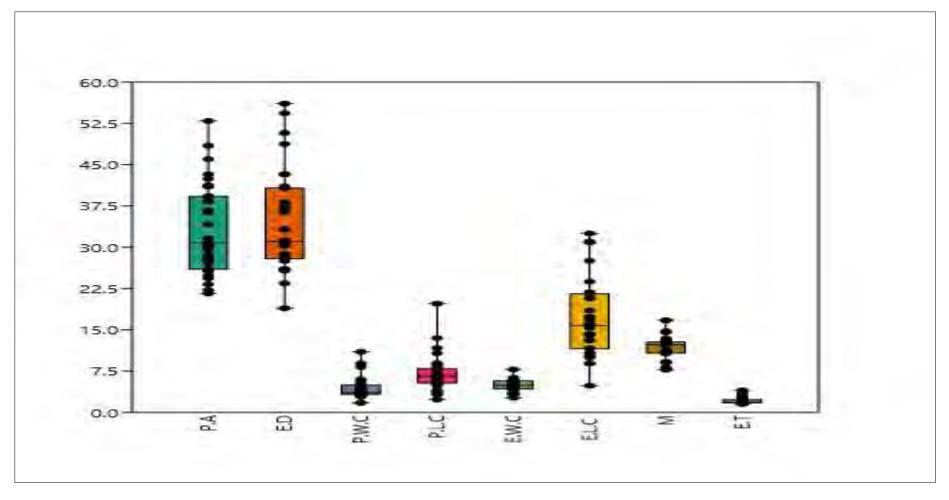




Figure 17. UPGMA cluster analysis based on quantitative traits; polar axis, equatorial diameter, width and length of colpi in polar view, width and length of colpi in equatorial view, mesocolpium, exine thickness of Lamiaceous pollen

Figure 18. Correlation among the mean values of polar axis (P.A), equatorial diameter (E.D), width and length of colpi in polar view (W.C.P, L.C.P), width and length of colpi in equatorial view (W.C.E, L.C.E), mesocolpium (M), exine thickness (E.T) of Lamiaceous pollen

Figure 19. Box-jatter plot for the mean values of polar axis (P.A), equatorial diameter (E.D), width and length of colpi in polar view (W.C.P, L.C.P), width and length of colpi in equatorial view (W.C.E, L.C.E), mesocolpium (M), exine thickness (E.T) of Lamiaceous pollen

Plant name	P. A	E. D	P/E	Size class	Shape class
Ajuga alpina	48.45	31.05	1.5	medium	Prolate
Ajuga bracteosa	46	48.75	0.9	medium	oblate-spheroidal
Clinopodium umbrosum	24.35	36.45	0.6	medium	Oblate
Eremostachys vicaryi	30.75	30.9	0.9	medium	oblate-spheroidal
Isodon rugosus	30.6	27.9	1.0	medium	prolate -spheroidal
Lallemantia royleana	42.45	37.35	1.1	medium	prolate -spheroidal
Marrubium vulgare	34.15	38.15	0.8	medium	sub- oblate
Micromearia biflora	29.75	26	1.1	medium	prolate -spheroidal
Nepeta bracteate	41	43.25	0.9	medium	oblate-spheroidal
Nepeta eriosphaera	38.4	41.05	0.9	medium	oblate-spheroidal
Nepeta glomerulosa	43.25	54.35	0.7	large	Oblate
Nepeta griffithii	25.65	27.5	0.9	medium	oblate-spheroidal
Nepeta Hindostana	27.8	31.25	0.8	medium	sub- oblate
Nepeta juncea	30.6	27.9	1.0	medium	prolate -spheroidal
Nepeta praetervisa	22.2	18.9	1.1	small	prolate -spheroidal
Ocimum africanum	29.75	26	1.1	medium	prolate -spheroidal
Origanum majorana	21.6	25.75	0.8	medium	sub- oblate
Otostegia aucheri	25.75	23.45	1.0	medium	Spherical

 Table 14. Size, shape and viability of pollen of Lamiaceous species

Otostegia limbate	23.25	28.5	0.8	medium	sub- oblate
Phlomis stewartii	36.35	33.25	1.0	medium	Spherical
Salvia cabulica	39.25	50.75	0.7	large	Oblate
Salvia coccinea	38.25	40.75	0.9	medium	oblate-spheroidal
Salvia leucantha	27.15	30.95	0.8	medium	sub- prolate
Salvia macrosiphon	41.25	43.25	0.9	medium	oblate-spheroidal
Salvia moorcroftiana	52.95	56.1	0.9	large	oblate-spheroidal
Salvia plebeian	31.55	31.05	1.0	medium	Spherical
Salvia santolinifolia	24.85	30.25	0.8	medium	sub- oblate
Scutellaria linearis	36.65	28.8	1.2	medium	sub- prolate
Stachys parviflora	28.65	26	1.1	medium	prolate -spheroidal
Teucrium stocksianum	30.35	28.25	1.0	medium	Spherical
Thymus linearis	26	26	1	medium	Spherical

Taxa	Symmetry	Polariy	Unity	No. of	Polar view	Equatorial	Exine	Surface	Aperture membrane	Amb	NPC classification	
1 8 8 8	Symmetry	1 ofarty		apertures		view scul	sculpturing	Surface			Name	Formula
Ajuga alpina	Radial	Isopolar	Monad	Tricolpate	Circular	Elliptic truncate	Reticulate	Microperforate	Verrucate	Peritreme	Trizoonocolpate	N ₃ P ₄ C ₃
Ajuga bracteosa	Radial	Isopolar	Monad	Tricolpate	Circular	Elliptic truncate	Reticulate	Microperforate	Verrucate	Peritreme	Trizoonocolpate	$N_3P_4C_3$
Clinopodium umbrosum	Radial	Isopolar	Monad	Hexacolpate	Circular to Quinquangular Obtuse	Elliptic Obtuse	Macroreticulate	Perforate	scabrate verrucate	Ptychotreme	Hexazoonocolpate	$N_6P_4C_3$
Eremostachys vicaryi	Radial	Isopolar	Monad	Tricolpate	Circular	Circular	Reticulate	Microperforate	Verrucate	Peritreme	Trizoonocolpate	$N_3P_4C_3$
Isodon rugosus	Radial	Isopolar	Monad	Hexacolpate	Circular	Elliptic Obtuse	Macroreticulate	Microperforate	-	Ptychotreme	Hexazoonocolpate	$N_6P_4C_3$
Lallemantia royleana	Radial	Isopolar	Monad	Hexacolporate	Circular	Circular to Elliptic	Reticulate gemmate	Microperforate	Gemmate psilate	Peritreme	Hexazoonocolporate	$N_6P_4C_5$
Marrubium vulgare	Radial	Iso polar	Monad	Tricolporate	Circular	Circular	Foveolate	Microperforate	Psilate	Peritreme	Trizoonocolporate	$N_3P_4C_5$
Micromearia biflora	Radial	Isopolar	Monad	Hexacolpate	Circular to Quinquangular Obtuse	Elliptic Obtuse	Macroreticulate	Perforate	scabrate verrucate	Ptychotreme	Hexazonocolpate	$N_6P_4C_3$
Nepeta bracteata	Radial	Isopolar	Monad	Tetra- Hexacolpate	Circular	Circular	Reticulate	Macroperforate (whole body)	Scabrate verrucate	Ptychotreme- Peritreme	Tetra- Hexazonocolpate	N4-6P4C3
Nepeta eriosphaera	Radial	Isopolar	Monad	Tetra- Hexacolpate	Circular	Circular	Reticulate	Macroperforatee (whole body)	Scabrate verrucate	Ptychotreme- Peritreme	Tetra- Hexazonocolpate	N4-6P4C3
Nepeta glomerulosa	Radial	Isopolar	Monad	Tricolpate	Circular	Elliptic truncate	Reticulate	Microperforate	Verrucate	Peritreme	Trizoonocolpate	$N_3P_4C_3$
Nepeta griffithii	Radial	Isopolar	Monad	Hexacolporate	Circular	Elliptic Obtuse	Reticulate	Microperforate	scabrate verrucate	Ptychotreme	Hexazoonocolporate	$N_6P_4C_5$
Nepeta Hindostana	Radial	Isopolar	Monad	Hexacolpate	Circular to Quinquangular Obtuse	Elliptic Obtuse	Macroreticulate	Perforate	scabrate verrucate	Ptychotreme	Hexazoonocolpate	$N_6P_4C_3$
Nepeta juncea	Radial	Isopolar	Monad	Hexacolporate	Circular	Elliptic Obtuse	Reticulate	Microperforate	Scabrate	Ptychotreme	Hexazoonocolpate	N ₆ P ₄ C ₃

 Table 15. Qualitative palynological characteristics of pollen of Lamiaceae species

Nepeta praetervisa	Radial	Isopolar	Monad	Tetra- Hexacolpate	Circular	Circular	Reticulate	Macroperforate (whole body)	Scabrate verrucate	Ptychotreme- Peritreme	Tetra- Hexazonocolpate	N ₄₋₆ P ₄ C ₃
Ocimum africanum	Radial	Isopolar	Monad	Hexacolporate	Circular	Elliptic truncate	Macroretculat	Microperforate	Scabrate	Ptychotreme	Hexazonocolpate	N ₆ P ₄ C ₃
Origanum majorana	Radial	Isopolar	Monad	Hexacolpate	Circular to Quinquangular	Elliptic truncate	Reticulate	Macroperforate (whole body)	-	Ptychotreme	Hexazoonocolpate	N6P4C5
Otostegia aucheri	Radial	Isopolar	Monad	Tricolpate	Triangular to Circular	Circular to slightly Elliptic	Reticulate	Microperforate	Psilate	Goniotreme	Trizoonocolpate	N ₃ P ₄ C ₃
Otostegia limbate	Radial	Isopolar	Monad	Tricolporate	Triangular Obtuse	Elliptic Truncate	Reticulate	Microperforate	Psilate	Peritreme	Trizoonocolporate	N ₃ P ₄ C ₅
Phlomis stewartii	Radial	Isopolar	Monad	Tricolpate	Circular	Circular to Elliptic	Roughly reticulate	Non-perforate	Verrucate	Peritreme	Trizoonocolpate	$N_3P_4C_3$
Salvia cabulica	Radial	Isopolar	Monad	Hexacolpate	Circular	Circular	Macroreticulate	Non-perforate	Verrucate	Peritreme	Hexazoonocolpate	$N_6P_4C_3$
Salvia coccinea	Radial	Isopolar	Monad	Hexacolpate	Circular	Elliptic truncate	Macroreticulate	Macroperforate	scabrate verrucate	Ptychotreme	Hexazoonocolpate	N ₆ P ₄ C ₃
Salvia leucantha	Radial	Iso polar	Monad	Hexa to multi syncolpate	Circular	Circular	Macroreticulate	Microperforate	scabrate verrucate	Peritreme	Hexa-multi- zonocolpate	N4P4C3
Salvia macrosiphon	Radial	Isopolar	Monad	Hexacolporate	Circular	Elliptic truncate	Macroretculiate	Microperforate	Scabrate	Ptychotreme	Hexazonocolporate	$N_6P_4C_5$
Salvia moorcroftiana	Radial	Isopolar	Monad	Hexacolporate	Circular	Elliptic truncate	Macroretculiate	Microperforate	Scabrate	Ptychotreme	Hexazonocolporate	N ₆ P ₄ C ₅
Salvia plebeian	Radial	Isopolar	Monad	Hexacolpate	Circular	Elliptic truncate	Macroreticulate	Macroperforate	scabrate verrucate	Ptychotreme	Hexazonocolpate	$N_6P_4C_3$
Salvia santolinifolia	Radial	Isopolar	Monad	Tri to Hexacolpate	Circular to triangular Obtuse convex	Elliptic to Rhombic Obtuse truncate	Reticulate & gemmate	Perforate	Verrucate gemmate	Peritreme- Goniotrem	Tri- Hexazonocolpate	N3-6P4C3
Scutellaria linearis	Radial	Isopolar	Monad	Hexacolpate	Circular	Circular	Macroreticulate	Microperforate	Scabrate verrucate	Ptychotreme	Hexazoonocolpate	$N_6P_4C_3$
Stachys parviflora	Radial	Isopolar	Monad	Tricolpate	Tri- angular	Rhombic Obtuse truncate	Foveolate	Reticulate	-	Ptychotreme	Trizonocolpate	N3P4C3
Teucrium stocksianum	Radial	Isopolar	Monad	Tricolpate	Tri angular Obtuse convex	Elliptic Obtuse	Gemmate verrucate	Non- perforate	Psilate	Peritreme	Trizonocolpate	N ₃ P ₄ C ₃
Thymus linearis	Radial	Isopolar	Monad	Hexacolpate	Circular	Circular	Reticulate striate	Perforate	Psilate	Peritreme	Hexazoonocolpate	$N_6P_4C_3$

Plant Species	P.A	E.D	W.C.P	L.C.P	W.C.E	L.C.E	Μ	E.T
Mean± Stander error								
Ajuga alpina	48.45±0.215058 132	31.05±0.2669 26956	3.85±0.23184046 2	4.9±0.26925824	5.3±0.28939 5923	14±0.17677 6695	16.75±1.6 29800601	4±0.17677 6695
Ajuga bracteosa	46±0.17678	48.75±0.1767 8	6±0.17678	8.25±0.17678	7.8±0.2894	15.35±0.302 08	13.4±0.81 624	1.75±0.176 78
Clinopodium umbrosum	24.35±0.831414 457	36.45±0.5667 89202	5.15±0.23184046 2	5.3±0.28939592 3	4.25±0.1767 76695	10.75±0.176 776695	12.3±0.53 8516481	2.95±0.215 058132
Eremostachys vicaryi	30.75±0.176776 695	30.9±0.52796 7802	4±0.176776695	7.65±0.2318404 62	4.95±0.2893 95923	20.75±0.176 776695	16.7±1.62 0956508	2.05±0.215 058132
Isodon rugosus	39.2 ±0.29993	36.9 ±0.10293	2.9 ±0.2001	5.8±0.3893	4±0.24995	17.3±0.189 3	7.8 ±0.28 9	1.5 ±0.176
Lallemantia royleana	42.45±0.289395 923	37.35±0.2318 40462	3.75±0.17677669 5	6.75±0.1767766 95	4.25±0.1767 76695	21.55±0.215 058132	9.15±0.30 2076149	1.75±0.176 776695
Marrubium vulgare	34.15±0.231840 462	38.15±0.1695 5825	4.25±0.17677669 5	8.95±0.2150581 32	5.45±0.2150 58132	11.676±1.51 2192448	11.35±0.3 02076149	2.35±0.231 840462
Micromearia biflora	29.75±0.586301 97	26±0.1767766 95	3.5±0.176776695	6.75±0.1767766 95	3.25±0.1767 76695	15.75±0.176 776695	12.75±0.6 37377439	1.75±0.176 776695
Nepeta bracteate	41±0.17677669 5	43.25±0.1767 76695	3.25±0.17677669 5	19.75±0.467707 173	4.9±0.26925 824	32.5±0.3259 6012	10.95±0.2 15058132	1.75±0.176 776695
Nepeta eriosphaera	38.4±0.2318404 62	41.05±0.2669 26956	4.25±0.17677669 5	5.75±0.1767766 95	5.75±0.1767 76695	10±0.44721 3595	11.15±0.2 57390754	2.05±0.215 058132
Nepeta glomerulosa	43.25±0.395284 708	54.35±0.4301 16263	4±0.176776695	7.95±0.2150581 32	4.55±0.2150 58132	4.85±0.2318 40462	9.1±0.331 662479	2.65±0.231 840462
Nepeta griffithii	25.65±0.257390 754	27.5±0.35355 3391	1.75±0.17677669 5	3.5±0.17677669 5	3.5±0.17677 6695	13.1±0.1274 75488	7.75±0.68 4653197	1.75±0.176 776695
Nepeta Hindostana	27.8±0.2893959 23	31.25±0.1767 76695	8.25±0.17677669 5	6.05±0.2893959 23	5.25±0.2850 43856	17.35±0.231 840462	10.95±0.2 15058132	1.75±0.176 776695
Nepeta juncea	30.6±0.2692582 4	27.9±0.34095 4542	4.55±0.21505813 2	11.7±0.3102418 41	4.7±0.28939 5923	23.75±0.25	11.15±0.3 40954542	2.05±0.215 058132
Nepeta praetervisa	22.2±0.2893959 23	18.9±0.25739 0754	3.5±0.176776695	2.35±0.2318404 62	2.65±0.2318 40462	14.2±0.3102 41841	8.15±0.57 3367247	2.05±0.215 058132

 Table 16. Quantitative palynological measurements of Lamiaceous species

Ocimum africanum	28±0.25	33.25±0.1767 76695	3.25±0.17677669 5	5.3±0.28939592 3	5.75±0.1767 76695	14.25±0.176 776695	10.75±0.1 76776695	1.75±0.176 776695
Origanum majorana	21.6±0.2318404 62	25.75±0.1767 76695	1.75±0.17677669 5	4±0.176776695	3.5±0.17677 6695	15.75±0.176 776695	14.75±1.1 31923142	1.7±0.2150 58132
Otostegia aucheri	25.75±0.176776 695	23.45±0.2150 58132	3.25±0.17677669 5	5.75±0.2091650 07	3.5±0.17677 6695	10.75±0.176 776695	11.15±0.2 57390754	1.75±0.176 776695
Otostegia limbate	23.25±0.176776 695	28.5±0.17677 6695	5.15±0.23184046 2	6.75±0.1767766 95	5.75±0.1767 76695	16.75±0.176 776695	12.6±0.61 0327781	1.75±0.176 776695
Phlomis stewartii	36.35±0.322102 468	33.25±0.1767 76695	8.9±0.302076149	4±0.176776695	5.75±0.1767 76695	30.95±0.215 058132	12.3±0.53 8516481	1.75±0.176 776695
Salvia cabulica	39.25±0.176776 695	50.75±0.1767 76695	11±0.176776695	13.5±0.4541475 53	5.45±0.2150 58132	30.95±0.215 058132	12.55±0.5 88430115	2.35±0.231 840462
Salvia coccinea	38.25±0.176776 695	40.75±0.1767 76695	5.75±0.17677669 5	10.75±0.176776 695	5.75±0.1767 76695	27.55±0.365 718471	14.55±1.0 82243041	1.75±0.176 776695
Salvia leucantha	27.15±0.302076 149	30.95±0.2150 58132	3.25±0.17677669 5	6.2±0.21505813 2	4.85±0.2318 40462	8.9±0.48476 7986	12.55±0.5 88430115	2.2±0.2893 95923
Salvia macrosiphon	41.25±0.176776 695	43.25±0.1767 76695	3.5±0.176776695	5.75±0.1767766 95	5.75±0.1767 76695	31±0.17677 6695	12.95±0.6 86476511	2.05±0.215 058132
Salvia moorcroftiana	52.95±0.7881	56.1±0.5567	4.95±0.183711	8.65±0.25739	6.3±0.2150	11.6±0.231	13.35±0.7	3.5±0.17
Salvia plebeian	31.55±0.572276 157	31.05±0.2893 95923	3.5±0.176776695	6.7±0.21505813 2	4.25±0.1767 76695	8.9±0.12747 5488	9.05±0.31 0241841	1.75±0.176 776695
Salvia santolinifolia	24.85±0.231840 462	30.25±0.3061 86218	2.95±0.21505813 2	5.75±0.1767766 95	4.85±0.2318 40462	20.75±0.379 143772	12.35±0.5 62361094	2.65±0.231 840462
Scutellaria linearis	36.65±0.515994 186	28.8±0.26692 6956	3.6±0.231840462	6.6±0.26925824	5.15±0.2318 40462	10.15±0.231 840462	10.85±0.2 31840462	3.75±0.176 776695
Stachys parviflora	28.65±0.231840 462	26±0.1767766 95	3.25±0.17677669 5	6.75±0.1767766 95	3.25±0.1767 76695	16±0.17677 6695	12.75±0.6 37377439	1.75±0.176 776695
Teucrium stocksianum	30.35±0.322102 468	28.25±0.1767 76695	3.1±0.127475488	3.25±0.1767766 95	4.85±0.2318 40462	21.85±0.257 390754	10.75±0.1 76776695	1.75±0.176 776695
Thymus linearis	26±0.17677669 5	26±0.1767766 95	3.5±0.176776695	6.75±0.1767766 95	5.75±0.1767 76695	18.5±0.1767 76695	12.8±0.65 8596994	1.75±0.176 776695

P.A: polar axis; E.D: equatorial diameter, L.C.P, W.C.P, L.C.E, W.C.E: length and width of colpi in polar and equatorial view, M: mesocolpium, E.T: exine thickness

Link Character	Leads	Characters	Taxa/ Go to link character
	a	Small pollen size	Nepeta praetervisa
	b	Pollen large or medium	2
2	a	Large pollen	3
	b	Medium pollen	5
3	a	Oblate-spheroidal shape	Salvia moorcroftiana
	b	Oblate shape pollen	4
1	a	Tricolptae	Nepeta glomerulosa
	b	Hexacolpate	Salvia cabulica
5	a	Amb peritreme	6
	b	Amb ptychotreme	15
5	а	Foveolate sculpturing	Marrubium vulgare
	b	Sculpturing other than foveolate	7
7	а	Aperture tricolporate	Otostegia limbate
	b	Aperture other than tricolporate	8
3	а	Hexa to multi syncolpate	Salvia leucantha
	b	Colpi not fused	9
)	a	Hexacolpate / hexacolporate pollen	10
	b	Tricolpate pollen	11

 Table 17. Dichotomous (single access) bracketed taxonomic key based on pollen morphological traits of Lamiaceous species

10	а	Hexacolporate pollen	Lallemantia royleana
	b	Hexacolpate pollen	Thymus linearis
11	а	Exine non-perforate	12
	b	Exine perforate	13
12	а	Aperture membrane psilate	Teucrium stocksianum
	b	Verrucate aperture membrane	Phlomis stewartii
13	а	Equatorial view circular	Eremostachys vicaryi
	b	Elliptic truncate	14
14	а	Oblate-spheroidal	Ajuga bracteosa
	b	Prolate shape pollen	Ajuga alpina
15	а	Foveolate exine	Stachys parviflora
	b	Exine other than foveolate	16
16	а	Exine reticulate	17
	b	Exine macrorteiculate	20
17	а	Sub-oblate shape pollen	Origanum majorana
	b	Pollen shape not suboblate	18
18	а	Prolate spheroidal pollen	Nepeta juncea
	b	Oblate spheroidal pollen	19
19	а	Equatorial view circular to elliptic	Nepeta bracteate
	b	Equatorial view circular	Nepeta eriosphaera

20	а	Spherical shape pollen	Salvia plebeian
	b	Pollen shape not spherical	21
21	а	Oblate pollen	Clinopodium umbrosum
	b	Other than oblate shape of pollen	22
22	а	Pollen shape sub-oblate	Nepeta Hindostana
	b	Pollen oblate spheroidal or prolate spheroidal	23
23	а	Prolate spheroidal	24
	b	Oblate spheroidal pollen	26
24	a	Hexacolporate aperture	Ocimum africanum
	b	Hexacolpate pollen	25
25	а	Polar view circular	Isodon rugosus
	b	Circular to quinquangular obtuse polar view	Micromearia biflora
26	а	Aperture membrane scabrate	Salvia macrosiphon
	b	Aperture membrane verrucate to scabrate	27
27	а	Hexacolpate pollen	Salvia coccinea
	b	Hexacolporate pollen	Nepeta griffithii

Section-III

Anatomy

Summary

The third section included the petiole anatomy of dicots from Northern Baluchistan, Pakistan. The study included 25 Brassicaceous, 15 Fabaceous, and 25 Lamiaceous species. Sections were prepared via microtomy. Petiole cross sections were visualised under Light microscopy and observed the qualitative and quantitative characteristics.

- Qualitative characters included: Petiole outline, wings, cuticle, shape and number of layers of epidermis, collenchyma, parenchyma, chlorenchyma, sclerenchyma, xylem vessels, phloem, vascular bundles arrangement and number.
- Quantitative features were: Length and width of petiole, epidermis cells, collenchyma cells, parenchyma cells, chlorenchyma cells, sclerenchyma cells, xylem vessels, phloem cells, and vascular bundles.

The variations in the qualitative features were used to develop taxonomic keys that helped discriminate among the examined species of each family. The distinguished petiole anatomical characters were petiole outline, shape, and number of layers of collenchyma, parenchyma, vascular bundles arrangement and number. The multivariate analysis of the quantitative features was carried out by principal component analysis, hierarchal cluster analysis, and correlation plots.

3.4 Petiole anatomy of Brassicaceous Flora of Northern Baluchistan

3.4.1 Results and Discussion

The petiole anatomy of the wild Brassicaceous flora of Northern Baluchistan of the Irano-Turanian subregion has not previously been explored. Petiole anatomy of 25 wild species of Brassicaceae belonging to 21 genera were studied and compared. Histological studies were carried o u t utilizing light microscopy (Plate 58-63). This study included the endemic plant *F. hamiltonii* and the first-time reported species *G. pendula* from t h e flora of Pakistan. Anatomical studies of petioles significantly provided taxonomic evidence and evolutionary clues and assisted in the classification and identification of plant species (Ozcan et al., 2015). Documentation of taxa based on anatomical studies belonging to specific climatic regions has taxonomic significance. It helps in finding evolutionary patterns and climatic effects controlling anatomical features (Kocsis and Borhidi, 2003).

a) Petiole Outline-based Grouping of Brassicaceous Flora

The shape of the petiole varied from circular to subcircular or dorsoventrally flattened (Karaismailoğlu, 2020). Highly repeated shapes were sulcate (10 species), followed by flat (9 species). Species of the genus Cardaria and Strigosella possessed similar sulcate shapes, while members of the genus Farsetia exhibited different shapes; these results revealed characteristic homogeneity and variations at the genus level. Karaismailoğlu (2020) also reported sulcate, circular and flat-type petioles in Brassicaceae (tribe Alysseae) from Turkey. For Alyssum desertorum, similar anatomical features were observed by Karaismailoğlu (2020), but they observed oval shape petiole with an undulated cuticle (Table 19). The outcomes helped in the rearrangement of taxa in different ranks along with marking ecological impacts on anatomical features in various climatic regions. The transverse section of petiole in B.oleracea, C. bursa - pastoris, D. harra, and G. pendula were circular with slightly convex ends, whereas F. hamiltonii, P. brahuicus and S. altissimum exhibited a completely circular shape. Petiole margins expressed variations with two major types, blunt end (D. sophia, F. heliophila, S. africana) acute margins (S. cabulica) and tipped margins (D. harra).

Variations in the petiole shape have been studied in various families like

Lamialies (Akçın et al., 2011), Cruciferae (Olowokudejo, 1987), the results of these studies have been successfully applied in systematics. Based on the outline of the petioles, the Brassicaceous species were separated into various groups. The group (a) plants possessed one large central vascular bundle, (b) plants were observed with one large central and two small vascular bundles towards the wings, (c) included the taxa with many vascular bundles arranged in a circle with a gap/space between them, (d) also observed circular arrangement of numerous vascular bundles but with compact pattern, (e) consist of species with three equal size vascular bundles in the center of the petiole, (f) one central and two comparatively small subsidiary vascular bundles were observed and (g) one central and couple of vascular bundles in each side (Plate 63).

From group (a) *B. oleracea*, *G. pendula* and *S. cabulica* were in the same cluster in dendrogram. A similarly close association was observed for taxa of the group (b) *D. Sophia* with *D. harra* and *M. flavida* with *S. africana* as they shareed the same note of phylogeny. *A. desertorum* and *L. aucheri* (group d) were closest in the phylogenetic cluster. These findings can be effectively manipulated for phylogenetic relationships in Brassicaceous species. A significant phylogenetic association in the studied taxa was investigated by comparing petiole groups and dendrogram results.

b) Epidermis in the Brassicaceous petioles

A single layer of the epidermis was present in all examined species (Kemka-Evans et al., 2021). Rectangular, round, oval, angular, and square shapes of epidermal cells were observed, with square shapes highly repeated (Okanume et al., 2022). A layer of the cuticle (thick or thin) was present on the epidermis in 24 species. In most species, the cuticle was undulated, followed by the smooth surface cuticle. In 9 studied taxa, three types of trichomes or appendages (multiseriate, uniseriate and unicellular) were spotted (Table 19). Presence (in *Cardaria* species) or absence (in *Strigosella* species), as well as types of trichomes in species from the same genus, were found significant tools that assisted in distinguishing taxa at genus and even species level. The presence/absence of trichomes has been exploited proficiently in various families for the delimitation of taxa (Neto et al., 2017). Grove in the upper surface was marked in 10 studied taxa. Prominent pith was present in 9 Brassicaceous taxa *A. carneum, A. desertorum, C. orientalis, E. sative, F. hamiltonii, L. aucheri, M. linifolius, N. bicorne* and *R. raphanistrum*. The highest pith length mean value of 1711.6 μ m, and a mean value of width 850.4 μ m was recorded for *C. orientalis*. Similarly largest petiole was also marked in *C. orientalis* with a mean value length of 2498.2 μ m and width of 1268.6 μ m.

c) Collenchyma in Brassiaceous species

Collenchyma cells were present in all studied taxa, whereas in 15 taxa, the sub-epidermal ring of collenchyma was present. Layers of collenchyma were 2, 3, 4 or 5 in different species. The number of layers and diameter of the collenchyma and the shape of the epidermal cells assisted in the segregation of Amaranthaceae species (Majeed et al., 2022). Two layered collenchyma were marked in 9 taxa. Collenchyma cells in Brassicaceous species possessed various cell shapes like lamellar (12 species), angular (7 species), a n d lacunar (5 species). The highest length of collenchyma cells recorded for *F. hamiltonii* was 42.1 μ m (mean); similarly, the minimum length observed in *S.intermedia* was 18.55 μ m (mean). The maximum width observed in *F.hamiltonii* 31.6 μ m (mean) while a minimum width of 14.15 μ m (mean) was observed in *Coincya tournefortii*. Sclerenchyma was present in vascular bundles. Sclerenchymatous cells provide strengthening to the petiole in assistance with collenchyma cells.

d) Vascularization of the petiole of Brassicaceous flora

Shapes, numbers, and arrangement of vascular bundles varied in examined species, results were consistent with the outcomes of Karaismailoğlu (2020). Collateral closed, collateral open, bi-collateral, and hadrocentric types were observed in Brassica species. The number of vascular bundles varied from 1 to 20. In 7 species a single central vascular bundle was spotted. Specific arrangements in 1+2 (one central large and two lateral small vascular bundles) existed in 6 species. The collateral closed type was the highly used type (17 species), followed by the bi-collateral type (5 species), a n d hadrocentric (2 species), while collateral open was possessed by a single species (Table 19). Xylem parenchyma and phloem parenchyma have appeared in all the investigated taxa. Shapes of phloem cells possessed variations from round, oval, rectangular, and angular. Phloem cells include various phloem components performing specific functions. The shape of xylem vessel cells was associated with round, oval, and angular. The shape and wings of the petiole, arrangement, and number of vascular bundles can be significantly employed for the identification of *Flemingia* species in the absence of reproductive features (Thacker et al., 2021).

e) Multivariate analysis of petiolar anatomical features of Brassicaceous species

PCA revealed a 93.7% variance in components 5 and 6, which account for 5.7% and 91.6% of the sum of squares. Species of the genus Strigosella were in a close cluster with each other, and a similar relationship existed between Cardaria species. PCA mainly linked Ch.L, Ch.W, Ep.L, Ep.W, Co.L, Co.W, Pa.L, Pa.W while a negative correlation was marked for VB.L, VB.W, Pe.L, Pe.W, Pi.L, Pi.W (Figure 25). The results followed the petiole anatomical examination of the Sapindaceae family (Mohtashamian et al., 2022). They also find PCA linked to parenchyma length/width, collenchyma length/width, and VB, but in current research, vascular bundles were negatively correlated. Results from the UPGMA dendrogram showed the two major clades with one large cluster of 20 species and the second one with five species. D. sophia and E. sativa sharing the closest clade, showed higher similarity based on dendrogram analysis. In the same way, higher relatedness was noted for M. linifolius with M. flavida and S. cabulica with B. oleracea (Figure 24). Similar results for diverse taxa were observed by (Akhtar et al., 2021). Overall, two species of *Strigosella* shared the same clade above the two branches of the dendrogram, expressing their closeness in contrast to S. cabulica, which shared the nearest clade with *B. oleracea* (Figure 24). A highly positive correlation was observed in epidermis length, epidermis width, collenchyma length, collenchyma width, chlorenchyma length, and chlorenchyma width. Vascular bundle width and length were also positively correlated with each other. Chlorenchyma length, chlorenchyma width, and vascular bundle length were all negatively correlated with epidermis width. Similarly, vascular bundle width was negatively correlated with collenchyma length and chlorenchyma width (Figure 26).

