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Preface

Understanding the process that controls the connections between species and the trans-
mission of diseases is a critical task in a complex network of natural and social systems.
This thesis presents significant results related to these complex systems to better under-
stand their dynamics, emphasizing the dynamics of infectious diseases and the connections
between prey and predator.

The motivation behind our study is the fundamental need to understand the complex
dynamics that determine the growth and decrease in populations and the sensitive equi-
librium of the system. Prey-predator interactions, with complex mathematical models
control, provide insight into the complex balance of life in the natural environment. Our
goal is to provide practical outcomes with broad implications for animal conservation
and management while extending the boundaries of ecological knowledge by exploring
the theoretical foundations of dynamical systems.

In addition, the epidemic models help to strengthen international health systems as a
response to the ongoing threat of infectious diseases. These models offer an opportunity
to investigate the critical points that may cause epidemics or the emergence of stable,
controlled states through the complex combination of parameters and variables they
possess. Our goal is to contribute to managing and maintaining viral diseases by providing
knowledge and methods that go beyond theoretical research and into the real world. This
will ultimately assist societies throughout the world.

This thesis employs computational simulations, mathematical exploration, and practical
applications. Our motivation arises from the conviction that extensive investigation into
the dynamics of dynamic systems may contribute to more sensible approaches to pre-
serving biodiversity, appropriate ecosystem management, and maintaining the stability
of the global community.

Let us give an overview of the topics that each chapter covers.

Chapter 1. Introduction and preliminaries. The main focus of this chapter is to
provide readers with the fundamental concepts of dynamical systems used in this thesis.
This chapter will present the basic definitions, the conditions for fixed point stability,
bifurcation analysis, chaos control, and the related literature.

Chapter 2. Fixed points stability, bifurcation analysis, and chaos control of a
Lotka-Volterra model with two predators and their prey. The study of the pop-
ulation dynamics of a three-species Lotka-Volterra model is crucial in gaining a deeper
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understanding of the delicate balance between prey and predator populations. Therefore,
in this chapter, we discussed the stability of fixed points and the occurrence of Hopf bifur-
cation in a three-dimensional predator-prey model. Using bifurcation theory, our study
provides a comprehensive analysis of the conditions for the existence of Hopf bifurca-
tion. This is validated through detailed numerical simulations and visual representations
demonstrating the potential for chaos in these systems. To mitigate the instability, we
employ a hybrid control strategy that ensures the stability of the controlled model even
in the presence of Hopf bifurcation. This chapter is significant in advancing the field of
ecology but also has far-reaching practical implications for wildlife management and con-
servation efforts. Our results provide a deeper understanding of the complex dynamics
of prey-predator interactions and have the potential to inform sustainable management
practices and ensure the survival of these species.

Chapter 3. Fixed points stability, periodic behavior, bifurcation analysis,
and chaos control of a prey-predator model incorporating the Allee effect and
fear effect. In this chapter, we analyze the dynamics of a two-dimensional prey-predator
model that incorporates the Allee and fear effects. We conduct stability analysis of the
fixed points in discrete and continuous forms and focus on the periodic behavior of the
discrete-time model.

In addition, we discussed the bifurcation behavior of discrete and continuous models
using bifurcation theory and presented numerical examples to validate our theoretical
findings. We also identified the direction of bifurcation using attractive bifurcation plots
and employed a simple control technique to avoid bifurcation.

This chapter contributes to a better understanding of the prey-predator system and has
implications for other complex systems in various fields, including population dynamics,
physical models, epidemiology, and economics. Overall, this chapter reveals additional
illumination on the prey-predator model’s dynamics and increases our understanding of
its dynamic behavior.

Chapter 4. Fixed points stability, multi-parameter bifurcation analysis, and
chaos control of a prey-predator model incorporating the Allee effect and
fear effect. This chapter presents the dynamic analysis of the prey-predator model by
adding the fear and Allee effects. We also present the stability, bifurcation analysis, and
chaos control of the model. From the numerical examples, we conclude that the crowding
effect should be minimized to maintain the stability of the model. Also, in the interior
fixed point, when fear and Allee effects are taken as bifurcation parameters, backward
bifurcations occur, which shows that in the presence of the crowding effect, the increase
of the fear effect stabilizes the model.
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Similarly, the more significant Allee effect stabilizes the model. While the decrease of
these two effects causes an increase in growth rate, which causes bifurcation in the system
due to overcrowding, the addition of the Allee effect and the fear effect should be, to a
certain extent, so that the excess of both impacts controls the crowding development.
A simple control method is employed to prevent bifurcation. This chapter improves
our comprehension of the prey-predator system while potentially having implications for
other complex systems in various fields, including population dynamics, epidemiology,
and economics.

Chapter 5. Fixed points stability, bifurcation analysis, and chaos control of
an epidemic model with vaccination and vital dynamics. The spread of infec-
tious diseases remains a significant threat to global health and stability. A crucial aspect
of controlling and mitigating the impact of these diseases is a detailed understanding
of their dynamics. This chapter thoroughly examines a discrete-time epidemic model’s
stability and bifurcation characteristics, considering vaccination and vital dynamics. We
may better understand the system’s behavior presented in this chapter with mathemat-
ical techniques from nonlinear dynamics. From studying the stability of fixed points,
we can learn much about how the system responds to parameter changes and the cir-
cumstances needed for profound disease control. Additionally, investigating bifurcation
occurrences provides a more detailed relationship between small parameter changes and
qualitative changes in system behavior. The complex interactions between various pa-
rameters and their effects on the system’s dynamics are mainly illustrated in the study
of one-parametric bifurcation and co-dimension two-parameter bifurcation. This chapter
also shows how crucial chaos control is in modeling epidemics. Managing the chaos in the
system is an essential tool for preventing the spread of infectious diseases and ensuring
long-term disease control.

All the chapters contain theorems related to a qualitative analysis of different models, for
which we have provided proofs. The bibliography section gives all of the references used
in this study.
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Chapter 1

Introduction and preliminaries

This chapter is related to a brief introduction to mathematical models and their math-
ematical framework for modelling in discrete and continuous cases. Moreover, the pre-
liminary results related to stability analysis, bifurcation, and chaos control are discussed
and used in the upcoming chapters.

1.1 Origin and evolution of prey-predator models

The interactions between the two species and the resulting impacts on one another make
up the prey-predator relationship. Prey-predator is the alliance between the two living or-
ganisms living in an ecosystem. The Lotka-Volterra model is a classic and well-established
framework for understanding prey-predator dynamics in ecology. Alfred Lotka [1] and
Vito Volterra [2] were the two scientists who initially created this model, with Lotka
developing it in 1925 and Volterra in 1927. They formulated the interaction between
the prey-predator species’ growth through differential equations. This set of differential
equations represents the growth of prey species and predators’ impact on them.

Scientists and ecologists have refined and improved the Lotka-Volterra model. The model
has been enhanced with more realistic features, including spatial dynamics, the impact of
other species, and environmental variation. Gradually, the dimension and non-linearity
of the simple Lotka-Volterra model increase with time. Additional factors, like functional
responses [3], the Allee effect ([4], [5], and [6]), a fear effect [7], prey refuges [8], and time
delay [9], began to be included in the model to judge the population dynamics through
different environmental factors.

Many scientists have discussed the ecological competition system of differential equations
developed from the Lotka-Volterra type ([10] and [11]). Many added a third species to
the prey-predator model to show the competition between two predators ([12] and [13]),
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computing that only one prey or predator may catch up as a victim to another omnivore
type. Investigating an increased number of predator and prey species, scientists have
refined and extended the Lotka-Volterra model. Much work has been done on prey-
predator models, and many show different behaviors in different prey-predator models.
Some find a constant solution and offer local and global stability. Many show bifurcation
behavior, the existence and uniqueness of positive stable solutions, and countless other
results have been discussed. In this thesis, we discuss some of these results concerning
prey-predator models.

1.2 Types of mathematical models

In this subsection, we will discuss the only two types of mathematical models based on the
nature of the time involved in them. Continuous-time models represent the phenomenon’s
evolution over a continuous interval of time. Differential equations describe these models.
Discrete-time models represent the phenomenon’s evolution over a discrete interval of
time. The difference equations describe these models.

1.3 Discretization techniques

Discrete-time models can also be independently formulated, similar to continuous-time
models. However, researchers also discretize continuous-time models into discrete forms
using various techniques. We will use only two methods in the following thesis chapters
and describe them in detail here.

• Euler’s Method ([14]):
Consider an n-dimensional continuous-time dynamical system of the following form:

dξ

dt
= Φ(ξ, t), (1.3.1)

where ξ = [ξ1, ξ2, · · · , ξn]T is a vector representing the state variables. To discretize
the continuous domain, divide the time interval into equal steps of length ∆t, i.e.,
to, t1, t2, · · · , tn. Let the solution be constant over each interval, then ξ(t) ≈ ξk,
where ξk is the constant vector within the kth interval. Now we can write

dξ

dt
≈ ξk+1 − ξk

∆t
.

Now, (1.3.1) becomes:
ξk+1 = ξk +∆t (Φ(ξk, tk)) .
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• Piece-wise constant argument ([15]):
Consider an n-dimensional continuous-time dynamical system of the following form:

dξ

dt
= ξΦ(ξ, t), (1.3.2)

where ξ = [ξ1, ξ2, · · · , ξn]T is a vector representing the state variables. Assume
that the average rate of change in all the above differential equations changes over
regular time intervals. Then we can write:

1

ξ(t)

dξ(t)

dt
= Φ(ξ, t), (1.3.3)

where t represents the integer fragment of t and t ∈ (0,∞). Moreover, integrating
(1.3.3) on an interval [k, k + 1) for k = 0, 1, 2, · · · , we get the resulting scheme:

ξ(t) = ξkexp [{Φ(ξ, t)} (t− k)] . (1.3.4)

Taking t→ k + 1, we obtain the discretized form, which is as follows:

ξk+1 = ξkexp [{Φ(ξ, tk)}] . (1.3.5)

1.4 Stability of the fixed points

The dynamic system’s stability is the concept that determines the system’s behavior over
time. These concepts apply to both discrete and continuous-time models (see [16] for
more details). Before describing the types of stability, we define the fixed point as:

Definition 1. [16] A point λ ∈ Λ is called a fixed-point of the mapping ξ : Λ → Λ if
ξ(λ) = λ.

Now, we discuss the stability of the model in terms of two types:

1.4.1 Local stability

The dynamic system’s local stability is its behavior around a specific fixed point. A
system is locally stable if it returns to that fixed point when perturbed slightly from it
over time. The local stability can be analyzed using linearization techniques around the
fixed point. It can be interpreted as the eigenvalues of the system’s Jacobian matrix
calculated at the selected point. The following theorems are used to discuss the local
stability of the fixed point.

Theorem 1.4.1. [16] Let the following smooth map represent a discrete-time dynamical

3



system Γ:
ξ 7→ Γ(ξ), ξ ∈ Rn.

Let ξ0 be the fixed point of Γ, and A be the Jacobian matrix of Γ calculated at the fixed
point ξ0. The ξ0 is said to be stable if all the multipliers (eigenvalues) η1, η2, . . . , ηn of A
satisfy |η| < 1.

Theorem 1.4.2. [16] Let the following smooth map represent a continuous-time dynam-
ical system Γ:

ξ = Γ(ξ), ξ ∈ Rn.

Let ξ0 be the fixed point of Γ, and A be the Jacobian matrix of Γ calculated at the fixed
point ξ0. The ξ0 is said to be stable if all the multipliers (eigenvalues) η1, η2, . . . , ηn of A
satisfy Re(η) < 0.

The above theorems provide the necessary criteria for determining the system’s stability
in terms of the multiplier. The system’s stability can also be calculated based on its
characteristic functions. Therefore, utilizing the characteristic function of the Jacobian
matrix of the system, which is evaluated at the fixed point, we can calculate the stability
of two- and three-dimensional discrete-time models using the subsequent results:

Theorem 1.4.3. [16] Consider the following characteristic function of a two-dimensional
discrete-time system calculated at the fixed point (ξ̂1, ξ̂2):

λ2 −Θaλ+Θb = 0,

where Θa and Θb are real numbers. Then the fixed point (ξ̂1, ξ̂2) of a two-dimensional
discrete-time system is a:

• source (unstable) iff |Θb| > 1, and |Θa| < |1 + Θb|,

• saddle point iff (Θa)
2 > 4 (Θb) , and |Θa| > |1 + Θb|,

• Non-hyperbolic point iff |Θa| = |1 + Θb|, or Θb = 1, and Θa ≤ 2.

• If the above third condition does not hold, then
(
ξ̂1, ξ̂2

)
is a sink (stable) iff |Θa| <

1 + Θb < 2.

Theorem 1.4.4. [17] Consider the following characteristic function of a three-dimensional
discrete-time system calculated at the fixed point (ξ̂1, ξ̂2, ξ̂3):

λ3 +Θaλ
2 +Θbλ+Θc = 0,

where Θa,Θb and Θc are real numbers. Then, the following are the necessary and suffi-
cient conditions for all of the roots of the equations mentioned above to lie in an open
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disc:
|Θa +Θc| < 1 + Θb, |Θa − 3Θc| < 3−Θb, and Θ2

c +Θb −ΘcΘa < 1.

1.4.2 Global stability

A dynamic system is said to be globally stable if it is locally stable for all initial conditions
and within its state space. Global stability is a stronger condition than local stability. It
ensures the regular behavior of the entire system. Let I be an interval of real numbers
and for some initial values ξ0, ξ1, . . . ∈ I if we have the following difference equations:

ξn+1 = f(ξn, ξn−1), n = 0, 1, · · · . (1.4.1)

Then the following definitions are used to judge the global stability of the equation (1.4.1).

Definition 2. Let ξ∗ be the fixed point of the equation (1.4.1). Then ξ∗ is called a global
attractor if for every ξ0, ξ1, . . . , ξn ∈ I we have

limn→∞ξn = ξ∗.

Definition 3. If the fixed point ξ∗ of (1.4.1) is locally stable and a global attractor, it is
called global asymptotically stable.

1.5 Bifurcation analysis

Bifurcations happen when a slight variation in a parameter causes the system to go
from one stable state to another. These changes can be utilized to identify significant
thresholds above which the system cannot return to its initial form. Bifurcations can
also show how environmental changes, such as shifts in the prey or predator populations,
might impact the system’s dynamics in the context of a prey-predator model.

Many types of bifurcations exist in dynamic systems, but in this thesis, we discuss the
Hopf, Neimark-Sacker, and period-doubling bifurcations. The Neimark-Sacker bifurca-
tion is similar to the Hopf bifurcation. In the Hopf bifurcation, the system induces limit
cycles, while in the Neimark-Sacker bifurcation, a stable periodic orbit appears instead
of the limit cycle. A slight modification in a parametric factor during period-doubling
bifurcation leads the system to adopt a new behavior with twice the period of the initial
system. Mathematically, we have the following criteria for these types of bifurcations:

Definition 4. [16] In the two-dimensional continuous-time dynamical system, the bifur-
cation corresponding to the occurrence of the multipliers η1,2 = iµ0, µ0 > 0 is called a
Hopf bifurcation.
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Definition 5. [16] In the two-dimensional discrete-time dynamical system, the bifurcation
corresponds to the occurrence of the multipliers η1,2 = a± bi with |η1| = |η2| = 1 is called
a Neimark-Sacker bifurcation.

Definition 6. [16] In two-dimensional discrete-time dynamical systems, the bifurcation
is associated with the occurrence of the multipliers η1 = −1 and η2 < 1 is called the
period-doubling bifurcation.

The system’s bifurcation over the fixed point (ξ∗,Θ∗) can also be analyzed regarding
characteristic polynomials. For this, we have the following results: First, we have criteria
for Hopf bifurcation without calculating eigenvalues. For this, we have the following
theorems (see [18]).

1.5.1 Hopf bifurcation criteria for continuous-time systems in
terms of eigenvalues

First, we will examine the eigenvalue criteria related to the Hopf bifurcation using the
following theorem:

Theorem 1.5.1. [19] Let us have the following n-dimensional autonomous system of
differential equations:

dξ

dt
= Γ(ξ,Θ), (1.5.1)

where ξ ∈ Rn, and Γ ∈ C∞. Suppose that (ξ∗,Θ∗) is the fixed point for the system, and
P (µ,Θ) is the characteristic polynomial of the variational matrix of that system given as
follows:

P [µ,Θ] = ζn [θ]µ
n + ζn−1 [θ]µ

n−1 + · · ·+ ζ1 [Θ]µ+ ζ0 [Θ] . (1.5.2)

Then, the system undergoes Hopf bifurcation about (ξ∗,Θ∗) if the underlying axioms are
satisfied:

(I) :ζ0[Θ
∗] > 0, D1[Θ

∗] > 0, · · · , Dn−2[Θ
∗] > 0, Dn−1[Θ

∗] = 0,

(II) :
dDn−1[Θ

∗]

dΘ
̸= 0.

(1.5.3)

where

Dn[Θ] = det

 ζ1[Θ] · · · 0
... . . .

...
ζ2n−1[Θ] · · · ζn[Θ]

 . (1.5.4)
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Lemma 1.5.2. The conditions (1.5.3) can be reduces for n = 3 in the following form:

(I) :ζ0[Θ
∗] > 0, D1[Θ

∗] > 0, D2[Θ
∗] = ζ1[Θ

∗]ζ2[Θ
∗]− ζ0[Θ

∗] = 0,

(II) :
dD2[Θ

∗]

dΘ
̸= 0.

(1.5.5)

The following results can be used to determine a more detailed view of the Neimark-Sacker
bifurcation in higher-dimensional discrete-time models.

1.5.2 Neimark-Sacker bifurcation criteria for discrete-time sys-
tems in terms of eigenvalues

Now, we discuss the eigenvalue criteria for finding the Neimark-Sacker bifurcation, which
can be seen from the following lemma.

Lemma 1.5.3. [19] Let ξj+1 = Γη(ξj) be a κ − dimensional system with bifurcation
parameter η ∈ R. Let V (ξ∗) = (βmn)κ×κ be the variational matrix evaluated at fixed point
ξ∗ . Then the characteristic function of V (ξ∗) is:

Cη(δ) = δκ + β1δ
κ−1 + · · ·+ βκ−1δ + βκ. (1.5.6)

C1: Eigenvalues assignment. The characteristic function (1.5.6) has two complex con-
jugate eigenvalues ξ1(η) and ξ1(η) with |ξ1(η)| = 1 at ξ = ξ0 and the others ξj(η), j =

3, . . . , n, with ξj(η0) < 1.

C2: Transversality condition d|ξ1(η0)|
dξ

̸= 0.

C3: Non-resonance condition ξm1 (η0) ̸= 1 or resonance condition ξm1 (η0) = 1,m =

3, 4, 5, · · · . Then a Neimark-Sacker bifurcation occurs at ξ = ξ0.

1.5.3 Neimark-Sacker bifurcation criteria for discrete-time sys-
tems without finding the eigenvalues

Without eigenvalue criteria, we can also determine the existence of a Neimark-Sacker
bifurcation, for which we can use the following criteria:

Lemma 1.5.4. [19] Let ξj+1 = Γη(ξj) be a κ − dimensional system with bifurcation
parameter η ∈ R. Let V (ξ∗) = (βmn)κ×κ be the variational matrix evaluated at fixed point
ξ∗ . Then the characteristic function of V (ξ∗) is:

Cη(δ) = δκ + β1δ
κ−1 + · · ·+ βκ−1δ + βκ.

Here, all βκ depend on both bifurcation parameter η and any controlled parameters ζ. Let
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Θ±
i (η, ζ) = |(A1 ±A2)| , i = 1, 2, 3, . . . , κ be the sequence of determinants with

A1 =


1 β1 β2 . . . βi−1

0 1 β1 . . . βi−2

0 0 1 . . . βi−3

. . . . . . . . . . . . . . .

0 0 0 . . . 1

 , and A2 =


βκ−i+1 βκ−i+2 . . . βκ

βκ−i+2 βκ−i+3 . . . 0

. . . . . . . . . . . .

βκ−1 βκ . . . 0

βκ 0 . . . 0

 . (1.5.7)

If all of the following apply, the Neimark-Sacker bifurcation occurs at η0:
C1 Eigenvalue conditions: Θ−

κ−1(η0, ζ) = 0,Θ+
κ−1(η0, ζ) > 0,Cη0 > 0, (−1)κCη0 > 0,

Θ±
i (η0, ζ) > 0, i = κ− 3, κ− 5, , , 1( or 2), when κ is even or odd, respectively.

C2 Transversality condition:
[
d(Θ−

κ−1(η,ζ))
dh

]
η=η0

̸= 0.

C3 Resonance condition cos(2π
m
) = ψ, or non-resonance condition: cos(2π

m
) ̸= ψ, where

m = 3, 4, 5, . . . , and ψ = −1 + 0.5Cη0(1)
Θ−

κ−3(η0,ζ)

Θ+
κ−2(η0,ζ)

.

1.6 Chaos control

The concept behind chaos control is suppressing or eliminating any chaotic effects while
maintaining the system’s desired functionality. Several chaos control techniques have
been developed to stabilize chaotic systems. These techniques help manage population
dynamics and other complex systems where chaos can result in unpredictable behavior.
This section highlights why chaos control techniques are preferable to included manage-
ment methods and why using them in our predator-prey environment is crucial. These
techniques can significantly influence conservation and population management by main-
taining system stability and preventing bifurcation.

The main goal of controlling chaotic dynamics in biological systems is to prevent the
overuse of resources or the extinction of entire species. In prey-predator models, this can
be achieved by maintaining population stability at a sustainable level. Additionally, the
controlled system can investigate the effects of different control strategies on the dynamics
of prey-predator relationships. For example, by varying the value of the control param-
eter, we can assess the efficiency of various management strategies, such as eliminating
predators or increasing the prey’s resources.

Different control techniques are used to delay or eliminate the chaotic dynamics of any
population model. A detailed comparison of the more common of these methods is given
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in reference [20]. Recently, some used methods can be seen in the articles ([21], [22],
[23], and [24]). In this thesis, we used a simple hybrid control feedback technique. This
control strategy stabilizes the system and avoids bifurcation by combining parameter
perturbation and feedback control.
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Chapter 2

Fixed points stability, bifurcation
analysis, and chaos control of a
Lotka-Volterra model with two
predators and their prey

2.1 Introduction

This chapter has been published, and its publication view can be accessed from reference
[19]. We began with the literature review, which is as follows: The Lotka-Volterra model,
created by Lotka [1] and Volterra [2], was the first and most basic representation of prey-
predator interactions. Scientists have made many changes to this model and created
many prey-predator models. These models were later innovated and changed into two
categories. Continuous-time models began to be used to study changes in the populations
of all continuously breeding species. In contrast, discrete-time models began to be used to
study changes in the population of all species whose breeds are seasonal. These modified
models are very significant for analyzing population changes in ecology. Some scientists
looked at the dynamics of prey-predator populations in ecology and assisted in develop-
ing continuous-time models for huge populations ([25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], and [35]). Hadziabdic et al. [36] observed the dynamics in the community of
the prey-predator model and developed the extinction conditions of one predator and the
coexistence of predators. In addition, some researchers described the stability and diffu-
sion pattern of some prey-predator models ([17], [37], [38], and [39]). A large number of
scientists have shown that discrete-time models are more efficient for studying small-size
population species and give efficient results than continuous-time models ([40], [41], [42],
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[43], [44], [45], [46], [47], [48], [49], and [50]). Furthermore, using discrete-time models is
more appropriate for non-overlapping generation, and these models describe the dynamic
behavior of non-overlapping generation more efficiently. Cushing et al. [51] showed that
dynamically, a discrete Leslie-Gower system and the well-known Lotka-Volterra differen-
tial system have the same behavior. Din [52] formulated the parametric criteria for the
stability of the Leslie-Gower type prey-predator system and controlled the chaos in the
system. Recently, Din ([53], [21], [22], [23], [24], [54], and [55]) worked on many discrete-
time models and described the parametric conditions for the stability of these models. He
traced various types of bifurcation occurring in these models theoretically, graphically,
and numerically and controlled them with different chaos control strategies. Abbasi and
Din [20] studied the effects of crowding in a discrete prey-predator model and analyzed
the stability and bifurcation of this model. In addition, they compared different chaos
control strategies and controlled the chaos in the model with the approach that yielded
the best results. Some researchers have also studied the dynamical behavior of various
continuous-time prey-predator models by converting them into discrete-time models in
different ways. Dhar et al. [56] converted a continuous-time prey-predator model using
Euler’s method to its discrete form and discussed the effect of crowding on it. For a
class of the Lotka-Volterra model, Mickens [57] implemented a non-standard difference
technique. Tassaddiq et al. [58] implemented a piecewise constant argument to discre-
tion a prey-predator model. They discussed its stability and bifurcation analysis. Some
scientists have introduced different functional responses in prey-predator models and ana-
lyzed the dynamical behavior of these models, such as Holling-type functional responses,
Beddington-DeAngelis functional responses, and square root functional responses ([3],
[59], [60], [61], and [62]). The implementation of these functional responses highly affects
the dynamical behavior of prey-predator interaction (Geo et al. [63]). Sun et al. [64]
modified a discrete-time model and calculated the interval of existence, persistence, and
global stability of the modified model. They also investigated the emerging chaos in the
model and controlled the chaotic behavior by introducing immigration parameters.The
bifurcation and chaotic behavior of discrete-time prey-predator models have recently been
the subject of multiple papers ([65], [66], [67], [68], [69], [70], [71], and [72]). Different
control strategies are implemented by ([52], [53], [21], [22], [23], [24], [54], [55], and [20])
to control the emerging chaos in various discrete-time models. For interested readers,
here we have some recent work related to this study ([76], [77],[78], [79], [80], [81], and
[82]). Motivated by the literature review, in this chapter, applying bifurcation theory,
we investigate the stability of fixed points and the bifurcation of a three-dimensional
prey-predator model. Next, taking into account the three-dimensional Lotka-Volterra
prey-predator system, we have the following system (Hadziabdic et al. [36]):
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x.(t) = αx(t)− βx2(t)− γx(t)y(t)− δx(t)z(t),

y.(t) = −ηy(t) + ξx(t)y(t),

z.(t) = −θz(t)− ζz(t)x(t) + ωx(t)z(t) + κy(t)z(t).

(2.1.1)

This system of a differential equation modeling the population dynamics of a predator
y(t), a scavenger z(t), and the prey x(t), where: α represents the growth rate of x(t),
β denotes to the carrying capacity of x(t), and γ is the change rate of x(t) due to the
presence of y(t). δ is the change rate of x(t) due to the presence of z(t). η is the natural
death rate of y(t), and ξ is the change rate of y(t) due to the presence of x(t). θ is the
natural death rate of z(t); ζ is related to carrying capacity of z(t). ω is the change rate
of z(t) due to the presence of x(t), and κ is the change rate of z(t) due to the presence
of y(t). To reduce the number of parameters, we use the following scaling (see [83], [84],
[85]):

x = x̃x̂, y = ỹŷ, z = z̃ẑ, and t = t̃t̂,

where, x̃, ỹ, z̃, and t̃ are constants, to be chosen, and x̂, ŷ, ẑ, and t̂ are the variables.
Subbing these into the system (2.1.1), our ODEs lead to:

d(x̃x̂)

d(t̃t̂)
= α(x̃x̂)− β(x̃x̂)2 − γ(x̃x̂)(ỹŷ)− δ(x̃x̂)(z̃ẑ),

dx̂

dt̂
= αt̃x̂− βt̃x̃x̂2 − γt̃x̂ỹŷ − δt̃x̂z̃ẑ.

Now, take t̃ = 1
α
, x̃ = α

ξ
, ỹ = α

γ
, and z̃ = α

δ
. We have:

dx̂

dt̂
= x̂− β

ξ
x̂2 − x̂ŷ − x̂ẑ.

Using the shift β
ξ
= r and replacing x̂ by x, t̂ by t, we get

dx

dt
= x− rx2 − xy − xz.

Similarly, for y and z, one can use the scaling x = x̃x̂, y = ỹŷ, z = z̃ẑ, t = t̃t̂, shifting
t̃ = 1

α
, x̃ = α

ξ
, ỹ = α

γ
, z̃ = α

δ
, η
α
= b, γ

α
= c, ζ

ξ
= d, ω

ξ
= e, κ

γ
= f , and replacing t̃ by t, x̃ by
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x, ỹ by y, and z̃ by z to get the following system of equations:
x.(t) = x(t)− rx2(t)− x(t)y(t)− x(t)z(t),

y.(t) = −by(t) + x(t)y(t),

z.(t) = −cz(t)− dz(t)x(t) + ex(t)z(t) + fy(t)z(t).

(2.1.2)

The prey-predator model (2.1.2) demonstrates the interaction between a predator y(t),
a prey x(t), and a scavenger population z(t). The study of a system’s behavior can be
performed using either discrete or continuous models. The choice of the type of model
used depends on the system being studied and the questions being asked. In the case of
the Lotka-Volterra model with two predators and their prey, a discrete form of the model
was used in addition to the continuous form to highlight the differences in the system’s
dynamics under both approaches. The discrete form of the model allows for the explicit
investigation of population changes over discrete time steps.

In contrast, the continuous form represents the system’s dynamics. Using discrete and
continuous models allows for a deeper understanding of the system’s behavior, including
the stability of the fixed points, bifurcations, and the potential for chaos. In particular,
the model’s discrete form can help identify any discontinuities in the system’s behavior,
which may not be apparent in the continuous form. This information can then inform
control strategies for the system, as the discrete form provides a clearer picture of the
potential for rapid population changes. Therefore, the use of discrete and continuous
models in studying the Lotka-Volterra model with two predators and their prey provides a
complete understanding of the system’s behavior and contributes to advancing knowledge
in ecology and chaos control. We are also converting this model to discrete form for better
qualitative analysis, including stability, bifurcation, and chaos control. Using piece-wise
constant arguments, the system (2.1.2) can be converted into discrete form, which is given
below: 

xn+1 = xne
(1−rxn−yn−zn),

yn+1 = yne
(−b+xn),

zn+1 = zne
(−c−dxn+exn+fyn).

(2.1.3)

Investigating stability, bifurcation, and chaos in this model can provide valuable insights
into the factors that shape these complex relationships. These findings can then be uti-
lized to develop effective control strategies, helping to stabilize the system and preserve
the delicate balance of the natural world. Our essential contribution is using numerical
and analytical methods to perform a comprehensive system analysis in discrete and con-
tinuous form, which has yet to be done previously. Our study reveals multiple stable
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fixed points, bifurcations, and chaotic behavior in the system, which can be controlled
through appropriate control strategies. The rest of the chapter’s details are as follows:
In Section 2, we discussed the positivity of the solution. The existence and parametric
conditions for the stability of the fixed points are calculated in Section 3. Section 4 is
about boundedness and the existence of the positive fixed points of the discretized model
(2.1.3). Local stability of fixed points of the system (2.1.3) is investigated in Section 5.
In Section 6, we use the bifurcation theory for the systems (2.1.2) and (2.1.3) to derive
the parametric conditions of bifurcation. The emerging chaos in the model (2.1.3) is
controlled in Section 7. Numerical examples and graphical plots are given in Section 8.
Finally, we conclude our investigations in Section 9.

2.2 Positivity and uniform boundedness of the solu-
tions

From system (2.1.2), we have
x. = x− rx2 − xy − xz,

y. = −by + xy,

z. = −cz − dzx+ exz + fyz.

(2.2.1)

Let (x(0), y(0), z(0)) > 0, then from the first equation of system (2.2.1) we have

x(t) = x(0)exp

[∫ t

0

(1− rx− y − z)

]
> 0.

Similarly, from the second and third equation of the system (2.2.1), one can write

y(t) = y(0)exp

[∫ t

0

(−b+ x)

]
> 0, and

z(t) = z(0)exp

[∫ t

0

(−c− dx+ ex+ fy)

]
> 0.

Since the initial population (x(0), y(0), z(0)) of the system is positive, we have x(t) > 0,
y(t) > 0 and z(t) > 0 ∀t > 0. Assuming that the predator and scavenger populations have
only prey to eat and no alternative food sources, then the predator, prey, and scavenger
populations will be bounded. This is because the predator and scavenger populations
depend on the prey population for survival. If there are more predators, there will be
fewer prey, leading to fewer scavengers. Similarly, if the scavenger population increases,
it will compete with the predator population for the prey, and this competition will lead
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to a decrease in the total population of predators and scavengers. The prey population,
in turn, depends on environmental factors such as food availability, temperature, and dis-
ease. If the prey population decreases too much, the predator and scavenger populations
will also decrease because there will not be enough prey to support them. This creates
a feedback loop where changes in one population affect the other populations, and ulti-
mately, the total population is bounded by the environment’s carrying capacity, which is
the maximum number of individuals that the environment can support. Therefore, in a
system where predator, prey, and scavenger populations have only prey to eat, the total
population will be bounded, and the populations will oscillate over time in response to
changes in environmental conditions and the dynamics of predator-prey-scavenger inter-
actions. Therefore, if the predator and prey populations have only prey for food, then it
is enough to show that the boundedness of the prey population is the boundedness of the
total population. The following Lemmas shows the boundedness of the prey population.

Lemma 2.2.1. (see, [74]) Suppose that st satisfies s0 > 0 and st+1 ≤ ste
[γ̃∗(1−δ̃∗st)] for

t ∈ [0,∞], where δ̃∗ > 0 is a constant. Then limt→∞ sup st ≤ 1
γ̃∗δ̃∗

e(γ̃
∗−1).

Lemma 2.2.2. Assuming that xn satisfies x0 > 0, then the prey population of the system
(2.1.3) is uniformly bounded.

Proof. Assume that xn is the positive solution of the prey population of the system (2.1.3)
and x0 > 0. Then, from the first equation of the model (2.1.3), we have:

xn+1 ≤ xne
[1−rxn], (2.2.2)

for all n = 0, 1, 2, · · · .

Using Lemma 4.2.3 we obtain,

lim
n→∞

supxn ≤ 1

r
:=M1.

Hence the proof is completed.

2.3 Stability of the fixed points

This section begins by outlining the presence of fixed points in the system (2.1.2) and
(2.1.3). The fixed points of the systems (2.1.2) and (2.1.3) can be found by solving the
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equations in the following system:
0 = x− rx2 − xy − xz,

0 = −by + xy,

0 = −cz − dzx+ exz + fyz.

(2.3.1)

Solving (2.3.1), we get the following equilibria:

E0 = (0, 0, 0) : extinction of all populations.

E1 =

(
1

r
, 0, 0

)
: existence of only x population.

E2 = (b, 1− br, 0) : existence of x and y populations.

E3 =

(
− c

d− e
, 0,

cr + d− e

d− e

)
: existence of x and z populations.

E∗ =

(
b,
bd− be+ c

f
,
be− bd− bfr − c+ f

f

)
: coexistence of all populations.

The fixed point E2 will be positive when br < 1, E3 will be positive when e > d, and
e− d− cr > 0. The interior fixed point E∗ is positive iff the following conditions hold:

c+ bd > be and be+ f > c+ bd+ bfr.

Now, we discuss the local stability of fixed points of the system (2.1.2). The variational
matrices about the fixed points are given below:

V (E0) =

 1 0 0

0 −b 0

0 0 −c

 , V (E1) =

 −1 −1
r

−1
r

0 1
r
− b 0

0 0 −d−e+cr
r

 ,

V (E2) =

 −br −b −b
1− br 0 0

0 0 −c+ f − b(d− e+ fr)

 , and

V (E3) =


cr
d−e

c
d−e

c
d−e

0 c
e−d

− b 0

−d+ e− cr crf
d−e

+ f 0

 .

The eigenvalues of V (E0) are {1,−b,−c}, thus E0 is unstable. The eigenvalues of V (E1)

are
{
−1,− br−1

r
,− cr+d−e

r

}
, which shows that E1 is sink when br > 1 and cr + d > e.

Similarly, λ1 = −c + f − b(d − e + fr), λ2 = 1
2

(
−br −

√
b
√
−4 + 4br + br2

)
, and
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λ3 = 1
2

(
−br +

√
b
√
−4 + 4br + br2

)
are the eigenvalues of V (E2). The fixed point

(a) Stability region plot for E1 (b) Stability region plot for E2

(c) Stability region plot for E3 (d) Stability region plot for E∗

Figure 2.1: Topological classification of fixed points

E2 is sink when Re(λ1) < 0, Re(λ2) < 0, and Re(λ3) < 0. The eigenvalues of the
variational matrix V (E3) are λ1 = −bd+be−c

d−e
, λ2 = cr−

√
−4c2dr+4c2er+c2r2−4cd2+8cde−4ce2

2(d−e)
,

and λ3 = cr+
√
−4c2dr+4c2er+c2r2−4cd2+8cde−4ce2

2(d−e)
. The fixed point E3 is sink when Re(λ1) <

0, Re(λ2) < 0, and Re(λ3) < 0. Assume

c+ bd > be and be+ f > c+ bd+ bfr.

holds, then the variational matrix about the unique positive fixed point is given by:

V (E∗) =

 −br −b −b
c+bd−be

f
0 0

(d−e)(c−f+b(d−e+fr))
f

−c+ f − b(d− e+ fr) 0

 . (2.3.2)
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The characteristic polynomial of (2.3.2) is given by:

PE∗(λ) = λ3 + (br)λ2 +

(
b((b(d− e+ fr + 1)− f)(d− e) + (d+ 1− e)c)

f

)
λ

− (b(d− e) + c)(b)(b(d− e+ fr) + c− f)

f
.

(2.3.3)

The fixed point E∗ is stable according to the Routh-Hurwitz criterion [73] if the conditions
hold:

e < d, b2(d− e)(d− e+ fr + 1) + bc(1 + d− e) > fb(d− e), f
(
b2(d− e) + bc

)
>

((d− e)b2 + bc)((d− e+ fr)b+ c), and

bf
(
c(b(d(r + 2)− e(r + 2) + fr + r)− f) + b(d− e)(b((1 + r)d+ (1 + r)(fr − e) + r)

− f(1 + r)) + c2
)
> 0.

Now, we determined the parametric conditions for the local stability of each fixed point
in the system (2.1.3) and presented their regional stability. We use eigenvalue criteria to
discuss the stability of the fixed points. All the fixed points are stable when the absolute
values of the eigenvalues are less than one and unstable when the absolute values of the
eigenvalues are greater than one. Furthermore, the sink, source, saddle, and nonexistence
region plots for every fixed point are also depicted. The variational matrix of structure
(2.1.3) calculated at E0(0, 0, 0) is given by:

V (0, 0, 0) =

 e 0 0

0 e−b 0

0 0 e−c

 . (2.3.4)

The eigenvalues of (2.3.4) are µ1(E0) = e, µ2(E0) = e−b, and µ3(E0) = e−c. Thus,
E0(0, 0, 0) is a saddle point. The variational matrix of system (2.1.3) evaluated at
E1(

1
r
, 0, 0) is given by:

V

(
1

r
, 0, 0

)
=

 0 −1
r

−1
r

0 e
1
r
−b 0

0 0 e−
d−e+cr

r

 . (2.3.5)

The eigenvalues of (2.3.5) are µ1(E1) = 0, µ2(E1) = e
1
r
−b, and µ3(E1) = e−c− d

r
+ e

r . Hence,
E1(

1
r
, 0, 0) is sink when 1 < br, cr + d > e and saddle point if 1 > br, cr + d < e. The

region plot for the existence of the sink is given in Figure 2.2. The variational matrix of
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Figure 2.2: Topological classification of E1

system (2.1.3) evaluated at E2 (b, 1− br, 0) is given by:

V (b, 1− br, 0) =

 1− br −b −b
1− br 1 0

0 0 e−c+f−b(d−e+fr)

 . (2.3.6)

The eigenvalues of (2.3.6) are:

µ1(E2) =
1

2

(
−br −

√
b
√
br(r + 4)− 4 + 2

)
,

µ2(E2) =
1

2

(
−br +

√
b
√
br(r + 4)− 4 + 2

)
, and

µ3(E2) = e−b(d−e+fr)−c+f .

The fixed point E2 (b, 1− b2, 0) is stable when |µ1(E2)| < 1, |µ2(E2)| < 1 and |µ3(E2)| < 1.

The topological classification is given in Figure 2.3.
The variational matrix of structure (2.1.3) calculated at E3

(
− c

d−e
, 0,−−cr−d+e

d−e

)
is given

by:

V

(
− c

d− e
, 0,−−cr − d+ e

d− e

)
=


cr
d−e

+ 1 c
d−e

c
d−e

0 e
c

e−d
−b 0

e− d− cr crf
d−e

+ f 1

 . (2.3.7)
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Figure 2.3: Topological classification of E2

The eigenvalues of (2.3.7) are:

µ1(E3) =
−e−b

√
e2b(−c) (4cr(d− e)− cr2 + 4(d− e)2) + cr + 2d− 2e

2(d− e)
,

µ2(E3) =
e−b
√
e2b(−c) (4cr(d− e)− cr2 + 4(d− e)2) + cr + 2d− 2e

2(d− e)
, and

µ3(E3) = e
c

e−d
−b.

