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Abstract

⃝

⃝

Fractional calculus is an extension of classical calculus, that provides a more nuanced

and �exible framework for modeling complex phenomena. Its concept is known since 1695

when L'Hospital asked Leibnitz about the fractional power of derivative. By fractional

calculus, we may get more accurate results in many physical problems. The notion of

fractional operators had not been much worthy for modeling the complex problems of real

world. These complex real world problems can be based on those physical occurrences

that show fractal behavior. To handle this type of problems, fractal-fractional theory

plays a vital role.

Malware is a generic issue and many authors have discussed di�erent mathematical mod-

els to explain its extremities. Due to its complex features involving chaotic behavior,

heterogeneities and memory e�ect, some authors tried to solve it using the concept of

fractional calculus and in advance form of fractal fractional theory. Till now we have seen

the models which have a simple nature. So we decided to investigate a more complex

mathematical model. This model has a variable infection rate which gives a deep insight

of the behavior of malware. Moreover, infection rate is de�ned as a nonlinear function of

infected nodes. To better understand the behavior of such type of malware and develop

antivirus software to overcome the malware, we decided to deal this model by convert-

ing it into fractal fractional mathematical models. We also tried to �nd the impacts

of di�erent parameters on malware propagation for integer and non integer orders. We

were interested in examining the impact of memory e�ects in this dynamical system in

the sense of fractal fractional (FF) derivatives with three kernels known as Powerlaw,

i



Exponential Decay and Mittag-Le�er. Initially the models were examined theoretically.

Conditions for existence (Leray Schauder criteria), uniqueness (Lipschitz property) and

stability (Ulam-Hyers and Ulam-Hyers-Rassias theorems) of the fractal fractional models

were examined using concepts of �xed point theory. Secondly, numerical schemes were

developed using Lagrange interpolation using two point formula and simulations were

performed using Matlab codes on R2016a to verify the accuracy of theoretical results.

Sensitivity analysis of di�erent parameters such as initial infection rate, variable adjust-

ment to sensitivity of infected nodes, immune rate of antivirus strategies and loss rate of

immunity of removed nodes is investigated under FF model and is compared with classi-

cal. We have compared four di�erent mathematical models (classical, fractional, fractal,

fractal-fractional) so that in di�erent forms of malware antivirus strategies could be de-

veloped accordingly. Moreover, constant and variable fractional and fractal orders have

been compared by graphs. On investigation, we �nd that FF model describes the e�ects

of memory on nodes in detail. Antivirus software can be developed considering the e�ect

of FF orders and parameters to reduce persistence and eradication of infection. Small

changes cause signi�cant perturbation in infected nodes and malware can be driven into

passive mode by understanding its propagation by FF derivatives and may take necessary

actions to prevent the disaster caused by cyber attackers.
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Chapter 1

Introduction and Preliminaries

⃝

⃝

In this chapter, �rst we give introduction and describe some de�nitions and theorems,

on basis of which we develop our results in this thesis. Then, we explain classical model

which we want to observe under fractal fractional theory and convert it into its fractal-

fractional form.

1.1 Introduction

With the passage of time, everything is going to be changed. Now, in our daily life, we

are fully dependent on technology. We store everything from pictures to every document

in our computers and mobiles. Everything has its positive and adverse e�ects. Although

the modern technologies have made our lives convenient, on the other hand it has also

introduced many problems in our lives. Many crimes usually known as cyber crimes are

due to some destructive softwares on internet. In this perspective, a malicious software

known as "Malware" is commonly heard.

Malware is a program or a �le that is designed intentionally to harm, interrupt or damage

a computer network. It is also used for stealing the information about the users without

their knowledge. It is used by cyber criminals. They use it to get information about the

individual and its activities. They use it to track activities on the Internet, and get sen-

sitive information about accounts as well. Malware software has its own defense system.
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It can be hidden from antivirus programs [1]. It is used in the form of a malicious code in

general. It exists in di�erent forms. Sometimes it is a combination of two or more types.

Most known types of malware are: Virus, Worms, Adware, Spyware, Trojan, Rootkit,

Backdoors, Keyloggers, Ransomware, Cookies, Sni�ers, Botnet, Spam, Mobile malware

[1, 2, 3].

Di�erent types of malware propagate di�erently either by self-propagation or through

user interactions or by internet, Wi�, Bluetooth etc.[3]. Many articles have been written

on some commonly used types of malware, their behaviors and about prevention tools. A

well-known type of malware is Virus that can be spread through USB, unknown emails

or corrupt links. Di�erent types of Viruses are discussed [4] and the �nancial losses are

a lot.

Most harmful type of malware commonly used in the business community is ransomware

but now a days another common form of malware is adware. In the present era, market-

ing is essential. Now a days internet and smart-phones are usually used for marketing.

When we use a mobile application or visit a website, we see many advertisements. There

is a lot of chance of adware attack using it. Cyber criminals can get information whether

you use an app or not [5]. The software has been developed to deal with such programs

or malware according to its nature. The software is usually called antivirus. These an-

tivirus softwares work as vaccination for the malware. It is very necessary to detect the

malware as it may be in camou�age form. The technique used by malware programmers

to make the malware di�cult to read and understand is known as Obfuscation [2]. Rabia

[2] discussed di�erent techniques of obfuscation and corresponding detective techniques

of malware. Antivirus software can detect and kill malware. Moreover, it may be in-

stalled in computers to act as shield against propagation of malware [4, 6]. To develop

e�ective antivirus software against some particular malware, one should know how the

malware propagates and works in computers. To analyze the malware prevalence and

for its prevention, mathematical techniques are very useful. We can easily simulate the

data to discuss its propagation and corresponding solution. Many scholars worked on

mathematical modeling of malware propagation based on epidemic modeling [7, 8]. Mal-

ware propagation has a resemblance with the transmission of infectious disease found in

human and other living bodies. It can be considered as Mathematical Epidemiology in
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which most commonly used model is SIR model as [9] and the references in it. As the

malicious programs behave like an infection in humans, it can be treated as epidemiology.

Specially the mathematical features of an infectious disease and the role of a computer

virus produced in a computer network can be related to each other [10].

We can see that formulating mathematical models is of great importance for accurate

prediction of malicious propagation over network [11] but as the malware is spreading

epidemically, it should be treated as the other epidemics are considered. As the time

passed, due to the increase in the spread of virus and its di�erent aspects we have to

study the mathematical models in fractional calculus instead of classical. A lot of work

has been done in the classical calculus on it. Then, the researches started to investigate

about it in fractional calculus.

Fractional calculus is the generalization of the ordinary derivative and integral concept

[12, 13, 14]. The notion of fractional operators had not been much worthy for modeling

the complex problems of real world. These complex real world problems can be based on

those physical occurrences that show fractal behavior. To handle this type of problems,

a nonstandard derivative was introduced [15] known as fractal derivative which scales in-

dependent variable. Atangana [15] introduced new concept of di�erentiation. The term

fractal-fractional (FF) derivative was used in the paper where combination of two concepts

fractal derivative and fractional derivative was developed. He derived fractal fractional

derivatives in Caputo sense and in Riemann-Liouville sense with three di�erent forms of

kernels (Powerlaw, Exponential Decay, Mittag-Le�er). He presented the new de�nition

of Fractal Laplace transform and then used it to solve the fractal di�erential equations

and found corresponding integrals. Initially introduced Riemann-Liouville and Caputo

fractional derivatives have some di�culties with the kernels. So to overcome these di�-

culties, Caputo and Fabrizio fractional derivative was introduced in 2015 with the kernel

in the form of exponential function, and Atangana and Baleanu replaced it in 2016 with

the Mittag-Le�er function [16, 17]. It attracted many researchers in di�erent �elds of

science, technology, engineering etc. Many articles have been written on mathematical

modeling in the form of fractal-fractional [18]. Di�erent models have been constructed on

di�erent diseases and their solutions are to be found using concepts of pure mathematics

[19, 20, 21, 22, 23, 24, 25] and fractal theory [26, 27] along with numerical simulations.
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Malware constitute a chaotic behavior in the real world and it is random and unpre-

dictable in a non-linear rule. Phenomena of malware relates to data heterogeneities that

cannot be well-de�ned using other forms of derivatives [28]. Due to its complex features

involving chaotic behavior, heterogeneities and memory e�ect, some authors tried to solve

it using the concept of fractional calculus and in advance form of fractal fractional theory.

To see the memory e�ect, earlier fractional derivatives of variable order [29, 30] were used

but recently fractal fractional orders are used to check memory e�ect [31]. Inspired by

above theory, we also tried to work on malware with the help of fractal fractional theory.

Till now, we have seen the models which have a simple nature. So, we decided to investi-

gate a more complex mathematical model as presented by Feng et al. [32]. The authors

described a model along with a di�erent aspect. This model has a variable infection rate

which gives a deep insight of the behavior of malware. Moreover, infection rate is de�ned

as a non-linear function of infected nodes. To better understand the behavior of such

type of malware and develop antivirus software to overcome the malware, we decided to

deal this model by converting it into fractal fractional mathematical models with the ker-

nels de�ned above. We also tried to �nd the impacts of di�erent parameters on malware

propagation for integer and non-integer orders. The aim of Feng et al. was to develop a

real model that can be used for predicting malware propagation in computer networks.

Our goal is to investigate the behavior of this model under the change of fractal orders

and fractional orders with three kernels (Powerlaw, Exponential Decay, Mittag-Le�er).

We want to seek a solution which can give us better estimate of parameters to prevent the

malware propagation. We want to investigate about its physical signi�cance too. This

model is di�erent in the sense that it involves a non-linear function to describe undeter-

mined dynamical parameter which varies due to the sensitivity of infection rate.

We organized our thesis as: in chapter 1, some basic de�nitions and theorems are de-

scribed that are useful for our work. In chapter 2, fractal fractional mathematical model

is formulated with Powerlaw kernel. In chapter 3, this model has been discussed with

Exponential Decay kernel. Then in chapter 4, we investigated the behavior of mathe-

matical model with Mittag-Le�er kernel. In chapter 5, we compared three kernels and

mathematical models (classical, fractional, fractal and fractal-fractional) by graphs and

concluded our �ndings.

4



1.2 Preliminaries

Now we state some de�nitions and theorems from classical and fractional calculus which

were helpful in our work.

1.2.1 Classical Calculus

This section has some de�nitions and results from �xed point theory which are needed

in the sequel. We use the following results [19]:

Let Ψ displays a subclass of non-decreasing operators ψ : [0,∞) → [0,∞) such that

∞∑
j=1

ψj(κ) <∞

for all κ > 0, where ψj is jth iterate of ψ, then following lemma holds:

Lemma 1.2.1. [19] Every function ψ : [0,∞) → [0,∞) satis�es the following condition:

if ψ ∈ Ψ is non-decreasing, then for each κ > 0,

limj→∞ ψj(κ) = 0 =⇒ ψ(κ) < κ.

De�nition 1.2.2. [19] Let X be a normed space and F : X → X with ψ : [0,∞) → [0,∞)

and ϕ : X2 → [0,∞), then F is a ϕ-ψ-contraction if for w1,w2 ∈ X,

ϕ(w1,w2) · d(Fw1 ,Fw2) ≤ ψ(d(w1,w2)).

De�nition 1.2.3. [19] If F : X → X and ϕ : X2 → [0,∞) then, F is ϕ-admissible

if for w1,w2 ∈ X,

ϕ(w1,w2) ≥ 1 =⇒ ϕ(Fw1 ,Fw2) ≥ 1.

With the help of above De�nitions 1.2.2 and 1.2.3, the authors derived the following

results for existence of �xed point.

Theorem 1.2.4. [19] Let (X, d) be a complete metric space and F : X → X be a ϕ-ψ-

contraction mapping with the conditions:

1. F is ϕ-admissible;

2. ∃ x0 ∈ X with the condition ϕ(x0,Fx0) ≥ 1;
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3. if {xn} is a sequence in X such that ϕ(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as

n→ ∞, implies ϕ(xn, x) ≥ 1 for all n ∈ N.

Then, F has a �xed point.

For existence of solution in the support of Theorem 1.2.4, Leray Schauder criteria is

also used which is de�ned as:

Theorem 1.2.5. [21] Let X be a Banach space and E be a bounded, closed set in X such

that E is convex and U be an open set in E with the property 0 ∈ U, then a compact and

continuous operator G : Ū → E, shows either

(a) G has a �xed point in Ū,

or

(b) ∃ x ∈ ∂U and η ∈ (0, 1) s.t. x = ηG(x).

Moreover, for compactness of operator, Arzela-Ascoli's theorem is used which is de-

�ned as:

Theorem 1.2.6. [22] Let V ⊂ Rn, W ⊂ C(V,Rm). Then W is compact ⇔ W is

closed, bounded and equicontinuous.

1.2.2 Fractional Calculus

Fractional calculus as a generalized form of classical calculus plays an important role in

dealing with complex dynamical systems. We study it in two parts which are given below.

Constant order Fractal Fractional Derivatives

Now-a-days fractal theory along with fractional order derivative is most widely used to

understand the behavior of variables. To study the behavior of a given variable with

respect to a scaled variable, Chen et al. [26] de�ned:

De�nition 1.2.7. Fractal derivative (earlier de�ned as Hausdor� derivative [27] ) of a

function f(κ) with respect to a fractal order p ∈ (0, 1) is de�ned as:

df(κ)
dκp

= lim
κ→κ1

f(κ)− f(κ1)

κp − κp
1

.
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Combining the concepts of fractal di�erentiation and fractal derivative, Atangana

introduced a new concept of di�erentiation and with the same operator, he constructed

the fractal-fractional integral associated to the fractal-fractional derivatives with di�erent

forms of kernels [15] as:

De�nition 1.2.8. Let G(κ) be continuous on (a, b) and if G is fractal di�erentiable on

this interval having order p, then the Fractal Fractional derivative of G of order q in

Riemann-liouville sense in terms of power law kernel is de�ned as:

FFPDq,p
a,κG(κ) =

1

Γ(n− q)

d

dκp

∫ κ

a

(κ − u)n−q−1 G(u)du,

where (n− 1 < p, q ≤ n), n ∈ N.

De�nition 1.2.9. Let G(κ) be continuous on (a, b), then Fractal fractional integral

of G with power law kernel having order q and taking n = 1 is:

FFP Iq,pa,κG(κ) =
p

Γ(q)

∫ κ

a

u(p−1) (κ − u)q−1 G(u)du.

De�nition 1.2.10. Let G(κ) be continuous on (a, b) and if G is fractal di�erentiable on

this interval having order p , then Fractal Fractional derivative of G having order q

in Riemann Liouville sense in terms of Exponential decay kernel is de�ned as:

FFEDq,p
a,κG(κ) =

M(q)

Γ(1− q)

d

dκp

∫ κ

a

exp[
−q

1− q
(κ − u)]G(u)du,

where (0 < p, q ≤ n), n ∈ N and M(0) = M(1) = 1.

De�nition 1.2.11. Let G(κ) be continuous on (a, b), then Fractal fractional integral

of G with exponential decay kernel having order q and taking n = 1 is:

FFEIq,pa,κG(κ) =
p (1− q)κ(p−1) G(κ)

M(q)
+

p q

M(q)

∫ κ

a

up−1 G(u)du.

De�nition 1.2.12. Let G(κ) be continuous on (a, b) and if G is fractal di�erentiable

on this interval having order p, then Fractal Fractional derivative of G of order q in

Riemann Liouville sense in terms of Mittag-Le�er kernel is de�ned as:

FFMDq,p
a,κG(κ) =

AB(q)

1− q

d

dκp

∫ κ

a

Eq[−
q

1− q
(κ − u)q]G(u)du,

where AB(q) = 1− q+ q
Γ(q)

and (n− 1 < p, q ≤ n), n ∈ N.
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De�nition 1.2.13. Let G(κ) be continuous on (a, b), then Fractal fractional integral

of G with Mittag-Le�er kernel having order q is:

FFMIq,pa,κG(κ) =
p (1− q)κp−1 G(κ)

AB(q)
+

p q

AB(q) Γ(q)

∫ κ

a

up−1 (κ − u)q−1 G(u)du.

Variable Order Fractional Derivative

Samko and Ross used extension of constant order Riemann Liouville integral to variable

order in 1993 [33].

De�nition 1.2.14. The new form of Riemann Liouville integral with variable order is

aI
q(κ)
κ (G(κ)) =

1

Γ(q(κ))

∫ x

a

(x− u)q(κ)−1G(u)du.

De�nition 1.2.15. Variable order Riemann Liouville fractional derivative for q(κ) ∈

(0, 1) is

aD
q(κ)
κ (G(κ)) =

1

Γ(1− q(κ))
d

dκ

∫ x

a

(x− u)−q(κ)G(u)du.

De�nition 1.2.16. Let G(κ) be continuous on (a, b) and if G is fractal di�erentiable

on this interval having constant order p, then Fractal Fractional derivative of G of

variable order q(κ) in Riemann-liouville sense in terms of power law kernel is de�ned

as:

FFPDq(κ),p
a,κ G(κ) =

1

Γ(1− q(κ))
d

dκp

∫ κ

a

(κ − u)−q(κ) G(u)du,

where (0 < p, q(κ) ≤ 1).

De�nition 1.2.17. Let G(κ) be continuous on (a, b), then Fractal fractional integral

of G with power law kernel having variable order q(κ) and taking n = 1 is:

FFP Iq(κ),pa,κ G(κ) =
p

Γ(q(κ))

∫ κ

a

u(p−1) (κ − u)q(κ)−1 G(u)du.

De�nition 1.2.18. Let G(κ) be continuous on (a, b) and if G is fractal di�erentiable on

this interval having constant order p, then Fractal Fractional derivative of G having

variable order q(κ) in Riemann Liouville sense in terms of exponential decay kernel

is de�ned as:

FFEDq(κ),p
a,κ G(κ) =

M(q(κ))
Γ(1− q(κ))

d

dκp

∫ κ

a

exp[
−q(κ)
1− q(κ)

(κ − u)]G(u)du,

where (0 < p, q(κ) ≤ 1) and M(0) = M(1) = 1.
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De�nition 1.2.19. Let G(κ) be continuous on (a, b), then Fractal fractional integral

of G with exponential decay kernel having variable order q(κ) and taking n = 1 is:

FFEIq(κ),pa,κ G(κ) =
p (1− q(κ))κ(p−1) G(κ)

M(q(κ))
+

p q(κ)
M(q(κ))

∫ κ

a

up−1 G(u)du.

De�nition 1.2.20. Let G(κ) be continuous on (a, b) and if G is fractal di�erentiable

on this interval having constant order p, then Fractal Fractional derivative of G of

variable order q(κ) in Riemann Liouville sense in terms of Mittag-Le�er kernel is

de�ned as:

FFMDq(κ),p
a,κ G(κ) =

AB(q(κ))
1− q(κ)

d

dκp

∫ κ

a

Eq(κ)[−
q

1− q(κ)
(κ − u)q(κ)]G(u)du,

where AB(q(κ)) = 1− q(κ) + q(κ)
Γ(q(κ)) and (0 < p, q(κ) ≤ 1).

De�nition 1.2.21. Let G(κ) be continuous on (a, b), then Fractal fractional integral

of G with Mittag-Le�er kernel having variable order q(κ) is:

FFMIq(κ),pa,κ G(κ) =
p (1− q(κ))κp−1 G(κ)

AB(q(κ))
+

p q(κ)
AB(q(κ)) Γ(q(κ))

∫ κ

a

up−1 (κ−u)q(κ)−1 G(u)du.

Variable Order Fractal Derivative

Najat et al. de�ned Riemann Liouville FF derivative with variable fractal order [12]:

De�nition 1.2.22. Let G(κ) be a di�erential function. Let q be a constant fractional

order s.t. 0 < q ≤ 1 and 0 < p(κ) < 1 be continuous function, then fractal fractional

derivative of G having order q and fractal variable dimension p(κ) in Riemann-Liouville

sense in terms of power law kernel is de�ned as:

FFPDq,p(κ)
a,κ G(κ) =

1

Γ(1− q)

d

dκ(p(κ))

∫ κ

a

(κ − u)q−1 G(u)du,

where (0 < p(κ), q ≤ 1).

De�nition 1.2.23. The fractal fractional integral ofG having order q and fractal variable

dimension p(κ) in Riemann-Liouville sense in terms of power law kernel is de�ned as

FFP Iq,p(κ)a,κ G(κ) =
1

Γ(q)

∫ κ

a

(κ − u)q−1 G(u) [p′(u) ln(u) +
p(u)

u
] up(u)du.
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De�nition 1.2.24. Let G(κ) be a di�erential function. Let q be a constant fractional

order s.t. 0 < q ≤ 1 and 0 < p(κ) < 1 be continuous function, then FF derivative of G

having order q and fractal variable dimension p(κ) in Riemann Liouville sense in terms

of exponential decay kernel is de�ned as:

FFEDq,p(κ)
a,κ G(κ) =

M(q)

Γ(1− q)

d

dκp(κ)

∫ κ

a

exp[
−q

1− q
(κ − u)]G(u)du,

where (0 < p(κ), q ≤ 1) and M(0) = M(1) = 1.

De�nition 1.2.25. The FF integral of G having order q and fractal variable dimension

p(κ) in Riemann-Liouville sense in terms of exponential decay kernel having order q

and taking n = 1 is:

FFEIq,p(κ)a,κ G(κ) =
p (1− q)κ(p−1) G(κ)

M(q)
+

p q

M(q)

∫ κ

a

up−1 G(u) [p′(u) ln(u) +
p(u)

u
] up(u)du.

De�nition 1.2.26. Let G(κ) be a di�erential function. Let q be a constant fractional

order s.t. 0 < q ≤ 1 and 0 < p(κ) < 1 be continuous function, then FF derivative of G

having order q and fractal variable dimension p(κ) in Riemann Liouville sense in terms

of Mittag-Le�er kernel is de�ned as:

FFMDq,p(κ)
a,κ G(κ) =

AB(q)

1− q

d

dκp(κ)

∫ κ

a

Eq[−
q

1− q
(κ − u)q]G(u)du,

where AB(q) = 1− q+ q
Γ(q)

and (0 < p(κ), q ≤ 1).

De�nition 1.2.27. The fractal fractional integral ofG having order q and fractal variable

dimension p(κ) in Riemann-liouville sense in terms of Mittag-Le�er kernel having

order q is:

FFMIq,p(κ)a,κ G(κ) =
p (1− q)κp−1 G(κ)

AB(q)
+

p q

AB(q) Γ(q)

∫ κ

a

up−1 (κ−u)q−1 G(u) [p′(u) ln(u)+
p(u)

u
] up(u)du.

1.3 Description of classical mathematical model

To develop an e�ective antivirus against some particular malware, one should know how

the malware propagates and works in computers. For this purpose, Feng et al. [32] pre-

sented a model of propagation of malware through internet via three states: susceptible,

infected and removed. They assumed that the total no. of nodes in the network at time κ
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is N(κ) along with this assumption that each node changes with respect to time in three

states. They described that susceptible state(∆) represents a node which has a weakness

that the malware can easily exploit it, infected state(ℵ) shows that when it is infected, it

can infect its neighboring nodes and still infectious and removed state(Θ) represents that

a detection tool has been installed which helps in identifying and removing a malware.