Petiole anatomical features were significant in taxonomical applications in various families like Lamiaceae (Akçın et al., 2011) and Crucifereae (El-Rabiai, 2015). Variations were determined in examined taxa in studied parameters such as vascular bundles number and arrangements, presence or absence of sclerenchyma in vascular bundles, shapes of collenchyma and epidermis, and pith presence/absence. Talip et al. (2017) also found that petiole anatomical features, mainly petiole outline, vascular bundle arrangement, sclerenchyma, and trichomes, were significant in the separation of *Hopea* species. The taxonomic significance

of petiolar anatomical traits was reinforced by the outcomes of this research. In the absence of reproductive features, the successful implication of petiole anatomical parameters in the identification of taxa has been carried out (Sheikh and Kumar, 2017).

Variations existed among genera for studied parameters; common characters were the presence of uniseriate epidermis with compactly arranged cells, collenchyma cells were strengthening cells in studied taxa, presence of mature xylem vessels, cuticle, while diversity was observed in petiole shape, vascular bundles shapes and arrangement, presence/absence of petiole wing, trichomes, pith and sclerenchyma, a sub-epidermal ring of collenchyma, groove in the upper surface. Variations in the inspected features of the petiole anatomy found helpful in discrimination at the species level (Thacker et al., 2021). Taxonomic keys based on petiole anatomical characters have been successfully employed for the identification of species (Akinnubi et al., 2013). Taxonomic key evaluates the differences among species by studying petiole anatomical parameters that helped empower the discrimination of complicated species (Table 21).

The correlation was examined among species of the same genus in *Cardaria* and *Strigosella* based on petiolar anatomical examinations. While genus *Farsetia* showed divergence in parameters like pith, sclerenchyma, groove in the upper surface, and petiole wing presence/absence. Variations were observed among studied Brassicaceous taxa for qualitative and quantitative characteristics. Majeed et al. (2022) also reported that qualitative and quantitative petiole anatomical features, petiole length, VB arrangement, collenchyma layers, and trichomes were effectively utilized for taxa discrimination in Amaranthaceae. Conclusively the results can be efficiently incorporated in taxonomical studies in the placement of taxa, evolutionary studies, and microclimatic effects causing changes in anatomical features. Species-level discrimination can be carried out based on anatomical features that were unique and species-specific.

The petiole anatomical investigation of Brassicaceous taxa grouped them into 7 types based on the shape of petiole and the type of vascularization. These outcomes can be effectively implicated in the classification of taxa in association with anatomical studies. The determined correlation among the quantitative features further assisted in the delimitation of taxa as well as providing the base to search for any possible environmental factors that affect these features of anatomy. Thus, the physiological

processes can be explored by determining the anatomy of the plant. The structural components of the plants i.e cuticles, cell types, and layers have a direct impact on the physiological aspects such as transpiration rate, and photosynthesis. The derived variations in the anatomical traits were significant for determining the taxonomic relationships. The implications of microscopic visualization of petiole anatomy can be enhanced via a relatively comprehensive study on the tribe and genus level along with the exploration of the complete components of the xylem (parenchyma, fibers, tracheids) and phloem (companion cells, fibers, and parenchyma).

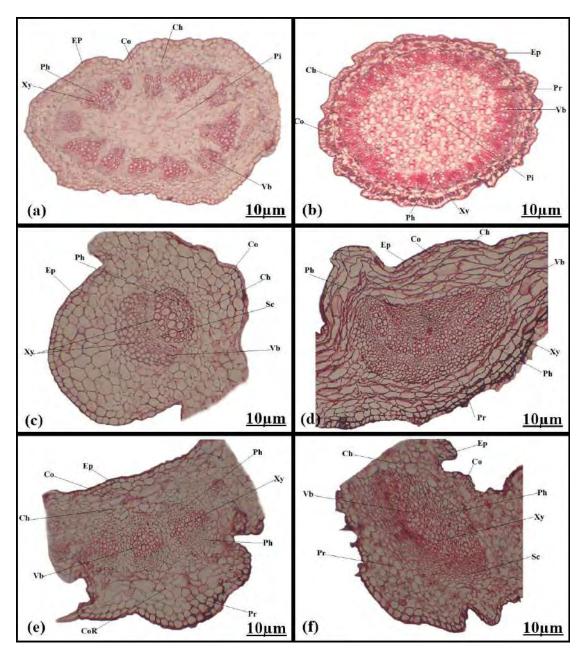


Plate 58. Photomicrographs of petiole anatomy (a) Aethionema carneum, (b) Alyssum desertorum, (c) Brassica oleracea, (d) Capsella bursa-pastoris, (e) Cardaria chalepense, (f) Cardaria draba, (Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale: 10µm

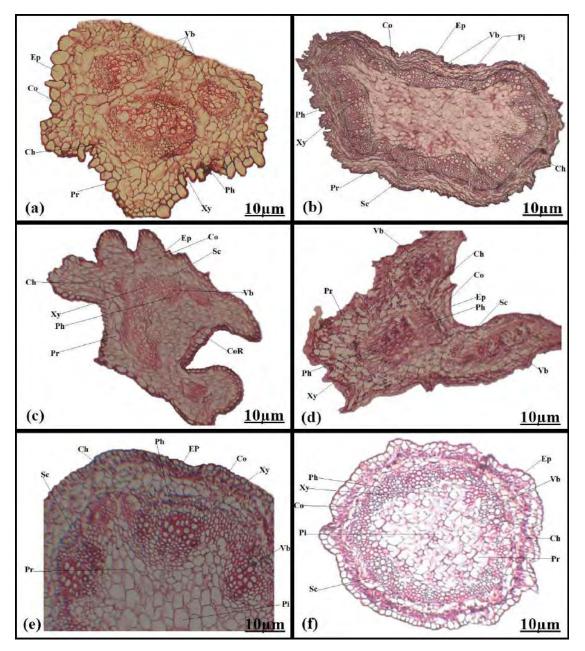


Plate 59. Photomicrographs of petiole anatomy (a) *Coincya tournefortii*, (b) *Conringia orientalis*, (c) *Descurainia Sophia*, (d) *Diplotaxis harra*, (e) *Eruca sativa*, (f) *Farsetia hamiltonii*,(Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale: 10μm

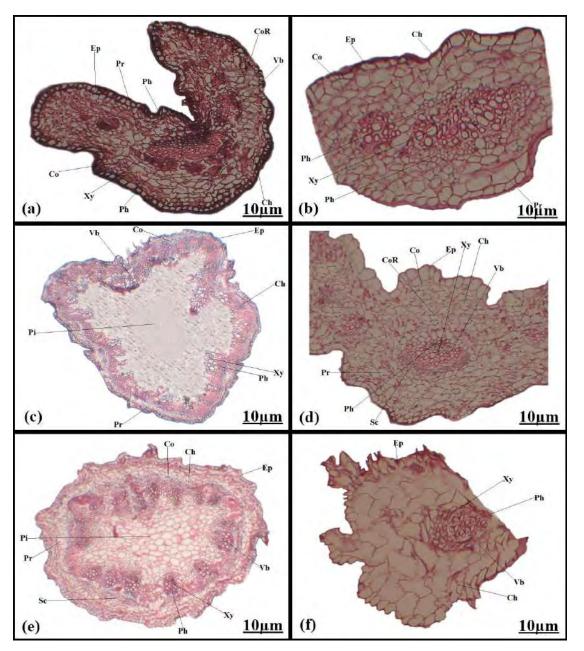


Plate 60. Photomicrographs of petiole anatomy (a) *Farsetia heliophila*, (b) *Goldbachia pendula*, (c) *Lepidium aucheri*, (d) *Matthiola flavida*, (e) *Meniocus linifolius*, (f) *Nasturtium officinale*, (Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale: 10μm

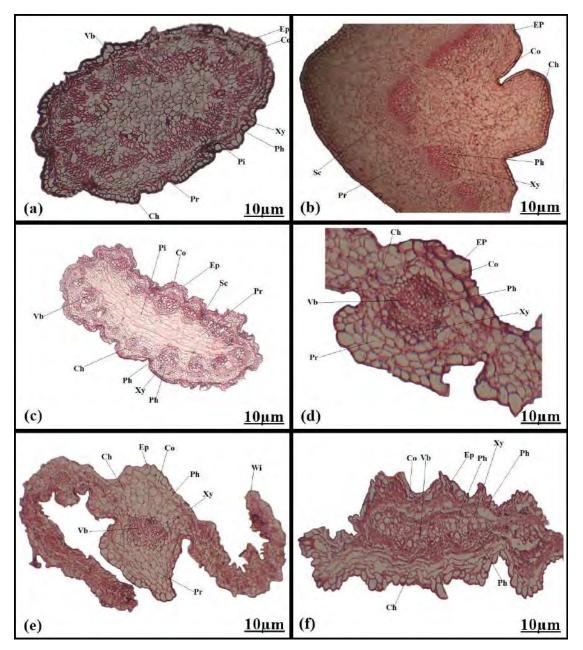


Plate 61. Photomicrographs of petiole anatomy (a) Notoceras bicorne, (b) Physorrhynchus brahuicus, (c) Raphanus raphanistrum, (d) Sisymbrium altissimum, (e) Strigosella africana, (f) Strigosella cabulica, (Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale:10µm

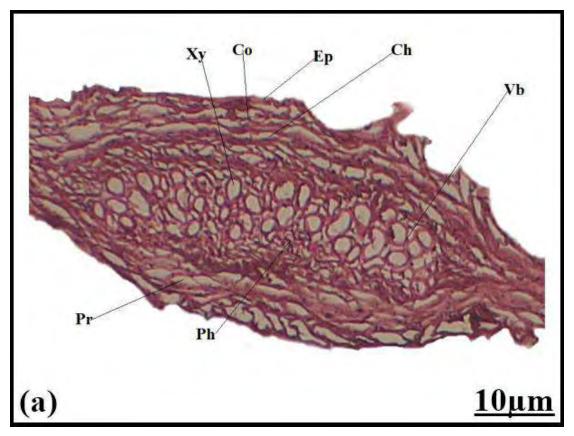
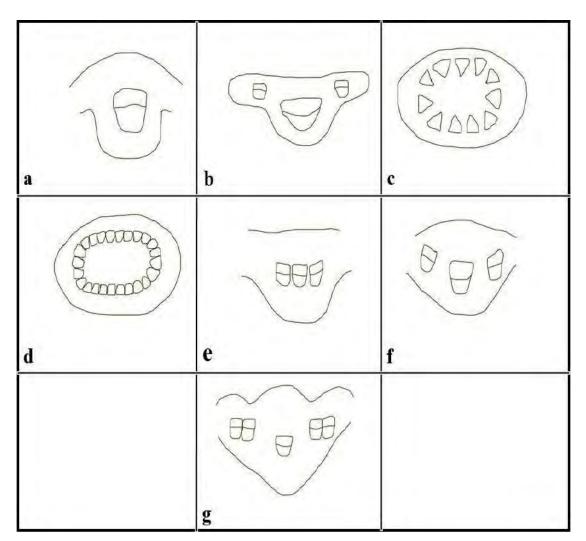



Plate 62. Photomicrographs of petiole anatomy (a) *Strigosella intermedia*, (Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale: 10µm

Plate 63. The types of petiole shapes and vascularization in 25 studied Brassicaceous taxa

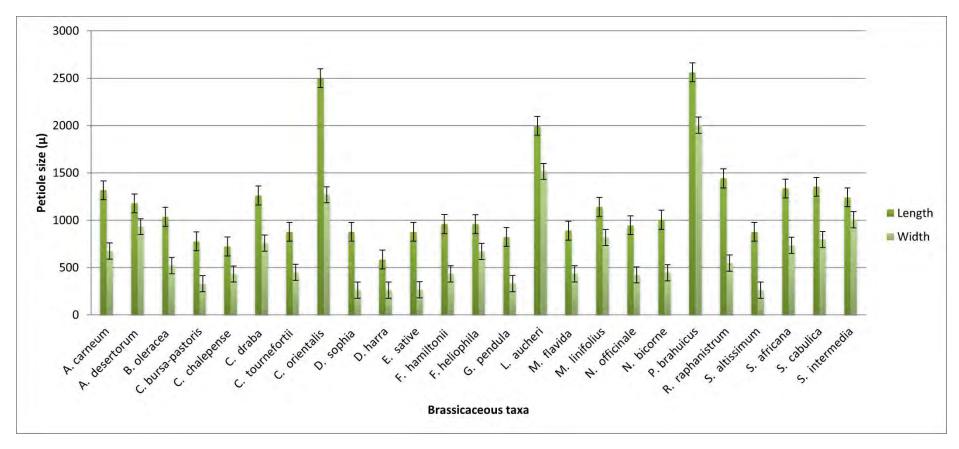


Figure 20. Variations in mean values of petiole length and width

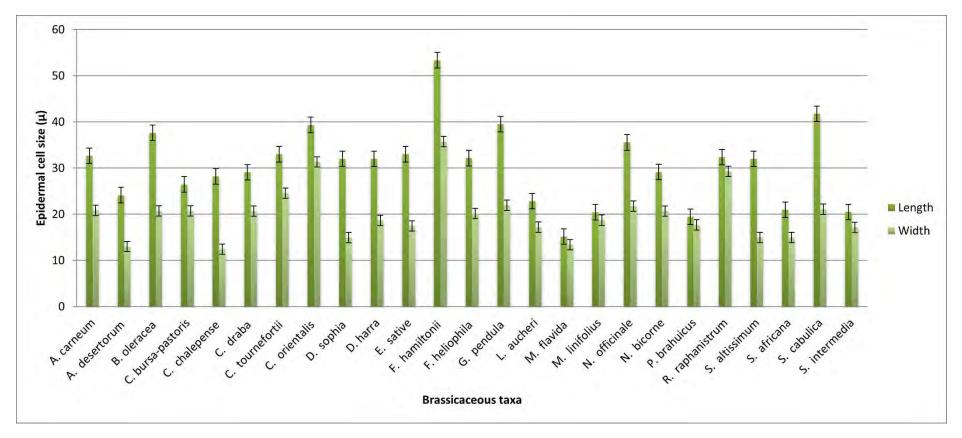


Figure 21. Variations in mean values of epidermal cells length and width

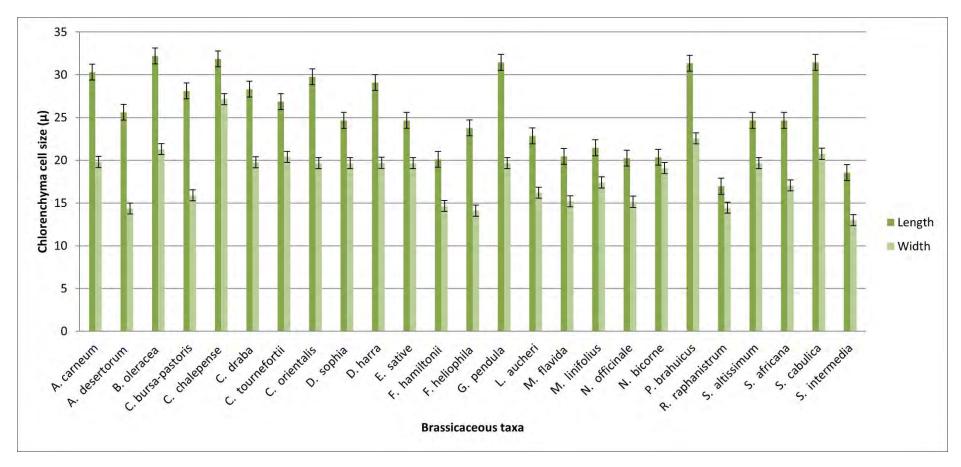


Figure 22. Variations in mean values of chlorenchyma cells length and width

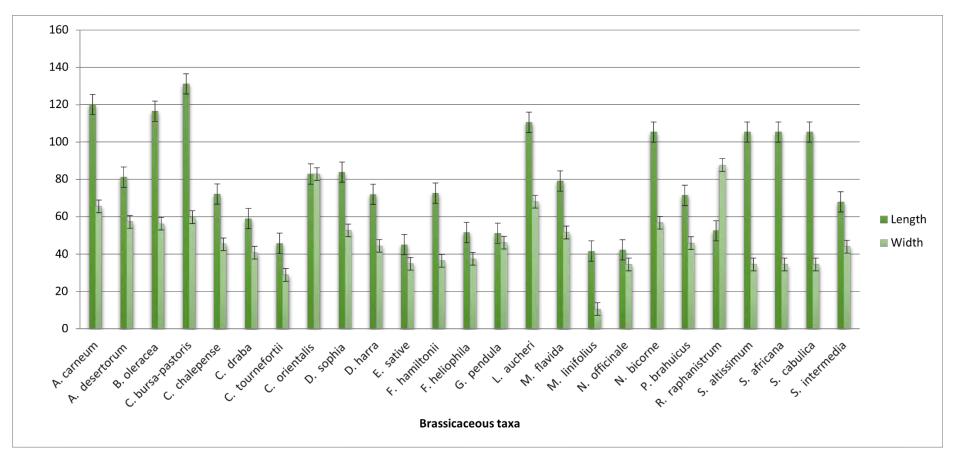


Figure 23. Variations in mean values of vascular bundles length and width

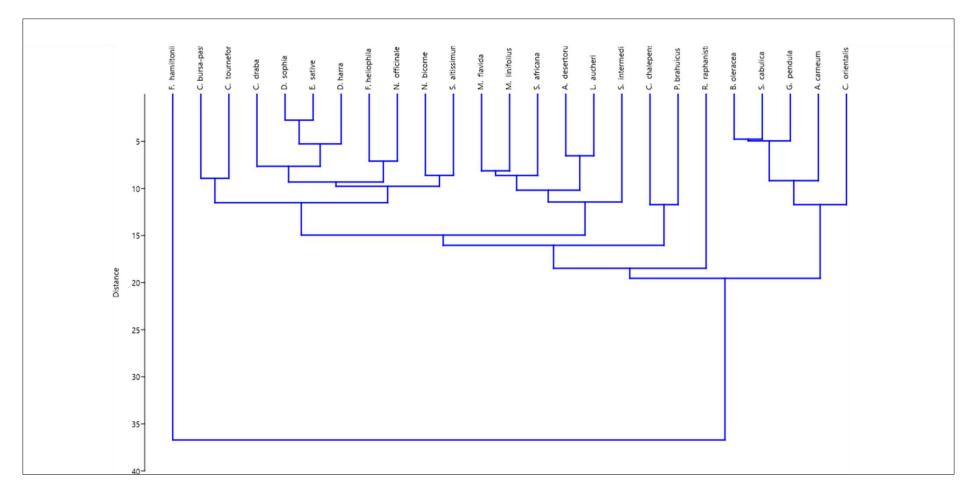
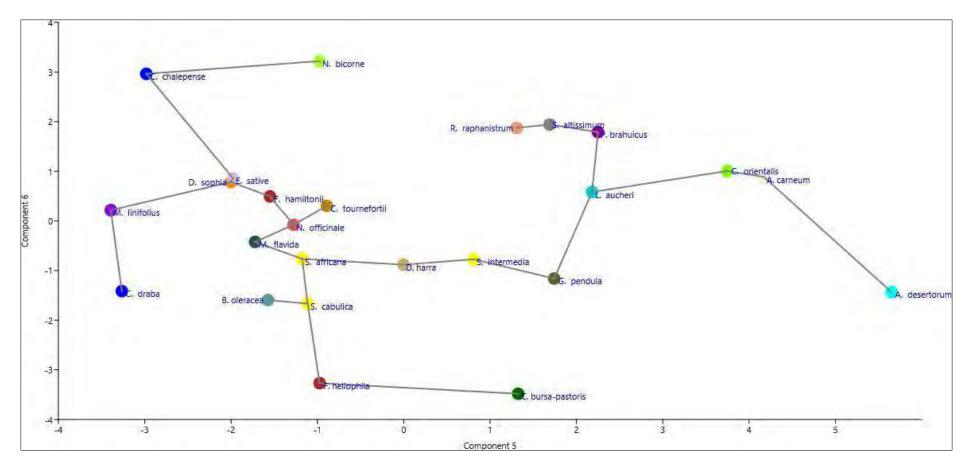
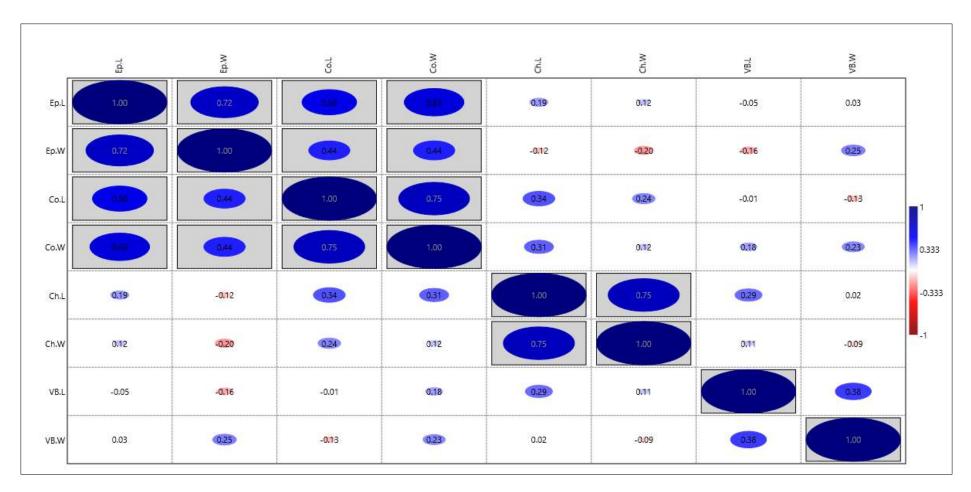




Figure 24. Dendrogram showing the similarity index of Brassicaceae taxa based on quantitative parameters of petiole

Figure 25. Utility of petiolar features in discriminating among species of Brassicaceae by PCA (epidermis length and width, collenchyma length and width, chlorenchyma length and width)

Figure 26. Correlation among the mean values of Ep.L: Epidermal length; Ep.W: Epidermal width; Co.L: Collenchyma length:Co.W: Collenchyma width; Ch.L:Chlorenchyma length; Ch.W: Chlorenchyma width; Vb.L:Vascularbumdle length; Vb.W: Vascular bumdle width

Plant Name	No.Co.	No.Pa.	No.Ch.	No.Sc.L	No.Vb	Sc.Vb	Т	Р	Р.	G.U	S.Ep.C	Xy.P	Ph.P
1 funt 1 (unit	L	L	L	:	S	S	r	i	W	р	0	a	a
Aethionema carneum	3	3	4	0	12	-	-	+	-	-	+	+	+
Alyssum desertorum	3	2	2	2	20	-	-	+	-	-	+	+	+
Brassica oleracea	3	2	3	4	1	+	-	-	+	+	-	+	+
Capsella bursa-pastoris	3	3	3	0	1	-	-	-	+	+	-	+	+
Cardaria chalepense	2	3	1	0	5	-	+	-	+	-	-	+	+
Cardaria draba	3	3	4	7	1	+	+	-	+	-	-	+	+
Coincya tournefortii	3	3	4	5	3	+	-	-	-	+	-	+	+
Conringia orientalis	5	5	5	3	18	+	+	+	-	-	+	+	+
Descurainia sophia	2	2	2	2	1+2	+	+	-	+	-	+	+	+
Diplotaxis harra	2	4	3	2	1+2	+	+	-	+	+	+	+	+
Eruca sativa	2	4	2	7	12	+	-	+	-	-	+	+	+
Farsetia hamiltonii	2	2	2	4	12	+	-	+	-	-	+	+	+
Farsetia heliophila	3	4	3	0	1+2	-	-	-	+	+	+	+	+
Goldbachia pendula	3	3	3	0	1+2	-	-	-	+	+	-	+	+
Lepidium aucheri	4	3	4	7	15	-	+	+	-	-	+	+	+
Matthiola flavida	2	3	2	5	1+2	+	-	-	+	+	-	+	+

 Table 18. Qualitative characteristics based on petiole anatomical features of selected Brassicaceous taxa

Meniocus linifolius	4	2	3	7	14	+	+	+	-	-	+	+	+
Nasturtium officinale	0	0	2	0	1	-	+	-	-	-	-	+	+
Notoceras bicorne	2	2	2	0	14	-	-	+	-	-	+	+	+
Physorrhynchus brahuicus	5	5	4	13	4	-	-	-	-	+	+	+	+
Raphanus raphanistrum	3	3	4	3	14	+	+	+	-	-	+	+	+
Sisymbrium altissimum	2	2	2	2	1	-	-	-	+	-	-	+	+
Strigosella africana	2	4	3	5	1+2	-	-	-	+	-	-	+	+
Strigosella cabulica	2	1	2	5	1	-	-	-	+	+	+	+	+
Strigosella intermedia	2	2	1	7	1	-	-	-	+	+	+	+	+

No.Co.L: number of collenchyma layer, No.Pa.L: Number of perchyenma layer, No.Ch.L: Number of chlorenchyma layer, No.Sc.L: Number of sclernchyma layer No.Vbs: Number of Vascular Bundle (vb), Sc.Vbs: Sclerenchyma presence in the Vbs, Tr: Trichome, Pi: Pith, P.W: Petiole wing, G.Up: Groove in upper surface, S.Ep.Co: Sub-epidermal ring of collenchyma, X. Pa: Xylem Parenchyma, Ph.Pa: Phloem Parenchyma

Species	Peti ole shap e	Epidermal shape	Parenchyma shape	Collenchym a shape	Sclernchym a shape	Vb Arrang ments	Trichome shape & no of cells	Cuticle structure	Xylem Vessel	Phloem Shape
Aethionema carneum	Flat	Square to rectangular	Irregular	Lamellar	-	Collater al closed	-	Smooth	Angular	Round
Alyssum desertorum	Oval	Square	Tetra to hexagonal	Lamellar	-	Collater al closed	-	Smooth	Round to angular	Rectamgular to oval
Brassica oleracea	Oval	Square	Hexagonal	Angular	Hexagonal	Collater al open	-	Smooth	Round	Rectamgular to oval
Capsella bursa- pastoris	Sulc ate	Rectangular to square	Tetragonal to irregular	Lacunar	-	Bi- Collater al	-	Undulated	Round	Rectangular to hexagonal
Cardaria chalepense	Sulc ate	Square to round	Tetra to hexagonal	Lacunar	-	Hadroce ntric	Unicellular	Smooth	Round and oval	Rectangular, round, oval
Cardaria draba	Sulc ate	Square and round	Tetra to isodiamteric	Lacunar	Hexagonal	Collater al closed	Unicellular	Undulated	Round and oval	Angular
Coincya tournefortii	Sulc ate	Round & oval	Tetragonal to irregular	Angular	Hexagonal	Collater al closed	-	Undulated	Round and oval	Angular to oval
Conringia orientalis	Flat	Rectangular	Irregular	Lamellar	Hexagonal	Collater al closed	Uniseriate	Undulated	Round	Rectangular
Descurainia sophia	Sulc ate	Square and round to oval	Isodiametric	Angular	Hexagonal	Collater al closed	Unicellular	Undulated	Round	Round and oval
Diplotaxis harra	Flat	Rectangular to round	Isodiametric	Lamellar	Hexagonal	Hadroce ntric	Unicellular	Undulated	Round	Round and oval

Table 19. Qualitative characteristics based on petiole anatomical features of selected Brassicaceous taxa

Eruca sativa	Oval	Square	Hexagonal	Lamellar	Hexagonal	Bicollat eral	-	Smooth	Round	Rectangular, round to oval
Farsetia hamiltonii	Circ ular	Square to round	Irregular	Lamellar	Hexagonal	Collater al closed	-	Smooth	Round to angular	Rectamgular to oval
Farsetia heliophila	Flat	Square	Irregular	Lacunar	-	Bi collatera l	-	Smooth	Round	Round
Goldbachia pendula	Sulc ate	Square to rectangular	Tetra to hexagonal	Lamellar	Hexagonal	Bi- Collater al	-	Undulated	Round and oval	Rectangular, round
Lepidium aucheri	Flat	Square to round	Isodiametric	Lamellar	Hexagonal	Collater al closed	Multiseriate	Smooth	Angular to round	Rectamgular to oval
Matthiola flavida	Flat	Square to oval	Irregular	Angular	Hexagonal	Collater al closed	-	Smooth	Round	Round, oval
Meniocus linifolius	Sulc ate	Square	Isodiametric	Lamellar	Hexagonal	Collater al closed	Multiseriate	Smooth	Round	Rectangular
Nasturtium officinale	Flat	Oval	-	-	-	Collater al closed	Unicellular	-	Round to angular	Rectamgular to oval
Notoceras bicorne	Flat	Square to oval	Hexagonal	Lacunar	-	Collater al closed	-	Undulated	Round and oval	Rectangular and oval
Physorrhynchus brahuicus	Circ ular	Square	Isodiametric	Lamellar	Hexagonal	Collater al closed	-	Smooth	Round	Rectangular, round to oval
Raphanus raphanistrum	Flat	Square	Hexagonal	Angular	Hexagonal	Bi- Collater al	Multiseriate	Undulated	Round to oval	Rectangular and oval
Sisymbrium altissimum	Circ ular	Square to oval	Irregular	Angular	Hexagonal	Collater al open	-	Undulated	Round	Round and oval

Strigosella africana	Sulc ate	Square to round	Irregular	Angular	-	Collater al closed	Unicellular	Undulated	Round to angular	Rectangular to oval
Strigosella cabulica	Sulc ate	Angular	Irregular	Lamellar	-	Hadroce	-	Undulated	Round	Rectangular and oval
Strigosella intermedia	Sulc ate	Rectangular	Irregular	Lamellar	-	Collater al closed	-	Undulated	Oval to round	Oval, round

