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Introduction

Fuzzy Set (FzS), Rough Set (RfS), and Soft Set (SfS) methodologies are invaluable tools

for examining uncertainty and incompleteness within information systems. These frameworks

offer distinct advantages and find wide-ranging applications across artificial intelligence, real-

world problem-solving, and computer science domains.

In the realms of both natural and social sciences, a plethora of Fuzzy concepts abound. Zadeh

[70] introduced Fuzzy Set (FzS) theory in 1965, providing a mathematical framework to rep-

resent fuzziness. By adeptly portraying fuzziness using formal mathematical language, Zadeh

ushered in a groundbreaking approach to processing Fuzzy and uncertain information. The

structured and well-formulated mathematical methods inherent in FzS theory have empow-

ered humanity to grapple with data and information residing within uncertain boundaries.

Notably, FzS theory aligns seamlessly with the cognitive processes of human perception and

reasoning, thereby enriching our understanding of complex phenomena.

Molodstove [40] introduced the concept of Soft Set (SfS), distinguished by its innovative

parameterization technique, which distinguishes it from traditional methods. This novel ap-

proach has fostered a broad spectrum of applications across various disciplines, including

Riemann Integration, operational research, game theory, probability theory, and measure

theory. Building upon Molodstove’s foundational work, Maji et al. [42, 43] further enhanced

the theoretical underpinnings of SfSs by introducing various operations, thus enriching the

methodological toolkit available for SfS analysis.

Subsequent advancements by Ali et al. [3] refined and extended the operations proposed by

Maji et al. [43], demonstrating the validity of De-Morgan’s laws within the context of SfS

theory. Maji et al. [41] embarked on a pioneering effort to amalgamate the structural frame-

work of SfSs with that of Fuzzy Sets (FzSs), giving rise to the innovative concept of Fuzzy

Soft Set (FzSfS). This fusion of methodologies opened new avenues for tackling decision-
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making problems, as demonstrated by Feng et al. [23].

Further explorations into SfS theory, as documented in [6, 44], have elucidated additional op-

erations, thereby refining our understanding and expanding the applicability of SfS method-

ologies. Ali and Shabir [5] contributed to the field by defining logic connectives tailored

specifically for SfSs and FzSfSs, enhancing the logical coherence of these methodologies.

Additionally, in their subsequent work [4], Ali and Shabir presented improvements to the

operations of FzSfS as defined in [41], further refining the methodological toolkit available

for FzSfS analysis.

Pawlak [46] introduced Rough Set (RfS) theory as a mathematical framework for addressing

vagueness and uncertainty. Central to RfS theory is the fundamental assumption that each

object in a universe possesses some associated knowledge. For instance, in the context of

citizens of a country like Pakistan, the information system might be structured around Na-

tional Identity Cards, allowing for the classification of objects as indiscernible based on their

similarity. The indiscernibility relation forms the mathematical foundation of RfS theory,

generating equivalence classes that represent concepts within the knowledge base. Every idea

is characterized by a couple of ideas known as the lower estimation and the upper guess,

working with extracting significant experiences from unsure information.

RfS theory has garnered significant interest across various disciplines, including artificial in-

telligence, cognitive sciences, and machine learning. Intelligent systems, pattern recognition,

and decision analysis are just a few of the many fields in which it can be used. This expan-

siveness features its flexibility and highlights its pertinence in different fields. RfS theory

broadens traditional set theory and offers unmistakable benefits. Dissimilar to statistical

methods, it does not need extra information, for example, probability measures, or MmDgs

as in FzSs.

The combination of RfSs with other mathematical structures, such as FzSs, has further

broadened its utility, enabling the description of attribute sets with ease. Various extensions

and refinements of RfS theory have been proposed in the literature, including covering-based
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RfSs, variable precision RfSs, and RfSs based on Binary Relations [66]. Dubois and Prade

[20] integrated RfSs and FzSs based on Pawlak approximation space, enhancing the analyt-

ical capabilities of both methodologies.