Considering these de�nitions of states, they represented the model in the form of ODES

as:

d∆

dκ
= Πθ − β(κ)ℵ(κ)∆(κ)− (µ+ ν)∆(κ) + ζΘ(κ − τ),

dℵ
dκ

= β(κ)ℵ(κ)∆(κ)− (µ+ κ)ℵ(κ),

dΘ

dκ
= (1− Π)θ + ν∆(κ) + κℵ(κ)− ζΘ(κ − τ)− µΘ(κ);

(1.3.1)

where Π shows the susceptible rate of new nodes, θ shows the number of new nodes, ζ is

the loss rate of immunity of the recovered nodes, µ is the replacement rate, ν is the real

time immune rate of antivirus strategies, κ is the recovered rate of infected nodes, τ is the

change in time and β(κ) is the infection rate at time κ. As β(κ) is infection rate and it

depends on many factors discussed in the paper, so the authors de�ned β(κ) = β0f1(ℵ(κ))

where f1 is a nonlinear function of ℵ and β0 is the initial infection rate. Again assuming

f(ℵ(κ)) = f1(ℵ(κ))ℵ(κ) which is undetermined dynamical operator. To determine this,

the authors de�ned this as: f(ℵ(κ)) = ℵ(κ)
1+αℵ(κ) where α is used to adjust the sensitivity

of the infection rate to the number of infected nodes ℵ(κ). We have a system as:

d∆

dκ
= Πθ − β0f(ℵ(κ))∆(κ)− (µ+ ν)∆(κ) + ζΘ(κ − τ),

dℵ
dκ

= β0f(ℵ(κ))∆(κ)− (µ+ κ)ℵ(κ),

dΘ

dκ
= (1− Π)θ + ν∆(κ) + κℵ(κ)− ζΘ(κ − τ)− µΘ(κ).

(1.3.2)

The initial conditions are de�ned as: ∆(0) = ∆0 ≥ 0,ℵ(0) = ℵ0 ≥ 0 and Θ(0) = Θ0 ≥ 0.

Moreover, N(κ) = ∆(κ) + ℵ(κ) + Θ(κ) as given above.

Threshold of system is de�ned as:

R0 =
β0θ(Πµ+ ζ)f′(0)

µ(µ+ κ)(µ+ ζ + ν)
.

The disease free equilibrium (DFE) point for the deterministic system is:
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E = (
(Πµ+ ζ)θ

µ(µ+ ζ + ν)
, 0,

((1− Π)µ+ ν)θ

µ(µ+ ζ + ν)
).

1.4 Fractal-Fractional Mathematical Model

In�uenced by concept of fractal fractional calculus, we convert the model (1.3.2) in terms

of fractal fractional derivatives as:

FFDq,p
0,κ∆(κ) = Πθ − β0f(ℵ(κ))∆(κ)− (µ+ ν)∆(κ) + ζΘ(κ − τ),

FFDq,p
0,κℵ(κ) = β0f(ℵ(κ))∆(κ)− (µ+ κ)ℵ(κ),

FFDq,p
0,κΘ(κ) = (1− Π)θ + ν∆(κ) + κℵ(κ)− ζΘ(κ − τ)− µΘ(κ),

(1.4.1)

with ∆(0) = ∆0 ≥ 0,ℵ(0) = ℵ0 ≥ 0,Θ(0) = Θ0 ≥ 0 and N(κ) = ∆(κ) + ℵ(κ) + Θ(κ),

for κ ∈ J = [0,T], T > 0. Also p , q ∈ (0, 1] and all parameters are to be taken non-

negative.
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Chapter 2

Fractal Fractional Mathematical Model

with Power Law Kernel

⃝

⃝

In this chapter, �rst we convert FF model with powerlaw kernel and then in �xed point

problem. We apply results from �xed point theory to establish existence, uniqueness

and convergence of solution of our proposed model. Moreover, we check the stability of

our model. Furthermore, we generated Matlab code for our fractal fractional model to

simulate the results. In the last, we analyze the results and conclude them.

2.1 Conversion of Classical Mathematical Model to Fractal-

Fractional Mathematical Model with Powerlaw ker-

nel

First, we discuss fractal-fractional mathematical model in terms of power law kernel. So,

our required model is

FFPDq,p
0,κ∆(κ) = Πθ − β0f(ℵ(κ))∆(κ)− (µ+ ν)∆(κ) + ζΘ(κ − τ),

FFPDq,p
0,κℵ(κ) = β0f(ℵ(κ))∆(κ)− (µ+ κ)ℵ(κ),

FFPDq,p
0,κΘ(κ) = (1− Π)θ + ν∆(κ) + κℵ(κ)− ζΘ(κ − τ)− µΘ(κ),

(2.1.1)
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with the initial conditions ∆(0) = ∆0 ≥ 0,ℵ(0) = ℵ0 ≥ 0, Θ(0) = Θ0 ≥ 0, and

N(κ) = ∆(κ) + ℵ(κ) + Θ(κ), for κ ∈ J = [0,T],T > 0. Also p , q ∈ (0, 1] and all

parameters are to be taken non-negative.

2.2 Formulation of Model as Fixed Point Problem

In this section, we convert FF model (2.1.1) in �xed point problem. We apply results of

�xed point theory on model (2.1.1). Consider Ξ = Y3, a Banach space and Y = C(J,R)

represents the class of all continuous functions with the norm de�ned by

∥|z||Ξ = ||(∆,ℵ,Θ)||Ξ = max{|∆(κ)|+ |ℵ(κ)|+ |Θ(κ)| : κ ∈ J}.

First, rewrite given model (2.1.1) as:

Υ1(κ,∆(κ),ℵ(κ),Θ(κ)) = Πθ − β0f(ℵ(κ))∆(κ)− (µ+ ν)∆(κ) + ζΘ(κ − τ),

Υ2(κ,∆(κ),ℵ(κ),Θ(κ)) = β0f(ℵ(κ))∆(κ)− (µ+ κ)ℵ(κ),

Υ3(κ,∆(κ),ℵ(κ),Θ(κ)) = (1− Π)θ + ν∆(κ) + κI(κ)− ζΘ(κ − τ)− µΘ(κ).

(2.2.1)

Comparing models (2.1.1) and (2.2.1), we have

FFPDq,p
0,κ∆(κ) = Υ1(κ,∆(κ),ℵ(κ),Θ(κ)),

FFPDq,p
0,κℵ(κ) = Υ2(κ,∆(κ),ℵ(κ),Θ(κ)),

FFPDq,p
0,κΘ(κ) = Υ3(κ,∆(κ),ℵ(κ),Θ(κ)).

(2.2.2)

Since

FFPDq,p
0,κg(κ) =

1

Γ(1− q)

d

dκp

∫ κ

0

(κ − u)−q g(u)du.

FFPDq,p
0,κg(κ) =

1

Γ(1− q)

1

pκp−1

d

dκ

∫ κ

0

(κ − u)−q g(u)du.

FFPDq,p
0,κg(κ) = (

1

pκp−1
)

1

Γ(1− q)

d

dκ

∫ κ

0

(κ − u)−q g(u)du.

FFPDq,p
0,κg(κ) = (

1

pκp−1
)RLDq

0,κg(κ),

where from ([34]) for n = 1, we have

1

Γ(1− q)

d

dκ

∫ κ

0

(κ − u)−q g(u)du =RL Dq
0,κg(κ).
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So, model (2.2.2) can be written as

(
1

pκp−1
)RLDq

0,κ∆(κ) = Υ1(κ,∆(κ),ℵ(κ),Θ(κ)),

(
1

pκp−1
)RLDq

0,κℵ(κ) = Υ2(κ,∆(κ),ℵ(κ),Θ(κ)),

(
1

pκp−1
)RLDq

0,κΘ(κ) = Υ3(κ,∆(κ),ℵ(κ),Θ(κ)).

(2.2.3)

Hence, we get

RLDq
0,κ∆(κ) = pκp−1Υ1(κ,∆(κ),ℵ(κ),Θ(κ)),

RLDq
0,κℵ(κ) = pκp−1Υ2(κ,∆(κ),ℵ(κ),Θ(κ)),

RLDq
0,κΘ(κ) = pκp−1Υ3(κ,∆(κ),ℵ(κ),Θ(κ)).

(2.2.4)

In general, we can write model (2.2.4) as

RLDq
0,κz(κ) = pκp−1Υ(κ,z(κ)),

z(0) = z0,
(2.2.5)

where

(p, q) ∈ (0, 1],

κ ∈ J,

z(κ) = (∆(κ),ℵ(κ),Θ(κ))⊤,

z0 = (∆0,ℵ0,Θ0)
⊤.

Applying fractal-fractional integral on model (2.2.5), using the result in ([15]), we get

z(κ)−z(0) =
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ(u,z(u))du. (2.2.6)

Hence, we can write

∆(κ) = ∆(0) +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,∆(u),ℵ(u),Θ(u))du,

ℵ(κ) = ℵ(0) + p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ2(u,∆(u),ℵ(u),Θ(u))du,

Θ(κ) = Θ(0) +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ3(u,∆(u),ℵ(u),Θ(u))du.

(2.2.7)

So, now we can transform (2.1.1) into a �xed point problem.

De�ne an operator F : Ξ → Ξ by

F (z(κ)) = z(0) +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ(u,z(u))du. (2.2.8)
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2.3 Existence of Solution

For existence, we prove a theorem on the basis of Theorem 1.2.4 as in ([35]).

Theorem 2.3.1. Suppose that ∃ V : R3 × R3 → R , ψ ∈ Ψ and Υ ∈ C(J × Ξ,Ξ)

satisfying the following conditions:

(β1) : ∀z1,z2 ∈ Ξ and κ ∈ J,

|Υ(κ,z1(κ))−Υ(κ,z2(κ))| ≤ ℓ ψ(|z1(κ)−z2(κ)|),

with V (z1(κ),z2(κ)) ≥ 0 and ℓ = Γ(p+q)

p T (p+q−1) Γ(p)
;

(β2): ∃ z0 ∈ Ξ such that ∀κ ∈ J,

V (z0(κ), F (z0(κ))) ≥ 0,

and

V (z1(κ),z2(κ)) ≥ 0

gives

V (F (z1(κ)), F (z2(κ))) ≥ 0 ;

(β3): ∀{zn}n≥1 ⊆ Ξ with zn → z,

V (zn(κ),zn+1(κ)) ≥ 0 =⇒ V (zn(κ),z(κ)) ≥ 0, (2.3.1)

for every n and κ.

Hence, we say that F has a �xed point. So a solution of malware propagation model

exists.

Proof. Take z1,z2 ∈ Ξ so that

V (z1(κ),z2(κ)) ≥ 0,

for every κ ∈ J.

Now, we take

|F (z1(κ))− F (z2(κ))| = | p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 (Υ(u,z1(u))−Υ(u,z2(u))) du|,

≤ p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 |Υ(u,z1(u))−Υ(u,z2(u))| du.
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By using (β1), we deduce

|F (z1(κ))− F (z2(κ))| ≤ p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ℓ ψ(|z1(u)−z2(u)|) du.

Now, by using the de�nition of norm

|F (z1(κ))− F (z2(κ))| ≤ p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ℓ ψ(||z1 −z2||Ξ) du.

After doing some computations and using the de�nition of beta function and using de�-

nition of ℓ, we get

||F (z1(κ))− F (z2(κ))||Ξ ≤ ψ(||z1 −z2||Ξ). (2.3.2)

Moreover, if we de�ne a function ϕ : Ξ2 → [0,∞) such that ϕ(z1,z2) = 1 for V (z1(κ),z2(κ)) ≥

0, and zero otherwise, then for each z1,z2 ∈ Ξ equation (2.3.2) can be written as:

ϕ(z1,z2) d(F (z1), F (z2)) ≤ ψ(d(z1,z2)).

This shows that F is a ϕ-ψ-contraction.

Now, suppose that z1,z2 ∈ Ξ with the property that ϕ(z1,z2) ≥ 1. By the de�nition

of ϕ, we deduce

V (z1(κ),z2(κ)) ≥ 0,

and by (β2), we get

V (z0(κ), F (z0(κ))) ≥ 0 and V (z1(κ),z2(κ)) ≥ 0.

=⇒ V (F (z1(κ)), F (z2(κ))) ≥ 0.

So, by applying de�nition of ϕ, we have

ϕ(F (z1), F (z2)) ≥ 1.

Hence, F is ϕ-admissible. (*)

Moreover, by (β2), it can be seen that for some z0 in Ξ, ∀κ ∈ J, we have

V (z0(κ), F (z0(κ))) ≥ 0 =⇒ ϕ(z0, F (z0)) ≥ 1. (**)

Now, consider {zn}n≥1 ⊆ Ξ with zn → z and for all n and ϕ(zn,zn+1) ≥ 1.

By de�nition of ϕ this implies V (zn(κ),zn+1(κ)) ≥ 0.

Thus, by (β3) this implies V (zn(κ),z(κ)) ≥ 0.
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Hence, ϕ(zn,z) ≥ 1 for all n. (***)

So (*), (**), (***) show the conditions of Theorem 1.2.4 are satis�ed, so we can say that

there exists some z∗ ∈ Ξ such that F (z∗) = z∗.

Hence, z∗ = (∆∗,ℵ∗,Θ∗)⊤ is a solution of our model.

Theorem 1.2.5 also establishes that solution of model exists and on basis of this model

we also de�ne the following theorem as:

Theorem 2.3.2. Let Ξ be a Banach space, Nϵ be a bounded and closed set in Ξ and A

be an open in Nϵ with 0 ∈ A, then there exists a compact and continuous operator F

with the conditions (β4) and (β5) from A→ Nϵ which satis�es one of the two conditions,

(a) F has a �xed point in A,

or

(b) there exists z ∈ ∂A and ω ∈ (0, 1) s.t z = ω F (z);

where

(β4): SupposeΥ ∈ C(J×Ξ,Ξ) and there exists ϕ ∈ L1(J, [0,∞)) andB ∈ C([0,∞), [0,∞))

where B is an increasing function satisfying the condition |F(κ,z(κ))| ≤ ϕ(κ)B(|z(κ)|)

for all κ ∈ J and z ∈ Ξ;

(β5) : If ϕ
∗ = supκ∈J|ϕ(κ)| then ∃ a number r s.t r

z0+λϕ∗B(r)
> 1 where λ = pTp+q−1 Γ(p)

Γ(p+q)
.

Proof. Consider F : Ξ → Ξ as

F (z(κ)) = z(0) +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ(u, (zu))du,

and Nϵ = {z ∈ Ξ : ||z||Ξ ≤ ϵ} for some positive ϵ.

We show that F is compact on Nϵ. For this, we prove that F is uniformly bounded and

equicontinuous.

Since Υ is continuous, this implies F is continuous.

Now for z in Nϵ, we obtain

|F (z(κ))| ≤ |z(0)|+ p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 |Υ(u,z(u))|du
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and from (β4), we have

|F (z(κ))| ≤ z0 +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ϕ(u)B(|z(u)|)du

≤ z0 +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ϕ∗B(||z||Ξ)du

≤ z0 +
p

Γ(q)
ϕ∗B(||z||Ξ)

∫ κ

0

u(p−1) (κ − u)q−1 du,

after simpli�cation of the integral, we get the beta function. So applying value of beta

function and λ, we get

|F (z(κ))| ≤ z0 + λϕ∗B(ϵ).

Hence, by applying norm, we have

||F (z(κ))|| ≤ z0 + λϕ∗B(ϵ) <∞. (2.3.3)

This implies F is uniformly bounded.

Now, take κ,κ∗ ∈ J such that κ < κ∗ and z ∈ Nϵ arbitrarily.

If we suppose Υ∗ = sup |Υ(κ,z(κ))|, then

|F (z(κ∗))− F (z(κ))| = | p

Γ(q)

∫ κ∗

0

u(p−1) (κ∗ − u)q−1 Υ(u,z(u)) du

− p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ(u,z(u)) du|

≤ p

Γ(q)
|
∫ κ∗

0

u(p−1) (κ∗ − u)q−1 du

−
∫ κ

0

u(p−1) (κ − u)q−1 du | · |Υ(u,z(u)|

≤ p

Γ(q)
|(κ∗)(p+q−1) β(p, q)− κ(p+q−1) β(p, q)|Υ∗

≤ p

Γ(p+ q)
Υ∗ [(κ∗)(p+q−1) − κ(p+q−1)],

that is independent from z. When κ∗ → κ its value becomes zero. Hence ||F (z(κ∗))−

F (z(κ))||Ξ → 0. Thus proved that F is equicontinuous. So F is compact. As F satis�es

the conditions of Theorem 2.3.2, we say that F will satisfy either one or the other condition

mentioned in Theorem 2.3.2. For this using (β5), we construct A = {z ∈ Ξ : ||z||Ξ < r},

where r > 0 is de�ned above. Hence, we can write

||F (z(κ))|| ≤ z0 + λϕ∗B(r). (2.3.4)
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Assume, there exists z ∈ ∂A and ω ∈ (0, 1) where z = ωF (z).

For z, ω and using (β5), we get

r = ||z||Ξ

= ω||F (z)||Ξ

< ||F (z)||Ξ

< z0 + λϕ∗B(||z||Ξ)

< z0 + λϕ∗B(r).

This gives us r < r, which is impossible. Thus, condition (b) is not satis�ed. Hence, by

condition (a), F possesses a �xed point in A.

2.4 Uniqueness

Now, we will prove uniqueness with the help of theorems using lipschitz condition [33]

along with some other conditions.

Theorem 2.4.1. Let ∆,ℵ,Θ,∆1,ℵ1,Θ1 ∈ Y = C(J,R) and we assume that

(Condition) : ||∆|| ≤ µ1, ||ℵ|| ≤ µ2, α ∈ (0,∞),

||f(ℵ(κ))|| = || ℵ(κ)
1+αℵ(κ) || ≤ ||ℵ(κ)||

||1+αℵ(κ)|| ≤ µ3 (whereµ3 =
1
α
),

||Θ|| ≤ µ4 for some µi > 0 , i = 1, 2, 3, 4.

Moreover, || 1
1+αℵ(κ) || ≤ b1, || 1

1+αℵ1(κ) || ≤ b2, where b1 = 1
α||ℵ(κ)|| , b2 = 1

α||ℵ1(κ)|| , b1 >

0, b2 > 0 and b = b1 · b2, then Υ1,Υ2,Υ3 de�ned in model (2.1.1) are lipschitz functions

with the following values

w1 = (β0 µ3 + µ+ ν), w2 = (β0 µ1 b+ µ+ γ), w3 = (ζ + µ), where 0 < wj < 1, j = 1, 2, 3.
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Proof. Considering Υ1 for each ∆,∆1 ∈ Y, we take

|| Υ1(κ,∆(κ),ℵ(κ),Θ(κ))−Υ1(κ,∆1(κ),ℵ(κ),Θ(κ))||

= ||(Πθ − β0f(ℵ(κ))∆(κ)− (µ+ ν)∆(κ) + ζ Θ(κ − τ))

− (Πθ − β0f(ℵ(κ))∆1(κ)− (µ+ ν)∆1(κ) + ζΘ(κ − τ))||

= || − β0f(ℵ(κ))(∆(κ)−∆1(κ))− (µ+ ν)(∆(κ)−∆1(κ))||

= ||(−β0f(ℵ(κ))− (µ+ ν))(∆(κ)−∆1(κ))||

= ||(−(β0f(ℵ(κ)) + (µ+ ν)))(∆(κ)−∆1(κ))||

= ||(β0f(ℵ(κ)) + (µ+ ν))(∆(κ)−∆1(κ))||

≤ (||(β0f(ℵ(κ)) + (µ+ ν))||) ||∆(κ)−∆1(κ)||

≤ (||(β0f(ℵ(κ))||+ ||(µ+ ν)||) ||∆(κ)−∆1(κ)||

≤ (β0 µ3 + µ+ ν) ||∆(κ)−∆1(κ)||

≤ w1 ||∆(κ)−∆1(κ)||.

Hence, Υ1 is Lipschitz with respect to ∆ with w1 > 0.

Consider Υ2 for each ℵ,ℵ1 ∈ Y, we take

|| Υ2(κ,∆(κ),ℵ(κ),Θ(κ))−Υ2(κ,∆(κ),ℵ1(κ),Θ(κ)) ||

= ||(β0f(ℵ(κ))∆(κ)− (µ+ γ)ℵ(κ))− (β0f(ℵ1(κ))∆(κ)− (µ+ γ)ℵ1(κ))||

= ||(β0∆(κ)(f(ℵ(κ))− f(ℵ1(κ))) + (µ+ γ)(−ℵ(κ) + ℵ1(κ))||

≤ ||(β0∆(κ)(f(ℵ(κ))− f(ℵ1(κ)))||+ ||(µ+ γ)(−ℵ(κ) + ℵ1(κ))||

≤ |β0| ||∆(κ)|| ||(f(ℵ(κ))− f(ℵ1(κ)))||+ |(µ+ γ)| ||(ℵ(κ)− ℵ1(κ))||

≤ β0 µ1 ||
ℵ(κ)

1 + αℵ(κ)
− ℵ1(κ)

1 + αℵ1(κ)
||+ (µ+ γ)||ℵ(κ)− ℵ1(κ))||

≤ β0 µ1 ||ℵ(κ)− ℵ1(κ)||
1

||(1 + αℵ(κ)) (1 + αℵ1(κ))||
+ (µ+ γ)||ℵ(κ)− ℵ1(κ)||

≤ β0 µ1 b ||ℵ(κ)− ℵ1(κ)||+ (µ+ γ)||ℵ(κ)− ℵ1(κ)||

≤ (β0 µ1 b+ µ+ γ)||ℵ(κ)− ℵ1(κ)||

≤ w2||ℵ(κ)− ℵ1(κ)||.

Hence, Υ2 is Lipschitz w.r.t ℵ with w2 > 0.
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Considering Υ3 for each Θ,Θ1 ∈ Y, we take

|| Υ3(κ,∆(κ),ℵ(κ),Θ(κ))−Υ3(κ,∆(κ),ℵ(κ),Θ1(κ))||

= ||((1− Π)θ + ν∆(κ) + κℵ(κ)− ζΘ(κ − τ)− µΘ(κ))

− ((1− Π)θ + ν∆(κ) + κℵ(κ)− ζΘ1(κ − τ)− µΘ1(κ))||

= ||ζ(Θ1(κ − τ)−Θ(κ − τ)) + µ(Θ1(κ)−Θ(κ))||

≤ ||ζ(Θ1(κ − τ)−Θ(κ − τ))||+ ||µ(Θ1(κ)−Θ(κ))||

≤ |ζ| ||Θ(κ − τ)−Θ1(κ − τ)||+ |µ|||(Θ(κ)−Θ1(κ))||

For κ ∈ J and for τ ≥ 0, if (κ − τ) ∈ J , taking κ∗ = max(κ,κ − τ), we have

≤ ζ||Θ(κ∗)−Θ1(κ∗)||+ µ||Θ(κ∗)−Θ1(κ∗)||

≤ (ζ + µ)||Θ(κ∗)−Θ1(κ∗)||

≤ w3||Θ(κ∗)−Θ1(κ∗)||.

Hence, Υ3 is Lipschitz with respect to Θ with w3 > 0.

Moreover, we see the uniqueness of solution in Theorem 2.4.2 under the condition

de�ned in Theorem 2.4.1.

Theorem 2.4.2. If ||∆|| ≤ µ1, ||ℵ|| ≤ µ2, ||Θ|| ≤ µ4 for some µi > 0, i = 1, 2, 3, 4 and

w1 = (β0 µ3 + µ+ ν), w2 = (β0 µ1 b+ µ+ γ), w3 = (ζ + µ), where 0 < wj < 1, j = 1, 2, 3;

then our model has a unique solution if λwj < 1 for j = 1, 2, 3.

Proof. Suppose the model has two solutions (∆(κ),ℵ(κ),Θ(κ)) and (∆∗(κ),ℵ∗(κ),Θ∗(κ))

with initial conditions de�ned above. So, we can write

∆(κ) = ∆(0) +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,∆(u),ℵ(u),Θ(u))du,

∆∗(κ) = ∆(0) +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,∆
∗(u),ℵ∗(u),Θ∗(u))du.

Take

||∆(κ)−∆∗(κ)|| = || p

Γ(q)

∫ κ

0

u(p−1)(κ − u)q−1(Υ1(u,∆(u),ℵ(u),Θ(u))

− Υ1(u,∆
∗(u),ℵ∗(u),Θ∗(u)))du||

≤ p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ||Υ1(u,∆(u),ℵ(u),Θ(u))

− Υ1(u,∆
∗(u),ℵ∗(u),Θ∗(u))||du,
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since Υ1 is considered with respect to ∆ and ∆∗ so by Theorem 2.4.1 and de�nition of

Beta function, we get

||∆(κ)−∆∗(κ)|| ≤ p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ||Υ1(∆)−Υ1(∆
∗)||du

≤ p

Γ(q)
T(p+q−1) β(p, q) ||Υ1(∆)−Υ1(∆

∗)||

≤ pT(p+q−1) Γ(p)

Γ(p+ q)
w1||∆(κ)−∆∗(κ)||.