Plant Species	L W	Epidermal cell (µm)	Collenchy ma (µm)	Chlorench yma (µm)	Parenchy ma(µm)	Sclerenchy ma (µm)	Vascular bundle (µm)	Xylem (µm)	Phloem (µm)	Pith (µm)	Petiole (µm)
Min-max=M	ean±	SE									
Aethionema	L	29-35.75= 32.65±1.33	29.75- 33.25= 31.45±0.71	25.75- 30.25= $28.45\pm$ 0.878	33.25-36.25 =35.05±0.5 08	-	39.75-43.25 =41.6±0.668	54-59.75 =56.8 ±1.088	34.75-42.25= 38.2±1.285	921- 988=954.4 ±13.471	1203- 1457=1316.6± 43.564
carneum	W	19.25- 22.25= 20.85±0.59 5	25.75- 30.25= 28.45±0.88	33.25-36.25 =35.05±0.5 08	18-22.75 =19.6±0.90 3	-	9.75-11.5 =10.5±0.285	37-44.75 =42.15 ±1.352	31-34.25 =32.45±0.62 9	321- 355=338.8 ±5.9194	654- 691=674.2±6. 492
	L	22.75-25.5 =24.15±0. 451	20.5- 22=21.1 ±0.257	24.526.25= 25.6±0.302	24.5- 26.25=25.6 ±0.302	18- 20.5=19.35 ±0.515	113.75- 125.25=120.1 ±2.173	46.75- 56.25= 51.45±1.727	38.75- 44=41.05 ±0.913	605- 677=640.4 ±12.188	1150- 1200=1178±8. 602
Alyssum desertorum	W	12.25- 13.75=13± 0.25	17.75-24.5 =22.75±1.2 62	13.25-15.75 =14.35±0.5 27	15.5-17.75 =16.6±0.43	18- 18=19.35 ±0.515	62-73.75= 65.55±2.087	33.75 -44.25 =38±1.732	34.75- 47=39.95 ±2.087	422- 478=448.6 ±9.739	888- 967=930.8±14 .022
Brassica oleracea va	L	36.75- 38.75=37.6 5±0.407	31.75- 33.5=32.5± 0.325	31.5- 33=32.2±0. 289	33- 41.25=37.9 5±1.456	11.75- 15.25=13.6 ±0.68739	106- 114= 110.6 ±1.435	39- 73.25=59.9± 6.024	33.75-38.5 =36.25±0.86 9	-	987- 1088=1035.2± 18.626
r. capitata	W	19.75- 22=20.75± 0.379	19.75- 24.5=21.95 ±0.852	19.75- 23=21.3±0. 555	20.5- 24.75=23.1 ±0.761	9.5- 11=10.2± 0.266	63.75-71= 68.1±1.228	33.75- 38.5=36.25± 0.869	31.5- 39=34.8±1.3 0	-	487- 555=521±12.8 06
Capsella bursa- pastoris	L	22-30.5= 26.45± 1.406	$19.75-22.75=21.3\pm0.532$	22- 38.25= 28.1± 2.894	35.5- 39.5= 36.95± 0.708	-	75.25- 83.75= 79.15± 1.700	46.25- 59.75= 53.9± 2.635	42.25-47= 44.7± 0.888	-	659- 852=776.8±32 .396

 Table 20. Quantitative data of histological properties of studied Brassicaceae species

	W 16.25- 25.5= 20.75± 1.816	12.75- 17=14.8±0. 713	13.25- 19.5= 15.9±1.097	21- 31.25= 25.6 ±1.934	-	44.25- 62=51.55±3.1 35	29.75- 39.75= 34.7± 1.750	32.25-39.25= 35.8± 1.162	-	307- 356=328.6±8. 096
Cardaria	L 22-31.25= 28.2±1.611	24.5- 31= 28.05± 1.194	29.75- 34.25= 31.85± 0.838	31.75- 38.75= 35.7± 1.178	-	39.5-44.5 =42.25±0.955	54-59.75 =56.8±1.088	34.75-42.25 =38.2±1.285	-	653- 781=722.2±24 .239
chalepense	W 11.25- 13.25= 12.4± 0.384	17.25- 21.25= $19\pm$ 0.689	25.5- 29.25= 27.15± 0.691	19.75- 23.25=21.4 5±0.704	-	9.75-11.5= 10.5±0.285	37-44.75 =42.15 ±1.352	31-34.25 =32.45±0.62 9	-	418- 455=431±6.61 0
Cardaria	L 24.5- 34.75=29.1 ±1.77412	$\begin{array}{c} 29.75 - 33.25 \\ = 31.4 \pm 0.61 \\ 033 \end{array}$	25.75-30.75 =28.3±0.86 747	32.25- 36.25=34.4 5±0.75166	16-18.25 =17.25±0.3 7914	61-75.25 =67.95±2.506 74	46-58.5 =51.05± 2.80112	42.25-51.75 =45.85±1.64 621	-	1249- 1278=1260.8± 5.462600113
draba	W 19.25- 22.75=20.6 5±0.718	14.75-22= 17.95±1.30 7	17.25-22 =19.75±0.8 32	19-22 =20.7 ±0.577	10.75-15.5 =12.95± 0.959	40.75-47 =43.95±1.273	39.5-44 =42.45± 0.792	39.75-43 =41.95±0.57 7	-	713- 855=758.2±26 .734
Coincya	L 26.75- 36=33± 1.684	19.75- 22.25 =21±0.487	24.25-30.5= 26.85 ±1.312	33-37.75 =35.15± 0.785	17.75- 20.5= 18.95± 0.508	69.25- 75.75= 72.05± 1.099	42.25- 47.25= 45± 0.836	41.5-46= 44.25± 0.840	-	2487- 2509=2498.2± 4.374
tournefortii	W 20.75- 28.25= 24.55± 1.2	12.75- 15.5=14.15 ±0.503	17.75-22 =20.4±0.77 2	18.5- 22.25= 20.1± 0.625	$\begin{array}{c} 12.75 \\ 15.25 \\ 14.05 \\ 0.463 \end{array}$	42.25- 47=44.4± 0.853	34-40.5= 37.95± 1.124	29.5-36.25= 32.8± 1.2	-	1251- 1303=1268.6± 10.317
Conringia orientalis	L 37-44.75= 39.35± 1.406	29.5- 33.75= 32.2± 0.755	25.25- 33.75= 29.75± 1.476	38.75- 42.25= 41.35± 0.654	18.25- 21.25= 20.05± 0.514	69.25-75.75= 72.05 ± 1.099	42.25- 47.25=45±0. 836	41.5- 46=44.25± 0.84	1699- 1734=171 1.6±5.988	2487- 2509=2498.2± 4.374

	W 29.75- 32.75= 31.35± 0.533	24.5- 29.75= 27.4± 0.979	16.75- 22= 19.65± 1.008	31- 33.75= 32.75± 0.506	14.75- 17= 16.1± 0.4	42.25-47= 44.4± 0.853	34- 40.5=37.95± 1.124	29.5- 36.25=32.8± 1.2	838- 857=850.4 ±3.370	1251- 1303=1268.6± 10.317
Descuraini	L 30.25- 33.75=32± 0.602	25.75-	23.5- 25.75=24.6 5±0.430	33.5- 37.75=35.7 ±0.803	13.5- 16=14.6±0. 465	100.25- 110.5=105.4± 1.940	36.75- 43.5=40±1.4 40	36.5- 42=39.25±0. 894	-	803- 925=876±21.1 51
a Sophia	W 13- 17.75=14.9 5±0.796	18-	17.75- 22=19.65±0 .768	23- 28.25=25.8 5±1.0111	9.75- 11.5=10.55 ±0.289	32.25- 36.75=34.4±0. 722	34.25- 40.75=37.6± 1.197	36.75- 43.25=39.75 ±1.092	-	223- 302=261.2±16 .933
Diplotaxis	L 30.25- 33.75=32± 0.602	25.75-	26.25- 32.75=29.1 ±1.111	31.23- 37.25=40.2 5±38.55	13.5- 16=14.6±0. 465	63.75- 75.25=71.45± 2.014	36- 47=40±1.95 7	36.75- 49=41.3±2.1 13	-	555- 608=584.8±9. 598
harra	W 15.75- 22=18.65± 1.136	1821.75=19	1822=19.7± 0.677	27.25- 30.75=28.8 ±0.609	9.7511.5=1 0.55±0.289	43.548=45.9± 0.792	34.2540.75= 37.6±1.197		-	223- 302=261.2±16 .933
Eruca	L 31.25- 35.25=33± 0.698	25.75- 29=27.15± 0.573	23- 26=24.65±0 .556	33.5- 37.75=35.7 ±0.803	14.5- 16.25=15.4 ±0.375	100.25- 110.5=105.4± 1.940	36.75- 43.25=39.5± 1.204	36.5- 42=39.25±0. 894	394- 453=432± 10.774	803- 925=876±21.1 51
sativa	W 14.75- 20.5=17.45 ±1.0937	19-	.550 17.75- 22=19.65±0 .768	23- 28.25=25.8 5±1.0111	10.25- 12.25=11.0 5±0.365	32.25- 36.75=34.4±0. 722	31.75- 48.25=38.1± 2.801	36.75- 43.25=39.75 ±1.092	185- 234=210± 7.981	223- 302=265.2±15 .242
Farsetia	L 50.25- 61.25=53.3 5±2.025	38.75-	18.25- 21.25=20.1 ±0.533	46- 50.75=47.9 ±0.83	34.5- 38.75=36.6 5±0.860	54.75- 64.25=59.05± 1.727	62- 69.5=65.1±1 .450	59.25- 67=62.65±1. 271	479- 503=493.2 ±4.565	951- 974=959.8±4. 851
hamiltonii	W 33.75- 38.75=35.7 5±0.925	29.25- 33=31.6±0. 635	13- 16=14.65±0 .503	43- 47.25=45.1 ±0.714	24.5- 29.25=26.3 5±0.808	37.75- 43=40.7±0.91 3	46.25- 56=50.75±1. 970	39.5- 49=43.9±1.5 78	195- 222=210.2 ±5.228	406- 458=433.2±9. 041
Farsetia	L 29.25- 36.75=32.7 5±1.343 W 18-	19.75- 33.75=26.3 ±2.545 13.5-	21.25- 29.75=23.8 ±1.595 12.75-	34.75- 37.75=36.2 ±0.532 17.75-	15.25- 20.25=17.5 ±1.042 12.25-	70.5- 75.25=72.65± 0.982 35.25-	39.75- 49.25=43.9± 1.698 36.25-	34.75- 39=37.1±0.7 85 33.5-	-	922- 1005=959±15. 776 633-
heliophila	22=20.15± 0.654		12.73- 15.5=14.1± 0.478	21.75=19.5 5±0.695	12.23- 14=13.15±0 .322	55.25- 37.75=36.4±0. 471	50.23- 41.75=38.55 ±1.028	39.25=36.1± 0.998	-	633- 777=671.4±26 .639

Goldbachia pendula	W	37- $42=39.5\pm0$.925 19.25- 24.5=21.95 ±0.878 21.75- 24.5=22.8	$\begin{array}{c} 29.75 \\ 33.75 = 31.7 \\ \pm 0.751 \\ 23.25 \\ 28 = 25.85 \\ \pm \\ 0.760 \\ 22 \\ 25 \\ 5 \\ 22 \\ 25 \\ 22 \\ 25 \\ 3 \\ 25 \\ 3 \\ 45 \\ 3 \\ 45 \\ 3 \\ 45 \\ 3 \\ 3 \\ 45 \\ 3 \\ 3 \\ 45 \\ 3 \\ 3 \\ 3 \\ 45 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 45 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ $	28.5- 33.75=31.4 5±0.863 17.75- 22=19.65±0 .768 21-	47.25- $52=49.65\pm$ 0.875 37- $40.5=38.4\pm$ 0.635 30.75- 22,220.04	16.75-	100.25- 110.5=105.4± 1.940 51.5- 6356.=1.8597 71491±4.158 67.75- 75- 75- 75- 75- 75- 75- 75-	37.25- $45.5=41.15\pm$ 1.406 39- $47=42.2\pm1.4$ 34834485 59.5- 70.25- 67.85	37.25- 47.25=41.5± 1.778 33- 45.75=38.7± 2.072 54.75- (25-50.2+1	- 814-	805- 838=822±5.63 0 303- 351=330.4±8. 465 1984- 2000-1000-14
Lepidium		24.25=22.8 5±0.451	25.5=23.45 ±0.672	24.5=22.85 ±0.620	33=32±0.4 33	18.25=17.4 ±0.269	75.25=72.15± 1.226	79.25=67.85 ±3.722	63.5=59.3±1. 558	853=829± 6.730	2009=1996±4. 230
aucheri	W	14.75- 20.5=17.2 ±0.982	19.5- 20.75=20.1 5±0.231	15.25- 17=16.2±0. 348	21.75- 25.5=23.7± 0.639	12.75- 15.5=14.3± 0.55	43.5- 47=45.25±0.5 75	38.75- 49.25=44.25 ±1.879	38.75- 43.5=41.15± 0.917	468- 491=478.2 ±3.942	1483- 1555=1515±1 3.524
Matthiola	L	12.25- 19.5=15.15 ±1.393	22- 31.25=26.3 ±1.822	19.25- 22.25=20.4 5±0.514	29.75- 39=35.2±2. 081	13.5- 15.5=14.5± 0.395	76- 91.25=83.9±2. 825	44.75- 54.25=48.9± 1.6194	39.5- 50.75=45.7± 2.132	-	843- 999=889.6±29 .260
flavida	W	11.5- 16=13.4±0 .816	15.5- 18=16.7±0. 470	13- 17.25=15.2 ±0.764	24- 28=25.55± 0.691	8.5- 10.75=9.55 ±0.456	50.25- 56.75=52.7±1. 192	34.25- 42=37.45±1. 507	31.25- 37=34.25±1. 092	-	407- 455=432.8±8. 742
	L	19.5- 22=20.45±	13.75- 15.75=14.7	20.25- 23=21.45±0	29.5- 32.75=30.6	12- 14.25=13.0	38.75- 51.25=45.8±2.	20.75- 28.75=25.25	18.25- 20.25=19.4±	405- 447=427.2	1101- 1173=1140.4±
Meniocus linifolius	W	0.443 17.25- 20.5=18.7	±0.374 20.25- 23=21.45±	.483 16.5- 18.25=17.4	±0.578 19.5- 20.75=20.1	5±0.428 9.5- 11.25=10.2	118 25.75- 31.25=28.8±0.	±1.526 13.75- 21.25=17.2±	0.331 12.75- 17.75=15.45	±7.017 218- 267=239.6	12.496 804 845=817.8±7.
	L	±0.614 34.5- 37.75=35.5	0.483	±0.322 18.5- 22.25=20.2	5±0.231	5±0.306 -	902 44.75- 59.5=51.15±2.	1.347 43.75- 49.75=47±1.	±0.830 36.5- 46.75=41.45	±9.135 -	532 921- 966=945.2±7.
Nasturtium officinale	W	5±0.577 20.5- 23=21.5±0 .403	-	5±0.794 13.5- 16.5=15.15 ±0.503	-	-	723 43.549.25=46. 05±1.05	0338 34.75- 41.5=37.25± 1.234	±1.743 29.75- 38.5=33.5±1. 433	-	908 401- 442=423±6.83 3
Notoceras bicorne	L W		22.75- 23.75=23.2 5±0.176 17.25- 19.5=18.2±	17.25-22.75=20.3 5 ± 0.950 15.5-22.75=19.1	25.5- 30.25=27.9 5±0.979 19.75- 21=20.45±	-	112- 121.25=116.5 5±1.723 55.5- 57=56.3±0.26	55.25- 69.5=61.4±2 .396 38.75- 48.25=44.5±	35.75- 44.25=39.85 ±1.354 33.25- 40.25=36.85	601- 641=621± 6.356 247- 278=261.6	998- 1009=1004.4± 2.014 428- 458=444.8±5.
		0.375	0.365	±1.310	0.215		-	1.581	±1.141	±5.192	453

Physorrhyn chus brahuicus	W	18- 20.75=19.4 5±0.52 16.75- 18.5=17.7 ±0.320	$\begin{array}{c} 25.75 \\ 31.25 = 28.8 \\ 5 \pm 1.056 \\ 20.75 \\ 24.5 = 22.25 \\ \pm 0.689 \end{array}$	29.5- 33.75=31.3 5 ± 0.785 21.5- 23.5=22.55 ± 0.357	$\begin{array}{c} 35.75-\\ 38=37.15\pm\\ 0.392\\ 19.75-\\ 23.25=21.6\\ 5\pm0.664 \end{array}$	16- 20.25=18.3 5 ± 0.785 12.75- 15.5=14.25 ± 0.541	42.75- 46.75=45.1±0. 714 33- 36=34.8±0.53	$\begin{array}{c} 47-\\ 53.25=50.6\pm\\ 1.108\\ 44.25-\\ 50.5=47.85\pm\\ 1.171\end{array}$	47- $53.25=50.6\pm$ 1.108 34- 43.75=38.45 ± 1.642	-	2507- 2634=2561.8± 25.720 1988- 2016=2004±4. 549
Raphanus raphanistru m		31.75- 33=32.35± 0.231 27.25-	18.25- 21=19.7±0. 463 15.5-	16- 18.25=16.9 5±0.428 13.25-	24.5- 32.75=29.3 ±1.770 18.25-	13.25- 16=14.55±1 .164 11-	76.25- 88=81.25±1.9 34 54.75-	37.25- 43.25=39.95 ±1.022 41.5-	37.25- 44.5=41.7±1. 235 37-	854-888- 876.8=5.9 61 355-	1425- 1454=1441.2± 5.013 531-
m	L	31=29.25± 0.647 30.25- 33.75=32±	18.25=16.9 5±0.520 18- 21.75=19.7	15.5=14.45 ±0.428 23.5- 25.75=24.6	23.5=20.5± 1.009 33.5- 37.75=35.7	15.25=13.5 ±0.720 13.5- 16=14.6±0.	61.25=57.3±1. 223 100.25- 110.5=105.4±	50.25=45.35 ± 1.415 36.75- $43.5=40\pm 1.4$	41.25=38.8± 0.792 36.5- 42=39.25±0.	388=370± 5.449 -	563=547.8±5. 471 803- 925=8762±1.1
Sisymbrium altissimum	W	0.602 13- 17.75=14.9 5±0.796	5±0.642 18- 21.75=19.7 5±0.642	5±0.430 17.75- 22=19.65±0 .768	±0.803 23- 28.25=25.8 5±1.011	465 9.75- 11.5=10.55 ±0.289	1.940 32.25- 36.75=34.4±0. 722	40 34.25- 40.75=37.6± 1.197	894 29.5- 38.25=33.05 ±1.543	-	51 223- 302=261.2±16 .933
Strigosella	L	18- 24.75=20.9 5±1.181	28.5- 31=30.05± 0.443	23.5- 25.75=24.6 5±0.430	33.5- 37.75=35.7 ±0.803	14.5- 15.75=15.1 5±0.231	48.75- 56.5=52.45±1. 511	36.75- 43.5=40±1.4 4	36.5- 42=39.25±0. 894	-	1322- 1355=1334.8± 6.143
africana	W L	13- 17.75=14.9 5±0.79 38.75-	18- 22.75=20.1 ±0.800 29.5-	15.5- 20.5=17.05 ±0.902 29.75-	23- 28.25=25.8 5±1.011 37-	9.75- 11.75=10.8 ±0.357 19.75-	76.25- 94.5=87.7±3.0 54 46.75-	31.5- 38.75=34.75 ±1.380 37.25-	36.75- 43.25=39.75 ±1.092 32-	-	705- 756=734.4±8. 617 1257-
Strigosella		43=41.75± 0.770 19.75-	29.5- 31=30.3±0. 28 20.5-	29.75- 32.75=31.4 5±0.538 19-	39=38.1±0. 407 20.5-	23=21.35±0 .594 12-	55.5=51.55±1. 531 35.75-	49.5=42.9±2 .308 29.75-	48.75=43.4± 2.975 29.5-	-	1423=1352.4± 30.793 761-
cabulica		23=21.1±0 .605	23=21.85± 0.465	23=20.75±0 .73	23=21.9±0. 465	13.75=12.7 5±0.306	38.75=37.5±0. 5	38=34.5±1.4 5	38.25=33.05 ±1.543	-	882=796±22.3 40
Strigosella		19.75- 21.25=20.5 ±0.316	15.75- 20.5=18.55 ±0.885	17.25- 20.25=18.5 5±0.496	21.75- 25.75=23± 0.733	12.25- 13.75=13±0 .25	76.25- 88.75=82.9±2. 181	32.25- 47=37.95±2. 548	32.25- 41.25=36.75 ±1.563	-	1211- 1282=1240.8± 12.622
intermedia	w	15.75- 18.75=17.1 5±0.5	13.75- 15.5=14.6± 0.341	12- 14=13±0.39 5	16- 20.25=18.3 5±0.682	9.75- 13=11.6±0. 61	76.25- 88.75=82.9±2. 181	30.5- 37.25=34.1± 1.174	24.5- 29.5=27.25± 0.851	-	1002- 1009=1005.2± 1.280

Link characte r	Presen t (+) /absen t (-)	Diagnostic characters	Species name
1	+	Petiole flat, Epidermal cells square to rectangular, Parenchyma cells irregular, Xylem Vessel angular, Phloem cells round	Aethionema carneum
	-	Parenchyma cells tetra to hexagonal, Xylem Vessel round to angular	2
2	+	Collenchyma cells lamellar, Sclerenchyma absent, Vb arrangement collateral closed	Alyssum desertorum
	-	Parenchyma cells are hexagonal, Collenchyma cells angular, Sclerenchyma cells hexagonal, Vb arrangement collateral open	3
3	+	Petiole oval, Epidermal cells square, Cuticle smooth, Phloem cells rectangular to oval	Brassica oleracea
	-	Epidermal cells rectangular to square, Cuticle undulated, Phloem cells rectangular to hexagonal, Vb are bi-collateral	4
4	+	Trichome absent, Xylem Vessel round	Capsella bursa- pastoris
	-	Cuticle smooth, Phloem cells rectangular, round, oval, Vb are hadrocentric	5
5	+	Parenchyma cells tetra to hexagonal, Sclerenchyma absent	Cardaria chalepense
	-	Parenchyma cells tetra to isodiametric, Phloem cells angular	6
6	+	Epidermal cells Square and round, Collenchyma cells lacunar, Trichome unicellular	Cardaria draba
	-	Epidermal cells are round & oval, Parenchyma cells tetragonal to irregular, Collenchyma cells angular, Trichome absent, Phloem cells angular to oval	7

 Table 21: Dichotomous key based on petiole morphological characters of Brassicaceous flora from Baluchistan

7	+	Petiole sulcate, Xylem Vessel round and oval	Coincya tournefortii
	-	Petiole flat, Trichome uniseriate, Phloem cells rectangular	8
8	+	Epidermal cells rectangular, Parenchyma cells irregular, Collenchyma cells lamellar	Conringia orientalis
	-	Petiole sulcate, Epidermal cells square and round to oval, Collenchyma cells angular	9
9	+	Vb Arrangement collateral closed, Phloem cells round and oval	Descurainia Sophia
	-	Petiole flat, Epidermal cells rectangular to round, Vb arrangement hadrocentric	10
10	+	Parenchyma cells isodiametric, Trichome unicellular, Cuticle undulated, Phloem cells round and oval	Diplotaxis harra
	-	Petiole oval, Epidermal cells square, Parenchyma cells hexagonal, Vb bicollateral	11
11	+	Xylem Vessel round, Phloem cells rectangular, round to oval	Eruca sativa
	-	Petiole circular, Epidermal cells square to round, Xylem Vessel round to angular, Phloem cells rectangular to oval, Vb collateral closed	12
12	+	Collenchyma cells lamellar, sclerenchyma cells hexagonal, Cuticle smooth	Farsetia hamiltonii
	-	Petiole flat, Epidermal cells square, sclerenchyma absent	13
13	+	Parenchyma cells regular, Collenchyma cells lacunar, Cuticle smooth, Xylem vessel round, Phloem cells round	Farsetia heliophila
	-	Petiole sulcate, Epidermal cells square to rectangular, Parenchyma cells tetra to hexagonal, Cuticle undulated, Xylem vessel round and oval, Phloem cells rectangular round	14
14	+	Vb arrangement bicollateral, Trichome absent	Goldbachia pendula

	-	Epidermal cells square to round, Parenchyma cells isodiametric, Trichome Multiseriate, Xylem Vessel angular to round, Phloem cells rectangular to oval	15
15	+	Collenchyma cells lamellar	Lepidium aucheri
	-	Trichome absent, Phloem cells round, oval	16
16	+	Petiole flat, Epidermal cells square to oval, Parenchyma cells irregular, Collenchyma cells angular	Matthiola flavida
	-	Petiole sulcate, Epidermal cells square, Parenchyma cells isodiametric, Collenchyma cells lamellar, Trichome multiseriate, Phloem cells rectangular	17
17	+	Sclerenchyma cells hexagonal, Cuticle smooth, Xylem Vessel round	Meniocus linifolius
	-	Epidermal cells oval, Parenchyma absent, Collenchyma absent, Trichome unicellular, Cuticle absent	18
18	+	Xylem Vessel round to angular	Nasturtium officinale
	-	Parenchyma cells hexagonal	19
19	+	Petiole flat, Epidermal cells Square to oval, Collenchyma cells lacunar, Sclerenchyma absent, Cuticle undulated, Xylem Vessel round and oval, Phloem cells rectangular and oval	Notoceras bicorne
	-	Petiole circular, Parenchyma cells isodiametric, Collenchyma cells lamellar, Cuticle smooth, Xylem Vessel round, Phloem cells rectangular, round to oval.	20
20	+	Sclerenchyma cells hexagonal, Vb Arrangement collateral closed, Trichome absent	Physorrhynch us brahuicus
	-	Petiole flat, Parenchyma cells hexagonal, Vb arrangement bi-Collateral, Trichome multiseriate, Xylem Vessel round to oval, Phloem cells are rectangular and oval	21

21	+	Epidermal cells square, sclerenchyma cells hexagonal	Raphanus raphanistrum
	-	Petiole circular, Epidermal cells square to oval, Trichome absent, Xylem Vessel round, Phloem cells round and oval, Vb collateral open	22
22	+	Sclerenchyma cells hexagonal	Sisymbrium altissimum
	-	Epidermal cells square to round, Trichome unicellular, Xylem Vessel round to angular, Vb arrangement collateral closed	23
23	+	Collenchyma cells angular,	Strigosella africana
	-	Epidermal cells angular, Vb Arrangement hadrocentric, Xylem Vessel round	24
24	+	Phloem cells rectangular and oval	Strigosella cabulica
	-	Epidermal cells rectangular, Vb arrangement collateral closed, Xylem Vessel oval to round, Phloem cells Oval, round	25
25	+	Petiole sulcate, Parenchyma cells irregular, Collenchyma cells lamellar, Sclerenchyma absent, Trichome absent, Cuticle undulated	Strigosella intermedia

3.5 Petiole Anatomy of Fabaceous Flora of Northern **Baluchistan**

3.5.1 Results and Discussion

The current study described the petiole anatomical characteristics of 15 Fabaceous species. The size and morphologies of epidermal cells, collenchyma, chlorenchyma, parenchyma, cuticle layer, vascular bundles, xylem vessels, and phloem cell shape were noted. From a taxonomic perspective, the petiole shape was found to be important since it is less affected by environmental changes (Metcalfe and Chalk, 1957). However, petiole anatomy has been ignored in taxonomic investigations. One of the reasons is that it requires quantitative and qualitative analysis and more than one sample. Anatomical traits have been found significant in distinguishing between higher taxonomic levels, including genera and families. Several anatomical studies were found significant in resolving taxonomic problems within different groups (Carlquist, 1996; Carlsward et al., 1997; Colombo and Spadaro, 2003; Scatena et al., 2005; Satil and Selvi, 2007; Matias et al., 2007; Schweingruber, 2007; Erxu et al., 2009; De la Estrella et al., 2009; Zarrei et al., 2010). The observations from the current study demonstrated their significance in the differentiation of the examined species.

a) Petiole outline, and wings of the Fabaceous species

Winged petioles were present in 8 Fabaceous species. Earlier winged petioles in the Fabaceous species were documented by Mehrabian et al. (2007), Karamian and Ranjbar (2003). Petiole wings were present in Astragalus purpurascens and absent in Astragalus crenatus. Groove in the upper surface of the petiole was noted in 10 species. The petiole outline was flat, sulcate, round, and oval in the studied species. Oval-shaped petiole was present in Caragana ambigua, while round petiole was observed in Indigofera intricata and Lotus garcinii (Table 23). Petioles in Taverniera glabra, were notably conspicuous, with the largest length of 3210µm. In most species, the petiole outline was flat or sulcate. Metcalfe and Chalk (1950) stated that petiole is not greatly affected by different ecological conditions, it is significant taxonomically.

The present petiole cross-section description was generally consistent with earlier research on other Astragalus species (Howard, 1979; Haddad and Barnett, 1989; Palyno-anatomical Studies of Dicot Phytodiversity in Northern Baluchistan, Pakistan

Pirani et al., 2006). Previously semi-triangular, with convex abaxial sides and either flat or slightly convex adaxial sides petiole outline was reported in *Astragalus spruneri*, (Junković et al., 2021). Studies conducted on *Astragalus* species from Europe have indicated that the central region parenchyma and the amount of collenchyma tissue surrounding vascular bundles were diagnostic in taxonomy for their differentiation (Haddad and Barnett, 1989). In this study, the recommendations of Haddad and Barnett (1989) and Engel (1990) were followed, and cross-sections were taken from the middle of the petiole. Previously, different Fabaceous species have been documented with distinct petiole outlines, from subtriangular to suborbicular (Junković et al., 2021).

The studied species were significantly distinguished based on the anatomy of the petiole. For example, the petiole of *Indigofera cuneifolia* was sulcate, smooth cuticle, bicollateral vascular bundles, and angular to oval xylem vessels, while *Indigofera intricata* round outline, undulated cuticle, amphicribral vascular bundles, and rectangular to round xylem vessels. Four species of *Onobrychis* were the subject of petiole anatomy studies by Karamian et al. (2012). Previously *Onobrychis* sect. Heliobrychis anatomical examinations of the peduncle cross-section showed that different perennial species had petioles with circular, elliptic, pentagonal, and hexagonal form, with the surface of the peduncle smooth, papillo, or highly papillo (Karamian et al., 2011). They observed the presence of certain cavities in the cortical parenchyma and surrounding the pericyclic fibers. In their investigation, cavities were also found in the stem's cross sections but not in the root.

b) Cuticle, and Epidermal cell shape in the petiole of Fabaceae plants

A smooth and undulated type of cuticle was observed in the petiole of the Fabaceous species. The smooth form was found in seven species, while the undulated type was in ten plants. A thick cuticle was noted in *Melilotus indicus*. A smooth cuticle was observed in the petiole of the *Astragalus* genus. Epidermal cell shape varied from square to angular, irregular, square to rectangular, angular to square, and square (Plate 64-67). Okanume et al. (2022) also observed epidermal cells as rectangular, round, oval, angular, and square in shape. In *Melilotus indicus* square to rectangular, and angular epidermal cells were noted. In the *Astragalus* genus square to angular epidermal cell was observed. The maximum width of epidermal cell was observed in *Lotus garcinii* 27.2 µm (Table 24). In five species, irregular epidermal cells were present. The *Palyno-anatomical Studies of Dicot Phytodiversity in Northern Baluchistan, Pakistan* 182

minimum width of 3.35µm was noted in *Onobrychis dealbata*. Junković et al. (2021) reported that a single-layered epidermis has a denser covering of cuticle, within the *Astragalus* genus. According to Pierani et al. (2006), the epidermis in every member of the *Astragalus* genus was in the form of a single layer of subcircular to sub-rectangular cells. With age, the cortex divides into four to six layers. In our investigation, the epidermis in the *Astragalus* was found square to angular, and irregular. Presently, a single layer of epidermis was present in all studied taxa. Similar results were reported by Kemka-Evans et al. (2021).

c) Collenchyma, Chlorenchyma, and Parenchyma of Fabaceous species

Collenchyma cells were observed in lamellar, lacunar, angular, and lamellar-toangular shapes. In most species, angular collenchyma was observed. Angular-tolamellar collenchyma was only noted in *Indigofera cuneifolia*. The lacunar shape was only observed in *Melilotus indicus*. The sub-epidermal ring of collenchyma was present in 11 species. The prominent collenchyma ring was observed in *Trigonella macrorrhyncha* and *Onobrychis tavernierifolia*. The number of layers of collenchyma cells varied from 1-3 in the examined species. Number of layers of chlorenchyma cells ranged from 1-4 (Table 22). The 4 layers of chlorenchyma were observed in *Ebenus stellata*. In the studied Fabaceous species the observed parenchyma cell shapes were triangular to hexagonal, isodiametric, irregular, and hexagonal. The isodiametric parenchyma was noted in six species. The tri-to-hexagonal shape was observed in *Alhagi maurorum*. The irregular form of the parenchyma was noted in five species. In *Onobrychis* genus the parenchyma cells were isodiametric.