Thus, the boundary pointE3

(
− c

d−e
, 0,−−cr−d+e

d−e

)
of system (2.1.3) is stable when |µ1(E3)| <

1, |µ2(E3)| < 1, and |µ3(E3)| < 1. The topological classifications are given in Figure 2.4.
The variational matrix of (2.1.3) at

(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
is given by:

V (E∗) =

 1− br −b −b
c+bd−be

f
1 0

(d−e)(c−f+b(d−e+fr))
f

f − c− b(d+ bf − e) 1

 . (2.3.8)

The characteristic function of (2.3.8) is given by:

P (µ) = µ3 + ζ1µ
2 + ζ2µ+ ζ3,
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Figure 2.4: Topological classification of E3

where

ζ1 = br − 3,

ζ2 =
b((d− e)(b)(1 + d− e+ fr) + (d− e+ 1)c+ f(−d+ e− 2r))

f
+ 3,

ζ3 = −b(bd− be+ c) (b2f + bd− be+ c− f)

f
− b2d

f
+
b2e

f
− bc

f
+ br − 1

− (d− e)(b)(bd+ c− be+ bfr − f)

f
.

(2.3.9)

We have the following theorem for the local stability of E∗ =
(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
using Routh-Hurwitz criteria.

Theorem 2.3.1. The fixed point E∗ =
(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
of the system

(2.1.3) is locally asymptotically stable if the underlying axioms are satisfied:

|ζ1 + ζ3| < 1 + ζ2,

|ζ1 − 3ζ3| < 3− ζ2,

ζ3
2 + ζ2 − ζ3ζ1 < 1.

(2.3.10)

The topological classifications are given in Figure 2.5. Now, we deal with the existence
and uniqueness of the positive fixed point of the system (2.1.3). In this regard, we have
the following lemma:

Lemma 2.3.2. If c + bd > be and be + f > c + bd + bfr then there exists the unique
positive fixed point

(
b, bd−be+c

f
, be−bd−bfr−c+f

f

)
of the system (2.1.3).
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Figure 2.5: Topological classifications of E∗

Proof. By solving the following set of equations, one can determine the fixed points of
the system (2.1.3).

x = xe(1−rx−y−z),

y = ye(−b+x),

z = ze(−c−dx+ex+fy).

If we ignore the trivial and the boundary fixed points, we have left

0 = 1− rx− y − z,

0 = −b+ x,

0 = −c− dx+ ex+ fy.

The second equation of the system mentioned above yields x = b. By putting x = b in the
last equation of the system, as mentioned above, we get y = c+bd−be

f
. Finally, by putting

the values of x and y in the above system’s first equation, we get z = be−bd−bfr−c+f
f

.

Thus, (x∗, y∗, z∗) =
(
b, bd−be+c

f
, be−bd−bfr−c+f

f

)
be the only positive fixed point of the

system (2.1.3). Hence, the proof is completed.

2.4 Bifurcation analysis

The Hopf bifurcation of the system (2.1.2) and Neimark-Sacker bifurcation of the system
(2.1.3) at the fixed point

(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
, is covered in this section. Us-
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ing bifurcation theory, we calculate the parametric conditions for the existence of both
bifurcations in terms of eigenvalues without finding eigenvalues. We also observed that
closed invariant circles were produced due to both bifurcations.

2.4.1 Hopf bifurcation

In this section, we discuss the bifurcation over the positive fixed point of the system
(2.1.2). For this, we use the criteria of Hopf bifurcation without calculating the eigen-
values given in Section 1.5 of Chapter 1. Consider system (2.1.2) with characteristic
function (2.3.3), choose c as a bifurcation parameter, and then the following lemmas
show the existence of Hopf bifurcation at E∗.

Lemma 2.4.1. Assume that c + bd > be and be + f > c + bd + bfr, then the unique
positive fixed point

(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
undergoes Hopf bifurcation when we

choose c as a bifurcation parameter. The bifurcation parameter c varies in the limited
neighborhood of

c∗ =
1

2

(
−
√

−2b (b2 − 1) fr(d− e− 1) + b2r2(d− e+ 1)2 + (b2 − 1)2 f 2

− b(bf + d(r + 2)− e(r + 2) + r) + f
)
,

or

c∗ =
1

2

(√
−2b (b2 − 1) fr(d− e− 1) + b2r2(d− e+ 1)2 + (b2 − 1)2 f 2

− b(bf + d(r + 2)− e(r + 2) + r) + f
)
,

and if the following conditions hold:

ζ0[Θ
∗] =

b(b(d− e) + c)(f − (d+ fr − e)b− c)

f
> 0, iff e < d, and f > c+ (d+ fr − e)b,

D1[Θ
∗] =

b((d− e)(b(d− e+ fr + 1)− f) + c(d− e+ 1))

f
> 0, iff e < d, and

(d− e)(d)(b(d+ fr + 1− e)) > (d− e)df.

D2[Θ
∗] =

[
b ((b2 − 1) f(d− e) + (d− e+ 1)(c+ (d− e)b))

f

]
[br]

+

(
((d− e)b+ c)(b)(b(bf − e+ d)− f + c)

f

)
= 0, iff

c =
1

2

(
−
√
−2b (b2 − 1) fr(d− e− 1) + b2r2(d− e+ 1)2 + (b2 − 1)2 f 2

(2.4.1)
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− b(fb+ d(2 + r) + r − e(r + 2)) + f
)
. (2.4.2)

Using the theory in Section 1.5 of Chapter 1, we have derived the following conditions
for the existence of Neimark-Sacker bifurcation in System 2.1.3.

Theorem 2.4.2. The fixed point
(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
of structure (2.1.3) go

through Neimark-Sacker bifurcation if the following conditions hold:

ζ1 − ζ2 + ζ3(ζ1 − ζ3) = 0,

1 + ζ2 − ζ3(ζ1 + ζ2) > 0,

1 + ζ1 + ζ2 + ζ3 > 0,

1− ζ1 + ζ2 − ζ3 > 0,

where ζ1, ζ2 and ζ3 are given in (2.3.9).

2.5 Numerical simulations

In the section on simulation, we aim to demonstrate the validity of the mathematical
analysis performed in the previous sections through numerical simulations of the Lotka-
Volterra model with two predators and their prey. The simulation examples will be
conducted in discrete and continuous forms to highlight the differences in the dynamics
and stability of the model under different conditions. The simulation examples will in-
clude cases where the system converges to a stable equilibrium, where the system exhibits
periodic behavior, and where the system exhibits chaotic behavior. For each simulation
example, we will discuss the results obtained, including the time evolution of the popula-
tion sizes of the predators and prey and the phase portraits of the system. The simulation
results will validate the theoretical analysis performed in the previous sections and pro-
vide further insight into the dynamics and stability of the Lotka-Volterra model with two
predators and their prey. The simulation examples will demonstrate the importance of
considering both discrete and continuous forms of the model in understanding the sys-
tem’s behavior and the role of chaos in the dynamics of predator-prey interactions. In
addition, we have also discussed the effectiveness of the control scheme in maintaining
stability in the system, even in the presence of bifurcations and chaos. The numerical
examples demonstrate the control scheme’s success in regulating the population sizes of
the predators and prey and maintaining stability in the system.

Moreover, the numerical examples also highlight the importance of carefully considering
the control parameters, as small changes in the control parameters can lead to significant

24



changes in the system’s dynamics. The numerical examples demonstrate the robustness
of the control scheme in the presence of different initial conditions and changes in the
control parameters. Therefore, the numerical examples provide strong evidence for the
validity of the previous sections’ theoretical results and demonstrate the control scheme’s
effectiveness in maintaining stability in the Lotka-Volterra model with two predators and
their prey. These numerical examples are crucial in understanding the system’s behavior
and provide valuable insight into the role of chaos and bifurcations in prey-predator
interactions.

Example 1. If the numerical values of parameters are selected as: d = 0.01, e = 2.8, f =

3.24, b = 0.5, r = 0.5, c ∈ (3, 3.6) with initial population (0.2897, 0.3975, 0.3241).

(a) (b)

(c) (d)

Figure 2.6: Time series plots for above parametric values.

Then in model (5.1.2), the backward Hopf bifurcation arises for E∗ = (0.5, 0.633082, 0.116918)

when we choose c as a bifurcation parameter. It was observed that the bifurcation arises
at c = 3.4461849455248306. For these selected parametric values d = 0.01, e = 2.8, f =
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3.24, b = 0.5, and with the chaotic parameter c = 3.4461849455248306, we have:

(a) c = 3.3 (b) c = 3.4

(c) c = 3.45 (d) c = 3.6

Figure 2.7: Phase plots for different values of c.

V (E∗) =

 0 0 0

0.633082 0. 0

0.326202 0.378815 0.

 . (2.5.1)

The characteristic function of (2.5.1) is:

C(µ) = µ3 + 0.25µ2 + 0.479642µ+ 0.11991. (2.5.2)

Thus, from (2.5.2), we have conditions:
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(I) : ζ0[Θ
∗] = 0.11991 > 0, D1[Θ

∗] = ζ1[Θ
∗] = 0.479642 > 0,

D2[Θ
∗] = ζ1[Θ

∗]ζ2[Θ
∗]− ζ0[Θ

∗] = 0,

(II) :
dD2[Θ

∗]

dΘ
= −0.32714 ̸= 0.

Thus, all the conditions of Hopf bifurcation are satisfied. Therefore, in the system (5.1.2),

(a) (b)

(c) (d)

Figure 2.8: Flip bifurcation plots

the backward Hopf bifurcation emerges for these fixed parametric values. The chaotic plots
for d = 0.01, e = 2.8, f = 3.24, b = 0.5, r = 0.5, c = 3.4461849455248306, time ∈ [0, 600]

and with initial conditions (0.5, 0.633082, 0.116918) are shown in Figure 2.6. Further-
more, the phase plots for different values of chaotic parameter c are given in Figure 2.7.
These plots confirm the dynamical complexity and existence of Hopf bifurcation in the
model (5.1.2). From the phase plots, it can be noticed that the closed invariant curves are
formed due to Hopf bifurcation. Thus, for the parametric values d = 0.01, e = 3.8, f =
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2.4, b = 0.54, r = 0.45, c = 2.562730676041003, time ∈ [0, 600] the system (5.1.2) has
limit cycles around the unstable fixed point E∗. When the value of the bifurcation parame-
ter decreases from c = 3, we numerically find that the limit cycle splits into period orbits.
Thus, backward flip bifurcation emerges, and the chaotic region increases when the value
of c further decreases. Figure 2.8 shows the backward flip bifurcation diagrams.

Example 2. Let we have: d = 0.01, e = 3.8, f = 3.5, b = 0.45, r = 0.45, c ∈ (2.3, 4)

and initial population (0.5, 1.4, 0.9). Then in model (5.1.2), the Hopf bifurcation arises
for E∗ = (0.45, 0.244923, 0.552577), when we choose c as a bifurcation parameter. It is
observed that the chaotic region begins from c = 2.5627306760410034. For the parametric
values d = 0.01, e = 3.8, f = 3.5, b = 0.45, r = 0.45, c = 2.5627306760410034‘ we have:

(a) (b)

(c) (d)

Figure 2.9: Time series plots for d = 0.01, e = 3.8, f = 3.5, b = 0.45, r = 0.45, c ∈ (2.3, 4)
and initial population (0.5, 1.4, 0.9).
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V (E∗) =

 0 0 0

0.244923 0. 0

2.09427 1.93402 2.220446049250313× 10−16

 . (2.5.3)

The characteristic function of (2.5.3) is:

C(µ) = µ3 + 0.2025µ2 + 1.05264µ+ 0.213159. (2.5.4)

Thus, from (2.5.4), we have the following conditions:

(I) : ζ0[Θ
∗] = 0.213159 > 0, D1[Θ

∗] = ζ1[Θ
∗] = 1.05264 > 0,

D2[Θ
∗] = ζ1[Θ

∗]ζ2[Θ
∗]− ζ0[Θ

∗] = 0,

(II) :
dD2[Θ

∗]

dΘ
= 0.0658046 ̸= 0.

Hence, we have seen that the chaos arises in (5.1.2). Moreover, all the conditions of
Lemma 2.4.1 are satisfied. Therefore, model (5.1.2) experiences Hopf bifurcation for se-
lected parametric values. Furthermore, bifurcation plots for the above preferred parametric
values are depicted in figure 2.9. These plots show that the bifurcation continues in the
model (5.1.2) for a long time.

We have explored the system’s dynamics over an infinite time interval with the continuous
time model. However, it is often necessary to simulate the system over a finite time
interval with discrete time steps. This is where the numerical simulation of the discrete-
time model comes in. First, we will show the system’s stability (2.1.3).

Example 3. For the parametric values b = 0.7, r = 0.7, c = 2.73, d = 1, e = 2.8, f =

3.2 and initial population (x0, y0, z0) = (0.4443, 0.4975, 0.1) the positive fixed point
(0.7, 0.459375, 0.050625) of (2.1.3) is locally asymptotically stable. The variational matrix
and characteristic function at (0.7, 0.459375, 0.050625) is:

V (0.7, 0.4625, 0.0475) =

 0 0 0

0.4625 1. 0

0.0855 0.152 1.

 .

C(µ) = µ3 − 0.66µ− 0.25µ+ 0.828,

where ζ1 = −0.66, ζ2 = −0.25, and ζ3 = 0.828. Furthermore, from (2.3.10), we have the
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following inequalities:

|ζ1 + ζ3| = 0.168 < 1 + ζ2 = 0.75,

|ζ1 − 3ζ3| = 3.144 < 3− ζ2 = 3.25,

ζ3
2 + ζ2 − ζ3ζ1 = 0.982064 < 1.

Therefore, all the stability conditions are satisfied, and we have the stability plots in Figure
2.10.

(a) xn (b) yn (c) zn

Figure 2.10: Stability diagrams.

Example 4. Let us have the initial population (x0, y0, z0) = (0.4443, 0.4975, 0.1) and
parametric values: b = 0.7, r = 0.7, d = 1, e = 2.8, f = 3.2, c ∈ [2.5, 2.8]. Then the positive
fixed point of (2.1.3) experiences Hopf bifurcation when we choose c as a bifurcation
parameter. It is visible that the bifurcation emerges at c = 2.7294647587715626. Thus,
[2.7294647587715626, 2.8] is the bifurcation region. The variational matrix for the above
parametric values is given by:

V (0.7, 0.459208, 0.0507923) =

 0 0 0

0.459208 1. 0

0.0914261 0.162535 1.

 , (2.5.5)

The characteristic function of (2.5.5) is

C(µ) = µ3 − 2.51µ2 + 2.40544µ− 0.843197,

The eigenvalues of C(µ) are µ1,2 = 0.833401±0.552668ι and µ3 = 0.843197, with |µ1,2| =
1. Moreover, all the conditions of Lemma 1.5.3 and Lemma 1.5.4 are satisfied. The
bifurcation plots are given in Figure 2.11, and their phase plots are given in Figure 2.12.
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(a) Plot for xn (b) Plot for yn

(c) Plot for zn (d) Maximum Lyapunov Exponent

Figure 2.11: Chaotic plots and MLE of system (2.1.3)
.

ζ1 − ζ2 + ζ3(ζ1 − ζ3) = 0,

1 + ζ2 − ζ3(ζ1 + ζ2) = 0.578036 > 0,

1 + ζ1 + ζ2 + ζ3 = 0.0522462 > 0,

1− ζ1 + ζ2 − ζ3 = 6.75864 > 0.

For the above parametric values and for ρ1 = 0.9, the controlled system (2.6.1) is:


xn+1 = 0.9xne

[1−0.7xn−yn−zn] + 0.1xn,

yn+1 = 0.9yne
[−0.7+xn] + 0.1yn,

zn+1 = 0.9zne
[−2.72946+1.8xn+3.2yn] + 0.1zn.

(2.5.6)
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(a) c = 2.5 (b) c = 2.65 (c) c = 2.69

(d) c = 2.72 (e) c = 2.729 (f) c = 2.73

Figure 2.12: Phase portraits of the system (4) for different values of c.

The Jacobian matrix of (2.5.6) at
(
b, bd−be+c

f
, be−bd−bfr−c+f

f

)
is:

J (0.7, 0.459208, 0.0507923) =

 0 0 0

0.413287 1. 0

0.0822835 0.146282 1.

 ,

with characteristic polynomial:

C(µ) = µ3 − 2.559µ2 + 2.43021µ− 0.833122,

Furthermore, we have the following conditions:∣∣ζ1 + ζ3
∣∣ = 3.39212 < 1 + ζ2 = 3.43021,∣∣ζ1 − 3ζ3

∣∣ = 0.0596343 < 3− ζ2 = 0.569791,

ζ3
2
+ ζ2 − ζ3 × ζ1 = 0.992343 < 1.

It shows that the control model is stable.

Example 5. If we choose b = 0.7, r = 0.7, c = 2.9, d = 1.6, e = 1.9, and f ∈ [5.45, 5.95]

with initial conditions (x0, y0, z0) = (0.1443, 0.1648, 0.1364). Then positive fixed point(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
experiences Hopf bifurcation when we choose f as a bifur-

cation parameter. It can be seen that Hopf bifurcation emerges at f = 5.61706994636882.
The variational matrix and the characteristics polynomial for the above parametric values
are given below:
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(a) (b)

(c) (d)

Figure 2.13: Bifurcation diagrams and MLE for system (2.1.3).

V (0.7, 0.478897, 0.0311026) =

 0 0 0

0.478897 1. 0

0.00933079 0.174706 1.

 ,

C(µ) = µ3 − 2.5100000000000002µ2 + 2.3617597091695623µ− 0.7931934486925974.

The eigenvalues are µ1,2 = 0.858403 ± 0.512975ι and µ3 = 0.793193 with |µ1,2| = 1.
Figures 2.13 and Figure 2.14 show the chaotic and phase plots. Moreover, we have the
following conditions:

ζ1 − ζ2 + ζ3(ζ1 − ζ3) = 0,

1 + ζ2 − ζ3(ζ1 + ζ2) = 0.741688 > 0,

1 + ζ1 + ζ2 + ζ3 = 0.0585663 > 0,

1− ζ1 + ζ2 − ζ3 = 6.66495 > 0.
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(a) f = 5.58 (b) f = 5.61 (c) f = 5.62

(d) f = 5.63 (e) c = 5.67 (f) c = 5.95

Figure 2.14: Phase portraits of system (2.1.3) for different values of f .

The controlled system for the above parametric values with ρ1 = 0.9 is:


xn+1 = 0.9xne

[1−0.7xn−yn−zn] + 0.1xn,

yn+1 = 0.9yne
[−0.7+xn] + 0.1yn,

zn+1 = 0.9zne
[−2.9+0.3xn+5.61707yn] + 0.1zn.

(2.5.7)

The Jacobian matrix of (2.5.7) at
(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
is:

J (0.7, 0.478897, 0.0311026) =

 0 0 0

0.431008 1. 0

0.00839771 0.157235 1.

 ,

with characteristic function:

C(µ) = µ3 − 2.559µ2 + 2.3948253644273465µ− 0.7931305605396384.

Furthermore, we have the following conditions:∣∣ζ1 + ζ3
∣∣ = 3.35213 < 1 + ζ2 = 3.39483,∣∣ζ1 − 3ζ3
∣∣ = 0.179608 < 3− ζ2 = 0.605175,

ζ3
2
+ ζ2 − ζ3 × ζ1 = 0.99426 < 1.
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Therefore, our controlled system is stable for the above-chosen parametric values.

Example 6. If we take the numerical values of the parameters as b = 0.78, r = 0.78, d =

1.4, e = 2.6, f = 3.3, andc ∈ [1.35, 1.85] with an initial population (x0, y0, z0) = (0.9, 0.2, 0.1).

Then
(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
experiences Hopf bifurcation for the rate of change

of x due to the presence of y, i.e., for parameter c. At c = 1.3916714099570726, the for-
ward Hopf bifurcation emerges. Furthermore, we have the following chaotic plots (figure
2.15): The variational matrix for the above-chosen parametric values is:

(a) (b)

(c) (d) f = 5.63

Figure 2.15: Bifurcation diagrams and MLE of system (2.1.3).

V (0.78, 0.138082, 0.253518) =

 0 0 0

0.138082 1. 0

0.304221 0.836609 1.

 . (2.5.8)

The characteristic function of (2.5.8) is:

P (µ) = µ3 − 2.3916µ2 + 2.12819676971112µ− 0.6464905514294517.
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The eigenvalues are µ1,2 = 0.872555 ± 0.488516ι with |µ1,2| = 1 and µ3 = 0.646491 < 1.
Moreover, we have the following conditions:

ζ1 − ζ2 + ζ3(ζ1 − ζ3) = 0,

1 + ζ2 − ζ3(ζ1 + ζ2) = 1.1641 > 0,

1 + ζ1 + ζ2 + ζ3 = 0.0901062 > 0,

1− ζ1 + ζ2 − ζ3 = 6.16629 > 0.

(a) c = 1.36 (b) c = 1.39 (c) c = 1.4

(d) c = 1.42 (e) c = 1.45 (f) c = 1.61

(g) c = 1.69 (h) c = 1.71 (i) c = 1.72

Figure 2.16: Phase plots of forward Hopf bifurcation for different values of c

The backward Hopf bifurcation also emerges at c = 1.7933390793266026 for the exact
numerical values of the parameter. Moreover, we have

V (0.78, 0.2598, 0.1318) =

 0 0 0

0.2598 1. 0

0.15816 0.434941 1.

 . (2.5.9)
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The characteristic function of (2.5.9) is:

(a) c = 1.73 (b) c = 1.75 (c) c = 1.77

(d) c = 1.79 (e) c = 1.798 (f) c = 1.80

(g) c = 1.82 (h) c = 1.83 (i) c = 1.85

Figure 2.17: Phase plots of backward Hopf bifurcation for different values of c

P (µ) = µ3 − 2.3916µ2 + 2.109208843522742µ− 0.6294707702429106.

We have the roots of the above characteristic function P (µ):

µ1,2 = 0.881065± 0.472996ι with |µ1,2| = 1, and µ3 = 0.629471 < 1.

Moreover, we have the following conditions:

ζ1 − ζ2 + ζ3(ζ1 − ζ3) = 0,

1 + ζ2 − ζ3(ζ1 + ζ2) = 1.20753 > 0,

1 + ζ1 + ζ2 + ζ3 = 0.0881381 > 0,

1− ζ1 + ζ2 − ζ3 = 6.13028 > 0.

For the above parametric values and for ρ1 = 0.9, the controlled system (2.6.1) is:
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xn+1 = 0.9xne

[1−0.7xn−yn−zn] + 0.1xn,

yn+1 = 0.9yne
[−0.7+xn] + 0.1yn,

zn+1 = 0.9zne
[−2.72946+1.8xn+3.2yn] + 0.1zn.

(2.5.10)

The Jacobian matrix of (2.5.10) at
(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
is:

J (0.7, 0.459208, 0.0507923) =

 0 0 0

0.23382 1. 0

0.142344 0.391447 1.

 ,

with characteristic function:

C(µ) = µ3 − 2.45244µ2 + 2.168947163253421µ− 0.6522545078324241.

Furthermore, we have the following conditions:∣∣ζ1 + ζ3
∣∣ = 3.10469 < 1 + ζ2 = 3.16895,∣∣ζ1 − 3ζ3
∣∣ = 0.495676 < 3− ζ2 = 0.831053,

ζ3
2
+ ζ2 − ζ3 × ζ1 = 0.9999999999999998 < 1.

Hence, the controlled system is stable for above selected parametric values.

2.6 Chaos control

In this section, we control the bifurcation that arises in the system (2.1.3). To prevent
the chaos in the model (2.1.3), we apply a hybrid control feedback methodology proposed
by Luo et al.[75]. The Lotka-Volterra model used in the model (2.1.3) represents a
prey-predator system where the predator population affects the prey population and vice
versa. In some cases, this system can exhibit chaotic behavior, making it difficult to
predict the population dynamics. The hybrid control feedback methodology used in this
study aims to eliminate the chaos in the system by introducing an external control input.
The control input used in the study combines linear and nonlinear feedback controls. The
linear feedback control reduces the magnitude of the state variables when they exceed a
certain threshold.

In contrast, the nonlinear feedback control works by adding a nonlinear function of the
state variables to the control input. This combination of control inputs helps to suppress
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the chaos in the system while maintaining the stability of the fixed points. In biological
terms, the hybrid control feedback methodology can be seen as controlling the prey-
predator system by introducing an external control input. This control input could
represent the introduction of a new predator population, a new prey population, or any
other external factor that affects the prey-predator system. In physical terms, the hybrid
control feedback methodology can be seen as controlling the prey-predator system by
introducing an external physical force, such as a predator’s hunting behavior or a prey’s
migration patterns. In instrumental terms, the hybrid control feedback methodology can
be seen as a means of controlling the prey-predator system through the use of instruments
such as sensors, cameras, or other monitoring devices that can detect changes in the
prey-predator system and provide an external control input to suppress the chaos. If
the model experiences Hopf bifurcation at a fixed point,

(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
,

which is unstable, then our control system under hybrid methodology is as follows:


xn+1 = ρ1xne

[1−rxn−yn−zn] + (1− ρ1)xn,

yn+1 = ρ1yne
[−b+xn] + (1− ρ1)yn,

zn+1 = ρ1zne
[−c−dxn+exn+fyn] + (1− ρ1)zn,

(2.6.1)

where ρ1 ∈ (0, 1) is a controlled parameter. The values of ρ1 represent the strength of
the feedback signal applied to the system to control the chaos. Therefore, different values
of ρ1 would represent different control or management action levels to regulate the prey-
predator interactions and reduce chaos in the system. Taking the appropriate control
parameter value ρ1, we can delay or eliminate the chaos from the model (2.1.3). Values
close to 0 would indicate a weak level of management action; values close to 1 would
indicate a strong level of management action; and values between 0 and 1 would indicate
a moderate level of management action. The variational matrix of the controlled model
(2.6.1) calculated at

(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
is given by:

VC (E∗) =

 1− brρ1 −bρ1 −bρ1
(c+b(d−e))ρ1

f
1 0

(d−e)(c−f+b(d−e+fr))ρ1
f

−(c− f + b(d− e+ fr))ρ1 1

 . (2.6.2)

The characteristic function of (5.2.7) is given by:

PC(µ) = µ3 + ζ1µ
2 + ζ2µ+ ζ3, (2.6.3)
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where

ζ1 = bρ1r − 3,

ζ2 =
bρ21(bd− be+ c)

f
+
bρ21(d− e)(bd− be+ bfr + c− f)

f
− 2bρ1r + 3,

ζ3 = −bρ
2
1(bd− be+ c)

f
− bρ31(bd− be+ c)(bd− be+ bfr + c− f)

f
+ bρ1r − 1

− bρ21(d− e)(bd− be+ bfr + c− f)

f
.

(2.6.4)

The fixed point
(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
of the controlled structure (2.6.1) is lo-
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Figure 2.18: Stability of the controlled system (2.6.1).

cally asymptotically stable if the subsequent conditions are satisfied:∣∣ζ1 + ζ3
∣∣ < 1 + ζ2,∣∣ζ1 − 3ζ3
∣∣ < 3− ζ2,

ζ3
2
+ ζ2 − ζ3 × ζ1 < 1.

In our case, we can use the following biological, physical, ecological, and instrumental
control parameters to control the chaos in the system (2.1.3): Several control inputs can
be implemented to regulate the prey-predator system and prevent the emergence of chaos.
The first is a biological control input, such as introducing a new predator or prey popu-
lation better adapted to the environment or restoring a degraded habitat. The second is
a physical control input, such as submitting a physical barrier to limit the movement of
the predator population or creating a new habitat. The third is an instrumental control
input, such as using predator population control methods, such as hunting or trapping,
or ecological monitoring and surveillance methods to monitor the prey-predator system.
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In all of these cases, the control inputs regulate the prey-predator system and prevent
the emergence of chaos by reducing the impact of the predator population on the prey
population and promoting the adaptation of the prey population to the environment.

2.7 Conclusion

In this chapter, we analyze the Lotka-Volterra model dynamically. We calculate five fixed
points, E0(0, 0, 0), the extinction of all populations, E1 =

(
1
r
, 0, 0

)
existence of prey popu-

lation, E2 (b, 1− br, 0) existence of prey and predator population, E3 =
(
− c

d−e
, 0,−−cr−d+e

d−e

)
the coexistence of prey and scavenger populations in the absence of the predator popula-
tion, E∗ =

(
b,−−bd+be−c

f
,− bd−be+bfr+c−f

f

)
coexistence of prey, predators, and scavenger

populations. Biologically, these fixed points are reasonable because the prey population
can exist without predator and scavengers, as prey food does not depend on predator and
scavengers E1, the predator and prey can coexist without a scavenger E2, and the prey
and the scavenger can coexist in the absence of the predator E3. However, the predator
and scavenger cannot coexist without the prey because the predator and scavenger will
have no food source and die off E0. We investigated the stability of these fixed points of
the model in both discrete and continuous forms and derived the parametric criteria for
the stability of fixed points. We noticed that the model experiences Hopf bifurcation in
the continuous form when we choose c as a bifurcation parameter. From the time-series
plots in figure 2.9, we see that bifurcation has been increasing for a very long time, making
it difficult for us to estimate the consistency of this model. So, we decided to convert this
model to a discrete form to control bifurcation and stabilization. Due to the excellent
numerical results and lots of chaos control strategies, we converted the model to discrete
form using a piece-wise constant argument. We have seen that the discrete model is also
undergoing bifurcation on the same parameter. We have noticed that the systems in both
cases, continuous form (5.1.2) and discrete form (2.1.3), experience Hopf bifurcation for
the same parameter c. In addition, we observed that the system (2.1.3) also experiences
Hopf bifurcation for the parameter f . Bifurcation diagrams are plotted for both systems
(5.1.2) and (2.1.3). We also plotted MLE to confirm the chaotic region. The bifurcation
in the parameters c and f indicates that the predator and prey population change rate
should be monitored carefully. A rapid decline in the prey population can result in a
corresponding decline in the predator population, as the predators will have a reduced
food source and may struggle to find enough to eat. On the other hand, a rapid increase
in the prey population can lead to an initial increase in the predator population as the
predators have more food available. However, suppose the prey population continues to
increase faster than the predator population can adapt. In that case, it can lead to a
decline in the predator population as the predators become overwhelmed and unable to
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keep up with the abundance of food. Additionally, numerical examples are provided to
support our theoretical findings. We use the hybrid control feedback technique to control
the disorder in the change rate of prey and predator populations. Numerically, we see that
the bifurcation is controlled through this technique, and the controlled system is stable
for parametric values, through which system (2.1.3) experiences bifurcation. In this way,
we controlled the bifurcation in the system and proved that the controlled system (2.6.1)
is stable. In short, this research represents a major step in understanding prey-predator
interactions. The study’s analysis of the fixed point stability, bifurcation, and chaos
control of a Lotka-Volterra model provides a comprehensive examination of the complex
dynamics between two predators and their prey. The results emphasize the significance
of parameters c and f in shaping the behavior of prey-predator interactions, and the
emergence of bifurcation in these parameters highlights the intricate dynamics of these
systems. When enough prey is available, the scavengers may compete with the predators
for food, potentially reducing the amount of prey available for the predators to hunt.
This can lead to a decline in the predator population and an increase in the scavenger
population, causing a shift in the balance of the ecosystem. Additionally, an overpopu-
lation of scavengers can consume too much of the remains of hunted prey, leaving less
food for the predators. This could result in a decline in the predator population, which
can have cascading effects throughout the ecosystem. Therefore, the study highlights
the importance of considering multiple predators when studying prey-predator interac-
tions, as multiple predators can lead to chaos in the system. However, the study also
suggests that chaos control techniques may be valuable for managing these interactions.
A promising avenue for future research would be to investigate the co-dimensional two-
bifurcation of the same model under different functional responses. This would provide
a deeper understanding of the complex interplay between predator and prey populations
and the potential for chaos control techniques to manage prey-predator interactions. By
expanding our knowledge in this area, we can better understand and manage the delicate
balance between predator and prey populations and their impact on ecosystems.
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Chapter 3

Fixed points stability, periodic
behavior, bifurcation analysis, and
chaos control of a prey-predator model
incorporating the Allee effect and fear
effect

3.1 Introduction

This chapter has been published. The publishing view of this chapter is available at ref-
erence [86]. The interaction between predators and prey has long stimulated the interest
of ecologists. Understanding these interactions involves using the Lotka-Volterra model,
a well-known model. Ecologists can better understand how these complicated interac-
tions operate in the ecosystem by including the Allee and fear effects in their analyses of
the relationship between predators and prey using the Lotka-Volterra model. According
to recent studies, the Allee effect and the fear effect, among other factors, have been
discovered to influence population dynamics significantly. The phenomenon where prey
shows increased attention and lower activity when predators are around is known as the
fear effect, first postulated by Lima and Dill [87]. Acting this way may result in fewer
prey-predator contacts and fewer predator attacks. Contrarily, the Allee effect, which
was initially put up by Allee et al. [4], suggests that there is a population density be-
low which a species cannot survive because of diminished reproductive success or higher
mortality. In his study of population changes, Allee discovered a phenomenon known as
the Allee effect, which happens when population density is too low and the birth rate
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falls. In contrast, the death rate rises [88]. Recent investigations have demonstrated the
significance of including these additional parameters in prey-predator models. By adding
these extra factors, prey-predator models may be able to estimate population dynamics
more accurately and realistically. However, research into how these components impact
the model’s stability is underway. In this research, we will study how the fear and Allee
effects affect the dynamics of a prey-predator system. We will use a mathematical ap-
proach to examine the stability and bifurcation of the model and discuss some interesting
results. We have the following recent studies from the literature related to these effects:

Recently, Wang et al. [104] examined the Allee and fear effects on a prey-predator model,
added the delay to the model, and observed the dynamical effects of the model. Umrao
and Srivastava [105] examined the dynamic attributes of a predator-prey model in their
study while accounting for the Allee and fear effects. They also looked at the influence
of mild and strong Allee effects on the interaction between cooperative hunting among
predators and fear among prey species. They concluded that the system exhibits a wider
variety of predator-prey behavioral patterns than in earlier studies. The Allee effect, a
fear effect, and prey refuge were investigated by Huang et. al [89] using a prey-predator
model. By boosting the Allee effect, or prey refuge, they demonstrated the complexity of
the model. Additionally, they showed that the Allee effect, or fear effect, does not alter
prey density but may decrease predator population at positive fixed points. According
to the qualitative analysis in [106], the Allee and Fear effects significantly identify how
the model behaves dynamically. Lai et. al [90] investigate the fear and the additive
Allee effect to examine how a prey-predator model behaves dynamically. They observed
that the density of predatory species decreased with increasing fear effect strength by
considering the influence of fear on the prey species. However, fear has a minimal effect
on the final prey density. Chen et. al [107] analyzed the impact of the Allee effect on
the prey-predator model and other food resources for the predators. Xie [91] investigated
the influence of Allee and the fear effect using a Holling type II functional response in
a prey-predator environment. Not only is a Hopf bifurcation observed in the system,
but the author also determined what is necessary for fixed points to be stable. By
eliminating periodic solutions, the fear effect was also found to increase the stability of
the positive fixed point of the system, and the Allee effect also had a major impact on
the persistence of the predator species. When the fear effect, mild Allee effect, and delay
were present, Li et. al [92] explored the dynamical analysis of a prey-predator model.
They demonstrated how the model bifurcates and determines the stability conditions.
They add the gestation delay to the model to make it more realistic. According to
their research, the Allee effect and the delay undermine the model; however, the fear
effect may promote peaceful living together. The Allee effect can happen when there
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are not enough individuals to mate due to inbreeding, social preferences for mating, low
mating success rates, and less inbreeding over time. The impact of the Allee effect on the
dynamics of prey-predator systems has recently attracted more attention from scientists.
Through a comparison of the logistic prey growth term’s dynamical properties in the
ratio-dependent prey-predator model with and without the Allee effect, the authors in
[34] demonstrated that the Allee effect may be used to eliminate the oscillation caused by
species densities. The reasons for various bifurcation behaviors were also predicted and
quantitatively confirmed using parametric illustrations and phase graphs. The researchers
from [93] explored the same discrete time model. They proved how modifying the integral
step size might result in period doubling and an invariant circle to create chaotic orbits.
[94] introduces ratio-dependent interaction terms into the Leslie-type model. They use
state-impulsive feedback control to control the chaos. They also establish the prerequisites
for a first-order periodic solution’s existence, singularity, and long-term stability. The
authors of reference [95] showed how a predator-prey model with fear and the Allee effect
could create a repeating pattern of population growth and decline. They supported their
theoretical conclusions by demonstrating through numerical evidence that the system
shows saddle-node bifurcation. In [96], the authors investigated the complex dynamics of
a ratio-dependent Allee and fear-affected Leslie-Gower prey-predator model. The Allee
effect and the fear effect, which can have considerable effects on the growth of populations,
are considered in the model. Here, we go through the mathematical model and the
underlying assumptions in extensive detail. From [97], we have the following model:dx

dt
= γx

(
1− x

K

)
− µxy

x+ω
− ζx,

dy
dt

= µβxy
x+ω

− θy − δy2.
(3.1.1)

First, we will include the fear effect in the model (3.1.1). To better replicate the be-
havior of animals in nature, the fear effect, sometimes referred to as predator avoidance
behavior, is added to prey-predator models. In natural environments, prey animals fre-
quently engage in actions like escaping or hiding to avoid predators. Such activities may
significantly change the dynamics of both prey and predator populations. Researchers
can better comprehend how these behaviors affect people of various species and how they
interact by considering the impact of fear in a prey-predator system. To introduce the
fear effect, we have to add the term 1

1+𭟋y
in the model (3.1.1), which represents the fear

effect with parameter 𭟋 as a level of fear. Thus, by adding the fear effect, the model
(3.1.1) becomes: dx

dt
= γx

1+𭟋y

(
1− x

K

)
− µxy

x+ω
− ζx,

dy
dt

= µβxy
x+ω

− θy − δy2.
(3.1.2)
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The Allee effect will now be incorporated into the model (3.1.2). In population ecology,
this phenomenon, known as the Allee effect, is where the population density decreases,
and there is a corresponding slowdown in the population growth rate. In other words, cer-
tain species only survive when a specific minimum number of individuals comprise their
population. The consequences for preserving ecosystems are significant. If a population
falls below a critical threshold, the struggle for recovery or survival intensifies. Challenges
emerge in the quest for mates, protection against predators, and various other factors. As
far as conservation is concerned, it is crucial to understand and address the Allee effect.
Maintaining a population above a certain threshold is vital for successful reproduction
and long-term viability. Doing so can significantly improve the overall health and sus-
tainability of the ecosystem. Conservation techniques to achieve this goal include habitat
protection and well-planned reintroduction efforts. By implementing these strategies, we
can overcome the Allee effect’s obstacles and protect the biological landscape’s resilience
and balance. Let U(Λ, x) be the fertility of a species with x adults in an isolated patch
to introduce the Allee effect. Population density raises fertility, the description of which
is:

U(Λ, x) = γx

x+ Λ
, (3.1.3)

where γ denotes the inherent growth rates of the prey population and the prey population
density at time t is denoted by x, Λ > 0 represents the level of Allee, which can determine
how much of an impact Allee has on the prey. U(Λ, x) satisfied limΛ→+∞ U(Λ, x) = 0,
limx→0 U(Λ, x) = 0, limΛ→0 U(Λ, x) = γ, limx→+∞ U(Λ, x) = γ, ∂U(Λ,x)

∂Λ
< 0. More details

regarding the Allee effect can be seen in [99]. Thus, the model (3.1.2) with the Allee
effect becomes: dx

dt
= γx

1+𭟋y

(
1− x

K

)
x

x+Λ
− µxy

x+ω
− ζx,

dy
dt

= µβxy
x+ω

− θy − δy2.
(3.1.4)

Thus, our desired model is a system (3.1.4). Here, x and y represent the numbers of
prey and predator. In ecological terms, γ indicates the intrinsic growth rates of the prey
population. The ecological limitation at which a habitat can support a certain species
is known as carrying capacity K. The parameter ω is the half-saturation constant. The
efficacy of the predator’s quest for food is indicated in this context by the symbol µ.
The mortality rates of the prey and predator populations are ζ and θ, respectively. β

represents the biomass conversion, and δ indicates the intra-specific competition. The
fear effect in the model (3.1.4) can be analyzed from Figure 3.1.