Hence,

||∆(κ)−∆∗(κ)|| ≤ λw1 ||∆(κ)−∆∗(κ)||.

This implies that (1− λw1) ||∆(κ)−∆∗(κ)|| ≤ 0.

As λw1 < 1, so this is possible when ||∆(κ)−∆∗(κ)|| = 0. Thus, ∆(κ) = ∆∗(κ).

Similarly, we have

ℵ(κ) = ℵ(0) + p

Γ(q)

∫ κ

0

u(p−1) (κ − u)p−1 Υ2(u,∆(u),ℵ(u),Θ(u))du,

ℵ∗(κ) = ℵ(0) + p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ2(u,∆
∗(u),ℵ∗(u),Θ∗(u))du.

Take

||ℵ(κ)− ℵ∗(κ)|| = || p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 (Υ2(u,∆(u),ℵ(u),Θ(u))

− Υ2(u,∆
∗(u),ℵ∗(u),Θ∗(u)))du||

≤ p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ||Υ2(u,∆(u),ℵ(u),Θ(u))

− Υ2(u,∆
∗(u),ℵ∗(u),Θ∗(u))||du,

since Υ2 is considered with respect to ℵ and ℵ∗ so by using previous result and de�nition

of Beta function, we have

||ℵ(κ)− ℵ∗(κ)|| ≤ p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ||Υ2(ℵ)−Υ2(ℵ∗)||du

≤ p

Γ(q)
T(p+q−1) β(p, q) ||Υ2(ℵ)−Υ2(ℵ∗)||

≤ pT(p+q−1) Γ(p)

Γ(p+ q)
w2||ℵ(κ)− ℵ∗(κ)||.

Hence, we obtain

||ℵ(κ)− ℵ∗(κ)|| ≤ λw2 ||ℵ(κ)− ℵ∗(κ)||.
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This implies that

(1− λw2) ||ℵ(κ)− ℵ∗(κ)|| ≤ 0.

As λw2 < 1, this is possible when ||ℵ(κ) − ℵ∗(κ)|| = 0. Thus, ℵ(κ) = ℵ∗(κ). Also, we

have

Θ(κ) = Θ(0) +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ3(u,∆(u),ℵ(u),Θ(u))du,

Θ∗(κ) = Θ(0) +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ3(u,∆
∗(u),ℵ∗(u),Θ∗(u))du.

Take

||Θ(κ)−Θ∗(κ)|| = || p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 (Υ3(u,∆(u),ℵ(u),Θ(u))

− Υ3(u,∆
∗(u),ℵ∗(u),Θ∗(u)))du||

≤ p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ||Υ3(u,∆(u),ℵ(u),Θ(u))

− Υ3(u,∆
∗(u),ℵ∗(u),Θ∗(u))||du,

since Υ3 is considered w.r.t Θ and Θ∗ so by using previous result and de�nition of Beta

function, we have

||Θ(κ)−Θ∗(κ)|| ≤ p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ||Υ3(Θ)−Υ3(Θ
∗)||du

≤ p

Γ(q)
T(p+q−1) β(p, q) ||Υ3(Θ)−Υ3(Θ

∗)||

≤ pT(p+q−1) Γ(p)

Γ(p+ q)
w3||Θ(κ)−Θ∗(κ)||.

Hence, ||Θ(κ)−Θ∗(κ)|| ≤ λw3 ||Θ(κ)−Θ∗(κ)||.

=⇒ (1− λw3) ||Θ(κ)−Θ∗(κ)|| ≤ 0.

As λw3 < 1, this is possible when ||Θ(κ) − Θ∗(κ)|| = 0. Thus Θ(κ) = Θ∗(κ). That is,

(∆(κ),ℵ(κ),Θ(κ)) = (∆∗(κ),ℵ∗(κ),Θ∗(κ)). Hence, solution is unique.

2.5 Stability

In this section, we check stability of solution. We use Ulam−Hyers and Ulam−Hayers−Rassias

theorems to check it. First, we de�ne the following theorems for our model.
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De�nition 2.5.1. Model (2.2.1) is Ulam-Hyers stable [23], if for all ϵi > 0, there exist

Mi > 0 ∈ R, which depend on Υi, i = 1, 2, 3 respectively, and for all (∆∗,ℵ∗,Θ∗)

satisfying the inequalities

|FFPDq,p
0,κ∆

∗(κ)−Υ1(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ))| ≤ ϵ1,

|FFPDq,p
0,κℵ∗(κ)−Υ2(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ))| ≤ ϵ2,

|FFPDq,p
0,κΘ

∗(κ)−Υ3(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ))| ≤ ϵ3,

(2.5.1)

there exists (∆,ℵ,Θ) ∈ Ξ satisfying model (2.2.1) with the condition

|∆∗(κ)−∆(κ)| ≤ M1 ϵ1,

|ℵ∗(κ)− ℵ(κ)| ≤ M2 ϵ2,

|Θ∗(κ)−Θ(κ)| ≤ M3 ϵ3.

(2.5.2)

Remark 2.5.2. (∆∗,ℵ∗,Θ∗) ∈ Ξ is a solution of model (2.5.1) i� ∃ ηi ∈ C([0,T], [0,∞))

such that for all κ ∈ J,

(i) | ηi(κ) | < ϵi,

(ii)

FFPDq,p
0,κ∆

∗(κ) = Υ1(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ)) + η1(κ),
FFPDq,p

0,κℵ∗(κ) = Υ2(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ)) + η2(κ),
FFPDq,p

0,κΘ
∗(κ) = Υ3(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ)) + η3(κ).

(2.5.3)

Theorem 2.5.3. The fractal fraction model (2.1.1) is Ulam−Hayers stable on J such

that λwi < 1, where wi and λ are de�ned as above.

Proof. Let ϵ1 > 0 and ∆∗ ∈ Y s.t

|FFPDq,p
0,κ∆

∗(κ)−Υ1(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ))| ≤ ϵ1,

by above remark (2.5.2), we have

∆∗(κ) = ∆(0) +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,∆
∗(u),ℵ∗(u),Θ∗(u))du

+
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 η1(u) du. (2.5.4)

As ∆ ∈ Y is the unique solution, then

∆(κ) = ∆(0) +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,∆(u),ℵ(u),Θ(u))du.
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That is

|∆∗(κ)−∆(κ)|

= | p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 η1(u) du

+
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1[Υ1(u,∆
∗(u),ℵ∗(u),Θ∗(u))

− Υ1(u,∆(u),ℵ(u),Θ(u)) ] du|

≤ p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 |η1(u)|du

+
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1||Υ1(u,∆(u),ℵ(u),Θ(u))

− Υ1(u,∆
∗(u),ℵ∗(u),Θ∗(u)) || du

≤ p

Γ(q)
β(p, q)T (p+q−1) |η1(u)|

+
p

Γ(q)
β(p, q)T (p+q−1)w1 ||∆∗ −∆||

≤ p

Γ(q)
β(p, q)T (p+q−1) ϵ1

+
p

Γ(q)
β(p, q)T (p+q−1)w1 ||∆∗ −∆||

≤ λ ϵ1 + λw1 ||∆∗ −∆||.

Hence, we have

||∆∗ −∆|| ≤ λ ϵ1 + λw1 ||∆∗ −∆||

(1− λw1) ||∆∗ −∆|| ≤ λ ϵ1

||∆∗ −∆|| ≤ λ ϵ1
(1− λw1)

.

If λ
(1−λw1)

=M1, then ||∆∗ −∆|| ≤ M1 ϵ1.

Similarly, we can prove that ||ℵ∗ − ℵ|| ≤ M2 ϵ2, and ||Θ∗ −Θ|| ≤ M3 ϵ3.

Thus Ulam−Hayers stability criteria is ful�lled by our FF model.

De�nition 2.5.4. We de�ne the Ulam−Hayers−Rassias stability criteria for our fractal−fractional

model ([25]). Model (2.2.1) is Ulam-Hyers−Rassias stable with respect to the functions

ψi, if for all ϵi > 0, there exist Mi > 0 ∈ [0,∞), which depend on
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Υi andψi, i = 1, 2, 3 respectively and for all (∆∗,ℵ∗,Θ∗) satisfying the inequalities:

|FFPDq,p
0,κ∆

∗(κ)−Υ1(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ))| ≤ ϵ1 ψ1(κ),

|FFPDq,p
0,κℵ∗(κ)−Υ2(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ))| ≤ ϵ2 ψ2(κ),

|FFPDq,p
0,κΘ

∗(κ)−Υ3(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ))| ≤ ϵ3 ψ3(κ),

(2.5.5)

there exists (∆,ℵ,Θ) ∈ Ξ satisfying model (2.2.1) with the conditions:

|∆∗(κ)−∆(κ)| ≤ M1 ϵ1 ψ1(κ),

|ℵ∗(κ)− ℵ(κ)| ≤ M2 ϵ2 ψ2(κ),

|Θ∗(κ)−Θ(κ)| ≤ M3 ϵ3 ψ3(κ).

(2.5.6)

Remark 2.5.5. (∆∗,ℵ∗,Θ∗) ∈ Ξ is a solution i� ∃ ηi ∈ C(J, [0,∞)) such that for all

κ ∈ J,

(i) | ηi(κ) | < ϵi ψi(κ),

(ii)

FFPDq,p
0,κ∆

∗(κ) = Υ1(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ)) + η1(κ),
FFPDq,p

0,κℵ∗(κ) = Υ2(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ)) + η2(κ),
FFPDq,p

0,κΘ
∗(κ) = Υ3(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ)) + η3(κ).

(2.5.7)

Theorem 2.5.6. The fractal−fractional model (2.2.1) is Ulam−Hayers−Rassias stable

when the following conditions are satis�ed: for all κ ∈ J, there exist nondecreasing

mappings ψi ∈ C(J, [0,∞)) and ξi > 0 depending upon ψi such that FFP Iq,p0,κψi(κ) <

ξi(ψi)ψi(κ).

Proof. Let ϵ1 > 0 and ∆∗ ∈ Y such that

|FFPDq,p
0,κ∆

∗(κ)−Υ1(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ))| ≤ ϵ1 ψ1(κ),

then, by the conditions of remark 2.5.5, we consider

∆∗(κ) = ∆(0) +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,∆
∗(u),ℵ∗(u),Θ∗(u))du

+
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 η1(u) du.

As ∆ ∈ Y is the unique solution, then

∆(κ) = ∆(0) +
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,∆(u),ℵ(u),Θ(u))du.
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Therefore, we get

|∆∗(κ)−∆(κ)|

= | p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 η1(u) du

+
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1

[ Υ1(u,∆
∗(u),ℵ∗(u),Θ∗(u))−Υ1(u,∆(u),ℵ(u),Θ(u)) ] du|

≤ p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 |η1(u)|du

+
p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1

|| Υ1(u,∆(u),ℵ(u),Θ(u))−Υ1(u,∆
∗(u),ℵ∗(u),Θ∗(u)) || du

≤ p

Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ϵ1 ψ1(u) du

+
p

Γ(q)
β(p, q)T (p+q−1) w1 ||∆∗ −∆||

≤ ϵ1 ξ1(ψ1)ψ1(κ) + λw1 ||∆∗ −∆||.

Hence, we have

||∆∗ −∆|| ≤ ϵ1 ξ1(ψ1)ψ1(κ) + λw1 ||∆∗ −∆||

(1− λw1) ||∆∗ −∆|| ≤ ϵ1 ξ1(ψ1)ψ1(κ)

||∆∗ −∆|| ≤ ϵ1 ξ1(ψ1)ψ1(κ)
(1− λw1)

.

If ξ1(ψ1)
(1−λw1)

=M1(Υ1, ψ1) then, we get

||∆∗ −∆|| ≤ ϵ1 ψ1(κ)M1(Υ1, ψ1).

Similarly, we can prove that

||ℵ∗ − ℵ|| ≤ ϵ2 ψ2(κ)M2(Υ2, ψ2),

||Θ∗ −Θ|| ≤ ϵ3 ψ3(κ)M3(Υ3, ψ3).

Thus, Ulam−Hayers−Rassias stability criteria is ful�lled by our fractal−fractional model.
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2.6 Numerical Algorithm

Now, we make a numerical scheme using two−point Lagrangian interpolation formula [38]

for our FF model. The di�erence between our scheme and others is that in our model Υ1

and Υ3 depend on κ and (κ − τ), so we deal it di�erently in the end.

First, we take κ = κn+1 and up−1 Υi(u,∆(u),ℵ(u),Θ(u)) = zi(u) and get

∆(κn+1) = ∆(0) +
p

Γ(q)

∫ κn+1

0

(κn+1 − u)q−1 z1(u)du,

ℵ(κn+1) = ℵ(0) + p

Γ(q)

∫ κn+1

0

(κn+1 − u)q−1 z2(u)du,

Θ(κn+1) = Θ(0) +
p

Γ(q)

∫ κn+1

0

(κn+1 − u)q−1 z3(u)du.

(2.6.1)

Approximating integral as the sum of integrals on sub intervals, we have

∆(κn+1) = ∆0 +
p

Γ(q)

n∑
j=0

∫ κj+1

κj

(κn+1 − u)q−1z1(u)du,

ℵ(κn+1) = ℵ0 +
p

Γ(q)

n∑
j=0

∫ κj+1

κj

(κn+1 − u)q−1z2(u)du,

Θ(κn+1) = Θ0 +
p

Γ(q)

n∑
j=0

∫ κj+1

κj

(κn+1 − u)q−1z3(u)du.

(2.6.2)

Now, we approximate the functions zi(u) by two points Lagrange interpolation poly-

nomials on the interval [κj,κj+1]. We can write

z∗
1(u) =

u− κj−1

κj − κj−1

κp−1
j Υ1(uj,∆j(u),ℵj(u),Θj(u))

− u− κj
κj − κj−1

κp−1
j−1 Υ1(uj−1,∆j−1(u),ℵj−1(u),Θj−1(u)),

z∗
2(u) =

u− κj−1

κj − κj−1

κp−1
j Υ2(uj,∆j(u),ℵj(u),Θj(u))

− u− κj
κj − κj−1

κp−1
j−1 Υ2(uj−1,∆j−1(u),ℵj−1(u),Θj−1(u)),

z∗
3(u) =

u− κj−1

κj − κj−1

κp−1
j Υ3(uj,∆j(u),ℵj(u),Θj(u))

− u− κj
κj − κj−1

κp−1
j−1 Υ3(uj−1,∆j−1(u),ℵj−1(u),Θj−1(u)).
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Thus, we have

∆(κn+1) = ∆0 +
p

Γ(q)

n∑
j=0

∫ κj+1

κj

(κn+1 − u)q−1z∗
1(u)du,

ℵ(κn+1) = ℵ0 +
p

Γ(q)

n∑
j=0

∫ κj+1

κj

(κn+1 − u)q−1z∗
2(u)du,

Θ(κn+1) = Θ0 +
p

Γ(q)

n∑
j=0

∫ κj+1

κj

(κn+1 − u)q−1z∗
3(u)du.

(2.6.3)

Using values of z∗
i (u), we integrate the above integrals according to limits and taking

κj − κj−1 = h, we get the �nal results.

∆(n+ 1) = ∆0 +
phq

Γ(q+ 2)

n∑
j=0

[κp−1
j Υ1(uj,∆j,ℵj,Θj)Z1

− κp−1
j−1 Υ1(uj−1,∆j−1,ℵj−1,Θj−1)Z2],

ℵ(n+ 1) = ℵ0 +
phq

Γ(q+ 2)

n∑
j=0

[κp−1
j Υ2(uj,∆j,ℵj,Θj)Z1

− κp−1
j−1 Υ2(uj−1,∆j−1,ℵj−1,Θj−1)Z2],

Θ(n+ 1) = Θ0 +
phq

Γ(q+ 2)

n∑
j=0

[κp−1
j Υ3(uj,∆j,ℵj,Θj)Z1

− κp−1
j−1 Υ3(uj−1,∆j−1,ℵj−1,Θj−1)Z2],

where

Z1 = (n+ 1− j)q (n− j + 2 + q)− (n− j)q (n− j + 2 + 2q),

Z2 = (n+ 1− j)q+1 − (n− j)q (n− j + 1 + q).

Since in the original model (1.3.1) for Υ1 and Υ3, Θ depends on κ and (κ−τ) = κ1(say),

so we write

Υ1 = U1(κj,∆j,ℵj,Θj) + U3(κ1j,Θj) and Υ3 = U2(κj,∆j,ℵj,Θj)− U3(κ1j,Θj) where

U1(κj,∆j,ℵj,Θj) = Πθ − β0f(ℵ(κ))∆(κ)− (µ+ ν)∆(κ),

U2(κj,∆j,ℵj,Θj) = (1− Π)θ + ν∆(κ) + κℵ(κ)− µΘ(κ),

U3(κ1j,Θj) = ζΘ(κ − τ).
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Figure 2.1: Trajectories of ∆(κ) for di�erent fractal orders p when q = 1 and di�erent

fractional orders q when p = 1.

Hence, our numerical scheme is

∆(n+ 1) = ∆0 +
phq

Γ(q+ 2)

n∑
j=0

[κp−1
j (U1(κj,∆j,ℵj,Θj) + U3(κ1j,Θj))Z1

− κp−1
j−1 (U1(κj−1,∆j−1,ℵj−1,Θj−1) + U3(κ1j,Θj))Z2],

ℵ(n+ 1) = ℵ0 +
phq

Γ(q+ 2)

n∑
j=0

[κp−1
j Υ2(uj,∆j,ℵj,Θj)Z1

− κp−1
j−1 Υ2(uj−1,∆j−1,ℵj−1,Θj−1)Z2],

Θ(n+ 1) = Θ0 +
phq

Γ(q+ 2)

n∑
j=0

[κp−1
j (U2(κj,∆j,ℵj,Θj)− U3(κ1j,Θj))Z1

− κp−1
j−1 (U2(κj−1,∆j−1,ℵj−1,Θj−1)− U3(κ1j,Θj))Z2].

2.7 Discussion through Simulations based on Numeri-

cal algorithm

In this section, we see the simulation of ∆, ℵ and Θ under the e�ect of several fractal-

fractional orders and also their behavior with respect to some parameters and compare

the results of FF model to the ordinary di�erential model. We take parameters as taken

for �gure2 in [32], Π = 0.5, θ = 0.8, β0 = 0.02, µ = 0.1, ν = 0.2, ζ = 0.01, κ = 0.2, τ =

7.3, α = 1 and some estimated initial conditions ∆(0) = 3,ℵ(0) = 1,Θ(0) = 0.1.
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Figure 2.2: Trajectories of ℵ(κ) for di�erent fractal orders p when q = 1 and di�erent

fractional orders q when p = 1.
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Figure 2.8: The e�ect of varying initial infection rate β0 on infected nodes for classical

and FF model at level 0.90.
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Figure 2.9: The e�ect of varying variable to adjust the infection rate sensitivity α on

infected nodes for classical and FF model at level 0.90.
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Figure 2.10: The e�ect of varying real-time immune rate ν on infected nodes for classical

and FF model at level 0.90.

35



0 20 40 60 80 100

Time (second)

0

1

2

3

4

5

6

7

8

N
u

m
b

e
r 

o
f 

R
e

m
o

v
e

d
 n

o
d

e
s
 a

t 
o

rd
e

r 
p

=
q

=
1

ν=0

ν=0.2

ν=0.4

ν=0.6

ν=0.8

comparison of Removed nodes for ν at p=q=1 and p=q=0.90.

0 20 40 60 80 100

Time (second)

0

1

2

3

4

5

6

7

8

N
u

m
b

e
r 

o
f 

R
e

m
o

v
e

d
 n

o
d

e
s
 a

t 
o

rd
e

r 
p

=
q

=
0

.9
0

ν=0

ν=0.2

ν=0.4

ν=0.6

ν=0.8

Figure 2.11: The e�ect of varying real-time immune rate ν on removed nodes for classical

and FF model at level 0.90.
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Figure 2.12: The e�ect of varying loss rate of immunity ζ on susceptible nodes for classical

and FF model at level 0.90.
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Figure 2.13: The e�ect of varying loss rate of immunity ζ on infected nodes for classical

and FF model at level 0.90.
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Figure 2.14: The e�ect of varying loss rate of immunity ζ on removed nodes for classical

and FF model at level 0.90.

37



0 20 40 60 80 100

Time (days)

1.5

2

2.5

3

N
u

m
b

e
r 

o
f 

S
u

s
c
e

p
ti
b

le
 N

o
d

e
s

Comparison of Susceptible nodes for different mathematical models.

classical:p=q=1

fractional:p=1,q=0.90

fractal:q=1,p=0.90

fractal-fractional:p=q=0.90

Figure 2.15: Trajectories of ∆ showing comparison of di�erent mathematical models.
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Figure 2.16: Trajectories of ℵ showing comparison of di�erent mathematical models.
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Figure 2.17: Trajectories of Θ showing comparison of di�erent mathematical models.
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Figure 2.19: Trajectories of ∆, ℵ andΘ showing comparison of constant and variable

fractal order mathematical models.
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Figures 1-3 show the simulation of ∆, ℵ and Θ for di�erent fractal and fractional

orders separately. We can see in Fig.1, the simulation of ∆ in one �gure under the dif-

ferent fractional orders keeping fractal order one and in the other �gure under di�erent

fractal orders by keeping fractional order one. We see that initially number of susceptible

nodes is more at lower fractional and fractal orders. In fractal model, after 20s, this

number becomes less at lower fractal order and then converges after 80s. On the other

hand, in fractional model the no. of susceptible nodes is more at lower fractional orders

throughout the time period and it converges slowly as compared to fractal model. So, we

can see that in fractal model nodes converge more quickly that means no. of susceptible

nodes is less a�ected by previous nodes. So we can predict that it has less memory e�ect,

less sensitivity and more stability. Similarly Fig.2 is for ℵ. It represents higher number

of nodes of infected nodes at lower fractal or fractional orders in both models. However,

the convergence in fractal model is rapid, so we can conclude that it has less memory

e�ect, less sensitivity and more stability. Fig.3 is for Θ. In this �gure, in both models the

number of removed nodes is less at lower fractional or fractal orders but in fractal model

the number of nodes is more than the number of nodes in fractional model at di�erent

orders. The nodes become stable more quickly as compared to fractional model. The

fractal model has less memory e�ect, low sensitivity to initial conditions and limited in-

formation retention. It shows the uniqueness of the solution and existence of �xed point.

Figs.4-6 show the simulation of ∆, ℵ and Θ under the combined e�ect of arbitrary fractal

and fractional orders. Fig.4 shows that as FF orders decrease, the number of susceptible

nodes is higher at lower FF orders and after some time it becomes stable rapidly and

converges to the same limit except at order 0.80. This behavior depicts that these nodes

have a higher risk of infection or perturbation. They are more sensitive to external in�u-

ences, have strong memory e�ect and rapid stabilization. Fig.5 represents the behavior

of infected nodes. The number of infected nodes �rst decreases then becomes stable at

all fractal fractional orders. It depicts that the system has resilience to adapt infection

where some nodes are still resistant and preventing further infection. Also, the number of

nodes becomes zero at fractal fractional level one which describes that infection has been

eradicated while at lower level of fractal fraction when no. of nodes goes on decreases

but does not become zero show that the system has not been fully eradicated but also
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has the e�ect of memory which contributes to the persistence of infected nodes. In Fig.6,

we see that number of removed nodes reduces as we reduce the fractal-fractional orders

which are represented by p and q. It describes that the memory e�ect is less in these

nodes and these nodes have high stability and fast convergence. It depicts that at lower

level of fractal fraction the persistence and containment of infection is high.

Moreover, in Fig.7 we compare ∆,ℵ and Θ model for fractal-fractional orders p, q as

p = q = 1 and p = q = 0.90 which shows behavior of three nodes in one �gure. We can

see from the comparison of nodes that at lower level of fractal fractional, memory e�ect

is stronger and has more in�uence of initial conditions and previous nodes.