The petioles in the *Astragalus* genus comprised one to two collenchyma layers. The subepidermal ring of collenchyma was absent in *Astragalus purpurascens*. In the petioles of Fabaceae species, Nwachukwu et al. (2017) observed 1-2 layers of collenchyma beneath the epidermis, followed by multiple layers of parenchyma. *Alhagi maurorum*, according to Awmack and Lock (2002), had a thick epidermis and a poorly developed cortex. Presently, *Alhagi maurorum* was observed with one layer of collenchyma. Zoric et al. (2009) documented one layer of collenchyma in *T. alpestre*, *T. montanum*, and *T. velenovskyi*.

Anatomical features of the petiole in the studied *Onobrychis* species differed from each other. *Onobrychis dealbata* and *Onobrychis tavernierifolia*, were differentiated based on the shape of collenchyma cells, xylem vessels, and parenchyma cells. Three to seven, primarily four to six, layers of parenchyma cells were observed previously in Fabaceae petioles (Lana et al., 2011). The parenchyma layers in the cortical region of *Astragalus* species varied from 3-10, including tri to hexagonal, irregular, and isodiametric shapes. *Alhagi maurorum* had a well-developed cortical region with twelve layers of parenchyma cells. *Onobrychis dealbata* and *Onobrychis tavernierifolia* have isodiametric parenchyma cell shapes, whereas the cortical region in the genus *Onobrychis* was composed of three layers of parenchyma.

Astragalus crenatus have three chlorenchyma cells layers. Jušković et al. (2021) documented two to three layers of collenchyma, chlorenchyma and many layers of parenchyma cells in the petiole cross-section of *Astrasgalus*. Sclerenchyma cells and the sclerification between the vascular tissues were absent in all examined species of Fabaeacea. Three species *Caragana ambigua, Sophora mollis,* and *Vicia macrantha* showed evidence of sclerification. A similar was reported by Noor et al. (2023) for the Brassicaceae family from the same study area.

d) Vascularization in the petiole of Fabaceae species

The arrangement of vascular bundles was observed as collateral closed, collateral open, bicollateral, and amphicribral. Bicollateral arrangements was present in *Indigofera cuneifolia*. In ten species collateral closed type of vascular bundle was noted. Amphicribral vascularization was observed in four species. The collateral open type was remarked in *Vicia macrantha*. In *Ebenus stellata* nine vascular bundles were observed. The presence of sclerenchyma between the vascular bundles was present in the three species. Most Fabeaceae species have amphicribral and collateral closed vascular bundles. The vascular bundle of the genus *Onobrychis* and *Astargalus* was distinguished from *Indigofera cuneifolia*, which was a bicollateral arrangement of vascular bundles. In nine species the arrangement of vascular bundles was 1+2. Heneidak and Shaheen (2007) also disclosed the collateral open vascular bundles in *Indigofera* species.

Xylem vessels were observed in various forms, oval to round, angular, round to angular, tri to hexagonal, angular to oval, round to oval, and rectangular to round. Rectangular to round xylem vessels were only found in *Indigofera intricate*. The shape of the phloem cell was tetra to hexagonal in *Melilotus indicus*. In most species the shape of phloem cells was angular. Significant differences in the anatomical features of *Onobrychis* genus, particularly in the xylem vessel diameter, and phloem width, were observed. Zarrabian et al. (2013) examined the petiole anatomy of similar species from different regions and stated that petiole anatomical traits were less affected by different environmental conditions. Al-otraqche (2022) demonstrated that parenchyma encircled the vessels and fibers in the *Onobrychis*. In *Astragalus* species, the vascular bundle size and number differ significantly. Previously, Pirani et al. (2006) reported dense sclerenchymatous sheath made up of extraxylary fibers with exceptionally thick walls surrounding the vascular bundles.

e) Multivariate analysis

significance of quantitatively measured features in taxonomic The investigations was established by their analysis in the form of PCA, dendrograms, correlation, and normal probability plots. The PCA (Figure 27) demonstrated that PC1 and PC2 differed by 72. % and 27.7% variance respectively. Most of the analyzed characteristics had positive correlations. The xylem vessel length and width showed the highest positive association, 0.97. Conversely, the collenchyma width and the vascular bundle width showed the least positive correlation, 0.04. The xylem vessel width and epidermis width showed the highest negative association, which was -0.25 (Figure 29). There was also a negative correlation between vascular bundle length and epidermis length -0.21, xylem vessel length and epidermis width -0.23, chlorenchyma and xylem vessel -0.17. Using a dendrogram, the quantitative variables considerably shaped the evolutionary relationships between the taxa. The dendrogram was delineated into two clusters (Figure 30). One major cluster with 10 taxa, and the second one with 5 taxa. The patterns for the quantitative variables in the data set were identified via the normal probability plot. Black dots in the data reflected the outliers. The trend in the data set was displayed by the straight black line, while the mean data values for each trait were represented by the color. The studied Fabacious species were significantly differentiated based on the petiole anatomical quantitative features.

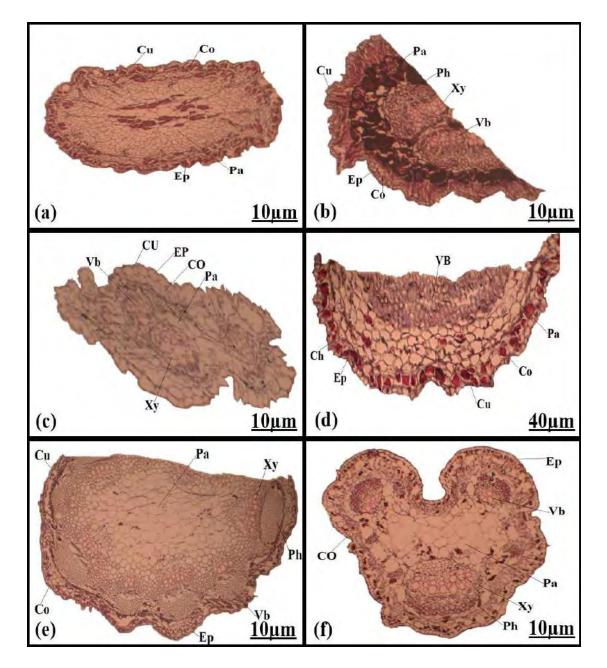


Plate 64. Photomicrographs of petiole anatomy (a) *Alhagi maurorum*, (b) *Astragalus crenatus*, (c) *Astragalus purpurascens*, (d) *Caragana ambigua*, (e) *Ebenus stellata*, (f) *Indigofera cuneifolia*, (Cu: cuticle, Ep: Epidermis, Pa: Parenchyma, Co: Collenchyma, Ch: Chlorenchyma, Sc: Sclerenchyma, Xy: Xylem, Ph: Phloem). Scale:10µm(a,b,c,e,f),40µm (d)

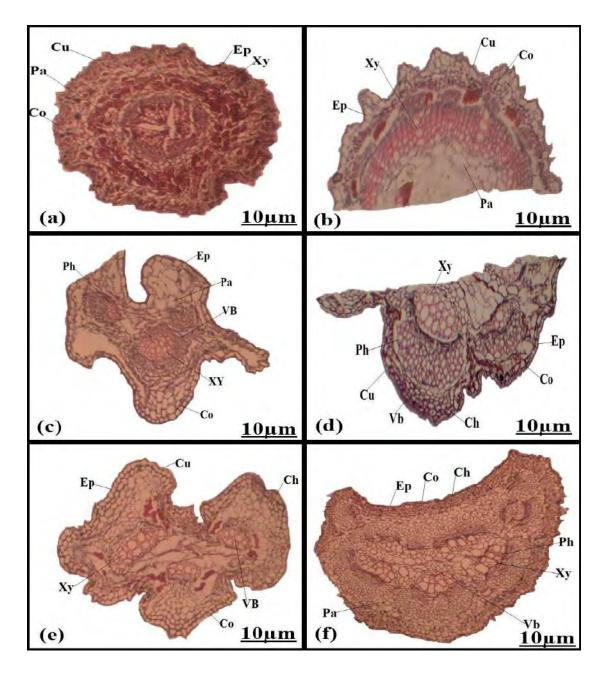


Plate 65. Photomicrographs of petiole anatomy (a) Indigofera intricata, (b) Lotus garcinii, (c) Melilotus indicus, (d) Onobrychis dealbata, (e) Onobrychis tavernierifolia, (f) Sophora mollis, (Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale:10µm

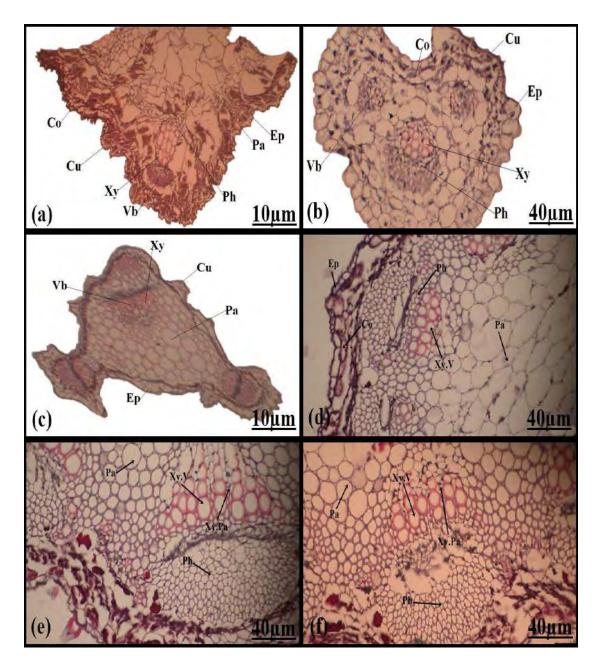


Plate 66. Photomicrographs of petiole anatomy (a) *Taverniera glabra*, (b) *Trigonella macrorrhyncha*, (c) *Vicia macrantha*, (d,e,f), *Ebenus stellata*,(Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale:10μm(a,c,),40μm (b,d,e,f)

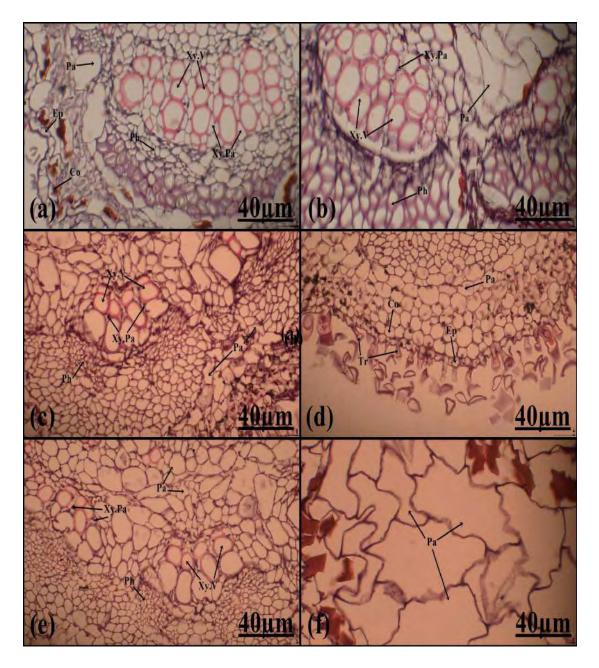
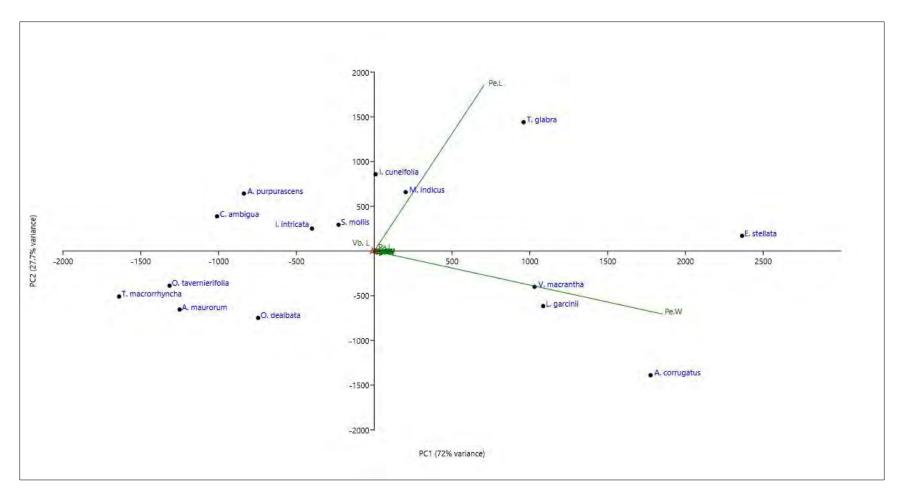



Plate 67. Photomicrographs of petiole anatomy (a) *Indigofera cuneifolia*, (b) *Onobrychis dealbata*, (c,d,e) *Sophora mollis*, (f) *Taverniera glabra*, (Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale:40µm

Figure 27. Utility of petiolar features in discriminating among species of Fabaceous by PCA (epidermis length and width, collenchyma length and width, chlorenchyma length and width.

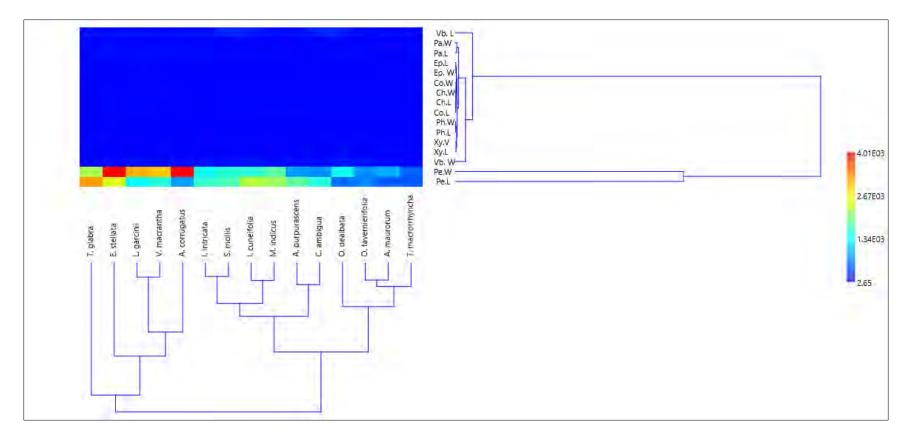
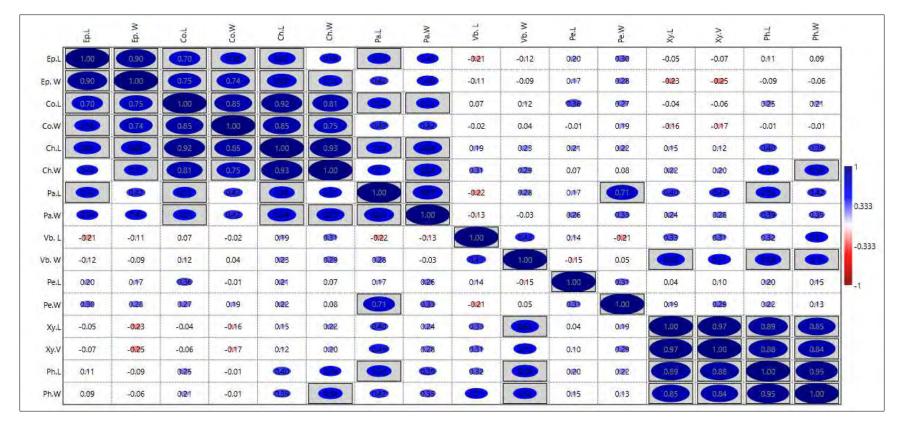
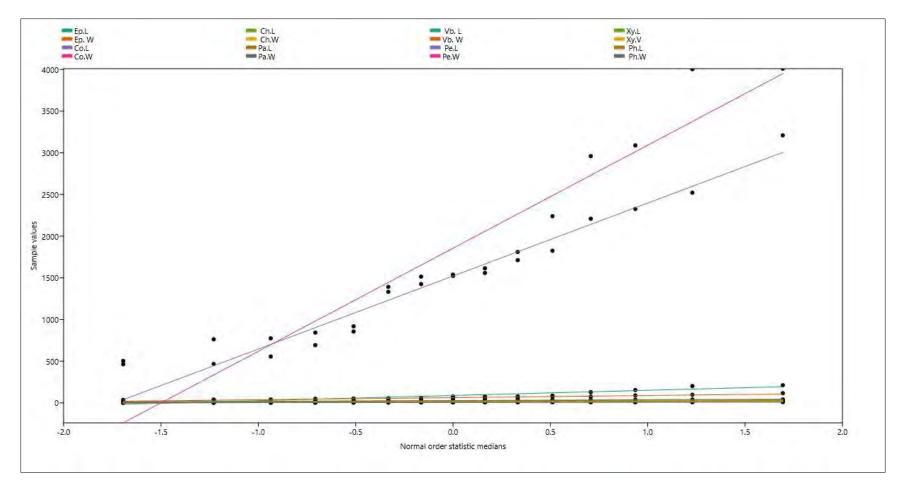




Figure 28. Dendrogram showing the similarity index of Fabaceous taxa based on quantitative parameters of petiole

Figure 29. Correlation among the mean values of Ep.L: Epidermal length; Ep.W: Epidermal width; Co.L: Collenchyma length:Co.W: Collenchyma width; Vb.L:Vascular bundle length; Vb.W: Vascular bumdle width

Figure 30. Normal probability distribution among the mean values of Ep.L: Epidermal length; Ep.W: Epidermal width; Co.L: Collenchyma length: Co.W: Collenchyma width; Ch.L: Chlorenchyma length; Ch.W: Chlorenchyma width; Vb.L:Vascular bundle length; Vb.W: Vascular bundle width

Plant	Petiole wing	Grove in the upper surface	Co (No of layers)	Subepidermal ring of Co	Ch (No of layers)	Sc (No of layers)	Sc Presence in VB	Pa layers	No of VB	Xy parenchyma	Ph Parenchyma
Alhagi maurorum	-	-	1	+	3	-	-	12	3	+	+
Astragalus crenatus	-	-	1	+	3	-	-	6	2	+	+
Astragalus purpurascens	+	+	1	-	1	-	-	3	1+2	+	+
Caragana ambigua	-	-	1	+	3	-	+	-	1	+	+
Ebenus stellata	-	+	3	+	4	-	-	7	9	+	+
Indigofera cuneifolia	+	+	2	+	1	-	-	6	1+2	+	+
Indigofera intricata	-	-	2	+	2	-	-	3	1	-	+
Lotus garcinii	-	+	2	+	1	-	-	5	1	+	+
Melilotus indicus	+	+	1	-	1	-	-	3	1+2	+	+
Onobrychis dealbata	+	+	2	-	1	-	-	3	1+2	+	+
Onobrychis tavernierifolia	+	+	3	+	1	-	-	3	1+2	+	+
Sophora mollis	+	+	3	+	1	-	+	2	1+2	+	+
Taverniera glabra	+	+	2	+	1	-	-	5	1	+	+
Trigonella macrorrhyncha	-	+	1	+	1	-	-	2	1+2	+	+
Vicia macrantha	+	-	2	-	2	-	+	3	1+2	+	+

Table 22. Qualitative anatomical observations of the Petiole of Fabaceous taxa

(Co: Collenchyma, Ch: Chlorenchyma, Sc: Sclerenchyma, VB: Vascular bundles, Xy: Xylem, Ph: Phloem

Plant	Outline	Cuticle structure	Ep shape	Pa shape	Co shape	Sc shape	VB arrangement	Xy vessel	Ph shape
Alhagi maurorum	Flat	Undulated	Square to angular	Tri to hexagonal	Lamellar to angular	-	Collateral closed	Oval	Angular
Astragalus corrugatus	Flat	Undulated	Square to angular	Irregular	Lamellar to angular	-	Collateral closed	Oval to round	Angular
Astragalus purpurascens	Flat	Smooth	Irregular	Irregular	Angular	-	Collateral closed	Round to angular	Angular
Caragana ambigua	Oval	Undulated	Square	Isodiametric	Lamellar	-	Collateral closed	Round to angular	Angular
Ebenus stellata	Flat	Undulated	Square to rectangular	Hexagonal	Angular	-	Amphicribral	Angular to oval	Tri to hexagonal
Indigofera cuneifolia	Sulcate	Smooth	Square	Isodiametric	Angular to lamellar	-	Bicollateral	Angular to oval	Angular
Indigofera oblongifolia	Round	Undulated	Irregular	Isodiametric	Lamellar	-	Amphicribral	Rectangular to round	Angular
Lotus garcinii	Round	Undulated	Irregular	Isodiametric	Angular	-	Collateral closed	Round to oval	Angular
Melilotus indicus	Sulcate	Undulated	Square to rectangular and angular	Irregular	Lacunar	-	Collateral closed	Oval	Tetra to hexagonal
Onobrychis dealbata	Sulcate	Smooth	Square to angular	Isodiametric	Angular	-	Collateral closed	Round to oval	Tri to hexagonal
Onobrychis tavernierifolia	Sulcate	Smooth	Square to angular	Isodiametric	Lamellar	-	Collateral closed	Round	Angular
Sophora mollis	Sulcate	Undulated	Square to angular	Irregular	Angular	Angular	Amphicribal	Oval	Tri to Hexagonal
Taverniera glabra	Sulcate	Undulated	Irregular	Irregular	Lamellar to angular	-	Collateral closed	Oval	Angular

Table 23. Qualitative anatomical observations of the Petiole of Fabaceous taxa

Trigonella macrorrhyncha	Sulcate	Undulated	Square	Hexagonal	Lamellar	-	Collateral closed	Angular at edges	Angular
Vicia macrantha	Sulcate	Smooth	Square to angular	Hexagonal	Angular	Tri to Hexagonal	Collateral open	Round to oval	Angular

(Ep: Epidermis, Pa: Parenchyma, Co: Collenchyma, Sc: Sclerenchyma, VB: Vascular bundles, Xy: Xylem, Ph: Phloem

Plant Species		Ep (µm)	Co (µm)	Ch (µm)	Pa (µm)	Vb (µm)	Pe	Xy (µm)	Ph (µm)
Mean±SE	W								
Caragana ambig ua	L	14.8±0.64903 7749	23.65±0.5623 61094	26.55±0.9062 28448	26.65±0.5841 66072	211.25±0.612 372436	1523.8±10.26 839812	11±0.176776 695	8.35±0.35881 7502
ш	W	17.7±0.26692 6956	26±0.176776 695	30.65±0.2573 90754	32.5±0.35355 3391	61.6±1.47605 8942	775±5.787918 451	8.6±0.257390 754	7.7±0.266926 956
Sophora mollis	L	4.75±0.30618 6218	4.6±0.257390 754	4.45±0.27838 8218	13.45±0.2150 58132	202±1.003120 132	1713.2±4.851 803788	17.35±0.4911 72068	5.45±0.21505 8132
sopnora mottis	W	4.3±0.145773 797	4.25±0.17677 6695	4.55±0.21505 8132	16±0.176776 695	62.95±0.2150 58132	1538.4±11.48 303096	13.4±0.30207 6149	5.45±0.21505 8132
Astragalus purpu	L	11.65±0.3409 54542	12.95±0.2150 58132	8.7±0.215058 132	14.85±0.2318 40462	51.35±0.6403 12424	1825.6±6.569 627082	4.25±0.17677 6695	3.65±0.12747 5488
rascens	W	12.65±0.2318 40462	13.15±0.1274 75488	7.35±0.23184 0462	16.5±0.17677 6695	38.25±0.1767 76695	843.8±2.9899 83278	3.25±0.17677 6695	2.65±0.23184 0462
Melilotus	L	12±0.25	18.05±0.3482 09707	16±0.176776 695	20.45±0.2150 58132	86.55±0.5326 81894	2209.6±4.534 31362	9.7±0.165831 24	5.75±0.17677 6695
indicus	W	12.65±0.2318 40462	18.45±0.3657 18471	13.05±0.0935 41435	18.5±0.17677 6695	55.95±0.8565 92085	1810.4±3.668 787266	6.75±0.17677 6695	4.25±0.17677 6695
Indigofera cuneif	L	15.95±0.2150 58132	18.7±0.21505 8132	19.2±0.31024 1841	31.45±0.2893 95923	129.5±1.0925 88669	2327.4±9.091 754506	20.75±0.1767 76695	10.75±0.1767 76695
olia	W	10.75±0.1767 76695	13.15±0.2573 90754	16.7±0.21505 8132	25.75±0.3061 86218	98.15±0.5037 36042	1559±3.86005 1813	13.25±0.1767 76695	6.75±0.17677 6695
Onobrychis	L	6.75±0.17677 6695	11.25±0.1767 76695	13.5±0.17677 6695	34±0.176776 695	155.05±1.417 303778	556.6±3.6414 28291	28.7±0.16583 124	14.05±0.6093 0288
dealbata	W	3.35±0.12747 5488	11.75±0.1767 76695	16.45±0.2893 95923	19.85±0.2318 40462	116.75±0.829 156198	1425.4±7.242 927585	21.55±0.2150 58132	10.3±0.50249 3781
Onobrychis	L	12.65±0.2318 40462	13.3±0.21505 8132	14.85±0.2318 40462	26.2±0.26692 6956	38.45±0.3482 09707	693±2.588435 821	20.85±0.2318 40462	9±0.1767766 95
tavernierifolia	W	11.75±0.1767 76695	15.75±0.1767 76695	17.4±0.26925 824	32.1±0.49117 2068	75.9±0.23184 0462	763.2±3.8131 35193	14.25±0.1767 76695	6.5±0.176776 695
Taverniera glabra	L	21.1±0.23184 0462	17.75±0.3259 6012	16.85±0.2573 90754	38.35±0.3409 54542	76.05±0.2893 95923	3210.4±6.446 704585	19.1±0.38405 7287	10.75±0.1767 76695

 Table 24. Quantitative data of petiole histological properties of studied Fabaceous species

	W	17.35±0.2318 40462	13.5±0.17677 6695	15.75±0.1767 76695	38±0.410791 918	37.75±0.2850 43856	2239.8±5.508 175742	16.25±0.4808 84602	7.65±0.23184 0462
		6.6±0.384057	12.8 ± 0.32015	8.35±0.23184	26 ± 0.176776	77.4 ± 0.83141	1614.6 ± 5.240	8.25±0.17677	6.15±0.30207
Indigofera	L	287	621	046	695	4457	22900	669	614
intricata		4 ± 0.1767766	8.55±0.21505	11±0.176776	20.75±0.1767	74.6±0.75249	1392 ± 6.53452	6.75±0.17677	4.25±0.17677
	W	95	8132	695	76695	5847	3701	6695	6695
		25.05±0.2893	17.55±0.4703	16.85±0.3221	38.25±0.1767	49.35±0.2573	1515.2±5.379	13.25±0.1767	8.25±0.17677
Vicia macrantha	L	95923	72193	02468	76695	90754	591063	76695	6695
		20.85±0.2806	16.2±0.21505	18.35±0.2318	25.9±0.23184	51.55±0.4962	2960.2±26.02	9.35±0.32210	6.75±0.17677
	W	24304	8132	40462	0462	35831	575647	2468	6695
	т	5.3±0.145773	14.45±0.4962	15.65±0.1695	40.75±0.1767	52.85±0.9766	2522.6±7.567	17.3±0.26692	9.1±0.302076
Ebenus stellata	L	797	35831	5825	76695	01249	033765	6956	149
	W	4.85 ± 0.23184	15.45 ± 0.2150	15±0.353553	30.75±0.1767	57.75 ± 0.5303	4004.2±1.157	14.7 ± 0.34820	6.1±0.422788
	vv	0462	58132	391	76695	30086	58369	9707	363
Twigonalla	L	13.25±0.1767	13.25±0.1767	13.1±0.26925	25.45±0.2150	36±0.1767766	464±4.560701	9.05 ± 0.41382	3.8 ± 0.215058
Trigonella macrorrhyncha	L	76695	76695	824	58132	95	7	3634	132
тистоттупсни	W	9.5±0.25	19.45±0.2669	11.75±0.1767	20±0.353553	34.25±0.1767	503.6±0.9273	6.95 ± 0.26692	2.65±0.23184
	vv	9.5±0.25	26956	76695	391	76695	6185	6956	0462
Lotus	L	20.75±0.1767	20.9±0.26925	20.75±0.1767	40.9±0.23184	77±0.6373774	1332.8 ± 8.873	10.3 ± 0.32015	5.15±0.23184
garcinii Ser	L	76695	824	76695	0462	39	556221	6212	0462
gur cinii Ser	W	27.2 ± 0.84926	26.35 ± 0.2806	18.25±0.1767	30.75±0.1767	90.2±0.60415	3089.4 ± 38.39	7.25 ± 0.30618	3.5±0.176776
	vv	4388	24304	76695	76695	2299	088433	6218	695
Alhagi mauroru	L	6.5±0.176776	5.6 ± 0.269258	7.65±0.23184	21.75±0.1767	38.95 ± 0.3482	466.8±3.3970	7.35±0.23184	4.15±0.23184
m	L	695	24	0462	76695	09707	5755	0462	0462
m	W	5.45 ± 0.21505	6.25 ± 0.17677	7.55±0.28939	26±0.25	41.35±0.6451	918.8±3.8781	5.2 ± 0.266926	3.3±0.215058
	**	8132	6695	5923	20±0.25	74395	43886	956	132
Astragalus crena	L	16.55 ± 0.4703	16.15 ± 0.3409	14.95 ± 0.1837	36.25±0.25	57.8 ± 0.78022	855.6±11.552	15.9 ± 0.23184	7.95±0.21505
tus	Ľ	72193	54542	11731		4327	48891	0462	8132
0000	W	13.45±0.2549	16.6 ± 0.38405	13.25±0.1767	27.2 ± 0.55565	56.5±0.90829	4009.8 ± 5.053	13.9 ± 0.23184	5.45±0.21505
	••	50976	7287	76695	2769	5106	711507	0462	8132

(L: length, W: Width, Ep: Epidermis, Co: Collenchyma, Ch: Chlorenchyma, Pa: Parenchyma, Vb: Vascular bundles, Pe: Petiole, Xy: Xylem, Ph: Phloem)

Link Character	Leads	Characters	Taxa/ Go to link character
1	а	Petiole outline oval	Caragana ambigua
	b	Petiole outline other than oval	2
2	а	Round shaped petiole	3
	b	Petiole not round	4
3	a	Lamellar collenchyma cells	Indigofera oblongifolia
	b	Angular collenchyma cells	Lotus garcinii
4	a	Flat petiole	5
	b	Sulcate petiole	8
5	a	Winged petiole	Astragalus purpurascens
	b	Petiole without wings	6
5	a	Amphicribral vascular bundles	Ebenus stellata
	b	Collateral closed vascular bundles	7
7	a	Trigonal to hexagonal parenchyma cells	Alhagi maurorum
	b	Irregular parenchyma cells	Astragalus corrugatus
3	a	Prominent groove in the surface of the petiole	Trigonella macrorrhyncha
	b	Groove not seen in the petiole surface	9

 Table 25. Dichotomous (single access) bracketed / parallel taxonomic key based on petiole anatomical characters of Fabaceous flora

9	а	Lacunar collenchyma	Melilotus indicus
	b	Collenchyma other than lacunar	10
10	а	Isodiametric parenchyma	11
	b	Irregular or hexagonal parenchyma	13
11	а	Bicollateral vascular bundles	Indigofera cuneifolia
	b	Collateral closed vascular bundles	12
12	а	Angular collenchyma cells	Onobrychis dealbata
	b	Lamellar collenchyma cells	Onobrychis tavernierifolia
13	а	Oval xylem vessels shape	Taverniera glabra
	b	Xylem vessels not oval	14
14	а	Amphicribral vascular bundles	Sophora mollis
	b	Collateral open vascular bundles	Vicia macrantha

3.6 Petiole anatomy of Lamiaceous species from Northern Baluchistan

3.6.1 Results and Discussion

Petiole anatomy of 25 Lamiaceous species was documented for the first time from Northern Baluchistan. Alosaimi (2023) reviewed the taxonomic significance of the petiole anatomy of Lamiaceous species from various ecological zones. Cantino (1992) conducted a cladistics study based on 85 petiole morpho-anatomical features to demonstrate the Lamiaceae's monophyletic origin (Zhao et al., 2021). Their analysis separated several clades of the Verbenaceae from the Lamiaceae. Petiole outline, wings, trichomes, cuticle, epidermis shape, the subepidermal ring of collenchyma, shape, and number of layers of parenchyma, collenchyma, chlorenchyma, sclerenchyma, vascular bundles numbers and arrangement were observed in the present study.