The discretization of the continuous-time model is essential from a biological point of
view, as it enables the simulation of predator-prey dynamics over discrete time scales.
This, in turn, allows for easier comparison with actual population data and more effective
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incorporation of time-sensitive ecological components. Consequently, we transformed the
preceding system (3.1.4) into discrete form using an approach based on piece-wise con-
stant arguments. Although there is some information loss associated with every trans-
formation, the piece-wise constant technique was chosen as it can capture the critical
elements of the continuous model and is computationally feasible. The driving force
behind the discrete form of the continuous-time model’s conversion was the better align-
ment of the simulation with the ecological dynamics seen in actual population data. As
predator-prey interactions over discrete-time scales are frequently observed in environ-
mental investigations, the discrete-time representation allows a more accurate picture of
these interactions. For this, we transform the preceding system (3.1.4) into discrete form
as follows: xn+1 = xn exp

[
γ

1+𭟋yn

(
1− xn

K

)
xn

xn+Λ
− µyn

xn+ω
− ζ
]
,

yn+1 = yn exp
[
µβxn

xn+ω
− θ − δyn

]
.

(3.1.5)

Here, we assume that all biological parameters are positive and that predator and prey
populations must remain non-negative. This restriction will be imposed on the initial
conditions and the simulation discussion. The prey population grows logistically, experi-
encing an exponential increase proportionate to its current size before declining when it
approaches the ecosystem’s carrying capacity K.

Let’s first analyze the critical findings concerning the fixed points of the systems (3.1.4)
and (3.1.5).

3.2 Positivity and uniform boundedness of the solu-
tions

Theorem 3.2.1. There is a single solution for the model (3.1.4) if (x(0), y(0)) > 0 and
is positive ∀t ≥ 0.

Proof. The model (3.1.4) has a unique solution in [0, I) where 0 < I < ∞ because the
right-hand side is continuous and locally Lipschitzian in R2

+.x(t) = x(0)exp
[∫ t

0

{
γ

1+𭟋y(ξ)

(
1− x(ξ)

K

)
x(ξ)

x(ξ)+Λ
− µy(ξ)

x(ξ)+ω
− ζ
}
dξ
]
> 0,

y(t) = y(0)exp
[∫ t

0

{
µβx(ξ)
x(ξ)+ω

− θ − δy(ξ)
}
dξ
]
> 0.

(3.2.1)

Theorem 3.2.2. The total population of the model (3.1.4) is uniformly bounded in R.
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Figure 3.1: Behavior of Fear effect for γ = 4.6,K = 8.2,Λ = 1.4, µ = 1.1, ω = 1.1, ζ =
1.0, and y = 1.5

Proof. From the first differential equation of (3.1.4), we have:

dx

dt
≤ γx

(
1− x

K

)
,

=⇒ limt→∞supx(t) ≤ K.

From the second differential equation of (3.1.4), we have:

dy

dt
≤ µβy

(
1− δ

µβ
y

)
,

=⇒ limt→∞supy(t) ≤
µβ

δ
.

Hence, (x(t), y(t)) ∈ [0,K]×
[
0, µβ

δ

]
. Hence, the proof is completed.

Now, we will show that every solution of the system (3.1.5) is bounded.

Lemma 3.2.3. ([74]) Suppose that St satisfies S0 > 0 and St+1 ≤ St exp[m(1−nSt)] for
t ∈ [0,∞], where n > 0 is a constant. Then limt→∞ supSt ≤ 1

mn
exp(m− 1).

Lemma 3.2.4. In the system (3.1.5), each positive solution (xn, yn) is bounded uniformly.

Proof. Assume the positive solution (xn, yn) of (3.1.5) with the starting population (x0, y0)
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> 0. Then we have:

xn+1 ≤ xn exp
[
γ
(
1− xn

K

)]
, (3.2.2)

for all n = 0, 1, 2, · · · . From Lemma 3.2.3, we have

lim
n→∞

supxn ≤ K
γ
exp (γ − 1) := Ω1.

Similarly, we have

yn+1 ≤ yn exp [µβ − δyn]

= yn exp

[
(µβ)

(
1− δ

µβ
yn

)]
. (3.2.3)

From Lemma 3.2.3, we have

lim
n→∞

sup yn ≤ 1

δ
exp (µβ − 1) := Ω2.

Thus, it shows that limn→∞ sup (xn, yn) ≤ Ω, where Ω = max [Ω1,Ω2]. Hence, the proof
is completed.

3.3 Stability of the fixed points

Solving the following equations will lead to the fixed points (x̂, ŷ) of the model (3.1.4):0 = γx̂
1+𭟋ŷ

(
1− x̂

K

)
x̂

x̂+Λ
− µx̂ŷ

x̂+ω
− ζx̂,

0 = µβx̂ŷ
x̂+ω

− θŷ − δŷ2.

The fixed points that result from these equations are as follows:

E0 = (0, 0) , E1 =

(
−
√

(ζκ− γκ)2 − 4γζκΛ + γκ− ζκ

2γ
, 0

)
, E2 =

(
0,−θ

δ

)
, and E∗ = (x̂, ŷ) .

The fixed points of system (3.1.5) will also be the same. Here we will discuss only those
fixed points that are non-negative. The boundary fixed point E1 will be positive when
(ζκ−γκ)2 ≥ 4γζκΛ, and

√
(ζκ− γκ)2 − 4γζκΛ+ζκ < γκ. The positivity and uniqueness

of the interior fixed point can be seen from Theorem 3.2.1 and the following isocline graph
3.2.

Lemma 3.3.1. For system (3.1.4), the fixed point E0 = (0, 0) is stable.
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Figure 3.2: Uniqueness of positive fixed point E∗ = (x̂, ŷ).

Proof. First, we find the variational matrix of model (3.1.4) at E0 = (0, 0) which is as
follows:

NE0(0, 0) =

(
−ζ 0

0 −θ

)
. (3.3.1)

The latent roots of (3.3.1) are: Π{1,2} (E0) =
{
− ζ,−θ

}
. Thus, the fixed point E0 = (0, 0)

is stable for system (3.1.4).

Lemma 3.3.2. For system (3.1.5), the fixed point E0 = (0, 0) is stable.

Proof. The variational matrix ME0 of system (3.1.5) at E0 = (0, 0) is given below:

ME0 (0, 0) =

(
e−ζ 0

0 e−θ

)
. (3.3.2)

The latent roots of (3.3.2) are: Π∗
{1,2} (E0) =

{
e−ζ , e−θ

}
, with |Π∗

{1,2}| < 1. Hence E0 =

(0, 0) is stable for system (3.1.5).

For system (3.1.4), we have calculated the following variational matrix at the boundary

fixed point: E1 =
(

−
√

(ζκ−γκ)2−4γζκΛ+γκ−ζκ

2γ
, 0

)
:

NE1

(
−
√

(ζκ− γκ)2 − 4γζκΛ + γκ− ζκ

2γ
, 0

)
=

(
Θ11 Θ12

0 Θ22

)
, (3.3.3)
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where,

Θ11 =
γ
√
κ (κ(γ − ζ)2 − 4γζΛ) + ζ

√
κ (κ(γ − ζ)2 − 4γζΛ) + κ (−(γ − ζ)2) + 4γζΛ

2γ(κ+ Λ)
,

Θ12 =

(
−
√
κ (κ(γ − ζ)2 − 4γζΛ) + γκ− ζκ

)(
2γµ√

κ(κ(γ−ζ)2−4γζΛ)−γ(κ+2ω)+ζκ
− ζ𭟋

)
2γ

,

Θ22 =
βµ
(√

κ (κ(γ − ζ)2 − 4γζΛ)− γκ+ ζκ
)

√
κ (κ(γ − ζ)2 − 4γζΛ)− γ(κ+ 2ω) + ζκ

− θ.

The latent roots of (3.3.3) are:

Π1(E1) =
γ
√
κ (κ(γ − ζ)2 − 4γζΛ) + ζ

√
κ (κ(γ − ζ)2 − 4γζΛ) + κ (−(γ − ζ)2) + 4γζΛ

2γ(κ+ Λ)
,

Π2(E1) =
−(θ − βµ)

(√
κ (κ(γ − ζ)2 − 4γζΛ) + ζκ

)
− βγκµ+ γθ(κ+ 2ω)√

κ (κ(γ − ζ)2 − 4γζΛ)− γ(κ+ 2ω) + ζκ
.

Therefore the fixed point E1 =

(
−
√

(ζκ−γκ)2−4γζκΛ+γκ−ζκ

2γ
, 0

)
is stable when Π1,2(E1) < 0

and unstable otherwise. Now, the variational matrix of system (3.1.5) calculated at the

fixed point E1(x̄, 0) =
(

−
√

(ζκ−γκ)2−4γζκΛ+γκ−ζκ

2γ
, 0

)
is given below:

ME1 (x̄, 0) =

(
Φ11 Φ12

0 Φ22

)
, (3.3.4)

where,

Φ11 =
(x̄ (x̄ (−γx̄− 2γΛ + κ) + (γ + 2)κΛ) + κΛ2) e

γx̄(κ−x̄)
κ(x̄+Λ)

−ζ

κ (x̄+ Λ)2
,

Φ12 = x̄e
γx̄(1− x̄

κ )
x̄+Λ

−ζ

(
γF x̄ (x̄− κ)

κ (x̄+ Λ)
− µ

x̄+ ω

)
, and

Φ22 = e
βµx̄
x̄+ω

−θ.

The latent roots of (3.3.4) are:

Π∗
{1,2} (E1) =

{
e

βµx̄
x̂+ω

−θ,
(x̄ (x̄ (−γx̄− 2γΛ + κ) + (γ + 2)κΛ) + κΛ2) e

γx̄(κ−x̄)
κ(x̄+Λ)

−ζ

κ (x̄+ Λ)2

}
.
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Therefore for the system (3.1.5) the fixed point E1(x̂, 0) =
(

−
√

(ζκ−γκ)2−4γζκΛ+γκ−ζκ

2γ
, 0

)
is stable when |Π∗

{1,2} (E1)| < 1. To discuss the dynamics of the interior fixed point (x̂, ŷ)
for system (3.1.4), we have computed the variational matrix as follows:

NE∗ (x̂, ŷ) =

 −ζ − µωŷ

(ω+x̂)2
+ γx̂(2κΛ+x̂(κ−3Λ−2x̂))

(Λ+x̂)2(𭟋ŷκ+κ)
x̂
(

γ𭟋x̂(x̂−κ)

κ(Λ+x̂)(𭟋ŷ+1)2
− µ

ω+x̂

)
βµωŷ

(ω+x̂)2
−θ − 2δŷ + βµx̂

ω+x̂

 . (3.3.5)

Theorem 3.3.3. For system (3.1.4), the interior fixed point E∗ = (x̂, ŷ) is locally asymp-
totically stable if the eigenvalues of the variational matrix (3.3.5) are less than zero.

The variational matrix of the system (3.1.5) at the interior fixed point (x̂, ŷ) can be
computed as follows:

ME∗ (x̂, ŷ) =

 x̂
(

γ(κΛ−x̂(2Λ+x̂))

(Λ+x̂)2(𭟋ŷκ+κ)
+ µŷ

(ω+x̂)2

)
+ 1 x̂

(
γ𭟋x̂(x̂−κ)

κ(Λ+x̂)(𭟋ŷ+1)2
− µ

ω+x̂

)
βµωŷ

(ω+x̂)2
1− δŷ

 . (3.3.6)

The characteristic function of (3.3.6) is:

Γ(µ) = µ2 − (ΓTr)µ+ ΓDet,

where,

ΓTr =
γx̂ (κΛ− x̂ (2Λ + x̂))

(Λ + x̂)2 (κ+ κŷ𭟋)
+ ŷ

(
µx̂

(x̂+ ω)2
− δ

)
+ 2, (3.3.7)

ΓDet =

[
x̂

(
γ (κΛ− x̂ (2Λ + x̂))

(Λ + x̂)2 (𭟋ŷκ+ κ)
+

µŷ

(ω + x̂)2

)
+ 1

]
[1− δŷ]

− x̂

[
βµωŷ

(ω + x̂)2

] [
γ𭟋x̂ (x̂− κ)

κ (Λ + x̂) (𭟋ŷ + 1)2
− µ

ω + x̂

]
. (3.3.8)

Using stability criteria of discrete-time systems, we can write the following theorem for
the stability analysis of the interior fixed point (x̂, ŷ) for system (3.1.5).
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Theorem 3.3.4. For system (3.1.5), the interior fixed point (x̂, ŷ) is a

C1 : Source iff |ΓDet| > 1, and |ΓTr| < |1 + ΓDet|,
C2 : Saddle point iff (ΓTr)

2 > 4 (ΓDet) , and |ΓTr| > |1 + ΓDet|,
C3 : Non-hyperbolic point iff |ΓTr| = |1 + ΓDet|, or ΓDet = 1, and ΓTr ≤ 2.

C4 : If condition C3 does not hold then (x̂, ŷ) is a sink iff |ΓTr| < 1 + +ΓDet < 2.

We will discuss our main finding on the periodic behavior of the system (3.1.5) in the
following section. We will use mathematical concepts to demonstrate that there is periodic
behavior in the model.

3.4 Periodicity

In this section, we will determine the conditions under which the parameters in the
system (3.1.5) display periodic behavior with a typical integer period in terms of the
time variables. In a prey-predator system, the periodic nature of the system is essential.
It helps improve our understanding of the seasonal fluctuations in population cycles
encountered by hunters (predators) and their prey. This will help us understand the
seasonal behavior of the populations. Understanding these cycles enables us to predict
when there will be an increase or decrease in the number of prey and predators. This is
incredibly helpful for controlling nature and maintaining the health of our environment.
As a result, by examining these recurring patterns, we may contribute to preserving nature
and influencing decisions that will benefit the environment and future generations. Let
the set of all integers be denoted by Z, non-negative integers by Z+, non-negative real
numbers by R+, and the two-dimensional Euclidean vector space by R2. Here, in the
next part of this section, for our convenience, the notations below will be used:

IΩ = {0, 1, 2, · · · ,Ω− 1} , p̃ = 1

Ω

Ω−1∑
m=0

p(m), pu = maxm∈IΩp(m), pl = minm∈IΩp(m),

where for m ∈ N, {p(m)} is a sequence of real numbers with periodic Ω. We assume
that all of the parameters (γ,𭟋, κ,Λ, µ, ω, ζ, β, θ, δ) : N → R+ in system (3.1.5) are Ω-
periodic. In this situation, the fixed positive integer Ω stands for the chosen common
period for the parameter in equation (3.1.5). The exponential formulation of the equa-
tions included in the system (3.1.5) assures that the upcoming trajectory (x(m), y(m))

constantly remains within the positive quadrant of the plane during the process of evo-
lution assuming the initial conditions (x(0), y(0)) > (0, 0) ([110]). We will concentrate
on populations (x(m), y(m)) where both x(0) and y(0) are greater than zero, taking into
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account biological considerations. Assume that X and Y are normed vector spaces, that
L : DomL ⊂ X → Y is a linear mapping, and that N : X → Y is a continuous mapping.
The mapping indicated by L will be referred to as Fredholm mapping with an index of
zero if dimKerL = codimImL < +∞ and ImL is closed in Y . In the event where L is
a Fredholm mapping with an index of zero, and continuous projections are possible,

P : X → X and Q : Y → Y ,

such that ImP = KerL, ImL = KerQ = Im(I − Q), it follows that L|DomL∩KerP :

(I − P)X → ImL is invertible. We use KP to represent the map’s inverse. If 0 is an
open bounded subset of X , the mapping N will be called L-compact on 0 if QN (0) is
bounded and KP(I−Q)N : 0 → X is compact. Given that ImQ is isomorphic to KerL,
there is an isomorphism denoted as J : ImQ → KerL.

Lemma 3.4.1. (Continuation Theorem [108]) Let us have a Fredholm mapping L of zero
index and N be L-compact on 0. Suppose the following conditions are true:

• Every solution of the equation Lx = ΛNx with each 0 < Λ < 1 is such that x ∈ ∂0.

• For each x ∈ ∂0 ∩ KerL, QNx ̸= 0 and the Brouwer degree deg{JQN ,0 ∩
KerL, 0} ≠ 0.

Then, there exists at least one solution of the operator equation Lx = Nx in DomL∩0.

Lemma 3.4.2. ([109]) Consider an Ω-periodic function p : Z → R, i.e., p(m + Ω) =

p(m). Then for any fixed m1,m2 ∈ IΩ, and any m ∈ N, one has

p(m) ≤ p(m1) +
Ω−1∑
k=0

|p(k + 1)− p(k)|, p(k) ≥ p(m2)−
Ω−1∑
k=0

|p(k + 1)− p(k)|.

Let us define
q2 = {v = v(m) : v(m) ∈ R2,m ∈ N}.

For b = (b1, b2)
T ∈ R2, define |b| = max{b1, b2}. Let qΩ ⊂ q2 represent the subspace of

all Ω-periodic sequences provided with the usual supremum norm ||.||, i.e.,

|v|= maxm∈IΩ|v1(m)|+maxm∈IΩ|v2(m)|, for any v = {v(m) : m ∈ N} ∈ qΩ.

It is simple to demonstrate that qΩ is a finite-dimensional Banach space. Let

qΩ0 =

{
v = {v(m)} ∈ qΩ :

Ω−1∑
m=0

v(m) = 0,m ∈ N

}
,
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qΩc =
{
v = {v(m)} ∈ qΩ : v(m) = J ∈ R2,m ∈ N

}
;

then it follows that qΩ0 and qΩc are both closed linear sub spaces of qΩ and qΩ = qΩ0 ⊕ qΩc ,

dimqΩc = 2. We are now prepared to present and prove the significant findings of this
study.

Theorem 3.4.3. If
(
− euγ(2euΛ−κΛ+e2u)

(Λ+eu)
2
(ev𭟋κ+κ)

)(
−evδ

)
<

(
eu+vγ(eu−κ)𭟋

κ(Λ+eu)(ev𭟋+1)
2

)(
euβµω

(ω+eu)2

)
, θΩ >

µβ,C > µβ− θΩ, and θΩ > µβeΘ1 . The system represented by equation (3.1.5) possesses
at least one positive solution for the period Ω.

Proof. Suppose x(m) = e{u(m)}, y(m) = e{v(m)}, so that the conversion of system (3.1.5)
is:um+1 − um = −ξ(m) + γ(m)

1+𭟋(m)ev(m)

(
1− eu(m)

K(m)

)(
eu(m)

eu(m)+Λ(m)

)
− µ(m)ev(m)

eu(m)+ω(m)
,

vm+1 − vm = −θ(m)− δ(m)ev(m) + µ(m)β(m)eu(m)

eu(m)+ω(m)
.

(3.4.1)

Let, X = qΩ = Y , and

Ly(m) = y(m+ 1)− y(m) =

[
u(m+ 1)− u(m)

v(m+ 1)− v(m)

]
,

where

N y(m) =

−ξ(m) + γ(m)

1+𭟋(m)ev(m)

(
1− eu(m)

K(m)

)(
eu(m)

eu(m)+Λ(m)

)
− µ(m)ev(m)

eu(m)+ω(m)

−θ(m)− δ(m)ev(m) + µ(m)β(m)eu(m)

eu(m)+ω(m)

 ,
∀ y ∈ X and m ∈ N. It can be easily seen that L is a bounded linear operator and

KerL = qΩc , ImL = qΩ0 ,

and
dimKerL = 2 = codimImL.

Given that ImL is closed in Y , we may infer that L meets the criteria for a Fredholm
mapping with zero index. Define

Pu =
1

Ω

Ω−1∑
n=0

y(n), y ∈ X ,Qz =
1

Ω

Ω−1∑
n=0

z(n), z ∈ Y .

It can be easily seen that P and Q are continuous projectors with the properties ImP =

KerL and ImL = KerQ = Im(I − Q).

It is also important to remember that there is a generalized inverse operator (to L)
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KP : ImL → KerP ∩DomL exists and is provided by

KP(z) =
Ω−1∑
n=0

z(n)− 1

Ω

Ω−1∑
n=0

z(n).

Clearly, KP(I − Q)N and QN are continuous. The Arzela-Ascoli theorem makes it
simple to demonstrate that for an open bounded set 0 ⊂ X ,KP(I − Q)N (0) is compact.
Furthermore, QN (0) is bounded. Thus, N is L-compact on 0 with any open bounded
subset 0 ⊂ X . We need an open bounded set 0 to apply the continuation theorem. The
system that corresponds to the operator equation Ly = λNY , λ ∈ (0, 1) is as follows:

[
u(m+ 1)− u(m)

v(m+ 1)− v(m)

]
= λ

−ξ(m) + γ(m)

1+𭟋(m)ev(m)

(
1− eu(m)

K(m)

)(
eu(m)

eu(m)+Λ(m)

)
− µ(m)ev(m)

eu(m)+ω(m)

−θ(m)− δ(m)ev(m) + µ(m)β(m)eu(m)

eu(m)+ω(m)

 .
(3.4.2)

Now, consider an arbitrary solution (u(m), v(m))T ∈ X of the system (3.4.2) for a certain
λ ∈ (0, 1). Applying

∑Ω−1
m=0 on both sides of system (3.4.2) we get:[

0

0

]
=

[∑Ω−1
m=0 {u(m+ 1)− u(m)}∑Ω−1
m=0 {v(m+ 1)− v(m)}

]
=

λ

∑Ω−1
m=0

{
−ξ(m) + γ(m)

1+𭟋(m)ev(m)

(
1− eu(m)

K(m)

)(
eu(m)

eu(m)+Λ(m)

)
− µ(m)ev(m)

eu(m)+ω(m)

}
∑Ω−1

m=0

{
−θ(m)− δ(m)ev(m) + µ(m)β(m)eu(m)

eu(m)+ω(m)

}  . (3.4.3)

Based on the system mentioned above, we can express the following from its right-hand
side: [

ξΩ

θΩ

]
=

∑Ω−1
m=0

{
γ(m)

1+𭟋(m)ev(m)

(
1− eu(m)

K(m)

)(
eu(m)

eu(m)+Λ(m)

)
− µ(m)ev(m)

eu(m)+ω(m)

}
∑Ω−1

m=0

{
−δ(m)ev(m) + µ(m)β(m)eu(m)

eu(m)+ω(m)

}  . (3.4.4)

From systems (3.4.2) and (3.4.4), we can obtain:[∑Ω−1
m=0 |u(m+ 1)− u(m)|∑Ω−1
m=0 |v(m+ 1)− v(m)|

]
≤

λ

∑Ω−1
m=0

{
ξ(m) + γ(m)

1+𭟋(m)ev(m)

(
1− eu(m)

K(m)

)(
eu(m)

eu(m)+Λ(m)

)
− µ(m)ev(m)

eu(m)+ω(m)

}
∑Ω−1

m=0

{
θ(m)− δ(m)ev(m) + µ(m)β(m)eu(m)

eu(m)+ω(m)

} 
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=

[
2λξΩ

2λθΩ

]
<

[
2ξΩ

2θΩ

]
. (3.4.5)

Since (u(m), v(m))T ∈ X , there exist ai, bi ∈ IΩ such thatu(a1) = minm∈IΩu(m), u(b1) = maxm∈IΩu(m)

v(a2) = minm∈IΩv(m), v(b2) = maxm∈IΩv(m)
(3.4.6)

From (3.4.6) and (3.4.4), we have:

ξΩ ≤
Ω−1∑
m=0

{
γ(m)

1 +𭟋(m)ev(m)

(
1− eu(m)

K(m)

)(
eu(m)

eu(m) + Λ(m)

)}

≤
Ω−1∑
m=0

γ(m)e(u(m))

≤
Ω−1∑
m=0

γ(m)e(u(b1))

= γe(u(b1))

u(b1) ≥ ln(
ξΩ

γ
) = Θ1.

Using Lemma 3.4.2 and (3.4.5), we have:

u(m) ≥ u(b1)−
Ω−1∑
m=0

|u(m+ 1)− u(m)| ≥ Θ1 − 2ξΩ = H1. (3.4.7)

Again, from (3.4.6) and (3.4.4), we have:

θΩ ≤
Ω−1∑
m=0

{
µ(m)β(m)− δ(m)ev(m)

}
≤

Ω−1∑
m=0

{
µ(m)β(m) + δ(m)ev(b2)

}
ev(b2) ≥ θΩ− µβ

δ

v(b2) ≥ ln

∣∣∣∣θΩ− µβ

δ

∣∣∣∣ = Θ2.

From Lemma 3.4.2 and (3.4.5), we can write:

v(m) ≥ v(b2)−
Ω−1∑
m=0

|v(m+ 1)− v(m)| ≥ Θ2 − 2θΩ = H2. (3.4.8)
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Now, again, from (3.4.6) and (3.4.4), we have:

ξΩ ≥
Ω−1∑
m=0

{
−µ(m)− γ(m)

(
1− eu(a1)

K(m)

)}

=
Ω−1∑
m=0

{
−µ(m)− γ(m) +

γ(m)eu(a1)

K(m)

}
≥

{
−µ− γ +

γeu(a1)

K

}
u(a1) ≤ ln

∣∣∣∣∣
(
ξΩ + µ+ γ

)
K

γ

∣∣∣∣∣ = Θ3.

Again, using Lemma 3.4.2 and (3.4.5), we have:

u(m) ≤ u(a1) +
Ω−1∑
m=0

|u(m+ 1)− u(m)| ≤ Θ3 + 2ξΩ = H3. (3.4.9)

Now, again, from (3.4.6) and (3.4.4), we have:

θΩ ≤
Ω−1∑
m=0

{
µ(m)β(m)− δ(m)ev(m)

}
≤

Ω−1∑
m=0

{
µ(m)β(m)− δ(m)ev(a2)

}

ev(a2) ≤ C + µβ − θΩ

δ

v(a2) ≤ In

∣∣∣∣C + µβ − θΩ

δ

∣∣∣∣ = Θ4,

where C denotes any positive constant such that C > µβ − θΩ. Again, using Lemma
3.4.2 and (3.4.5), we have:

v(m) ≤ v(a2) +
Ω−1∑
m=0

|v(m+ 1)− v(m)| ≤ Θ4 + 2θΩ = H4. (3.4.10)

Now, from (3.4.7), (3.4.8), (3.4.9), and (3.4.10), it can be written as:

maxm∈IΩ|u(m)| ≤ max {|H1|, |H3|} := O1

and
maxm∈IΩ|v(m)| ≤ max {|H2|, |H4|} := O2.

O1 and O1 are clearly independent of λ. Consider the equation O = O1+O2+O3, where
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O3 > 0 is believed to be sufficiently large such that O3 > |Θ1|+ |Θ2|+ |Θ3|+ |Θ4|. Let’s
now examine the subsequent system of equations:

−ξ + 1
Ω

∑Ω−1
m=0

(
γ(m)

1+𭟋(m)ev

(
1− eu

K(m)

)(
eu

eu+Λ(m)

))
− 1

Ω

∑Ω−1
m=0

(
ϵµ(m)ev

eu+ω(m)

)
= 0,

−θ − 1
Ω

∑Ω−1
m=0 (δ(m)ev) + 1

Ω

∑Ω−1
m=0

(
µ(m)β(m)eu

eu+ω(m)

)
= 0,

(3.4.11)

where (u, v) ∈ R2 and the parameter ϵ ∈ [0, 1]. The system below is comparable to the
one above:

−ξ + γ
1+𭟋ev

(
1− eu

K

) (
eu

eu+Λ

)
− 1

Ω

∑Ω−1
m=0

(
ϵµ(m)ev

eu+ω(m)

)
= 0,

−θ − δev + 1
Ω

∑Ω−1
m=0

(
µ(m)β(m)eu

eu+ω(m)

)
= 0.

(3.4.12)

It is demonstrated that any (u, v) in the system (3.4.12) satisfies

Θ1 ≤ u ≤ Θ3,Θ2 ≤ v ≤ Θ4. (3.4.13)

Let
Π =

{
(u, v)T ∈ X : ||(u, v)|| < O

}
,

then Π is an open, bounded set in X and satisfies the first condition of Lemma 3.4.1.
When (u, v) ∈ ∂Π∩KerL, (u, v) is a constant vector in R2 with ||(u, v)|| = |u|+ |v| = O.
Then

QN

[
u

v

]
=

−ξ + γ
1+𭟋ev

(
1− eu

K

) (
eu

eu+Λ

)
− 1

Ω

∑Ω−1
m=0

(
ϵµ(m)ev

eu+ω(m)

)
−θ − δev + 1

Ω

∑Ω−1
m=0

(
µ(m)β(m)eu

eu+ω(m)

)  ̸=

[
0

0

]
. (3.4.14)

Thus, for all (u, v)T ∈ ∂Π ∩KerL, QN ≠ 0. Hence, the second part of Lemma 3.4.1 is
satisfied. Consider the homotopy that is being used to determine the Brouwer degree

Aϵ((u, v)
T ) = ϵQN ((u, v)T ) + (1− ϵ)G((u, v)T ), ϵ ∈ [0, 1],

where

G((u, v)T ) =

 −ξ +
(
1− eu

K

) (
eu

eu+Λ

)
θ + δev − 1

Ω

∑Ω−1
m=0

(
µ(m)β(m)eu

eu+ω(m)

) . (3.4.15)

59



From (3.4.13), we can write 0 /∈ Aϵ(∂Π ∩KerL), ϵ ∈ [0, 1], and it is easy to verify that
G((u, v)T ) = 0 has a unique solution in R2. According to the invariance property of
homotopy

deg(JQN ,Π ∩KerL, 0) = deg(QN ,Π ∩KerL, 0)
= deg(G,Π ∩KerL, 0)
=

∑
x∈G−1(0)

sigJG(x) ̸= 0,

where deg(., ., .) is the Brouwer degree, J = Id since ImQ = KerL and the Jacobian of
G is

JG(x) = det

 − eu(−KΛ+2Λeu+e2u)
K(Λ+eu)2

0

− βµeuω

(eu+ω)2
δev

 < 0, (3.4.16)

where KΛ < 2Λeu+e2u. Thus, if Π satisfies all the conditions of Lemma 3.4.1, then it fol-
lows that Lx = Nx has at least one Ω periodic solution in DomL∩Π, say (u(m), v(m))T .
Let x(m) = expu(m) and y(m) = expv(m), then (u(m), v(m))T is an Ω periodic solution
of system (4.1.5) with strictly positive components. Hence, the proof is completed.

3.5 Bifurcation analysis

This section will focus on the theoretical analysis of all the bifurcations present in the
models (3.1.4) and (3.1.5). Bifurcations happen when a slight variation in a parameter
causes the system to go from one stable state to another. These changes can be utilized to
identify significant thresholds above which the system cannot go back to its initial form.
Bifurcations can show how environmental changes, such as shifts in the prey or predator
populations, might impact the system’s dynamics in the context of a prey-predator model.
We found that the Hopf bifurcation induces limit cycles in both systems. It has been
observed that Hopf bifurcation results in adjacent invariant circles. As an alternative, it is
possible to find certain isolated orbits with periodic behavior and trajectories that closely
encircle the consistent circle [98]. The bifurcation may be supercritical if a stable closed
invariant curve exists or sub-critical if not. A slight modification in a parametric factor
during flip bifurcation leads the system to adopt a new behavior with twice the period
of the initial system. We have only noticed the flip bifurcation in the system (3.1.5). For
interested readers to study further results on Hopf and flip bifurcations, relevant papers
include those by [52], [100], [101], [102], and [103]. We have the following criteria for
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these two types of bifurcations: The variational matrix of (3.1.5) at (x̂, ŷ) is:

∆(x̂, ŷ) =

 x̂
(

γ(κΛ−x̂(2Λ+x̂))

(Λ+x̂)2(𭟋ŷκ+κ)
+ µŷ

(ω+x̂)2

)
+ 1 x̂

(
γ𭟋x̂(x̂−κ)

κ(Λ+x̂)(𭟋ŷ+1)2
− µ

ω+x̂

)
βµωŷ

(ω+x̂)2
1− δŷ

 .

The characteristic function is:

Π(ξ) = ξ2 − (ΠTr) ξ +ΠDet, (3.5.1)

where,

ΠTr =
γx̂ (κΛ− x̂ (2Λ + x̂))

(Λ + x̂)2 (κ+ κŷ𭟋)
+ ŷ

(
µx̂

(x̂+ ω)2
− δ

)
+ 2, (3.5.2)

ΠDet =

(
x̂

(
γ (κΛ− x̂ (2Λ + x̂))

(Λ + x̂)2 (𭟋ŷκ+ κ)
+

µŷ

(ω + x̂)2

)
+ 1

)
(1− δŷ)

− x̂

(
γ𭟋x̂ (x̂− κ)

κ (Λ + x̂) (𭟋ŷ + 1)2
− µ

ω + x̂

)(
βµωŷ

(ω + x̂)2

)
. (3.5.3)

Let (ΠTr)
2 > 4ΠDet, and (ΠTr) + ΠDet = −1, then it follows that:

γ =
(Λ + x̂)2

(
ŷ
(
2δ − µx̂(ω(βµ+2)+2x̂)

(x̂+ω)3

)
+ δµx̂ŷ2

(x̂+ω)2
− 4
)

x̂
(

βµx̂ωŷ𭟋(κ−x̂)(Λ+x̂)

κ(x̂+ω)2(ŷ𭟋+1)2
+ (1−δŷ)(κΛ−x̂(2Λ+x̂))

κ+κŷ𭟋 + κΛ−x̂(2Λ+x̂)
κ+κŷ𭟋

) . (3.5.4)

For the above value of γ, the latent roots of (3.5.1) are ξ1 = −1 and ξ2 ̸= 1. Consider the
following selection by setting γ to the aforementioned value:

FB1 =
{
(γ,𭟋, κ,Λ, µ, ω, ζ, β, θ, δ) ∈ R10

+ : (ΠTr)
2 > 4ΠDet, (ΠTr) + ΠDet = −1, and |ξ2| ≠ 1

}
.

The flip bifurcation happens in the system (3.1.5) at (x̂, ŷ) when the parameters vary
in the small neighborhood of set FB1. Now consider the arbitrary parameters

(
γ =

γ1,𭟋, κ,Λ, µ, ω, ζ, β, θ, δ
)
∈ FB1, then the system (3.1.5) is given as:xn+1 → xn exp

[
γ1

1+𭟋yn

(
1− xn

K

)
xn

xn+Λ
− µyn

x+ω
− ζ
]
,

yn+1 → yn exp
[
µβxn

xn+ω
− θ − δyn

]
.

(3.5.5)
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Consider the perturbation of (3.5.5) as below:xn+1 → xn exp
[

γ1+γ̃
1+𭟋yn

(
1− xn

K

)
xn

xn+Λ
− µyn

x+ω
− ζ
]
,

yn+1 → yn exp
[
µβxn

xn+ω
− θ − δyn

]
.

(3.5.6)

Let Φ = x − x̄ and Ψ = y − ȳ.We can obtain the following system by transforming the
origin of the positive fixed point of equation (3.5.6):

Φ → Θ11Φ +Θ12Ψ+Θ13Φ
2 +Θ14ΦΨ+Θ15Ψ

2 +Θ16Φ
3 +Θ17Φ

2Ψ+Θ18ΦΨ
2

+Θ19Ψ
3 + Ω11γ̃Φ + Ω12γ̃Ψ+ Ω13γ̃

2 + Ω14ΦΨγ̃ + Ω15Φ
2γ̃ + Ω16Ψ

2γ̃ + Ω17Φγ̃
2

+Ω18Ψγ̃
2 + Ω19γ̃

3 +O(Φ,Ψ, γ̃)4,

Ψ → Θ21Φ +Θ22Ψ+Θ23Φ
2 +Θ24ΦΨ+Θ25Ψ

2 +Θ26Φ
3 +Θ27Φ

2Ψ+Θ28ΦΨ
2

+Θ29Ψ
3 +O(Φ,Ψ)4,

(3.5.7)

where,

Θ11 = 1 +

[
− γ̃ x̂

(S) (𭟋x̂+ 1)K
+

γ̃

(S) (𭟋ŷ + 1)

−
[

γ̃ x̂

(Z)2 (𭟋x̂+ 1)

]
[W ] +

µ ŷ

(∆)2

]
x̂ [W ] ,

Θ12 = x̂

[
− µ

∆
− [W ]

γ̃ x̂𭟋
(S) (𭟋ŷ + 1)2

]
,

Θ13 = − γ̃ x

(S) (𭟋y + 1)K
+

γ̃

(S) (𭟋y + 1)
[W ]− γ̃ x

(S)2 (𭟋y + 1)
[W ]

+
µ ŷ

(∆)2
+

1

2
x̂
[
− 2

γ̃

(𭟋ŷ + 1)K (S)
+ 2

γ̃ x̂

K (𭟋ŷ + 1) (S)2

− 2 [W ]
γ̃

(𭟋y + 1) (S)2
+ 2 [W ]

γ̃ x̂

(𭟋ŷ + 1) (S)3
− 2

µ ŷ

(∆)3

]
+

1

2
x̂
[
− γ̃ x̂

(S) (𭟋ŷ + 1)K
+ [W ]

γ̃

(𭟋ŷ + 1) (S)
− γ̃ x̂

(𭟋ŷ + 1) (S)2

[W ] +
µ ŷ

(∆)2

]2
,

Θ14 = − γ̃ x̂𭟋
(S) (𭟋ŷ + 1)2

[W ]− µ

∆
+ x̂
[ γ̃ x̂𭟋
(𭟋ŷ + 1)2K (S)

− [W ]
γ̃𭟋

(S) (𭟋ŷ + 1)2
+ [W ]

γ̃ x̂𭟋
(S)2 (𭟋ŷ + 1)2

+
µ

(∆)2

]
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+ x̂
[
− γ̃ x̂

(1 +𭟋ŷ)K (S)
+

γ̃

(1 +𭟋ŷ) (S)
[W ]− γ̃ x̂

(1 +𭟋ŷ) (S)2

[W ] +
µ ŷ

(∆)2

] [
− γ̃ x̂𭟋
(𭟋ŷ + 1)2 (S)

[W ]− µ

∆

]
,

Θ15 = [W ]
x̂2γ̃𭟋2

(1 +𭟋ŷ)3 (S)
+

1

2
x̂

[
− γ̃ x̂𭟋
(𭟋ŷ + 1)2 (S)

[W ]− µ

∆

]2
,

Θ16 = [W ]
x̂2γ̃𭟋2

(𭟋ŷ + 1)3 (S)
+

1

2
x̂

[
−[W ]

γ̃ x̂𭟋
(1 +𭟋ŷ)2 (S)

− µ

∆

]2
,

Θ17 = [W ]
x̂2γ̃𭟋2

(𭟋ŷ + 1)3 (S)
+

1

2
x̂

[
−[W ]

γ̃ x̂𭟋
(𭟋ŷ + 1)2 (S)

− µ

∆

]2
[ γ̃ x̂𭟋
(𭟋ŷ + 1)2K (S)

− [W ]
γ̃𭟋

(𭟋ŷ + 1)2 (S)
+

γ̃ x̂𭟋
(𭟋ŷ + 1)2 (S)2

[W ] +
µ

(∆)2

]
+
[
− γ̃ x̂

K (S) (1 +𭟋ŷ)
+ [W ]

γ̃

(S) (1 +𭟋ŷ)

− [W ]
γ̃ x̂

(𭟋ŷ + 1) (S)2
+

µ ŷ

(∆)2

] [
− γ̃ x̂𭟋
(𭟋ŷ + 1)2 (S)

[W ]− µ

∆

]
+

1

2
x̃
[
2

γ̃𭟋
(𭟋ŷ + 1)2K (S)

− 2
γ̃ x̂𭟋

(𭟋ŷ + 1)2K (S)2
+ 2

γ̃𭟋
(𭟋ŷ + 1)2 (S)2

[W ]− 2 [W ]
γ̃ x̂𭟋

(𭟋ŷ + 1)2 (S)3
− 2

µ

(∆)3

]
+

1

2
x̂
[
− 2

γ̃

K (𭟋ŷ + 1) (S)
+ 2

γ̃ x̂

(𭟋ŷ + 1)K (S)2
− 2

γ̃

(𭟋ŷ + 1) (S)2
[W ]

+ 2 [W ]
γ̃ x̂

(𭟋ŷ + 1) (S)3
− 2

µ ŷ

(∆)3

] [
− [W ]

γ x̂𭟋
(𭟋ŷ + 1)2 (S)

− µ

∆

]
+ x̂

[
− γ̃ x̂

K (𭟋ŷ + 1) (S)
+ [W ]

γ̃

(𭟋ŷ + 1) (S)
− [W ]

γ̃ x̂

(𭟋ŷ + 1) (S)2

+
µ ŷ

(∆)2

][ γ̃ x̂𭟋
(𭟋ŷ + 1)2K (S)

− [W ]
γ̃𭟋

(𭟋ŷ + 1)2 (S)
+

γ̃ x̂𭟋
(𭟋ŷ + 1)2 (S)2

[W ] +
µ

(∆)2

]
+

1

2
x̂
[
− γ̃ x̂

K (𭟋ŷ + 1) (S)
+ [W ]

γ̃

(𭟋ŷ + 1) (S)

−[W ]
γ̃ x̂

(𭟋ŷ + 1) (S)2
+

µ ŷ

(∆)2

]2 [
−[W ]