Since in our original model, infection rate depends on initial infection rate β0 and also

on a function of ℵ which depends on another variable called α. Therefore we see the

impact of both variables on our fractal-fractional model too. Fig.8, �rst we see that in

both models no. of infected nodes goes on increasing for higher initial infection rate

i.e. as initial infection rate increases, no. of infected nodes also increases. It describes

that outbreak is escalating and infected nodes are increasing rapidly. On the other hand,

when we compare both models it shows that at lower fractal fractional order the malware

spreads faster and has stronger memory e�ect than the integer order model.

Also in the original model, α is used to adjust the infection rate sensitivity to ℵ. Here

α = 0 means constant infection rate. According to the authors in [32], at α = 1, the

scale of malware spreading is smaller than the rate at α = 0. From �g.9 we see that this

condition is satis�ed in both models. Also we observe that no. of infected nodes goes on

decreasing more quickly as time passes in FF model as compared to integer order model.

As a result, we can see that FF model has weaker memory e�ect and more stability and

resilience to outbreaks in the nodes.

In Fig.10, we see the e�ect of real-time immune rate on ℵ for classical and FF model.

We see as we increase the immune rate, the number of infected nodes goes on decreasing

in both models. As a comparison of both models, we see that no. of infected nodes is

greater in FF model, which tells that in FF model nodes have stronger memory e�ect

that enhances its sensitivity to network structure. Similarly Fig.11 shows that as the

immune rate increases, no. of recovered nodes also increases in both models but in FF

model this number is less than in classical model. It describes weak memory e�ect and
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decreased sensitivity in FF model.

Moreover, the recovered nodes lose their immunity after some time, so to see this impact

we check the graphs of ∆,ℵ and Θ. We see in Fig.12 that in both models as the loss

rate of immunity is increasing, no. of susceptible nodes is also increasing that describes

weaker memory e�ect and higher sensitivity but in comparison FF model has stronger

memory e�ect than classical one except at zero value.

In Fig.13, we see the e�ect of loss rate of immunity on ℵ for both models. We see as

loss rate of immunity increases, the number of infected nodes goes on decreasing in both

models which indicates stronger memory e�ect. As a comparison of both models, no. of

infected nodes is greater in FF model, which tells that in FF model nodes have weaker

memory e�ect that decrease its resilience to network structure. In Fig.14 as loss rate of

immunity increases, the no. of removed nodes is also increases, it indicates that immune

response is e�ective and has strong memory e�ect. When we compare both models, we

see that no of removed nodes is less in FF model. Hence, we say that these nodes have

weaker memory e�ect in FF model as compared to classical.

In Figs.15-17, we compare four mathematical models named classical, fractional, fractal

and fractal-fractional. From Figs.15,16, we see that no. of susceptible and infected nodes

is highest in FF model, then in fractional, fractal and classical simultaneously. It shows

that fractal-fractional is more e�ective for expressing the complexity of malware propa-

gation and fractional model may also be used for some types of networks. On the other

hand, fractal and classical methods are not suitable for complex systems. The higher no.

of nodes represents deeper memory e�ect and strong correlation between nodes. More-

over, convergence indicates the system is stable. Similarly in Fig 17, no. of removed

nodes in fractal fractional model is lowest that show deep memory e�ect and strong cor-

relation and convergence shows stability of the system. Fig.18 represents the comparison

of constant order and variable order fractional mathematical models. We take variable

fractional order as q = 0.90 + 0.1/(1 + exp(−κ)). The behavior of nodes represents that

constant order fractional model is more complex and probably more accurate in modeling

malware propagation. Fig.19 represents the comparison of constant order and variable or-

der fractal mathematical model. We take variable fractal order as p = 0.1/0.9+exp(−κ).

We can see that in variable fractal order model, the nodes do not converge and goes on
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increasing that means no stability in this case.

2.8 Conclusion

In this chapter, a deterministic mathematical model on malware propagation has been

discussed in the sense of fractal fractional derivative. At �rst stage, the classical mathe-

matical model given in [32] has been converted in fractal fractional model with power law

kernel. Initially this model was examined theoretically. Conditions for existence (Leray

Schauder criteria), uniqueness (Lipschitz property) and stability (Ulam-Hyers and Ulam-

Hyers-Rassias theorems) of the fractal fractional model were examined using concepts

of �xed point theory. Then, numerical scheme was developed and simulations were per-

formed to verify the accuracy of theoretical results.

At second stage, FF model was examined under fractal dimensions and fractional or-

ders separately. Then combined e�ect of fractal dimensions and fractional orders was

discussed. We observed that at lower FF orders, the number of susceptible and infected

nodes was higher. It demonstrates the sensitivity to external in�uences, resilience to

adapt infection and strong memory e�ects. Under combined e�ect, we found out that

removed nodes have higher containment of infection and persistence at lower level of FF

orders.

At the next stage, we compared model for classical (FF order at one) and fractal frac-

tional model for order p = q = 0.90. We examined the impact of di�erent parameters

such as initial infection rate, variable adjustment to sensitivity of infected nodes, immune

rate of antivirus strategies and loss rate of immunity of recovered nodes of mathematical

model [32] under p = q = 1 and p = q = 0.90.

We also compared four mathematical models named classical, fractional, fractal and

fractal-fractional. Also we observed the behavior of nodes for constant order and variable

order fractional and fractal mathematical models. Through the graphs, we �nd out the

e�ect of memory on di�erent types of nodes in system. We explored sensitivity, conver-

gence, and stability of susceptible, infected, and removed nodes under fractal fractional

model.
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Chapter 3

Fractal Fractional Mathematical Model

With Exponential Decay Kernel

⃝

⃝

In this chapter, we are converting classical model into Exponential Decay kernel FF math-

ematical model and then in �xed point problem. We check existence, uniqueness and

stability by theorems of �xed point theory. Then, we make graphs on Matlab using code

made by two-point Lagrange interpolation formula and simulate the data. After analysis

we conclude the results.

3.1 Conversion in FF Mathematical Model With Ex-

ponential Decay Kernel

Now, we convert the model (1.3.2) in terms of fractal fractional derivatives with Expo-

nential decay kernel as:

FFEDq,p
0,κ∆(κ) = Πθ − β0f(ℵ(κ))∆(κ)− (µ+ ν)∆(κ) + ζΘ(κ − τ),

FFEDq,p
0,κℵ(κ) = β0f(ℵ(κ))∆(κ)− (µ+ κ)ℵ(κ),

FFEDq,p
0,κΘ(κ) = (1− Π)θ + ν∆(κ) + κℵ(κ)− ζΘ(κ − τ)− µΘ(κ),

(3.1.1)

with ∆(0) = ∆0 ≥ 0,ℵ(0) = ℵ0 ≥ 0,Θ(0) = Θ0 ≥ 0 and N(κ) = ∆(κ)+ℵ(κ)+Θ(κ), for

κ ∈ J = [0,T],T > 0. Also p , q ∈ (0, 1] and all parameters are to be taken non-negative.
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3.2 Fractal Fractional Model as Fixed Point Problem

Now, we convert mathematical model (3.1.1) in �xed point problem. We apply results of

�xed point theory on model (3.1.1).

Consider Ξ = Y3, a Banach space and Y = C(J,R) represents the class of all continuous

functions with the norm de�ned as:

∥|z||Ξ = ||(∆,ℵ,Θ)||Ξ = max{|∆(κ)|+ |ℵ(κ)|+ |Θ(κ)| : κ ∈ J}.

First, we rewrite model (1.3.1) as:

Υ1(κ,∆(κ),ℵ(κ),Θ(κ)) = Πθ − β0f(ℵ(κ))∆(κ)− (µ+ ν)∆(κ) + ζΘ(κ − τ),

Υ2(κ,∆(κ),ℵ(κ),Θ(κ)) = β0f(ℵ(κ))∆(κ)− (µ+ κ)ℵ(κ),

Υ3(κ,∆(κ),ℵ(κ),Θ(κ)) = (1− Π)θ + ν∆(κ) + κℵ(κ)− ζΘ(κ − τ)− µΘ(κ).

(3.2.1)

Comparing models (1.3.1) and (3.2.1), we have

FFEDq,p
0,κ∆(κ) = Υ1(κ,∆(κ),ℵ(κ),Θ(κ)),

FFEDq,p
0,κℵ(κ) = Υ2(κ,∆(κ),ℵ(κ),Θ(κ)),

FFEDq,p
0,κΘ(κ) = Υ3(κ,∆(κ),ℵ(κ),Θ(κ)).

(3.2.2)

Since

FFEDq,p
a,κg(κ) =

M(q)

Γ(1− q)

d

dκp

∫ κ

a

exp[
−q

1− q
(κ − u)] g(u)du.

FFEDq,p
a,κg(κ) =

M(q)

Γ(1− q)

1

pκp−1

d

dκ

∫ κ

a

exp[
−q

1− q
(κ − u)] g(u)du.

FFEDq,p
a,κg(κ) =

1

pκp−1

M(q)

Γ(1− q)

d

dκ

∫ κ

a

exp[
−q

1− q
(κ − u)] g(u)du.

Now, we can write
M(q)

Γ(1− q)

d

dκ

∫ κ

a

exp[
−q

1− q
(κ − u)] g(u)du

as Riemann Liouville fractional derivative with exponential decay kernel.

Therefore, we get

FFEDq,p
0,κΥ(κ) = (

1

pκp−1
)RLDq

0,κΥ(κ)
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So model (3.2.2) can be written as:

(
1

pκp−1
)RLDq

0,κ∆(κ) = Υ1(κ,∆(κ),ℵ(κ),Θ(κ)),

(
1

pκp−1
)RLDq

0,κℵ(κ) = Υ2(κ,∆(κ),ℵ(κ),Θ(κ)),

(
1

pκp−1
)RLDq

0,κR(κ) = Υ3(κ,∆(κ),ℵ(κ),Θ(κ)).

(3.2.3)

Hence, we get

RLDq
0,κ∆(κ) = pκp−1Υ1(κ,∆(κ),ℵ(κ),Θ(κ)),

RLDq
0,κℵ(κ) = pκp−1Υ2(κ,∆(κ),ℵ(κ),Θ(κ)),

RLDq
0,κR(κ) = pκp−1Υ3(κ,∆(κ),ℵ(κ),Θ(κ)).

(3.2.4)

In general, we can write model (3.2.4) as:

RLDq
0,κz(κ) = pκp−1Υ(κ,z(κ)),

z(0) = z0,
(3.2.5)

where

(p, q) ∈ (0, 1],

κ ∈ J,

z(κ) = (∆(κ),ℵ(κ),Θ(κ))⊤,

z0 = (∆0,ℵ0,Θ0)
⊤.

Applying Fractal−Fractional integral on Model (3.2.5), using the result in [15], we have

z(κ) = z(0) +
p (1− q)κ(p−1) Υ(κ,z(κ))

M(q)
+

p q

M(q)

∫ κ

0

up−1 Υ(u,z(u))du, (3.2.6)

where M(0) =M(1) = 1.

Hence, we can write

∆(κ) = ∆(0) +
p (1− q)κ(p−1) Υ1(κ,∆(κ),ℵ(κ),Θ(κ))

M(q)
+

p q

M(q)

∫ κ

0

up−1 Υ1(u,z(u))du,

ℵ(κ) = ℵ(0) + p (1− q)κ(p−1) Υ2(κ,∆(κ),ℵ(κ),Θ(κ))
M(q)

+
p q

M(q)

∫ κ

0

up−1 Υ2(u,z(u))du,

Θ(κ) = Θ(0) +
p (1− q)κ(p−1) Υ3(κ,∆(κ),ℵ(κ),Θ(κ))

M(q)
+

p q

M(q)

∫ κ

0

up−1 Υ3(u,z(u))du.

(3.2.7)
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So, now we can transform model (3.1.1) into a �xed point problem.

De�ne an operator F : Ξ → Ξ as

F (z(κ)) = z(0) +
p (1− q)κ(p−1) Υ(κ)

M(q)
+

p q

M(q)

∫ κ

0

up−1 Υ(u,z(u))du. (3.2.8)

3.3 Existence of Solution

For existence, we prove the following theorem on the basis of Theorem 1.2.4 as in [35].

Theorem 3.3.1. Suppose that ∃ V1 : R3×R3 → R, ψ ∈ Ψ and Υ ∈ C(J×Ξ,Ξ) satisfying

the following three conditions:

(β6) : ∀z1,z2 ∈ Ξ and κ ∈ J,

|Υ(κ,z1(κ)) − Υ(κ,z2)(κ)| ≤ ℓ1 ψ(|z1(κ) − z2(κ)|), with V1(z1(κ),z2(κ)) ≥ 0 and

ℓ1 =
M(q)

p (1−q)κp−1+qκp .

(β7) : ∃z0 ∈ Ξ and ∀κ ∈ J,

V1(z0(κ), F (z0(κ)) ≥ 0 and V1(z1(κ),z2(κ)) ≥ 0.

=⇒ V1(F (z1(κ)), F (z2(κ)) ≥ 0;

(β8): ∀{zn}n≥1 ⊆ Ξ with zn → z,

V1(zn(κ),zn+1(κ)) ≥ 0 =⇒ V1(zn(κ)),z(κ)) ≥ 0, for every n , κ ∈ J.

Then, we say that F has a �xed point. So, there exists a solution of the model of malware

propagation.

Proof. Take z1,z2 ∈ Ξ so that

V1(z1(κ),z2(κ)) ≥ 0,

for each κ ∈ J.

Now, we take

|F (z1(κ))− F (z2(κ))| = |p (1− q)κp−1 [Υ(u,z1(u))−Υ(u,z2(u))]

M(q)

+
p q

M(q)

∫ κ

0

u(p−1) [Υ(u,z1(u))−Υ(u,z2(u))] du|

|F (z1(κ))− F (z2(κ))| ≤ p (1− q)κp−1 |Υ(u,z1(u))−Υ(u,z2(u))|
M(q)

+
p q

M(q)

∫ t

0

u(p−1) |Υ(u,z1(u))−Υ(u,z2(u))| du.
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Utilizing (β6), we deduce

|F (z1(κ))− F (z2(κ))| ≤ p (1− q)κp−1

M(q)
ℓ1ψ(|z1(u)−z2(u)|)

+
p q

M(q)

∫ κ

0

u(p−1) ℓ1ψ(|z1(u)−z2(u)|) du.

Now, using de�nition of norm

|F (z1(κ))− F (z2(κ))| ≤ p (1− q)κp−1

M(q)
ℓ1ψ(||z1 −z2||Ξ)

+
p q

M(q)

∫ κ

0

u(p−1) ℓ1ψ(||z1 −z2||Ξ) du.

After doing some computations and using the de�nition of beta function and ℓ1, we get

|F (z1(κ))− F (z2(κ))| ≤ ψ(||z1 −z2||Ξ). (3.3.1)

We can write it as:

d(F (z1), F (z2)) ≤ ψ(d(z1,z2)). (3.3.2)

Moreover, if we de�ne a function ϕ : Ξ2 → [0,∞) such that

ϕ(z1,z2) = 1 for V (z1(κ),z2(κ)) ≥ 0, and zero otherwise;

then, for each z1,z2 ∈ Ξ equation (3.3.2) can be written as:

ϕ(z1,z2) d(F (z1), F (z2)) ≤ ψ(d(z1,z2)). (3.3.3)

This shows that F is a ϕ-ψ-contraction.

Now, suppose that z1,z2 ∈ Ξ with the property that ϕ(z1,z2) ≥ 1.

By the de�nition of ϕ, we deduce

V1(z1(κ),z2(κ)) ≥ 0, (3.3.4)

and by (β7)

V1(z0(κ), F (z0(κ))) ≥ 0 and V1(z1(κ),z2(κ)) ≥ 0.

=⇒ V1(F (z1(κ)), F (z2(κ))) ≥ 0.

So, by applying de�nition of ϕ, we have

ϕ(F (z1), F (z2)) ≥ 1. (3.3.5)
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Hence, F is ϕ-admissible. (*)

Moreover, by (β7), it can be seen that for some z0 in Ξ,∀κ ∈ J, we have

V1(z0(κ), F (z0(κ))) ≥ 0 =⇒ ϕ(z0, F (z0)) ≥ 1. (**)

Now, consider {zn}n≥1 ⊆ Ξ with zn → z and for all n and ϕ(zn,zn+1) ≥ 1.

By de�nition of ϕ this implies V1(zn(κ),zn+1(κ)) ≥ 0.

Thus, by (β8) this implies V1(zn(κ),z(κ)) ≥ 0.

Hence, ϕ(zn,z) ≥ 1 for all n. (***)

Now (*),(**),(***) show that the conditions of Theorem 1.2.4 are satis�ed, so we can say

that there exists some z∗ ∈ Ξ such that F (z∗) = z∗.

So z∗ = (∆∗,ℵ∗,Θ∗)⊤ is a solution of our model.

Theorem 1.2.5 also establishes that solution of model exists and on basis of this model

we also de�ne the following theorem as:

Theorem 3.3.2. Let Ξ be a Banach space, N1ϵ be a bounded and closed set in Ξ and

A1 be an open in N1ϵ with 0 ∈ A1, then there exists a compact and continuous operator

F with the conditions (β9) and (β10) from A1 → N1ϵ which satis�es one of the two con-

ditions,

(a) F has a �xed point in A1,

or

(b) there exists z ∈ ∂A1 and ω1 ∈ (0, 1) s.t z = ω1 F (z);

where

(β9): SupposeΥ ∈ C(J×Ξ,Ξ) and there exists ϕ ∈ L1(J, [0,∞)) andB1 ∈ C([0,∞), [0,∞))

whereB1 is an increasing function satisfying the condition |F(κ,z(κ))| ≤ ϕ(κ)B1(|z(κ)|), for

all κ ∈ J and z ∈ Ξ;

(β5) : If ϕ∗ = supκ∈J |ϕ(κ)| then ∃ a number r1 s.t r1
z0+λ1 ϕ∗B1(r1)

> 1 where λ1 =

p (1−q)κp−1+qκp

M(q)
.

If above conditions hold, then a solution exists for our model.

Proof. Consider F : Ξ → Ξ as:

F (z(κ)) = z(0) +
p (1− q)κ(p−1) Υ(κ,z(κ))

M(q)
+

p q

M(q)

∫ κ

0

up−1 Υ(u,z(u))du,

and N1ϵ = {z ∈ Ξ : ||z||Ξ ≤ ϵ} for some positive ϵ.

We show that F is compact on (N1)ϵ. For this, we prove that F is uniformly bounded
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and equicontinuous.

Since Υ is continuous this implies F is continuous.

Now for z in (N1)ϵ, we obtain

|F (z(κ))| ≤ |z(0)|+ p (1− q)κ(p−1) |Υ(κ,z(κ))|
M(q)

+
p q

M(q)

∫ κ

0

up−1 |Υ(u,z(u))|du,

and from (β9), we have

|F (z(κ))| ≤ z0 +
p (1− q)κ(p−1) ϕ(κ)B1(|z(κ)|)

M(q)
+

p q

M(q)

∫ κ

0

up−1 ϕ(u)B1(|z(u)|)du

≤ z0 +
p (1− q)κ(p−1) ϕ∗B1(||z||Ξ)

M(q)
+

p q

M(q)

∫ κ

0

up−1ϕ∗B1(||z||Ξ)du

≤ z0 + ϕ∗B(||z||Ξ)[
p (1− q)κ(p−1)

M(q)
+

p q

M(q)

∫ κ

0

up−1du].

After simpli�cation of the integral and applying value of λ1, we get

|F (z(κ))| ≤ z0 + λ1 ϕ
∗B1(ϵ). (3.3.6)

Hence, by applying norm, we have

||F (z(κ))|| ≤ z0 + λ1 ϕ
∗B1(ϵ) <∞. (3.3.7)

This implies F is uniformly bounded.

Now, we take κ,κ1 ∈ J such that κ < κ1 and z ∈ (N1)ϵ arbitrarily. If we suppose

Υ∗ = sup |Υ(κ,z(κ))|, then

|F (z(κ1))− F (z(κ))| = |p (1− q)κ(p−1)
1 Υ(κ1,z(κ1))

M(q)
+

pq

M(q)

∫ κ1

0

u(p−1) Υ(u,z(u)) du

− p (1− q)κ(p−1) Υ(κ,z(κ))
M(q)

− pq

M(q)

∫ κ

0

u(p−1) Υ(u,z(u)) du|

≤
p (1− q) [κ(p−1)

1 Υ(κ1,z(κ1)− κ(p−1) Υ(κ,z(κ))]
M(q)

+
pq

M(q)
|
∫ κ1

0

u(p−1) du−
∫ κ

0

u(p−1) du | · |Υ(u,z(u)|

≤ p (1− q) [κ(p−1)
1 − κ(p−1)] Υ∗

M(q)
+

pq

M(q)
[κp

1 − κp] Υ∗

that is independent of z. When κ1 → κ, its value becomes zero.

Hence ||F (z(κ1))− F (z(κ))||Ξ → 0.

This proved that F is equicontinuous. So F is compact. As F satis�es the conditions of
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Theorem 3.3.2, we say that F will satisfy either one or the other condition mentioned in

Theorem 3.3.2. For this, using (β10), we construct A1 = {z ∈ Ξ : ||z||Ξ < r1}, where

r1 > 0 is de�ned above. Hence, we can write

||F (z(κ))|| ≤ z0 + λ1 ϕ
∗B1(r1). (3.3.8)

Assume ∃z ∈ ∂A1 and ω1 ∈ (0, 1) where z = ω1F (z). For z and ω1, we get

r1 = ||z||Ξ

= ω1||F (z)||Ξ

< ||F (z)||Ξ

< z0 + λ1 ϕ
∗B1(||z||Ξ)

< z0 + λ1 ϕ
∗B1(r1).

This gives us r1 < r1, which is impossible. Thus, the second condition is not satis�ed.

Hence, by �rst condition F possesses a �xed point in A1.

3.4 Uniqueness

We will prove uniqueness with the help of theorem using lipschitz condition proved in

Theorem (2.4.1) along with some other condition which is described in Theorem (3.4.1).

Theorem 3.4.1. If ||∆|| ≤ µ1, ||ℵ|| ≤ µ2, ||Θ|| ≤ µ4 for some µi > 0, i = 1, 2, 3, 4 and

w1 = (β0 µ3 + µ + ν), w2 = (β0 µ1 b + µ + γ), w3 = (ζ + µ), where 0 < wi < 1, i = 1, 2, 3;

then our model has a unique solution if λ1wi < 1, for i = 1, 2, 3.

Proof. : Suppose the model has two solutions (∆(κ),ℵ(κ),Θ(κ)) and (∆∗(κ),ℵ∗(κ),Θ∗(κ))

with initial conditions de�ned above.Then, we can write

∆(κ) = ∆(0) +
p (1− q)κ(p−1) Υ1(κ,z(κ))

M(q)
+

p q

M(q)

∫ κ

0

up−1 Υ1(u,z(u))du,

∆∗(κ) = ∆(0) +
p (1− q)κ(p−1) Υ1(κ,z∗(κ))

M(q)
+

p q

M(q)

∫ κ

0

up−1Υ1(u,z∗(u))du.
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Take

||∆(κ)−∆∗(κ)|| = ||p (1− q)κ(p−1) [Υ1(κ,z(κ))−Υ1(κ,z∗(κ))]
M(q)

+
pq

M(q)

∫ κ

0

u(p−1) (Υ1(u,z(u))−Υ1(u,z∗(u)))du||

≤ p (1− q)κ(p−1) ||Υ1(κ,z(κ))−Υ1(κ,z∗(κ))||
M(q)

+
pq

M(q)

∫ κ

0

u(p−1) ||Υ1(u,z(u))−Υ1(u,z∗(u))||du,

since Υ1 is considered w.r.t ∆ and ∆∗, so by using integration and simpli�cation

||∆(κ)−∆∗(κ)|| ≤ p (1− q)κp−1 + κp q

M(q)
||Υ1(∆)−Υ1(∆

∗)||.

Hence, using previous results

||∆(κ)−∆∗(κ)|| ≤ λ1w1 ||∆(κ)−∆∗(κ)||.