Various petiole anatomical features, assisted in investigating the restrictions of the evolutionary forces into various lineages among Lamiaceous taxa (Alosaimi, 2023). The current research was carried out phytogeographically in an arid-semiarid ecological region based on chosen Lamiaceae species. The ecologically adapted structural changes in the petiole anatomy were observed in the Lamiaceous species. Variations within the micromorphological features of petiole anatomy assisted in the distinction of Lamiaceous species (Jehanzeb et al., 2020). Howard (1962) stated that families down to the species level can be separated by analyzing the vascularization of petioles among the related genera. Presently, the anatomy of the petiole showed variations in the characteristics, the contour of the petiole, wings, parenchyma cells, collenchyma cells, chlorenchyma, vascular bundle shapes, and arrangement, sclerenchyma between the vascular bundles, and subepidermal ring of collenchyma, trichome, and petiole's surface groove.

a) Petiole outline, cuticle and trichome

Distinct petiole outlines were observed in the Lamiaceous species including sulcate, flat, oval, and round. The sulcate outline was present in 15 species. Flat-shaped petiole was noted in 7 species, and oval in 2 species. A round petiole was noted in *Salvia leucantha*. The petiole in the species of the genus *Nepeta* were sulcate-shaped (Plate

31-33). Shahri et al. (2016) visualized the petiole sections of 10 *Nepeta* species. They documented an open V-shaped contour, creating an elaborate identification key based on petiole morpho-anatomy. The flat form of the petiole was observed in the *Eremostachys* genus. Oval petioles were present in *Salvia moorcroftiana* and *Scutellaria linearis*. The shapes of the petioles varied among genera and within each genus, allowing separation of the examined taxa (Table 26). Alosaimi et al. (2023) stated that to overcome the pressure, put on leaf margins by wind rotation and gravitational forces over time, the micro-petiole structure also evolved an arch shape. Therefore, the variations in petiole shape offer the ecological interpretation of the eco-zones of Lamiaceous species. Reniform, triangular, arc-shape, and half circle varieties of petiole outlines were previously described by Ya'ni et al. (2018) as an important characteristic for identifying Lamiaceous species. Currently, the largest petiole was observed in *Eremostachys vicaryi* with a mean length of 7425.6µm.

Cuticle was present in two forms: smooth and undulated (Akçin et al., 2011). The smooth cuticle was present in 12 species, while the undulated type was noted in 13 species. In Scutellaria linearis and Stachys parviflora thick cuticle was observed. An undulated cuticle was observed in the members of the Salvia genus. Akçin et al. (2011) also reported the undulated cuticle in Salvia. Uniseriate, multiseriate, and unicellular forms of trichomes were observed. In the Lamiaceae and related families, the taxonomic relevance of the structure of the trichome was well established (Metcalfe and Chalk, 1972; Kahraman et al., 2010). Uniseriate and unicellular trichomes were present in most of the taxa. The Salvia genus was characterized by its uniseriate trichomes. The multiseriate trichomes were noted in Ajuga alpina. Previously the genus *Teucrium* faced difficulty in the classification of species based on their morphological attributes. The affinities among some of the members created confusion in finding interspecific relationships and boundaries. The trichome variations in the members of *Teucrium* assisted in the discrimination of the species within this genus (Dinc et al., 2010). Similarly, in the present study, *Teucrium scordium* was distinguished from Teucrium stocksianum by its undulated cuticle. The trichomes in the Scutellaria *linearis* were present in unicellular and in *Stachys parviflora* uniseriate form. Kahraman et al., (2010) examined the unicellular, and uniseriate trichomes in Salvia chrysophylla.

b) Histology of Lamiaceous species

The layers and shapes of parenchyma, collenchyma, and chlorenchyma were observed in the petiole cross-section. Sclerenchyma layers were not observed in the examined species. Sclerification between the vascular bundles was present in 14 species. *Salvia coccinea* had a prominent sclerenchyma layer between the vascular bundles. There were 2-3 layers of collenchyma along with a subepidermal ring, and 9 layers of parenchyma in the *Eremostachys vicaryi*. All species had distinct xylem parenchyma cells along with the xylem vessels. The morphologies of the epidermal cells varied from round to oval, rectangular to square, and round to oval, and rectangular. The angular epidermis was predominant in petioles the Lamiaceous species. *Otostegia aucheri* had the maximum mean value of epidermis width, 38.25µm. The observed shapes of parenchyma were angular to isodiametric, irregular, and tri to hexagonal. Irregular to isodiametric shape was present in *Thymus linearis* subsp. *hedgei Jalas*.

Collenchyma cell shapes were angular to lamellar, lacunar, and annular. In *Nepeta* genus, angular and annular collenchyma were noticed. In *Stachys parviflora* and *Ajuga bracteosa*, angular to lamellar types were present. The shape of collenchyma and parenchyma in *Thymus linearis* was angular and isodiametric (polygonal), similar was reported by Alosaimi, (2023). *Scutellaria linearis* was observed with lacunar collenchyma and tri-hexagonal parenchyma, whereas Alosaimi, (2023) reported angular and polygonal shapes respectively. The xylem vessels in *Thymus* genus were found in numerous shapes, including round to oval, oval to rectangular, and angular. Variations in the xylem vessels of *Nepeta* species were observed. Xylem vessels were rectangular to oval in *Nepeta glomerulosa*, and rectangular to square in *Nepeta hindostana*. Phloem parenchyma was observed in different shapes i.e. tri to hexagonal, tetra to hexagonal, and angular. The hexagonal parenchyma shape was observed in *Salvia cabulica*.

c) Vascularization in the petiole of Lamiaceous flora

According to Metcalfe and Chalk (1972), the arrangement of vascular bundles in the petioles of Lamiaceae species can serve as a diagnostic feature. Primarily four types of vascular bundles were determined, collateral closed, collateral open, bicollateral, and amphicribral. In 13 species, the collateral closed type was present. The collateral open vascularization was noticed in four species. Bicollateral vascular bundles were present in *Salvia macrosiphon*. The amphicribral type of vascularization was observed in six species. In the genus *Eremostachys* the distribution of vascular bundles were 2+4 and in the *Salvia* genus, it was 1+2. The genus *Salvia* was distinguished specifically for having collateral type of vascular bundles (Celep et al., 2014). A single vascular bundle was present in most of the species including all the members of the genus *Nepeta*. Thus, for *Eremostachys, Salvia*, and *Nepeta* the number of vascular bundles was a characteristic feature taxonomically. In *Salvia leucantha* one small and two large vascular bundles were observed. Akçin et al. (2011) examined the petiole anatomy with special emphasis on the number of vascular bundles in the Lamiaceous taxa. They also documented that the vascular bundles in *Salvia* species existed in the form of 3, 7 and 11.

The vascular system is the most focused feature in the research on petiole anatomy. In *Salvia*, there were vascular bundles in the shape of an arc in the center and one in each of the four corners (Jehanzeb et al., 2020). Besides the number and shapes of vascularization, the addition of the arrangement of the vascular bundles in the current examination helped in providing new insights into the systematics of Lamiaceae taxa. Previous research on two endemic *Salvia* species by Gürdal et al., (2019) revealed collateral type bundles in the petiole cross-section. Information of taxonomic relevance can be found in the larger upper epidermal cells, two to three big vascular bundles in the center, and two to four minor subsidiary bundles in the wings of the petiole in *Salvia chrysophylla* (Kahraman et al., 2010). In the present analysis, the 1+2 arrangement of vascular bundles was prevalent in *Salvia leucantha* and *Salvia macrosiphon*. Previous studies also documented that the structure of the vascular bundles in petioles can be used to identify species in the Lamiaceae family (Metcalfe and Chalk, 1972; Siebert, 2004; Kahraman et al., 2010).

d) Multivariate analysis

A numerical analysis of the length and width of cells of the epidermis, collenchyma, chlorenchyma, parenchyma, vascular bundles, xylem vessels, and phloem was carried out. The principal component analysis accounted for 94.261% and 3.13% variance between PC1 and PC2. The Eigen variables were evaluated to explain

the statistical percentage variation among quantitative attributes using PCA clustering of microanatomical petiole features. The xylem vessel width, phloem width, phloem length, and xylem vessel length were the most significant variables. While the vascular bundle length was insignificant among the examined variables (Figure 31). Based on quantitative traits, the two-way dendrogram illustrated the similarity along the Euclidean distance among Lamiaceous species. *Thymus linearis* was placed separately from the major cluster. The dendrogram was separated into two major clades. The A1 cluster consisted of 18 species whereas A2 had 6 taxa (Figure 32). Between Nepeta Hindostana and Ocimum africanum, the sub-cluster showed the highest phylogenetic association in A1. In the A2 cluster, Rydingia limbate and Salvia cabulica were placed closest. The quantitative variables significantly separated the examined taxa. The positive and negative correlation between the quantitative variables was determiend in the correlation plot (Figure 33). The highest positive correlation 0.94 was observed between collenchyma width and collenchyma length. A positive association also existed between parenchyma width and collenchyma length, phloem width, and chlorenchyma length. The maximum negative correlation of -0.42 was noted for vascular bundle width and epidermis length. The identification and separation of the Lamiaceous taxa based on the determined qualitative features via taxonomic key is demonstrated in Table 29. In conclusion, the anatomical aspects of petioles such as outline, cell shapes, sizes and layers, vascular bundles number, size, and arrangement, were diagnostic in the recent systematics for the separation of taxa at various taxonomic ranks.

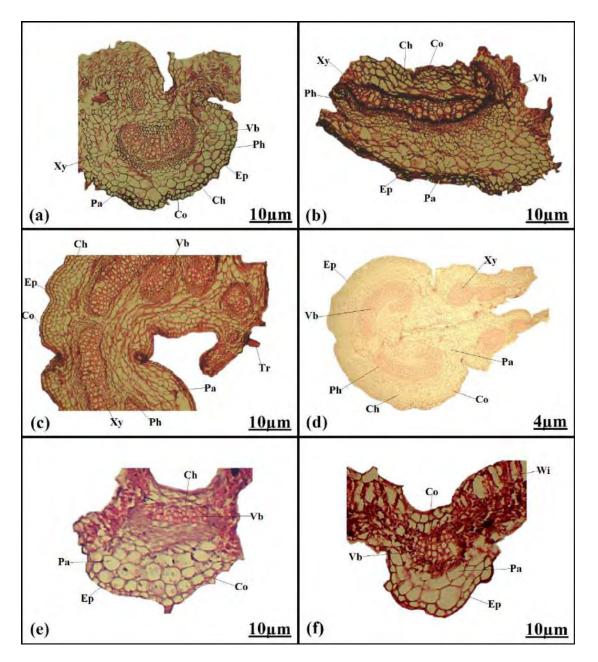


Plate 68. Photomicrographs of petiole anatomy (a) *Ajuga alpina*, (b) *Ajuga bracteosa*,
(c) *Eremostachys thyrsiflora*, (d) *Eremostachys vicaryi*, (e) *Nepeta cataria*, (f) *Nepeta eriosphaera*, (Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale:10µm (a,b,c,e,f),4µm(d)

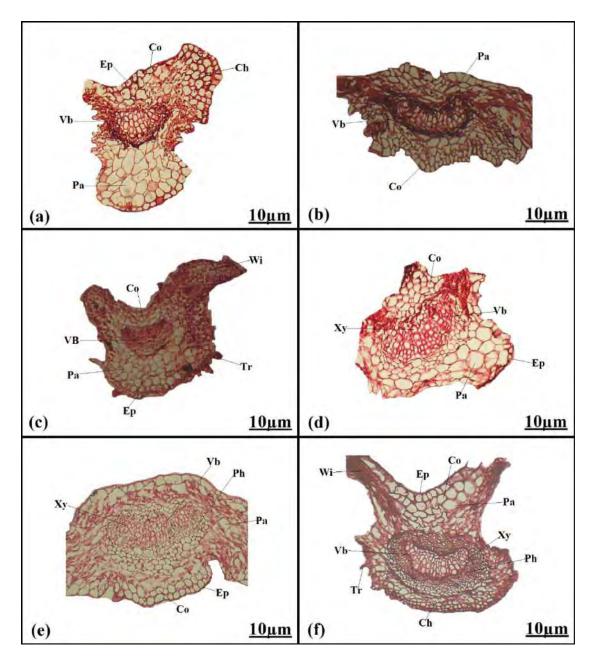


Plate 69. Photomicrographs of petiole anatomy (a) Nepeta glomerulosa, (b) Nepeta Hindostana, (c) Nepeta juncea, (d) Ocimum africanum, (e) Otostegia aucheri, (f) Phlomis stewartii, (Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale:10µm

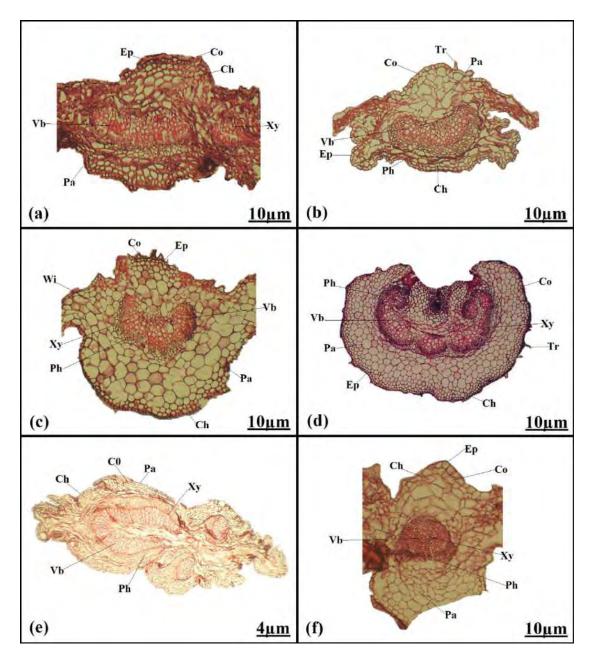


Plate 70. Photomicrographs of petiole anatomy (a) Otostegia limbata, (b) Salvia cabulica, (c) Salvia coccinea, (d) Salvia leucantha, (e) Salvia macrosiphon, (f) Salvia moorcroftiana, (Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale:10µm (a,b,c,d,,f),4µm(e)

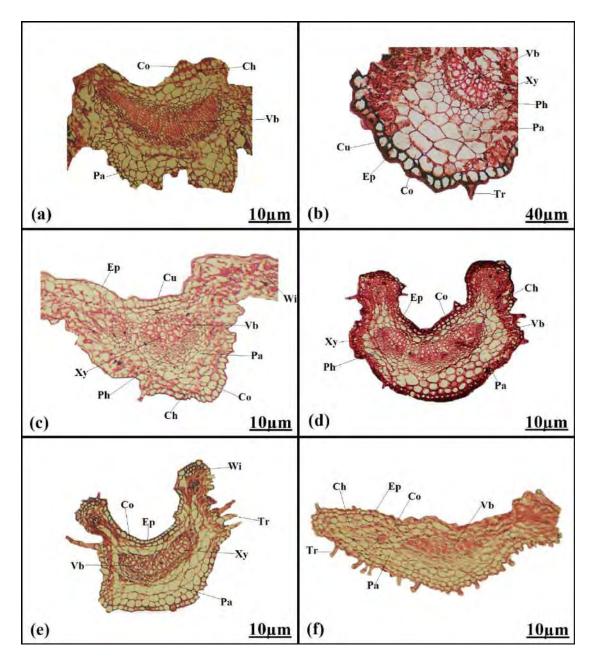


Plate 71. Photomicrographs of petiole anatomy (a) Salvia plebeia, (b) Scutellaria linearis, (c) Stachys parviflora, (d) Teucrium scordium, (e) Teucrium stocksianum, (f) Thymus linearis subsp. hedgei Jalas, (Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale:10µm(a,c,e,f),40µm (b)

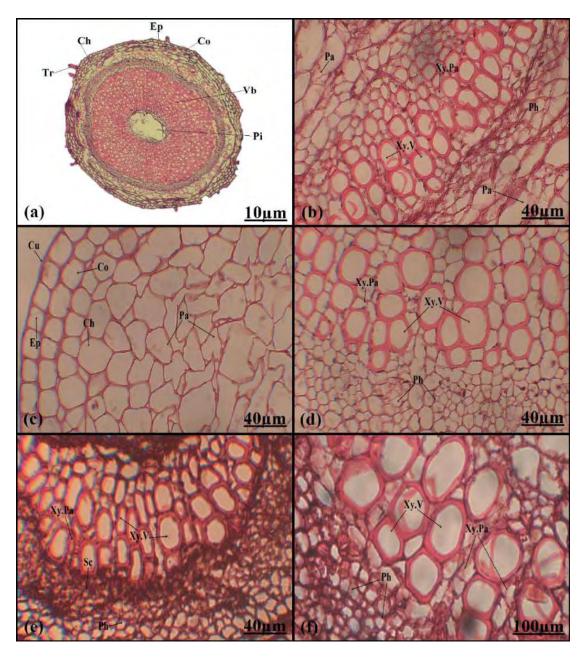


Plate 72. Photomicrographs of petiole anatomy (a) *Thymus linearis*, (b) *Eremostachys thyrsiflora*, (c,d) *Eremostachys vicaryi*, (e) *Phlomis stewartii*, (f) *Salvia leucantha*, (Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale:10μm(a),40μm (b,c,d,e),100 μm(f)

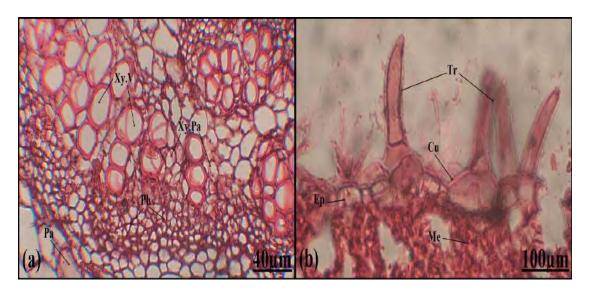
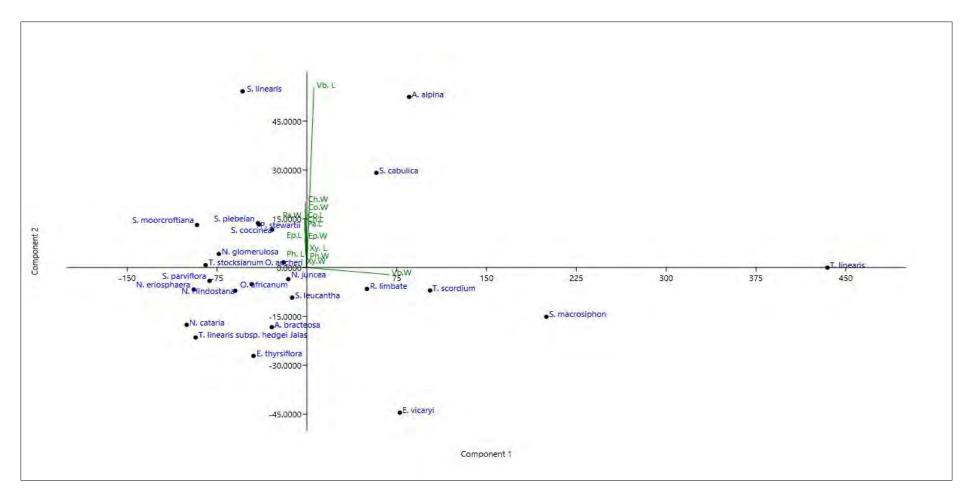



Plate 73. Photomicrographs of petiole anatomy (a) Salvia leucantha, (b) Scutellaria linearis, (Cu: cuticle, Ep: Epidermis, Pa: parenchyma, Co: collenchyma, Ch: chlorenchyma, Sc: sclerenchyma, Xy: xylem, Ph: Phloem). Scale:40μm(a),100μm (b)

Figure 31. Utility of petiolar features in discriminating among species of Lamiaceae by PCA (epidermis length and width, collenchyma length and width, chlorenchyma length and width)

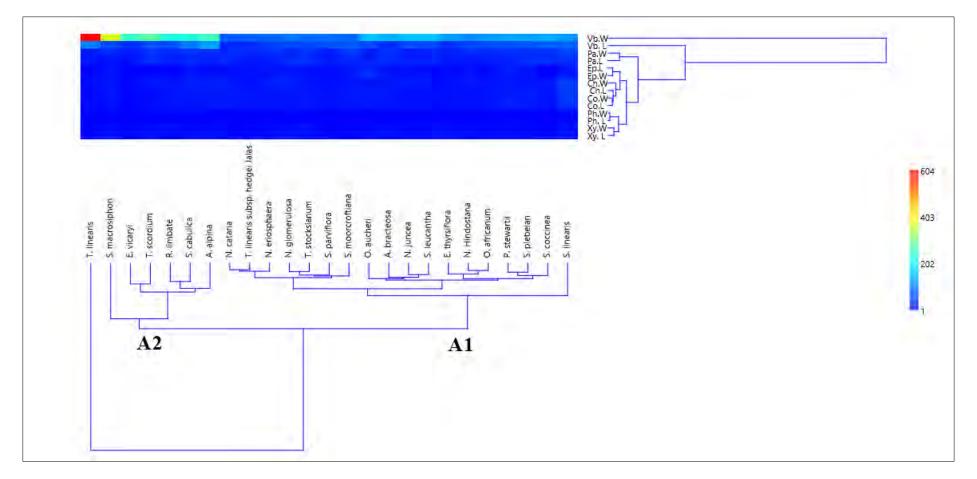
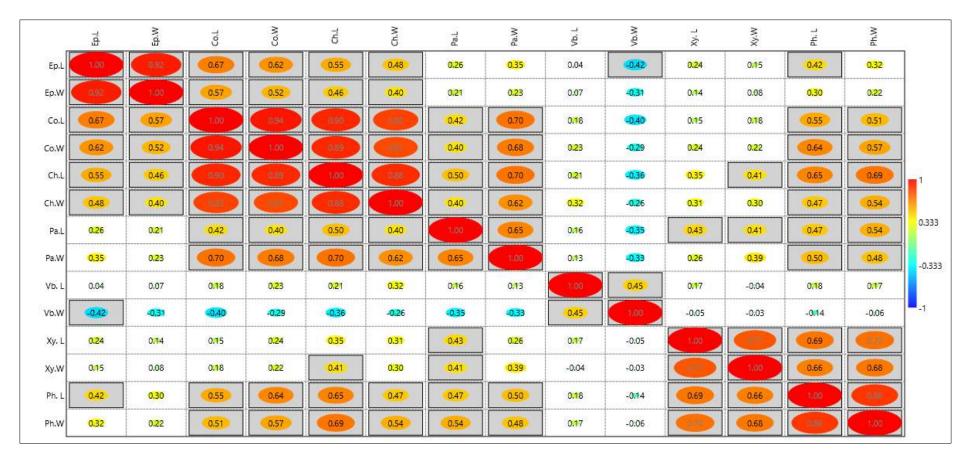



Figure 32. Dendrogram showing the similarity index of Lamiaceae taxa based on quantitative parameters of petiole

Figure 33. Correlation among the mean values of Ep.L: Epidermal length; Ep.W: Epidermal width; Co.L: Collenchyma length:Co.W: Collenchyma width; Vb.L:Vascularbumdle length; Vb.W: Vascular bumdle width

Plant Name	No. of Co layer	No. of Pa layer	No. of Vbs	Sc in Vbs	Tr	Wing	Groove in surface	Sub- epidermal ring of Co	Xy.Pa
Ajuga alpina	1	3	1+2	+	+	+	+	+	+
Ajuga bracteosa	1	3	1	+	-	+	+	-	+
Eremostachys thyrsiflora	1	5	2+4 (2large, 4 small)	-	-	+	+	+	+
Eremostachys vicaryi	2-3	9	2+4 (2large, 4 small)	-	-	+	+	+	+
Nepeta cataria	-	3	1	-	+	+	+	-	+
Nepeta eriosphaera	-	2	1	-	-	+	+	-	+
Nepeta glomerulosa	1	4	1	+	-	-	-	+	+
Nepeta Hindostana	-	3	1	-	+	+	+	-	+
Nepeta juncea	1	4	1	-	-	+	+	+	+
Ocimum africanum	-	4	1	-	-	+	+	-	+
Otostegia aucheri	-	5	1	+	-	+	-	-	+
Phlomis stewartii	1	3	1	+	+	+	+	-	+
Otostegia limbate	2	4	1	+	-	+	+	+	+
Salvia cabulica	1	4	1	-	+	+	+	-	+
Salvia coccinea	1	4	1	+	+	+	+	-	+

 Table 26: Qualitative characteristics of the petiole anatomy of studied Lamiaceous taxa

Salvia leucantha	3	6	1+2(1small, 2large	-	+ -	+	+	+
Salvia macrosiphon	2	3	1+2	+		+	+	+
Salvia moorcroftiana	-	4	1	+	_ +	+	-	+
Salvia plebeian	2	4	1	-	_ +	+	+	+
Scutellaria linearis	1	3	1	+	+ +	-	-	+
Stachys parviflora	1	3	1	+	- +	+	-	+
Teucrium scordium	1	3	1+2	+	+ +	+	+	+
Teucrium stocksianum	1	3	1	+	+ +	+	+	+
Thymus linearis	1	2	1	+	+ +	+	+	+
Thymus linearis subsp. hedgei Jalas	1	2	1	-	+ +	+	+	+

Plant Species	L W	Epidermal cell (μm)	Collenchyma (µm)	Chlorenchyma (µm)	Parenchyma(µ m)	Vascular bundle (µm)	petiole	Xylem(µm)	Phloem
Mean±SE									
	L	21.95 ± 0.398434	40.75±0.379143	44.4 ± 0.7607562	41.15±0.976601	81.55±0.348209	1223.2 ± 8.26680	18.25±0.176776	9.25±0.575543
Scutellaria		436	772	03	249	707	1074	695	222
linearis	W	21.7±0.2	49.6±0.7607562	48.7±0.7960841	57.25 ± 0.866025	120.65 ± 0.46502	1815.2±4.06693	16.05±0.215058	7.75±0.306186
			03	66	404	6881	9882	132	218
Nepeta	L	20.15±0.231840	13.15±0.257390	19.4±0.6254998	38.5±0.5419870	61.95±0.588430	1225.2±7.81920	18.3 ± 0.2150581	4.5 ± 0.25
glomerulos		462	754		85	115	7121	32	
a	W	20.15±0.231840	15±0.35355339	22.4±0.5279678	29.65±0.673609	99.95±0.588430	640.4±15.29901	12.65 ± 0.231840	3.95±0.289395
u		462	1	02	679	115	958	462	923
	L	6.75±0.1767766	9.95±0.3984344	13.25±0.176776	34.85±0.437321	60.8±0.9027735	2005.8±1.39283	20.15±0.231840	5.75±0.176776
Salvia		95	36	695	392	04	8828	462	695
leucantha	W	3.5±0.17677669	9.35±0.6354132	11±0.17677669	31.75±0.176776	159.45±3.29526	3053.4±15.7181	12.65±0.231840	4.35±0.127475
		5	51	5	695	175	4238	462	488
	L	16.8±0.3570714	20.85±0.302076	18.4 ± 0.2318404	43.8±0.9918417	71.65±0.673609	1830±10.168579	9.75±0.3061862	6.65±0.231840
Salvia		21	149	62	21	679	06	18	462
plebeia	W	15.05±0.289395	22.05±0.398434	15.5±0.5419870	40.9±0.6828250	131.45±2.22120	3230.2±12.9514	7.5±0.35355339	3.65±0.302076
		923	436	85	14	4628	478	1	149
	L	15.45±0.215058	12.9±0.4513867	17.75±0.285043	20.75±0.306186	56.65±0.831414	1225±7.2869746	11.25±0.176776	3.35±0.127475
Nepeta		132	52	856	218	457	81	695	488
Hindostana	W	13.7±0.3102418	13.75±0.262202	17.65±0.231840	32.8±0.4834769	112.45±0.50867	2218.4±8.6	11.1±0.3221024	2 ± 0.25
	-	41	212	462	9	4749		68	
3.7	L	15.75±0.176776	17.25±0.306186	17.7±0.4358898	29.3±0.3657184	61.1±0.7185053	963.6±11.68588	9.15±0.2318404	1.85±0.169558
Nepeta		695	218	94	71	93	893	62	25
juncea	W	14.3±0.4138236	14.85±0.231840	22.35±0.231840	21.6±0.2318404	156.8±2.964793	1418.8±5.43507	4.25±0.1767766	3.25±0.176776
		34	462	462	62	416	1297	95	695
Teucrium	L	13.55±0.266926	17.65±0.231840	20±0.35355339	36.55±0.348209	57.75±0.728868	1003±0.7071067	9.25±0.1767766	4.2±0.3102418
stocksianu	117	956	462	1 10.05+0.145772	707	987	81	95	41
т	W	12.95±0.215058 132	17.15±0.203100 96	19.05±0.145773 797	37.6±0.4	88.2±0.2423839 93	1809.6±4.17851 6483	14±0.17677669 5	3.15±0.127475 488

 Table 27. Quantitative characteristics of the petiole anatomy of studied Lamiaceous taxa