γ̃ x̂𭟋
(𭟋ŷ + 1)2 (S)

− µ

∆

]
,

Θ18 = [W ]
γ̃ x̂𭟋2

(𭟋ŷ + 1)3 (S)
+

1

2

[
−[W ]

γ̃ x̂𭟋
(𭟋ŷ + 1)2 (Z)

− µ

∆

]2
+

1

2
x̂
[
− 2

γ̃ x̂𭟋2

(𭟋ŷ + 1)3K (S)
+ 2 [W ]

γ̃𭟋2

(𭟋ŷ + 1)3 (S)

− 2 [W ]
γ̃ x̂𭟋2

(𭟋ŷ + 1)3 (S)2
]
+ x̂
[ γ̃ x̂𭟋
(𭟋ŷ + 1)2K (S)

− γ̃𭟋
(𭟋ŷ + 1)2 (S)
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[W ] + [W ]
γ̃ x̂𭟋

(𭟋ŷ + 1)2 (S)2
+

µ

(∆)2

][
− γ̃ x̂𭟋

(𭟋ŷ + 1)2 (S)

[W ]− µ

∆

]
+

x̂2γ̃𭟋2

(𭟋ŷ + 1)3 (S)

[
− γ̃ x̂

K (𭟋ŷ + 1) (S)

+
γ̃

(𭟋ŷ + 1) (S)
[W ]− [W ]

γ̃ x̂

(𭟋ŷ + 1) (S)2
+

µ ŷ

(∆)2

]
[W ]

+
1

2
x̂
[
− γ̃ x̂

K (S) (1 +𭟋ŷ)
+

γ̃

(S) (1 +𭟋ŷ)
[W ]

[W ]− γ̃ x̂

(1 +𭟋ŷ) (S)2
+

µ ŷ

(∆)2

][
− γ̃ x̂𭟋

(𭟋ŷ + 1)2 (S)

[W ]− µ

∆

]2
,

Θ19 = − [W ]
x̂2γ̃𭟋3

(F ŷ + 1)4 (S)
+ [W ]

x̂2γ̃𭟋2

(𭟋ŷ + 1)3 (S)[
− [W ]

γ̃ x̂𭟋
(F ŷ + 1)2 (S)

− µ

∆

]
+

1

6
x̂
[
− [W ]

γ̃ x̂𭟋
(𭟋ŷ + 1)2 (S)

− µ

∆

]3
,

Ω11 = − [W ]
x̂2γ̃𭟋3

(𭟋ŷ + 1)4 (S)
+ [W ]

x̂2γ̃𭟋2

(𭟋ŷ + 1)3 (S)

[
− γ̃ x̂𭟋

(𭟋ŷ + 1)2 (S)

[W ]− µ

∆

]
+

1

6

x̂2

(1 +𭟋ŷ) (S)

[
−[W ]

γ̃ x̂𭟋
(1 +𭟋ŷ)2 (S)

− µ

∆

]3
[W ] + x̂

[
− x̂

K (S) (1 +𭟋ŷ)
+

1

(S) (1 +𭟋ŷ)
[W ]− x̂

(1 +𭟋ŷ) (S)2

[W ]
]
+

x̂2

(1 +𭟋ŷ) (S)

[
− γ̃ x̂

K (1 +𭟋ŷ) (S)
+ [W ]

γ̃

(1 +𭟋ŷ) (S)

− [W ]
γ̃ x̂

(1 +𭟋ŷ) (S)2
+

µ ŷ

(∆)2

]
[W ] ,

Ω12 = − [W ]
x̂2𭟋

(1 +𭟋ŷ)2 (S)
+

x̂2

(1 +𭟋ŷ) (S)

[
− γ̃ x̂𭟋

(1 +𭟋ŷ)2 (S)

[W ]− µ

∆

]
[W ] ,

Ω13 =
1

2
[W ]2

x̂3

(1 +𭟋ŷ)2 (S)2
,

Ω14 = [W ]
x̂𭟋

(𭟋ŷ + 1)2 (K)
+

x̂

(𭟋ŷ + 1) (K)

[
− [W ]

γ̃ x̂𭟋
(𭟋ŷ + 1)2 (K)

− µ

∆

]
[W ] + x̂

[ x̂𭟋
(𭟋ŷ + 1)2K (S)

− [W ]
𭟋

(𭟋ŷ + 1)2 (S)

+ [W ]
x̂𭟋

(𭟋ŷ + 1)2 (S)2
]
+

x̂2

(𭟋ŷ + 1) (S)

[ γ̃ x̂𭟋
(𭟋ŷ + 1)2K (S)
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− [W ]
γ̃𭟋

(𭟋ŷ + 1)2 (S)
+ [W ]

γ̃ x̂𭟋
(𭟋ŷ + 1)2 (S)2

+
µ

(∆)2

]
[W ]

+ x̂
[
− x̂

K (S) (1 +𭟋ŷ)
+

1

(S) (1 +𭟋ŷ)
[W ]− x̂

(1 +𭟋ŷ) (S)2

[W ]

[
− [W ]

γ̃ x̂𭟋
(1 +𭟋ŷ)2 (S)

− µ

∆

]
− x̂2𭟋

(S) (1 +𭟋ŷ)2[
− γ̃ x̂

K (1 +𭟋ŷ) (K)
+

γ̃

(1 +𭟋ŷ) (K)
[W ]− [W ]

γ̃ x̂

(1 +𭟋ŷ) (K)2

+
µ ŷ

(∆)2

]
[W ] +

x̂2

(1 +𭟋ŷ) (K)

[
− γ̃ x̂

K (1 +𭟋ŷ) (K)
+

γ̃

(1 +𭟋ŷ) (K)

[W ]− [W ]
γ̃ x̂

(1 +𭟋ŷ) (K)2
+

µ ŷ

(∆)2

][
− γ̃ x̂𭟋

(1 +𭟋ŷ)2 (K)

[W ]− µ

∆

]
[W ] ,

Ω15 = − x̂

K (𭟋ŷ + 1) (K)
+ [W ]

1

(𭟋ŷ + 1) (K)
− [W ]

x̂

(𭟋ŷ + 1) (K)2

+
x̂

(𭟋ŷ + 1) (K)

[
− γ̃ x̂

K (𭟋ŷ + 1) (K)
+ [W ]

γ̃

(𭟋ŷ + 1) (K)

− [W ]
γ̃ x̂

(𭟋ŷ + 1) (K)2
+

µ ŷ

(∆)2

]
[W ] +

1

2
x̂
[
− 2

1

K (𭟋ŷ + 1) (K)

+ 2
x̂

(𭟋ŷ + 1)K (K)2
− 2 [W ]

1

(𭟋ŷ + 1) (K)2
+ 2

x̂

(𭟋ŷ + 1) (K)3

[W ]
]
+

1

2

x̂2

(𭟋ŷ + 1) (K)

[
− 2

γ̃

K (𭟋ŷ + 1) (K)
+ 2

γ̃ x̂

(𭟋ŷ + 1)K (K)2

− 2
γ̃

(𭟋ŷ + 1) (K)2
[W ] + 2 [W ]

γ̃ x̂

(𭟋ŷ + 1) (K)3
− 2

µ ŷ

(∆)3

]
[W ]

+ x̂
[
− γ̃ x̂

K (1 +𭟋ŷ) (K)
+

γ̃

(1 +𭟋ŷ) (K)
[W ]− γ̃ x̂

(1 +𭟋ŷ) (K)2
[W ]

+
µ y

(∆)2

][
− x̂

K (𭟋ŷ + 1) (K)
+

1

(𭟋ŷ + 1) (K)
[W ]− x̂

(𭟋ŷ + 1) (K)2

[W ]
]
+

1

2

x̂2

(𭟋ŷ + 1) (K)

[
− γ̃ x̂

K (𭟋ŷ + 1) (K)
+

γ̃

(𭟋ŷ + 1) (K)

[W ]− γ̃ x̂

(𭟋ŷ + 1) (K)2
[W ] +

µ ŷ

(∆)2

]2
[W ] ,

Ω16 = [W ]
x̂2𭟋2

(𭟋ŷ + 1)3 (K)
+

γ̃ x̂3𭟋2

(𭟋ŷ + 1)4 (K)2
[W ]2 − x̂2𭟋

(𭟋ŷ + 1)2 (K)[
− γ̃ x̂𭟋
(1 +𭟋ŷ)2 (K)

[W ]− µ

∆

]
[W ] +

1

2

x̂2

(1 +𭟋ŷ) (K)[
− γ̃ x̂𭟋
(𭟋ŷ + 1)2 (K)

[W ]− µ

∆

]2
[W ] ,
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Ω17 =
1

2

x̂2

(𭟋ŷ + 1)2 (K)2
[W ]2 +

x̂2

(𭟋ŷ + 1) (K)

[
− x̂

K (𭟋ŷ + 1) (K)

+ [W ]
1

(𭟋ŷ + 1) (K)
− x̂

(𭟋ŷ + 1) (K)2
[W ]

]
[W ]

+
1

2

x̂3

(𭟋ŷ + 1)2 (K)2

[
− γ̃ x̂

K (𭟋ŷ + 1) (K)
+

γ̃

(𭟋ŷ + 1) (K)
[W ]

− γ̃ x̂

(𭟋ŷ + 1) (K)2
[W ] +

µ ŷ

(∆)2

]
[W ]2 ,

Ω18 = − x̂3𭟋
(1 +𭟋ŷ)3 (K)2

[W ]2 +
1

2

x̂3

(1 +𭟋ŷ)2 (K)2

[
− γ̃ x̂𭟋

(1 +𭟋ŷ)2 (K)

[W ]− µ

∆

]
[W ]2 ,

Ω19 =
1

6

x4

(Fy + 1)3 (∆)3
[W ]3,

Θ21 = y

[
µβ (∆)− µβ x̂

(∆)2

]
,Θ22 = −δ ŷ + 1

Θ23 =
1

2
ŷ

[
−2

(
µβ (∆)− µβ x̂

(∆)3

)]
+

1

2
ŷ

[
µβ (∆)− µβ x̂

(∆)2

]2
,

Θ24 =
1

2
ŷ

[
−2

(
µβ (∆)− µβ x̂

(∆)3

)]
+

1

2
ŷ

[
µβ (∆)− µβ x̂

(∆)2

]3
− ŷ

[
µβ (∆)− µβ x̂

(∆)2

]
δ,Θ25 = −δ + 1

2
ŷδ2,

Θ26 =
1

6
ŷ

[
6

(
µβ (∆)− µβ x̂

(∆)4

)]
+

1

2
y

[
−2

(
µβ (∆)− µβ x̂

(∆)3

)]
[
µβ (∆)− µβ x̂

(∆)2

]
+

1

6
ŷ

[
µβ (∆)− µβ x̂

(∆)2

]3
,

Θ27 = −
[
µβ (∆)− µβ x̂

(∆)3

]
− 1

2
ŷ

[
−2

(
µβ (∆)− µβ x̂

(∆)2

)]
δ

+
1

2

[
µβ (∆)− µβ x̂

(∆)2

]2
− 1

2
ŷ

[
µβ (∆)− µβ x̂

(∆)2

]2
,

Θ28 = −
[
µβ (∆)− µβ x̂

(∆)2

]
δ +

1

2
ŷ

[
µβ (∆)− µβ x̂

(∆)2

]
δ2, and

Θ29 =
1

2
δ2 − 1

6
yδ3, with W =

[
−x̂+K

K

]
, x̂+ ω = ∆, and S = x̂+ Λ.

If S =

(
Θ12 Θ12

−1−Θ11 ξ2 −Θ11

)
be a non-singular matrix, then consider the following

translation:
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(
Φ

Ψ

)
= S

(
x̃

ỹ

)
. (3.5.8)

Taking S−1 on both sides of (3.5.8) we get

(
x̃

ỹ

)
→

(
−1 0

0 ξ2

)(
x̃

ỹ

)
+

(
f(Φ,Ψ, γ̃)

g(Φ,Ψ, γ̃)

)
, (3.5.9)

f(Φ,Ψ, γ̃) = −(−ξ2 +Θ11) Ω19γ̃
3

Θ12 (T )
− (−ξ2 +Θ11) Ω17γ̃

2Φ

Θ12 (T )
− (−ξ2 +Θ11) Ω18γ̃

2Ψ

Θ12 (T )

− (−ξ2 +Θ11) Ω13γ̃
2

Θ12 (T )
− (−ξ2 +Θ11) Ω15γ̃Φ

2

Θ12 (T )
− (−ξ2 +Θ11) Ω14γ̃ΦΨ

Θ12 (T )

− (−ξ2 +Θ11) Ω11Φγ̃

Θ12 (T )
− (−ξ2 +Θ11) Ω16γ̃Ψ

2

Θ12 (T )
− (−ξ2 +Θ11) Ω12Ψγ̃

Θ12 (T )

+

(
−(−ξ2 +Θ11)Θ16

Θ12 (T )
− Θ26

T

)
Φ3 +

(
−(−ξ2 +Θ11)Θ17

Θ12 (T )
− Θ27

T

)
ΨΦ2

+

(
−(−ξ2 +Θ11)Θ13

Θ12 (T )
− Θ23

T

)
Φ2 +

(
−(−ξ2 +Θ11)Θ18

Θ12 (T )
− Θ28

T

)
Ψ2Φ

+

(
−(−ξ2 +Θ11)Θ14

Θ12 (T )
− Θ24

T

)
ΨΦ+

(
−(−ξ2 +Θ11)Θ19

Θ12 (T )
− Θ29

T

)
Ψ3

+

(
−(−ξ2 +Θ11)Θ15

Θ12 (T )
− Θ25

T

)
Ψ2,

g(Φ,Ψ, γ̃) =
(1 + Θ11) Ω19γ̃

3

Θ12 (T )
+

(1 + Θ11) Ω17γ̃
2Φ

Θ12 (T )
+

(1 + Θ11) Ω18γ̃
2Ψ

Θ12 (T )

+
(1 + Θ11) Ω13γ̃

2

Θ12 (T )
+

(1 + Θ11) Ω15γ̃Φ
2

Θ12 (T )
+

(1 + Θ11) Ω14γ̃ΨΦ

Θ12 (T )

+
(1 + Θ11) Ω11Φγ̃

Θ12 (T )
+

(1 + Θ11) Ω16γ̃Ψ
2

Θ12 (T )
+

(1 + Θ11) Ω12Ψγ̃

Θ12 (T )
+

(
(1 + Θ11)Θ16

Θ12 (T )

+
Θ26

T

)
Φ3 +

(
(1 + Θ11)Θ17

Θ12 (T )
+

Θ27

T

)
ΨΦ2 +

(
(1 + Θ11)Θ13

Θ12 (T )
+

Θ23

T

)
Φ2

+

(
(1 + Θ11)Θ18

Θ12 (T )
+

Θ28

T

)
Ψ2Φ +

(
(1 + Θ11)Θ14

Θ12 (ξ2 + 1)
+

Θ24

T

)
ΨΦ

+

(
(1 + Θ11)Θ19

Θ12 (T )
+

Θ29

T

)
Ψ3 +

(
(1 + Θ11)Θ15

Θ12 (T )
+

Θ25

T

)
Ψ2, where T = ξ2 + 1.

If we consider W c(0, 0, 0) to be the center manifold of (3.5.9) computed at (0, 0) in a
restricted neighborhood of γ̃ = 0, we can approximate W c(0, 0, 0) as follows:

W c(0, 0, 0) = {(x̃, ỹ, γ̃) ∈ R3 : ỹ = ϱ1x̃
2 + ϱ2x̃γ̃ + ϱ3γ̃

2 +O((|x̃|+ |γ̃|)3)},
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where,

ϱ1 = −Θ15 (Θ11 + 1) 3 −Θ12 (Θ14 −Θ25) (Θ11 + 1) 2 +Θ2
12 (Θ13 −Θ24) (Θ11 + 1) + Θ3

12Θ23

Θ12 (ξ22 − 1)
,

ϱ2 = −(1 + Θ11) (Ω11Θ12 − Ω12Θ11 − Ω12)

Θ12

(
ξ2

2 − 1
)

ϱ3 =
(1 + Θ11) Ω13

Θ12 (ξ2 + 1) (−ξ2 + 1)
.

Consequently, the map that is only applicable to the center manifold W c(0, 0, 0) is pro-
vided by:

F : x̃→ −x̃+ χ1x̃
2 + χ2x̃γ̃ + χ3x̃

2γ̃ + χ4x̃γ̃
2 + χ5x̃

3 +O((|x̃|, |γ̃|)4),

where,

χ1 =

[
−(−ξ2 +Θ11)Θ13

Θ12 (T )
− Θ23

T

]
Θ12

2 +

[
−(−ξ2 +Θ11)Θ14

Θ12 (T )
− Θ24

T

]
×

(−1−Θ11)Θ12 +

[
−(−ξ2 +Θ11)Θ15

Θ12 (T )
− Θ25

T

]
(−1−Θ11)

2 ,

χ2 = −(−ξ2 +Θ11) Ω11

T
− (−ξ2 +Θ11) Ω12 (−1−Θ11)

Θ12 (T )
,

χ3 = −(−ξ2 +Θ11)Θ12Ω15

T
− (−ξ2 +Θ11) Ω14 (−1−Θ11)

T
− (−ξ2 +Θ11) Ω11ϱ1

T

− (−ξ2 +Θ11) Ω16 (−1−Θ11)
2

Θ12 (T )
− (−ξ2 +Θ11) Ω12 (ξ2 −Θ11) ϱ1

Θ12 (T )

+ 2

(
−(−ξ2 +Θ11)Θ13

Θ12 (T )
− Θ23

T

)
Θ12

2ϱ2 +

(
−(−ξ2 +Θ11)Θ14

Θ12 (T )
− Θ24

T

)
×

(−1−Θ11)Θ12ϱ2 +

(
−(−ξ2 +Θ11)Θ14

Θ12 (T )
− Θ24

T

)
(ξ2 −Θ11) ϱ2Θ12 +

2

(
−(−ξ2 +Θ11)Θ15

Θ12 (T )
− Θ25

T

)
(−1−Θ11) (ξ2 −Θ11) ϱ2,

χ4 = −(−ξ2 +Θ11) Ω17

T
− (−ξ2 +Θ11) Ω18 (−1−Θ11)

Θ12 (T )
− (−ξ2 +Θ11) Ω11ϱ2

T

−(−ξ2 +Θ11) Ω12 (ξ2 −Θ11) ϱ2
Θ12 (T )

+ 2

(
−(−ξ2 +Θ11)Θ13

Θ12 (T )
− Θ23

T

)
Θ12

2ϱ3

+

(
−(−ξ2 +Θ11)Θ14

Θ12 (T )
− Θ24

T

)
(−1−Θ11)Θ12ϱ3
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+

(
−(−ξ2 +Θ11)Θ14

Θ12 (T )
− Θ24

T

)
(ξ2 −Θ11) ϱ3Θ12

+2

(
−(−ξ2 +Θ11)Θ15

Θ12 (T )
− Θ25

T

)
(−1−Θ11) (ξ2 −Θ11) ϱ3,

χ5 = −(−ξ2 +Θ11) Ω19

Θ12 (T )
− (−ξ2 +Θ11) Ω11ϱ3

T
− (−ξ2 +Θ11) Ω12 (ξ2 −Θ11) ϱ3

Θ12 (T )
,

where T = ξ2 + 1.

Now, we define the following two discriminatory quantities:

Φ1 =

(
∂2F

∂x̃∂ᾱ
+

1

2

∂F

∂ᾱ

∂2F

∂x̃2

)
(0,0)

= χ2,

Φ2 =

(
1

6

∂3F

∂x̃3
+ (

1

2

∂2F

∂x̃2
)2
)

(0,0)

= χ5 + χ2
1.

Based on the details above, the subsequent theorem results:

Theorem 3.5.1. If the parameter in the neighborhood of ᾱ varies and Φ2 ̸= 0, the model
(3.1.5) undergoes flip bifurcation at the specific fixed point (x̂, ŷ). Moreover, the period-
two orbits that divide from (x̂, ŷ) are stable if Φ2 > 0, but they become unstable if Φ2 < 0.

3.5.1 Hopf bifurcation

First, we will study the Hopf bifurcation in the continuous-time system (3.1.4). The
presence of center points in the corresponding linear system is a requirement for the Hopf
bifurcation of a two-dimensional continuous-time nonlinear system. The latent roots of
the fixed point of a two-dimensional model are:

Φ1,2 =
1

2

[
A±

√
A− 4B

]
.

When A = 0 and B > 0, the latent roots Φ1,2 =
√
−4B are pure imaginary numbers, and

the fixed point is the center point. At (x̂, ŷ) the Jacobian matrix of the system (3.1.4) is
obtained by

MC (x̂, ŷ) =

 −ζ − µωŷ

(ω+x̂)2
+ γx̂(2κΛ+x̂(κ−3Λ−2x̂))

(Λ+x̂)2(F ŷκ+κ)
x̂
(

γF x̂(x̂−κ)

κ(Λ+x̂)(F ŷ+1)2
− µ

ω+x̂

)
βµωŷ

(ω+x̂)2
−θ − 2δŷ + βµx̂

ω+x̂

 .

The characteristic function is:

Ω(Φ) = Φ2 −AΦ +B, (3.5.10)
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where,

A = −ζ − θ +
βµx̂

x̂+ ω
+
γx̂ (2κΛ + x̂ (κ− 3Λ− 2x̂))

(Λ + x̂)2 (κ+ κŷF )
− µωŷ

(x̂+ ω)2
− 2δŷ, (3.5.11)

B =

(
−ζ − µωŷ

(ω + x̂)2
+
γx̂ (2κΛ + x̂ (κ− 3Λ− 2x̂))

(Λ + x̂)2 (F ŷκ+ κ)

)(
−θ − 2δŷ +

βµx̂

ω + x̂

)
−

(
βµωŷ

(ω + x̂)2

)(
x̂

(
γF x̂ (x̂− κ)

κ (Λ + x̂) (F ŷ + 1)2
− µ

ω + x̂

))
. (3.5.12)

We shall now explain the Hopf bifurcation of system (3.1.4) at five distinct parameters,
i.e., at β, µ, ω, δ, and θ. Therefore, to discuss the Hopf bifurcation of the system (3.1.4)
we have the following theorem:

Theorem 3.5.2. The positive fixed point (x̂, ŷ) of (3.1.4) undergoes Hopf bifurcation
when

0 <

(
−ζ − µωŷ

(ω + x̂)2
+
γx̂ (2κΛ + x̂ (κ− 3Λ− 2x̂))

(Λ + x̂)2 (F ŷκ+ κ)

)(
−θ − 2δŷ +

βµx̂

ω + x̂

)
−

(
x̂

(
γF x̂ (x̂− κ)

κ (Λ + x̂) (F ŷ + 1)2
− µ

ω + x̂

))(
βµωŷ

(ω + x̂)2

)
, and

0 = −ζ − θ +
βµx̂

x̂+ ω
+
γx̂ (2κΛ + x̂ (κ− 3Λ− 2x̂))

(Λ + x̂)2 (κ+ κŷF )
− µωŷ

(x̂+ ω)2
− 2δŷ.

From the second condition of the above theorem, one can derive the following values of
parameters for which the system (3.1.4) undergoes Hopf bifurcation:

β =
(x̂+ ω)

(
ζ + θ + γx̂(x̂(−κ+3Λ+2x̂)−2κΛ)

(Λ+x̂)2(κ+κŷ𭟋)
+ ŷ

(
2δ + µω

(x̂+ω)2

))
µx̂

,

µ =
(x̂+ ω)2

(
ζ + θ + γx̂(x̂(−κ+3Λ+2x̂)−2κΛ)

(Λ+x̂)2(κ+κŷ𭟋)
+ 2δŷ

)
βx̂ (x̂+ ω)− ωŷ

,

δ = −
ζ + θ − βµx̂

x̂+ω
− γx̂(2κΛ+x̂(κ−3Λ−2x̂))

(Λ+x̂)2(κ+κŷ𭟋)
+ µωŷ

(x̂+ω)2

2ŷ
,

θ = −ζ + βµx̂

x̂+ ω
+
γx̂ (2κΛ + x̂ (κ− 3Λ− 2x̂))

(Λ + x̂)2 (κ+ κŷ𭟋)
− µωŷ

(x̂+ ω)2
− 2δŷ.

Similarly, the bifurcation value of any other parameter can also be calculated. The
Neimark-Sacker bifurcation of the system (3.1.5) at the particular positive fixed point
(x̂, ŷ) is now investigated using the bifurcation theory and a bifurcation parameter γ. We
have determined the necessary conditions under which the system described in equation
(3.1.5) will possess a fixed point that is non-hyperbolic and has two complex conjugate
eigenvalues with a modulus of one. Assume that ΨNS = {(γ = γ2,𭟋, κ,Λ, µ, ω, ζ, β, θ, δ) :
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(ΠTr)
2 − 4ΠDet < 0 and ΠDet = 1 of equation (3.5.1) }. The positive fixed point of the

system (3.1.5) experiences the Neimark-Sacker bifurcation when the parameters vary in
the small range around ΨNS. In this case, we investigate the system (3.1.5) with these
parameters, which are defined by the following map:xn+1 → xn exp

[
γ2

1+𭟋yn

(
1− xn

K

)
xn

xn+Λ
− µyn

x+ω
− ζ
]
,

yn+1 → yn exp
[
µβxn

xn+ω
− θ − δyn

]
.

(3.5.13)

The following map can be used to represent a map perturbation (3.5.13) when γ̄ is used
as the bifurcation parameter:xn+1 → xn exp

[
γ2+γ̃
1+𭟋yn

(
1− xn

K

)
xn

xn+Λ
− µyn

x+ω
− ζ
]
,

yn+1 → yn exp
[
µβxn

xn+ω
− θ − δyn

]
.

(3.5.14)

where |γ̃ << 1| is taken as a small perturbation parameter. The characteristic function
Π(ξ) of (3.5.14) at (x̂, ŷ) with Π(ξ) = 0 has two roots that are complex conjugates and
their modulus is equal to one when

1

κŷ (Λ + x̂)2 (ŷF + 1)2 (δω3 + x̂ (ω(3δω − µ(βµ+ 1)) + x̂ (3δω − µ+ δx̂) + δµŷ (x̂+ ω))){
x̂ (x̂+ ω)

(
− (x̂+ ω)2

(
− κΛ + 2Λx̂+ x̂2

)
+ ŷ
(
κΛω2(F − δ) + x̂

(
Λω(κF (βµ+ 2) +

2δ(ω − κ)− 2ωF ) + x̂
(
κF (βµω + Λ)− ωF (Λ(βµ+ 4) + ω)− δκΛ + δω(4Λ + ω) +

x̂
(
− F (βµω + 2Λ + 2ω) + 2δ(Λ + ω) + x̂(δ − F )

))))
+ δŷ2F (x̂+ ω)2

(
− κΛ + 2Λx̂

+x̂2
))}

= γ2.

Taking u = x − x̂ and v = y − ŷ, where (x̂, ŷ) is the unique positive fixed point of the
system (3.5.14), or equivalently positive fixed point of (3.1.5). Transforming the fixed
point (x̂, ŷ) to the origin (0, 0), we get the underlying map:

Φ → ϱ11Φ +Θ12Ψ+Θ13Φ
2 +Θ14ΦΨ+Θ15Ψ

2 +Θ16Φ
3 +Θ17Φ

2Ψ+Θ18ΦΨ
2

+Θ19Ψ
3 +O(|Φ|, |Ψ|)4,

Ψ → Θ21Φ +Θ22Ψ+Θ23Φ
2 +Θ24ΦΨ+Θ25Ψ

2 +Θ26Φ
3 +Θ27Φ

2Ψ+Θ28ΦΨ
2

+O(|Φ|, |Ψ|)4.
(3.5.15)

and the coefficients Θ14,Θ15,Θ16,Θ17,Θ23,Θ24,Θ25,Θ26,Θ27,Θ28, and Θ29 are given above
can be calculated by replacing γ1 by γ2+ γ̄. The characteristic function of (3.5.14) at the
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fixed point (0, 0) can be expressed as follows:

Π(ξ) = ξ2 − (ΠTr(γ)) ξ +ΠDet(γ), (3.5.16)

where,

ΠTr(γ̃) = x̂

(
(γ̃ + γ2) (κΛ− x̂ (2Λ + x̂))

(Λ + x̂)2 (κ+ κŷF )
+

µŷ

(x̂+ ω)2

)
− δŷ + 2, and

ΠDet(γ̃) =

[
x̂

(
(γ̃ + γ2) (κΛ− x̂ (2Λ + x̂))

(Λ + x̂)2 (κ+ κŷF )
+

µŷ

(x̂+ ω)2

)
+ 1

]
[1− δŷ]−[

βµωŷ

(x̂+ ω)2

] [
x̂

(
(γ̃ + γ2) x̂F (x̂− κ)

κ (Λ + x̂) (ŷF + 1)2
− µ

x̂+ ω

)]
.

As (γ,𭟋, κ,Λ, µ, ω, ζ, β, θ, δ) ∈ ΨNS, the roots of (3.5.16) are conjugate complex numbers
ξ1, ξ2 with |ξ1| = |ξ2| = 1. Thus, it is obvious that ξ1 and ξ2 = ΠTr

2
± ι

2

√
4ΠDet − Π2

Tr.

We have |ξ1| = |ξ2| =
√
ΠDet, with

(
d|ξ1,2|
dγ̃

)
γ̃=0

̸= 0. Moreover, we assume that ΠTr(0) =

2−δŷ+x̂
(

(γ̃+γ2)(κΛ−x̂(2Λ+x̂))

(Λ+x̂)2(κ+κŷF )
+ µŷ

(x̂+ω)2

)
̸= 0,−1. Further, (γ,𭟋, κ,Λ, µ, ω, ζ, β, θ, δ) ∈ ΨNS

implies that −2 < ΠTr(0) < 2. Thus, ΠTr(0) ̸= ±2, 0,−1 gives ξr1, ξr2 ̸= 1 for all r =

1, 2, 3, 4 at γ̃ = 0. Therefore, when γ̃ = 0 and the following criteria are met, the roots
of (3.5.16) do not occur at the point where the unit circle and coordinate axes intersect.
Now transforming the fixed point (x̂, ŷ) of (3.5.14) to the origin, we get the normal form
of (3.5.14) as: (

x̃

ỹ

)
→

(
αa −βa
βa αa

)(
x̃

ỹ

)
+

(
f̃(x̃, ỹ)

g̃(x̃, ỹ)

)
, (3.5.17)

where,

f̃(x̃, ỹ) = 1
Θ12

(Θ13u
2 +Θ14uv +Θ15v

2 +Θ16u
3 +Θ17u

2v +Θ18uv
2 +Θ19v

3)

+ 1
Θ12

O(|u|, |v|)4,

g̃(x̃, ỹ) =
(

Θ13(αa−Θ11)
βaΘ12

− Θ23

βa

)
u2 +

(
Θ14(αa−Θ11)

βaΘ12
− Θ24

βa

)
uv +Θ27u

2v +Θ28

uv2
(

Θ15(αa−Θ11)
βaΘ12

− Θ25

βa

)
uv2 +

(
Θ13(αa−Θ11)

βaΘ16
− Θ23

βa

)
u3 +Θ29v

3 +O((|u|, |v|)4)

(3.5.18)

u = a12x̃ and v = (αa − ϱ11)u − βav. Next, the nonzero real number that follows is
defined:

L =

([
−Re

(
(1− 2ξ1)ξ

2
2

1− ξ1
C20C11

)
− 1

2
|C11|2 − |C02|2 +Re(ξ2C21)

])
γ̃=0

,
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where

C20 =
1

8

[
f̃x̃x̃ + 2g̃x̃ỹ − f̃ỹỹ + i

(
g̃x̃x̃ − 2f̃x̃ỹ − g̃ỹỹ

)]
,

C11 =
1

4

[
f̃x̃x̃ + i (g̃x̃x̃ + g̃ỹỹ) + f̃ỹỹ

]
,

C02 =
1

8

[
f̃x̃x̃ − 2g̃x̃ỹ − f̃ỹỹ + i

(
g̃x̃x̃ + 2f̃x̃ỹ − g̃ỹỹ

)]
,

C21 =
1

16

[
g̃x̃x̃ỹ + g̃ỹỹỹ + f̃x̃x̃x̃ + f̃x̃ỹỹ + i

(
g̃x̃x̃x̃ + g̃x̃ỹỹ − f̃x̃x̃ỹ − f̃ỹỹỹ

)]
.

By analyzing these facts, we can derive the following result:

Theorem 3.5.3. Assuming that L is not equal to zero, the system (3.1.5) undergoes Hopf
bifurcation at the unique positive fixed point (x̂, ŷ) when the parameter γ̃ changes within
a narrow range of the parameter γ2. Moreover, if γ̃ is greater than γ2, an attracting
invariant closed curve bifurcates from the fixed point when L is less than zero, while a
repelling invariant closed curve bifurcates when L is greater than zero.

3.6 Numerical simulations

The Neimark-Sacker bifurcation and period-doubling bifurcation of systems (3.1.4) and
(3.1.5) will be discussed numerically in this section. The importance of using numerical
simulations of the bifurcation in the prey-predator model in our research must be under-
stood before we discuss them. Using numerical simulations, we can study how the system
changes under multiple conditions using a realistic and practical approach. Through nu-
merical simulation, we can confirm different dynamic behaviors, including bifurcation,
chaos, and periodicity. By employing numerical methods, we can gain deep insights into
the behavior of these systems under varying parameters and initial conditions, which is
critical for both theoretical understanding and practical applications. Numerical sim-
ulations in the context of the prey-predator model enable us to investigate how slight
changes to the initial conditions or system parameters may significantly impact the pop-
ulations of prey and predator species. Based on this, we may identify possible actions to
decrease the adverse effects of environmental variations and develop accurate predictions
about the behavior of natural ecosystems. We shall first provide the following numerical
example to verify that Hopf bifurcation occurs in the system (3.1.4).

Example 7. In this example, we will discuss the Hopf bifurcation of the system (3.1.4) at
the positive fixed point. The Hopf bifurcation is arising at different parameters. Generally,
it was observed that this bifurcation is emerging if we select the parametric set below:
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(a) β = 0.905 (b) β = 1.0 (c) µ = 4.5

(d) ω = 2.1 (e) δ = 0.1 (f) θ = 2.3

Figure 3.3: Time-series plot. The parameter values for plot (a) are: γ = 1.8,𭟋 =
0.27,K = 2.91,Λ = 1.19, µ = 3.81, ω = 0.3, ζ = 0.19, β = 0.905, θ = 2.6, δ = 0.1. For
plot (b), the values are: γ = 1.8,𭟋 = 0.27,K = 2.91,Λ = 1.19, µ = 3.81, ω = 0.3, ζ =
0.19, β = 1.0, θ = 2.6, δ = 0.1. For plot (c), the parameters are: γ = 1.8,𭟋 = 0.27,K =
2.91,Λ = 1.19, µ = 4.5, ω = 0.3, ζ = 0.19, β = 0.9, θ = 2.6, δ = 0.1. For plot (d), we have:
γ = 1.8,𭟋 = 0.27,K = 2.91,Λ = 1.19, µ = 3.81, ω = 2.1, ζ = 0.19, β = 0.9, θ = 2.6, δ =
0.1. For plot (e), we choose: γ = 1.8,𭟋 = 0.27,K = 2.91,Λ = 1.19, µ = 3.81, ω = 0.3, ζ =
0.19, β = 0.9, θ = 2.6, δ = 0.1, and for plot (f), we fix: γ = 1.8,𭟋 = 0.27,K = 2.91,Λ =
1.19, µ = 3.81, ω = 0.3, ζ = 0.19, β = 0.9, θ = 2.3, δ = 0.1.

S = {γ = 1.8,𭟋 = 0.27,K = 2.91,Λ = 1.19, µ = 3.81, ω = 0.3, ζ = 0.19, β = 0.9, θ = 2.6,

δ = 0.1}.
(3.6.1)

In this case, the initial population was assumed to be (x0, y0) = (0.3, 0.3). For the above
parameter set, the positive fixed point becomes (0.957564676866582, 0.10990382742646633).
To confirm the mathematical bifurcation conditions, we will vary one parameter and fix
the rest of the parameters as given in the above set. That particular parameter will be
considered a bifurcation parameter. We first determine the fixed point using the approxi-
mate value of a selected bifurcation parameter. Next, we compute the specific bifurcation
parameter value using this approximate fixed point, and we use mathematical conditions
to confirm the existence of the Hopf bifurcation. It is essential to mention that the reason
for the minor difference between the graphical outcome and the calculated bifurcation pa-
rameter’s value is that the fixed point was calculated using an approximation. However,
the exact value of the bifurcation parameter can reduce the difference between the math-
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ematical and visual variations. Also, pre-defined libraries in MATCONT can be used to
determine the exact value of bifurcation parameters. First, we will choose β ∈ [0.8, 1.0]

and fix the rest of the parameters as given in the above set. At β = 0.8049166431618142,
the forward bifurcation occurs. For this particular value of β, the Jacobian matrix be-
comes:

Mβ =

(
0.286837 −3.03241

0.0639366 −0.286837

)
. (3.6.2)

The roots of (3.6.2) are pure imaginary numbers {0.334076i,−0.334076i}. Hence, it
confirms the occurrence of Hopf bifurcation in (3.1.4) for parameter β. Similarly, if we
vary µ ∈ [3.3, 4], for µ = 3.3948506261293243, we have:

(a) δ = 0.1 (b) δ = 0.2 (c) δ = 0.5

(d) δ = 0.7 (e) θ = 2.1 (f) θ = 2.3

(g) θ = 2.4 (h) θ = 2.5 (i) θ = 2.3

Figure 3.4: Phase plots display bifurcation plots for various parameter values, including
δ and θ. They confirm the occurrence of backward Hopf bifurcation in the system (3.1.4).
Each sub-figure represents a specific value of the bifurcation parameter for which the plot
is displayed. The remaining parameter values are chosen from the set S by selecting that
specific bifurcation value.
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(a) β = 0.9 (b) β = 0.905 (c) β = 0.93

(d) β = 0.97 (e) µ = 3.8 (f) µ = 3.85

(g) µ = 3.95 (h) µ = 4.5 (i) ω = 2.99

(j) ω = 2.8 (k) ω = 2.5 (l) ω = 2.1

Figure 3.5: Phase plots: These diagrams show bifurcation plots for various parameter
values, including β, µ, and ω. The phase charts confirm the occurrence of forward Hopf
bifurcation in the system (3.1.4). Each sub-figure indicates the specific value of the
bifurcation parameter for which the plot is displayed. The remaining parameter values
are chosen from the set S by selecting that specific bifurcation value.
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Mµ =

(
0.295492 −2.7163

0.0636996 −0.295492

)
. (3.6.3)

With latent roots: {0.292766i,−0.292766i} . For parameter µ, the bifurcation can be no-
ticed in a forward direction. Similarly, at ω = 0.4396567623749219, the backward Hopf
bifurcation can be observed when ω ∈ [0, 0.5]. At ω = 0.4396567623749219, we have: The
phase space trajectories are given in figure 3.5. From these trajectories, it can be noticed
that the bifurcation is going in the reverse direction.

Mω =

(
0.271967 −2.74244

0.0848718 −0.271967

)
, (3.6.4)

with {0.398484i,−0.398484i} as eigenvalues. Now, to observe the bifurcation in δ, we
choose δ ∈ [0, 1.5]. At δ = 1.3549443154920353, the system bifurcates. Hence, we have

Mδ =

(
0.286837 −3.03241

0.0714893 −0.286837

)
, (3.6.5)

with λ1,2 = {0.366756i,−0.366756i}. Finally, at θ = 2.875846366959323, the system also
bifurcates in the range [2.5, 3]. Thus, for these values, the Jacobian matrix is:

Mθ =

(
0.286837 −3.03241

0.0714893 −0.286837

)
, (3.6.6)

with {0.366756i,−0.366756i} as the eigenvalues. The direction of the bifurcation can be
seen from the plots in Figures 3.5 and 3.4. Whereas the time-series plots in Figure 3.3
confirm the existence of bifurcation in the system (3.1.4). It can be observed from the
analysis that the system can experience a Hopf bifurcation when particular parameters
vary, which can result in the system moving from a stable equilibrium to an oscillation
of its limit cycles. Eventually, this may lead to changes in the two species populations,
which could collapse the total ecosystem. It is crucial to understand how to prevent Hopf
bifurcations and to put these strategies into practice with management plans to protect
and sustain ecological systems.

Example 8. For this example, we consider the case where a Neimark-Sacker bifurcation
occurs in the system (3.1.5). We took γ as a bifurcation parameter to study Hopf bifur-
cation and fixed the other parameters to specific numerical values. If the parametric set
below exists,
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(a) xn (b) yn

(c) MLE

Figure 3.6: Diagrams of bifurcations and MLE for system (3.1.5).