Additionally, RfS models have found applications in diverse problem domains, as evidenced

by their utilization in various research endeavors [12, 13, 14, 15, 18, 20, 30, 50, 67, 73]. Further

advancements in RfS theory include the exploration of roughness in groups and subgroups

[16], the development of generalized RfS based on Binary Relations [72], and the investigation

of roughness in semigroups (SmG) [34] and order SmGs based on pseudo-order [53]. Besides,

mathematicians have examined the idea of rough Ideal (RfId) of rings [18]. In addition, efforts

have been made to integrate RfSs, SfSs, and FzSs to define soft approximation spaces, [24].

In decision-making scenarios, diverse experts often yield varying evaluation results, neces-

sitating a comprehensive framework beyond the conventional membership degree (MmDg)

offered by Fuzzy Sets (FzSs). In light of this need, Atanassov [7] presented the idea of the

Intuitionistic Fuzzy Set (ItFzS), where ItFzS incorporates both the MmDg as well as the non-

membership degree (NnMmDg). Each element in an ItFzS U is characterized by its MmDg

(UY (¨)) and NnMmDg (UN(¨)). The relationship UY (¨) + UN(¨) ≤ 1 characterizes the level

of certainty and non-trust in the element’s classification inside the universal set ξ.

The novelty of ItFzS theory has spurred extensive research endeavors aimed at exploring its

theoretical foundations and practical applications. Feng et al. [22] gave the concept of Intu-

itionistic Fuzzy Soft Set (ItFzSfS), expanding upon ItFzSfS theory by considering various

operations on it.

However, the constraint UY (¨)+UN(¨) ≤ 1 confines the feasible selection of UY (¨) and UN(¨)

to form a triangular region in the first quadrant, as illustrated in Figure 1. This limita-

tion poses challenges in scenarios where UY (¨) + UN(¨) > 1, within the permissible range

UY (¨), UN(¨) ∈ [0, 1]. To address this issue, Yager [61] proposed the concept of Pythagorean

Fuzzy Set (PyFzS), where the MmDg UY (¨) and NnMmDg UN(¨) adhere to the relation
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U2
Y (¨) +U2

N(¨) ≤ 1. This relation delineates a unit quarter circle in the first quadrant, as de-

picted in Figure 2, providing a broader spectrum for expressing the MmDg and the NnMmDg

of a Pythagorean Fuzzy Set.

By making use of PyFzS, we get an expanded set of membership and NnMmDgs, effectively

capturing the uncertainty associated with decision-making processes. Compared to ItFzSs,

PyFzSs encompass a larger set of points, as illustrated in Figure 3, thereby offering a more

comprehensive representation of uncertain information and decision-making scenarios. While

Figure 1

ItFzSs and PyFzS offer valuable frameworks for handling incomplete information, certain lim-

itations persist. For instance, consider a scenario where a decision maker provides UY (¨) = 0.7

and UN(¨) = 0.9. In this case, U2
Y (¨) + U2

N(¨) = 1.30 > 1, highlighting a discrepancy that

ItFzSs and PyFzSs cannot accommodate.

To this end, Yager [62] introduced the novel idea of a q-Rung Orthopair Fuzzy Set (qROFzS),

which extends the capabilities of both ItFzSs and PyFzSs. In qROFzSs, the MmDg UY (¨)

and NnMmDg UN(¨) adhere to the relation U q
Y (¨) + U q

N(¨) ≤ 1, where q ≥ 1. For instance,

the pair (0.5, 0.4) represents an intuitionistic MmDg since 0.5 + 0.4 ≤ 1. Conversely, if the

NnMmDg is 0.6, then 0.5+0.6 ≥ 1, indicating a Pythagorean MmDg which is not an intuition-

istic MmDg. However, scenarios such as (0.5, 0.9) cannot be adequately described by either
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Figure 2

Figure 3

ItFzSs or PyFzSs. In this case, with 0.5 + 0.9 ≥ 1 and 0.52 + 0.92 ≥ 1, (0.5, 0.9) represents

a q-Rung Orthopair MmDg (q ≥ 3), making qROFzS suitable for resolving decision-making

dilemmas. Notably, for q = 1, qROFzS reduces to an ItFzS, while for q = 2, it aligns with

a PyFzS, illustrating the generalization of both models. qROFzSs offer a broader spectrum

of Fuzzy information expression, providing increased flexibility and suitability for navigating

uncertain environments.