(1− λ1w1) ||∆(κ)−∆∗(κ)|| ≤ 0.

As λ1w1 < 1, so this is possible when ||∆(κ)−∆∗(κ)|| = 0. Thus ∆(κ) = ∆∗(κ).

Similarly, we have

ℵ(κ) = ℵ(0) + p (1− q)κ(p−1) Υ2(κ,z(κ))
M(q)

+
p q

M(q)

∫ κ

0

up−1 Υ2(u,z(u))du,

ℵ∗(κ) = ℵ(0) + p (1q)κ(p−1) Υ2(κ,z∗(κ))
M(q)

+
p q

M(q)

∫ κ

0

up−1Υ2(u,z∗(u))du.

||ℵ(κ)− ℵ∗(κ)|| = ||p (1− q)κ(p−1) [Υ2(κ,z(κ))−Υ2(κ,z∗(κ))]
M(q)

+
pq

M(q)

∫ κ

0

u(p−1) (Υ2(u,z(u))−Υ2(u,z∗(u)))du||

≤ p (1− q)κ(p−1) ||Υ2(κ,z(κ))−Υ2(κ,z∗(κ))||
M(q)

+
pq

M(q)

∫ κ

0

u(p−1) ||Υ2(u,z(u))−Υ2(u,z∗(u))||du,

since Υ2 is considered w.r.t ℵ and ℵ∗, so after integration and simpli�cation,

||ℵ(κ)− ℵ∗(κ)|| ≤ p (1− q)κp−1 + κp q

M(q)
||Υ2(ℵ)−Υ2(ℵ∗)||.
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Hence, we obtain

||ℵ(κ)− ℵ∗(κ)|| ≤ λ1w2 ||ℵ(κ)− ℵ∗(κ)||.

=⇒ (1− λ1w2) ||ℵ(κ)− ℵ∗(κ)|| ≤ 0.

As λ1w2 < 1, so this is possible when ||ℵ(κ)− ℵ∗(κ)|| = 0. Thus ℵ(κ) = ℵ∗(κ).

Also, we have

Θ(κ) = Θ(0) +
p (1− q)κ(p−1) Υ3(κ,z(κ))

M(q)
+

p q

M(q)

∫ κ

0

up−1 Υ3(u,z(u))du,

Θ∗(κ) = Θ(0) +
p (1q)κ(p−1) Υ3(κ,z∗(κ))

M(q)
+

p q

M(q)

∫ κ

0

up−1Υ3(u,z∗(u))du.

Take

||Θ(κ)−Θ∗(κ)|| = ||p (1− q)κ(p−1) [Υ3(κ,z(κ))−Υ3(κ,z∗(κ))]
M(q)

+
pq

M(q)

∫ κ

0

u(p−1) (Υ3(u,z(u))−Υ3(u,z∗(u)))du||

≤ p (1− q)κ(p−1) ||Υ3(κ,z(κ))−Υ3(κ,z∗(κ))||
M(q)

+
pq

M(q)

∫ κ

0

u(p−1) ||Υ3(u,z(u))−Υ3(u,z∗(u))||du,

since Υ3 is considered w.r.t Θ and Θ∗, so by using integration and simpli�cation, we have

||Θ(κ)−Θ∗(κ)|| ≤ p (1− q)κp−1 + κp q

M(q)
||Υ3(Θ)−Υ3(Θ

∗)||.

By using previous results

||Θ(κ)−Θ∗(κ)|| ≤ λ1w3 ||Θ(κ)−Θ∗(κ)||.

=⇒ (1− λ1w3) ||Θ(κ)−Θ∗(κ)|| ≤ 0.

As λ1w3 < 1, so this is possible when ||Θ(κ)− Θ∗(κ)|| = 0. Thus Θ(κ) = Θ∗(κ). That

is, (∆(κ),ℵ(κ),Θ(κ)) = (∆∗(κ),ℵ∗(κ),Θ∗(κ)). Hence, the solution is unique.
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3.5 Stability

In this section, we have to check the stability of the solution. We use Ulam−Hyers and

Ulam−Hayers−Rassias theorems to check it. First, we de�ne theorems for our model

along with the de�nition and remark de�ned below.

De�nition 3.5.1. Model(3.1.1) is Ulam-Hyers stable as in [23] if, for all ϵi > 0, there

existMi > 0 ∈ [0,∞), which depend on Υi respectively, i = 1, 2, 3 and for all (∆∗,ℵ∗,Θ∗)

satisfying the inequalities

|FFEDq,p
0,κ∆

∗(κ)−Υ1(κ,z∗(κ))| ≤ ϵ1,

|FFEDq,p
0,κℵ∗(κ)−Υ2(κ,z∗(κ))| ≤ ϵ2,

|FFEDq,p
0,κΘ

∗(κ)−Υ3(κ,z∗(κ))| ≤ ϵ3,

(3.5.1)

then, there exists (∆,ℵ,Θ) ∈ Ξ satisfying the model (3.1.1) with the condition

|∆∗(κ)−∆(κ)| ≤ M1 ϵ1,

|ℵ∗(κ)− ℵ(κ)| ≤ M2 ϵ2,

|Θ∗(κ)−Θ(κ)| ≤ M3 ϵ3.

(3.5.2)

Remark 3.5.2. (∆∗,ℵ∗,Θ∗) ∈ Ξ is a solution of model (3.2.2) i� ∃ ηi ∈ C([0,T], [0,∞))

such that for all κ ∈ J,

(i) | ηi(κ) | < ϵi,

(ii)

FFEDq,p
0,κ∆

∗(κ) = Υ1(κ,z∗(κ)) + η1(κ),
FFEDq,p

0,κℵ∗(κ) = Υ2(κ,z∗(κ)) + η2(κ),
FFEDq,p

0,κΘ
∗(κ) = Υ3(κ,z∗(κ)) + η3(κ).

(3.5.3)

Theorem 3.5.3. The fractal fraction model (3.1.1) is Ulam−Hayers stable on J s.t.

λ1wi < 1, where wi and λ1 are de�ned with the conditions as above.

Proof. :Let ϵ1 > 0 and ∆∗ ∈ Y such that

|FFEDq,p
0,κ∆

∗(κ)−Υ1(κ,z∗(κ))| ≤ ϵ1,
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by remark 3.5.2, we have

∆∗(κ) = ∆(0) +
p (1− q)κp−1 Υ1(κ,z∗(κ))

M(q)
+

pq

M(q)

∫ κ

0

u(p−1) Υ1(u,z∗(u))du

+
pq

M(q)

∫ κ

0

u(p−1) η1(u) du.

As ∆ ∈ Y is the unique solution, then

∆(κ) = ∆(0) +
p (1− q)κ(p−1) Υ1(κ,z(κ))

M(q)

p q

M(q)

∫ κ

0

up−1 Υ1(u,z(u))du.

That is

|∆∗(κ)−∆(κ)|

= |p (1− q)κ(p−1) [Υ1(κ,z∗(κ))−Υ1(κ,z(κ))]
M(q)

+
pq

M(q)

∫ κ

0

u(p−1) η1(u) du

+
pq

M(q)

∫ κ

0

u(p−1) [Υ1(u,z∗(u))−Υ1(u,z(u)) ] du|

≤ p (1− q)κ(p−1) ||Υ1(κ,z∗(κ))−Υ1(κ,z(κ))||
M(q)

+
pq

M(q)

∫ κ

0

u(p−1) |η1(u)|du

+
pq

M(q)

∫ κ

0

u(p−1) ||Υ1(u,z∗(u))−Υ1(u,z(u)) || du

≤ p (1− q)κ(p−1)w1 ||∆∗ −∆||
M(q)

+
qκp

M(q)
|η1|+

pq

M(q)

∫ κ

0

u(p−1)w1 ||∆∗ −∆|| du

≤ [
p (1− q)κ(p−1) + qκp

M(q)
]w1 ||∆∗ −∆||+ qκp ϵ1

M(q)

≤ λ1w1 ||∆∗ −∆||+ qκp ϵ1
M(q)

.

Hence, we have

||∆∗ −∆|| ≤ λ1w1 ||∆∗ −∆||+ qκp ϵ1
M(q)

(1− λ1w1) ||∆∗ −∆|| ≤ qκp ϵ1
M(q)

||∆∗ −∆|| ≤
qκp ϵ1
M(q)

(1− λ1w1)
.

If qκp

M(q) (1−λ1 w1)
=M1, then ||∆∗ −∆|| ≤ M1 ϵ1.

Similarly, we can prove that ||ℵ∗ − ℵ|| ≤ M2 ϵ2, and ||Θ∗ −Θ|| ≤ M3 ϵ3 .

Thus Ulam−Hayers stability criteria is ful�lled by our fractal−fractional model.
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Now we de�ne the Ulam−Hayers−Rassias stability criteria for our fractal−fractional

model (3.1.1).

De�nition 3.5.4. [25] Model (3.1.1) is Ulam-Hyers−Rassias stable w.r.t the functions

ψi, if for all ϵi > 0, there exist Mi > 0 ∈ [0,∞), which depend on Υi andψi, respectively

i = 1, 2, 3 and for all (∆∗,ℵ∗,Θ∗) satisfying the inequalities:

|FFEDq,p
0,κ∆

∗(κ)−Υ1(κ,z∗(κ))| ≤ ϵ1 ψ1(κ),

|FFEDq,p
0,κℵ∗(κ)−Υ2(κ,z∗(κ))| ≤ ϵ2 ψ2(κ),

|FFEDq,p
0,κΘ

∗(κ)−Υ3(κ,z∗(κ))| ≤ ϵ3 ψ3(κ),

(3.5.4)

there exists (∆,ℵ,Θ) ∈ Ξ satisfying model with the condition

|∆∗(κ)−∆(κ)| ≤ M1 ϵ1 ψ1(κ),

|ℵ∗(κ)− ℵ(κ)| ≤ M2 ϵ2 ψ2(κ),

|Θ∗(κ)−Θ(κ)| ≤ M3 ϵ3 ψ3(κ).

(3.5.5)

Remark 3.5.5. (∆∗,ℵ∗,Θ∗) ∈ Ξ is a solution i� ∃ ηi ∈ C([0,T], [0,∞)) s.t for all κ ∈ J

(i) | ηi(κ) | < ϵi ψi(κ),

(ii)

FFEDq,p
0,κ∆

∗(κ) = Υ1(κ,z∗(κ)) + η1(κ),
FFEDq,p

0,κℵ∗(κ) = Υ2(κ,z∗(κ)) + η2(κ),
FFEDq,p

0,κΘ
∗(κ) = Υ3(κ,z∗(κ)) + η3(κ).

(3.5.6)

Theorem 3.5.6. The fractal−fractional model (3.1.1) is Ulam−Hayers−Rassias stable

when the following conditions are satis�ed, for all κ ∈ J there exists nondecreasing

mappings ψi ∈ C([0,T], [0,∞)) and ξi > 0 depending upon ψi such that FFEIq,p0,κψi(κ) <

ξi(ψi)ψi(κ) and λ1 > 0, wi > 0, where wi and λ1 are de�ned as before.

Proof. Let ϵ1 > 0 and ∆∗ ∈ Y such that

|FFEDq,p
0,κ∆

∗(κ)−Υ1(κ,∆∗(κ),ℵ∗(κ),Θ∗(κ))| ≤ ϵ1 ψ1(κ),

then, by the conditions of remark 3.5.5, we consider

∆∗(κ) = ∆(0) +
p (1− q)κp−1 Υ1(κ,z∗(κ))

M(q)
+

pq

M(q)

∫ κ

0

u(p−1) Υ1(u,z∗(u))du

+
pq

M(q)

∫ κ

0

u(p−1) η1(u) du.
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As ∆ ∈ Y is the unique solution, then

∆(κ) = ∆(0) +
p (1− q)κ(p−1) Υ1(κ,z(κ))

M(q)
+

p q

M(q)

∫ κ

0

up−1 Υ1(u,z(u))du.

Therefore, we have

|∆∗(κ)−∆(κ)|

= |p (1− q)κ(p−1) [Υ1(κ,z∗(κ))−Υ1(κ,z(κ))]
M(q)

+
pq

M(q)

∫ κ

0

u(p−1) η1(u) du

+
pq

M(q)

∫ κ

0

u(p−1) [Υ1(u,z∗(u))−Υ1(u,z(u)) ] du|

≤ p (1− q)κ(p−1) ||Υ1(κ,z∗(κ))−Υ1(κ,z(κ))||
M(q)

+
pq

M(q)

∫ κ

0

u(p−1) |η1(u)|du

+
pq

M(q)

∫ κ

0

u(p−1) ||Υ1(u,z∗(u))−Υ1(u,z(u)) || du

≤ p (1− q)κ(p−1)w1 ||∆∗ −∆||
M(q)

+
qκp

M(q)
|η1|+

pq

M(q)

∫ κ

0

u(p−1)w1 ||∆∗ −∆|| du

≤ [
p (1− q)κ(p−1) + qκp

M(q)
]w1 ||∆∗ −∆||+ qκp ϵ1ψ1(κ)

M(q)

≤ λ1w1 ||∆∗ −∆||+ qκp ϵ1 ξ1(ψ1)ψ1(κ)
M(q)

.

Hence, we get

||∆∗ −∆|| ≤ qκp ϵ1 ξ1(ψ1)ψ1(κ)
M(q)

+ λ1w1 ||∆∗ −∆||,

(1− λ1w1) ||∆∗ −∆|| ≤ qκp ϵ1 ξ1(ψ1)ψ1(κ)
M(q)

,

||∆∗ −∆|| ≤
qκp ϵ1 ξ1(ψ1)ψ1(κ)

M(q)

(1− λ1w1)
.

If qκp ξ1(ψ1)
M(q)(1−λ1 w1)

=M1(Υ1, ψ1) then, we get

||∆∗ −∆|| ≤ ϵ1 ψ1(κ)M1(Υ1, ψ1).

Similarly, we can prove that

||ℵ∗ − ℵ|| ≤ ϵ2 ψ2(κ)M2(Υ2, ψ2),
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||Θ∗ −Θ|| ≤ ϵ3 ψ3(κ)M3(Υ3, ψ3).

Thus Ulam−Hayers−Rassias stability criteria is ful�lled by our fractal−fractional model.

3.6 Numerical Algorithm

For numerical scheme of our fractal−fractional model, we proceed as already many au-

thors did [37, 36]. As in our model Υ1 and Υ3 depends on κ and (κ − τ), so we deal it

di�erently in the end. First, we take κ = κn+1 and u
p−1 Υi(u,∆(u),ℵ(u),Θ(u)) = Hi(u),

i = 1, 2, 3; in model (3.2.7) and get

∆(n+ 1) = ∆(0) +
p (1− q)κp−1

n Υ1(κ,∆n(κ),ℵn(κ),Θn(κ))
M(q)

+
p q

M(q)

∫ κn+1

0

z1(u)du,

ℵ(n+ 1) = ℵ(0) + p (1− q)κp−1
n Υ2(κ,∆n(κ),ℵn(κ),Θn(κ))

M(q)
+

p q

M(q)

∫ κn+1

0

z2(u)du,

Θ(n+ 1) = Θ(0) +
p (1− q)κp−1

n Υ3(κ,∆n(κ),ℵn(κ),Θn(κ))
M(q)

+
p q

M(q)

∫ κn+1

0

z3(u)du.

(3.6.1)

Taking di�erence between consecutive terms, we get

∆(n+ 1) = ∆(n) +
p (1− q)κp−1

n Υ1(κ,zn(κ))
M(q)

−
p (1− q)κp−1

n−1 Υ1(κ,zn−1(κ))
M(q)

+
p q

M(q)

∫ κn+1

κn

z1(u)du,

ℵ(n+ 1) = ℵ(n) + p (1− q)κp−1
n Υ2(κ,zn(κ))
M(q)

−
p (1− q)κp−1

n−1 Υ2(κ,zn−1(κ))
M(q)

+
p q

M(q)

∫ κn+1

κn

z2(u)du,

Θ(n+ 1) = Θ(n) +
p (1− q)κp−1

n Υ3(κ,zn(κ))
M(q)

−
p (1− q)κp−1

n−1 Υ3(κ,zn−1(κ))
M(q)

+
p q

M(q)

∫ κn+1

κn

z3(u)du.

58



Approximating the functions Υi(u) by two points Lagrange interpolation polynomials on

the interval [κj,κj+1], we can write

H∗
1 (u,∆(u),ℵ(u),Θ(u)) =

u− κj−1

κj − κj−1

Υ1(uj,∆j(u),ℵj(u),Θj(u))

− u− κj
κj − κj−1

Υ1(uj−1,∆j−1(u),ℵj−1(u),Θj−1(u)),

H∗
2 (u,∆(u),ℵ(u),Θ(u)) =

u− κj−1

κj − κj−1

Υ2(uj,∆j(u),ℵj(u),Θj(u))

− u− κj
κj − κj−1

Υ2(uj−1,∆j−1(u),ℵj−1(u),Θj−1(u)),

H∗
3 (u,∆(u),ℵ(u),Θ(u)) =

u− κj−1

κj − κj−1

Υ3(uj,∆j(u),ℵj(u),Θj(u))

− u− κj
κj − κj−1

Υ3(uj−1,∆j−1(u),ℵj−1(u),Θj−1(u)).

Thus, we have

∆(n+ 1) = ∆(n) +
p (1− q)κp−1

n Υ1(κ,zn(κ))
M(q)

−
p (1− q)κp−1

n−1 Υ1(κ,zn−1(κ))
M(q)

+
p q

M(q)

∫ κn+1

κn

z∗
1(u)du,

ℵ(n+ 1) = ℵ(n) + p (1− q)κp−1
n Υ2(κ,zn(κ))
M(q)

−
p (1− q)κp−1

n−1 Υ2(κ,zn−1(κ))
M(q)

+
p q

M(q)

∫ κn+1

κn

z∗
2(u)du,

Θ(n+ 1) = Θ(n) +
p (1− q)κp−1

n Υ3(κ,zn(κ))
M(q)

−
p (1− q)κp−1

n−1 Υ3(κ,zn−1(κ))
M(q)

+
p q

M(q)

∫ κn+1

κn

z∗
3(u)du.
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By integrating the above integrals according to limits and taking κj − κj−1 = h, we get

the �nal results.

∆(n+ 1) = ∆(n) +
p (1− q)κp−1

n Υ1(κ,zn(κ))
M(q)

−
p (1− q)κp−1

n−1 Υ1(κ,zn−1(κ))
M(q)

+
p q

M(q)
[
3

2
hκp−1

n Υ1(κ,zn(κ))− 1

2
hκp−1

n−1 Υ1(κ,zn−1(κ)),

ℵ(n+ 1) = ℵ(n) + p (1− q)κp−1
n Υ2(κ,zn(κ))
M(q)

−
p (1− q)κp−1

n−1 Υ2(κ,zn−1(κ))
M(q)

+
p q

M(q)
[
3

2
hκp−1

n Υ2(κ,zn(κ))− 1

2
hκp−1

n−1 Υ2(κ,zn−1(κ)),

Θ(n+ 1) = Θ(n) +
p (1− q)κp−1

n Υ3(κ,zn(κ))
M(q)

−
p (1− q)κp−1

n−1 Υ3(κ,zn−1(κ))
M(q)

+
p q

M(q)
[
3

2
hκp−1

n Υ3(κ,zn(κ))− 1

2
hκp−1

n−1 Υ3(κ,zn−1(κ)).

Since in the original model in Υ1 and Υ3 , Θ depends on κ and (κ − tau) = κ1(say), so

we write

Υ1 = U1(κn,∆n,ℵn,Θn) + U3((κ1)
n,Θn), and Υ3 = U2(κn,∆n,ℵn,Θn) − U3((κ1)

n,Θn),

where

U1(κn,∆n,ℵn,Θn) = Π θ − β0f(ℵ(κ))∆(κ)− (µ+ ν)∆(κ),

U2(κn,∆n,ℵn,Θn) = (1− Π)θ + ν∆(κ) + κℵ(κ)− µΘ(κ),

U3((κ1)
n,Θn) = ζΘ(κ − τ).

60



Hence our numerical scheme is :

∆(n+ 1) = ∆(n) +
p (1− q)κp−1

n [U1(κn,∆n,ℵn,Θn) + U3((κ1)
n,Θn)]

M(q)

−
p (1− q)κp−1

n−1 [U1(κn−1,∆n−1,ℵn−1,Θn−1) + U3((κ1)
n−1,Θn−1)

M(q)

+
p q

M(q)
[
3

2
hκp−1

n (U1(κn,∆n,ℵn,Θn) + U3((κ1)
n,Θn))

− 1

2
hκp−1

n−1 (U1(κn−1,∆n−1(κ),ℵn−1(κ),Θn−1(κ)) + U3((κ1)
n−1,Θn−1)),

ℵ(n+ 1) = ℵ(n) + p (1− q)κp−1
n Υ2(κn,∆n(κ),ℵn(κ),Θn(κ))

M(q)

−
p (1− q)κp−1

n−1 Υ2(κn−1,∆n−1(κ),ℵn−1(κ),Θn−1(κ))
M(q)

+
p q

M(q)
[
3

2
hκp−1

n Υ2(κn,∆n(κ),ℵn(κ),Θn(κ))

− 1

2
hκp−1

n−1 Υ2(κn−1,∆n−1(κ),ℵn−1(κ),Θn−1(κ)),

Θ(n+ 1) = Θ(n) +
p (1− q)κp−1

n (U1(κn,∆n,ℵn,Θn)− U3((κ1)
n,Θn))

M(q)

−
p (1− q)κp−1

n−1 (U3(κn−1,∆n−1(κ),ℵn−1(κ),Θn−1(κ))− U3((κ1)
n−1,Θn−1))

M(q)

+
p q

M(q)
[
3

2
hκp−1

n (U1(κn,∆n,ℵn,Θn)− U3((κ1)
n,Θn))

− 1

2
hκp−1

n−1 (U1(κn−1,∆n−1(κ),ℵn−1(κ),Θn−1(κ))− U3((κ1)
n−1,Θn−1)).

3.7 Simulations based on Numerical algorithm

Now, we see the e�ect of di�erent fractal and fractional orders, change in infection rate,

loss rate of immunity of recovered nodes and real time immune rate of antivirus strategies

using Matlab R2016a under parameters Π = 0.5, θ = 0.8, β0 = 0.02, µ = 0.1, ν = 0.2, ζ =

0.01, κ = 0.2, τ = 7.3, α = 1 with initial conditions ∆(0) = 3,ℵ(0) = 1,Θ(0) = 0.1, on

the deterministic model given by system of ODES.

Figs.1-3 show the simulation of ∆, ℵ and Θ for di�erent fractal and fractional orders

separately that means in one �gure under the di�erent fractional orders keeping fractal

order one (fractional model) and in the other �gure under di�erent fractal orders by

keeping fractional order one (fractal model). We observe that graphs for no. of nodes
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Simulation of Susceptible nodes in fractional and fractal models
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Figure 3.1: Trajectories of ∆(κ) for di�erent fractal orders p when q = 1 and di�erent

fractional orders q when p = 1.
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Figure 3.2: Trajectories of ℵ(κ) for di�erent fractal orders p when q = 1 and di�erent

fractional orders q when p = 1.
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Figure 3.3: Trajectories of Θ(κ) for di�erent fractal orders p when q = 1 and di�erent

fractional orders q when p = 1.
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Figure 3.4: Fractal and fractional trajectories of ∆(κ) with di�erent orders of p = q.
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Figure 3.5: Fractal and fractional trajectories of ℵ(κ) with di�erent orders of p = q.
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Figure 3.6: Fractal and fractional trajectories of Θ(κ) with di�erent orders of p = q.
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Figure 3.7: Comparison of ∆ℵΘ model at p = q = 1 and p = q = 0.90.
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Figure 3.8: The e�ect of varying initial infection rate β0 on infected nodes when p = q = 1

and p = q = 0.90.
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Figure 3.9: The e�ect of α (varying variable to adjust the infection rate sensitivity) on

infected nodes when p = q = 1 and p = q = 0.90.
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Figure 3.10: The e�ect of varying real-time immune rate ν on susceptible nodes when

p = q = 1 and p = q = 0.90.
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Figure 3.11: The e�ect of varying real-time immune rate ν on infected nodes when

p = q = 1 and p = q = 0.90.
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Figure 3.12: The e�ect of varying real-time immune rate ν on removed nodes when

p = q = 1 and p = q = 0.90.
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Figure 3.13: The e�ect of varying loss rate of immunity ζ on susceptible nodes when

p = q = 1 and p = q = 0.90.
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Figure 3.14: The e�ect of varying loss rate of immunity ζ on infected nodes when p =

q = 1 and p = q = 0.90.
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Figure 3.15: The e�ect of varying loss rate of immunity ζ on removed nodes when p =

q = 1 and p = q = 0.90.
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Figure 3.16: Trajectories of ∆ for di�erent mathematical models.
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Figure 3.17: Trajectories of ℵ for di�erent mathematical models.
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Figure 3.18: Trajectories of Θ for di�erent mathematical models.
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Figure 3.19: Trajectories of ∆, ℵ andΘ showing comparison of constant and variable

fractional mathematical models.
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Figure 3.20: Trajectories of ∆, ℵ andΘ showing comparison of constant and variable

fractal mathematical models.