Sγ = {𭟋 = 0.32,K = 2.22,Λ = 2.60, µ = 2.82, ω = 1.67, ζ = 0.11, β = 2.02, θ = 2.15,

δ = 1.01},

with a population of (x0, y0) = (0.5564, 0.5676) as the initial value, then the system (3.1.5)
encounters a Hopf bifurcation when γ ∈ [1.6, 6.6]. According to our findings, the system
(3.1.5) loses stability around γ = 5.102. The fix parameter set Sγ with γ = 5.102 we have
(x̂, ŷ) = (1.4442371857229968, 0.48685467919366576) as the numerical value of positive
fixed point. The system (3.1.5) is as follows at these values:xn+1 = xn exp

[
5.102

1+0.32yn

(
1− xn

2.22

)
xn

xn+2.60
− 2.82yn

x+1.67
− 0.11

]
,

yn+1 = yn exp
[
(2.82)(2.02)xn

xn+1.67
− 2.15− 1.01yn

]
.

(3.6.7)

For these parameter values, the resulting Jacobian matrix is as follows: x̂
(

γ(κΛ−x̂(2Λ+x̂))

(Λ+x̂)2(𭟋ŷκ+κ)
+ µŷ

(ω+x̂)2

)
+ 1 x̂

(
γ𭟋x̂(x̂−κ)

κ(Λ+x̂)(𭟋ŷ+1)2
− µ

ω+x̂

)
βµωŷ

(ω+x̂)2
1− δŷ

 =

(
0.53306 −1.52805

0.477543 0.508277

)
.

(3.6.8)
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(a) γ = 4.7 (b) γ = 4.8 (c) γ = 4.9

(d) γ = 5.0 (e) γ = 5.1 (f) γ = 5.2

Figure 3.7: Phase plots for different γ values.

The set of the latent roots of the (3.6.8) is:

∆1,2 = {0.520668 + 0.854141i, 0.520668− 0.854141i} ,

with |∆1,2| = 1. Figures 3.7c and 3.7 represent the graphical results.

Example 9. This example demonstrates the simultaneous occurrence of a flip and Hopf
bifurcation in the system (3.1.5). To achieve this, we select γ as the bifurcation parameter.
The remaining factors are limited to the specified numerical values listed below:

Qγ = {𭟋 = 0.11,K = 2.30,Λ = 0.59, µ = 2.92, ω = 1.19, ζ = 0.11, β = 0.99, θ = 0.99,

δ = 1.04}.

The initial conditions are assumed to be (1.7529, 1.3376). When γ is equal to 1.412, the
backward Hopf bifurcation occurs, and when γ is equal to 5.53741, the forward flip bifurca-
tion occurs. As a result, the region [1, 1.412] experiences a Hopf bifurcation, but the region
[5.53741,5.96] undergoes a flip bifurcation, which results in chaos. For γ = 1.412 with
Qγ the Jacobian matrix calculated at (x̂, ŷ) = (0.9510575193694013, 0.2827817773733809)

is provided below:

ΩHopf (x̂, ŷ) =

(
1.01162 −1.34735

0.212207 0.705907

)
. (3.6.9)

The set of the latent roots of (3.6.9) is:

∆1,2 = {0.858761 + 0.5124i, 0.858761− 0.5124i} ,
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(a) xn (b) yn

(c) MLE

Figure 3.8: Diagrams of bifurcations and MLE for system (3.1.5).

with |∆1| = 1 and ∆1 < 1. The graphical results in Figure3.8 also confirm the occurrence
of flip bifurcation in the system (4.1.5). Whereas, for γ = 5.53741 with Qγ, the Jacobian
matrix evaluated at (x̂, ŷ) = (1.8147585333311815, 0.7268576579192267) is given below:

ΩFlip(x̂, ŷ) =

(
−1.42619 −1.91447

0.276946 0.244068

)
. (3.6.10)

The associated eigenvalues are:

{−1,−0.182116} .

Therefore, both types of bifurcation arise since the eigenvalues criterion is met, which
confirms their occurrence. The outcomes are represented graphically in Figures 3.8, 3.9,
and 3.10.
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Figure 3.9: Bifurcation plots for (3.1.5).

3.6.1 Bi-parameter plots

The bi-parameter plots are essential for exploring the model’s behavior and providing
insights into the system’s dynamics. Studying two-parameter Lyapunov exponent and
two-parameter period-doubling bifurcation plots can be highly stimulating because they
help us comprehend the behavior of complicated systems, like chaotic and periodic pat-
terns. We may learn more about the underlying dynamics and even make predictions
about future behavior by examining how these systems behave when their parameters
are changed. To this end, we have carefully selected two parameters, namely, the growth
rate of the prey γ and the carrying capacity K, to discuss and analyze the dynamics
in a two-dimensional parameter space. In the literature, two types of techniques have
been used to characterize the parameter-space dynamics of dynamical systems: the Lya-
punov exponents between the parameters and the isoperiodic diagrams. By constructing
the Lyapunov exponent between these parameters, we can better understand how stable
the periodic behavior of the system is embedded in the chaotic region. Ultimately, this
information will help us judge the bi-stability of the system. In our analysis, we will
use the Lyapunov exponent to confirm the periodic and chaotic dynamics of the system.
Specifically, we compute the Lyapunov exponent λ1,2 of our model using the following
system of equations:

λ1,2 = lim
n→∞

1

n
In|αq|, q = 1, 2.

Here, αq, q = 1, 2 are the two eigenvalues of the product matrix α = Πn
p=1ξp, and ξp is

the Jacobian matrix of the system calculated at the point (xp, yp) at the p-th iteration.
These two exponents can be rearranged such that λ1 ≥ λ2. If the Lyapunov exponent
is positive, the system is chaotic. In contrast, a negative Lyapunov exponent suggests
that the system is periodic, and if the Lyapunov exponent is equal to zero, the system
manifests quasi-periodic behavior. We vary the parameter space (γ×K) to construct the
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(a) γ = 1.1 (b) γ = 1.2 (c) γ = 1.3

(d) γ = 1.35 (e) γ = 1.38 (f) γ = 1.4

(g) γ = 1.41 (h) γ = 1.42 (i) γ = 1.5

Figure 3.10: Phase plots for different γ values.

Lyapunov exponent while fixing the other parameters. This approach will enable us to
gain valuable insights into the system’s behavior and understand how it evolves.

In Figure 3.11(a), we can see the graphical representation of the Lyapunov exponent,
which indicates the complex dynamics of the model (3.1.5). To generate these plots, we
chose 𭟋 = 0.82,Λ = 0.16, µ = 0.95, ω = 2.54, ζ = 0.04, β = 4.31, θ = 1.0, and δ = 4.81,

with (2.0, 2.8) as the system’s initial values. The plots confirm the model’s chaotic and
periodic regimes. Moving on to Plot 3.11 (b), we observe the period-doubling bifurcation
phenomenon of the model in the rectangular space [2.3, 2.9] × [0.01, 13]. Figure 3.11
(a) further confirms the occurrence of period-doubling bifurcation, with the Lyapunov
exponent values labeled in the color bar with different colors indicating the additional
weight of the Lyapunov exponent.

From our analysis, we found that the increase in the intrinsic growth rate of the prey
population with less carrying capacity leads to chaos in the system. Looking at Figure
3.11, we concluded that when there is less growth of the prey, the system is less chaotic
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(a) Lyapunov exponent (b) Period-doubling bifurcation plot

Figure 3.11: The Lyapunov exponent and the two-parameter bifurcation diagrams for
the system (3.1.5).

at the fixed carrying capacity. However, if the growth rate increases, then the chaoticness
of the system rises at the same carrying capacity, which is also biologically accurate.

To mitigate the chaos, various approaches can be adopted, such as introducing predators
in the population to maintain the prey population, prey harvesting, migration of prey
species, etc. In the next section, we will present a technique for adopting these approaches
through a controlled parameter.

3.7 Chaos control

The idea of chaos control is to suppress or eliminate any chaotic aspects while keeping
the system operational as desired. Several chaos control strategies have been developed
to maintain stability in chaotic systems. Managing population dynamics and other com-
plex systems where chaos can lead to unpredictable behavior is made easier with the
help of these strategies. This section emphasizes the benefits of using chaotic control
techniques over traditional management methods and the importance of doing so in our
prey-predator context. By stabilizing the system and preventing bifurcation, these strate-
gies can substantially impact conservation and population management activities.

Some authors confirm the existence of chaos in a system using the Lyapunov exponent
[111]. However, some use mathematical techniques to prove that chaos exists in a system,
[112]. According to some authors, period-doubling bifurcation confirms chaos in the
system. Using the arguments in [111], in this article, we also use the Lyapunov exponent
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in Section 3.6.1 that shows there is chaos in the system

So, different control techniques are used to delay or eliminate the chaotic dynamics of
any population model. Recently, some used methods can be seen in the articles ([113],
[114], [115], and [116]). We used a simple hybrid control feedback technique here. This
control strategy stabilizes the system and avoids bifurcation by combining parameter
perturbation and feedback control. The comparable controlled system is presented below:

xn+1 = Ψ1xn exp
[

γ
1+𭟋yn

(
1− xn

K

)
xn

xn+Λ
− µyn

xn+ω
− ζ
]
+ (1−Ψ1)xn,

yn+1 = Ψ1yn exp
[
µβxn

xn+ω
− θ − δyn

]
+ (1−Ψ1)yn.

(3.7.1)

where Ψ ∈ (0, 1) is the controlled parameter, and in (3.7.1), feedback control and pa-
rameter perturbation are combined in the controlled approach. Selecting an appropriate
controlled parameter, Ψ1, allows us to prevent, delay, or enhance chaos in the controlled
system. The controlled system’s Jacobian matrix Ccontrol, which was evaluated at (x̂, ŷ),
is presented below:

Ccontrol =

 x̂
(

γ(KΛ−x̂(2Λ+x̂))

(Λ+x̂)2(𭟋ŷκ+K)
+ µŷ

(ω+x̂)2

)
Ψ1 + 1 x̂

(
γ𭟋x̂(x̂−K)

K(Λ+x̂)(𭟋ŷ+1)2
− µ

ω+x̂

)
Ψ1

βµωŷΨ1

(ω+x̂)2
1− δŷΨ1

 .

To get the stability of the model, we have to modify the control parameter Ψ1 values
so that the eigenvalues of the matrix Ccontrol lie within an open unit disc. The main
goal of controlling chaotic dynamics in biological systems is to prevent excess resources
or the extinction of entire species. This can be performed in prey-predator models by
stabilizing populations at a sustainable level, a handling purpose that has biological
validity. Furthermore, the controlled system can study how various control measures
affect the dynamics of prey-predator relationships. For instance, you can examine the
efficacy of different management techniques, such as eliminating predators or providing
more resources for prey, by changing the value of Ψ1.

3.8 Conclusion

The prey and predator populations are taken into account in this model. In our model’s
assumptions, prey increases exponentially without predators but declines due to perdi-
tion. On the other hand, the predator population grows as it eats the prey population
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while decreasing in the absence of prey. A set of coupled differential equations that de-
scribe the seasonal changes of the two populations governs the model. The chosen values
of the critical parameters significantly impact how the model behaves. These additional
details are: Important novel insights about the behavior of ecological systems have been
gained from examining the two-dimensional prey-predator model. The stability analysis
of the fixed points in both the discrete and continuous forms of the model has led to a
deeper understanding of the system’s dynamics.

Additionally, multi-parameter bifurcations were investigated, including a bifurcation be-
tween two parameters that had never been observed before for this model. By studying
the Lyapunov exponents, we better understand the complex behavior and sensitivity of
the initial conditions. The study has analyzed the forward and backward Hopf, Neimark-
Sacker, and period-doubling bifurcations with various parameters. A greater comprehen-
sion of the system’s dynamics has resulted from the stability analysis of the fixed points
in both the discrete and continuous forms of the model. The investigation of the periodic
solutions also included a previously unidentified behavior of the model.

Based on bi-parameter analysis, we discovered that the system becomes chaotic when the
intrinsic growth rate of the prey population increases relative to its carrying capacity.
We deduced from the graphical analysis that the system is less chaotic when the prey
grows slower at the fixed carrying capacity. On the other hand, the system becomes more
disorganized at the same carrying capacity if the growth rate increases. The bifurcations
in the system cause significant fluctuations in predator and prey species, so these results
have significant consequences for controlling ecological systems. A simple control method
is also suggested in the article for managing the chaos in the system. Given how sensitive
environmental systems are to even the most minor changes in their parameters, this
method is quite helpful in preserving their stability.

Controlling the bifurcation may significantly affect how ecological systems are main-
tained, especially in population conservation and sustainability management activities.
The high population density of the prey population during periods when the Allee and
fear effects are weak might also result in an unstable prey-predator system. These findings
have significant consequences for ecological modeling, enabling us to manage and protect
natural ecosystems with knowledge, especially in the context of changing environmental
conditions and upcoming dangers.
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Chapter 4

Fixed points stability, multi-parameter
bifurcation analysis, and chaos control
of a prey-predator model incorporating
the Allee effect and fear effect

4.1 Introduction

This chapter has been published, and its published version can be obtained from the
reference [117]. Ecologists have been very interested in how predators and prey interact
for a long time. They often use a well-known model called the Lotka-Volterra model to
understand these interactions. Ecologists can better understand how these complicated
relationships perform within the natural world by including the fear and Allee effects in
studying predator-prey interactions along with the Lotka-Volterra model. According to
current research, the fear and Allee effects have been found to have a major impact on
population dynamics. The fear effect, first proposed by [87], refers to the phenomenon
where prey exhibits increased vigilance and decreased activity when predators are present.
By engaging in this behavior, there is a chance that fewer prey-predator contacts will oc-
cur, which will eventually result in reduced predator attacks. On the other hand, the
Allee effect, first proposed by [4], refers to the concept that there is a population density
below which a species cannot survive due to lower reproductive success or higher mortal-
ity. Allee studied population fluctuations and discovered the Allee effect, which is when
the birth rate decreases while the death rate increases if the population density is too low.
Recent studies have highlighted the importance of incorporating these additional factors
into prey-predator models. Prey-predator models may produce more accurate and realis-
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tic forecasts of population dynamics by including these extra variables. However, ongoing
research is still into how these elements affect the model’s stability and bifurcation. The
stability and bifurcation of a prey-predator model that includes both the fear effect and
the Allee effect will be investigated in this chapter. We will investigate the effects of
these extra variables on the prey-predator system’s dynamics using a mathematical ap-
proach. One can find many works to study such effects in the literature, including some
interesting results discussed here.

Huang et al. [89] studied the Allee effect, a fear effect, and prey refuge on a prey-predator
model. They proved the complexity of the model by increasing the Allee effect, or prey
refuge. Additionally, they demonstrated that the Allee or fear effect can reduce the
predator density at positive fixed points but does not affect the prey density. Lai et al.
[90] examined fear and the additive Allee effect to analyze the dynamic behavior of a
prey-predator model. By adding the fear impact on the prey species, they discovered
that the density of predator species decreased with increasing fear effect strength. The
final prey density is unaffected by the fear effect, though. Xie [91] examined the impact
of Allee and the fear effect on a prey-predator model with a Holling type-II functional
response. In addition to observing that the system encounters Hopf bifurcation, the
author also deduced the requirements for the stability of fixed points. The fear effect was
also found to boost the stability of the positive fixed point of the system by rejecting
periodic solutions, and the Allee effect also significantly impacted the persistence of the
predator species. Li et al. [92] studied the dynamical analysis of a prey-predator model
under the influence of the fear effect, weak Allee effect, and delay. They established the
stability requirements and demonstrated the model’s potential to bifurcate. They increase
the realism of the model by including the gestation delay. Their research indicates that
the Allee effect and the delay weaken the model; however, the fear effect can encourage
stable coexistence.

Many environmental factors might cause the Allee effect, including the inability to mate
at low densities, genetic inbreeding, social favoritism of reproduction, low mate suc-
cess rates, declining inbreeding rates, etc. Recently, there has been a surge in interest
among scientists in researching the effects of including the Allee effect in prey-predator
dynamics. By comparing the dynamical features of the logistic prey growth term in the
ratio-dependent prey-predator model with and without the Allee effect, the authors [34]
demonstrated that the Allee effect might be used to eliminate the oscillation behavior of
species densities. Furthermore, the causes of various bifurcation behaviors were deduced
and quantitatively confirmed using parametric diagrams and phase plots. The authors
[93] examined the same discrete-time model and demonstrated how changing the integral
step size might lead to period doubling and an invariant circle to produce chaotic orbits.
Liange et al. [94] work on a Leslie-type model with a ratio-dependent type interaction
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term and state-impulsive feedback control. They use the geometry theory of differential
equations to determine the conditions for existence, uniqueness, and orbital asymptotic
stability of the periodic solution of order 1. The authors [95] demonstrated the limit cycle
dynamics of a prey-predator model of the Leslie type with fear and the Allee effect. They
demonstrated that the system exhibited saddle-node bifurcation through numerical ex-
amples and validated their theoretical findings. [96], these authors examined the intricate
dynamics of a Leslie-Gower prey-predator model that is ratio-dependent and includes the
Allee and fear effects. The Allee effect and the fear effect are considered in the model,
which can have significant implications for population growth. Here, we elaborate on the
mathematical model and the presumptions made. From the article by [56], we have the
following model: dx

dt
= αx

(
1− x

K

)
− βxy

x+L ,

dy
dt

= γy + ξβxy
x+L − θy2.

(4.1.1)

First, introduce the fear effect in the model (4.1.1). The fear effect, also known as predator
avoidance behavior, is presented in prey-predator models to more accurately reflect the
behavior of animals in the wild. In nature, prey animals often exhibit behaviors that
help them avoid or escape predators, such as running or hiding. Such behaviors may
significantly affect the dynamics of both prey and predator populations. By considering
the impact of fear in a prey-predator model, scientists can better understand how these
behaviors influence the populations of different species and how they interact with one
another. To introduce the fear effect, we have to add the term 1

1+Fy
in the model (4.1.1),

which represents the fear effect with parameter F as a level of fear. Thus, by adding the
fear effect, the model (4.1.1) becomes:dx

dt
= αx

1+Fy

(
1− x

K

)
− βxy

x+L ,

dy
dt

= γy + ξβxy
x+L − θy2.

(4.1.2)

The model will now include the Allee effect (4.1.2). The Allee effect is a term used in
population ecology to describe a phenomenon where the growth rate of the population
decreases as the population density becomes too low. For this, let U(A, x) be the fertility
of a species with x adults in an isolated patch. Fertility increases with population density,
the description of which is:

U(A, x) = αx

x+ A
, (4.1.3)

where α denotes the inherent growth rates of the prey population and x is the prey
population density at time t, A > 0 represents the level of Allee, which can determine
how much of an impact Allee has on the prey. U(A, x) satisfied limA→+∞ U(A, x) = 0,
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limx→0 U(A, x) = 0, limA→0 U(A, x) = α, limx→+∞ U(A, x) = α,∂U(A,x)
∂A

< 0. More details
regarding the Allee effect are in the article by [99]. Thus, the model (4.1.2) with the Allee
effect becomes: dx

dt
= αx

1+Fy

(
1− x

K

)
x

x+A
− βxy

x+L ,

dy
dt

= γy + ξβxy
x+L − θy2.

(4.1.4)

Thus, our desired model is a system (4.1.4). Here, x and y reflect the densities of prey
and predator populations, respectively; α and β indicate the inherent growth rates of
the relevant prey and predator, and γ indicates the growth rate of the predator as a
result of substitute resources. Moreover, θ indicates a conflict between individuals of
predator species when overcrowding is occurring (i.e., crowding effect); L stands for the
half-saturation constant; ξ shows the predator conversion rate; and K indicates the prey’s
carrying capacity in a specific ecosystem. The fear effect in the model (4.1.4) can be an-
alyzed from the plot 4.1.

The discretization of the continuous-time model is crucial from a biological perspective
because it permits the simulation of predator-prey dynamics over discrete time scales, al-
lowing for easier comparison with actual population data and more efficient incorporation
of time-sensitive ecological components. Therefore, we intend to discuss the dynamics
of the model (4.1.4) in both discrete and continuous form. For this purpose, we use the
piece-wise constant argument to convert the above system (4.1.4) into discrete format as
follows: xn+1 = xn exp

[
α

1+Fyn

(
1− xn

K

)
xn

xn+A
− βyn

xn+L

]
,

yn+1 = yn exp
[
γ + ξβxn

xn+L − θyn

]
.

(4.1.5)

Here, we make the following assumptions: All the biological parameters are positive,
while the populations of both prey and predators must remain non-negative. We will
enforce this constraint in the initial conditions and throughout the simulation. The
prey population exhibits logistic growth, wherein it experiences an exponential increase
proportionate to its present size but eventually levels off as it nears the carrying capacity
K of the ecosystem. The model contains intra and inter-species interactions, representing
the complicated relationship between prey and predator populations through conflicts
caused by overcrowding and dynamics between predators and prey. Resources other
than prey can cause the predator population to increase. This shows the ability of
predators to find additional food sources during periods of low prey populations. The
prey population growth should saturate as it approaches the carrying capacity K. The

89



0 2 4 6 8 10
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

dx
/d

t

dx/dt vs. x for different values of F
F = 0.1
F = 0.2
F = 0.3
F = 0.4
F = 0.5

Figure 4.1: Fear effect for α = 2.65, K = 10, A = 5, β = 0.02,L = 0.3, and y = 1.

chapter is vital because we present a detailed mathematical model incorporating the fear
and Allee effects. It will help us better understand the complex relationships between
prey populations and predators. Here, we present an in-depth study of multi-parameter
bifurcations. The findings have important implications for ecological system management
and preservation. Detailed numerical examples are included, and mathematical proofs are
used to support our theoretical conclusions. This study will contribute to the growing
body of literature on the effects of additional factors on prey-predator dynamics and
provide valuable insights for those working in ecology and preservation. Now, we will
discuss the critical results related to the fixed points of systems (4.1.4) and (4.1.5).

4.2 Positivity and uniform boundedness of the solu-
tions

Theorem 4.2.1. Let (x(0), y(0)) > 0, then the solution of the system (4.1.4) uniquely
exists and is positive for all t ≥ 0.

Proof. Since the right-hand side of the system (4.1.4) is continuous and locally Lips-
chitzian in R2

+, the solution of the system (4.1.4) exists uniquely in [0, I) where 0 < I ≤
∞. Thus, we have:x(t) = x(0)exp

[ ∫ t

0

{
α

1+Fy(ξ)

(
1− x(ξ)

K

)
x(ξ)

x(ξ)+A
− βy(ξ)

x(ξ)+L

}
dξ
]
> 0,

y(t) = y(0)exp
[ ∫ t

0

{
γ + ξβx(ξ)

x(ξ)+L − θy(ξ)
}
dξ
]
> 0.

(4.2.1)
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Theorem 4.2.2. The prey population of the system (4.1.4) is uniformly bounded in R.

Proof. From the first differential equation of (4.1.4), we have:

dx

dt
≤ αx

(
1− x

K

)
,

=⇒ limt→∞supx(t) ≤ K.

Now, we will show that every solution of the system (4.1.5) is bounded.

Lemma 4.2.3. ([74]) Suppose that st satisfies s0 > 0 and st+1 ≤ st exp[c(1 − dst)] for
t ∈ [0,∞], where d > 0 is a constant. Then limt→∞ sup st ≤ 1

cd
exp(c− 1).

Lemma 4.2.4. Every positive solution (xn, yn) of the system (4.1.5) is uniformly bounded.

Proof. Let (xn, yn) be the positive solution of (4.1.5) with starting population (x0, y0) > 0.
Then we have:

xn+1 ≤ xn exp
[
α
(
1− xn

K

)]
, (4.2.2)

for all n = 0, 1, 2, · · · . From Lemma 4.2.3, we have

lim
n→∞

supxn ≤ K

α
exp (α− 1) := Π1.

Similarly, we have

yn+1 ≤ yn exp [γ + ξβxn − θyn]

≤ yn exp [γ + ξβΠ1 − θyn]

= yn exp (γ + ξβΠ1)

[
1− θ

γ + ξβΠ1

yn

]
. (4.2.3)

From Lemma 4.2.3, we have

lim
n→∞

sup yn ≤ 1

θ
exp (γ + ξβΠ1 − 1) := Π2.

Thus, it shows that limn→∞ sup (xn, yn) ≤ Π, where Π = max [Π1,Π2]. Hence, the proof
is completed.
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4.3 Stability of the fixed points

The fixed point (x̄, ȳ) of the model (4.1.4) can be obtained by solving the equations that
follow: 0 = αx̄

1+F ȳ

(
1− x̄

K

)
x̄

xn+A
− βx̄ȳ

x̄+L ,

0 = γȳ + ξβx̄ȳ
x̄+L − θȳ2.

These equations yield the following fixed points: ETrivial = (0, 0) , EPrey = (K, 0) , EPredator =(
0, γ

θ

)
, and EPositive = (x̄, ȳ) .

Lemma 4.3.1. The fixed point ETrivial(0, 0) of system (4.1.4) is unstable.

Proof. The variational matrix ΠTrivial of system (4.1.4) at ETrivial(0, 0) is given below:

ΠTrivial (0, 0) =

(
0 0

0 γ

)
. (4.3.1)

The latent roots of (4.3.1) are: Θ{a,b} =
{
0, γ
}
. Thus ETrivial(0, 0) is unstable.

Lemma 4.3.2. The fixed point EPrey = (K, 0) of (4.1.4) is a saddle point.

Proof. The variational matrix ΠPrey of system (4.1.4) at EPrey = (K, 0) is given below:

ΠPrey (K, 0) =

(
− αK

A+K
− βK

L+K

0 γ + βKξ
L+K

)
. (4.3.2)

From (4.3.2) we have latent roots:

Θ{a,b} =
{
− αK

A+K
,
βKξ + γK + γL

K + L

}
.

Now, it is easy to see that EPrey = (K, 0) is always a saddle point.

Lemma 4.3.3. The fixed point EPredator =
(
0, γ

θ

)
is a sink.

Proof. At EPredator =
(
0, γ

θ

)
, we have the following variational matrix:

ΠPredator

(
0,
γ

θ

)
=

(
−βγ

Lθ 0
βγξ
Lθ −γ

)
. (4.3.3)

The eigenvalues are
{
−γ,−βγ

θL

}
. Using stability criteria, we can see that EPredator =

(
0, γ

θ

)
is always a sink.
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At (x̄, ȳ), the Jacobian matrix of the system (4.1.4) is obtained by

J (x̄, ȳ) =

 ν11 x̄
(

αF x̄(x̄−K)

K(A+x̄)(F ȳ+1)2
− β

L+x̄

)
Lβξȳ

(L+x̄)2
γ − 2θȳ + βξx̄

L+x̄

 ,

where

ν11 =
αx̄ (2AK + x̄ (−3A+K − 2x̄))

(A+ x̄)2 (F ȳK +K)
− Lβȳ

(L+ x̄)2
.

The characteristic function is:

Ω(Θ) = Θ2 + (ΩTr)Θ + ΩDet,

where,

ΩTr =

(
Lβȳ

(L+ x̄)2
− αx̄ (2AK + x̄ (−3A+K − 2x̄))

(A+ x̄)2 (F ȳK +K)

)
−

(
γ − 2θȳ +

βξx̄

L+ x̄

)
, (4.3.4)

and

ΩDet =

(
αx̄ (2AK + x̄ (−3A+K − 2x̄))

(A+ x̄)2 (F ȳK +K)
− Lβȳ

(L+ x̄)2

)
(
γ − 2θȳ +

βξx̄

L+ x̄

)
−

(
x̄
( αF x̄ (x̄−K)

K (A+ x̄) (F ȳ + 1)2
− β

L+ x̄

))( Lβξȳ
(L+ x̄)2

)
.

Theorem 4.3.4. EPositive = (x̄, ȳ) is locally asymptotically stable if ΩTr > 0 and ΩDet >

0.

We will discuss the stability of the fixed points in the system (4.1.5). By resolving the
following equations, the fixed points of the model (4.1.5) can be determined:x̄ = x̄ exp

[
α

1+F ȳ

(
1− x̄

K

)
x̄

x̄+A
− βȳ

x̄+L

]
,

ȳ = ȳ exp
[
γ + ξβx̄

x̄+L − θȳ
]
.

These equations yield the following fixed point:
E∗

Trivial = (0, 0) , E∗
Prey = (K, 0) , E∗

Predator =
(
0, γ

θ

)
, and E∗

Positive = (x̄, ȳ) .

Lemma 4.3.5. The fixed point E∗
Trivial(0, 0) of system (4.1.5) is unstable.
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Proof. The variational matrix Π∗
Trivial of system (4.1.5) at E∗

Trivial(0, 0) is given below:

Π∗
Trivial (0, 0) =

(
1 0

0 eγ

)
. (4.3.5)

The latent roots of (4.3.5) are: Θ∗
{a,b} =

{
1, eγ

}
. Using the Jury stability criterion, it is

easy to see that E∗
Trivial(0, 0) is unstable.

Lemma 4.3.6. The fixed point E∗
Prey = (K, 0) of (4.1.5) is a

(I) source if α > 2A+2K
K

,

(II) saddle point if 0 < α < 2A+2K
K

.

Proof. The variational matrix Π∗
Prey of system (4.1.5) at E∗

Prey = (K, 0) is given below:

Π∗
Prey (K, 0) =

(
1− αK

A+K
− βK

L+K

0 eγ+
βKξ
L+K

)
. (4.3.6)

From (4.3.6) we have latent roots: Θ∗
{a,b} =

{
eγ+

βKξ
L+K , A+K−αK

A+K

}
. Using Jury conditions, it

is easy to see that E∗
Prey = (K, 0) is a source if α > 2A+2K

K
, saddle point if 0 < α < 2A+2K

K
.

The topological classification of E∗
Prey = (K, 0) is given in Figure 4.2.

Figure 4.2: Topological classification of E∗
Prey = (K, 0).

Lemma 4.3.7. The fixed point E∗
Predator =

(
0, γ

θ

)
is a

(I) sink if 0 < γ < 2,
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(II) saddle if γ > 2,
(III) non-hyperbolic if γ = 2.

Proof. At E∗
Predator =

(
0, γ

θ

)
we have the following variational matrix:

Π∗
Predator

(
0,
γ

θ

)∗
=

(
e−

βγ
Aθ 0

βγξ
Lθ 1− γ

)
. (4.3.7)

For (4.3.7), the subsequent is our latent roots for characteristic function:

Θ∗
{a,b} =

{
1− γ, e−

βγ
Aθ

}
.

Using Jury stability criteria, we can see that E∗
Predator =

(
0, γ

θ

)
is a sink if 0 < γ < 2,

saddle point if γ > 2, and non-hyperbolic if γ = 2. Figure 4.3 displays the topological
classification of E∗

Predator =
(
0, γ

θ

)
.

Figure 4.3: Topological classification of E∗
Predator =

(
0, γ

θ

)
.

At (x̄, ȳ) the Jacobian matrix of the system (4.1.5) is obtained by

J (x̄, ȳ) =

 τ11 x̄
(

αF x̄(x̄−K)

K(A+x̄)(F ȳ+1)2
− β

L+x̄

)
Lβξȳ

(L+x̄)2
1− θȳ

 ,

where
τ11 = x̄

(
α (AK − x̄ (2A+ x̄))

(A+ x̄)2 (F ȳK +K)
+

βȳ

(L+ x̄)2

)
+ 1.
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The characteristic function is:

Ω(Θ) = Θ2 − (ΩTr)Θ + ΩDet,

where,

ΩTr =
αx̄ (AK − x̄ (x̄+ 2A))

(x̄+ A)2 (KFȳ +K)
+ ȳ

(
βx̄

(x̄+ L)2
− θ

)
+ 2,

and

ΩDet =

(
x̄

(
α (AK − x̄ (2A+ x̄))

(A+ x̄)2 (F ȳK +K)
+

βȳ

(L+ x̄)2

)
+ 1

)(
1

−θȳ
)
−
(
x̄

(
αF x̄ (x̄−K)

K (A+ x̄) (F ȳ + 1)2
− β

L+ x̄

))(
Lβξȳ

(L+ x̄)2

)
.

The stability conditions can now be calculated using the Routh-Hurwitz criterion. Thus,
we have the following theorem:

Theorem 4.3.8. The fixed point (x̄, ȳ) of system (4.1.5) is a

Ca : Source iff |ΩDet| > 1, and |ΩTr| < |1 + ΩDet|,
Cb : Saddle point iff (ΩTr)

2 > 4 (ΩDet) , and |ΩTr| > |1 + ΩDet|,
Cc : Non-hyperbolic point iff |ΩTr| = |1 + ΩDet|, or ΩDet = 1, and ΩTr ≤ 2.

Cd : If condition Cc does not hold then (x̄, ȳ) is a sinkiff |ΩTr| < 1 + ΩDet < 2.

4.4 Bifurcation analysis

Tracing the bifurcation in all parameters of a prey-predator model is essential because
it allows scientists to understand how small changes in specific parameters can signifi-
cantly change the system’s overall behavior. Bifurcations occur when a slight change in a
parameter causes the system to transition from one stable state to another. These tran-
sitions can be used to identify critical thresholds, or "tipping points," beyond which the
system can no longer return to its original state. In the context of a prey-predator model,
bifurcations can reveal how changes in the environment, such as changes in the prey or
predator populations, can affect the system’s dynamics. For example, a slight increase
in the predator population may cause a bifurcation in the prey population, leading to a
significant decline in prey animals. This information can be used to develop conservation
strategies that target specific parameters and preserve the balance of the ecosystem. In
addition, by identifying bifurcations in all parameters, scientists can understand how dif-
ferent parts of a system are interconnected and how they interact. This can help identify
potential sources of instability in the system and inform management decisions that aim

96



to maintain the stability of the ecosystem. In this chapter, we will also examine the bi-
furcation at different parameters. For simplicity, we will present theoretical calculations
by choosing one bifurcation parameter. Similarly, one can also find the theoretical results
for other parameters.

For Hopf bifurcation, we observed the limit cycles of both discrete and continuous models.
It has been noted that Hopf bifurcation produces adjacent invariant circles. Alternatively,
some isolated orbits with periodic behavior can be found along with trajectories that
densely cover the consistent circle ([98]). If a stable, closed, constant curve exists, the
bifurcation can be supercritical; otherwise, it can be sub-critical. A slight modification
in a parametric factor during flip bifurcation leads the system to adopt a new behavior
with twice the period of the initial system. We have only noticed the flip bifurcation
in the system (4.1.5). For interested readers to study further results on Hopf and flip
bifurcations, relevant papers include those by [118], [100], [101], [102], [19], [103], [111],
[112], [113], and [114]. Some recent work related to advances in the related bifurcations
and their application areas is provided by [115] and [116]. We have the following criteria
for these two types of bifurcation: The variational matrix of (4.1.5) at (x̄, ȳ) is:

J (x̄, ȳ) =

 τ11 x̄
(

αF x̄(x̄−K)

K(A+x̄)(F ȳ+1)2
− β

L+x̄

)
Lβξȳ

(L+x̄)2
1− θȳ

 ,

where
τ11 = x̄

(
α (AK − x̄ (2A+ x̄))

(A+ x̄)2 (F ȳK +K)
+

βȳ

(L+ x̄)2

)
+ 1.

The characteristic function is:

Ω(Γ) = Γ2 − (ΩTr) Γ + ΩDet, (4.4.1)

where,

ΩTr =
αx̄ (AK − x̄ (x̄+ 2A))

(x̄+ A)2 (KFȳ +K)
+ ȳ

(
βx̄

(x̄+ L)2
− θ

)
+ 2,

and

ΩDet =

(
x̄

(
α (AK − x̄ (2A+ x̄))

(A+ x̄)2 (F ȳK +K)
+

βȳ

(L+ x̄)2

)
+ 1

)(
1

−θȳ
)
−
(
x̄

(
αF x̄ (x̄−K)

K (A+ x̄) (F ȳ + 1)2
− β

L+ x̄

))(
Lβξȳ

(L+ x̄)2

)
.

Let (ΩTr)
2 > 4ΩDet, and (ΩTr) + ΩDet = −1, then it follows that:
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α =
[
K (x̄+ A)2 (F ȳ + 1)2

(
ȳ
(
x̄
(
2x̄ (θx̄− β + 3θL) + L(6θL − β(βξ + 2))

)
+ 2θL3

)
+

βθx̄ȳ2 (x̄+ L)− 4 (x̄+ L)3
)][ 1

P̃

]
, where

P̃ = x̄ (x̄+ L)
(
ȳ
(
x̄
(
x̄
(
x̄
(
x̄(θ − 2F )− F (4(A+ L) + βξL) + 2θ(A+ L)

)
+ A(−K(θ

−2F )− LF (βξ + 8) + 4θL) + L(βKξF + L(θ − 2F ))
)
+ AL(KF (βξ + 4)− 2θK

+2L(θ − 2F ))
)
− AKL2(θ − 2F )

)
+ θF ȳ2 (x̄+ L)2

(
2Ax̄+ x̄2 − AK

)
−2 (x̄+ L)2

(
2Ax̄+ x̄2 − AK

) )
.

For the above value of α, the roots of (4.4.1) are Γ1 = −1 and Γ2 ̸= 1. Now for the above
value of α, consider the following set:

FB1 =
{(
α, F,K, β,A, γ, ξ,L, θ

)
∈ R9

+ : (ΩTr)
2 >

4ΩDet, (ΩTr) + ΩDet = −1, and |Γ2| ≠ 1
}
.

When the parameters vary in the small neighborhood of the set FB1, then the flip bi-
furcation occurs in the system (4.1.5) at (x̄, ȳ). Considering the arbitrary parameters(
α = α1, F,K, β,A, γ, ξ,L, θ

)
∈ FB1, then in terms of these parameters, the system

(4.1.5) can be written as:

xn+1 → xn exp
[

α1

1+Fyn

(
1− xn

K

)
xn

xn+A
− βyn

xn+L

]
,

yn+1 → yn exp
[
γ + ξβxn

xn+L − θyn

]
.

(4.4.2)

Consider the perturbation of (4.4.2) as below:

xn+1 → xn exp
[

α1+ᾱ
1+Fyn

(
1− xn

K

)
xn

xn+A
− βyn

xn+L

]
,

yn+1 → yn exp
[
γ + ξβxn

xn+L − θyn

]
.