Salvia	L	14.9±0.3221024 68	16.95±0.470372 193	20.9±0.3674234 61	37.05±0.619475 585	95.65±0.625499 8	1526.4±20.1732 4961	20.75±0.176776 695	4.4±0.1274754 88
cabulica	W	17.95±0.242383 993	18.05±0.634428 877	18.3±0.2150581 32	40.55±0.885296 56	8 228.7±1.412887 115	2830.6±10.7823 9306	13.25±0.176776 695	4.05±0.289395 923
Salvia	L	11.5±0.25	13.4±0.2318404 62	15.85±0.127475 488	15.8±0.2150581 32	57.3±0.9367497	6006±1	13.25±0.176776 695	4.1±0.2318404 62
macrosipho n	W	10.75±0.176776 695	18.35±0.231840 462	20.95±0.266926 956	29.95±0.577711	373.5±2.467285 958	2020.4±10.2596 2962	11.2±0.3391164 99	2.65±0.231840 462
Otostegia	L	26.05±1.805200 82	20.95±0.413823 634	20.75±0.176776 695	28.35±0.515994 186	58.05±0.619475 585	2150.6±60.8141 4309	11.6±0.2318404 62	4.6±0.3316624 79
aucheri	W	38.25±0.379143 772	19.35±0.331662 479	21.25±0.176776 695	24.25±0.176776 695	154.15±1.62134 2037	3986.2±20.3356 8292	9.55±0.3482097 07	3.15±0.127475 488
Teucrium	L	3.75±0.1767766 95	10.75±0.586301 97	13.2±0.1457737 97	37.45±0.398434 436	62.55±1.070630 655	918.8±5.969924 623	15.85±0.231840 462	3.25±0.176776 695
scordium	W	6.6±0.26925824	8.8±0.55	20.6±0.1274754 88	39.2±0.2150581 32	275.6±1.108489 964	4312.8±21.8160 4914	12.85±0.169558 25	3.75±0.325960 12
Nepeta	L	16.85±0.792937 576	19.65±0.340954 542	19.3±0.4358898 94	23.05±0.266926 956	47.6±0.8753570 7	614.8±6.613622 306	7.9±0.39210967 9	3.1±0.1274754 88
eriosphaer a	W	15.75±0.176776 695	15.75±0.176776 695	27.1±0.6451743 95	38±0.37914377 2	79.05±1.668457 371	1521±5.5407580 71	4.95±0.2893959 23	2.95±0.093541 435
Phlomis	L	22.05±0.398434 436	24.75±0.285043 856	15.7±0.4568916 72	28.2±0.7088723 44	69.15±1.184799 561	2500.6±19.8534 6317	12.65±0.231840 462	3.75±0.176776 695
stewartii	W	21.5±0.4472135 95	25.65±1.246495 086	24.75±0.285043 856	35.9±0.6	132.65±2.00717 4631	2799.8±3.73363 0941	6.5±0.17677669 5	1.75±0.325960 12
Otostegia	L	5.15±0.2318404 62	19.65±0.340954 542	19.2±0.2150581 32	24.8±0.2669269 56	62.3±0.8077747 21	2528.6±9.94283 6617	3.85±0.1274754 88	2.05±0.215058 132
limbate	W	5.1±0.20310096	13.6±0.4444097 21	19.2±0.2150581 32	31.6±0.5279678 02	222.5±1.185854 123	4995.4±4.13037 5286	8.25±0.1767766 95	1.9±0.1870828 69
Eremostac	L	3.65±0.3020761 49	4.25±0.1767766 95	4.35±0.2573907 54	18.25±0.176776 695	37.3±0.2669269 56	3001.8±3.30756 7082	5.15±0.2318404 62	1.75±0.176776 695
hys vicaryi	W	5.15±0.2318404 62	3.7±0.21505813 2	3.45±0.1457737 97	20.75±0.176776 695	250.55±0.45	7425.6±105.089 7711	7.95±0.2150581 32	1.95±0.266926 956
Ajuga	L	12.95±0.374165 739	19.95±0.365718 471	20±0.35355339 1	24.85±0.358817 502	126.85±0.78898 6692	1176±11.874342 09	8.25±0.1767766 95	2.65±0.231840 462
alpina	W	14.9±0.5159941 86	20.15±0.231840 462	33±0.66143782 8	31.25±0.418330 013	253.25±2.00779 7301	2234±5.8651513 19	4.95±0.5208166 66	1.55±0.215058 132

G 1 ·	L	3.25±0.1767766	13.95±0.348209	19.3±0.6294839	39.85±0.407737	75.6±0.3588175	2610.6±15.9705	8.2±0.18371173	1.75±0.176776
Salvia coccinea	W	95 5.3±0.28939592 3	707 16±0.17677669 5	16 27±0.68465319 7	661 34.9±0.3758324 09	02 142.25±0.92533 7776	9799 3044.4±19.1509 7909	$ \begin{array}{c} 1 \\ 4.85 \pm 0.2318404 \\ 62 \end{array} $	695 1.75±0.176776 695
Thymus linearis	L	12.15±0.465026 881	16.6±0.3840572 87	/ 18.25±0.176776 695	22.95±0.215058 132	37.85±0.302076 149	691±7.79102047 2	5.45±0.2150581 32	2.35±0.231840 46
subsp.	W	13.15±0.768927	15.35±0.340954	16.3±0.2150581	30.7±0.6910137	80.8±1.2509996	994.6±4.675467	4.25±0.1767766	1.75 ± 0.176776
hedgei Jalas		825	542	32	48		891	95	69
TT I	L	5.3±0.28939592	6.3±0.28939592	7.05±0.2150581	18.55±0.348209	103±1.12638803	1754.8±9.24878	4.25±0.1767766	2.05±0.215058
Thymus	***	3	3	32	707	3	3704	95	132
linearis	W	7.65±0.2318404 62	8.5±0.17677669 5	5.5±0.25	20.75±0.176776 695	604.35±1.47605 8942	1516±6.9856996 79	2.35±0.2318404 62	1.75±0.176776 695
	L	13.5±0.1767766	20.45±0.215058	18.15 ± 0.257390	30.5 ± 0.25	34.65±0.322102	602.8±2.517935	3.25 ± 0.1767766	1.9±0.1274754
Nepeta		95	132	754		468	662	95	88
cataria	W	16.85±0.257390	24.75±0.325960	17.6±0.4444097	35.1±0.4	74.3±0.3201562	708±2.44948974	2.05 ± 0.2150581	1.75±0.176776
		754	12	21		12	3	32	695
	L	11.65 ± 0.231840	13.1±0.1274754	13.2±0.2150581	21.55±0.215058	66.45±0.443001	1002 ± 1.2247448	10.15±0.625499	2.65±0.231840
Stachys		462	88	32	132	129	71	8	462
parviflora	W	12.35 ± 0.231840	14.6±0.2573907	12 ± 0.25	22.05±0.215058	89.55±1.064776	1486.4±3.54400	3.25±0.1767766	1.5 ± 0.1767766
		462	54		132	972	9029	95	95
Salvia	L	17.35 ± 0.231840	19.05±0.348209	16.05±0.215058	31.75±0.637377	73.25 ± 0.977880	1315±5.6745043	2.4±0.25739075	1.5 ± 0.1767766
moorcrofti		462	707	132	439	361	84	4	95
ana	W	18.95±0.348209	17.05±0.215058	16.45±0.463680	45.45±0.555652	79.85±0.610327	1840.2±12.1876	1.75±0.1767766	1±0.17677669
	-	707	132	925	769	781	9872	95	5
	L	15.35±0.302076	15.9±0.4301162	15.45±0.215058	34.8±0.6144102	38.35±0.231840	1000.8±3.41174	9.1±0.23184046	1.85±0.127475
Ajuga	***	149	63	132	86	462	4422	2	488
bracteosa	W	16.95±0.456891	14.45±0.266926	17.65±0.231840	40.15±0.231840	145.35±1.66320	2419.4±8.07836	10.75±0.176776	1±0.17677669
	Ŧ	672	956	462	462	4738	6171	695	5
0.	L	8.75±0.3259601	13.85±0.269258	14.35±0.302076	23.8±0.3482097	62.85±0.407737	780±5.94138031	8.45±0.2669269	3.85±0.231840
Ocimum	117	2	24	149	07	661		56	462
africanum	W	11.8±0.7088723 44	15.15±0.231840 462	14.95±0.289395	29.55±0.215058 132	125.45±0.21505 8132	683.8±8.481745 103	6.6±0.30207614 9	1.8±0.1658312 4
	T	44 6.55±0.1457737	462 11.35±0.257390	923 13.45±0.215058	132 21.15±0.257390	8132 40.1±0.6782329	103 1002.4±2.27156	9 11.85±0.302076	4 3.25±0.176776
	L	0.33±0.1437737 97	11.33±0.237390 754	13.45±0.215058 132	21.15±0.257590 754	40.1±0.0782329 98	1002.4±2.27130 3338	11.85±0.502076 149	5.25±0.170770 695
		21	154	152	154	20	5550	177	075

Eremostac	W	6±0.25	11.75±0.325960	14.35 ± 0.322102	25.9±0.2318404	128.45±1.37931	2976.4±24.5878	8.1±0.12747548	1.6±0.2318404
hys			12	468	62	1422	0185	8	62
thyrsiflora									

Table 28. Qualitative features of studied Lamiaceous taxa

Plant Name	Pe shape	Ep shape	Pa shape	Col shape	Vb Arrangem ents	Tr shape	Cu structure	Xy Vessel	Ph Shape
Ajuga alpina	Sulcate	Irregular	Irregular	Angular	Collateral	Multiseri	Undulated	Round to Oval	Tri to
njugu uipinu	Survate	megalai	-	1 mgului	closed	ate	Chaulatea		hexagonal
Ajuga bracteosa	Sulacte	Rectangular to square	Angular to isodiametri c	Angular to lamella	Collateral open	unicellul ar	Undulated	Round to angular	Tri to hexagonal
Eremostachys thyrsiflora	Flat	Square to rectangular	Tri to hexagonal	Augular	Collateral closed	unicellul ar	Undulated	Round to Oval	Angular
Eremostachys vicaryi	Flat	Square	Irregular	Lamellar	Amphicribr al	-	Smooth	Round	Angular
Nepeta cataria	Sulcate	Square to angular	Isodiametri c	Lacunar	Collateral closed	-	Smooth	Round to angular	Tri to hexagonal
Nepeta eriosphaera	Sulcate	Rectangular to Oval	Angular	Angular	Collateral closed	-	Undulated	Angular	Angular
Nepeta glomerulosa	Flat	Round to Oval	Irregular	Annular	Collateral closed	-	Smooth	Rectangular to Oval	Tri to hexagonal
Nepeta Hindostana	Flat	Angular	Irregular	Angular	Amphicribr al	Unicellu lar	Smooth	Rectangular to Square	Angular
Nepeta juncea	Sulcate	Angular	Isodiametri c	Annular	Collateral closed	Uniseriat e	Smooth	Round	Tetra to hexagonal
Ocimum africanum	Sulcate	Angular	Isodiametri c	Angular	Collateral closed	-	Undulated	Round	Tetra to hexagonal
Otostegia aucheri	Sulcate	Round to Oval to Rctangula	Irregular	Lacunar	Amphicribr al	-	Smooth	Angular to Oval	Tetra to hexagonal

Phlomis stewartii	Sulcate	Irregular	Irregular	Annular	Amphicribr al	Unicellu lar	Smooth	Oval to rectangular	Angular
Otostegia limbate	Flat	Angular to Rectangular	Isodiametri c	Annular	Collateral closed	-	Undulated	Angular	Tri to hexagonal
Salvia cabulica	Sulcate	Angular	Irregular	Lamellar	Collateral open	Uniseriat e	Smooth	Round to oval	Hexagonal
Salvia coccinea	Sulcate	Rectangular to Angular	Hexagonal to Angular	Angular	Collateral closed	Uniseriat e	Undulated	Oval to round	Tri to hexagonal
Salvia leucantha	Round	Rectangular	Tetra to hexagonal	Angular	Collateral open	Uniseriat e	Undulated	Oval to round	Tri to hexagonal
Salvia macrosiphon	Flat	Rectangular	Isodiametri c	Lamellar	Bi- Collateral	-	Smooth	Oval to angular	Angular
Salvia moorcroftiana	Oval	Angular	Tri to hexagonal	Angular	Collateral closed	-	Smooth	Round to oval	Tetra to hexagonal
Salvia plebeia	Flat	Squar and Angular	Isodiametri c	Lacunar	Collateral open	-	Smooth	Round	Tetra to hexagonal
Scutellaria linearis	Oval	Round to Oval	Tri to Hexagonal	Lacunar	Collateral closed	Unicellu lar	Undulated	Oval & Round	Angular
Stachys parviflora	Sulcate	Square to angular	Irregular	Lamellar to angular	Collateral closed	Uniseriat e	Undulated	Oval to round	Tri to hexagonal
Teucrium scordium	Sulcate	Rectangular to Oval	Isodiametri c	Annular	Collateral closed	Uniseriat e	Undulated	Oval	Tetra to hexagonal
Teucrium stocksianum	Sulcate	Angular	Tri to Hexagonal	Lacunar	Collateral closed	Uniseriat e	Smooth	Oval to Rectangular	Angular
Thymus linearis	Sulcate	Rectangular to angular	Isodiametri c	Angular	Amphicribr al	-	Undulated	Round to oval	Angular
Thymus linearis subsp. hedgei Jalas	Sulcate	Angular	Irregular to Isodimatric	Angular	Amphicribr al	Uniseriat e	Undulated	Round to Oval	Angular

Link character	Leads	Character	Taxa/Go to link character
1	+	Petiole shape Oval	2
	-	Petiole shape not Oval	3
2	+	Parenchyma cell shape Angular	Salvia moorcroftiana
	-	Parenchyma cell shape Round to oval	Scutellaria linearis
3	+	Petiole outline Sulcate	4
	-	Petiole outline not Sulcate	18
4	+	Trichome present	5
	-	Trichome absent	17
5	+	Trichome shape multiseriate	Ajuga alpina
	-	Trichome shape not multiseriate	6
5	+	Unicellular	7
	-	Uniseriate	8
7	+	Vascular bundles collateral open	Ajuga bracteosa
	-	Vascular bundles amphicribral	Phlomis stewartii
8	+	Cuticle smooth	9
	-	Cuticle undulated	13
)	+	Collenchyma annular	Nepeta juncea
	-	Collenchyma other than annular	10

 Table 29: Dichotomous key based on petiole morphological characters of Lamiacous flora from Baluchistan

10	+	Lamellar collenchyma	Salvia cabulica
	-	Lacunar collenchyma	11
11	+	Parenchyma shape isodiametric	Nepeta cataria
	-	Parenchyma other than isodiametric	12
12	+	Epidermal cell round to oval and rectangular	Otostegia aucheri
	-	Angular epidermal cell	Teucrium stocksianum
13	+	Angular xylem vessels	Nepeta eriosphaera
	-	Xylem vessels other than angular	14
14	+	Annular collenchyma	Teucrium scordium
	-	Angular or lamellar to angular collenchyma	15
15	+	Epidermal cells square to angular	Stachys parviflora
	-	Epidermal cells angular or rectangular to angular	16
16	+	Vascular bundles collateral closed	Salvia coccinea
	-	Vascular bundles amphicribral	Thymus linearis subsp. hedgei Jalas
17	+	Phloem tetra to hexagonal	Ocimum africanum
	-	Phloem angular	Thymus linearis
18	+	Round petiole outline	Salvia leucantha
	-	Petiole outline flat or oval	19
19	+	Oval outline petiole	20
	-	Flat outline petiole	21

20	+	Angular collenchyma	Salvia moorcroftiana
	-	Lacunar collenchyma	Scutellaria linearis
21	+	Bi-Collateral vascular bundles	Salvia macrosiphon
	-	Vascular bundles not bi-Collateral	22
22	+	Collateral open vascularization	Salvia plebeia
	-	Amphicribral or collateral closed vascularization	23
23	+	Tri to hexagonal parenchyma	Eremostachys thyrsiflora
	-	Irregular or isodiametric parenchyma	24
24	+	Xylem vessels round	Eremostachys vicaryi
	-	Xylem vessels not round	25
25	+	Angular collenchyma	Nepeta Hindostana
	-	Annular collenchyma	26
26	+	Round to oval phloem	Nepeta glomerulosa
	-	Angular to rectangular phloem	Otostegia limbate

Conclusion

4. Conclusion

This work represents the first thorough analysis of the anatomy and palynology of 107 dicots of Northern Baluchistan, belonging to Brassicaceae (37), Lamiaceae (35), and Fabaceae (35). The palynological and anatomical analysis found significant taxonomically. Pollen analysis was carried out via light microscopy (LM) and scanning electron microscopy (SEM). For petiole anatomical studies light microscopy (LM) was utilised.

a) Pollen micromorphology

This study revealed significant diagnostic features for each family. The important palynological characters in Brassicaceae pollen were exine reticulate, coarsely reticulate, scabrate, lumen polygonal, amorphous, N₃P₄C₃. The Fabaceous pollen were characterised with exine macro-microreticulate, psilate, verrucate, N₃P₄C₅, amb peritreme, goniotreme, variations in the polar, and equatorial view, shape subprolate, prolate spheroidal, oblate spheroidal, prolate. The distinguished palynological features in Lamiaceae were tricolpate, tricolporate, hexacolpate, hexacolpate, hexa to multi syncolpate, exine reticulate, macro-microreticulate, gemmate, foveolate, verrucate, perforate, non-perforate, aperture membrane varruacte, scabrate, gemmate, psilate, amb ptychotreme, peritreme, goniotreme, shape oblate, spherical, prolate spheroidal, oblate spheroidal, oblate spheroidal, sub-prolate, sub-oblate, having formula N₆P₄C₅, N₃P₄C₅, N₆P₄C₅, N₆P₄C₃, N₄-P₄C₃, N₄-P₄C₃, N₃-₆P₄C₃.

b) Petiole anatomical micromorphology

The significant diagnostic features for the petiole anatomy in Brassicaceae were petiole shapes sulcate, flat, oval, circular, vascular bundles collateral closed, collateral open, bi-collateral, or hadrocentric, trichomes unicellular, uniseriate, and multiseriate. Significant variations in the Fabaceous petioles were type of vascularisation amphicribral, collateral closed, collateral open, bicollateral, and the number of vascular bundles 1, 1+2, 2, 3, 9, collenchyma cells shape as angular, lacunar, and lamellar. The significant petiole anatomical features in Lamiaceae were variations in petiole shape oval, flat, sulcate, round, collenchyma cell shapes lacunar, angular, annular, lamellar, collateral closed, collateral open, and amphicribal vascular bundles.

The taxonomic keys were constructed based on the observed features, and successfully distinguished the studied taxa. The data for quantitatively analyzed pollen morphological and petiole anatomical traits was subjected to SPSS, Origin, and Past. The dendrogram, PCA, correlation, normal probability, and box-jatter plots demonstrated the separation of species within each family down to the species level. The pollen morphology and petiole anatomy of the studied species assisted in the distinction of taxa at a genus and species level.

Future perspectives

5. Future Perspectives

- The systematics of the examined dicot flora can be further enhanced by conducting DNA barcoding experiments to authenticate species identification at molecular level.
- Examination of the pollen using a transmission electron microscope (TEM) can unveil more taxonomic markers and provide specifics to the existing investigations.
- The endemic species within the arid-semiarid conditions of Baluchistan need to be genetically conserve in context of climate change.
- Future research on the delimitation of dicot flora through sophisticated phylogenetic analyses of taxonomic data using bioinformatics methods will be very helpful.
- It is recommended to connect molecular systematics and classical taxonomy by analyzing the genes that code the studied anatomical and palynological traits.
- The research of adulteration in herbal remedies may benefit greatly from accurate identification using palynological and anatomical documentation.
- Seed atlas on investigated families are recommended for future studies.
- The melissopalynological studies on the flora of Baluchistan are highly recommended, as there is not a single report in this regard.
- The comparative studies of the pollen morphology and petiole anatomy need to be carried out from several ecological zones, to confirm their authenticity and use in the plant systematics studies.

References

- Abdel Khalik, K., Van Den Berg, R. G., Van Der Maesen, L. J. G.and El Hadidi, M. N. (2002). Pollen morphology of some tribes of Brassicaceae from Egypt and its systematic implications. *Feddes Repertorium: Zeitschrift für botanische Taxonomie und Geobotanik*, 113(3-4), 211-223.
- Abedi, T.and Abedi, R. (2015). Study on Floristic composition, Life form and Chorotype of Kishkhale Reserve area (Guilan province). *International Journal* of Agriculture and Crop Sciences, 8(1), 47-51.
- Abu-Asab, M. S. and Cantino, P. D. (1994). Systematic implications of pollen morphology in subfamilies Lamioideae and Pogostemonoideae (Labiatae). *Annals of the Missouri Botanical Garden*, 81(4), 653–686.
- Abu-Asab, M.S. and Cantino, P.D. (1992) Pollen morphology in subfamily Lamioideae (Labiatae) and its phylogenetic implications. In: Harley, R.-M. & Reynolds, T. (Eds.) Advances in Labiatae Sciences. *Royal Bot Gardens*, Kew, 97–122.
- Abu-Asab, M.S.and Cantino, P.D., (1994). Systematic implications of pollen morphology in subfamilies Lamioideae and Pogostemonoiedae (Labiatae). *Annals of the Missouri Botanical Garden*, 81, 635–686.
- Adedeji, O. (2004). Leaf epidermal studies of the species of Emilia Cass. (Senecioneae, Asteraceae) in Nigeria. *Botanica Lithuanica*, 10(2),121-133.
- Agbagwa, O.I. and B.C. Ndukwu. (2004). The valve of morphoanatomical features in the systematic of Cucurbita L. (Cucurbitaceae) species in Nigeria. African *Journal of Biotechnology*, 3(10),541-546.
- Aguoru, C., Okoli B. (2012). Comparative stem and petiole anatomy of West African species of Momordica L (Cucurbitaceae). *African Journal of Plant Science*, 6(15),403-409.
- Ahmad, N., Jabeen, M., Haq, Z. U., Ahmad, I., Wahab, A., Islam, Z. U.and Khan, M. Y. (2022). Green fabrication of silver nanoparticles using Euphorbia serpens Kunth aqueous extract, their characterization, and investigation of its in vitro antioxidative, antimicrobial, insecticidal, and cytotoxic activities. *BioMed Research International*, 1-11.

- Ahmad, R., Jilani, G., Arshad, M., Zahir, Z. A.and Khalid, A. (2007). Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. *Annals of microbiology*, 57, 471-479.
- Ahmad, S., Ahmad, M., Fawzy Ramadan, M., Sultana, S., Papini, A., Ullah, F.and Zafar,
 M. (2023). Palynological Study of Fossil Plants from Miocene Murree
 Formation of Pakistan: Clues to Investigate Palaeoclimate and
 Palaeoenvironment. Agronomy, 13(1), 269.
- Ahmad, S., Nadeem, S.and Muhammad, N. (2019). Boundary layer flow over a curved surface imbedded in porous medium. *Communications in Theoretical Physics*, 71(3), 344.
- Ahmed, A., Mohammad, N.and Wadood, A. (2020). Balochistan: Overview of its Geoeconomic and Socio-economic Perspectives. *Review of Applied Management* and Social Sciences, 3(2), 235-246.
- Ahmed, A., Mohammad, N.and Wadood, A. (2020). Balochistan: Overview of its Geoeconomic and Socio-economic Perspectives. *Review of Applied Management* and Social Sciences, 3(2), 235-246.
- Akçin, Ö. E., Özyurt, M. S.and Şenel, G. (2011). Petiole anatomy of some Lamiaceae taxa. *Pakistan journal of botany*, *43*(3), 1437-1443.
- Akhtar, A., Ahmad, M., Mahmood, T., Khan, A. M., Arfan, M., Abbas, Q.and Khan, A. (2022). Microscopic characterization of petiole anatomy of Asteraceous taxa of Western Himalaya-Pakistan. *Microscopy Research and Technique*, 85(2), 591-606.
- Akhtar, A., Ahmad, M., Mahmood, T., Khan, A. M., Arfan, M., Abbas, Q., Khan, A. (2022). Microscopic characterization of petiole anatomy of Asteraceous taxa of Western Himalaya-Pakistan. *Microscopy Research and Technique*, 85(2), 591-606.
- Akhtar, R., Sultana, S., Masud, MM., Jafrin, N., Al-Mamun, A. (2021). Consumers' environmental ethics, willingness, and green consumerism between lower and higher income groups. *Resources, Conservation and Recycling*, 168,1-13.

- Akinnubi Fm, Akinloye Aj, Oladipo Ot. (2013). Petiole anatomy of some species of Asteraceae in southwest Nigeria. *African Journal of Plant Science*, 7(12),608-612.
- Albrecht-Buehler, G. (1990). In defense of "nonmolecular" cell biology. *International Review of Cytology*, *120*, 191-241.
- Ali, S. I.and Qaiser, M. (1986). A phytogeographical analysis of the phanerogams of Pakistan and Kashmir. *Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences*, 89, 89-101.
- Ali, S.I. and M. Qaiser. (1995-2007). Flora of Pakistan. Fascicles, Department of Botany, University of Karachi, Karachi.
- Ali, S.I. (2008). The significance of flora with special reference to Pakistan. *Pakistan journal of botany*, 40(30), 967-971.
- Alosaimi, A. A. (2023). Petiole Anatomy of Selected Species in Family Lamiaceae and its Systematic Relevance. *Flora*, *306*,152367.
- Al-otraqche, F. D. Y. (2022). Anatomical Comparison of the Stem and Leaf in Some of Onobrychis Mill.(Fabaceae) Species in Kurdistan region-Iraq. Zanco Journal of Pure and Applied Sciences, 34(1), 97-109.
- Al-Shehbaz IA., (2012). A generic and tribal synopsis of the Brassicaceae (Cruciferae). *Taxon*, 61(5),931-954.
- Al-Shehbaz,IA .(2012). A generic and tribal synopsis of the Brassicaceae (Cruciferae). *Taxon, 61*, 931-954.
- Ameen, M., Ahmad, M., Zafar, M., Munir, M., Abbas, M. M., Sultana, S.and Kalam, M. A. (2022). Prospects of catalysis for process sustainability of eco-green biodiesel synthesis via transesterification: a state-of-the-art review. *Sustainability*, 14(12), 7032.
- Ameen, M., Zafar, M., Ahmad, M., Ramadan, M. F., Eid, H. F., Makhkamov, T.and Majeed, S. (2023). Assessing the Bioenergy Potential of Novel Non-Edible

Biomass Resources via Ultrastructural Analysis of Seed Sculpturing Using Microscopic Imaging Visualization. *Agronomy*, 13(3), 735.

- Ameen, M., Zafar, M., Ahmad, M., Shaheen, A.and Yaseen, G. (2018). Wild melon: A novel non-edible feedstock for bioenergy. *Petroleum Science*, 15, 405-411.
- Ameen, M., Zafar, M., Ramadan, M. F., Ahmad, M., Makhkamov, T., Bokhari, A.and Show, P. L. (2023). Conversion of novel non-edible Bischofia javanica seed oil into methyl ester via recyclable zirconia-based phyto-nanocatalyst: A circular bioeconomy approach for eco-sustenance. *Environmental Technology & Innovation*, 30, 103101.
- Ameen, M., Zafar, M., Ramadan, M. F., Ahmad, M., Makhkamov, T., Bokhari, A.and Show, P. L. (2023). Conversion of novel non-edible Bischofia javanica seed oil into methyl ester via recyclable zirconia-based phyto-nanocatalyst: A circular bioeconomy approach for eco-sustenance. *Environmental Technology & Innovation*, 30, 103101.
- Amina, H. et al. (2020). Microscopic investigation of pollen morphology of Brassicaceae from Central Punjab-Pakistan. Microscopy Research and Technique, 83, 446-454
- Amina, H., Ahmad, M., Bhatti, G. R., Zafar, M., Sultana, S., Butt, M. A.and Ashfaq, S. (2020). Microscopic investigation of pollen morphology of Brassicaceae from Central Punjab-Pakistan. *Microscopy research and technique*, 83(4), 446-454.
- Amirabadizadeh, H. and Ghanavati, F. (2012). Pollen grain morphology in Iranian Hedysareae (Fabaceae). Crop Breeding Journal, 2(1), 25-33.
- Anchev, M., and Deneva, B. (1997). Pollen morphology of seventeen species from family Brassicaceae (Cruciferae). *Phytologia Balcanica*, 3(2-3), 75-82.
- Anjum, F., Mir, A., Shakir, Y., Zafar, M., Sultana, S., Ameen, M.and Ahmad, M. Seed,
 .(2022). Coat Morphology and Sculpturing of Selected Invasive Alien Plants from Lesser Himalaya Pakistan and Their Systematic Implications. *BioMed Research International*,1-11

- Anonymous. (1998). Census report of Kalat and Khuzdar districts, Balochistan province. Population census organization, Statistic division Govt. of Pakistan, Islamabad.
- Ansari, K.A., Malik, A.R. and Mahar, A.Q. (1993). Floristic list of district Khairpur. Annual Journal Research Scientific Sindh, 1: 11-18.
- Anus and Dan, M. (2020). Taxonomic significance on comparative petiole anatomy of twelve species of curcumal.(zingiberaceae) from south India. *Plant Archives*,20(1), 35–41.
- Aradhana PS. (1998). Himalayan ecology. Rajat Publications, New Delhi, India,
- Arfan, M., Mahmood, T., Zafar, M., Raza, J., Sultana, S., Akhtar, M. T.and Ameen, M. (2022). Implication of scanning electron microscopy as a tool for identification of novel, nonedible oil seeds for biodiesel production. *Microscopy Research and Technique 85*(5), 1627-2022.
- Arnold, E. (1973). Peacock's Elementary Microtechnique. Pitman Press, Bath, Great Britain.
- Ashfaq, S., Zafar, M., Ahmad, M., Sultana, S., Bahadur, S., Khan, A. and Shah, A. (2018). Microscopic investigations of palynological features of convolvulaceous species from arid zone of Pakistan. *Microscopy Research and Technique*, 81(2), 228–239.
- Atalay, Z., Celep, F., Bilgili, B. and Doğan, M. (2016). Pollen morphology of the genus Lamium L.(Lamiaceae) and its systematic implications. *Flora*, 219, 68-84.
- Atasagun, B. (2022). Comparative anatomy and pollen morphology of two endemic Noccaea species (Brassicaceae) and their taxonomic significance. *Notulae Botanicae Horti Agrobotanici Cluj-Napoca*, 50(3), 12849-12849.
- AVCI, S., Sancak, C., Can, A., Acar, A.and PINAR, N. M. (2013). Pollen morphology of the genus Onobrychis (Fabaceae) in Turkey. *Turkish Journal of Botany*, 37(4), 669-681.

- Awmack, C.S. and J.M. Lock., (2002). The Genus Alhagi (Leguminosae: Papilionoideae) in the Middle East. *Kew Bulletin*. 57 (2), 435-443.
- Aziz, A., Ahmad, M., Ullah, R., Bari, A., Khan, M. Y., Zafar, M.and Anar, M. (2022). Microscopic techniques for characterization and authentication of oil-yielding seeds. *Microscopy Research and Technique*, 85(3), 900-916.
- Azizian, D., Serpooshan, F. and Jamzad, Z. (2001). Pollen morphology and taxonomy of the genus Nepeta sect. Psilonepeta (Labiatae) in Iran. *The Iranian Journal of Botany*, 9(1), 19-26.
- Azzazy, M. (2016). Systematic importance of pollen morphology of some plants of (Lamiaceae). *Current Botany*, 7, 5–10.
- Agbagwa, P. (1982). Systematic, phylogenetic, and ecological wood anatomy—history and perspectives. In *New perspectives in wood anatomy: published on the occasion of the 50th anniversary of the International Association of Wood Anatomists. Dordrecht Springer Netherlands*, 23-58.
- Bagheri, A., Akhavan Roofigar, A., Abbasi, S., Maassoumi, A. A., Rutten, T.and Blattner, F. R. (2019). Pollen morphology of Astragalus section Hymenostegis (Fabaceae) and evaluation of its systematic implications. *Grana*, 58(5), 328-336.
- Bahadur, S., Ahmad, M., Mir, S., Zafar, M., Sultana, S., Ashfaq, S.and Arfan, M. (2018). Identification of monocot flora using pollen features through scanning electron microscopy. *Microscopy Research and Technique*, 81(6), 599–613.
- Bahadur, S., Ahmad, M., Zafar, M., Gul, S., Ayaz, A., Ashfaq,S.,Ahmad, S. (2020). Taxonomic study of one generic and two new species record to the flora of Pakistan using multiple microscopic techniques. *Microscopy Research and Technique*, 83 (4), 345–353. <u>https://doi.org/10.1002/jemt.23420</u>
- Bahadur, S., Long, W., Ahmad, M., Yaseen, M., Ullah, F.and Saqib, S. (2023). Exploration of pollen traits and their taxonomic relevance in selected taxa of the subfamily Papilionoideae from Hainan Island, China. *Palynology*, 47(2), 1-14.