69



in fractional model are very close to each other which show that nodes are strongly

connected and indicate a more homogeneous structure with fewer variation while distance

between nodes at di�erent orders represents long-range corrections and depicts a more

heterogenous and complex structure. For fractal models, in �g.1 initially at lower fractal

orders, no. of nodes is greater then it goes to decrease which shows that initially system

has strong memory e�ect and as time passes, the memory e�ect decays. In �gs.2-3, no.

of infected nodes goes on decreasing and no. of removed nodes goes on decreasing for

lower fractal orders. It also represents that in fractal model system has strong memory

e�ect.

Figs.4-6 show the simulation of ∆, ℵ and Θ under the combined e�ect of di�erent fractal

and fractional orders. We see that in �g.4, as FF order decreases, no. of susceptible

nodes is greater initially, then decreases and �nally converges. It means initially there is a

higher degree of connectivity and vulnerability to infection, decrease shows a reduction in

both connectivity and vulnerability probably due to increased immunity and convergence

shows that the system became stable. The e�ect of FF orders shows that the memory

e�ect is more initially, then it decays with passage of time. In �g.5, the greater no. of

nodes at lower FF orders indicates a stronger memory e�ect and a higher potential for

epidemic spread. We also observe that no. of infected nodes become zero early at higher

� order, it tells us about increased resilience and improved immunity of the system. It

also indicates about lower transmission rates of infection and increased isolation. In �g.6,

no. of removed nodes is less at lower � orders, it shows a longer persistence and increased

prevalence of infection, also a longer and stronger memory e�ect. In Fig.7, we compare

classical model p = q = 1 and fractal-fractional model at p = q = 0.90 which show

behavior of all nodes in one look.

Since in our original model, infection rate depends on initial infection rate β0 and also

on a function of ℵ which depends on another variable called α. Therefore, we see the

impact of both variables on our fractal-fractional model too. Now we examine the graphs

in two ways. First, we examine the behavior of needs for di�erent � orders in each model.

Secondly, we compare the behavior of these nodes in both models. In �g.8, as the initial

infection rate increases, no. of nodes also increases, it shows that the system may be

more susceptible to infection, may exhibit a faster spread of infection due to a larger pool

70



of infected nodes, may shows non-linear dynamics where small changes in β0 lead to large

changes in no. of infected nodes. It also represents that system has a stronger memory

e�ect. As we compare, we see that in lower � model the system has more �exibility to

become infectious and has a stronger memory e�ect. In the original model, α is used to

adjust the infection rate sensitivity to ℵ and α = 0 means constant infection rate. In �g.9

we see the e�ect of this varying variable. Although there seems a very slight di�erence

but it plays a role in the dynamics of system in coordination of other parameters.

In �gs.10-12, we see the e�ect of real-time immune rate ν on ∆, ℵ and Θ for p = q = 1

and p = q = 0.90. Fig.10 describes that as immune rate increases, no. of susceptible

nodes become less in each model. We can say that it shows a strong immune response,

decreased risk of infection, more resilience to infection and it may eradicate infection

entirely. Moreover, as we compare both models, we see that that at lower � model, no.

of nodes is smaller. It shows increased complexity, slower spread of infection, increased

clustering, improved resilience and enhanced robustness. In �g.11, no. of infected nodes

are very close to each other for di�erent values of ν in each model. It depicts that the

system may have reached a saturation point and it may exhibit diminishing returns.

Also for � model at 0.90, no.of nodes are greater, which represents increased complexity,

faster speed of infections, increased vulnerability and reduced resilience. Similarly, in

�g.12 the no. of removed nodes is greater for higher real time immune rate in each

model. It shows an e�ective immune response which is capable of eliminating infected

nodes e�ciently, faster clearance rate, increased resilience in the system and enhanced

robustness of system. As we compare both models, the no. of nodes is less in � model at

level 0.90 which shows strong memory e�ect and increased complexity of the system.

As we know that the recovered nodes lose their immunity after some time, so to see this

impact, we check the graphs of ∆,ℵ, andΘ. Figs.13-15, show the e�ect of ζ (loss rate of

immunity). From �g.13 we see that no. of susceptible nodes goes on increasing as lost

rate of immunity gets higher in each model. Also, � model at 0.90 exhibits robustness

to immunity loss and may introduce unique e�ects that mitigate the impact of immunity

loss and show e�ective immune response with increased resilience. By �g.14 no. of

infected nodes remain same at di�erent rates of immunity loss in each model represents

that the immune response may have reached a saturation point and system has reached
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at equilibrium state. It also shows robustness and resilience of system. Moreover, the

no. of infected nodes approaches to zero earlier in classical model. It describes that

� model at 0.90 shows a delayed eradication of infection, slower immune response, less

e�ciency and increased vulnerability in the system. Similarly, no. of removed nodes

goes on decreasing at higher loss of immunity in each model in �g.15. It shows reduced

immune e�ciency, longer persistence, increase in vulnerability and reduced resilience of

the system. In comparison of models,� model at 0.90 shows that no. of removed nodes

is less than classical which indicates impaired immune function, persistence of infection,

increase in vulnerability and decrease in system's resilience.

In Figs.16-18, we compare four mathematical models named classical, fractional, fractal

and fractal-fractional. From Figs.16,17 no. of susceptible and infected nodes is highest in

FF model, then in fractional, fractal and classical simultaneously. It shows that fractal-

fractional is more e�ective for expressing the complexity of malware propagation and

fractional model may also be used in some cases. On the other hand, fractal and classical

methods are not suitable for complex systems. The higher no. of nodes represents deeper

memory e�ect and strong correlation between nodes. Moreover, convergence indicates

that the system is stable. Similarly in Fig.18, no. of removed nodes in fractal fractional

model is lowest that show deep memory e�ect and strong correlation. Convergence shows

stability of the system. In Fig.19, we see the di�erence between constant fractional order

and variable fractional order. Similarly, Fig.20 shows the comparison of constant and

variable fractal order. We take variable fractional order as q(κ) = 0.90+0.1/(1+exp(−κ))

and variable fractal order as p(κ) = 0.1/0.9 + exp(−κ). We see that susceptible and

infected nodes merge earlier after some time, i.e variable order becomes constant. The

no. of nodes in variable order is greater than constant order depicts that variable order

has more advantage of removing nodes that lead to more e�ective epidemic control, the

system is more adaptive and variable fractional and fractal order represent more e�ective

control strategies.
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3.8 Conclusion

In this chapter, we have examined fractal fractional model with exponential decay kernel

theoretically. Conditions for existence (Leray Schauder criteria), uniqueness (Lipschitz

property) and stability (Ulam-Hyers and Ulam-Hyers-Rassias theorems) of the fractal

fractional model were examined using concepts of �xed point theory. In second stage,

numerical scheme was developed and simulations were performed to verify the accuracy of

theoretical results. Our FF model was examined under fractal dimensions and fractional

orders separately and combined e�ect of fractal dimensions and fractional orders. We

observed that at lower FF orders, the number of susceptible and infected nodes was

higher while no. of removed nodes is lower. It demonstrates the sensitivity to external

in�uences, resilience to adapt infection and strong memory e�ects. We found out that

removed nodes have higher containment of infection and persistence at lower level of FF

orders. At the next stage, we compared model for classical (FF order at one) and fractal

fractional model for orders p = q = 0.90. We examined the impact of di�erent parameters

such as initial infection rate, variable adjustment to sensitivity of infected nodes, immune

rate of antivirus strategies and loss rate of immunity of recovered nodes of mathematical

model [6] under p = q = 1 and p = q = 0.90. Through the graphs we �nd out the e�ect of

memory on di�erent types of nodes in system. We explored sensitivity, convergence, and

stability of susceptible, infected, and removed nodes under fractal fractional model. It will

help us to predict about the vulnerabilities in computer systems. Antivirus strategies can

be made by developing software that may help in containment and eradication of infection

in the nodes by keeping an eye on the behavior of nodes. The graphs gave a clear insight

that by choosing appropriate variable infection rate, the prevalence of malware can be

controlled. Continuing this process, we investigated the impacts of other parameters

too on malware model. We also compared four methods (classical, fractional, fractal,

fractal-fractional). We discussed the cases when these models may be more suitably

used. Moreover, we tried to see the impact of variable order fractional derivative and

variable order fractal derivative. Although sometimes we see a very small di�erence, but

it may play a role in malware propagation as small changes may cause large perturbations.
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Chapter 4

Fractal Fractional Mathematical Model

with Mittag-Le�er kernel

⃝

⃝

In this chapter, we will convert classical mathematical model in Fractal-Fractional with

Mittag Le�er kernel. After converting in �xed point problem, we treat it under �xed

point theory and �nd results about existence, uniqueness and stability. Numerical simu-

lation is done, analysis is performed by coding in Matlab and results are concluded.

4.1 Conversion in Fractal-Fractional Mathematical Model

with Mittag-Le�er Kernel

We discuss the model (1.3.2) in terms of fractal fractional derivatives with Mittag le�er

kernel as:

FFMDq,p
0,κ∆(κ) = ΠΘ− β0f(ℵ(κ))∆(κ)− (µ+ ν)∆(κ) + ζΘ(κ − τ),

FFMDq,p
0,κℵ(κ) = β0f(ℵ(κ))∆(κ)− (µ+ κ)ℵ(κ),

FFMDq,p
0,κΘ(κ) = (1− Π)Θ + ν∆(κ) + κℵ(κ)− ζΘ(κ − τ)− µΘ(κ),

(4.1.1)

with ∆(0) = ∆0 ≥ 0,ℵ(0) = ℵ0 ≥ 0,Θ(0) = Θ0 ≥ 0 and N(κ) = ∆(κ)+ℵ(κ)+Θ(κ), for

κ ∈ J = [0,T],T > 0 . Also p , q ∈ (0, 1] and all parameters are to be taken non-negative.
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4.2 Formulation of Model as Fixed Point Problem

In this section, we convert fractal fractional model as a problem of �xed point theory.

Consider Ξ = Y3, a Banach space and Y = C(J,R) represents the class of all continuous

functions with the norm de�ned as:

∥|z||Ξ = ||(∆,ℵ,Θ)||Ξ = max{|∆(κ)|+ |ℵ(κ)|+ |Θ(κ)| : κ ∈ J}.

Firstly, we rewrite Model 1.3.2 as:

Υ1(κ,∆(κ),ℵ(κ),Θ(κ)) = ΠΘ− β0f(ℵ(κ))∆(κ)− (µ+ ν)∆(κ) + ζΘ(κ − τ),

Υ2(κ,∆(κ),ℵ(κ),Θ(κ)) = β0f(ℵ(κ))∆(κ)− (µ+ κ)ℵ(κ),

Υ3(κ,∆(κ),ℵ(κ),Θ(κ)) = (1− Π)Θ + ν∆(κ) + κℵ(κ)− ζΘ(κ − τ)− µΘ(κ).

(4.2.1)

Comparing Models 1.3.2 and 4.1.1 we have,

FFMDq,p
0,κ∆(κ) = Υ1(κ,∆(κ),ℵ(κ),Θ(κ)),

FFMDq,p
0,κℵ(κ) = Υ2(κ,∆(κ),ℵ(κ),Θ(κ)),

FFMDq,p
0,κΘ(κ) = Υ3(κ,∆(κ),ℵ(κ),Θ(κ)).

(4.2.2)

Since

FFMDq,p
0,κg(κ) =

AB(q)

1− q

d

dκp

∫ κ

0

Eq[−
q

1− q
(κ − u)q] g(u)du.

FFMDq,p
0,κg(κ) =

AB(q)

1− q

1

pκp−1

d

dκ

∫ κ

0

Eq[−
q

1− q
(κ − u)q] g(u)du.

FFMDq,p
0,κg(κ) =

1

pκp−1

AB(q)

1− q

d

dκ

∫ κ

0

Eq[−
q

1− q
(κ − u)q] g(u)du.

Now, we can write

AB(q)

1− q

d

dκ

∫ κ

0

Eq[−
q

1− q
(κ − u)q] g(u)du,

as Riemann Liouville fractional derivative with Mittag La�er kernel.

Therefore, we get

FFMDq,p
0,κg(κ) = (

1

pκp−1
)RLDq

0,κg(κ)

Hence, Model 4.2.2 can be written as:

(
1

pκp−1
)RLDq

0,κ∆(κ) = Υ1(κ,∆(κ),ℵ(κ),Θ(κ)),

(
1

pκp−1
)RLDq

0,κℵ(κ) = Υ2(κ,∆(κ),ℵ(κ),Θ(κ)),

(
1

pκp−1
)RLDq

0,κΘ(κ) = Υ3(κ,∆(κ),ℵ(κ),Θ(κ)).

(4.2.3)
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Moreover, we have

RLDq
0,κ∆(κ) = pκp−1Υ1(κ,∆(κ),ℵ(κ),Θ(κ)),

RLDq
0,κℵ(κ) = pκp−1Υ2(κ,∆(κ),ℵ(κ),Θ(κ)),

RLDq
0,κR(κ) = pκp−1Υ3(κ,∆(κ),ℵ(κ),Θ(κ)).

(4.2.4)

In general, we can rewrite Model 4.2.4 as:

RLDq
0,κz(κ) = pκp−1Υ(κ,z(κ)),

z(0) = z0,
(4.2.5)

where for (p, q) ∈ (0, 1] and for κ ∈ J, we have

z(κ) = (∆(κ),ℵ(κ),Θ(κ))⊤,

z0 = (∆0,ℵ0,Θ0)
⊤.

(4.2.6)

Applying Fractal−Fractional integral on Model (4.2.5), using the result [15], we have

z(κ) = z(0) +
p (1− q)κp−1 g(κ)

AB(q)
+

p q

AB(q) Γ(q)

∫ κ

0

up−1 (κ − u)q−1 g(u)du, (4.2.7)

where AB(q) = 1− q+ q
Γ(q)

.

Hence, we can write

∆(κ) = ∆(0) +
p (1− q)κp−1 Υ1(κ,z(κ))

AB(q)
+

p q

AB(q) Γ(q)

∫ κ

0

up−1 (κ − u)q−1 Υ1(u,z(u))du,

ℵ(κ) = ℵ(0) + p (1− q)κp−1 Υ2(κ,z(κ))
AB(q)

+
p q

AB(q) Γ(q)

∫ κ

0

up−1 (κ − u)q−1 Υ2(u,z(u))du,

Θ(κ) = Θ(0) +
p (1− q)κp−1 Υ3(κ,z(κ))

AB(q)
+

p q

AB(q) Γ(q)

∫ κ

0

up−1 (κ − u)q−1 Υ3(u,z(u))du.

(4.2.8)

So, now we can transform Model (4.2.2) into a �xed point problem.

De�ne an operator F : Ξ → Ξ as

F (z(κ)) = z(0) +
p (1− q)κp−1 Υ(κ,z(κ))

AB(q)
+

p q

AB(q) Γ(q)

∫ κ

0

up−1 (κ − u)q−1 Υ(u,z(u))du.

(4.2.9)

4.3 Existence of Solution

For existence, we prove the following theorem on the basis of Theorem 1.2.4 as in [35].
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Theorem 4.3.1. Suppose that ∃ V2 : R3×R3 → R, ψ ∈ Ψ and Υ ∈ C(J×Ξ,Ξ) satisfying

the following three conditions :

(β11) : ∀z1,z2 ∈ Ξ and κ ∈ J,

|Υ(κ,z1(κ))−Υ(κ,z2)(κ)| ≤ ℓ2 ψ(|z1(κ)−z2(κ)|),

with V (z1(κ),z2(κ)) ≥ 0 and ℓ2 =
1

[
p(1−q)
AB(q)

κp−1+
q pΓ(p)κp+q−1

AB(q) Γ(p+q)
]
.

(β12) : ∃z0 ∈ Ξ and ∀κ ∈ J,

V2(z0(κ), F (z0(κ)) ≥ 0 and V2(z1(κ),z2(κ)) ≥ 0 =⇒ V2(F (z1(κ)), F (z2(κ)) ≥ 0;

(β13): ∀{zn}n≥1 ⊆ Ξ with zn → z,

V2(zn(κ),zn+1(κ)) ≥ 0 =⇒ V2(zn(κ)),z(κ)) ≥ 0, for every n , κ ∈ J.

Then we say that F has a �xed point. So, there exists a solution of the model of malware

propagation.

Proof. Take z1,z2 ∈ Ξ so that

V2(z1(κ),z2(κ)) ≥ 0, (4.3.1)

for each κ ∈ J.

Now we take

|F (z1(κ))− F (z2(κ))| = |p(1− q) · κp−1

AB(q)
[Υ(κ,z1(κ))−Υ(κ,z2(κ)]

+
pq

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 [Υ(u,z1(u))−Υ(u,z2(u))] du|

≤ p(1− q) · κp−1

AB(q)
|Υ(κ,z1(κ))−Υ(κ,z2(κ)|

+
pq

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 |Υ(u,z1(u))−Υ(u,z2(u))| du,

using(β11)

|F (z1(κ))− F (z2(κ))| ≤ p(1− q) · κq−1

AB(q)
ℓ2 ψ(|z1(κ)−z2(κ)|

+
pq

AB(q) Γ(q)

∫ κ

0

up−1 (κ − u)q−1 ℓ2ψ(|z1(u)−z2(u)| du,

by using the de�nition of norm

|F (z1(κ))− F (z2(κ))| ≤ p(1− q) · κp−1

AB(q)
ℓ2 ψ(||z1 −z2||

+
pq

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ℓ2 ψ(||z1 −z2||Ξ du.
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After doing some computations and using the de�nition of beta function, we get

|F (z1(κ))− F (z2(κ))| ≤ p(1− q) · κp−1

AB(q)
ℓ2 ψ(||z1 −z2||Ξ)

+
p qΓ(p)κp+q−1

AB(q) Γ(p+ q)
ℓ2 ψ(||z1 −z2||Ξ)

≤ [
p(1− q) · κp−1

AB(q)
+

p qΓ(p)κp+q−1

AB(q) Γ(p+ q)
] ℓ2 ψ(||z1 −z2||Ξ).

Using value of ℓ2, we get

|F (z1(κ))− F (z2(κ))| ≤ ψ(||z1 −z2||Ξ). (4.3.2)

Moreover, if we de�ne a function ϕ : Ξ2 → [0,∞) such that ϕ(z1,z2) = 1 for V (z1(κ),z2(κ)) ≥

0, and zero otherwise, then for each z1,z2 ∈ Ξ equation, (4.3.2) can be written as

ϕ(z1,z2) d(F (z1), F (z2)) ≤ ψ(d(z1,z2)). (4.3.3)

This shows that F is a ϕ-ψ-contraction.

Now suppose that z1,z2 ∈ Ξ with the property that ϕ(z1,z2) ≥ 1.

By the de�nition of ϕ, we deduce

V2(z1(κ),z2(κ)) ≥ 0, (4.3.4)

and by (β12)

V2(z0(κ), F (z0(κ)) ≥ 0 and V2(z1(κ),z2(κ)) ≥ 0.

=⇒ V2(F (z1(κ)), F (z2(κ)) ≥ 0.

So, by applying de�nition of ϕ, we have

ϕ(F (z1), F (z2) ≥ 1. (4.3.5)

Hence F is ϕ-admissible. (*)

Moreover, by (β12), it can be seen that for some z0 in Ξ, ∀κ ∈ J, we have

V2(z0(κ), F (z0(κ))) ≥ 0 =⇒ ϕ(z0, F (z0)) ≥ 1. (**)

Now, consider {zn}n≥1 ⊆ Ξ with zn → z and for all n and ϕ(zn,zn+1) ≥ 1.

By de�nition of ϕ this implies V2(zn(κ),zn+1(κ)) ≥ 0.

Thus by (β13) this implies V2(zn(κ),z(κ)) ≥ 0.

Hence ϕ(zn,z) ≥ 1 for all n. (***)
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So (*),(**),(***) show the conditions of Theorem 1.2.4 are satis�ed, so we can say that

there exists some z∗ ∈ Xsuch that F (z∗) = z∗.

Hence z∗ = (∆∗,ℵ∗,Θ∗)⊤ is a solution of our model.

Our next theorem on the basis of theorem(1.2.5) also establishes that the solution of

the model exists. For this, we have to show that F is compact.

Theorem 4.3.2. Let Ξ be a Banach space, (N2)ϵ be a bounded and closed set in Ξ and

A2 be an open in (N2)ϵ with 0 ∈ A2, then there exists a compact and continuous operator

F with the conditions (β14) and (β15) from A2 → (N2)ϵ which satis�es one of the two

conditions,

(a) F has a �xed point in A2,

or

(b) there exists z ∈ ∂A2 and ω2 ∈ (0, 1) s.t z = ω2 F (z);

where

(β14) : There exists ϕ ∈ L1(J, [0,∞)) and B2 ∈ C([0,∞), [0,∞)) where B2 is an increasing

function satisfying the condition |Υ(κ,z(κ))| ≤ ϕ(κ)B2(|z(κ)|) for all κ ∈ J and

z ∈ Ξ;

(β15) : If ϕ∗ = supκ∈J |ϕ(κ)|, then ∃ a number r2 s.t r2
z0+λ2 ϕ∗B2(r2)

> 1 where λ2 =

[ p(1−q)
AB(q)

κp−1 + q pΓ(p)κp+q−1

AB(q) Γ(p+q)
].

If above conditions holds then a solution exists for our model.

Proof. Consider F : Ξ → Ξ as

F (z(κ)) = z(0)+
p (1− q)κp−1 Υ(κ)

AB(q)
+

p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ(u,z(u))du,

and (N2)ϵ = {z ∈ Ξ : ||z||Ξ ≤ ϵ} for some positive ϵ.

We show that F is compact on (N2)ϵ. For this, we prove that F is uniformly bounded

and equicontinuous.

Since Υ is continuous, this implies F is continuous.

Now for z in (N2)ϵ :

|F (z(κ))| ≤ |z(0)|+p (1− q)κp−1

AB(q)
|Υ(κ)|+ p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 |Υ(u,z(u))|du,
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and from (β14) :

|F (z(κ))| ≤ z0 +
p (1− q)κp−1

AB(q)
ϕ(κ)B2(|z(κ)|)

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ϕ(u)B2(|z(u)|)du

≤ z0 +
p (1− q)κp−1

AB(q)
ϕ∗B2(||z||Ξ) +

p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ϕ∗B2(||z||Ξ)du

≤ z0 +
p (1− q)κp−1

AB(q)
ϕ∗B2(||z||Ξ) +

p q

AB(q) Γ(q)
ϕ∗B2(||z||Ξ)

∫ κ

0

u(p−1) (κ − u)q−1 du.

After simpli�cation of the integral we get the beta function. So applying values of beta

function, we get

|F (z(κ))| ≤ z0 +
p (1− q)κp−1

AB(q)
ϕ∗B2(||z||Ξ) +

p q

AB(q) Γ(q)
ϕ∗B2(||z||Ξ)

p qκp+q−1 Γ(p)

AB(q) Γ(p+ q)

≤ z0 + [
p (1− q)κp−1

AB(q)
+

p qκp+q−1 Γ(p)

AB(q) Γ(p+ q)
]ϕ∗B2(||z||Ξ).