(4.4.3)

Let u = x− x̄ and v = y− ȳ. The transformation of the positive fixed point of (4.4.3) to
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its origin gives us the following system:
u→ ϱ11u+ ϱ12v + ϱ13u

2 + ϱ14uv + ϱ15v
2 + ϱ16u

3 + ϱ17u
2v + ϱ18uv

2 + ϱ19v
3 + ς11ᾱu

+ς12ᾱv + ς13ᾱ
2 + ς14uvᾱ + ς15u

2ᾱ + ς16v
2ᾱ + ς17uᾱ

2 + ς18vᾱ
2 + ς19ᾱ

3 +O(u, v, ᾱ)4,

v → ϱ21u+ ϱ22v + ϱ23u
2 + ϱ24uv + ϱ25v

2 + ϱ26u
3 + ϱ27u

2v + ϱ28uv
2 + ϱ29v

3

+O(u, v, ᾱ)4,

(4.4.4)

where 

ϱ11 = x̄
(

α1(AK−x̄(x̄+2A))

(x̄+A)2(KFȳ+K)
+ βȳ

(x̄+L)2

)
+ 1, ϱ12 = x̄

(
α1F x̄(x̄−K)

K(x̄+A)(F ȳ+1)2
− β

x̄+L

)
,

ϱ13 = α1(AK−x̄(x̄+2A))

(x̄+A)2(KFȳ+K)
+ 1

2
x̄

(
− 2α1A(A+K)

(x̄+A)3(KFȳ+K)
+

(
α1(AK−x̄(x̄+2A))

(x̄+A)2(KFȳ+K)

+ βȳ

(x̄+L)2

)
2 − 2βȳ

(x̄+L)3

)
+ βȳ

(x̄+L)2 , ϱ14 =
α1F x̄(x̄−K)

K(x̄+A)(F ȳ+1)2

+x̄

(
α1F(2Ax̄+x̄2−AK)
K(x̄+A)2(F ȳ+1)2

+
(

α1F x̄(x̄−K)

K(x̄+A)(F ȳ+1)2
− β

x̄+L

)(
α1(AK−x̄(x̄+2A))

(x̄+A)2(KFȳ+K)

+ βȳ

(x̄+L)2

)
+ β

(x̄+L)2

)
− β

x̄+L , ϱ15 =
1
2
x̄

(
2α1F 2x̄(1− x̄

K )
(x̄+A)(F ȳ+1)3

+(
α1F x̄(K−x̄)

K(x̄+A)(F ȳ+1)2
+ β

x̄+L

)
2

)
, ϱ16 =

1
6

(
− 6α1A(A+K)

(x̄+A)3(KFȳ+K)
+

3
(

α1(AK−x̄(x̄+2A))

(x̄+A)2(KFȳ+K)
+ βȳ

(x̄+L)2

)
2 + 4x̄

(
− α1A(A+K)

(x̄+A)3(KFȳ+K)
− βȳ

(x̄+L)3

)
(

α1(AK−x̄(x̄+2A))

(x̄+A)2(KFȳ+K)
+ βȳ

(x̄+L)2

)
+ x̄

(
− 2α1A(A+K)

(x̄+A)3(KFȳ+K)
+

(
α1(AK−x̄(x̄+2A))

(x̄+A)2(KFȳ+K)
+ βȳ

(x̄+L)2

)
2 − 2βȳ

(x̄+L)3

)(
α1(AK−x̄(x̄+2A))

(x̄+A)2(KFȳ+K)

+ βȳ

(x̄+L)2

)
+ 6x̄

(
α1A(A+K)

(x̄+A)4(KFȳ+K)
+ βȳ

(x̄+L)4

)
− 6βȳ

(x̄+L)3

)
,

ϱ17 =

(
α1(−2Ax̄−x̄2+AK)
K(x̄+A)2(F ȳ+1)

+ βȳ

(x̄+L)2

)(
α1F x̄(x̄−K)

K(x̄+A)(F ȳ+1)2
− β

x̄+L

)
+

(
β

(x̄+L)2 −
α1F(−2Ax̄−x̄2+AK)
K(x̄+A)2(F ȳ+1)2

)
+ 1

2
x̄

((
2

(
α1(−2Ax̄−x̄2+AK)
K(x̄+A)2(F ȳ+1)
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+ βȳ

(x̄+L)2

)(
β

(x̄+L)2 −
α1F(−2Ax̄−x̄2+AK)
K(x̄+A)2(F ȳ+1)2

)
+ 2

(
α1AF (A+K)

K(x̄+A)3(F ȳ+1)2
−

β

(x̄+L)3

))
+
(

α1F x̄(x̄−K)

K(x̄+A)(F ȳ+1)2
− β

x̄+L

)((
α1(−2Ax̄−x̄2+AK)
K(x̄+A)2(F ȳ+1)

+ βȳ

(x̄+L)2

)
2

+2
(
− α1A(A+K)

K(x̄+A)3(F ȳ+1)
− βȳ

(x̄+L)3

)))
, ϱ18 =

1
2

(
2α1F 2x̄(1− x̄

K )
(x̄+A)(F ȳ+1)3

+

(
α1F x̄(x̄−K)

K(x̄+A)(F ȳ+1)2

− β
x̄+L

)
2

)
+ x̄

(
α1F 2(−2Ax̄−x̄2+AK)

K(x̄+A)2(F ȳ+1)3
+ 1

2

(
α1(−2Ax̄−x̄2+AK)
K(x̄+A)2(F ȳ+1)

+ βȳ

(x̄+L)2

)
(

2α1F 2x̄(1− x̄
K )

(x̄+A)(F ȳ+1)3
+
(

α1F x̄(x̄−K)

K(x̄+A)(F ȳ+1)2
− β

x̄+L

)
2

)
+
(

α1F x̄(x̄−K)

K(x̄+A)(F ȳ+1)2
− β

x̄+L

)
(

β

(x̄+L)2 −
α1F(−2Ax̄−x̄2+AK)
K(x̄+A)2(F ȳ+1)2

))
, ϱ19 =

(
− x̄

6K3(x̄+A)3(x̄+L)3(F ȳ+1)6

)
(
4α1KF

2x̄ (x̄+ A) (K − x̄) (x̄+ L)2 (F ȳ + 1)
(
βK (x̄+ A) (F ȳ + 1)2

+α1Fx̄ (K − x̄) (x̄+ L)
)
+
(
βK (x̄+ A) (F ȳ + 1)2 + α1Fx̄ (K − x̄) (x̄+ L)

)( (
βK (x̄+ A) (F ȳ + 1)2 + α1Fx̄ (K − x̄) (x̄+ L)

)
2 + 2α1KF

2x̄ (x̄+ A) (K − x̄)

(x̄+ L)2 (F ȳ + 1)
)
+ 6α1K

2F 3x̄ (x̄+ A)2 (K − x̄) (x̄+ L)3 (F ȳ + 1)2
)
,

ς11 =
x̄
(
(x̄+A)(1− x̄

K )−
x̄(x̄+2A)

K
+x̄(x̄+A)(1− x̄

K )
(

α1(AK−x̄(x̄+2A))

(x̄+A)2(KFȳ+K)
+ βȳ

(x̄+L)2

)
+A
)

(x̄+A)2(F ȳ+1)
,

ς12 =
x̄2(x̄−K)(K(x̄+A)(Fȳ+1)(Fx̄+βF ȳ+β+LF )

x̄+L +α1F x̄(K−x̄))
K2(x̄+A)2(F ȳ+1)3

,

ς13 = x̄3(K−x̄)2

2K2(x̄+A)2(F ȳ+1)2
, ς14 =

(
− 1

K3(x̄+A)4(x̄+L)3(F ȳ+1)4

)(
x̄

(
K (x̄+ A)2 (K − x̄)

(x̄+ L)2 (F ȳ + 1)
(
βK (x̄+ A) (F ȳ + 1)2 + α1Fx̄ (K − x̄) (x̄+ L)

)
+K (x̄+ A)

(x̄+ L)2 (F ȳ + 1) (AK − x̄ (x̄+ 2A))
(
βK (x̄+ A) (F ȳ + 1)2 + α1Fx̄ (K − x̄)

(x̄+ L)
)
−Kx̄ (x̄+ A) (K − x̄) (x̄+ L) (F ȳ + 1)

(
βK (x̄+ A)2 (F ȳ + 1)2+

α1F (x̄+ L)2 (2Ax̄+ x̄2 − AK)
)
+ x̄ (K − x̄)

(
K (x̄+ A) (F ȳ + 1)

(
Fx̄+ βF ȳ

+β + LF
)
+ α1Fx̄ (K − x̄) (x̄+ L)

)(
βKȳ (x̄+ A)2 (F ȳ + 1)− α1 (x̄+ L)2

(2Ax̄+ x̄2 − AK)
)
+K2F (x̄+ A)2 (x̄+ L)3 (F ȳ + 1)2 (AK − x̄ (x̄+ 2A))

+F (x̄+ A)3 (K − x̄) (x̄+ L)3 (KFȳ +K)2
))

, ς15 =
−2Ax̄−x̄2+AK
K(x̄+A)2(F ȳ+1)

+1
2
x̄

(2(−2Ax̄−x̄2+AK)
(

α1(−2Ax̄−x̄2+AK)
K(x̄+A)2(Fȳ+1)

+ βȳ

(x̄+L)2

)
K(x̄+A)2(F ȳ+1)

− 2A(A+K)

K(x̄+A)3(F ȳ+1)

+

x̄(1− x̄
K )
((

α1(−2Ax̄−x̄2+AK)
K(x̄+A)2(Fȳ+1)

+ βȳ

(x̄+L)2

)
2+2

(
− α1A(A+K)

K(x̄+A)3(Fȳ+1)
− βȳ

(x̄+L)3

))
(x̄+A)(F ȳ+1)

)
+
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x̄(1− x̄
K )
(

α1(−2Ax̄−x̄2+AK)
K(x̄+A)2(Fȳ+1)

+ βȳ

(x̄+L)2

)
(x̄+A)(F ȳ+1)

, ς16 =
(

1
2K3(x̄+A)3(x̄+L)2(F ȳ+1)5

)(
x̄2 (K − x̄)(

2KF (x̄+ A) (x̄+ L) (F ȳ + 1)
(
βK (x̄+ A) (F ȳ + 1)2 + α1Fx̄ (K − x̄) (x̄+ L)

)
+
(
βK (x̄+ A) (F ȳ + 1)2 + α1Fx̄ (K − x̄) (x̄+ L)

)
2 + 2α1KF

2x̄ (x̄+ A)

(K − x̄) (x̄+ L)2 (F ȳ + 1) + 2K2F 2 (x̄+ A)2 (x̄+ L)2 (F ȳ + 1)2
))

,

ς17 =
(

1
2(x̄+A)4(x̄+L)2(KFȳ+K)3

)(
x̄2 (K − x̄)

(
x̄ (K − x̄)

(
βKȳ (x̄+ A)2 (F ȳ + 1)

−α1 (x̄+ L)2 (2Ax̄+ x̄2 − AK)
)
+K (x̄+ A)2 (K − x̄) (x̄+ L)2 (F ȳ + 1)

+2K (x̄+ A) (x̄+ L)2 (F ȳ + 1) (AK − x̄ (x̄+ 2A))

))
,

ς18 = − x̄3(K−x̄)2(K(x̄+A)(F ȳ+1)(2F x̄+βF ȳ+β+2LF )+α1F x̄(K−x̄)(x̄+L))
2K3(x̄+A)3(x̄+L)(F ȳ+1)4

,

ς19 =
x̄4(1− x̄

K )
3

6(x̄+A)3(F ȳ+1)3
, ϱ21 =

βξLȳ
(x̄+L)2 , ϱ22 = 1− θȳ, ϱ23 =

βξLȳ(L(βξ−2)−2x̄)

2(x̄+L)4 ,

ϱ24 = βξL(1−θȳ)

(x̄+L)2 , ϱ25 =
1
2
θ (θȳ − 2) , ϱ26 =

βξLȳ(6x̄(x̄+L(2−βξ))+L2(βξ(βξ−6)+6))
6(x̄+L)6 ,

ϱ27 = −βξL(θȳ−1)(L(βξ−2)−2x̄)

2(x̄+L)4 , ϱ28 =
βθξL(θȳ−2)

2(x̄+L)2 , ϱ29 =
1
2
θ (θȳ − 2) .

If T =

(
ϱ12 ϱ12

−1− ϱ11 Γ2 − ϱ11

)
be a non-singular matrix, then consider the following

translation: (
u

v

)
= T

(
x̃

ỹ

)
. (4.4.5)

Taking T−1 on both sides of (4.4.5), we get

(
x̃

ỹ

)
→

(
−1 0

0 Γ2

)(
x̃

ỹ

)
+

(
f(u, v, ᾱ)

g(u, v, ᾱ)

)
, (4.4.6)

f(u, v, ᾱ) =
(Γ2 − ϱ11) ς19ᾱ

3

ϱ12 (Γ2 + 1)
+

(Γ2 − ϱ11) ς17ᾱ
2u

ϱ12 (Γ2 + 1)
+

(Γ2 − ϱ11) ς18ᾱ
2v

ϱ12 (Γ2 + 1)

+
(Γ2 − ϱ11) ς13ᾱ

2

ϱ12 (Γ2 + 1)
+

(Γ2 − ϱ11) ς15ᾱu
2

ϱ12 (Γ2 + 1)
+

(Γ2 − ϱ11) ς14ᾱvu

ϱ12 (Γ2 + 1)

+
(Γ2 − ϱ11) ς11iᾱ

ϱ12 (Γ2 + 1)
+

(Γ2 − ϱ11) ς16ᾱv
2

ϱ12 (Γ2 + 1)
+

(Γ2 − ϱ11) ς12vᾱ

ϱ12 (Γ2 + 1)

+
((Γ2 − ϱ11) ϱ16
ϱ12 (Γ2 + 1)

− ϱ26
Γ2 + 1

)
u3 +

(
(Γ2 − ϱ11) ϱ17
ϱ12 (Γ2 + 1)

− ϱ27
Γ2 + 1

)
(vu2) +

(
(Γ2 − ϱ11) ϱ13
ϱ12 (Γ2 + 1)

− ϱ23
Γ2 + 1

)
u2 +

(
(Γ2 − ϱ11) ϱ18
ϱ12 (Γ2 + 1)

− ϱ28
Γ2 + 1

)
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v2u+

(
(Γ2 − ϱ11) ϱ14
ϱ12 (Γ2 + 1)

− ϱ24
Γ2 + 1

)
uv +

(
(Γ2 − ϱ11) ϱ19
ϱ12 (Γ2 + 1)

− ϱ29
Γ2 + 1

)
v3

+

(
(Γ2 − ϱ11) ϱ15
ϱ12 (Γ2 + 1)

− ϱ25
Γ2 + 1

)
v2,

g(u, v, ᾱ) =
(1 + ϱ11) ς19ᾱ

3

ϱ12 (Γ2 + 1)
+

(1 + ϱ11) ς17ᾱ
2u

ϱ12 (Γ2 + 1)
+

(1 + ϱ11) ς18ᾱ
2v

ϱ12 (Γ2 + 1)

+
(1 + ϱ11) ς13ᾱ

2

ϱ12 (Γ2 + 1)
+

(1 + ϱ11) ς15ᾱu
2

ϱ12 (Γ2 + 1)
+

(1 + ϱ11) ς14ᾱvu

ϱ12 (Γ2 + 1)

+
(1 + ϱ11) ς11uᾱ

ϱ12 (Γ2 + 1)
+

(1 + ϱ11) ς16ᾱv
2

ϱ12 (Γ2 + 1)
+

(1 + ϱ11) ς12vᾱ

ϱ12 (Γ2 + 1)

+

(
(1 + ϱ11) ϱ16
ϱ12 (Γ2 + 1)

+
ϱ26

Γ2 + 1

)
u3 +

(
(1 + ϱ11) ϱ17
ϱ12 (Γ2 + 1)

+
ϱ27

Γ2 + 1

)
vu2

+

(
(1 + ϱ11) ϱ13
ϱ12 (Γ2 + 1)

+
ϱ23

Γ2 + 1

)
u2 +

(
(1 + ϱ11) ϱ18
ϱ12 (Γ2 + 1)

+
ϱ28

Γ2 + 1

)
v2u

+

(
(1 + ϱ11) ϱ14
ϱ12 (Γ2 + 1)

+
ϱ24

Γ2 + 1

)
uv +

(
(1 + ϱ11) ϱ19
ϱ12 (Γ2 + 1)

+
ϱ29

Γ2 + 1

)
v3

+

(
(1 + ϱ11) ϱ15
ϱ12 (Γ2 + 1)

+
ϱ25

Γ2 + 1

)
v2.

If we consider W c(0, 0, 0) to be the center manifold of (4.4.6) computed at (0, 0) in a
restricted neighborhood of ᾱ = 0, we can approximate W c(0, 0, 0) as follows:

W c(0, 0, 0) =
{
(x̃, ỹ, ᾱ) ∈ R3 : ỹ = ω1x̃

2 + ω2x̃ᾱ + ω3ᾱ
2 +O((|x̃|+ |ᾱ|)3)

}
,

where,

ω1 = −
[

1

ϱ12 (Γ2
2 − 1)

] [
ϱ11

3ϱ15 − ϱ11
2ϱ12ϱ14 + ϱ11

2ϱ12ϱ25 + ϱ11ϱ12
2ϱ13 − ϱ11ϱ12

2ϱ24

]
−

[
1

ϱ12 (Γ2
2 − 1)

] [
ϱ12

3ϱ23 + 3 ϱ11
2ϱ15 − 2 ϱ11ϱ12ϱ14 + 2 ϱ11ϱ12ϱ25 + ϱ12

2ϱ13 − ϱ12
2ϱ24

]
− 3 ϱ15ϱ11 − ϱ12ϱ14 + ϱ25ϱ12 + ϱ15

ϱ12
(
Γ2

2 − 1
) ,

ω2 =
(1 + ϱ11) (ς12ϱ11 − ς11ϱ12 + ς12)

ϱ12
(
Γ2

2 − 1
) ,

ω3 =
(1 + ϱ11) ς13

ϱ12 (Γ2 + 1) (−Γ2 + 1)
.

Consequently, the map that is only applicable to the center manifold W c(0, 0, 0) is pro-
vided by:

F : x̃→ −x̃+ χ1x̃
2 + χ2x̃ᾱ + χ3x̃

2ᾱ + χ4x̃ᾱ
2 + χ5x̃

3 +O((|x̃|, |ᾱ|)4),
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where,

χ1 =

(
−(−Γ2 + ϱ11) ϱ13

ϱ12 (Γ2 + 1)
− ϱ23

Γ2 + 1

)
ϱ12

2 +

(
−(−Γ2 + ϱ11) ϱ14

ϱ12 (Γ2 + 1)
− ϱ24

Γ2 + 1

)
(−1− ϱ11) ϱ12 +

(
−(−Γ2 + ϱ11) ϱ15

ϱ12 (Γ2 + 1)
− ϱ25

Γ2 + 1

)
(−1− ϱ11)

2 ,

χ2 = −(−Γ2 + ϱ11) ς11
Γ2 + 1

− (−Γ2 + ϱ11) ς12 (−1− ϱ11)

ϱ12 (Γ2 + 1)
,

χ3 = −(−Γ2 + ϱ11) ϱ12ς15
Γ2 + 1

− (−Γ2 + ϱ11) ς14 (−1− ϱ11)

Γ2 + 1
− (−Γ2 + ϱ11) ς11ω1

Γ2 + 1

− (−Γ2 + ϱ11) ς16 (−1− ϱ11)
2

ϱ12 (Γ2 + 1)
− (−Γ2 + ϱ11) ς12 (Γ2 − ϱ11)ω1

ϱ12 (Γ2 + 1)

+ 2

(
−(−Γ2 + ϱ11) ϱ13

ϱ12 (Γ2 + 1)
− ϱ23

Γ2 + 1

)
ϱ12

2ω2 +

(
−(−Γ2 + a11) ϱ14

ϱ12 (Γ2 + 1)
− ϱ24

Γ2 + 1

)
(−1− ϱ11) ϱ12ω2 +

(
−(−Γ2 + ϱ11) ϱ14

ϱ12 (Γ2 + 1)
− ϱ24

Γ2 + 1

)
(Γ2 − ϱ11)

ω2ϱ12 + 2

(
−(−Γ2 + ϱ11) ϱ15

ϱ12 (Γ2 + 1)
− ϱ25

Γ2 + 1

)
(−1− ϱ11) (Γ2 − ϱ11)ω2,

χ4 = −(−Γ2 + ϱ11) ς17
Γ2 + 1

− (−Γ2 + ϱ11) ς18 (−1− ϱ11)

ϱ12 (Γ2 + 1)
− (−Γ2 + ϱ11) ς11ω2

Γ2 + 1

− (−Γ2 + ϱ11) ς12 (Γ2 − ϱ11)ω2

ϱ12 (Γ2 + 1)
+ 2

(
−(−Γ2 + ϱ11) ϱ13

ϱ12 (Γ2 + 1)
− ϱ23

Γ2 + 1

)
ϱ12

2ω3

+

(
−(−Γ2 + ϱ11) ϱ14

ϱ12 (Γ2 + 1)
− ϱ24

Γ2 + 1

)
(−1− ϱ11) ϱ12ω3

+

(
−(−Γ2 + ϱ11) ϱ14

ϱ12 (Γ2 + 1)
− ϱ24

Γ2 + 1

)
(Γ2 − ϱ11)ω3ϱ12

+ 2

(
−(−Γ2 + ϱ11) ϱ15

ϱ12 (Γ2 + 1)
− ϱ25

Γ2 + 1

)
(−1− ϱ11) (Γ2 − ϱ11)ω3,

χ5 = −(−Γ2 + ϱ11) ς19
ϱ12 (Γ2 + 1)

− (−Γ2 + ϱ11) ς11ω3

Γ2 + 1
− (−Γ2 + ϱ11) ς12 (Γ2 − ϱ11)ω3

ϱ12 (Γ2 + 1)
.

Now, we define the following two discriminatory quantities:

Φ1 =

(
∂2F

∂x̃∂ᾱ
+

1

2

∂F

∂ᾱ

∂2F

∂x̃2

)
(0,0)

= χ2,

Φ2 =

(
1

6

∂3F

∂x̃3
+ (

1

2

∂2F

∂x̃2
)2
)

(0,0)

= χ5 + χ2
1.

The following theorem is the result of the above discussion:

Theorem 4.4.1. If Φ1 ̸= 0, then the system (4.1.5) experiences flip bifurcation at the
specific fixed point (x̄, ȳ) if Φ2 ̸= 0 when the parameter varies in the neighborhood of ᾱ.
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Additionally, the period-two orbits that split off from (x̄, ȳ) are stable if Φ2 > 0; however,
they are unstable if Φ2 < 0.

4.4.1 Hopf bifurcation

The Hopf bifurcation in the continuous-time system (4.1.4) will be studied first. The
presence of center points in the corresponding linear system is a requirement for the Hopf
bifurcation of a two-dimensional continuous-time nonlinear system. The latent roots of
the fixed point of a two-dimensional model are:

Θ1,2 =
1

2

[
A±

√
A− 4B

]
.

When A = 0 and B > 0, the latent roots Θ1,2 =
√
−B are pure imaginary numbers, and

the fixed point is the center point. At (x̄, ȳ), the Jacobian matrix of the system (4.1.4)
is obtained by where,

J (x̄, ȳ) =

 ν11 x̄
(

αF x̄(x̄−K)

K(A+x̄)(F ȳ+1)2
− β

L+x̄

)
Lβξȳ

(L+x̄)2
γ − 2θȳ + βξx̄

L+x̄

 ,

where
ν11 =

αx̄ (2AK + x̄ (−3A+K − 2x̄))

(A+ x̄)2 (F ȳK +K)
− Lβȳ

(L+ x̄)2
.

The characteristic function is:

Ω(Θ) = Θ2 −AΘ+ B, (4.4.7)

where,

A =

(
Lβȳ

(L+ x̄)2
− αx̄ (2AK + x̄ (−3A+K − 2x̄))

(A+ x̄)2 (F ȳK +K)

)
−
(
γ − 2θȳ +

βξx̄

L+ x̄

)
,

and

B =

(
αx̄ (2AK + x̄ (−3A+K − 2x̄))

(A+ x̄)2 (F ȳK +K)
− Lβȳ

(L+ x̄)2

)(
γ − 2θȳ +

βξx̄

L+ x̄

)
−

(
x̄

(
αF x̄ (x̄−K)

K (A+ x̄) (F ȳ + 1)2
− β

L+ x̄

))(
Lβξȳ

(L+ x̄)2

)
.

Therefore, we have the following theorem to discuss the Hopf bifurcation of the system
(4.1.4).

Theorem 4.4.2. The positive fixed point (x̄, ȳ) of (4.1.4) undergoes Hopf bifurcation
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when

α =
(x̄+ A)2 (KFȳ +K)

(
βLȳ

(x̄+L)2 −
βξx̄
x̄+L + 2θȳ − γ

)
x̄ (x̄ (−2x̄− 3A+K) + 2AK)

,

and

0 <

(
αx̄ (2AK + x̄ (−3A+K − 2x̄))

(A+ x̄)2 (F ȳK +K)
− Lβȳ

(L+ x̄)2

)(
γ − 2θȳ +

βξx̄

L+ x̄

)
−

(
x̄

(
αF x̄ (x̄−K)

K (A+ x̄) (F ȳ + 1)2
− β

L+ x̄

))(
Lβξȳ

(L+ x̄)2

)
.

We have the following discussion for the rest of the fixed points of the system (4.1.4).
There is no Hopf bifurcation at the system (4.1.4) boundary and trivial fixed points.
The variational matrix of system (4.1.4) with the characteristic function at (0, 0) is given
below: (

0 0

0 γ

)
. (4.4.8)

P(λ) = λ2 − γλ.

Comparing the above equation with (4.4.7), we have B = 0, therefore no Hopf bifurcation.
Similarly, the variational matrix of system (4.1.4) at (K, 0) is given below:(

− αK
A+K

− βK
L+K

0 γ + βKξ
L+K

)
. (4.4.9)

The characteristic equation is:

P(λ) = − αγK

A+K
+

αKλ

A+K
− γKλ

A+K
− Aγλ

A+K
+

Kλ2

A+K
+

Aλ2

A+K

− αβK2ξ

(A+K)(K + L)
− βK2λξ

(A+K)(K + L)
− AβKλξ

(A+K)(K + L)
.

Here, B = − αγK
A+K

− αβK2ξ
(A+K)(K+L) < 0. One of the conditions of Hopf bifurcation fails, there-

fore there is no Hopf bifurcation at (K, 0). At
(
0, γ

θ

)
, we have the following variational

matrix: (
−βγ

Lθ 0
βγξ
Lθ −γ

)
. (4.4.10)
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The characteristic function is:

P(λ) = γλ+ λ2 +
βγ2

θL
+
βγλ

θL
.

Here A = γ + βγ
θL ̸= 0. As a result, one of the conditions of Hopf bifurcation is violated.

Therefore, there is no Hopf bifurcation. We now study the Neimark-Sacker bifurcation of
the system (4.1.5) at the specific positive fixed point (x̄, ȳ) using the bifurcation theory
and α as a bifurcation parameter. We derived the essential conditions for the system
(4.1.5) to have a non-hyperbolic fixed point with two complex conjugate eigenvalues of
modulus one. Assume the parameter set ΨNS =

{
(α, F,K, β,A, γ, ξ,L, θ) : ΩTr

2 −
4ΩDet < 0 and ΩDet = 1 for equation (4.4.1)

}
. The positive fixed point of the system

(4.1.5) experiences Neimark-Sacker bifurcation for α = α2 when the parameters vary in
the small range around ΨNS. In this case, we investigate the system (4.1.5) with these
parameters, which are defined by the following map:xn+1 → xn exp

[
α2

1+Fyn

(
1− xn

K

)
xn

xn+A
− βyn

xn+L

]
,

yn+1 → yn exp
[
γ + ξβxn

xn+L − θyn

]
.

(4.4.11)

The following map can be used to represent a map (4.4.11) perturbation when ᾱ is used
as the bifurcation parameter:xn+1 → xn exp

[
α2+ᾱ
1+Fyn

(
1− xn

K

)
xn

xn+A
− βyn

xn+L

]
,

yn+1 → yn exp
[
γ + ξβxn

xn+L − θyn

]
.

(4.4.12)

where |ᾱ << 1|, is taken as small perturbation parameter. The characteristic function
Ω(Θ) of (4.4.12) at (x̄, ȳ) with Ω(Θ) = 0 has two complex conjugate roots with modulus
one when

α2 =

[
Kȳ (x̄+ A)2 (F ȳ + 1)2

(
x̄
(
βθȳ (x̄+ L) + x̄

(
θx̄− β + 3θL

)
+ L(3θL

−β(βξ + 1))
)
+ θL3

)][ 1
P̂

]
, where

P̂ = x̄ (x̄+ L)
(
ȳ
(
x̄
(
x̄
(
x̄
(
x̄(θ − F )− F (2(A+ L) + βξL) + 2θ(A+ L)

)
+A(K(F − θ)− LF (βξ + 4) + 4θL) + L(βKξF + L(θ − F ))

)
+ AL(KF (βξ +

2)− 2θK + 2L(θ − F ))
)
+ AKL2(F − θ)

)
+ θF ȳ2 (x̄+ L)2

(
2Ax̄+ x̄2 − AK

)
− (x̄+ L)2

(
2Ax̄+ x̄2 − AK

) )
.
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Taking u = x − x̄ and v = y − ȳ, where (x̄, ȳ) is the positive fixed point of the system
(4.4.12), or equivalently positive fixed point of (4.1.5). Transforming the fixed point (x̄, ȳ)
to origin (0, 0), we get the underlying map:

u→ ϱ11u+ ϱ12v + ϱ13u
2 + ϱ14uv + ϱ15v

2 + ϱ16u
3+

ϱ17u
2v + ϱ18uv

2 + ϱ19v
3 +O(|u|, |v|)4,

v → ϱ21u+ ϱ22v + ϱ23u
2 + ϱ24uv + ϱ25v

2 + ϱ26u
3

+ϱ27u
2v + ϱ28uv

2 + ϱ29v
3 +O(|u|, |v|)4.

(4.4.13)

The coefficients ϱ11, ϱ12, ϱ13, ϱ14, ϱ15, ϱ16, ϱ17, ϱ18, ϱ19, ϱ21, ϱ22, ϱ23, ϱ24, ϱ25, ϱ26, ϱ18, and ϱ29

are given above can be calculated by replacing α1 by α2 + ᾱ. The characteristic function
of (4.4.12) at the fixed point (0, 0) can be expressed as follows:

Ω(Θ) = Θ2 − (ΩTr(ᾱ))Θ + ΩDet(ᾱ), (4.4.14)

where,

ΩTr =
(ᾱ + α2) x̄ (AK − x̄ (x̄+ 2A))

(x̄+ A)2 (KFȳ +K)
+ ȳ

(
βx̄

(x̄+ L)2
− θ

)
+ 2, and

ΩDet =

(
x̄

(
(ᾱ + α2) (AK − x̄ (2A+ x̄))

(A+ x̄)2 (F ȳK +K)
+

βȳ

(L+ x̄)2

)
+ 1

)
(1− θȳ)−(

x̄

(
(ᾱ + α2)Fx̄ (x̄−K)

K (A+ x̄) (F ȳ + 1)2
− β

L+ x̄

))(
Lβξȳ

(L+ x̄)2

)
.

As (α2, F,K, β,A, γ, ξ,L, θ) ∈ ΨNS, the roots of (4.4.14) are conjugate complex numbers
Θ1, Θ2 with |Θ1| = |Θ2| = 1. Thus, it is obvious that: Θ1, Θ2 =

ΩTr

2
± ι

2

√
4ΩDet − Ω2

Tr.

We have |Θ1| = |Θ2| =
√
ΩDet, with

(
d|Θ1,2|
dᾱ

)
ᾱ=0

̸= 0. Moreover, we assume that ΩTr(0) =

(ᾱ+α2)x̄(AK−x̄(x̄+2A))

(x̄+A)2(KFȳ+K)
+ ȳ

(
βx̄

(x̄+L)2 − θ
)
+ 2 ̸= 0,−1. Further,

(
α2, F,K, β,A, γ, ξ,L, θ

)
∈

ΨNS implies that −2 < ΩTr(0) < 2. Thus, ΩTr(0) ̸= ±2, 0,−1 gives Θr
1,Θ

r
2 ̸= 1 for all

r = 1, 2, 3, 4 at ᾱ = 0. Therefore, when ᾱ = 0 and the following criteria are met, the roots
of (4.4.14) do not occur at the point where the unit circle and coordinate axes intersect.
Now transforming the fixed point (x̄, ȳ) of (4.4.12) to the origin, we get the normal form
of (4.4.12) as: (

x̃

ỹ

)
→

(
ϱ11 ϱ12

ϱ21 ϱ22

)(
x̃

ỹ

)
+

(
f̃(x̃, ỹ)

g̃(x̃, ỹ)

)
, (4.4.15)
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where,

f̃(x̃, ỹ) = 1
ϱ12

(
ϱ13u

2 + ϱ14uv + ϱ15v
2 + ϱ16u

3 + ϱ17u
2v + ϱ18uv

2 + ϱ19v
3
)

+ 1
ϱ12
O(|u|, |v|)4,

g̃(x̃, ỹ) =
(

ϱ13(αa−ϱ11)
βaϱ12

− ϱ23
βa

)
u2 +

(
ϱ14(αa−ϱ11)

βaϱ12
− ϱ24

βa

)
uv + ϱ27u

2v

+ϱ28uv
2
(

ϱ15(αa−ϱ11)
βaϱ12

− ϱ25
βa

)
uv2 +

(
ϱ13(αa−ϱ11)

βaϱ16
− ϱ23

βa

)
u3 + ϱ29v

3 +O((|u|, |v|)4).

(4.4.16)

u = a12x̃ and v = (αa − ϱ11)u− βav. The following nonzero real number is defined next:

L =

{([
−Re

(
(1− 2Γ1)Γ

2
2

1− Γ1

ζ20ζ11

)
− 1

2
|ζ11|2 − |ζ02|2 +Re(Γ2ζ21)

])
ᾱ=0

}
, (4.4.17)

where

ζ20 =
1

8

[
f̃x̃x̃ + 2g̃x̃ỹ − f̃ỹỹ + i

(
g̃x̃x̃ − 2f̃x̃ỹ − g̃ỹỹ

)]
,

ζ11 =
1

4

[
f̃x̃x̃ + i (g̃x̃x̃ + g̃ỹỹ) + f̃ỹỹ

]
,

ζ02 =
1

8

[
f̃x̃x̃ − 2g̃x̃ỹ − f̃ỹỹ + i

(
g̃x̃x̃ + 2f̃x̃ỹ − g̃ỹỹ

)]
,

ζ21 =
1

16

[
g̃x̃x̃ỹ + g̃ỹỹỹ + f̃x̃x̃x̃ + f̃x̃ỹỹ + i

(
g̃x̃x̃x̃ + g̃x̃ỹỹ − f̃x̃x̃ỹ − f̃ỹỹỹ

)]
.

Analyzing these facts we can write the following result.

Theorem 4.4.3. When the parameter α changes within a narrow neighborhood of the
parameter α = α2, then the system (4.1.5) experiences Hopf bifurcation at the positive
fixed point (x̄, ȳ). This is assuming that L ̸= 0 holds. Additionally, for α > α2, an
attracting invariant closed curve bifurcates from the fixed point if L < 0, and for α > α2,
a repelling invariant closed curve bifurcates if L > 0.

4.5 Numerical simulations

In this section, we will discuss the numerical values of parameters where the systems
(4.1.4) and (4.1.5) undergo bifurcation. The biological significance of the parameters,
which reflect essential ecosystem components, is used to drive parameter selection in
simulations. This method makes individual parameter impacts visible, facilitating com-
prehensive ecological analysis. The biological motivation for tracing bifurcation in these
parameters, such as α, β, γ, θ, L, ξ, F , A, and K, is to understand how particular
ecological conditions affect predator-prey dynamics. This knowledge is essential for en-
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vironmental management and conservation initiatives because it informs choices about
resource availability, interactions between species, and population limits, ultimately as-
sisting in the sustainable management of ecosystems.

Example 10. In this example, we will discuss the Hopf bifurcation of the system (4.1.4)
at the positive fixed point. If we choose the following parametric set:

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
x

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

y

Phase Space Trajectory

(a) α = 4.89
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(b) α = 4.85
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(c) α = 4.8496
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(d) α = 4.8494

Figure 4.4: Phase plots for different values of α indicate backward Hopf bifurcation in
(4.1.4).

F = 0.79, β = 2.04,L = 0.81, γ = 0.01, ξ = 1.0, K = 1.39, θ = 0.4, A = 0.11,

and (x0, y0) = (0.172, 0.723). Then, Hopf bifurcation arises at the positive fixed point. In
particular, the Hopf bifurcation appears at the parameter α when α ∈ [4.8494, 4.89]. The
phase space trajectories are given in figure 4.4. From these trajectories, it can be noticed
that the bifurcation is going in the reverse direction. This implies that when the biological
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parameters have values:

F = 0.79, β = 2.04,L = 0.81, γ = 0.01, ξ = 1.0, K = 1.39, θ = 0.4, A = 0.11,

and the population of the species starts initially from (x0, y0) = (0.172, 0.723), then the
inherent growth rate of the prey α must be greater than 4.89. The low inherent rate for
the above fixed biological constraints causes the Hopf bifurcation in the system (4.4.3).
This means that perdition may cause the extinction of the prey population. Similarly,
Hopf bifurcation in the model (4.4.3) can also be observed regarding other parameters.

Example 11. This example deals with Hopf bifurcation in the system (4.1.5). In this sys-
tem, the Hopf bifurcation occurs at seven different parameters. By varying one parameter
and fixing the rest of the parameters, we will discuss the Hopf bifurcation in the system
(4.1.5). Here, we will present the approximate value of the bifurcation parameters up to
a few decimal places. So, the determinants of the complex eigenvalues calculated for the
particular parameter set with the bifurcation value are approximately equal to one. First,
we will discuss the bifurcation in the parameter α. If we have the following parametric
set:

Φα =
{
F = 0.3, K = 7, A = 0.1, β = 1.803,L = 0.5, γ = 1.65, ξ = 0.19, and θ = 0.8

}
,

with a starting population of (x0, y0) = (2.4569, 2.4676), then the system (4.1.5) un-
dergoes Hopf bifurcation when α ∈ [5, 7]. We observed that at α = 6.079, the sys-
tem (4.1.5) loses its stability. For the above set Φα and with α = 6.079, we have
(5.497336772510419, 2.4550122786982076) as a positive fixed point. The system (4.1.5)
at these values is:

xn+1 = xn exp
[

6.079
1+0.3yn

(
1− xn

7

)
xn

xn+0.1
− 1.803yn

xn+0.5

]
,

yn+1 = yn exp
[
1.65 + (0.19)(1.803)xn

xn+0.5
− 0.8yn

]
.

(4.5.1)

The Jacobian matrix of (4.5.1) with characteristic function is:

Σα

(
5.497336772510419, 2.4550122786982076

)
=(

−1.0104 −2.35364

0.0116911 −0.96401

)
,

Ω(ξ)α = 1.0015508976493441 + 1.9744085042670956ξ + ξ2. (4.5.2)
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(a) Plots for xn

(b) Plots for yn

Figure 4.5: Hopf bifurcation diagrams in the range [5, 7].

The roots of (4.5.2) are:

ξ1,2 =
{
− 0.9872042521335478± 0.16425182561782ι

}
,

with |ξ1,2| = 1. Thus, the parameters of system (4.5.1), (α, F,K,A, β,L, γ, ξ, θ) ∈ ΦNS.

Now we will choose K as a bifurcation parameter and fix α = 7. The set Φα becomes

ΦK =
{
α = 7, F = 0.3, A = 0.1, β = 1.803,L = 0.5,

γ = 1.65, ξ = 0.19, and θ = 0.8
}
.

The starting population for the remaining discussion remains the same. The exact value
of K at which the system (4.1.5) loses its stability is K = 5.163. For this value of K with
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Figure 4.6: MLE plots for α and K

set ΦK, we have the following characteristic function of Jacobian matrix:

ΣK

(
3.8302944548361992, 2.4412686914477018

)
=(

−0.996442 −2.26904

0.0222998 −0.953015

)
.

Ω(ξ)K = 1.0002229376224936 + 1.9494567409504375ξ + ξ2. (4.5.3)

The solution set of equation (4.5.3) is

ξ1,2 = {0.9747283704752188± 0.22389180738298195ι},

with |ξ1,2| = 1. Therefore, the Hopf bifurcation is emerging in the system (4.1.5) for
the parameter set ΦK with K = 5.163. If we select F as a bifurcation parameter and fix
the rest of the parameters, then we have the following set of parameters:

ΦF =
{
α = 7, K = 7, A = 0.1, β = 1.803,L = 0.5, γ = 1.65, ξ = 0.19, and θ = 0.8

}
.

At F = 0.4075, the system (4.1.5) bifurcates when F ∈ [0.25, 0.7]. This time, the backward
bifurcation occurs. For F = 0.4075 with set ΦF , we have:

ΣF

(
5.496510505123591, 2.4550073595158697

)
=(

−1.00879 −2.47917

0.0116943 −0.964006

)
.

Ω(ξ)F = 1.0014701485844997 + 1.9727943289584056ξ + ξ2. (4.5.4)
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(a) xn (b) yn

(c) xn (d) yn

Figure 4.7: One parameter bifurcation diagrams when F ∈ [0.25, 0.7], and θ ∈ [0.6, 0.85].

The roots of the equation (4.5.4) are

ξ1,2 = {0.9863971644792028± 0.16879212805071303ι},

with |ξ1,2| = 1. Now we choose θ as a bifurcation parameter and the other parametric set
as follows:

Φθ =
{
α = 7, K = 7, A = 0.1, β = 1.803,L = 0.5, γ = 1.65, ξ = 0.19, and F = 0.3

}
.

The bifurcation happens at θ = 0.6889 when θ ∈ [0.6, 0.85]. Thus, we have:

Σθ

(
5.336360119474886, 2.849792546261007

)
=(

−1.00278 −2.40835

0.0143301 −0.963222

)
.
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Figure 4.8: MLE plots for F and θ

(a) Phase plots for α. (b) Phase plots for K.

Figure 4.9: Phase plots confirm the existence of Hopf bifurcation when α and K are
chosen as bifurcation parameters.

(a) Phase plots for F . (b) Phase plots for θ.

Figure 4.10: Phase plots confirm the existence of Hopf bifurcation when F and θ are
chosen as bifurcation parameters.
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(a) Bifurcation plot for xn (b) Bifurcation plot for yn

Figure 4.11: Bifurcation plots for parameter A.

(a) A = 0.8 (b) A = 0.82

(c) A = 0.822 (d) A = 0.823

Figure 4.12: Phase plots for different values of A.
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Figure 4.13: MLE plot for A.

Ω(ξ)θ = 1.000407683946828 + 1.9659980100331875ξ + ξ2. (4.5.5)

The latent roots of (4.5.5) are: ξ1,2 = {0.9829990050165938 ± 0.18471773083062384ι},
with |ξ1,2| = 1. If we vary A ∈ [0, 1] and fix rest of the parameters as:

ΦA =
{
α = 7, K = 7, d = 0.8, β = 1.803,L = 0.5, γ = 1.65, ξ = 0.19, and F = 0.3

}
.