- Baloch, M. P., Marri, M. Y.and Qaisrani, M. A. (2000). Plants treasures, traditional knowledge and baloch society Botany. *Balochistan*.
- Banks H, Lewis G. (2009). Pollen morphology of the Dimorphandra group (Leguminosae, Caesalpinioideae). *Grana*. 48(1),19–26.
- Barth, O.M. (1964). Catálogo sistemático dos pólens das plantas arbóreas do brasil meridional: V-Leguminosae: Papilionatae. *Memórias do Instituto Oswaldo Cruz* 62, 95-123.
- Barth, O.M. (1975) Côrte-Real, S.; Macieira, E.G. Morfologia do polén anemófilo e alergizante no Brasil: II. Polygonaceae, Amaranthaceae, Chenopodiaceae, Leguminosae, Euphorbiaceae e Myrtaceae.
- Barthlott, W. (1981). Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects. *Nordic Journal of Botany*, *1*(3), 345-355.
- Beech, E., Rivers, M., Oldfield, S.and Smith, P. P. (2017). Global Tree Search: The first complete global database of tree species and country distributions. *Journal of Sustainable Forestry*, 36(5), 454-489.
- Bhat, M.A. (2021). Floristic diversity of Shankaracharya forest ecosystem. Inetrnational journal of ecology and environmental sciences, 3(1),16-18.
- Bhatti, G. R. (2001). Floristic study of arid zone (Desert-Nara Region), Sindh, Pakistan. Department of Botany Shah Abdul Latif University Khairpur.
- Bibi, T., Ahmad, M., Tareen, N. M., Jabeen, R., Sultana, S., Zafar, M.and Zain-ul-Abidin, S. (2015). The endemic medicinal plants of Northern Balochistan, Pakistan and their uses in traditional medicine. *Journal of ethnopharmacology*, 173, 1-10.
- Bibi, T., Ahmad, M., Tareen, R. B., Tareen, N. M., Jabeen, R., Rehman, S. U.and Yaseen, G. (2014). Ethnobotany of medicinal plants in district Mastung of Balochistan province-Pakistan. *Journal of ethnopharmacology*, 157, 79-89.

- Bruneau, A., Mercure, M., Lewis, G. P.and Herendeen, P. S. (2008). Phylogenetic patterns and diversification in the caesalpinioid legumes. *Botany*, 86(7), 697-718.
- Buril, M. T., Alves, M.and Santos, F. D. A. R. D. (2011). Pollen typification of Leguminosae from a priority area for conservation of Caatinga: Caesalpinioideae and Papilionoideae. *Acta Botanica Brasilica*, 25, 699-712.
- Celenk, S., Dirmenci, T., Malyer, H., Bicakci, A., (2008b). A palynological study of the genus Nepeta L. (Lamiaceae). *Plant systematics and evolution*, *276*, 105–123
- Celenk, S., Tarimcilar, G., Bicakci, A., Kaynak, G., Malyer, H.(2008a). A palynological study of Mentha L. *Botanical Journal of the Linnean Society*, *157*, 141–154.
- Cantino, P., Harley, R. M. and Wagstaff, S. J. (1992). Genera of Labiatae: status and classification. *Advances in labiate science*, *11*, 511-522.
- Carlquist S. (1996). Wood, bark and stem anatomy of Gnetales: a summary. International Journal of Plant Sciences, 157(S6), S58-S76.
- Carlsward BS, Stern WL, Judd WS, Lucansky TW. (1997). Comparative leaf anatomy and systematics in Dendrobium, sections Aporum and Rhizobium (Orchidaceae). *International Journal of Plant Sciences*, *158*(3), 332-342.
- Celenk, S., Dirmenci, T., Malyer, H. and Bicakci, A. (2008). A palynological study of the genus Nepeta L. (Lamiaceae). *Plant Systematics and Evolution*, 276, 105– 123.
- Celenk, S., Tarimcilar, G., Bicakci, A., Gonul, K., and Mayler, H. (2008). A palynological study of the genus Mentha L. (Lamiaceae). *Botanical Journal of the Linnean Society*, 157, 141–154.
- Celep, F., Kahraman, A., Atalay, Z. and Doğan, M. (2014). Morphology, anatomy, palynology, mericarp and trichome micromorphology of the rediscovered Turkish endemic Salvia quezelii (Lamiaceae) and their taxonomic implications. *Plant Systematics and Evolution*, 300, 1945-1958.

- Ceter, T., Ekici, M., Pinar, N. M.and Ozbek, F. (2013). Pollen morphology of Astragalus
 L. section Hololeuce Bunge (Fabaceae) in Turkey. *Acta Botanica Gallica*, 160(1), 43-52.
- Chaudhary, A. H., Khokhar, S. N., Zafar, Y. and Hafeez, F. (1981). Actinomycetous root nodules in angiosperms of Pakistan. *Plant and Soil*, *60*, 341-348.
- Chen, J. and Craven, L. (2007). Flora of China. Flora of China 13, 321-328.
- Chen, J.-H., Sun, H. and Yang, Y. P. (2008). Comparative morphology of leaf epidermis of Salix (Salicaceae) with special emphasis on sections Lindleyanae and Retusae. *Botanical journal of the Linnean Society*, 157(2), 311-322.
- Christenhusz, M. J.and Byng, J. W. (2016). The number of known plants species in the world and its annual increase. *Phytotaxa*, *261*(3), 201-217.
- Colombo P, Spadaro V. (2003). Anatomical studies on the Sicilian Helianthemum (Cistaceae). *Flora Medit*, 13,205–218
- De la Estrella M, Aedo C, Velayos M. (2009). A morphometric analysis of Daniellia (Fabaceae–Caesalpinioideae). *Botanical Journal of the Linnean Society*, 159(2), 268-279.
- De Storme, N., Zamariola, L., Mau, M., Sharbel, T. F.and Geelen, D. (2013). Volumebased pollen size analysis: an advanced method to assess somatic and gametophytic ploidy in flowering plants. *Plant Reproduction*, *26*, 65-81.
- Demirpolat, A. (2022). Anatomical, Palynological and Seed Surface Characteristics of Aethionema sancakense Yıld. & Kılıc (Brassicaceae). Avrupa Bilim ve Teknoloji Dergisi, (37), 1-7.
- Devi, M. N. and Singh, S. R. (2014). Minerals, bioactive compounds, antioxidant and antimicrobial activities of home remedy therapeutic herbal Scutellaria discolor (Colebr). *International Journal of ChemTech Research*, 6(2), 1181-1192.
- Dinç, M., Duran, A., Pinar, M. and Öztürk, M. (2008). Anatomy, palynology and nutlet micromorphology of Turkish endemic Teucrium sandrasicum (Lamiaceae). *Biologia*, 63, 637-641.

- Doaigey, A. R., El-Zaidy, M., Alfarhan, A., Milagy, A. E. S. and Jacob, T. (2018). Pollen morphology of certain species of the family Lamiaceae in Saudi Arabia. *Saudi Journal of Biological Sciences*, 25(2), 354-360.
- Dobson A. (1995). Biodiversity and Human health. *Trends in Ecology and Evolution*, 10,390-391.
- Doğan, C. A. H. İ. T.and İnceoğlu, Ö. (1990). Türkiye'nin bazı Isatis L. taksonlarının polen morfolojisi. *Turkish Journal Of Botany*, 14.

Dörken, V. M., Ladd, P. G. and Parsons, R. F. (2019). The foliar characters in Callitris (Callitroideae, Cupressaceae s. str.) and their evolutionary and ecological significance. *FeddesRepertorium130*(3): 247–271. <u>https://doi.org/10.1002/fedr.201800033</u>.

- Doust, A. N. and Stevens, P. F. (2005). A reinterpretation of the staminate flowers of Haptanthus. *Systematic Botany*, *30*(4), 779-785.
- Ekeke, C.and amp; Ogazie, C. A. (2020). Research Article Systematic Significance of PetioleAnatomical Characteristics in Some Members of Asteraceae from Some Parts of Nigeria. Singapore Journal of scientific research, 387-399.
- Engel, T.(1990). Dornenanatomie und Samenmikromorphologie der kleinasiatischen Vertreter der Gattung Astracantha Podlech sowie der dornigen Vertreter der Gattung Astragalus L. (Fabaceae). *Dissertationes botanicae*, 151 Stuttgart.
- Erdtman, G. (1952). Pollen morphology and plant taxonomy. *Geologiska Föreningen i* Stockholm Förhandlingar 74, 526-527.
- Erdtman, G. (1963). Palynology. In *Advances in botanical research* (Vol. 1, pp. 149-208). Academic Press.
- Erdtman, G.(1952). Pollen Morphology and Plant Taxonomy. Angiosperms. Alquimist and Wiksell, Stockholm.
- Erdtman, G., (1960). The acetolysis method. A revised description. *Svensk Botanisk Tidskrift*, 54,561–564.
- Erdtman, G. (1945). Pollen morphology and plant taxonomy, IV. Labiatae, Verbenaceae, and Aviceniaceae. *Svensk Botanisk Tidskrft, 39*, 279–285.

- Eric, T.J., V.A. Michael. and Linda, W.E. (2007). The importance of petiole structure on in habitability by ants in Piper sect. Macrostachys (Piperaceae). *Botanical Journal of the Linnean Society*, 153(2),181-191.
- Erxu, P., Qiufa, P., Hongfei, L., Jingbo, S., Yueqiang, D., Feilai, H., Hui, H. (2009). Leaf morphology and anatomy of Camellia section Camellia (Theaceae). *Botanical Journal of the Linnean Society*, 159(3), 456-476.
- Eymann, J., Degreef, J., Häuser, C., Monje, J. C., Samyn, Y. and VandenSpiegel, D. (2010). Manual on field recording techniques and protocols for all taxa biodiversity inventories and monitoring. Abc Taxa.
- Ferguson, I. K.and Banks, H. (1994). Tetrad pollen in the subfamily Caesalpinioideae (Leguminosae) and its significance. *Review of Palaeobotany and Palynology*, 83(1-3), 31-42.
- Ferreira C, Castro NM, Rodrigues TM, Seixas DP, Groppo M., (2022): Pulvinus or not pulvinus that is the question: anatomical features of the petiole in the Citrus family (Rutaceae, Sapindales). *Brazilian Journal of Botany*, 45(1),485-496.
- Fırat, M., Başer, B. and Aziret, A. (2017) Pollen and nutlet micromorphology of a rare species Salvia kurdica (Lamiaceae) from Turkey. *Pakistan Journal of Botany* 49, 617–621.
- Fişne, Y. and Bagherpour, S. (2020). Contribution to the knowledge of the pollen morphology of the genus Salvia (Lamiaceae). *Phytotaxa*, 428(3), 228-240.
- Gabr, D. G. I. (2018). Taxonomic importance of pollen morphology for some species of Brassicaceae. *Pakistan Journal of Biological Sciences*, *21*(5), 215-223.
- Gazal, S. and A.K. Raina. (2015). Life-form composition and biological spectrum of Ramnagar Wildlife sanctuary, Jammu and Kashmir, India. *International journal* of science and research, 4,161-164.
- Ghafoor, A. (2002) Asteraceae (I)-Anthemideae; Department of Botany, University of Karachi.

- Gorovoy, P. G., Boltenkov, E. V., Yakovleva, O. V. and Doudkin, R. V. (2011, August). Taxonomic value of petiole anatomy in the genus Megadenia Maxim (Cruciferae). In Doklady *Biological Sciences*, 439, (1), 215-217 Springer Nature BV.
- Graham, A., Barker, G.and da Silva, M. F. (1980). Unique pollen types in the Caesalpinioideae (Leguminosae). *Grana*, 19(2), 79-84.
- Grant-Downton, R. (2009). Pollen terminology. An illustrated handbook.
- Gul, S., Ahmad, M., Zafar, M., Bahadur, S., Sultana, S., Begum, N., Hanif, U. (2019b).
 Taxonomic study of subfamily Nepetoideae (Lamiaceae) by polynomorphological approach. *Microscopy Research and Technique*, 82, 1021–1031.
- Gürdal, B., Yeşil, Y., Akalin, E. and Nur, T. A. N. (2019). Anatomical features of Salvia potentillifolia Boiss. & Heldr. ex Benth. and Salvia nydeggeri Hub.-Mor.(Lamiaceae). *İstanbul Journal of Pharmacy*, 49(3), 186-190.
- Halbritter, H., Ulrich, S., Grímsson, F., Weber, M., Zetter, R., Hesse, M. and Frosch-Radivo, A. (2018). Pollen morphology and ultrastructure. *Illustrated Pollen Terminology*, 37-65.
- Hameed, A., Zafar, M., Ahmad, M., Sultana, S., Akhter, M. S., Zaman, W. and Ullah, F. (2022). Micromorphology, phytochemical and pharmacological evaluation of Isodon rugosus (Wall. ex Benth.) Codd. *Journal of Animal and Plant Sciences-Japs*, 32(3),736-745.
- Hamzaoğlu, E., Duran, A. and Pınar, N.M. (2005) Salvia anatolica (Lamiaceae), a new species from East Anatolia, Turkey. *Annales Botanici Fennici* 42,215–220.
- Harley, M. M. (1992). The potential value of pollen morphology as an additional taxonomic character in subtribe Ociminae (Ocimeae: Nepetoideae: Labiatae). Advances in Labiatae science. Royal Botanic Gardens, Kew, 125-138.
- Harley, MM., Paton, A., Harley, RM., Cade, PG. (1992). Pollen morphological studies in tribe Ocimeae (Nepetoideae: Labiatae): I. Ocimum L. *Grana*, *31*(3),161-176.

- Harshberger, J. W. (1896). The purposes of ethno-botany. *Botanical gazette*, 21(3), 146-154.
- Hassan, N., Osman, A.K. and El Garf, I.A. (2009). Pollen types of the Egyptian species of the genus Salvia (Lamiaceae). *Feddes Repertorium 120*,394–404.
- Hedge I., (1997). A systematic and geographical survey of the Old World Cruciferae.
- Hedge, I. (1976) . A systematic and geographical survey of the Old World Cruciferae. Erden, A. and Menemen, Y. (2021). Comparative pollen morphology studies on some species of Brassicaceae in Turkey. *Biyol Çeşit Koru*. 14, 105-118
- Hedge, I. C. (1976). A systematic and geographical survey of the Old World Cruciferae. In J. G. Vaughn, A. J. MacLeod, and B. M. G. Jones [eds.], The biology and chemistry of the Cruciferae, London Academic Press, London, UK 1–45.
- Hellström, S., Strobl, V., Straub, L., Osterman, W. H., Paxton, R. J.and Osterman, J. (2023). Beyond generalists: The Brassicaceae pollen specialist Osmia brevicornis as a prospective model organism when exploring pesticide risk to bees. *Environmental and Sustainability Indicators*, 18, 1-9.
- Heneidak, S. and Shaheen, A.S.M. (2007). Characteristics of the proximal to distal regions of the petioles to identify 15 tree species of Papilionoideae-Fabaceae. *Bangladesh Journal of Plant Taxonomy*, 14(2), 101-115.
- Henderson, D.M., Prentice, H. and Hedge, I.C. (1968) Pollen morphology of Salvia and some related taxa. *Grana Palynologica* 8, 70–85.
- Holt, K. A.and Bennett, K. D. (2014). Principles and methods for automated palynology. *New Phytologist*, 203(3), 735-742.
- Howard, R.A. (1979). The petiole. In Metcalfe, C.R., Chalk, L. (Eds), *Anatomy of the Dicotiledones*, I (2), 88-96, Oxford: Clarendon Press.
- Hussain, A., Potter, D., Hayat, M. Q., Sahreen, S.and Bokhari, S. A. (2019) Pollen morphology and its systematic implication on some species of Artemisia L. From Gilgit-Baltistan Pakistan. *Bangladesh Journal Plant Taxon. 26*(2), 157-168.

- Ibrar, M., Rauf, A., Hadda, T. B., Mubarak, M. S.and Patel, S. (2015). Quantitative ethnobotanical survey of medicinal flora thriving in Malakand Pass Hills, Khyber Pakhtunkhwa, Pakistan. *Journal of Ethnopharmacology*, 169, 335-346.
- Jabeen, S., Zafar, M., Ahmad, M., Ali, M. A., Elshikh, M. S., Makhkamov, T. and Rahmatov, A. (2024). Micrometer insights into Nepeta genus: Pollen micromorphology unveiled. *Micron*, 177, 1-17.
- Jabeen, S., Zafar, M., Ahmad, M., Althobaiti, A. T., Ozdemir, F. A., Kutlu, M. A.and Majeed, S. (2023). Ultra-sculpturing of seed morphotypes in selected species of genus Salvia L. and their taxonomic significance. *Plant Biology*, 25(1), 96-106.
- Jafari, A. and Nikian, M. (2008) Micromorphological, anatomical and pollen ornamentation study on four desert species of Salvia in center of Iran. Asian Journal of Plant Sciences 7,736–741.
- Jahan, B., Vahidy, A. A. and Ali, S. I. (1994). Chromosome numbers in some taxa of Fabaceae mostly native to Pakistan. Annals of the Missouri Botanical Garden, 792-799.
- Jamzad, Z., Chase, WM., Ingrouille M., Simmonds MSJ., Jalili A. (2003b). Phylogenetic relationship in Nepeta L. (Lamiaceae) and related genera based on its sequence data. *Taxon* 52,21–32
- Jan, P. S., Sadia, B., Yousaf, A., Naz, N., Rehmat, N., Tahira, B.and Bazai, Z. A. (2021). Ethnobotanical study of flora of Gulistan, district Killa Abdullah, Balochistan, Pakistan. *Pure and Applied Biology (PAB)*, 5(2), 361-368.
- Jehanzeb S, Zafar M, Ahmad M, Sultana S, Zaman W, Ullah F., (2020). Comparative petioler anatomy of tribe Mentheae subfamily Nepetoideae, Lamiaceae from Pakistan. *Feddes Repertorium*, 131(3):163-174.
- Jehanzeb, S., Zafar, M., Ahmad, M., Sultana, S., Zaman, W. and Ullah, F. (2020). Comparative petioler anatomy of tribe Mentheae subfamily Nepetoideae, Lamiaceae from Pakistan. *Feddes Repertorium*, 131(3), 163-174.
- Jones, G. D.and Bryant Jr, V. M. (2007). A comparison of pollen counts: Light versus scanning electron microscopy. *Grana*, 46(1), 20-33.

- Jones, M.D., Newell, L. (1948) Size, Variability, and Identification of Grass Pollen Agronomy *Journal* 40, 136-143.
- Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. and Donoghue, M.J. (2002). Plant Systematics: A Phylogenetic Approach, 2nd edn (Sinauer Associates: Sunderland, MA).
- Jušković, M., Gocić, D. J., Nikolić, D., Zlatković, B. and Ranđelović, V. (2021). A comparative anatomical study on two closely related Astragalus L. taxa (Fabaceae) from the central part of the Balkan Peninsula. *Biologica Nyssana*, *12*(1),1-12
- Kahraman, A., Celep, F. and Dogan, M. (2010). Anatomy, trichome morphology and palynology of Salvia chrysophylla Stapf (Lamiaceae). South African Journal of Botany, 76(2), 187-195.
- Kailas, J. G., Naik, M. C., Bheemalingappa, M., Ramakrishna, H.and Rao, B. R. P. (2018). Arboreal diversity of the Andaman Islands, India, based on pollen analysis. *Palynology*, 41(3), 370-388.
- Kailas, J. G., Ramakrishna, H.and Prabhaker, R. (2016). Inaperturate pollen diversity in the arborescent taxa of Karimnagar district, Telangana State, India. *Indian Journal of Agricultural Research*, 50(4), 374-377.
- Kar, R. K. (1993). On the Indian origin of Ocimum (Lamiaceae): A palynological approach.
- Karaismailoğlu, C. M. (2020). Petiole anatomy of 21 representatives of Tribe Alysseae (Brassicaceae) from Turkey. *Kahramanmaraş Sütçü İmam Üniversitesi Tarım* ve Doğa Dergisi, 23(6), 1535-1544.
- Karamian, R. et al. (2011). Findings of Onobrychis sect. Heliobrychisin Iran and their taxonomic implications. *Turkish Journal of Botany* 35, 27 37.
- Karamian, R., Behjou, AM.and Ranjbar, M.(2012). Anatomical findings of Onobrychis sect. Heliobrychis(Fabaceae) in Iran and their taxonomic implications. *Turkish Journal of Botany* 36,27-37.

- Karamian, R., Ranjbar M. (2003). The first record of Astragalus sect. Aegacantha (Fabaceae) in Iran. *Nordic Journal of Botany*, 23(5), 541-544.
- Kayani, S., Hussain, M., Ahmad, M., Zafar, M., Sultana, S., Butt, M. A. and Mir, S. (2019). Scanning electron microscopy (SEM) and light microscopy (LM)-based Palyno-morphological views of Solanaceae in Western Himalaya_*Microscopy Research and Technique*, 82, 63-74.
- Kemka-Evans C, Okoli B, Nwachukwu, C., Ikeanumba M., (2021). Anatomical Studies on the Stem and Leaf of Vernonia amygdalina Del, Cyanthillium cinereum (L.)
 H. Rob and Brenandendron donianum (DC.) H. Rob. in Southern Nigeria: Recent development. *Recent Research Advances in Biology*, 6,151-157.
- Keshavarzi, M., Abassian, S. and Sheidai, M.(2012). Pollen morphology of the genus *Clypeola* (Brassicaceae) in Iran. *Phytologia Balcanica*, 18, (1)17-24.
- Khan, I., Akhtar, N. and Khan, S.A. (2020). Palynological investigation of some selected species of family Fabaceae from Pakistan, using light and scanning electron microscopy techniques. *Microscopy research and technique*, 83, 223-231.
- Khan, M. A., Khan, S. M., Khan, S. M., Hussain, I., Khan, S. A., Liaqat, M. and Ali, S. (2017). Species diversity and ethno botanical study of Allai valley in the western Himalayan region of Pakistan. *Pakistan Journal of Weed Science Research*, 23(2) 1-14
- Khan, M., F. Hussain, S. Musharraf and Ullah, I. (2011). Floristic composition, life form and leaf size spectra of the coal mine area vegetation of Darra Adam Khel, Khyber Pakhtunkhwa Pakistan. *Journal of Biodiversity and Environmental Sciences*, 3, 1-6.
- Khan, R. E. H. A. N. A. (2004). Studies on the pollen morphology of the genus Arabidopsis (Brassicaceae) from Pakistan. *Pakistan Journal of Botany*, 36(2), 229-234.
- Khan, S. U., Zafar, M., Ullah, R., Shahat, A. A., Ahmad, M., Sultana, S. and Malik, K. (2021). Pollen diversity and its implications to the systematics of mimosaceous species by LM and SEM. *Microscopy Research and Technique*, 84(1), 42-55.

- Khan, S., Jan, G., Ahmad, M., Gul, F., Zafar, M., Mangi, J. U. D. and Majeed, S. (2021). Morpho-palynological assessment of some species of family Asteraceae and Lamiaceae of District Bannu, Pakistan on the bases of light microscope & scanning electron microscopy. *Microscopy Research and Technique*, 84(6), 1220-1232.
- Kharazian, N. (2007). The taxonomy and variation of leaf anatomical characters in the genus Aegilops L. (Poaceae) in Iran. *Turkish Journal of Botany*, *31*(1), 1-9.
- Kim, K., Labbé, N., Warren, J. M., Elder, T. and Rials, T. G. (2015). Chemical and anatomical changes in Liquidambar styraciflua L. xylem after long term exposure to elevated CO2. *Environmental Pollution*, 198, 179-185.
- Kızılpınar, İ., Altınözlü, H. A. Ş. İ. M.and Doğan, C. A. H. İ. T. (2012). Pollen morphology of some species of the genus Malcolmia (Brassicaceae). *Mellifera*, 12,1-7
- Kocsis M, Borhidi A.(2003). Petiole anatomy of some Rubiaceae genera. *Acta Botanica Hungarica*, *45*(3-4),345-353.
- Kownacki, A., Szarek-Gwiazda, E. and Woźnicka, O. (2015). The importance of scanning electron microscopy (SEM) in taxonomy and morphology of Chironomidae (Diptera). *European Journal of Environmental Sciences*, 5(1),1-4
- Kubitzki, K., Rohwer, J. G. and Bittrich, V. (Eds.). (2013). Flowering plantsdicotyledons: Magnoliid, hamamelid and caryophyllid families (Vol. 2). *Springer Science & Business Media.*
- Lashin, G.M. (2006). Comparative morphology of pollen grains of some taxa of tribe Trifolieae (Fabaceae: Papilionoideae) from Egypt. *International Journal of Botany*. 2(3) 270-277.
- Lattar, E. C., Bóbeda, G., and Zini, L. M. (2020). Pollen morphological and morphometric analysis in species of the Aeschynomeneae and Adesmieae tribes (Faboideae: Fabaceae). *Palynology*, 44(1), 187-194.

Lawrence, G.H.(1955). An introduction to plant taxonomy; Central Book Depot.

- Lens, F., Dressler, S., Vinckier, S., Janssens, S., Dessein, S., Van Evelghem, L. and Smets, E. (2005) Palynological variation in balsaminoid Ericales. I. Marcgraviaceae. Annals of Botany 96: 1047–1060. <u>https://doi.org/10.1093/aob/mci256</u>
- Liao, M., Ullah, F., Deng, H. N., Zhang, J. Y., Xu, B.and Gao, X. F. (2022). Pollen morphology of the genus Sophora (Fabaceae) and its taxonomic implications. *Microscopy Research and Technique*, 85(5), 1723-1741.
- Majeed S, Zafar M, Althobaiti AT, Ramadan MF, Ahmad M, Makhkamov T, Gafforov Y, Sultana S, Yaseen G.(2022). Comparative Petiole Histology Using Microscopic Imaging Visualization among Amaranthaceous Taxa. *Flora, 297*,1-21
- Mannethody, S. and Purayidathkandy, S.(2018). Trichome micromorphology and its systematic significance in Asian Leucas (Lamiaceae). *Flora, 242,* 70–78
- Manzoor, M., Ayesha, A., and Durrani, M. J. (2013). Uses of fruits, vegetables and herbs for the treatment of diabetes by the people of Quetta city. *Science Technology and Development*, 32(1), 24-27.
- Matias, L. Q., Soares, A. and Scatena, V. L. (2007). Systematic consideration of petiole anatomy of species of Echinodorus Richard (Alismataceae) from north-eastern Brazil. Flora-Morphology, Distribution, Functional Ecology of *Plants*, 202(5),395–402.
- Matos, MNF., Maduro,CB., Costa, CS., Silva, SJR. (2020). Pollen characterization of woody plants from the Parrot Forest, Boa Vista, Roraima, northern Brazil. Boletim Do Museu Integrado de Roraima (Online). 8(1),19–41
- Mehrabian ,A., Zarre, S., Azizian, D., Podlech, D. (2007). Petiole anatomy in Astragalus sect. Incani DC. (Fabaceae) in Iran (a phylogenetical approach *Iranian Journal of Botany*, 13(2), 138-145.
- Mennema, J. (1989). A taxonomic revision of Lamium (Lamiaceae) (Vol. 11). Brill Archive.

- Mert, C. (2010). Anther and pollen morphology and anatomy in walnut (Juglans regia L.). *Hortscience*, *45*(5), 757–760.
- Metcalfe, C. R. and Chalk, L. (1950). Anatomy of the dicotyledons, Vols. 1 & 2. Anatomy of the dicotyledons, Vols. 1 & 2.
- Metcalfe, C. R. and Chalk, L. (1979). Anatomy of the dicotyledons. Vol I. Systematic anatomy of leaf and stem, with a brief history of the subject. *Anatomy of the dicotyledons. Vol I. Systematic anatomy of leaf and stem, with a brief history of the subject.*, (Ed. 2).
- Metcalfe, C. R.and Chalk, L. (1980). Anatomy of the dicotyledons. Vol I. Systematic anatomy of leaf and stem, with a brief history of the subject.
- Metcalfe, C.R. and Chalk, (L.)1972. Anatomy of Dicotyledons II, Clarendon Press, Oxford.
- Mildenhall, D. C., Wiltshire, P. E. and Bryant, V. M. (2006). Forensic palynology: why do it and how it works. *Forensic science international*, *163*(3), 163-172.
- Mohtashamian M, Avakh Hajishirkia'ee F, Fatehi F, Rastegar A., (2022). Petiole anatomy: a contribution to the taxonomy of Acer L. (Sapindaceae) in Iran. *Nordic Journal of Botany*, e03417,1-10
- Moon, H. K., Vinckier, S., Smets, E.and Huysmans, S. (2008). Palynological evolutionary trends within the tribe Mentheae with special emphasis on subtribe Menthinae (Nepetoideae: Lamiaceae). *Plant Systematics and Evolution*, 275, 93-108.
- Moon, H.-K., Vinckier, S., Smets, E., and Huysmans, S. (2008a). Comparative pollen morphology and ultrastructure of Mentheae subtribe Nepetinae (Lamiaceae). *Review of Palaeobotany and Palynology*, 149(3–4), 174–186.
- Moon, H.K., Vinckier, S., Walker, J.-B., Smets, E. and Huysmans, S. (2008c). A search for phylogenetically informative pollen characters in the subtribe Salviinae (Mentheae: Lamiaceae). *International Journal of Plant Sciences 169*, 455–471.

- Moon, H.K., Vinckier, S., Walker, J.B., Smets, E., Huysmans, S.(2008b). A search for phylogenetically informative pollen characters in the subtribe Salviinae/Mentheae: Lamiaceae. *International Journal of Plant Sciences*, 169, 455–471.
- Moon, H. K., Vinckier, S., Smets, E. and Huysmans, S. (2008). Comparative pollen morphology and ultrastructure of Menthae subtribe Nepetinae (Lamiaceae). *Review of Palaeobotany and Palynology*, 149,174–186.
- Moore, P.D., Webb, J.A. and Collison, M.E. (1991). Pollen Analysis. 2nd Edition, Blackwell, Oxford, 1-216.
- Mousavi, S. M., Jafari, A. and Najafi, S. (2014). Anatomical and micromorphological studies on leaves of Salvia L. species in NE Iran. *Romanian Biotechnological Letters*, 19(1), 9058–9064.
- Muhammad S, Ullah R, Jadoon IA. (2019). Heavy metals contamination in soil and food and their evaluation for risk assessment in the Zhob and Loralai valleys, Baluchistan province, Pakistan. *Microchemical Journal*, 149,1-7.
- Muhammad, Z., Khan, M. A., Mushtaq, A.and Shazia, S. (2006). Palynological and taxonomic studies of some weeds from flora of Rawalpindi. *Pakistan Journal of Weed Science Research*, *12*(1/2), 99-109.
- Musharaf, K., Farrukh, H.and Shahana, M. (2011). Floristic composition, life form and leaf size spectra of the Coal Mine area vegetation of Darra Adam Khel, Khyber Pakhtonkhwa, Pakistan. *Journal of Biodiversity and Environmental Sciences* (*JBES*), 1(3), 1-6.
- Myoung, L. S. and Yuon, L. H. (2012). Pollen morphology of the family Lamiaceae in Mongolia. *Journal of Korean Nature*, 5(2), 169-179.
- Naghibi, F., Mosaddegh, M., Motamed, S. M. and Ghorbani, A. (2022). Labiatae family in folk medicine in Iran: from ethnobotany to pharmacology. *Iranian Journal of Pharmaceutical Research*, 4(2), 63-79.
- Naik, VN., Nigurde SM.(1981). Anatomy in relation to taxonomy of Chlorophytum (Liliaceae). *Indian Journal of Botany*, 4(2),48-60.