Applying the value of λ2, we have

|F (z(κ))| ≤ z0 + λ2 ϕ
∗B2(ϵ).

Hence applying norm, we have

||F (z(κ))|| ≤ z0 + λ2 ϕ
∗B2(ϵ) <∞. (4.3.6)

This implies F is uniformly bounded.

Now, take κ,κ∗ ∈ J such that κ < κ∗ and z ∈ Nϵ arbitrarily. If we suppose that
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Υ∗ = sup |Υ(κ,z(κ))|, then

|F (z(κ∗))− F (z(κ))| = |p(1− q)

AB(q)
[(κ∗)p−1 Υ(κ∗)− κp−1 Υ(κ)]

+
p q

AB(q) Γ(q)
[

∫ κ∗

0

up−1 (κ∗ − u)q−1 Υ(u,z(u)) du

−
∫ κ

0

u(p−1) (κ − u)q−1 Υ(u,z(u)) du]|

≤ p(1− q)

AB(q)
|(κ∗)p−1 Υ(κ∗)− κp−1 Υ(κ)|

+
p q

AB(q) Γ(q)
|
∫ κ∗

0

up−1 (κ∗ − u)q−1 du

−
∫ κ

0

u(p−1) (κ − u)q−1 du | · |Υ(u,z(u)|

≤ p(1− q)

AB(q)
[(κ∗)p−1 − κp−1] Υ∗

+
p q

AB(q) Γ(q)
[

∫ κ∗

0

u(p−1) (κ∗ − u)q−1 du

−
∫ κ

0

u(p−1) (κ − u)q−1 du ] Υ∗

≤ p(1− q)

AB(q)
[(κ∗)p−1 − κp−1] Υ∗

+
p q

AB(q) Γ(q)
|(κ∗)(p+q−1) β(p, q)− κ(p+q−1) β(p, q)|Υ∗

≤ p(1− q)

AB(q)
[(κ∗)p−1 − κp−1] Υ∗

+
p q

AB(q) Γ(p+ q)
Υ∗ [(κ∗)(p+q−1) − κ(p+q−1)],

that is independent of z.When κ∗ → κ its value becomes zero. Hence ||F (z(κ∗)) −

F (z(κ))||Ξ → 0.

This proved that F is equicontinuous. So F is compact. As F satis�es the conditions

of Theorem 4.3.2, we say that F will satisfy either one or the other condition mentioned

in Theorem 4.3.2. For this using(β15), we construct A2 = {z ∈ Ξ : ||z||Ξ < r2}, where

r2 > 0 is de�ned above. Hence, we can write

||F (z(κ))|| ≤ z0 + λ2 ϕ
∗B2(r2). (4.3.7)

Assume, ∃z ∈ ∂A2 and ω2 ∈ (0, 1) where z = ω2F (z).

81



For this z, w2 and using(β15), we get

r2 = ||z||Ξ

= w||F (z)||Ξ

< ||F (z)||Ξ

< z0 + λ2 ϕ
∗B2(||z||Ξ)

< z0 + λ2 ϕ
∗B2(r2).

This gives r2 < r2, which is impossible. Thus second condition is not satis�ed. Hence,

by �rst condition F possesses a �xed point in A2.

4.4 Uniqueness

In this section, we will prove uniqueness with the help of Theorem 4.4.1 using lipschitz

condition proved in Theorem(2.4.1).

Theorem 4.4.1. If ||∆|| ≤ µ1, ||ℵ|| ≤ µ2, ||Θ|| ≤ µ4 for some µi > 0, i = 1, 2, 4 and

w1 = (β0 µ3 + µ + ν), w2 = (β0 µ1 b + µ + γ), w3 = (ζ + µ), where 0 < wi < 1, i = 1, 2, 3;

then our model has a unique solution if λ2wi < 1, for i = 1, 2, 3.

Proof. Suppose the model has two solutions (∆(κ),ℵ(κ),Θ(κ)) and (∆∗(κ),ℵ∗(κ),Θ∗(κ))

with initial conditions de�ned above. Then, we can write

∆(κ) = ∆(0) +
p(1− q)κp−1Υ1(κ,z(κ))

AB(q)

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,z(u))du,

∆∗(κ) = ∆(0) +
p(1− q)κp−1Υ1(κ,z∗(κ)

AB(q)

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,z∗(u))du.

Take

|∆(κ)−∆∗(κ)| = ||p(1− q)κp−1[Υ1(κ,z(κ))−Υ1(κ,z∗(κ))]
AB(q)

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 (Υ1(u,z(u))−Υ1(u,z∗(u)))du||
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|∆(κ)−∆∗(κ)| ≤ p(1− q)κp−1||Υ1(κ,z(κ))−Υ1(κ,z∗(κ))||
AB(q)

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ||(Υ1(u,z(u))−Υ1(u,z∗(u)))||du.

Since Υ1 is considered w.r.t ∆ and ∆∗, so by using result in Theorem 2.4.1 and de�nition

of Beta function, we get

|∆(κ)−∆∗(κ)| ≤ p(1− q)κp−1

AB(q)
||Υ1(∆)−Υ1(∆

∗)||

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ||(Υ1(∆)−Υ1(∆
∗))||du

≤ p(1− q)κp−1

AB(q)
||Υ1(∆)−Υ1(∆

∗)||

+
p q

AB(q) Γ(q)
κ(p+q−1) β(p, q) ||Υ1(∆)−Υ1(∆

∗)||

≤ p(1− q)κp−1

AB(q)
w1||∆−∆∗||+ p qκ(p+q−1) Γ(p)

AB(q) Γ(p+ q)
w1||∆−∆∗||

≤ [
p(1− q)κp−1

AB(q)
+

p qκ(p+q−1) Γ(p)

AB(q) Γ(p+ q)
]w1||∆−∆∗||.

Hence

|∆(κ)−∆∗(κ)| ≤ λ2w1 ||∆−∆∗||,

||∆−∆∗|| ≤ λ2w1 ||∆−∆∗||,

This implies that (1− λ2w1) ||∆−∆∗|| ≤ 0.

As λ2w1 < 1, so this is possible when ||∆−∆∗|| = 0. Thus ∆ = ∆∗.

Similarly, we have

ℵ(κ) = ℵ(0) + p(1− q)κp−1Υ2(κ,z(κ))
AB(q)

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ2(u,z(u))du,

ℵ∗(κ) = ℵ(0) + p(1− q)κp−1Υ2(κ,z∗(κ))
AB(q)

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ2(u,z∗(u))du.

Take

|ℵ(κ)− ℵ∗(κ)| = ||p(1− q)κp−1[Υ2(κ,z(κ))−Υ2(κ,z∗(κ))]
AB(q)

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 (Υ2(u,z(u))−Υ2(u,z∗(u)))du||
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|ℵ(κ)− ℵ∗(κ)| ≤ p(1− q)κp−1||Υ2(κ,z(κ))−Υ2(κ,z∗(κ))||
AB(q)

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ||(Υ2(u,z(u))−Υ2(u,z∗(u)))||du.

Since Υ2 is considered w.r.t ℵ and ℵ∗, so by using result in Theorem 2.4.1 and de�nition

of Beta function, we get

|ℵ(κ)− ℵ∗(κ)| ≤ p(1− q)κp−1

AB(q)
||Υ2(ℵ)−Υ2(ℵ∗)||

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ||(Υ2(ℵ)−Υ2(ℵ∗))||du

≤ p(1− q)κp−1

AB(q)
||Υ2(ℵ)−Υ2(ℵ∗)||

+
p q

AB(q) Γ(q)
κ(p+q−1) β(p, q) ||Υ2(ℵ)−Υ2(ℵ∗)||

≤ p(1− q)κp−1

AB(q)
w2||ℵ − ℵ∗||+ p qκ(p+q−1) Γ(p)

AB(q) Γ(p+ q)
w2||ℵ − ℵ∗||

≤ [
p(1− q)κp−1

AB(q)
+

p qκ(p+q−1) Γ(p)

AB(q) Γ(p+ q)
]w2||ℵ − ℵ∗||.

Hence

|ℵ(κ)− ℵ∗(κ)| ≤ λ2w2 ||ℵ − ℵ∗||,

||ℵ − ℵ∗|| ≤ λ2w2 ||ℵ − ℵ∗||,

This implies that (1− λ2w2) ||ℵ − ℵ∗|| ≤ 0.

As λ2w2 < 1, so this is possible when ||ℵ − ℵ∗|| = 0. Thus ℵ = ℵ∗. Also we have

Θ(κ) = Θ(0) +
p(1− q)κp−1Υ3(κ,z(κ))

AB(q)

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ3(u,z(u))du,

Θ∗(κ) = Θ(0) +
p(1− q)κp−1Υ3(κ,z∗(κ))

AB(q)

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ3(u,z∗(u))du.

Take

|Θ(κ)−Θ∗(κ)| = ||p(1− q)κp−1[Υ3(κ,z(κ))−Υ3(κ,z∗(κ))]
AB(q)

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 (Υ3(u,z(u))−Υ3(u,z∗(u)))du||
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|Θ(κ)−Θ∗(κ)| ≤ p(1− q)κp−1||Υ3(κ,z(κ))−Υ3(κ,z∗(κ))||
AB(q)

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ||(Υ3(u,z(u))−Υ3(u,z∗(u)))||du.

As Υ3 is considered w.r.t Θ and Θ∗, so by using result in Theorem 2.4.1 and de�nition

of Beta function, we get

|Θ(κ)−Θ∗(κ)| ≤ p(1− q)κp−1

AB(q)
||Υ3(Θ)−Υ3(Θ

∗)||

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ||(Υ3(Θ)−Υ3(Θ
∗))||du

≤ p(1− q)κp−1

AB(q)
||Υ3(Θ)−Υ3(Θ

∗)||

+
p q

AB(q) Γ(q)
κ(p+q−1) β(p, q) ||Υ3(Θ)−Υ3(Θ

∗)||

≤ p(1− q)κp−1

AB(q)
w3||Θ−Θ∗||+ p qκ(p+q−1) Γ(p)

AB(q) Γ(p+ q)
w3||Θ−Θ∗||

≤ [
p(1− q)κp−1

AB(q)
+

p qκ(p+q−1) Γ(p)

AB(q) Γ(p+ q)
]w3||Θ−Θ∗||.

Hence

|Θ(κ)−Θ∗(κ)| ≤ λ2w3 ||Θ−Θ∗||,

||Θ−Θ∗|| ≤ λ2w3 ||Θ−Θ∗||,

This implies that (1− λ2w3) ||Θ−Θ∗|| ≤ 0.

As λ2w3 < 1, so this is possible when ||Θ−Θ∗|| = 0. Thus Θ = Θ∗.

So (∆(κ),ℵ(κ),Θ(κ)) = (∆∗(κ),ℵ∗(κ),Θ∗(κ)). Hence, the solution is unique.

4.5 Stability

We have to check the stability of the solution. We use Ulam−Hyers and Ulam−Hayers−Rassias

theorems to check it. First we de�ne these theorems for our model as:

De�nition 4.5.1. Model 4.2.2 is Ulam-Hyers stable [23] if, for all ϵi > 0, there exist

Mi > 0 ∈ [0,∞), which depend on Υi respectively i = 1, 2, 3 and for all (∆∗,ℵ∗,Θ∗)
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satisfying the inequalities

|FFMDq,p
0,κ∆

∗(κ)−Υ1(κ,z∗(κ))| ≤ ϵ1,

|FFMDq,p
0,κℵ∗(κ)−Υ2(κ,z∗(κ))| ≤ ϵ2,

|FFMDq,p
0,κΘ

∗(κ)−Υ3(κ,z∗(κ))| ≤ ϵ3,

(4.5.1)

then there exists (∆,ℵ,Θ) ∈ Ξ satisfying the Model 4.2.2 with the condition

|∆∗(κ)−∆(κ)| ≤ M1 ϵ1,

|ℵ∗(κ)− ℵ(κ)| ≤ M2 ϵ2,

|Θ∗(κ)−Θ(κ)| ≤ M3 ϵ3.

(4.5.2)

Remark 4.5.2. (∆∗,ℵ∗,Θ∗) ∈ Ξ is a solution of Model 4.2.2 i� ∃ ηi ∈ C([0,T], [0,∞))

such that for all κ ∈ J,

(i) | ηi | < ϵi,

(ii)

FFMDq,p
0,κ∆

∗(κ) = Υ1(κ,z∗(κ)) + η1(κ),
FFMDq,p

0,κℵ∗(κ) = Υ2(κ,z∗(κ)) + η2(κ),
FFMDq,p

0,κΘ
∗(κ) = Υ3(κ,z∗(κ)) + η3(κ).

(4.5.3)

Theorem 4.5.3. The fractal fraction model 4.2.2 is Ulam−Hayers stable on J s.t.

λ2wi < 1, where wi and λ2 are de�ned with the conditions given above.

Proof. Let ϵ1 > 0 and ∆∗ ∈ Y

|FFMDq,p
0,κ∆

∗(κ)−Υ1(κ,z∗(κ))| ≤ ϵ1,

then by above remark 4.5.2, we have

∆∗(κ) = ∆(0) +
p (1− q)κp−1

AB(q)
Υ1(κ,z∗(κ))

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,z∗(u))du

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 η1(u) du.
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As ∆ ∈ Y is the unique solution, then

∆(κ) = ∆(0) +
p (1− q)κp−1

AB(q)
Υ1(κ,z∗(κ))

+
p q

AB(q)Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,z(u))du.

So,

|∆∗(κ)−∆(κ)|

= |p (1− q)κp−1

AB(q)
[Υ1(κ,z∗(κ))−Υ1(κ,z(κ))]

+
p q

AB(q)Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 η1(u) du

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1

[ Υ1(u,z∗(u))−Υ1(u,z(u)) ] du|

≤ p (1− q)κp−1

AB(q)
||Υ1(κ,z∗(κ))−Υ1(κ,z(κ))||

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 |η1(u)|du

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1

|| Υ1(u,z∗(u))−Υ1(u,z(u)) || du

≤ p(1− q)κp−1

AB(q)
w1 ||∆∗ −∆||+ p q

AB(q) Γ(q)
β(p, q)κ(p+q−1) |η1|

+
p q

AB(q) Γ(q)
β(p, q)κ(p+q−1)w1 ||∆∗ −∆||

≤ p q

Γ(q)
β(p, q)κ(p+q−1) ϵ1

+ [
p(1− q)κp−1

AB(q)
+

p q

AB(q) Γ(q)
β(p, q)κ(p+q−1)]w1 ||∆∗ −∆||

≤ p qκp+q−1 Γ(p)

AB(q) Γ(p+ q)
ϵ1 + λ2w1 ||∆∗ −∆||.

Hence, we have

||∆∗ −∆|| ≤ p qκp+q−1 Γ(p)

AB(q) Γ(p+ q)
ϵ1 + λ2w1 ||∆∗ −∆||,

(1− λ2w1) ||∆∗ −∆|| ≤ p qκp+q−1 Γ(p)

AB(q) Γ(p+ q)
ϵ1,

||∆∗ −∆|| ≤
p qκp+q−1 Γ(p)
AB(q) Γ(p+q)

ϵ1

(1− λ2w1)
.
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If p qκp+q−1

AB(q) Γ(q) (1−λ2 w1)
=M1, then ||∆∗ −∆|| ≤ M1 ϵ1.

Similarly, we can prove that

||ℵ∗ − ℵ|| ≤ M2 ϵ2 and ||Θ∗ −Θ|| ≤ M3 ϵ3 .

Thus Ulam−Hayers stability criteria is ful�lled by our fractat−fractional model.

De�nition 4.5.4. We de�ne the Ulam−Hayers−Rassias stability criteria for our fractal−fractional

model as: Model 4.2.2 is Ulam-Hyers−Rassias stable [25] w.r.t the functions ψi, if for all

ϵi, > 0 , there exist Mi > 0 ∈ [0,∞) , which depend on

Υi andψi where i = 1, 2, 3, and for all (∆∗,ℵ∗,Θ∗) satisfying the inequalities,

|FFMDq,p
0,κ∆

∗(κ)−Υ1(κ,z∗(κ))| ≤ ϵ1 ψ1(κ),

|FFMDq,p
0,κℵ∗(κ)−Υ2(κ,z∗(κ))| ≤ ϵ2 ψ2(κ),

|FFMDq,p
0,κΘ

∗(κ)−Υ3(κ,z∗(κ))| ≤ ϵ3 ψ3(κ),

(4.5.4)

then there exists (∆,ℵ,Θ) ∈ Ξ satisfying the Model (4.2.2) with the condition

|∆∗(κ)−∆(κ)| ≤ M1 ϵ1 ψ1(κ),

|ℵ∗(κ)− ℵ(κ)| ≤ M2 ϵ2 ψ2(κ),

|Θ∗(κ)−Θ(κ)| ≤ M3 ϵ3 ψ3(κ).

(4.5.5)

Remark 4.5.5. (∆∗,ℵ∗,Θ∗) ∈ Ξ is a solution i� ∃ ηi ∈ C([0,T], [0,∞)) such that for all

κ ∈ J,

(i) | ηi | < ϵi ψi(κ),

(ii)

FFMDq,p
0,κ∆

∗(κ) = Υ1(κ,z∗(κ)) + η1(κ),
FFMDq,p

0,κℵ∗(κ) = Υ2(κ,z∗(κ)) + η2(κ),
FFMDq,p

0,κΘ
∗(κ) = Υ3(κ,z∗(κ)) + η3(κ).

(4.5.6)

Theorem 4.5.6. The fractal−fractional model 4.2.2 is Ulam−Hayers−Rassias stable

when the following conditions are satis�ed:

For all κ ∈ J there exists nondecreasing mappings ψi ∈ C([0,T], [0,∞) and ξi > 0

depending upon ψi such that FFMIq,p0,κψi(κ) < ξi ψi(κ) and λ2 > 0, wi > 0 where wi and

λ2 are de�ned as before.
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Proof. Let ϵ1 > 0 and ∆∗ ∈ Y such that

|FFMDq,p
0,κ∆

∗(κ)−Υ1(κ,z∗(κ))| ≤ ϵ1 ψ1(κ),

then by the conditions of remark 4.5.5, we consider

∆∗(κ) = ∆(0) +
p (1− q)κp−1

AB(q)
Υ1(κ,z∗(κ))

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,z∗(u))du

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 η1(u) du.

As ∆ ∈ Y is the unique solution, then

∆(κ) = ∆(0) +
p (1− q)κp−1

AB(q)
Υ1(κ,z∗(κ))

+
p q

AB(q)Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,z(u))du.

Now

|∆∗(κ)−∆(κ)|

= |p (1− q)κp−1

AB(q)
[Υ1(κ,z∗(κ))−Υ1(κ,z(κ))]

+
p q

AB(q)Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 η1(u) du

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1

[ Υ1(u,z∗(u))−Υ1(u,z(u)) ] du|

≤ p (1− q)κp−1

AB(q)
||Υ1(κ,z∗(κ))−Υ1(κ,z(κ))||

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 |η1(u)|du

+
p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1

|| Υ1(u,z∗(u))−Υ1(u,z(u)) || du

≤ p(1− q)κp−1

AB(q)
w1 ||∆∗ −∆||+ p q

AB(q) Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 ϵ1 ψ1(u)du

+
p q

AB(q) Γ(q)
β(p, q)κ(p+q−1)w1 ||∆∗ −∆||

≤ ϵ1 ξ1 ψ1(κ) + [
p(1− q)κp−1

AB(q)
+

p q

AB(q) Γ(q)
β(p, q)κ(p+q−1)]w1 ||∆∗ −∆||

≤ ϵ1 ξ1 ψ1(κ) + λ2w1 ||∆∗ −∆||.
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Thus, we have

||∆∗ −∆|| ≤ ϵ1 ξ1 ψ1(κ) + λ2w1 ||∆∗ −∆||,

(1− λ2w1) ||∆∗ −∆|| ≤ ϵ1 ξ1 ψ1(κ),

||∆∗ −∆|| ≤ ϵ1 ξ1 ψ1(κ)
(1− λ2w1)

.

If ξ1
(1−λ2 w1)

=M1, then ||∆∗ −∆|| ≤ ϵ1 ψ1(κ)M1(Υ1, ψ1).

Similarly, we can prove that

||ℵ∗ − ℵ|| ≤ M2(Υ2, ψ2) ϵ2 ψ2(κ),

||Θ∗ −Θ|| ≤ M3(Υ3, ψ3) ϵ3 ψ3(κ).

Hence Ulam−Hayers−Rassias stability criteria is ful�lled by our fractal−fractional model.

4.6 Numerical Algorithm

For numerical scheme of our FF model, we proceed as [37]. The di�erence between our

scheme and others is that in our model Υ1 and Υ3 depends on κ and (κ− τ), so we deal

it di�erently. We know that

∆(κ) = ∆(0) +
p (1− q)κp−1

AB(q)
Υ1(κ,z(κ))

+
p q

AB(q)Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ1(u,z(u))du,

ℵ(κ) = ℵ(0) + p (1− q)κp−1

AB(q)
Υ2(κ,z(κ))

+
p q

AB(q)Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ2(u,z(u))du,

Θ(κ) = Θ(0) +
p (1− q)κp−1

AB(q)
Υ3(κ,z(κ))

+
p q

AB(q)Γ(q)

∫ κ

0

u(p−1) (κ − u)q−1 Υ3(u,z(u))du.

First we take κ = κn+1 that means we take iterations and let up−1 Υi(u,z(u)) = Hi(u),

so

∆(κn+1) = ∆(0)+
p (1− q)κnp−1

AB(q)
Υ1(κ(n),z(n))+

p q

AB(q)Γ(q)

∫ κn+1

0

(κn+1 − u)q−1H1(u)du,
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ℵ(κn+1) = ℵ(0)+p (1− q)κnp−1

AB(q)
Υ2(κ(n),z(n))+

p q

AB(q)Γ(q)

∫ κn+1

0

(κn+1 − u)q−1H2(u)du,

Θ(κn+1) = Θ(0)+
p (1− q)κnp−1

AB(q)
Υ3(κ(n),z(n))+

p q

AB(q)Γ(q)

∫ κn+1

0

(κn+1 − u)q−1H3(u)du.

Approximating integral as the sum of integrals on sub intervals, we have

∆(κn+1) = ∆0 +
p(1− q)κnp−1

AB(q)
Υ1(κ(n),z(n)) +

pq

AB(q)Γ(q)

n∑
j=0

∫ κj+1

κj

(κn+1 − u)q−1H1(u)du,

ℵ(κn+1) = ℵ0 +
p(1− q)κnp−1

AB(q)
Υ2(κ(n),z(n)) +

pq

AB(q)Γ(q)

n∑
j=0

∫ κj+1

κj

(κn+1 − u)q−1H2(u)du,

Θ(κn+1) = Θ0 +
p(1− q)κnp−1

AB(q)
Υ3(κ(n),z(n)) +

pq

AB(q)Γ(q)

n∑
j=0

∫ κj+1

κj

(κn+1 − u)q−1H3(u)du.

Now we approximate the functions Hi(u) by two point Lagrange interpolation polynomi-

als on the interval [κj,κj+1] as:

H∗
1 (u) =

u−κj−1

κj−κj−1
κp−1
j Υ1(uj,∆j(u),ℵj(u),Θj(u))− u−κj

κj−κj−1
κp−1
j−1 Υ1(uj−1,∆j−1(u),ℵj−1(u),Θj−1(u)),

H∗
2 (u) =

u−κj−1

κj−κj−1
κp−1
j Υ2(uj,∆j(u),ℵj(u),Θj(u))− u−κj

κj−κj−1
κp−1
j−1 Υ2(uj−1,∆j−1(u),ℵj−1(u),Θj−1(u)),

H∗
3 (u) =

u−κj−1

κj−κj−1
κp−1
j Υ3(uj,∆j(u),ℵj(u),Θj(u))− u−κj

κj−κj−1
κp−1
j−1 Υ3(uj−1,∆j−1(u),ℵj−1(u),Θj−1(u)).