Then the system (4.1.5) undergoes Hopf bifurcation at A = 0.822. We have the Jacobian
matrix

ΣA

(
5.537771976635198, 2.455251364530071

)
=(

−1.0095 −2.35511

0.0115362 −0.964201

)
.

Ω(ξ)A = 1.00053304716 + 1.97370429736ξ + ξ2. (4.5.6)

The latent roots of (4.5.6) are:

ξ1,2 = {0.9868521486819868± 0.16326629721089742ι},

with absolute value |ξ1,2| = 1.The details about the figures used in this example are as
follows: The bifurcation plots between the parameters α and K are given in figure 4.5,
whereas the corresponding maximum Lyapunov exponents are given in figure 4.6. Figure
4.7 represents the bifurcation plots for parameters F and θ, respectively. Figures 4.9 and
4.10 show the phase plots of different parameters. Figure 4.8 represents the maximum
Lyapunov exponents of F and θ. Last but not least, the phase portraits and the bifurcation
plots of parameter A are given in figure 4.12 and 4.11. The MLE plot for A is given in
figure 4.13.
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Hence, in this example, we studied the Hopf bifurcation in different system parameters
(4.1.5). We noticed that the bifurcation is reversed in fear and the Allee effect parameters.
In all other parameters, the focus of bifurcation is forward. We also constructed MLE
graphs and phase plots to confirm the direction of bifurcations. Thus, we conclude that the
backward bifurcation of the Allee and fear effects demonstrates that the model is stabilized
by an increase in the fear effect when the crowding effect is present. Likewise, the model
is stabilized by a more significant Allee effect. While the reduction of these two effects
leads to an increase in growth rate and system bifurcates because of overcrowding, the
increase in the Allee and fear effects should only occur to a certain extent to ensure that
the excess on both impacts controls the crowding effect. In the following example, we will
study flip bifurcation in a system (4.1.5). We also observed that the flip bifurcation is
occurring for different parameters. Thus, we have the following example:

Example 12. If we have α = 7, F = 0.2, K = 1.6, A = 0.1, β = 1.1, L = 1.2,
γ = 0.5, ξ = 0.1, and θ = 0.2 with a starting population of (x0, y0) = (1.06, 2.758), then
the system (4.1.5) undergoes flip bifurcation. The bifurcation occurs at the eight param-
eters α, γ,K,L, β, ξ, A, F . The parametric variation for bifurcation is: α ∈ [6, 8.1], γ ∈
[0.4, 0.65], K ∈ [1, 3],L ∈ [0.8, 1.7], β ∈ [0.8, 1.7], ξ ∈ [0, 0.3], A ∈ [0, 0.3], F ∈ [0.1, 0.3]

First, we will discuss the bifurcation in the parameter α. If we have the following partic-
ular parametric set:

(a) Two-parameter flip bifurcation for xn (b) Two-parameter flip bifurcation for yn

(c) Plot for xn. (d) Plot for yn.

Figure 4.14: Plots for α, L, and β.
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(a) Plots for K. (b) Plots for K.

(c) Plots for ξ, A, and F . (d) Plots for γ.

Figure 4.15: Bifurcation plot

Φα = {α = 6.967, F = 0.2, K = 1.6, A = 0.1, β = 1.1,

L = 1.2, γ = 0.5, ξ = 0.1, and θ = 0.2}.

For these parametric values, the fixed point is (1.0817209568081427, 2.7607446473545734).
The system (4.1.5) becomes:xn+1 = xn exp

[
6.967

1+0.2yn

(
1− xn

1.6

)
xn

xn+0.1
− 1.1yn

xn+1.2

]
,

yn+1 = yn exp
[
0.5 + (0.1)(1.1)xn

xn+1.2
− 0.2yn

]
.

(4.5.7)

The variational matrix of (4.5.7) with characteristic function at the positive fixed point
is:

Vα

(
1.0817209568081427, 2.7607446473545734

)
=(

−1.03425 −0.707

0.0699963 0.447851

)
,

Ω(ξ) = −0.413701515606289 + 0.5863964973072586ξ + ξ2. (4.5.8)

The roots of (4.5.8) are: ξ1,2 = {−1, 0.413673} , with |ξ1| = 1. Similarly, the particular
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Figure 4.16: MLE plots for α and γ.

value of bifurcation in the parameter γ = 0.4998. Thus the parametric set for γ is

Φγ = {α = 7, F = 0.2, K = 1.6, A = 0.1, β = 1.1,L
= 1.2, γ = 0.5, ξ = 0.1, and θ = 0.2}.

The Jacobian matrix with a characteristic function is:

Vγ

(
1.0852402020919543, 2.760190097480421

)
(4.5.9)

=

(
−1.05801 −0.708183

0.0697669 0.447962

)
, (4.5.10)

Ω(ξ) = −0.4245387770435508 + 0.6100441404859769ξ + ξ2. (4.5.11)

The roots of (4.5.11) are: ξ1,2 = {−1, 0.414406} . Similarly, for other bifurcation param-
eters, we have the following parametric sets that satisfy the period-doubling bifurcation
conditions:

Φβ =
{
α = 7, F = 0.2, K = 1.6, A = 0.1, β = 1.108,L = 1.2, γ = 0.5, ξ = 0.1, θ = 0.2

}
.

ΦL =
{
α = 7, F = 0.2, K = 1.6, A = 0.1, β = 1.1,L = 1.185, γ = 0.5, ξ = 0.1, θ = 0.2

}
.

Φξ =
{
α = 7, F = 0.2, K = 1.6, A = 0.1, β = 1.1,L = 1.2, γ = 0.5, ξ = 0.1001, θ = 0.2

}
.

ΦA =
{
α = 7, F = 0.2, K = 1.6, A = 0.1018, β = 1.1,L = 1.2, γ = 0.5, ξ = 0.1, θ = 0.2

}
.

ΦF =
{
α = 7, F = 0.2001, K = 1.6, A = 0.1, β = 1.1,L = 1.2, γ = 0.5, ξ = 0.1, θ = 0.2

}
.

ΦK =
{
α = 7, F = 0.2, K = 1.572, A = 0.1, β = 1.1,L = 1.2, γ = 0.5, ξ = 0.1, θ = 0.2

}
.

The bifurcation plots and MLE plots of different parameters are given in figures 4.14,
4.15, and 4.16.
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Example 13. Setting α = 4.9, F = 0.2, A = 0.1, β = 1.1, L = 1.2, γ = 0.5, ξ = 0.1,
and θ = 0.2 and K ∈ [5,∞) with a starting population of (x0 = 1.06, y0 = 2.758), then
the system (4.1.5) undergoes flip bifurcation. We numerically found that for all values of
K > 0.7434403908774643, system (4.1.5) bifurcates as shown in Figure. The value for
different parameters at which the bifurcation emerges is K = 0.7434403908774643. For
these parametric values, the fixed point becomes (0.70106954954813, 2.7028270098498623).
The Jacobian matrix of (4.1.5) with characteristic function at the positive fixed point is:

(a) 5 ≤ K ≤ 15 (b) 5 ≤ K ≤ 15

(c) 5 ≤ K ≤ 70 (d) 5 ≤ K ≤ 100160

Figure 4.17: Bifurcation diagrams for different ranges of the bifurcation parameter K.

Σ
(
1.1844506342089802, 2.192273174477881

)
=

(
−1.02842 −0.420093

0.098718 0.459435

)
,

Ω(ξ) = −0.431019 + 0.568981ξ + ξ2. (4.5.12)
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(a) K = 5.5 (b) K = 5.6 (c) K = 5.7

Figure 4.18: Phase plots.

The roots of (4.5.12) are:
ξ1,2 = {−1, 0.431019} ,

with |ξ1,2| = 1. Thus, the parameters of system (4.1.5) (α, F,K,A, β,L, γ, ξ, θ) ∈ ΦFB.

The bifurcation plots are given in figure 5.5, whereas the phase plots are given in figure
4.18. The bifurcation plot (d) of figure 5.5 represents the bifurcation behavior that persists
for very high values of the bifurcation parameter K. One can also get the same bifurcation
behavior of the prey population for greater values of K.

4.6 Chaos control

In this section, we will study the chaos in the system (4.1.5). We will use the two-
parameter Lyapunov exponent plots to confirm the chaos in the model. Different colours
in the colour bar in the plots indicate different values of the Lyapunov exponent. Colours
corresponding to positive values in Figures 4.20 mean chaos in the system. Figure 4.20
clearly shows various chaotic and periodic windows that appear for different parameter
values. To clearly identify the periodic regime due to Arnold’s tongues, we have drawn
periodic plots ??. So, these figures confirm the presence of chaos and complex periods
in the system. Apart from this, the chaos in the system can be confirmed by many
mathematical methods, as recently [147] confirmed the chaos in their model with Marto’s
sense [[148] and [149]]. But here, we leave it as a future research motivation to confirm
the chaos in the system using mathematical methods. Various methods are used to
control the chaos found in any model. A detailed comparison of the more common of
these methods is given in reference [20]. We used a hybrid control feedback technique
to control the chaos in the prey-predator system in our work. This control strategy
stabilizes the system and avoids bifurcation by combining parameter perturbation and
feedback control. The comparable controlled system is presented below if system (4.1.5)

121



experiences Hopf and flip bifurcation at the positive fixed point (x̄, ȳ):
xn+1 = P1xn exp

[
α

1+Fyn

(
1− xn

K

)
xn

xn+A
− βyn

xn+L

]
+(1− P1)xn,

yn+1 = P1yn exp
[
γ + ξβxn

xn+L − θyn

]
+ (1− P1)yn.

(4.6.1)

where the controlled parameter is P1 ∈ (0, 1) and in (4.6.1), the controlled approach
combines parameter perturbation and feedback control. We can prevent, postpone, or
promote chaos in the controlled system by choosing a suitable regulated parameter, de-
noted as P1. The controlled system’s variational matrix VControl, which was evaluated at
(x̄, ȳ), is presented below:

Figure 4.19: Lyapunov exponent plot in the parameter space (K,α) ∈ [5, 10] × [5.6, 8],
when F = 0.3, β = 1.803, γ = 1.65, ξ = 0.19, θ = 0.8,L = 0.5, and A = 0.1, with
initial conditions (x0, y0) = (2.4569, 2.4676). In the color bars of the plots, the Lyapunov
exponent is depicted by various colors. Positive values in the system are represented by
colors that indicate chaos, whereas negative values are represented by colors that indicate
stability.

VControl =

 ω11 x̄
(

αF x̄(x̄−K)

K(A+x̄)(F ȳ+1)2
− β

L+x̄

)
P1

LβξȳP1

(L+x̄)2
1− θȳP1

 ,
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Figure 4.20: Isoperiodic diagrams related to the Plot 4.19 in the parameter space (K,α) ∈
[5, 10] × [5.6, 8], when F = 0.3, β = 1.803, γ = 1.65, ξ = 0.19, θ = 0.8,L = 0.5, and
A = 0.1, with initial conditions (x0, y0) = (2.4569, 2.4676). In the plots’ colour bars,
boxes of different colours represent different periods, with period numbers labeled in each
box.

where
ω11 = x̄

(
α (AK − x̄ (2A+ x̄))

(A+ x̄)2 (F ȳK +K)
+

βȳ

(L+ x̄)2

)
P1 + 1.

If the roots of the characteristic function of VControl exist in an open unit disc, the fixed
point (x̄, ȳ) of the controlled system (4.6.1) is locally asymptotically stable. The primary
motivation for controlling chaotic dynamics in biological systems is to avoid the extinction
of species or over-exploitation of resources. In the context of prey-predator models,
this can be achieved by stabilizing the populations at a sustainable level, which can be
interpreted as a biologically meaningful control objective. In addition, the controlled
system can be used to investigate the effects of different types of control interventions on
prey-predator dynamics. For example, by varying the value of P1, you can investigate the
effectiveness of different management strategies, such as predator removal or introducing
additional resources for prey. Controlling chaos in the parameters of a prey-predator
model has important biological implications. In a stable ecosystem, the population growth
rates of prey and predators (α and β) should be balanced. However, if the growth rate
of either species increases too much, it can lead to the over-exploitation of resources
and, eventually, the collapse of the entire ecosystem. One can stabilize the ecosystem
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and prevent its failure by controlling the growth rates of prey and predators. Therefore,
chaos in the intrinsic growth rate of prey and predators must be maintained. If predators
can access alternative food sources, they may not depend solely on the prey population
for survival. This can lead to unpredictable fluctuations in predator population size. By
controlling the growth rate of predators due to alternative resources γ, one can ensure that
the predator population does not exceed a sustainable level. Intra-specific competition θ
among predators can lead to overcrowding and depletion of resources, which can cause the
predator population to decline. By controlling the strength of intra-specific competition
among predators, one can ensure that the predator population remains sustainable. The
conversion rate ξ determines how much prey biomass is converted into predator biomass.
If the conversion rate is too high, it can lead to overexploitation of prey and, eventually,
the collapse of the ecosystem. By controlling the conversion rate, one can maintain a
sustainable balance between the numbers of prey and predators. The carrying capacity
K is the maximum number of individuals a particular habitat can support. By controlling
the carrying capacity of prey, one can ensure that the prey population does not exceed the
habitat’s carrying capacity, which can lead to the depletion of resources and the eventual
collapse of the ecosystem. It is crucial to remember that our control technique has some
limitations. While it offers a way to keep the system from bifurcating and stabilizing
it, it might not work in all situations or for all parameter ranges. The prey-predator
model’s specific properties and the control parameters’ values determine how well the
control approach works. Therefore, an in-depth understanding of the system’s dynamics
and careful selection of control situations are required.

4.7 Conclusion

In this chapter, we consider two populations: the prey and the predator. In the absence
of predators, the prey population increases exponentially; nevertheless, perdition causes
the population to decline. On the other hand, the predator population grows as it feeds
on the prey population but declines in the absence of prey. The model is governed by a
collection of coupled differential equations describing the dynamics of the two populations
over time. The model’s behavior is highly sensitive to the parameters’ values. Here’s
what each parameter represents: α: the intrinsic growth rate of the prey population in
the absence of predators. This parameter determines how fast the prey population grows
when no predators are around. β: the perdition rate. This parameter determines how
fast the predator population grows as it feeds on the prey population. γ: the growth rate
of the predator population in the absence of prey. This parameter represents alternative
food sources available to the predator and how fast the predator population grows when
it doesn’t have prey to feed on. θ: the death rate of the predator population due to
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overcrowding. This parameter represents intra-species competition among predators for
resources and how fast the predator population declines when it becomes too large. F :
is the fear effect of the prey population. K: the carrying capacity of the prey population
in a particular habitat. This parameter represents the maximum number of prey that
the habitat can support. L: the half saturation constant. This parameter represents the
prey density at which the predating rate is half its maximum value. ξ: the conversion
rate for a predator. This parameter represents how efficiently the predator population
converts prey into new predators. By varying these parameters, we simulated different
scenarios and observed how the two populations interacted with each other over time.
For example, increasing the perdition rate β can lead to a decline in the prey population,
which in turn causes a decline in the predator population. On the other hand, increasing
the intrinsic growth rate of the prey population α can increase both populations. Still,
the system can become unstable and lead to population crashes.

Moreover, the analysis of the two-dimensional prey-predator model has provided crucial
insights into the behavior of ecological systems. The stability analysis of the fixed points
in both the discrete and continuous forms of the model has led to a deeper understanding
of the system’s dynamics. Additionally, multi-parameter bifurcations were investigated.
The study has analyzed the forward and backward Hopf and flip bifurcations that happen
in various parameters. These findings have significant implications for managing ecolog-
ical systems, given that these bifurcations can lead to drastic changes in the quantity
of predator and prey species. Moreover, the study proposes a simple control technique
to manage the bifurcation in the system. This technique could be highly beneficial in
maintaining the stability of ecological systems, which are often highly sensitive to small
changes in their parameters. Especially in the context of population management and
conservation initiatives, the ability to control the bifurcation may substantially impact
the management of natural systems. Additionally, the mathematical proof that only the
positive fixed point in the continuous-time model experiences Hopf bifurcation offers a
critical insight into the system’s dynamics. The backward Hopf and flip bifurcation in
the fear and Allee effects indicate that when the fear effect and Allee effect are low, the
predator population can easily catch the prey, increasing the predator population size.
When the predator population increases, the prey population may also decline. If the
Allee effect causes the prey population to fall below its minimum threshold, the prey
species may finally become extinct. The high population density of the prey population
during periods when the Allee and fear effects are weak might also result in an unsta-
ble prey-predator system. The high population density of the prey population due to
the crowding effect can lead to increased competition for resources and mating partners,
which can cause the prey population to decline rapidly. Additionally, the high population
density of the predator population can cause over-exploitation of the prey population,
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leading to a decline in the prey population. Suppose the prey population falls below its
minimum threshold due to the Allee effect. In that case, it can lead to the extinction
of the prey population, causing the predator population to decline due to a lack of food
resources. However, suppose the predator population size is not reduced enough. In that
case, it can lead to over-exploitation of the prey population, causing it to decline rapidly
and collapse the entire system. Therefore, in our case, the low values of fear and the
Allee effect could lead to instability in the system due to the crowding effect, which can
cause the prey population to decline rapidly, leading to the collapse of the entire system.
However, the increase in the Allee and fear must be to a certain extent to stabilize the
population.
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Chapter 5

Fixed points stability, bifurcation
analysis, and chaos control of an
epidemic model with vaccination and
vital dynamics

5.1 Introduction

Epidemiology, the study of the spread and control of infectious diseases, plays a crucial
role in understanding and preventing the spread of disease. One important aspect of
epidemiology is the development and use of mathematical models to predict and control
the spread of disease. In this chapter, we will explore a specific type of mathematical
model known as a discrete-time epidemic model with vaccination and vital dynamics.
Mathematical models have been used for many years to determine the rate of population
growth, control diseases, determine the consistency of chemical reactions, determine eco-
nomic stability, formulate game theory, and so on. Mathematical differential models are
used if the population is continuous, while mathematical difference models are used for
seasonal populations. Recently, [126] discussed the dynamic aspects of the 3D chemical
model and proved that the model is globally stable. Khan [115] controlled the chaos of
the 4D chemical model. Difference models have been popular for many years due to their
excellent numerical and computational results, which is why many mathematicians are
working on difference models. Abbasi and Din [20] discretized the continuous model us-
ing piecewise constant arguments. They studied the model’s behavior with the crowding
effect and discussed the stability of equilibrium and bifurcation. Additionally, they ana-
lyze various chaos control strategies and conclude that a simple feedback control approach
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with just one control parameter is more effective than other comparable control theory
techniques. Din et al. [127] discretized a chemical model using a nonstandard scheme and
investigated the qualitative analysis of it. Khan [128] discretized the predator-prey model
and analyzed the effect of Holling type-II on it. Moreover, the author also introduced
the new controlled strategy by modifying the hybrid control strategy and proved that the
newly introduced technique is more effective and feasible.
Additionally, the behavior of a population in response to an infection is studied using
mathematical models. The models are used to comprehend the disease’s behavior. In
the literature, various discrete and continuous-time mathematical models that have been
developed and examined for multiple diseases include [129] and [130]. Numerous stud-
ies have been conducted on the traditional SIR model of disease transmission. In line
with other models, overlapping disease populations are studied using continuous-time SIR
models, whereas seasonal disease populations are studied using discrete-time SIR popu-
lation models. Discrete-time disease models have attracted increased interest because of
their detailed dynamics and attractive numerical outcomes. A discrete SIRS epidemic
system was examined by Xiang et al. [131] to better understand how vaccination af-
fected it. Franoosh and Parsamanesh [132] dynamically analyzed a discrete SIS system
with bi-linear incidence. The authors investigate the model’s bifurcation and equilibrium
stability. Additionally, both susceptible individuals and recent immigrants are included
in the vaccine program. Different epidemic models are discretized by Liu et al. [133]
utilizing backward and forward Euler methods. Using these discretization techniques,
they looked into the stability behavior of endemic equilibrium. They concluded that the
backward Euler method is best for endemic equilibrium’s overall stability, whereas the
forward Euler method makes models more dynamically rich than continuous models. In
their analysis of a SIRS epidemic model with a non-linear incidence, Hu et al. [134]
demonstrate the conditions for the local stability of the boundary and positive equilib-
rium. A disease model for Babesiosis disease transmission in bovine and tick populations
is discretized by Aranda et al. [135]. They demonstrated persistence, local equilibrium
stability, and the behavior of border equilibrium points globally. The comparison princi-
ple is used by Ma et al. [136] to examine the overall behavior of the positive steady-state of
a discrete SIR model. Using an unconventional finite difference approach, Cui and Zhang
[137] discretized a SIR model and derived adequate requirements for its global stability.
Mickens [138] uses unconventional discretization for numerical approaches to ensure that
the solutions to difference equations are positive. Vecchio and Izzo [139] discretized an
epidemic model using implicit and explicit Euler methods and showed attractive results
for the solution’s positivity, boundedness, and global stability. Van den Driessche and
Yakubu [140] investigate a few discrete epidemic models developed for SEIR diseases,
animal anthrax, and human cholera. They demonstrated these models’ worldwide sta-
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bility and endurance. The most well-known types of epidemic models among them are
SIS (susceptible-infected-susceptible) models. Vaccinating the infected population is es-
sential to managing and eradicating the infected population. To do this, it is conceivable
to incorporate a compartment for vaccinated individuals into the SIS model and obtain
SIVS individuals [141] and [142].
Recently, mathematicians have used several SIR models to control the coronavirus epi-
demic. Liu and Li [143] derive an epidemic model with a discrete state structure and prove
its global stability and persistence. They apply their results to the COVID-19 pandemic.
Alqahtani [144] took the SIR model for coronavirus disease and proved that hospital re-
sources, such as hospital beds, should be increased to diagnose the disease in any society
better. Lin et al. [145] proposed the SEIR model for the Corona epidemic and proved
that we could control the outbreak through social isolation strategies and government
initiatives. Wells et al. [146] and Gnostic et al. [147] proved that we can stop the spread
of COVID-19 globally by imposing travel restrictions and closing borders. Khan et al.
[148] discretized a diabetic compartmental model disclosed to COVID-19 and proved that
the quarantined compartment must not be kept empty to stabilize the system. Motivated
by the above literature, we consider the discrete-time SIS epidemic model in this chapter
from [149]. The model we will discuss includes vaccination, an important intervention
strategy for controlling the spread of disease, and vital dynamics, which consider births
and deaths in the population. This model will be used to simulate the spread of a disease
in a population and to evaluate the effectiveness of different vaccination strategies. The
results of this chapter will provide valuable insights into the dynamics of disease spread
and the impact of interventions such as vaccination on the control of epidemics. Overall,
we aim to contribute to understanding the spread of infectious diseases and developing
effective intervention strategies through mathematical modeling. Mainly, we investigate
the local stability of equilibria, global stability, bifurcation theory with numerical ex-
amples, and chaos control. Moreover, the model is discretized using Euler’s method,
and the stability of the equilibria is analyzed. Finally, we conclude the results. The
three-dimensional Lotka-Volterra predator-prey system is given below:

It+1 =
bStIt
Nt

+ [1− (a+ c)]It,

St+1 = (1− q)aNt − bStIt
Nt

+ [1− (a+ p)]St + cIt + dVt,

Vt+1 = qaNt + pSt + [1− (a+ d)]Vt.

(5.1.1)

Here, a and N are positive, while c, p, d, b and q are non-negative. Natural death rates
are represented by the parameter a, contact rates by b, cure rates by c, immunity loss
rates by d, and vaccination rates for newcomers and susceptible individuals by q and
p, respectively. The model’s flow diagram and transmissions between its sub-population
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and their respective transmission rates are depicted in the diagram 5.1. The susceptible
individuals become infected at the standard incidence rate of bStIt

Nt
. Moreover, Nt+1 = Nt.

Figure 5.1: The model’s flowchart and transmission rates.

Let Vt = N − St − It, the above system (5.1.1) becomes:It+1 =
bStIt
N

+ [1− (a+ c)]It,

St+1 = [(1− q)a+ d]N − bStIt
N

+ [1− (a+ p+ d)]St + (c− d)It.
(5.1.2)

The necessary conditions for the non-negativity of the solution of the system (5.1.2) are
given below:

a+ p+ d+ b < 1, a+ c < 1. (5.1.3)

The criteria we present here serve as the natural prerequisites for the system (5.1.2).
While these criteria are sufficient, they are not necessary for the solutions to be non-
negativity. We introduce a novel approach where less than one susceptible person every
unit of time dies, acquires an infection, or receives vaccinations. Similarly, according to
the second criterion, less than one sick individual dies or recovers for every unit of time.
This unique method adds a fresh perspective to our understanding of disease dynamics
and control methods. This chapter is innovative and essential since it uses two separate
models to represent the same population and takes the novel method of employing fixed
point techniques to prove the global stability of the system (5.1.2). To the best of our
knowledge, no earlier studies have investigated this nature. We thoroughly examine the
system’s global stability in the model (5.1.2). This lets us know how the system reacts
to parameter changes and the circumstances necessary for long-term illness control. This
approach improves our comprehension of the underlying dynamics and makes it possi-
ble to pinpoint important variables and preventative measures for developing infectious
illnesses. In the second model (5.2.7), we will explore the bifurcation behavior of the
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system. We will examine the system’s behavior during bifurcation in the second model
(5.2.7). Understanding how small parameter changes can result in qualitative shifts in
the system dynamics is possible through bifurcation analysis. We highlight the complex
interaction between several parameters and their bearing on the system’s behavior by
analyzing one parametric bifurcation and a codimension-two bifurcation. By providing a
deeper insight into the underlying mechanisms influencing disease patterns, this chapter
will help develop specific treatment methods.

5.2 Stability of the fixed points

Figure 5.2: Basic reproduction number for a = 0.9, b = 1.9, c = 0.6, d = 0.3, p =
0.4 and q = 0.4.

The equilibria of the system (5.1.2) are solutions of the following system:0 = bStIt
Nt

+ [1− (a+ c)]It,

0 = [(1− q)a+ d]N − bStIt
N

+ [1− (a+ p+ d)]St + (c− d)It,
(5.2.1)

Solving the above equations we get
E0 =

(
0, [(1−q)a+d]N

a+p+d

)
, and E∗(I∗, S∗) =

(
[(1−q)a+d]bN−(a+p+d)(a+c)N

b(a+d)
, (a+c)N

b

)
. The fixed

point E∗(I∗, S∗) is positive when [(1 − q)a + d]bN − (a + p + d)(a + c)N > 0 iff R0 =
b[(1−q)a+d]

(a+p+d)(a+c)
> 1. Here R0 is the basic reproduction number of system (5.1.2), see [150].

Figure 5.2 shows the plot for the basic reproduction number R0.
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(a) Topological classification for E0 (b) Vector plot

Figure 5.3: Plots of system (5.1.2) for b = 1.2, c = 0.18, p = 0.22, q = 0.4, N = 0.32, h =
0.35, a ∈ (0, 1), and d ∈ (0, 1).

The variational matrix VE0 of (5.1.2) calculated at E0 =
(
0, [(1−q)a+d]N

a+p+d

)
is given as:

VE0 =

(
1− a− c+ b(a+d−aq)

a+d+p
0

c− d− b(a+d−aq)
a+d+p

1− a− d− p

)
,

Characteristic polynomial of VE0 is:

P (λ) = λ2 − Tr(VE0)λ+Det(VE0),

where
Tr(VE0) = 2− 2a− c− d− p+

b(a+ d− aq)

a+ d+ p
,

and

Det(VE0) =
(−1 + a+ d+ p) (a2 + (−1− b+ c)d+ (−1 + c)p)

a+ d+ p

+
(−1 + a+ d+ p) (a(−1 + c+ d+ p+ b(−1 + q)))

a+ d+ p
.

The eigenvalues of VE0 are λ1 = 1 − a − d − p and λ2 = 1 − a − c + b(a+d−aq)
a+d+p

. By our
assumptions a + p + d + b < 1 and a + c < 1, one can see that |λ1| < 1, but |λ2| < 1 iff
R0 < 1. The following lemma for the local stability of VE0 can therefore be written as:

Lemma 5.2.1. Assume that the condition (5.1.3) holds then the steady-state E0 of the
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system (5.1.2) is a
(I) sink if |1− a− c+ b(a+d−aq)

a+d+p
| < 1 i.e. R0 < 1 or a+ c− 2 < b(a+d−aq)

a+d+p
< a+ c;

(II) saddle point if
∣∣∣1− a− c+ b(a+d−aq)

a+d+p

∣∣∣ > 1.

The topological classification and vector plot for the fixed point E0 are given in figure
5.3. From figure 5.3, we see that if condition (5.1.3) fails, then the system (5.1.2) at E0

goes towards instability.

Variational matrix VE∗ of (5.1.2) at E∗ =
(

[(1−q)a+d]bN−(a+p+d)(a+c)N
b(a+d)

, (a+c)N
b

)
is given by:

VE∗ =

(
1 −a2−bd+c(d+p)+a(c+d+p+b(−1+q))

a+d

−a− d d−bd+(c−d)(d+p)+a(1+c−d+b(−1+q))
a+d

)
,

The characteristic polynomial of variational matrix VE∗ is:

P (λ) = λ2 − Tr(VE∗)λ+Det(VE∗),

where
Tr(VE∗) = 1 +

d− bd+ (c− d)(d+ p) + a(1 + c− d+ b(−1 + q))

a+ d
,

and

Det(VE∗) = − 1

a+ d
[a3 − d− b(−1 + d)d+ (c(−1 + d) + d)(d+ p)

+ a(−1 + d(1 + d+ p) + c(−1 + 2d+ p) + b(1 + d(−2 + q)− q))

+ a2(c+ 2d+ p+ b(−1 + q))].

The eigenvalues of VE∗ are

λ1 =
1

2(a+ d)

(
2a− ab+ ac− d2 + cp− d(−2 + a+ b− c+ p) + abq

)
+

1

2(a+ d)

(√(
4(a+ d) (µ1) + (µ2)

2)) ,
λ2 = − 1

2(a+ d)

(
−2a+ ab− ac+ d2 − cp+ d(−2 + a+ b− c+ p)− ab

)
− 1

2(a+ d)

(√(
4(a+ d) (µ1) + (µ2)

2)) , where
µ1 = a3 − d− b(−1 + d)d+ (c(−1 + d) + d)(d+ p) + a(−1 + d(1 + d+ p)

+ c(−1 + 2d+ p) + b(1 + d(−2 + q)− q)) + a2(c+ 2d+ p+ b(−1 + q)), and

µ2 = d2 − cp+ d(−2 + b− c+ p) + a(−2 + b− c+ d− bq).
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(a) Topological classification for E∗ (b) Vector plot

Figure 5.4: Plots of system (5.1.2) for a = 0.2, c = 0.6, p = 0.5, q = 0.4, N = 0.1, h =
0.5, d ∈ (0, 1), and b ∈ (1.5, 3).

We use the following lemma to study the local stability of the model (5.1.2) at E∗.

Lemma 5.2.2. Let µ3 = −d − bd(d − 1) + ((d − 1)c + d)(d + p), µ4 = −1 + d(1 +

p + d) + c(−1 + 2d + p) + b(1 + d(−2 + q) − q), µ5 = c + 2d + p + b(−1 + q) and
µ6 = d− bd+ (c− d)(d+ p) + a(1− d+ c+ b(q − 1)), then

Tr(VE∗) = 1 +
µ6

a+ d
, and

Det(VE∗) = − 1

a+ d

(
µ3 ++a3 + a2(µ5) + a(µ4)

)
.

We have these conditions for the positive fixed point
(I) The unique positive fixed point E∗ is source iff∣∣∣∣− 1

a+ d

(
µ3 ++a3 + a2(µ5) + a(µ4)

)∣∣∣∣ > 1,

and ∣∣∣∣1 + µ6

a+ d

∣∣∣∣ < ∣∣∣∣1− 1

a+ d

(
µ3 ++a3 + a2(µ5) + a(µ4)

)∣∣∣∣ .
(II) The unique positive fixed point E∗ is the saddle point iff(

1 +
µ6

a+ d

)2

> 4

(
− 1

a+ d

(
µ3 ++a3 + a2(µ5) + a(µ4)

))
,
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and ∣∣∣∣1 + µ6

a+ d

∣∣∣∣ > ∣∣∣∣1− 1

a+ d

(
µ3 ++a3 + a2(µ5) + a(µ4)

)∣∣∣∣ .
(III) The unique positive fixed point E∗ is a non-hyperbolic point iff∣∣∣∣1 + µ6

a+ d

∣∣∣∣ = ∣∣∣∣1− 1

a+ d

(
µ3 ++a3 + a2(µ5) + a(µ4)

)∣∣∣∣ , (5.2.2)

or
− 1

a+ d

(
µ3 ++a3 + a2(µ5) + a(µ4)

)
= 1and

∣∣∣∣1 + µ6

a+ d

∣∣∣∣ ≤ 2. (5.2.3)

We will demonstrate the necessary and sufficient criteria for the source of E∗ in the
subsequent theorem.

Theorem 5.2.3. If neither (5.2.2) nor (5.2.3) holds, then the interior fixed point E∗ =(
[(1−q)a+d]bN−(a+p+d)(a+c)N

b(a+d)
, (a+c)N

b

)
is sink iff

∣∣∣∣1 + µ6

a+ d

∣∣∣∣ < 1− 1

a+ d

(
µ3 + a(µ4) + a2(µ5) + a3

)
< 2.

The topological classification and vector plot for a fixed point E∗ are given in the figure
5.4.

5.2.1 Global stability of the positive fixed point

We shall first demonstrate that the system (5.1.2)’s overall population is bounded, re-
sulting in the following theorem:

Theorem 5.2.4. The total population of the system (5.1.2) is bounded.

Proof.

It+1 + St+1 =
bStIt
Nt

+ [1− (a+ c)]It

+ [(1− q)a+ d]N − bStIt
N

+ [1− (a+ p+ d)]St + (c− d)It

= (1− a)It + [(1− q)a+ d]N − [1− (a+ p+ d)]St + (c− d)It

≤ (1− a)It + [a+ d]N − [1− a]St

Pt+1 ≤ (1− a)Pt + [(1− q)a+ d]N

Pt ≤ N(1− (1− a)t)(−1 + a)(−d− a+ qa)

(1− a)a
+ (1− a)t−1C1
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Applying limt→∞, we get

Pt ≤
N(a+ d− qa)

a
.

For the global consistency of E∗ =
(

[(1−q)a+d]bN−(a+p+d)(a+c)N
b(a+d)

, (a+c)N
b

)
we will use the

following theorems (see [19]):

Theorem 5.2.5. Let (χ, d) be a metric space, g : χn → χ and f : R3
+ → R+ such that:

(i) f is an n dimensional (c)-comparison function;
(ii) ∀y0, · · · , yn−1, yn ∈ χ we have

d(g(y0, · · · , yn−1), g(y1, · · · , yn)) ≤ f(d(y0, y1), · · · , d(yn−1, yn));

(iii) ∀R we have

f(m, 0, · · · , 0) + f(0,m, 0, · · · , 0) + · · ·+ f(0, · · · , 0,m) ≤ f(m, · · · ,m).

Then:
(a) the operator Bg : χ

n → χn is a Picard operator;
(b) we have the estimation

d(yk, y
∗) ≤ n.

∞∑
i=0

ϕ[ k
n
](d0).

α[ k
n
]

1− α
,

where (yk)k∈N is any solution of (1), d0 = maxi=0,k−1d(yi, yi+1) and ϕ : R+ → R+

ϕ(m) = ψ(m, · · · ,m).

Theorem 5.2.6. Let (χ, d) be a metric space, g : χn → χ such that:
(i) there exist pi ∈ R+, i = 1, k, with α =

∑n
i=1 pi < 1 such that

d(g(x, y)) ≤
n∑

i=1

pid(xi, yi),

for all x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ χn. Then:
(a) the operator Bg : χ

n → χn is a Picard operator;
(b) we have the estimation

d(yk, y
∗) ≤ n.d0.

α[ k
n
]

1− α
,

where (yk)k∈N is any solution of (1), d0 = maxi=0,k−1d(yi, yi+1).
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(c) operator g is continuous in (y∗, · · · , y∗) ∈ χn

Using Theorem 5.2.5 and Theorem 5.2.6 we can easily find the global consistency of the
system (5.1.2) which is given in the theorem below:

Theorem 5.2.7. Let It ∈ (0,M1], St ∈ (0,M2]. If
∣∣ bM1

N

∣∣ < 1 and condition (5.1.3)
holds, then the unique positive steady-state R∗ = (I∗, S∗) of the system (5.1.2) is globally
asymptotically stable. We have the following estimation:

δ(Rt, R
∗) ≤ αn

1− α
.max {δ(R0 −R1), · · · , δ(Rn−1 −Rn)} ,

where α = | bM1

N
| + |1− (a+ c)| + |1− (a+ p+ d)| + |c− d| and δ is the metric on the

space Y = (0,M1]× (0,M2] defined by

δ (R1, R2) = max {|I1 − I2|, |S1 − S2|}

∀R1 = (I1, S1), R2 = (I2, S2) ∈ Y.

Proof. The system (5.1.2) can also be written as:

f1 (It, St) =
bStIt
N

+ [1− (a+ c)]It,

f2 (It, St) = [(1− q)a+ d]N − bStIt
N

+ [1− (a+ p+ d)]St + (c− d)It.
(5.2.4)

Let Y = (0,M1] × (0,M2]. Then it is obvious that the metric space (Y, δ) is complete.

Figure 5.5: Stability diagrams
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Let f = (f1, f2) : Y
n+1 → Y.

|f1(I, S)− f1(I
∗, S∗)| =

∣∣∣∣bStIt
Nt

+ [1− (a+ c)]It −
[
bS∗

t I
∗
t

N∗
t

+ [1− (a+ c)]I∗t

]∣∣∣∣
=

∣∣∣∣ bN (StIt − S∗
t I

∗
t ) + [1− (a+ c)] (It − I∗t )

∣∣∣∣
≤
∣∣∣∣ bN
∣∣∣∣ |(StIt − S∗

t I
∗
t )|+ |[1− (a+ c)]| |(It − I∗t )|

≤
∣∣∣∣bM1

N

∣∣∣∣ |(St − S∗
t )|+ |[1− (a+ c)]| |(It − I∗t )| ,

It can be seen form condition (5.1.3) that |1− (a+ c)| < 1.

|f2(I, S)− f2(I
∗, S∗)| = |[(1− q)a+ d]N − bStIt

N
+ [1− (a+ p+ d)]St + (c− d)It

−
[
[(1− q)a+ d]N − bS∗

t I
∗
t

N
+ [1− (a+ p+ d)]S∗

t + (c− d)I∗t

]
|

≤
∣∣∣∣bM1

N

∣∣∣∣ |St − S∗
t |+ |1− (a+ p+ d)| |St − S∗

t |+

|c− d| |It − I∗t | .

Condition (5.1.3) shows that |1− (a+ p+ d)| < 1 and |c− d| < 1.
and we have

δ (f (R0, · · · , Rn) , f (R
∗
0, · · · , R∗

n)) ≤
bM1

N
max {δ(R0, R

∗
0), δ(Rn, R

∗
n)} .

For this case, we consider the function ψ : R2
+ → R+

ψ(s0, s1) = max {δ(R0, R
∗
0), δ(Rn, R

∗
n)}

which is a (c)-comparison function in two dimensions. Thus, there exists an operator
Af : X2 → X2 that is a Picard operator, and therefore the given system is globally
asymptotically stable for the positive fixed point. The global stability of the model
(5.1.2) can be seen from figure 5.5.

Discretizing a continuous-time model is essential because it allows for using digital com-
puters for simulations and analysis, implementing digital control techniques, and applying
stability analysis techniques specific to discrete-time systems. It also simplifies applying
numerical methods and algorithms to the system. Discretizing also aids in decreasing
system complexity and improving its accessibility. Furthermore, discretizing allows for
incorporating discrete-time measurements, such as those taken at fixed intervals, into the
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model. As a result, the model may be more accurate and realistic. It is crucial to dis-
cretize continuous-time models using Euler’s forward scheme because it is a simple and
valuable technique that, for small time steps, yields an accurate approximation of the
continuous-time model. Additionally, because it is a stable approach, the solution of the
discrete-time system won’t gradually become unbounded. It can also be combined with
other discretization techniques to increase the model’s accuracy and discretize numer-
ous continuous-time models, including linear and nonlinear systems. It is also frequently
applied in various academic disciplines, including physics, engineering, and computer sci-
ence. It can be used to discretize continuous-time models for real-time applications, like
control systems, where the time step needs to be tiny to ensure accurate and responsive
control. Due to the advantages of Euler’s method, we also discretized the SIV model
discussed above with this method. The above-mentioned model has also been written in
the literature as a continuous-time model. The following system of ordinary differential
equations can be used to express the model shown in figure 5.1 as a continuous-time
model (see [152] and [153]):

dI
dt

= bSI
N

− (a+ c)I,

dS
dt

= (1− q)aN − bSI
N

− (a+ p)S + cI + dV,

dV
dt

= qaN + pS − (a+ d)V.