- Nasir, E. and Ali, S. (1971). Flora of Pakistan. Department of Botany. University of Karachi, Karachi, Pakistan. 112-115.
- Neto ILdC, Martins FM, Martins MLL, de Oliveira Silva LR.(2017). Comparative leaf anatomy of wild Manihot Mill. species (Euphorbiaceae) from Chapada Diamantina, Bahia, Brazil. Nordic Journal of Botany, 35(2),207-219.
- Noor, W., Zafar, M., Ahmad, M., Althobaiti, A. T., Ramadan, M. F., Makhkamov, T. and Khan, A. (2023). Petiole micromorphology in Brassicaceous taxa and its potential for accurate taxonomic identification. *Flora*, 303, 152280.
- Nwachukwu, CU., Edeoga, HO., Kemka-Evans, CI. (2017). Stem anatomical studies of some species of Indigofera. *International Research Journal of Plant Science 3* (1), 24-25.
- Ogunkunle, A. T. J.and Oladele, F. A. (2008). Leaf epidermal studies in some Nigerian species of Ficus L.(Moraceae). *Plant systematics and Evolution*, 274, 209-221.
- Okanume, O. E., Abok, S. G.and Oso, O. A. (2022). Leaf epidermal and petiole anatomical features as taxonomic characters in some Vernonia species in Nigeria. *Bio-Research*, 20(1), 1388-1397.
- Okeke, C. U., Iroka, C. F., Izundu, A. I., Okereke, N. C., Onwuasoeze, C. I.and Nyananyo, B. L. (2015). Comparative systematic leaf and petiole anatomical studies of the genus Stachytarpheta found in Awka Nigeria. *Journal of Medicinal Plants*, 3(4), 82-84.
- Olowokudejo, J.D. (1987). Taxonomic value of petiole anatomy in the genus Biscutella L. (Cruciferae). Bulletin du Jardin botanique national de Belgique/Bulletin van de Nationale Plantentuin van Belgie, 57,307-320.
- Ozcan, M. and Eminagaoglu, O. (2014). Stem and leaf anatomy of three taxa in Lamiaceae. *Bangladesh Journal of Botany*, 43(3), 345-352.
- Ozcan, M., Demiralay, M.and Kahriman, A. (2015). Leaf anatomical notes on Cirsium Miller (Asteraceae, Carduoideae) from Turkey. *Plant systematics and evolution*, 301, 1995-2012.

- Ozcan, M., Unver, M. C.and Eminagaoglu, O. (2014). Comparative anatomical and ecological investigations onsome Centaurea (Asteraceae) taxa from Turkey and their taxonomic significance. *Pakistan journal of botany*,46(4), 1287–1301.
- Özler ,H., Pehlivan, S., Celep, F., Kahraman, A., Yavru, F., Başer, B.and Bagherpour, S.(2013). Pollen morphology of Hymenosphace and Aethiopis sections of the genus Salvia. *Turkish Journal of Botany*, *37*,1070-1084.
- Özler, H., Pehlivan, S., Kahraman, A., Doğan, M., Celep, F., Başer, B., Yavru, A. and Bagherpour, S. (2011) Pollen morphology of the genus Salvia L. (Lamiaceae) in Turkey. *Flora*, 206,316–327. https://doi.org/10.1016/j.flora.2010.07.005
- Panda, S. S., Dhal, N. K., Dash, A.and Panda, S. C. (2014). Floristic diversity of Khand Apara forest ranges of Nayagarh district Odisha, India. *Journal of Plant Sciences*, 3(1), 2319-3824.
- Panday, DD. (1998). Seasonal changes in the floristic composition of rangeland ecosystem of Bihar, India, BMSI Abstract third international rangeland congress.1,185-195.
- Paterson, A. H., Bowers, J. E., Chapman, B. A., Peterson, D. G., Rong, J. and Wicker, T. M. (2004). Comparative genome analysis of monocots and dicots, toward characterization of angiosperm diversity. *Current opinion in biotechnology*, 15(2), 120-125.
- Pavlova, D. K.and Manova, V. I. (2000, January). Pollen morphology of the genera Onobrychis and Hedysarum (Hedysareae, Fabaceae) in Bulgaria. In *Annales Botanici Fennici* Finnish Zoological and Botanical Publishing Board.37(3) 207-217.
- Perveen, A. and Qaiser, M. (2003) Pollen morphology of the family Labiatae from Pakistan. *Pakistan Journal of Botany* 35, 671–693.
- Perveen, A. and Qaiser, M. (2004). Pollen morphology of the family Labiatae from Pakistan. *Pakistan Journal of Botany*, 35(5), 671–694.
- Perveen, A., Qaiser, M. and Khan, R. (2004) Pollen Flora of Pakistan-XLII. Brassicaceae. *Pakistan journal of botany, 36*, 683-700.

- Perveen, A.and Qaiser, M. (1998). Pollen Flora of Pakistan-X. Leguminosae (Subfamily: Caesalpinioideae). *Turkish Journal of Botany*, 22(3), 145-150.
- Perveen, A.Qaiser, M. and Khan, R. (2004) Pollen Flora of Pakistan-XLII. Brassicaceae. *Pakistan journal of botany*, 36, 683-700.
- Parveen, A. and Hussain, M. I. (2007). Plant biodiversity and phytosociological attributes of Gorakh Hill (Khirthar Rage). *Pakistan Journal of Botany*, 38(3), 691-698.
- Pinar, M., Duran, A., Ceter, T.and Tug, G. N. (2009). Pollen and seed morphology of the genus Hesperis L.(Brassicaceae) in Turkey. *Turkish Journal of Botany*, 33(2), 83-96.
- Pirani, A., Zarre, S., Tillich, H. J., Podlech, D.and Niknam, V. (2006). Spine anatomy and its systematic application in Astragalus sect. Rhacophorus s. L. (Fabaceae) in Iran. *Flora-Morphology, Distribution, Functional Ecology of Plants, 201*(3), 240-247.
- Provincial Census Report. Population Census Organization. (1998). Statistical Division Government of Pakistan. Islamabad.
- Punt, W., Hoen, P. P., Blackmore, S., Nilsson, S.and Le Thomas, A. (2007). Glossary of pollen and spore terminology. *Review of palaeobotany and palynology*, 143(1-2), 1-81.
- Qader, K. O. (2018). Taxonomic significance of anatomical characters in some species of Brassicaceae family in Iraq. University of Thi-Qar Journal of Science, 2(4), 77-83.
- Qureshi, R. (2004). Floristic and Ethnobotanical Study of Desert Nara Region, Sindh. Ph.D. Dissertation, Department of Botany, Shah Abdul Latif University, Khairpur. Vol. I and II.
- Qureshi, M. N., Talha, N., Ahmad, M., Zafar, M.and Ashfaq, S. (2019). Morphopalynological investigations of natural resources: A case study of Surghar mountain district Mianwali Punjab, Pakistan. *Microscopy Research and Technique*,82(7), 1047–1056

- Qureshi, R. (2012). Medicinal flora of hingol national park, Baluchistan, Pakistan. *Pakistan Journal of Botany*, 44(2), 725-732.
- Qureshi, S. J., Khan, M. A., Arshad, M., Rashid, A.and Ahmad, M. (2009). Pollen fertility (viability) status in Asteraceae species of Pakistan. *Trakia Journal of Sciences*, 7(1), 12-16.
- Rabiai, El. G. (2015). Systematic consideration of petiole anatomy of some taxa of Brassicaceae in Libya. *Botany Research International*, 8(2),36-40.
- Rafay, M., R.A. Khan, S. Yaqoob. and M. Ahmad (2013). Nutritional evaluation of major range grasses from Cholistan Desert. *Pakistan Journal of Nutrition*,12, 23-29.
- Ragho, K. S. (2020). Role of pollen morphology in taxonomy and detection of adulterations in crud drugs. *Journal of Plant Science and Phytopathology*, 4, 024-027.
- Rahman, A. H. M., M. and Parvin, M. I. A. (2014). Study of medicinal uses on Fabaceae family at Rajshahi, Bangladesh. *Research in Plant Sciences*, *2*(1), 6-8.
- Rai, V. M., Pai, V. R., Kedilaya, P. H. and Hegde, S. (2013). Preliminary phytochemical screening of members of Lamiaceae family: *Leucas linifolia*, *Coleus aromaticus* and *Pogestemon patchouli*. *International Journal of Pharmaceutical Science Review and Research*, 21(1), 131-137.
- Raikhel, N. V. and Minorsky, P. V. (2001). Celebrating plant diversity. *Plant Physiology*, 127(4), 1325-1327.
- Raja, R. R. (2012). Medicinally potential plants of Labiatae (Lamiaceae) family: an overview. *Research journal of medicinal plant*, 6(3), 203-213.
- Rajput, M. T., Ahmed, B., Tahir, S. S. and Bhatti, N. M. (1991). A study of medicinal plants of Thar Desert. *Sindh University Research Journal*, 15-26.
- Rama Rao, V., Shiddamallayya, N., Kavya, N., Kavya, B.and Venkateshwarlu, G. (2015). Diversity and therapeutic potentiality of the family Lamiaceae in Karnataka State, India: An overview. *History*, 13(37), 6-14.

- Ranjbar, M. and Karami, S. (2023). Pollen morphology of some selected species of the tribes Brassiceae, Conringieae, Isatideae, and Plagiolobeae (Brassicaceae) in Iran, and its taxonomic significance. *Palynology*, 47(1), 1-19.
- Rashid, S., Zafar, M., Ahmad, M., Lone, F. A., Shaheen, S., Sultana, S.and Shinwari, M. I. (2018). Microscopic investigations and pharmacognostic techniques used for the standardization of herbal drug Nigella sativa L. *Microscopy Research and Technique*, 81, 1443–1450.
- Raunkiaer, C. (1934). The life-forms of plants and statistical plant geography. Clarendon Press Oxford.
- Raziq, A., Younas, M.and Rehman Z. (2010). Continuing education article prospects of livestock production in Balochistan. *Veterinary Journal*, 30(3),181-186.
- Reitsma, T., (1969). Size modification of recent pollen grains under different treatments. *Review of Palaeobotany and Palynology*, 9(3-4), 175-202.
- Sacramento Silva, C. C., Leite, K. R. B. and Roque, N. (2019). Leaf morphology and anatomy of Richterago discoidea(Asteraceae): a taxonomic and ecological approach. *FeddesRepertorium*, 130(4), 346–361.
- Sagun, V. G., and Van Der Ham, R. W. M. (2003). Pollen morphology of the Flueggeinae (Euphorbiaceae, Phyllanthoideae). *Grana*, 42(4), 193-219.
- Saha, S.and Begum, K. N. (2020). A comparative analysis on pollen morphology of the genus Brassica L. (Brassicaceae) in Bangladesh. *International Journal of Botany Studies*, 5(5), 191-194.
- Saifullah, S. M., Aisha, K.and Rasool, F. (1997). Balochistan, Pakistan. *Pakistan journal of botany 29*(2), 191-197.
- Satil, F., Kaya, A., Bıçakçı, A. B., Özatlı, S. and Tümen, G. (2005). Comparative morphological anatomical and palynological studies on thymus migricus klokov & des.-shost and t-fedtschenkoi ronniger var. Handelii (ronniger) jalas grown in east anatolia.

- Satil, F., Selvi, S. (2007) An anatomical and ecological study of some Crocus L. taxa (Iridaceae) from the west part of Turkey. *Acta Botanica Croatica*,66(1):25–33
- Scatena, VL., Giulietti,AM., Borba, EL., Van den Berg, C. (2005) Anatomy of Brazilian Eriocaulaceae: correlation with taxonomy and habitat using multivariate analyses. *Plant Systematics and Evolution*, 253,1–22.
- Schols, P., Es, K., D'hondt, C., Merckx, V., Smets, E. and Huysmans, S. (2004). A new enzyme-based method for the treatment of fragile pollen grains collected from herbarium material. *Taxon*, 53(3), 777–782.
- Schweingruber, F. H. et al. (2011). Atlas of stem anatomy in herbs, shrubs, and trees. Vol. 1. Springer.
- Schweingruber, FH. (2007). Stem anatomy of Caryophyllaceae. Flora 202,281-292
- Sebsebe, D. and Harley, M. (1992) Trichome, seed surface and pollen characters in Stachys (Lamioideae: Labiatae) in tropical Africa. In: Harley, R.M. & Reynolds, T. (Eds.) Advances in Labiatae science. *Royal Botanic Gardens*, Kew,149–166.
- Shah, S. N., Ahmad, M., Zafar, M., Razzaq, A., Malik, K., Rashid, N. and Zaman, W. (2018). Foliar epidermal micromorphology and its taxonomic implications insome selected species of Athyriaceae. *Microscopy Research and Technique*, 81(8), 902-913.
- Shah, S. N., Ahmad, M., Zafar, M., Ullah, F., Zaman, W., Malik, K. and Gul, S. (2019). Taxonomic importance of spore morphology in Thelypteridaceae from Northern Pakistan. *Microscopy Research and Technique*, 82(8), 1326-1333.
- Shah, S. N., Ahmad, M., Zafar, M., Ullah, F., Zaman, W., Mazumdar, J.and Khan, S. M. (2019). Leaf micromorphological adaptations of resurrection ferns in Northern Pakistan. Flora: Morphology, Distribution, *Functional Ecology of Plants*, 255, 1–10.
- Shah, S. R. U., Gul, H., Abdur, R.and Imtiaz, A. (2006). Ethnobotanical studies of the flora of district Musakhel and Barkhan in Balochistan, Pakistan. *Pakistan Journal of Weed Science Research*, 12(3), 199-211.

- Shah, SN., Ahmad, M., Zafar, M., Ullah ,F., Zaman, W., Malik, K., Rashid, N.and Gul S. (2019). Taxonomic importance of spore morphology in Thelypteridaceae from Northern Pakistan. *Microscopy Research and Technique*, 82(8),1326-1333.
- Shaheen, A.M. (2007). Characteristics of the stem-leaf transitional zone in some species of Caesalpinioideae (Legumuninosae). *Turkish Journal of Botany*, 31(4), 297-310.
- Shahri, S. M. M., Jafari, A. and Mahmoodzadeh, H. (2016). Comparative Anatomical Studies on Petioles of Nepeta L.Species (Lamiaceae) in NE Iran. Advanced Studies in *Biology*,8(3), 119–126.
- Sharma, S. M. and Bhadange, D. G. (2013). Antimicrobial potential of Lamiaceae members. *International Journal of Pharmacy and Pharmaceutical Sciences*, 3, 324-327.
- Sheikh N, Kumar Y. (2017). Foliar epidermal, stem and petiole anatomy of Meghalayan Dioscorea L. (Dioscoreaceae) and its systematic implication. Bangladesh Journal of Plant Taxonomy, 24(1),53-63.
- Siebert, D. J. (2004). Localization of salvinorin A and related compounds in glandular trichomes of the psychoactive sage, Salvia divinorum. *Annals of Botany*, 93(6), 763-771.
- Silva, K. R., Romero, R.and Simão, D. G. (2018). Leaf characters of Lavoisiera, Microlicia and Trembleya (Microlicieae, Melastomataceae) and their implications for taxonomy. *Feddes Repertorium*,129(2),123–136. <u>https://doi.org/10.1002/fedr.201700019</u>.
- Silvestre-Capelato, M. S. F.and Melhem, T. S. (1997). Flora polínica da Reserva do Parque Estadual das Fontes do Ipiranga (São Paulo, Brasil). *Família*, 115-163.
- Soares, E. L., Landi, L. A. D. C.and Gasparino, E. C. (2021). Additions to the knowledge of the pollen morphology of some Fabaceae from Cerrado forest patches of Brazil. *Palynology*, 45(2), 269-281.

- Soares, T. L., Jesus, O. N., Souza, E. H., Rossi, M. L. and Oliveira, E. J. (2018). Comparative pollen morphological analysis in the subgenera Passiflora and Decaloba. *Anais da Academia Brasileira de Ciências*, 90(2), 2381–2396.
- Song, J. H. and Hong, S. P. (2018). Comparative petiole anatomy of the tribe Sorbarieae (Rosaceae) provide new taxonomically informative characters. Nordic Journal of *Botany*, 36(5), njb-01702.
- Stewart, R.R., Ali, S. and Nasir, E., (1972). An annotated catalogue of the vascular plants of West Pakistan and Kashmir. *Fakhri Printing Press, Karachi, Pakistan*, 1-1028.
- Stuessy, T. F. (2009). Plant taxonomy: the systematic evaluation of comparative data. Columbia University Press.
- Sultan, A., Khan, N., Khan, T. and Jamzad, Z. (2021). A new species of Nepeta from Takht-e-Sulaiman, Pakistan. *The Iranian Journal of Botany*, *27*(2), 84-92.
- Tadavi, S. C.and Bhadane, V. V. (2014). Taxonomic significance of the rachis, petiole and Petiolule anatomy in some euphorbiaceae. *Biolife*, 2, 850-7.
- Taia, W. K. (2005). Modern trends in plant taxonomy. Asian Journal of Plant Sciences, 4(2), 2005.
- Talebi, S. M., Azizi, N., Yadegari, P. and Matsyura, A. (2020). Analysis of pollen morphological characteristics in Iranian Onobrychis Miller (Fabaceae) taxa. *Brazilian Journal of Botany*, 43, 609-632.
- Talebi, S. M., Sheidai, M., Atri, M., Sharifnia, F.and Noormohammadi, Z. (2012). Palynological study of the genus Linum in Iran (a taxonomic review). *Phytologia Balcanica*, 18(3), 293-303.
- Talip, N., Cutler, D., Puad, A. A., Ismail, B., Ruzi, A. and Juhari, A. A. (2017). Diagnostic and systematic significance of petiole anatomy in the identification of Hopeaspecies (Dipterocarpaceae). *South African Journal of Botany*, 111, 111– 125.

- Talip, N., Cutler, D., Puad, AA., Ismail, B., Ruzi, A.and Juhari AA. (2017). Diagnostic and systematic significance of petiole anatomy in the identification of Hopea species (Dipterocarpaceae). South African Journal of Botany, 111,111-125.
- Thacker, KD., Gavade, SK., Lekhak, MM., Gondaliya, AD., Rajput, KS. (2021). Comparison of petiole anatomy in Flemingia and its potential for delimitation of species. *Flora*, 278,151790.
- Thakur, M., Santvan, V. K.and Nigam, A. (2012). Floristic composition and biological spectrum of Darlaghat wild life sanctuary Solan Himachal Pradesh, India. *New York Science Journal*, *5*(12), 1-14.
- Torrey, J., and Gray, A. (1969). A flora of North America. Hafner Pub. Co.
- Trudel, M.C., G. and Morton, J.K. (1992) Pollen morphology and taxonomy in North American Labiatae. *Canadian Journal of Botany* 70, 975–995
- Ullah, F., Ayaz, A., Saqib, S., Parmar, G., Bahadur, S.and Zaman, W. (2021). Taxonomic implication of leaf epidermal anatomy of selected taxa of Scrophulariaceae from Pakistan. *Microscopy Research and Technique*, 84(3), 521-530.
- Ullah, F., Zafar, M., Amhad, M., Sultana, S., Ullah, A., Shah, S. N.and Mir, S. (2018). Taxonomic implications of foliar epidermal characteristics in subfamily Alsinoideae (Caryophyllaceae). *Flora*, 242, 31-44.
- Umber, F., Zafar, M., Ullah, R., Bari, A., Khan, M. Y., Ahmad, M. and Sultana, S. (2022). Implication of light and scanning electron microscopy for pollen morphology of selected taxa of family Asteraceae and Brassicaceae. *Microscopy Research and Technique*, 85(1), 373-384.
- Uzma, H., Zaheer-ud-din, K.and Amin, U. K. (2012). Distributional pattern of Asteraceae along a spatial gradient in urban and suburban areas of Lahore city, Pakistan. *African Journal of Plant Science*, 6(11), 303-308.
- Venkateshappa, S. M. and Sreenath, K. P. (2013). Potential medicinal plants of Lamiaceae. American international journal of research in formal, applied and natural sciences, 1(3), 82-87.

- Wagstaff, S. J., Hickerson, L., Spangler, R., Reeves, P. A. and Olmstead, R. G. (1998). Phylogeny in Labiatae sl, inferred from cpDNA sequences. *Plant Systematics* and Evolution, 209, 265-274.
- Wagstaff, S.J., (1992). A phylogenetic interpretation of pollen morphology in tribe Mentheae (Labiatae). In: Harley, R.M., Reynolds, T. (Eds.), Advances in Labiatae Science. *Royal Botanic Gardens*, Kew, 113–124.
- Walker, J.W. (1974) Evolution of exine structure in the pollen of primitive angiosperms. *American Journal of Botany* 61,891–902. <u>https://doi.org/10.1002/j.1537-</u> 2197.1974.tb12315.
- Walker, J.W. and Doyle, J.A. (1975). The bases of angiosperm phylogeny: palynology. *Annals of the Missouri Botanical Garden*, 664-723.
- Wojciechowski, M. F., Lavin, M.and Sanderson, M. J. (2004). A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many wellsupported subclades within the family. *American journal of botany*, 91(11), 1846-1862.
- Ya'ni, A., Hassan, S., Elwan, Z., Ibrahim, H. and Eldahshan, O. (2018). Morphological and anatomical studies on selected Lamiaceae medicinal plants in Bani Matar District, Sana'a (Yemen). *Taeckholmia*, 38(1), 17-39.
- Yigit, N.(2016). Micromorphological studies on plants and their importance. Developments in Science and Engineering:113-124.
- Yuan, Y. W., Mabberley, D. J., Steane, D. A., and Olmstead, R. G. (2010). Further disintegration and redefinition of Clerodendrum (Lamiaceae): implications for the understanding of the evolution of an intriguing breeding strategy. *Taxon*, 59(1), 125-133.
- Yusupova, Z. A.and Baratjon o'g'li, S. F. (2022). Bioecological properties of medicinal species of the mint family (lamiaceae). *Finland International Scientific Journal* of Education, Social Science & Humanities, 10(11), 183-190.

- Zafar, Muhammad., Ahmad, Mushtaq. And Khan, M. A. (2007). Palynology of family Asteraceae from flora of Rawalpindi-Pakistan. *International Journal of Agriculture and Biology*, 9(1), 156-161.
- Zarrabian, M. et al. (2013). Genetic diversity in a worldwide collection of sainfoin using morphological, anatomical and molecular markers. *Crop Science*, 53,2483 – 2496. 169.
- Zarrei, M., Wilkin, P., Ingrouille, MJ., Zarre, S., Chase, MW. (2010). The systematic importance of anatomical data in Gagea (Liliaceae) from the Flora Iranica area. *Botanical Journal of the Linnean Society*, 164, 155–177.
- Zhao, F., Chen, Y. P., Salmaki, Y., Drew, B. T., Wilson, T. C., Scheen, A. C. and Xiang, C. L. (2021). An updated tribal classification of Lamiaceae based on plastome phylogenomics. *BMC biology*, 19, 1-27.
- Zhao, X. L., Gao, X. F.and Xu, B. (2016). Pollen morphology of Indigofera (Fabaceae) in China and its taxonomic implications. *Plant Systematics and Evolution*, 302, 469-479.
- Zoric, L., Merkulov, Lj., Lukovic, J., Boza, P., Polic, D. (2009). Leaf epidermal characteristics of Trifolium L species from Serbia and Montenegro. *Flora*, 204,198–209.

PUBLISHED P&PERS

QUAID-I-AZAM UNIVERSITY DEPARTMENT OF PLANT SCIENCES

Subject: <u>Publication of W – Category Ms. Wajia Noor (Ph.D. Scholar)</u>

This is in reference to circular regarding the publication requirement for Ph.D. scholars in Department of Plant Sciences, Faculty of Biological Sciences. It is certified that **Ms. Wajia Noor** has published research papers in W-Categories as given below:

S. No.	Paper Title	Year	Impact Factor
1.	Wajia Noor, Muhammad Zafar, Mushtaq Ahmad, Ashwaq T. Althobaiti, Mohamed Fawzy Ramadan, Trobjon Makhkamov, Yusufjon Gafforov, Akramjon Yuldashev, Oybek Mamarakhimov, Omer Kilic, Heba F. Eid, Talip Şahin, Shazia Sultana, Bibi Sadia, Anwer Usma, Amjad Khan, Petiole micromorphology in Brassicaceous taxa and its potential for accurate taxonomic identification, Flora, 303, 152280.	2023	1.9
2.	Noor, W., Zafar, M., Ahmad, M., Sadia, B., Gillani, S. W., Manzoor, M., & Ameen, M. (2024). Taxonomic significance of palyno-morphic markers for the delimitation of some Brassicaceous taxa in Balochistan Province (Pakistan). <i>Genetic Resources</i> <i>and Crop Evolution</i> , 1-28.	2024	2.33

Dr. Muhammad Zafar

Supervisor

Flora 303 (2023) 152280

Contents lists available at ScienceDurce)

Flora

journal homepage: www.elsevier.com/loc.te/flora

Petiole micromorphology in Brassicaceous taxa and its potential for accurate taxonomic identification

Wajia Noor^a, Muhammad Zafar^{a,*}, Mushtaq Ahmad^{a,b,*}, Ashwaq T. Althobaiti^{*}, Mohamed Fawzy Ramadan^d, Trobjon Makhkamov^{*}, Yusufjon Gafforov^{4,g,b}, Akramjon Yuldashev⁴, Oybek Mamarakhimov⁴, Omer Kilic^{*}, Heba F. Eid⁴, Talip Şahin^{**}, Shazia Sultana⁴, Bibi Sadia⁴, Anwer Usma⁴, Amjad Khan⁴

^a Department of Plant Sciences, Plant Systematics and Biodiversity Lab Quaid-i-Azam University, 45320, Islamabad Pakistan

^b Pakistan Academy of Sciences Islamabad, Pakistan

* Department of Forestry and landscape design, Tashkent State Agrarian University, 2 A., Universitet Str., Kibray district, 100700, Tashkent region, Uzbekistan

¹ Department of Ecology and Botany, Andijan State University, 129, Universitet Str., 170100, Ardijan, Uzbekistan

¹ Department of Ecology monitoring, National University of Uzbekistan, University Street, Tashkent, 100174, Uzbekistan

* Faculty of Pharmacy Adiyaman University Adiyaman, Turkey

Faculty of Science, AL-Azhar University, Cairo, Egypt

^m Adıyaman Ünv, İnstitue of Science, Biology Department, Turkey

ARTICLEINFO

Edited by: Alessio Papini

Keywords: Petiole Anatomy Brassicaceae Histology Microanatomy

ABSTRACT

Petiole anatomy is considered one of the important diagnostic characteristics that can be effectively employed in taxa discrimination at the species level. In this study, comprehensive petiole anatomy of 25 wild Brassicaceae taxa from Northern Baluchistan was carried out to examine variations in petiole anatomical features that are significant in the identification and delimitation of species. The current research first time reported Goldbachia pendula from Pakistan. The study also includes endemic taxa Farsetia hamiltonii. Variations observed among qualitative (shapes of petiole, epidermis, collenchyma, chlorenchyma, sclerenchyma, trichome, cuticle, xylem vessel, phloem, collenchyma, chlorenchyma, sclerenchyma, arrangement and several vascular bundles, presence/absence of pith, the sub-epidermal ring of collenchyma) and quantitative (diameter of petiole, pith, vascular bundles) characteristics of the petiole. Observed shapes of petiole were sulcate, flat, oval or circular with blunt or acute wings. Vascular bundles in petioles were collateral closed, collateral open, bi-collateral, or hadrocentric types with arrangements of single, 1 + 2 (one large central, two lateral) and numerous (2-20). The surfaces of petioles were marked with three types of trichomes unicellular, uniseriate, and multiseriate. Petiole of Physorrhynchus brahuicus was the largest (length 2561.8 µm, width 2004 µm). The highest numbers of vascular bundles (20) were observed in the Alyssum desertorum. Conringia orientalis possessed the largest pith (length 1711.6 µm 850.4 µm). The parameters were collected into a matrix and statistically analyzed the ability of variables to segregate taxa using Past 4.03. PCA clustering, UPGMA dendrogram revealed comparability and negative correlation at genus, among species of the same genus and distinct species. Via documentation of distinct microscopic petiolar anatomical variables, the study will be significant for the characterization and delimitation of taxa at genus and species level in the family Brassicaceae, the exploration of evolutionary and microclimatic effects on designing anatomy of taxa in distinct floristic regions.

* Corresponding authors.

lutps://doi.org/10.10/b/j.flora.2023.152280

Received 18 November 2022; Received in revised form 6 April 2023; Accepted 15 April 2023 Available online 16 April 2023

0367-2530/© 2023 Elsevier GmbH. All rights reserved.

^e Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia

^d Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia

¹New Uzbekistan University, 54 Mustaqillik Ave., Tashkent, 100007, Uzbekistan

⁸ AKFA University, 264 Milliy Bog Street, 111221, Tashkent, Uzbekistan

h Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli, Tashkent, 100125, Uzbekistan

E-mail addresses: manageque edu pk (M. Zafar), mushtaqtiura@houmail.com (M. Ahmad).

Genet Resour Crop Evol https://doi.org/10.1007/s10722-024-01997-2

RESEARCH ARTICLE

Taxonomic significance of palyno-morphic markers for the delimitation of some Brassicaceous taxa in Balochistan Province (Pakistan)

Wajia Noor • Muhammad Zafar • Mushtaq Ahmad • Bibi Sadia • Syed Waseem Gillani • Muhammad Manzoor • Maria Ameen

Received: 8 March 2024 / Accepted: 23 April 2024 © The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract The pollen morphology of Brassicaceous taxa was analyzed to investigate their reliability as operational taxonomic units (OTUs) down to species level. The derived formula for all observed pollen was N₃P₄C₃ based on NPC classification. Documentation of quantitative parameters via statistical analysis included dendrogram, correlation, and loading plots. The studied taxa belong to 15 tribes, Brassiaceae, Alysseae, and Euclidieae being the dominant, including the endemic species Pseudodraba hystrix. The assessment of qualitative and quantitative features of pollen grains using LM and SEM aided in the discrimination of closely related species. The size of polar axis ranged from a minimum of 15.85 µm in Eruca vesicaria to a maximum of 33.05 µm in Dilophia salsa. Values of equatorial axis range from a minimum of 14.75 µm in Diplotaxis griffithii. to a maximum of 33.2 µm in Dilophia salsa. Exine sculpturing types were reticulate, coarsely reticulate, and scabrate. Lumen was prominent in polygonal and amorphous shapes with irregular and regular types. Lobate round, and triangular ambs were observed in the polar view of pollen. The Polar axis, equatorial

W. Noor · M. Zafar (🖾) · M. Ahmad · B. Sadia · S. W. Gillani (🖾) · M. Manzoor · M. Ameen Department of Plant Sciences, Quaid-i-Azam University Islamabad, Islamabad 45320, Pakistan e-mail: zafar@qau.edu.pk

S. W. Gillani e-mail: sgillani@bs.qau.edu.pk axis, and length of colpi in equatorial view exhibited a highly positive correlation. This study describes the micromorphological characteristics of pollen which can aid in accurate identification and delineate boundaries among Brassicaceous members at different taxonomic ranks.

Keywords Colpus orientation · Exine · Lumen · NPC classification · Palynomorphic keys

Introduction

Palynology is the scientific investigation of pollen grains and spores. Palynomorphs encompass all microfossils containing organic walls, such as spores and grains. In spite of contributing to a variety of systematic concerns, palynological research assists in the identification of species via palynomorph examinations and in determining the frequency of grains that trigger pollinosis (Anjum et al. 2022). Many investigations have examined the pollen morphology of the Brassicaceae family, and all of them have demonstrated the importance of pollen morphology in comprehending the taxonomic status of the family (AbdelKhalik et al. 2002; Perveen et al. 2004; Kailas et al. 2016). The monophyletic family comprising about 338 genera and 3709 species that is collectively referred to as the mustard family is the Brassicaceae (Al-Shehbaz 2012). Several economically valuable vegetables, decorative plants, and high oil-bearing