Thus, we have

∆(κn+1) = ∆0 +
p(1− q)κnp−1

AB(q)
Υ1(κ(n),z(n))

+
pq

AB(q)Γ(q)

n∑
j=0

∫ κj+1

κj

(κn+1 − u)q−1H∗
1 (u)du,

ℵ(κn+1) = ℵ0 +
p(1− q)κnp−1

AB(q)
Υ2(κ(n),z(n))

+
pq

AB(q) Γ(q)

n∑
j=0

∫ κj+1

κj

(κn+1 − u)q−1H∗
2 (u)du,

Θ(κn+1) = Θ0 +
p(1− q)κnp−1

AB(q)
Υ3(κ(n),z(n))

+
pq

AB(q)Γ(q)

n∑
j=0

∫ κj+1

κj

(κn+1 − u)q−1H∗
3 (u)du.
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By integrating the above integrals according to limits and taking κj − κj−1 = h, we get

the �nal results

∆(n+ 1) = ∆0 +
p (1− q)κnp−1

AB(q)
Υ1(κ(n),z(n))

+
p qhq

AB(q) Γ(q+ 2)

n∑
j=0

(κp−1
j Υ1(uj,∆j,ℵj,Θj)Z1 − κp−1

j−1 Υ1(uj−1,∆j−1,ℵj−1,Θj−1)Z2),

ℵ(n+ 1) = ℵ0 +
p (1− q)κnp−1

AB(q)
Υ2(κ(n),z(n))

+
p qhq

AB(q) Γ(q+ 2)

n∑
j=0

(κp−1
j Υ2(uj,∆j,ℵj,Θj)Z1 − κp−1

j−1 Υ2(uj−1,∆j−1,ℵj−1,Θj−1)Z2),

Θ(n+ 1) = Θ0 +
p (1− q)κnp−1

AB(q)
Υ3(κ(n),z(n))

+
p qhq

AB(q) Γ(q+ 2)

n∑
j=0

(κp−1
j Υ3(uj,∆j,ℵj,Θj)Z1 − κp−1

j−1 Υ3(uj−1,∆j−1,ℵj−1,Θj−1)Z2),

where,

Z1 = (n+ 1− j)q (n− j + 2 + q)− (n− j)q (n− j + 2 + 2q),

Z2 = (n+ 1− j)q+1 − (n− j)q (n− j + 1 + q).

Since in the original model in Υ1 and Υ3 , Θ depends on κ and (κ − tau) = κ1(say), so

we write

Υ1 = U1(κj,∆j,ℵj,Θj) + U3((κ1)j,Θj),

and Υ3 = U2(κj,∆j,ℵj,Θj)− U3((κ1)j,Θj),

where

U1(κj,∆j,ℵj,Θj) = ΠΘ− β0f(ℵ(κ))∆(κ)− (µ+ ν)∆(κ),

U2(κj,∆j,ℵj,Θj) = (1− Π)Θ + ν∆(κ) + κℵ(κ)− µΘ(κ),

U3((κ1)j,Θj) = ζΘ(κ − τ).
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Comparison of Susceptible nodes for fractional and fractal models.
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Figure 4.1: Trajectories of ∆(κ) for di�erent fractal orders p when q = 1 and di�erent

fractional orders q when p = 1.

Hence our numerical scheme is :

∆(n+ 1) = ∆0 +
p (1− q) (κn)p−1

AB(q)
Υ1(κ(n),z(n))

+
pqhq

AB(q)Γ(q+ 2)

n∑
j=0

[κp−1
j (U1(κj,∆j,ℵj,Θj) + U3((κ1)j,Θj))Z1

− κp−1
j−1 (U1(κj−1,∆j−1,ℵj−1,Θj−1) + U3((κ1)j,Θj))Z2],

ℵ(n+ 1) = ℵ0 +
p (1− q)κnp−1

AB(q)
Υ2(κ(n),z(n))

+
p qhq

AB(q) Γ(q+ 2)

n∑
j=0

[κp−1
j Υ2(κj,∆j,ℵj,Θj)Z1 − κp−1

j−1 Υ2(κj−1,∆j−1,ℵj−1,Θj−1)Z2],

Θ(n+ 1) = Θ0 +
p (1− q)κnp−1

AB(q)
Υ3(κ(n),z(n))

+
pqhq

AB(q)Γ(q+ 2)

n∑
j=0

[κp−1
j (U1(κj,∆j,ℵj,Θj)− U3((κ1)j,Θj))Z1

− κp−1
j−1 (U1(κj−1,∆j−1,ℵj−1,Θj−1)− U3((κ1)j,Θj))Z2].
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Comparison of Infected nodes for fractional and fractal models.
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Figure 4.2: Trajectories of ℵ(κ) for di�erent fractal orders p when q = 1 and di�erent

fractional orders q when p = 1.
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Figure 4.3: Trajectories of Θ(κ) for di�erent fractal orders p when q = 1 and di�erent

fractional orders q when p = 1.

94



0 20 40 60 80 100

Time (second)

1.5

2

2.5

3

N
u

m
b

e
r 

o
f 

S
u

s
c
e

p
ti
b

le
 n

o
d

e
s

Simulation of Susceptible nodes.

p=q=1

p=q=0.95

p=q=0.90

p=q=0.85

p=q=0.80
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Figure 4.5: Fractal and fractional trajectories of ℵ(κ) with di�erent orders of p = q.
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Figure 4.6: Fractal and fractional trajectories of Θ(κ) with di�erent orders of p = q.
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Figure 4.7: Comparison of ∆ℵΘ model at p = q = 1 and p = q = 0.90.
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Figure 4.8: The e�ect of varying initial infection rate β0 on susceptible nodes when

p = q = 1 and p = q = 0.90.
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Figure 4.9: The e�ect of varying initial infection rate β0 on infected nodes when p = q = 1

and p = q = 0.90.
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Figure 4.10: The e�ect of varying variable ′α′ to adjust the infection rate sensitivity on

susceptible nodes when p = q = 1 and p = q = 0.90.

97



0 5 10 15

Time (second)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
u

m
b

e
r 

o
f 

In
fe

c
te

d
 n

o
d

e
s
 a

t 
o

rd
e

r 
p

=
q

=
1

.

α=0

α=0.5

α=1

Comparison of Infected nodes for different values of α.

0 5 10 15

Time (second)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
u

m
b

e
r 

o
f 

In
fe

c
te

d
 n

o
d

e
s
 a

t 
o

rd
e

r 
p

=
q

=
0

.9
0

.

α=0

α=0.5

α=1

Figure 4.11: The e�ect of varying variable ′α′ to adjust the infection rate sensitivity on

infected nodes when p = q = 1 and p = q = 0.90.

0 20 40 60 80 100

Time (second)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
u

m
b

e
r 

o
f 

S
u

s
c
e

p
ti
b

le
 n

o
d

e
s
 a

t 
o

rd
e

r 
p

=
q

=
1

ν=0

ν=0.2

ν=0.4

ν=0.6

ν=0.8

Comparison of Susceptible nodes for ν at p=q=1 and p=q=0.90.
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Figure 4.12: The e�ect of varying real-time immune rate ν on susceptible nodes when

p = q = 1 and p = q = 0.90.
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Figure 4.13: The e�ect of varying real-time immune rate ν on infected nodes when

p = q = 1 and p = q = 0.90.
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Figure 4.14: The e�ect of varying real-time immune rate ν on removed nodes when

p = q = 1 and p = q = 0.90.
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Comparison of Susceptible nodes for ζ at p=q=1 and p=q=0.90.

0 20 40 60 80 100

Time (second)

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

N
u

m
b

e
r 

o
f 

S
u

s
c
e

p
ti
b

le
 n

o
d

e
s
 a

t 
o

rd
e

r 
p

=
q

=
0

.9
0

.

ζ=0

ζ=0.02

ζ=0.04

ζ=0.06

ζ=0.08

Figure 4.15: The e�ect of varying loss rate of immunity ζ on susceptible nodes when

p = q = 1 and p = q = 0.90.
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Figure 4.16: The e�ect of varying loss rate of immunity ζ on infected nodes when p =

q = 1 and p = q = 0.90.
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Figure 4.17: The e�ect of varying loss rate of immunity ζ on removed nodes when p =

q = 1 and p = q = 0.90.
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Figure 4.18: Comparison of ∆ for di�erent mathematical orders.
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Figure 4.19: Comparison of ℵ for di�erent mathematical orders.
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Figure 4.20: Comparison of Θ for di�erent mathematical orders.
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Figure 4.21: Trajectories of ∆, ℵ andΘ showing comparison of constant and variable

fractional order mathematical models.
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Figure 4.22: Trajectories of ∆, ℵ andΘ showing comparison of constant and variable

fractal order mathematical models.
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4.7 Discussion through Simulations based on Numeri-

cal algorithm

In this section, we see the simulation of ∆, ℵ and Θ under the e�ect of several fractal-

fractional orders and also the behaviour of ∆,ℵ and Θ model with respect to some pa-

rameters and compare the results of fractal-fractional model to the ordinary di�erential

model. We take the parameters as taken for �gure 2 in [32], Π = 0.5, θ = 0.8, β0 =

0.02, µ = 0.1, ν = 0.2, ζ = 0.01, κ = 0.2, τ = 7.3, α = 1 and some estimated initial condi-

tions ∆(0) = 3,ℵ(0) = 1,Θ(0) = 0.1.

Figs.1-3 show the simulation of ∆,ℵ and Θ for di�erent fractal and fractional orders

separately. On left side of �gure we take di�erent fractional orders keeping fractal or-

der one (fractional model) and on right side of �gure, di�erent fractal orders by keeping

fractional order one (fractal model). We observe that graphs for no. of nodes in fractal

model are very close to each other which show that nodes are strongly connected and

indicate a more homogeneous structure with fewer variation while distance between nodes

at di�erent orders represents long-range corrections and depicts a more heterogenous and

complex structure. For fractal models, in �g.1 initially at lower fractal orders, no. of

nodes is greater then it goes to decrease which shows that initially system has strong

memory e�ect and as time passes, it the memory e�ect decays. We see that in fractional

and fractal models, no. of more susceptible nodes represents that system has higher risk of

epidemic outbreaks, greater potential for infections, more connected network, increased

clustering, increased vulnerability, reduced resilience, increased hereditary e�ects and

strong memory e�ect. Moreover, when we compare both models we see that fractional

model has stronger memory e�ect and is more sensitive to initial conditions. In �gs.2,3

no. of infected nodes goes on increasing and no. of removed nodes goes on decreasing for

lower orders. It con�rms the above interpretations. When we compare the both models

in �g.2, we see that fractal model shows more complex dynamics and behaviors and from

�g.3 we see that the fractal model exhibits a more e�cient removal mechanism, more

sensitive and more fragile fractal system. It also represents that in fractional model sys-

tem has strong memory e�ect.

Figs.4-6 show the simulation of ∆, ℵ and Θ under the combined e�ect of di�erent fractal
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and fractional orders. We see that in �g.4, as fractal-fractional (�) order decreases, no.

of susceptible nodes is greater initially, then decreases and �nally converges. It means

initially there is a higher degree of connectivity and vulnerability to infection, decrease

shows a reduction in both connectivity and vulnerability probably due to increased im-

munity and convergence shows that the system became stable. The e�ect of � orders

shows that the memory e�ect is more initially, then it decays with passage of time. In

�g.5, the greater no. of nodes at lower � orders indicates a stronger memory e�ect and a

higher potential for epidemic spread. We also observe that no. of infected nodes become

zero early at higher � order, it tells us about increased resilience and improved immunity

of the system. It also indicates about lower transmission rates of infection and increased

isolation. In �g.6 no. of removed nodes is less at lower � orders, it shows a longer per-

sistence and increased prevalence of infection, robust network structure,more complex

dynamics and a longer and stronger memory e�ect. In Fig.7, we compare classical model

p = q = 1 and fractal-fractional model at p = q = 0.90 which show behavior of all nodes

of the system.

Now as we see the impact of both variables, initial infection rate β0 and α on our fractal-

fractional model. We illustrate the graphs in two ways. First, we see the behavior of

nodes for di�erent � orders in each model. Secondly, we compare the behavior of these

nodes in both models. In �g.8, as initial birth rate increases, no. of susceptible nodes

decreases that means system is more sensitive, nonlinear dynamics and increased com-

plexity. In classical model, system has decreased epidemic risk and goes to a stable state

when the risk is minimized. When we compare classical model with lower � order model,

system has more complex structure at p = q = 0.90. In �g.9, as the initial birth rate

increases, no. of nodes also increases, it shows that the system may be more susceptible

to infection, may exhibit a faster spread of infection due to a larger pool of infected

nodes, may shows non-linear dynamics where small changes in β0 lead to large changes

in no. of infected nodes. It also represents that system has a stronger memory e�ect.

As we compare, we see that in lower � model the system has more �exibility to become

infectious and has a stronger memory e�ect. In the original model, α is used to adjust

the infection rate sensitivity to ℵ and α = 0 means constant infection rate. In �gs.10,11

we see the e�ect of this varying variable. Although there seems a very slight di�erence
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at p = q = 0.90 but it plays a role in the dynamics of system in coordination of other

parameters.

In �gs.12-14, we see the e�ect of real-time immune rate ν on ∆, ℵ and Θ for p = q = 1

and p = q = 0.90. Fig.12 describes that as immune rate increases, no. of susceptible

nodes become less in each model. We can say that it shows a strong immune response,

decreased risk of infection, more resilience to infection and it may eradicate infection

entirely. Moreover, as we compare both models, we see that at lower � model, no. of

nodes is greater. It shows increased complexity, increased spread of infection, increased

clustering, improved resilience and enhanced robustness. In �g.13, no. of infected nodes

are very close to each other for di�erent values of ν in each model. It depicts that the

system may have reached a saturation point and it may exhibit diminishing returns. Also

for � model at 0.90, no.of nodes are greater, which represents increased complexity, faster

speed of infections, increased vulnerability and reduced resilience. Similarly, in �g.14 the

no. of removed nodes is greater for higher real time immune rate in each model. It shows

an e�ective immune response which is capable of eliminating infected nodes e�ciently,

faster clearance rate, increased resilience in the system and enhanced robustness of sys-

tem. As we compare both models, the no. of nodes is less in � model at level 0.90 which

shows strong memory e�ect and increased complexity of the system.

As we know that the recovered nodes lose their immunity after some time, so to see this

impact, we check the graphs of ∆,ℵ, andΘ. Figs.15-17, show the e�ect of ζ (loss rate of

immunity). From �g.15 we see that no. of susceptible nodes goes on increasing as lost

rate of immunity gets higher in each model. Also, � model at 0.90 exhibits robustness

to immunity loss and may introduce unique e�ects that mitigate the impact of immu-

nity loss and show e�ective immune response with increased resilience. By �g.16 no. of

infected nodes remains very close at di�erent rates of immunity loss in each model rep-

resents that the immune response may have reached a saturation point and system has

reached at equilibrium state. It also shows robustness and resilience of system. Moreover,

the no. of infected nodes approaches to zero earlier in classical model. It describes that

� model at 0.90 shows a delayed eradication of infection, slower immune response, less

e�ciency and increased vulnerability in the system. Similarly, no. of removed nodes

goes on decreasing at higher loss of immunity in each model in �g.17. It shows reduced
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immune e�ciency, longer persistence, increase in vulnerability and reduced resilience of

the system. In comparison of models, � model at 0.90 shows that no. of removed nodes

is less than classical which indicates impaired immune function, persistence of infection,

increase in vulnerability and decrease in system's resilience.

In �gs.18-20, we compare four mathematical models (classical, fractional, fractal and

fractal-fractional). From Figs.18,19 no. of susceptible and infected nodes is highest in

FF model, then in fractional, fractal and classical simultaneously. It shows that fractal-

fractional is more e�ective for expressing the complexity of malware propagation and

fractional model may also be used in some cases. On the other hand, fractal and classical

methods are not suitable for complex systems. The higher no. of nodes represents deeper

memory e�ect and strong correlation between nodes. Moreover, convergence indicates

that the system is stable. Similarly in Fig.20, no. of removed nodes in fractal fractional

model is lowest that show deep memory e�ect and strong correlation. Convergence shows

stability of the system. In �g.21 we see the di�erence between constant fractional order

and variable fractional order. Similarly, �g.22 shows the comparison of constant and vari-

able fractal order. We take variable fractional order as q(κ) = 0.90 + 0.1/(1 + exp(−κ))

and variable fractal order as p(κ) = 0.1/0.9 + exp(−κ). In �g.21 we see that susceptible

and infected nodes merge earlier after some time, i.e variable order becomes constant.

The no. of removed nodes in variable order is greater than constant order depicts that

variable order has more advantage of removing nodes that lead to more e�ective epi-

demic control, the system is more adaptive and variable fractional order represents more

e�ective control strategies. From �g.22, we see that for fractal variable order, the system

shows an irregular behavior. Negative no. of removed nodes shows rebound e�ect i.e

epidemic is growing. It also shows that infection rate might be increased due to quick

spread of virus than immunity of the system. It also indicates unstable dynamics of the

system.

4.8 Conclusion

In this chapter, we have discussed FF model with Mittag-Le�er kernel considering as

a �xed point problem. Conditions for existence (Leray Schauder criteria), uniqueness
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(Lipschitz property) and stability (Ulam-Hyers and Ulam-Hyers-Rassias theorems) of the

fractal fractional model were examined using concepts of �xed point theory. Numerical

scheme was developed and simulations were performed to verify theoretical results. Our

fractal fractional (FF) model was examined under fractal dimensions and fractional orders

separately and combined e�ect of fractal dimensions and fractional orders. We observed

that at lower FF orders, the number of susceptible and infected nodes was higher while no.

of removed nodes is lower demonstrates the sensitivity to external in�uences, resilience

to adapt infection and strong memory e�ects. It also showed that removed nodes have

higher containment of infection and persistence at lower level of FF orders. We examined

the impact of di�erent parameters such as initial infection rate, variable adjustment to

sensitivity of infected nodes, immune rate of antivirus strategies and loss rate of immunity

of recovered nodes of mathematical model under p = q = 1 and p = q = 0.90. Through the

graphs we �nd out the e�ect of memory on di�erent types of nodes in system. We explored

sensitivity, convergence, and stability of nodes under fractal fractional model. It will help

us to predict about the vulnerabilities in computer systems. Antivirus strategies can be

made by developing software that may help in containment and eradication of infection

in the nodes by keeping an eye on the behavior of nodes. The graphs gave a clear insight

that by choosing appropriate variable infection rate, the prevalence of malware can be

controlled. Continuing this process, we investigated the impacts of other parameters

too on malware model. We also compared four methods (classical, fractional, fractal,

fractal-fractional). We discussed the cases when these models may be more suitably

used. Moreover, we tried to see the impact of variable order fractional derivative and

variable order fractal derivative about stability of the system.
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Chapter 5

Comparison of three kernels and four

forms of mathematical models

⃝

⃝

In this chapter, we compare the results of three kernels (Powerlaw kernel, Exponential

Decay kernel, Mittag-le�er kernel) and four mathematical models (classical, fractional,

fractal and fractal-fractional).

5.1 Comparison

In �gs.1-3 we compare number of nodes for three kernels in four di�erent models and

�gs.4-6 we compare four models for three kernels.

In �g.1, we see that under classical and fractal models, no. of susceptible nodes in FFP

and FFM are same and in fractional and fractal-fractional values are approximately

same. In classical and fractal models, model gets the same values in FFP later than

FFE that means FFP is slower than FFE. That means it is more sensitive to the ini-

tial conditions and exhibits more complexity. In fractional and fractal-fractional models,

no. of susceptible nodes in FFP and FFM are more than FFE. It shows that FFP

and FFM has increased risk of epidemic outbreak, higher rate of infection, less im-

mune population, more vulnerable to the spread and potential for rapid epidemic spread.

Moreover, convergence is rapid in classical, then fractal, fractional and fractal-fractional
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Figure 5.1: Comparison of Susceptible nodes for classical, fractional, fractal and fractal-

fractional models

respectively. Similarly, we can compare the results in �g.2 and �g.3. FFE may reduce

the epidemic risk and system is more resilient to the spread of malware.

In �gs.4-6 we see the comparison of classical, fractional, fractal and fractal-fractional

mathematical models with respect to three kernels respectively. Observing the graphs,

we see that the models constitute the sequence classical, fractal, fractional and fractal-

fractional. By seeing the behavior of nodes, we conclude that FF model is less e�cient

in containing the spread of malware, exhibits an increased epidemic risk, capture the

complex dynamics, exhibits non-linear dynamics and more sensitive to parameter uncer-

tainty.

5.2 Conclusion

In this chapter, a deterministic mathematical model on malware propagation has been

discussed in the sense of fractal fractional derivatives. At �rst stage, the classical math-

ematical model given in [32] has been converted in fractal fractional model with the

kernels (Power law kernel, Exponential Decay kernel and Mittag-Le�er kernel). Ini-

tially the models were examined theoretically. For existence Leray Schauder criteria with

Arzela Ascoli's theorem is used. Uniqueness is proved with the help of Lipschitz property

and stability is checked by Ulam-Hyers and Ulam-Hyers-Rassias theorems. Secondly, nu-
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Figure 5.2: Comparison of Infected nodes for classical, fractional, fractal and fractal-

fractional models
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Figure 5.3: Comparison of Removed nodes for classical, fractional, fractal and fractal-

fractional models
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Figure 5.4: Comparison of classical, fractional, fractal, and fractal-fractional models un-

der FFP
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der FFE
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Figure 5.6: Comparison of classical, fractional, fractal, and fractal-fractional models un-

der FFM

merical schemes were developed using Lagrange interpolation using two-points formula

and simulations were performed using Matlab codes on R2016a to verify the accuracy of

theoretical results.

During simulations, fractal fractional models were examined under fractal dimensions

and fractional orders separately. Then combined e�ect of fractal dimensions and frac-

tional orders was discussed. We also examined the impact of di�erent parameters such as

initial infection rate, variable adjustment to sensitivity of infected nodes, immune rate of

antivirus strategies and loss rate of immunity of recovered nodes of mathematical model

[32] under p = q = 1 and p = q = 0.90. Observing graphs we �nd out that higher number

of susceptible and infected nodes and lower no. of removed nodes depicts that the system

is more vulnerable to the spread of decrease, has reduced immunity, has non-linear dy-

namics, more sensitivity to uncertainty of parameters, potential for epidemic outbreaks,

sensitivity to external in�uences, higher containment of infection and persistence, re-

silience to adapt infection and strong memory e�ects. When the nodes are closed to each

other, it shows that the network is highly connected, can facilitate the spread of malware,

can increase the risk of contagion and system may exhibit a clustered structure. Conver-

gence shows stability of the system and convergence to one point shows that nodes have

converged to a �xed point. Early convergence shows tat system becomes stable early and

when no of infected nodes becomes zero, it means the disease has been eradicated and
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equilibrium state has been achieved. We also �nd out the e�ect of memory on di�erent

types of nodes in system. As we explore sensitivity, convergence, and stability of suscep-

tible, infected, and removed nodes under fractal fractional model, it helps us to predict

about the vulnerabilities in computer systems. Antivirus strategies can be made by de-

veloping software that may help in containment and eradication of infection in the nodes

by keeping an eye on the behavior of nodes. In classical form, this model gave a clear

insight that by choosing appropriate variable infection rate, the prevalence of malware

can be controlled. Our FF model agrees with it. We also compared four methods named

as classical, fractional, fractal, and fractal-fractional. We discussed the cases when these

models may be more suitably used. Moreover, we tried to see the impact of variable order

fractional derivative and variable order fractal derivative. Although sometimes we see a

very small di�erence, but it may play a role in malware propagation as small changes may

cause large perturbations. Our �ndings may be helpful in installing antivirus software

in cyber security practice by keeping in view the past behaviors of previous nodes. This

model is suitable for malware like red worms, Nimda, Slammer worms, and Wittyworms

etc. That means the malware which depends on variable infection rate and time-delay

factors, in that case our �ndings will help in developing antivirus strategies keeping in

mind its cost factor.
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