(5.2.5)

All the parameters are positive and have the same biological meanings as given in the
model (5.1.1). The population size is constant since dN

dt
= 0. Similar to model (5.1.2), by

replacing the variable V with V = N − S − I and leaving out the variable V , we obtain
the following two-dimensional system:dI

dt
= bSI

N
− (a+ c)I,

dS
dt

= [(1− q)a+ d]N − bSI
N

− (a+ p+ d)S + (c− d)I,
(5.2.6)

Using forward Euler scheme the system (5.2.6) can be discretized as follows:It+1 = It + h( bStIt
N

− (a+ c)It),

St+1 = St + h([(1− q)a+ d]N − bStIt
N

− (a+ p+ d)St + (c− d)It),
(5.2.7)

where h ∈ [0, 1] is the step size. The fixed points and the basic reproduction number of
the systems (5.2.7) and (5.1.2) are the same. The fixed points of (5.2.7) can be calculated
by solving the following system of equations:
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I = I + h( bSI
N

− (a+ c)I),

S = S + h([(1− q)a+ d]N − bStIt
N

− (a+ p+ d)S + (c− d)I).

Solving above system, we get:
E0 =

(
0, [(1−q)a+d]N

a+p+d

)
, and E∗ =

(
[(1−q)a+d]bN−(a+p+d)(a+c)N

b(a+d)
, (a+c)N

b

)
as the fixed points of

(5.2.7). The stability analysis of the fixed points E0 and E∗ are given below:

Theorem 5.2.8. For the boundary fixed point E0 =
(
0, [(1−q)a+d]N

a+p+d

)
of the system (5.2.7),

the following conditions hold:
(I) The fixed point E0 of system (5.2.7) is sink when 1− 2

(a+c)h
< R0 < 1.

(II) The fixed point E0 of system (5.2.7) is saddle when 1 < R0 < 1− 2
(a+c)h

.

Figure 5.6: Plots of E0 for a = 0.4, c = 0.4, p = 0.2, N = 0.1, d = 0.1, h ∈ (0, 1), b ∈
(0.4, 0.9) and q ∈ (0, 1).

Proof. The Jacobian matrix of the system (5.2.7) at E0 =
(
0, [(1−q)a+d]N

a+p+d

)
is given by

VE0 =

 1 + h
(
−a− c+ b(a+d−aq)

a+d+p

)
0

h
(
c− d− b(a+d−aq)

a+d+p

)
1− h(a+ d+ p)

 ,

VE0 =

(
1 + h (−a− c+R0(a+ c)) 0

h (c− d−R0(a+ c)) 1− h(a+ d+ p)

)
. (5.2.8)
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The matrix (5.2.8) have the following characteristic polynomial:

P (λ) = λ2 − A1λ+ A2,

where
A1 = −2 + h(2a+ c+ d+ p)− (a+ c)hR0,

and
A2 = −(−1 + h(a+ d+ p)) (1− (a+ c)h+ (a+ c)hR0) .

The eigenvalues are:

λ1 = 1− h(a+ d+ p), and λ2 = 1 + (a+ c)h (−1 +R0) .

The topological classification for E0 of system (5.2.7) is given in figure 5.6.

For the stability analysis of the positive fixed point of the system (5.2.7), we have the
following calculation: The Variational matrix of the system (5.2.7) at E∗ is given by

VE∗ =

(
1 −h(a2−bd+c(d+p)+a(c+d+p+b(−1+q)))

a+d

−(a+ d)h 1− h(bd−(c−d)(d+p)+a(b−c+d−bq))
a+d

)
,

=

(
1 (a+c)h(a+d+p)(−1+bR0)

a+d

−(a+ d)h 1− h(a+d+p)(c−d+(a+c)R0)
a+d

)
.

Figure 5.7: Plot of E∗ for a = 0.4, c = 0.4, p = 0.2, N = 0.1, d = 0.1, h ∈ (0, 1), b ∈
(0.4, 0.9) and q ∈ (0, 1).
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The characteristic polynomial of VE∗ is

P (λ) = (λ)2 −B1λ+B2, (5.2.9)

where
Tr = B1 = 2− h(a+ d+ p) (c− d+ (a+ c)R0)

a+ d
,

and

Det = B2 = −(a+ d)(−1 + (a+ c)h)(1 + (a+ d)h) + h(c− d+ (a+ c)(a+ d)h)p

a+ d

− (a+ c)h(−1 + b(a+ d)h)(a+ d+ p)R0

a+ d
.

Theorem 5.2.9. Let E∗ =
(

[(1−q)a+d]bN−(a+p+d)(a+c)N
b(a+d)

, (a+c)N
b

)
is the positive fixed point

of the system (5.2.7), then the following conditions hold:
(I) Fixed point E∗ of the model (5.2.7) is source iff

|B2| > 1, and |B1| < |1 + B2| .

(II) Fixed point E∗ of the model (5.2.7) is saddle point iff

(B1)
2 > 4B2, and |B1| > |1 + B2| .

(III) Fixed point E∗ of the model (5.2.7) is non-hyperbolic point iff

|B1| = |1 + B2| , and (5.2.10)

B2 = 1, or |B1| ≤ 2. (5.2.11)

(IV) If neither (5.2.10) nor (5.2.11) holds, then the unique positive fixed point of system
(5.2.7) is sink iff

|B1| < 1 + B2 < 2.

Figure 5.7 represents the topological classification of the positive fixed point of the system
(5.2.7).

5.3 Bifurcation analysis

An essential tool in the study of dynamic systems is bifurcation analysis. It enables
us to comprehend how minor changes in system parameters can result in significant
changes in the system’s behavior. By examining these changes, we can gain insight
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into the underlying mechanisms of the system and make predictions about how it will
respond to certain situations. The flip and Hopf bifurcations are two significant types of
bifurcations. A flip bifurcation occurs when a stable equilibrium state loses stability and
is replaced by two new stable equilibrium states. This bifurcation is often encountered
in systems with symmetry breaking, such as in the formation of fluid patterns and the
dynamics of populations. However, if a stable equilibrium state loses stability and is
replaced by a stable limit cycle, this is known as a Hopf bifurcation. This bifurcation
frequently occurs in oscillatory systems, such as the dynamics of chemical reactions and
the regulation of mechanical systems. Thus, bifurcation analysis is a potent technique
that enables us to comprehend dynamic systems’ behavior and predict how they will act
in various scenarios. Understanding the flip and Hopf bifurcations is crucial in physics,
chemistry, engineering, biology, and many other fields where dynamic systems are studied.
In this section, we also discuss the bifurcation behavior of the system (5.2.7) at (I∗, S∗) =(

[(1−q)a+d]bN−(a+p+d)(a+c)N
b(a+d)

, (a+c)N
b

)
.

5.3.1 Period-doubling bifurcation

Initially, we discuss the period-doubling bifurcation of the system (5.2.7) at (I∗, S∗).

Where (I∗, S∗) is the fixed point of system (5.2.7). The Jacobian matrix of system (5.2.7)
at (I∗, S∗) is given below:

J(I∗, S∗) =

(
N−N(a+c)h+bhS∗

N
bhI∗

N

h
(
c− d− bS∗

N

)
1− h(a+ d+ p)− bhI∗

N

)
, (5.3.1)

The characteristic polynomial of (5.3.1) is:

P (Ω) = Ω2 − (2− θ1h)Ω + (1− θ1h+ θ2h
2), (5.3.2)

where, θ1 = 2a+ c+ d+ p+ bI∗

N
− bS∗

N
and θ2 = (a+ c)(a+ d+ p) + b(a+d)I∗

N
− b(a+d+p)S∗

N
.

Assume that
(2− θ1h)

2 > 4(1− θ1h+ θ2h
2). (5.3.3)

Then the condition P (−1) = 0 = 1 + (2− (θ1)h) + 1− (θ1)h+ (θ2)h
2, implies that

h =
θ1 −

√
θ21 − 4θ2
θ2

. (5.3.4)

The root of the equation (5.3.2) for P (Ω) = 0 are:

Ω1 = −1 and Ω2 =
θ1

(
−θ1 +

√
θ21 − 4θ2

)
+ 3θ2

θ2
,
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with ∣∣∣∣∣∣
θ1

(
−θ1 +

√
θ21 − 4θ2

)
+ 3θ2

θ2

∣∣∣∣∣∣ ̸= 1. (5.3.5)

Let ΦFB = {(a, c, d, p, q,N, b, h) ∈ R+ : (5.3.3), (5.3.4) and (5.3.5) are satisfied}. It is ex-
amined that when the parametric values change in a small neighborhood of ΦFB, then the
flip bifurcation emerges for system (5.2.7) at (I∗, S∗). Consider the arbitrary parameters
(a, c, d, p, q,N, b, h̃) ∈ ΦFB, then the map (5.2.7) can be written as:I → I + h̃( bSI

N
− (a+ c)I),

S → S + h̃([(1− q)a+ d]N − bSI
N

− (a+ p+ d)St + (c− d)I),
(5.3.6)

Consider h∗ be a limited perturbation parameter, then the perturbation of (5.3.6) is:I → I +
(
h̃+ h∗

) (
bSI
N

− (a+ c)I
)
,

S → S +
(
h̃+ h∗

) (
[(1− q)a+ d]N − bSI

N
− (a+ p+ d)St + (c− d)I

)
,

(5.3.7)

where |h∗| << 1.
Let U = I − I∗ and V = S − S∗, then the system (5.3.7) can be written as:

(
U

V

)
→

(
f1(U, V, h

∗)

g1(U, V, h
∗)

)
, (5.3.8)

where

f1(U, V, h
∗) =

(
1 + h̃

(
bS∗

N
− a− c

))
U +

h̃bI∗

N
V +

(
bI∗S∗

N
− (a+ c) I∗

)
h∗

+
h̃b

N
UV +

(
bS∗

N
− a− c

)
h∗U +

bI∗

N
h∗V +

b

N
h∗UV

+ O (|U |, |V |, |h∗|)4 ,

g1(U, V, h
∗) = h̃

(
−bS

∗

N
+ c− d

)
U +

(
1 + h̃

(
−bI

∗

N
− a− p− d

))
V

+ [((1− q) a+ d)N − bI∗S∗

N
− (a+ p+ d)S∗ + (c− d) I∗]h∗

− h̃b

N
UV +

(
−bS

∗

N
+ c− d

)
h∗U +

(
−bI

∗

N
− a− p− d

)
h∗V

− b

N
h∗UV +O (|U |, |V |, |h∗|)4 .
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Consider the translation that follows:(
U

V

)
= T

(
Ĩ

S̃

)
,

where

T =

(
h̃bI∗

N
h̃bI∗

N

−1−
(
1 + h

(
bS∗

N
− a− c

))
Ω2 −

(
1 + h

(
bS∗

N
− a− c

)) ) .
Taking T−1 on both sides of (5.3.8), we get

(
Ĩ

S̃

)
→

(
−1 0

0 Ω2

)(
Ĩ

S̃

)
+

(
f2(U, V, h

∗)

g2(U, V, h
∗)

)
, (5.3.9)

where

f2(U, V, h
∗) =

1

Ω2 + 1

[(
−(−Ω2 + a11) a16

a12
− a26

)
h∗UV

]
+

1

Ω2 + 1

[(
−(−Ω2 + a11) a14

a12
− a24

)
h∗U

]
+

1

Ω2 + 1

[(
−(−Ω2 + a11) a15

a12
− a25

)
V h∗

]
+

1

Ω2 + 1

[(
−(−Ω2 + a11) a13

a12
− a23

)
UV

]
,

g2(U, V, h
∗) =

1

Ω2 + 1

[(
(1 + a11) a16

a12
+ a26

)
h∗UV

]
+

1

Ω2 + 1

[(
(1 + a11) a14

a12
+ a24

)
h∗U

]
+

1

Ω2 + 1

[(
(1 + a11) a15

a12
+ a25

)
V h∗

]
+

1

Ω2 + 1

[(
(1 + a11) a13

a12
+ a23

)
UV

]
,

a11 =

(
1 + h

(
bS∗

N
− a− c

))
, a12 =

h̃bI∗

N
, a13 =

h̃b

N
, a14 =

(
bS∗

N
− a− c

)
,

a15 =
bI∗

N
, a16 =

b

N
, a23 =

h̃b

N
, a24 =

(
−bS

∗

N
+ c− d

)
,
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a25 =

(
−bI

∗

N
− a− p− d

)
, a26 =

b

N
.

Now, applying the center manifold theorem to (5.3.9) at (0, 0) in the limited neighborhood
of h∗ = 0. Then W c(0, 0, 0) can be approximately calculated as:

W c(0, 0, 0) = {(U, V, h∗) ∈ R3 : m1U
2 +m2Uh

∗m3h
∗2 +O(|U |+ |h∗|)3},

where

m1 =
a12 (−1− a11)

1− Ω2

(
(1 + a11) a13
a12 (Ω2 + 1)

+
a23

Ω2 + 1

)
,m3 = 0,

m2 =
1

1− Ω2

((
(1 + a11) a14
a12 (Ω2 + 1)

+
a24

Ω2 + 1

))
a12

+
1

Ω2 + 1

(
(1 + a11) a15
a12 (Ω2 + 1)

+
a25

Ω2 + 1

)
(−1− a11) .

Thus, the map restricted to center manifold W c(0, 0, 0) is given by

f : Ĩ → −Ĩ + ξ1Ĩ
2 + ξ2Ĩh

∗ + ξ3Ĩ
2h∗ + ξ4Ĩh

∗2 + ξ5Ĩ
3 +O

(
(|Ĩ|+ |h∗|)4

)
,

where

ξ1 =
1

(Ω2 + 1)

(
−(−Ω2 + a11) a13

a12
− a23

)
a12 (−1− a11) ,

ξ2 =
1

(Ω2 + 1)

{(
−(−Ω2 + a11) a14

a12
− a24

)
a12

}
+

1

(Ω2 + 1)

{(
−(−Ω2 + a11) a15

a12
− a25

)
(−1− a11)

}
,

ξ3 =

(
−(−Ω2 + a11) a16

a12 (Ω2 + 1)
− a26

Ω2 + 1

)
a12 (−1− a11)

+

(
−(−Ω2 + a11) a14

a12 (Ω2 + 1)
− a24

Ω2 + 1

)
a12m1

+

(
−(−Ω2 + a11) a15

a12 (Ω2 + 1)
− a25

Ω2 + 1

)
(Ω2 − a11)m1

+

(
−(−Ω2 + a11) a13

a12 (Ω2 + 1)
− a23

Ω2 + 1

)
a12 (Ω2 − a11)m2

+

(
−(−Ω2 + a11) a13

a12 (Ω2 + 1)
− a23

Ω2 + 1

)
a12m2 (−1− a11) ,
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ξ4 =
1

(Ω2 + 1)

{(
−(−Ω2 + a11) a14

a12
− a24

)
a12m2

}
+

1

(Ω2 + 1)

{(
−(−Ω2 + a11) a15

a12
− a25

)
(Ω2 − a11)m2

}
+

1

Ω2 + 1

{(
−(−Ω2 + a11) a13

a12
− a23

)
a12 (Ω2 − a11)m3

}
+

1

(Ω2 + 1)

{(
−(−Ω2 + a11) a13

a12
− a23

)}
a12m3 (−1− a11) ,

ξ5 =
1

(Ω2 + 1)

{(
−(−Ω2 + a11) a14

a12
− a24

)
a12m3

}
+

1

(Ω2 + 1)

{(
−(−Ω2 + a11) a15

a12
− a25

)
(Ω2 − a11)m3

}
.

According to Flip bifurcation, the nonzero real numbers γ1 and γ2 are defined as follows:

γ1 =

(
∂2f

∂Ĩ∂h∗
+

1

2

∂f

∂h∗
∂2f

∂Ĩ2

)
|(0,0),

γ2 =

(
1

2

∂3f

∂Ĩ3
+

(
1

2

∂2f

∂Ĩ2

)2
)
|(0,0).

We have found the non-zero real numbers below:

γ1 =
1

Ω2 + 1

(
−(−Ω2 + a11) a14

a12
− a24

)
a12

+
1

Ω2 + 1

(
−(−Ω2 + a11) a15

a12
− a25

)
(−1− a11) ̸= 0,

γ2 = ξ21 + ξ5 ̸= 0.

From the above calculation, we conclude the following result about the flip bifurcation of
the system (5.2.7).

Theorem 5.3.1. If γ2 ̸= 0, and the bifurcation parameter h∗ alters in the limited neigh-
borhood of h̃, then the system (5.1.2) passes through flip bifurcation at the unique positive
steady-state

(
[(1−q)a+d]bN−(a+p+d)(a+c)N

b(a+d)
, (a+c)N

b

)
. Also, the period-two orbits that bifurcate

from fixed point
(

[(1−q)a+d]bN−(a+p+d)(a+c)N
b(a+d)

, (a+c)N
b

)
are stable (resp., unstable) if γ2 > 0

(resp., γ2 < 0).
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5.3.2 Neimark-Sacker bifurcation

Now we discuss the Neimark-Sacker bifurcation of system (5.2.7) at the fixed point(
[(1−q)a+d]bN−(a+p+d)(a+c)N

b(a+d)
, (a+c)N

b

)
. Let h be the bifurcation parameter.

P (Ω) = Ω2 + (2− θ1h)Ω + (1− θ1h+ θ2h
2) = 0,

has both complex conjugate roots with a modulus equal to one if the following conditions
are satisfied:

θ21 < 4|θ2|, and h ≈ 0 or h =
θ1
θ2
,

where, θ1 = 2a+ c+ d+ p+ bI∗

N
− bS∗

N
and θ2 = (a+ c)(a+ d+ p) + b(a+d)I∗

N
− b(a+d+p)S∗

N
.

Consider that

ϕNS =

{
(a, c, d, p, q,N, b, h) : h ≈ 0(orh =

θ1
θ2
), θ21 < 4|θ2|

}
.

Whenever the bifurcation parameter h varies in the limited neighborhood of ϕNS, then
E∗ =

(
[(1−q)a+d]bN−(a+p+d)(a+c)N

b(a+d)
, (a+c)N

b

)
undergoes Hopf bifurcation. Consider the sys-

tem (5.2.7) with arbitrary parameters (a, c, d, p, q,N, b, h), described by the following
map:

I → I + h̃( bSI
N

− (a+ c)I),

S → S + h̃([(1− q)a+ d]N − bSI
N

− (a+ p+ d)St + (c− d)I).
(5.3.10)

Let h̃ be a bifurcation parameter and consider perturbation of (5.3.10) as given below:

I → I +
(
h̃+ h1

)
( bSI

N
− (a+ c)I),

S → S +
(
h̃+ h1

)
([(1− q)a+ d]N − bSI

N
− (a+ p+ d)St + (c− d)I).

(5.3.11)

where |h1| << 1 is limited perturbation parameter. Consider the transformations U =

I − I∗ and V = V − Y ∗. Transforming the fixed point E∗(I∗, S∗) of system (5.3.11) to
the point (0, 0) we have

(
Ũ

Ṽ

)
→

(
f3(U, V )

g3(U, V )

)
, (5.3.12)
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where

f3(U, V ) =

(
1 + h̃

(
bS∗

N
− a− c

))
U +

h̃bI∗

N
V +

h̃b

N
UV +O (|U |, |V |)4 ,

g3(U, V ) = h̃

(
−bS

∗

N
+ c− d

)
U +

(
1 + h̃

(
−bI

∗

N
− a− p− d

))
V

− h̃b

N
UV +O (|U |, |V |)4 .

The characteristic equation of system (5.3.11) at E∗(I∗, S∗) is given below:

P (Ω) = Ω2 − (2− θ1(h̃+ h1))Ω + (1− θ1(h̃+ h1) + θ2(h̃+ h1)
2), (5.3.13)

where, θ1 = 2a+ c+ d+ p+ bI∗

N
− bS∗

N
and θ2 = (a+ c)(a+ d+ p) + b(a+d)I∗

N
− b(a+d+p)S∗

N
.

The root of the equation (5.3.13) for P (Ω) = 0 are complex conjugate numbers Ω1 and
Ω2 with |Ω1| = 1 = |Ω2|. Then it follows that:

Ω1,Ω2 =
1

2

(
2− (h̃+ h1)θ1 ± ι(h̃+ h1)

√
θ21 − 4θ2

)
. (5.3.14)

Then we get (
d|Ω1|
dh1

)
h1=0

=

(
d|Ω2|
dh1

)
h1=0

=
1

2

(
−θ1 ± ι

√
θ21 − 4θ2

)
. (5.3.15)

Let Tr(h1) = 2−θ1(h̃+h1). Then Tr(0) = 2−θ1(h̃) ̸= 0,−1. Moreover, (a, c, d, p, q,N, b, h) ∈
ϕNS implies that −2 < Tr(0) < 2. Thus, Tr(0) ̸= ±2, 0, 1 gives Ω2

1,Ω
2
2 ̸= 1∀n = 1, 2, 3, 4

at h1 = 0. Thus, the roots of (5.3.13) lie outside the area where the coordinate axes and
the unit circle intersect when h1 = 0 and if Tr(0) ̸= 0, 1. To discuss the normal form
of system (5.3.12) at h1 = 0, we take ξa = 2−θ1h̃

2
and ηa = 1−θ1(h̃)+θ2(h̃)2

2
. Consider the

translation given below

(
U

V

)
→

(
a12 0

ξa − a11 ηa

)(
Ĩ

S̃

)
. (5.3.16)

Using translation (5.3.16), the map (5.3.12) can be written as:

(
Ĩ

S̃

)
→

(
ξa −ηa
ηa ξa

)(
U

V

)
+

(
f(U, V )

g(U, V )

)
, (5.3.17)
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where
f(U, V ) = f3(U,V )

a12
, g(U, V ) =

(
ξa−a11
ηaa11)

)
f3(U, V )− g3(U,V )

ηa
, U = a12Ĩ , and V = (ξa− a11)Ĩ −

ηaS̃.

The following first Lyapunov exponent is defined next:

L = −Re

[
(1− 2Ω)Ω

2

1− Ω
Θ11Θ20

]
− 1

2
∥Θ02∥2 − ∥Θ02∥2 +Re(ΩΘ21), (5.3.18)

where

Θ20 =
1

8

[
f Ĩ Ĩ − f S̃S̃ + 2gĨS̃

]
+ ι
[
gĨ Ĩ + gS̃S̃ − 2f ĨS̃

]
,

Θ11 =
1

4

[
f Ĩ Ĩ + f S̃S̃ + ι [gĨ Ĩ + gS̃S̃]

]
,

Θ02 =
1

8

[
f Ĩ Ĩ − f S̃S̃ + 2gĨS̃

]
+ ι
[
gĨ Ĩ + gS̃S̃ + 2f ĨS̃

]
,

Θ21 =
1

8

[
f Ĩ Ĩ Ĩ + f S̃S̃S̃ + gĨ ĨS̃ + gS̃S̃S̃ + ι

(
gĨ Ĩ Ĩ + gĨS̃S̃ − f Ĩ ĨS̃ − f Ĩ Ĩ Ĩ

)]
.

Analyzing the aforementioned calculation and Hopf bifurcation conditions discussed in
[145], we have the following theorem:

Theorem 5.3.2. When the parameter h̃ changes within a narrow neighborhood of h1,
the system (5.3.11) experiences Hopf bifurcation at the unique positive fixed point E∗.
This assumes that at the system (5.3.11), the condition L ̸= 0 holds. Additionally, for
h̃ > h1, an attracting invariant closed curve bifurcates from the fixed point if L < 0, and
for h̃ < h1, a repelling invariant closed curve bifurcates if L > 0.

5.3.3 Codimension-two bifurcation analysis

This section will discuss different cases of non-hyperbolic conditions for co-dimension two
bifurcation analysis [16]. Codimension-two bifurcation refers to the study of changes in
the qualitative behavior of a system when two or more parameters are varied simultane-
ously. In this kind of analysis, the system is often described by a collection of differential
or difference equations, and the bifurcations happen when specific critical values of the
parameters are reached. These bifurcations can cause chaos in the system, periodic or-
bits, or the presence or disappearance of equilibrium solutions. Limit cycles, tori, and
strange attractors are examples of the complex dynamic structures to which co-dimension
two bifurcations are frequently connected. They are crucial for understanding the behav-
ior of various biological and dynamic systems and are researched using analytical and
numerical methods. We will use eigenvalues to analyze this bifurcation, leaving the nor-
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mal form for further analysis. For this we have variational matrix of system (5.2.7) at
E∗(I∗, S∗) =

(
[(1−q)a+d]bN−(a+p+d)(a+c)N

b(a+d)
, (a+c)N

b

)
:

VE∗ =

(
1 −h(a2−bd+c(d+p)+a(c+d+p+b(−1+q)))

a+d

−(a+ d)h 1− h(bd−(c−d)(d+p)+a(b−c+d−bq))
a+d

)
.

The characteristic polynomial of VE∗ is

P (µ) = (µ)2 −Θ1(I
∗, S∗)µ+Θ2(I

∗, S∗), (5.3.19)

where

Θ1(I
∗, S∗) = 2− h(a(b(−q) + b− c+ d) + bd− (c− d)(d+ p))

a+ d
, and

Θ2(I
∗, S∗) =

a3 (−h2)− a2h2(b(q − 1) + c+ 2d+ p)− ah(bdh(q − 2)

a+ d

+
−bq + b+ hp(c+ d) + dh(2c+ d)− c+ d) + a+ bdh(dh− 1)

a+ d

+
−h(d+ p)(c(dh− 1) + d) + d

a+ d
.

The roots of equation (5.3.19) are

µ1 =
−Θ1(I

∗, S∗) +
√
Θ1(I∗, S∗)2 − 4Θ2(I∗, S∗)

2
,

and

µ2 =
−Θ1(I

∗, S∗)−
√
Θ1(I∗, S∗)2 − 4Θ2(I∗, S∗)

2
.

Now we discuss the criteria of co-dimension two bifurcations in terms of eigenvalues.
The system (5.2.7) exhibits different resonance behavior at the fixed point E∗(I∗, S∗)

according to the following conditions:

C1 The system (5.2.7) exhibits 1:1 resonance behavior at E∗(I∗, S∗), if

Θ1(I
∗, S∗) = −2 and Θ2(I

∗, S∗) = 1, with µ1 = µ2 = 1,

C2 The system (5.2.7) exhibits 1:2 resonance behavior at E∗(I∗, S∗), if

Θ1(I
∗, S∗) = 2 and Θ2(I

∗, S∗) = 1, with µ1 = µ2 = −1,

C3 The system (5.2.7) exhibits 1:3 resonance behavior at E∗(I∗, S∗), if

Θ1(I
∗, S∗) = 1 and Θ2(I

∗, S∗) = 1, with µ1, 2 =
−1±

√
3ι

2
.
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C4 The system (5.2.7) exhibits 1:4 resonance behavior at E∗(I∗, S∗), if

Θ1(I
∗, S∗) = 0 and Θ2(I

∗, S∗) = 1, with µ1, 2 = ±ι.

Codimension-two bifurcations can significantly influence the dynamics of a susceptible,
infected, and vaccinated (SIV) model. A codimension-two bifurcation in an SIV model
may cause the unexpected emergence of a new stable equilibrium state or the loss of sta-
bility in an existing equilibrium state. This could lead to a sudden change in the number
of infected individuals or the rate of disease spread. Furthermore, the co-dimension of
two bifurcations may result in the creation of novel periodic or chaotic dynamics, mak-
ing it more challenging to predict the progression of a disease. In general, developing
successful vaccination treatments and correctly predicting and containing the spread of
infectious diseases depend on having a thorough grasp of the effects of co-dimension two
bifurcations on an SIV model.

5.4 Numerical simulations

The behavior of dynamic systems can be studied using computer algorithms through
numerical simulation of dynamic systems. It is crucial to use SIV models because they
enable us to examine the dynamics of infectious diseases and estimate the number of
infected individuals over time, which can be used to comprehend the spread of the dis-
ease and the efficacy of various interventions. Numerical simulations are a crucial part
of our research because they offer a realistic and dynamic examination of the behaviour
of the second model. Simulations have significant advantages in presenting complicated
and real-world disease dynamics, while theoretical analysis provides essential insights.
Through simulations, we may track the evolution of the system under different param-
eter configurations, test the validity of theoretical conclusions, measure the success of
interventions, and explore complicated aspects that may be difficult to analyze. Our
study, a collaborative effort between researchers and policymakers, provides an in-depth
understanding of the dynamics of infectious diseases, enabling us to create successful
plans for disease control and prevention. We do this by combining theoretical analysis
with numerical simulations.

Example 14. This example will confirm the chaos in the system (5.2.7). The cure
rate b causes the chaotic behaviour in the model due to flip bifurcation. The bifurcation
in the cure rate parameter b holds important biological implications. It may reflect shifts
between endemic and epidemic conditions and impact public health strategies and policies.
The dynamics of infectious diseases and the efficacy of vaccination as a preventative
intervention are greatly improved by research on these bifurcations. In this context, we
consider the parameters a = 0.1, c = 0.2, d = 0.2, p = 0.1, q = 0.9, N = 1.9, h = 0.9, and
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the variable b ∈ (0, 10]. We also consider the initial conditions (I0, S0) = (0.5, 0.8), which
are crucial in causing our interesting investigation to motivate this interesting structure
further. To verify the theoretical results of the flip bifurcation phenomenon, we shall
establish the above parametric values as constants, namely: a = 0.1, c = 0.2, d = 0.2, p =

0.1, q = 0.9, N = 1.9, h = 0.9, and b = 0.5714285714285715. The variational matrix can

(a)

(b)

Figure 5.8: Diagrams showing the bifurcations and MLE for system (5.2.7).

be obtained by using these fixed parametric values, and it is shown below for analysis:

V =

(
1 4.163336342344337−17

−0.27 0.64

)
. (5.4.1)
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The characteristic function is:

Ch(Θ) = Θ2 − 1.64Θ + 0.64.

The characteristic functions connected to the roots of the aforementioned variational ma-
trix are examined, and we find that they produce a set of {1, 0.64}. This outcome shows
that the criteria required for the flip bifurcation phenomenon have been satisfied. By doing
this research, we validate the theoretical hypotheses and establish a solid foundation for
investigating the flip bifurcation in the studied system. The effects of this phenomenon
are clearly shown in the bifurcation plots presented in Figure 5.8. These graphs give an
in-depth visual representation of how the system (5.2.7) goes through significant changes
and transformations. They present an extensive, straightforward overview of the system’s
behavior and growth.

Example 15. This example shows how the step size causes chaos in the system (5.2.7).
It enables us to investigate how modifications to the step size h may impact the stability
and dynamics of the disease system. Let we have the parametric values:

a = 0.59, c = 0.45, d = 0.7, p = 0.19, q = 0.8, N = 9.5, b = 5.4 and h ∈ (0, 1)

with initial conditions (I0, S0) = (1.8472, 1.71243), then at h = 0.7671363091831889 the
system (5.2.7) undergoes flip bifurcation. The positive fixed point of the system (5.2.7) is
stable for 0 ≤ h < 0.7671363091831889. For the parametric set:

h = 0.7671363091831889, a = 0.59, c = 0.45, d = 0.7, p = 0.19, q = 0.8, N = 9.5, and b = 5.4

the positive steady-state of the model (5.2.7) can be calculated as (3.92492, 1.82963).
This positive fixed-point loses its stability at h = 0.7671363091831889; as a result, the
system undergoes a flip bifurcation Thus, E∗ for system (5.2.7) loses its stability at
h = 0.7671363091831889 and (0, 0.7) is the non-chaotic region. The system (5.2.7) at the
parametric values a = 0.59, c = 0.45, d = 0.7, p = 0.19, q = 0.8, N = 9.5, b = 5.4 and h =

0.7671363091831889 is given as:It+1 = It + 0.7671363091831889(5.3StIt
1.5

− (0.455)It),

St+1 = St + 0.7671363091831889([0.226]1.5− 5.3StIt
1.5

− (0.545)St + (0.1)It),
(5.4.2)

The Jacobian matrix of (5.4.2) is:

J∗ =

(
1 1.7114870525807886

−0.9896058388463137 −1.8468487901719075

)
, (5.4.3)
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(a) (b)

(c)

Figure 5.9: Diagrams of bifurcations and MLE for system (5.2.7).

The characteristic polynomial of (5.4.3) is given by

P (λ) = λ2 + 0.846849λ− 0.153151, (5.4.4)

Furthermore, the roots of (5.4.4) are calculated as:

λ1 = −1 and λ2 = 0.153151.

Thus, the parameters (a, c, d, p, q,N, b, h) = (0.59, 0.45, 0.7, 0.19, 0.8, 9.5, 5.4, 0.691527) ∈
ΦFB. The bifurcation diagrams are depicted in figure 5.9, and the phase plots are given
in figure 5.10.

Example 16. If a = 0.01, c = 0.001, d = 0.4, p = 0.01, q = 0.01, N = 20.4, b =

0.45 and h ∈ (0, 1) with initial conditions (I0, S0) = (1.8472, 1.71243), then at h =

0.0000001 the system (5.2.7) undergoes Hopf bifurcation. For h = 0.0000001 and other
parametric values given above, the positive fixed point of the system (5.2.7) can be cal-
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(a) h = 0.79 (b) h = 0.8

(c) h = 0.85 (d) h = 0.9

Figure 5.10: Phase plots for different values of h.

culated as (19.8842, 0.498666667). This positive fixed point loses its stability at h =

0.0000001; as a result, the system undergoes Hopf bifurcation. Thus, E∗ for system
(5.2.7) loses its stability at h = 0.0.0000001. The system (5.2.7) at the parametric values
a = 0.01, c = 0.001, d = 0.4, p = 0.01, q = 0.01, N = 20.4, b = 0.45 and h = 0.0000001 is
given as:

It+1 = It + 1.× 10−7(−0.011It + 0.0220588ItSt),

St+1 = St + 1.× 10−7(8.36196− 0.399It − 0.42St − 0.0220588ItSt),
(5.4.5)
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The Jacobian matrix of (5.4.5) is:

J∗∗ =

(
1 4.3862195121951216× 10−8

−4.1× 10−8 1

)
, (5.4.6)

The characteristic polynomial of (5.4.6) is given by

P (λ) = λ2 − 1.9999999141378049λ− 0.9999999141378066, (5.4.7)

Furthermore, the roots of (5.4.7) are calculated as λ1 = 0.9999999570689024+1.28496×

(a) (b)

Figure 5.11: Bifurcation diagrams for system (5.2.7).

10−8ι and λ2 = 0.9999999570689024− 1.28496× 10−8ιwith|λ12| = 1. Thus, the given pa-
rameters in the system (a, c, d∗, p, q, N, b, h) = (0.01, 0.001, 0.4, 0.01, 0.01, 20.4, 0.45, 0.0000001) ∈
ϕNS The phase portraits, diagrams of bifurcations and MLE of system (5.4.5) are plotted
in figure 5.11:

Example 17. Here, we present an example of codimension-2 bifurcation behavior of
system (5.2.7) at E∗(I∗, S∗). Let we have the parametric values as: a = 0.02, d = 0.4, p =

0.01, q = 0.1, N = 20.4, h = 0.0000001 and b, c are free. Then the system (5.2.7) exhibits
1:1 resonance behavior at E∗(I∗, S∗). Particularly, if a = 0.02, c = 0.1, d = 0.4, p =

0.01, q = 0.1, N = 20.4, b = 0.45 and h = 0.0000001. Then the characteristic function of
system (5.2.7) at E∗(I∗, S∗) is

C(µ) = µ2 − 2µ+ 0.999999,

with eigenvalues µ1,2 = 1. Hence, the condition of 1:1 resonance behavior in terms of
eigenvalues is satisfied.
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Figure 5.12: Plot of model (5.2.7) with a = 0.59, N = 9.5, d = 0.7, p = 0.19, q = 0.8,
h = 0.8, and (b, c) ∈ [6, 7] × [0.1, 4]. We consider (I0, S0) = (1.8472, 1.71243) an initial
conditions.

5.5 Chaos control

Chaos control is a technique for controlling chaotic systems and making them predictable.
This can be achieved by introducing a small perturbation into the system at a particular
time and location, which can predictably alter the system’s behavior. The significance of
chaos control rests in its ability to stabilize chaotic systems, which are otherwise unpre-
dictable and challenging. By controlling chaos, we can make the system more predictable
and stable, which can be helpful in a wide range of applications such as secure commu-
nication, robotic control, and power systems. Additionally, chaos control can regulate
chaotic systems, which is beneficial for distributed network control or oscillator synchro-
nization. Thus, chaos control stabilizes chaotic systems and makes them predictable. It is
essential because it allows us to control and manipulate chaotic systems, which can have
many uses in different fields. We use the hybrid technique given in [75] to manage the
chaos in the system (5.2.7). The flip bifurcation, Hopf bifurcation, and chaos that result
from flip bifurcation are all controlled using this control approach by various researchers
(see [19]). The system (5.2.7) is obtained by applying the modified hybrid approach as
follows:
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It+1 = ζ3

[
It + h( bStIt

Nt
− (a+ c)It)

]
+ [1− ζ3] It,

St+1 = ζ3
[
St + h([(1− q)a+ d]N − bStIt

N
− (a+ p+ d)St + (c− d)It)

]
+ [1− ζ3]St,

(5.5.1)

where 0 < ζ < 1 is a control parameter. The Jacobian matrix of (5.5.1) at (I∗, S∗) is

J =

(
N−a3N(a+c)h+a3bhS∗

N
a3bhI∗

N

a3h
(
c− d− bS∗

N

)
−N(−1+a3h(a+d+p))+a3bhI∗

N

)
. (5.5.2)

The characteristic polynomial of (5.5.2) is:

P (λ) = λ2 − Tr(I∗, S∗)λ+Det(I∗, S∗), (5.5.3)

where

Tr(I∗, S∗) =
−N (−2 + a3h(2a+ c+ d+ p)) + a3bh (−I∗ + S∗)

N
,

Det(I∗, S∗) =
a3bh (−1 + a3(a+ d)h) I∗

N

+
(−1 + a3h(a+ d+ p)) (N (−1 + a3(a+ c)h)− a3bhS∗)

N
.

The roots of (5.5.3) lie in the open disc if the following conditions are satisfied:

|Tr(I∗, S∗)| < 1 +Det(I∗, S∗) < 2.

We intend to improve the accuracy and predictability of the SIV model and to obtain
insights into the dynamics of infectious diseases by applying a modified hybrid approach
to control the chaos.

5.6 Conclusion

The stability and bifurcation analysis of the epidemic model is crucial in understanding
the dynamics of disease spread and the impact of intervention measures such as vacci-
nation. The co-dimension, two-bifurcation, and one-parameter bifurcation analysis in
the discrete-time epidemic model with vaccination and vital dynamics provide a compre-
hensive understanding of the interplay between various factors affecting disease spread
and the potential outcomes. The results of this analysis not only aid in predicting dis-
ease outbreaks and evaluating control strategies but also highlight the critical parameters
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that can impact the spread of the disease. These findings are invaluable in developing
effective public health policies to prevent and control the spread of infectious diseases. Ul-
timately, stability and bifurcation analysis are critical to ensuring public health and safety
by providing a deeper understanding of the complex interactions that drive the spread
of diseases. Mainly, we investigated an SIV model through a vaccination campaign. The
continuous version of the model is discretized using the forward Euler approach, and the
impact of the step size on the dynamics of the model is examined. Both endemic and
disease-free equilibrium exist in the presented model. Under specified parametric circum-
stances, the stability of equilibria in discrete and continuous forms was investigated. The
endemic equilibrium E∗ and the disease-free equilibrium E0 were sufficiently stabilized
locally according to our established conditions. The model’s equilibria are demonstrated
to be globally asymptotically stable using the Picard iteration theorem. It was also noted
that the fundamental reproduction number R0 is crucial in deciding how dynamically the
model behaves. Additionally, by selecting step size h as a bifurcation parameter, the
model’s period-doubling and Neimark-Sacker bifurcation were examined. We also ob-
served that the system bifurcates if we ignore the restriction on the contact rate (b < 1).
Furthermore, by decreasing the cure rate c, the Neimark-Sacker bifurcation occurs. The
modified hybrid approach is used to regulate the chaos caused by bifurcation. Finally, nu-
merical examples were provided to validate the theoretical findings by considering phase
portraits, maximal Lyapunov exponents, and bifurcation diagrams. In conclusion, our
study sheds light on the dynamics of the SIV model with a vaccination program. It
emphasizes the significance of considering the step size while discretizing the model. We
also observed that if the contact rate is low, the disease will be controlled, and if the
contact rate increases, the infected population will increase. As a result, chaos occurs in
the system (5.2.7). The control parameter in the controlled system (5.5.1) indicates the
safety measures that can be taken to reduce the contact rate.
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