In [69], Yager and Alajlan proposed the fundamental features of qROFzS, which play a crucial

role in knowledge representation. Ali [8], leveraging the concept of orbits, offered an alterna-

tive interpretation of qROFzS.

Meanwhile, Peng et al. [51] scrutinized the exponential and aggregate operators of qROFzSs,
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endorsing various scoring functions and applying them to the selection of education manage-

ment systems. Shaheen et al. [55] devised an alternative approach supporting qROFzS for

deriving score functions.

Hussain et al. [28] established covering-based rough qROFzS and presented a methodology for

resolving decision-making problems. Additionally, Bilal et al. [10] formulated a generalized

rough qROFzS based on the Binary Relation of the dual universe, utilizing this framework to

elucidate and determine certain fundamental concepts.

The qROFz aggregation operators for averaging information were subsequently introduced by

Liu and Wang [35]. This foundational work has spurred further research into qROFz theory,

with contributions from various scholars [8, 19, 37, 38, 39, 59, 68]. This ongoing exploration

holds the promise of enhancing our capacity to manage uncertainty and incomplete informa-

tion in decision-making processes.

In summary, this dissertation aims to advance the study of extended Fuzzy sets by introduc-

ing novel frameworks, algorithms, and applications. The theoretical contributions made in

this work provide a strong foundation for addressing real-world problems in decision-making,

pattern recognition, and more.

Motivation

The exploration of Pythagorean Fuzzy Sets (PyFzSs) has been extensive, with numerous re-

searchers delving into its theory and applications across various fields. Peng et al. [47] laid

down the foundations by defining Pythagorean Fuzzy Soft Sets (PyFzSfS), elucidating basic

operations, and showcasing applications. Zhang et al. [71] proposed an application of TOP-

SIS over PyFzS, expanding its utility in decision-making contexts. Additionally, Hussain et

al. [28] introduced Pythagorean Fuzzy soft rough sets (PyFzSfRfSs), further enriching the

theoretical framework. Olgun et al. [45] contributed to the advancement of PyFzS theory by

defining Pythagorean Fuzzy Topological Spaces (PyFzTpSs) and exploring Pythagorean Fuzzy
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continuity between two PyFzTpSs. Mean operators for PyFzSs have also been developed by

several authors, as documented in [58, 60].

Recent research has seen a surge in the study of q-Rung Orthopair Fuzzy Sets (qROFzSs).

Peng et al. [52] introduced an algorithm for emergency decision-making using qROFzSs,

demonstrating their effectiveness in critical scenarios. Hussain et al. [29] innovatively com-

bined qROFzS with Soft Sets, presenting aggregation operators that enhance their applicabil-

ity. Furthermore, in [36, 51], researchers defined various mean operators tailored for qROFzS,

such as qROFz Bonferroni mean operators and exponential operators, contributing to the

versatility of the model.

Chapter-wise Study

Chapter one serves as an introduction to foundational concepts essential for the subsequent

chapters.

In the second chapter, inspired by the pioneering work of Yager [61], we extend the frame-

work presented by Kanwal and Shabir [32] to the realm of Pythagorean Fuzzy Sets (PyFzSs).

We delve into lower and upper approximations of PyFzSs using soft Binary Relations con-

cerning FrS and AfSs, establishing their properties. Additionally, we introduce two types

of Pythagorean Fuzzy Topological Spaces (PyFzTpSs) derived from soft Binary Relation

(SfBnR) and explore similarity relations between PyFzSs. The notion of roughness and

accuracy for Pythagorean MmDgs with respect to FrS and AfSs is also introduced. Fur-

thermore, an algorithm for decision-making using PyFzSs is provided, accompanied by an

illustrative example demonstrating its application in real-world scenarios.

The third chapter focuses on the lower approximation (LoAp) and the upper approximation

(UpAp) of a q-Rung Orthopair Fuzzy Set (qROFzS) utilizing Crisp Binary Relations (CrBnR)

with respect to FrS and AfSs, along with their associated properties. We delve into two types

of q-Rung Orthopair Topological Spaces (qROFzTpSs) induced by CrBnRs and explore simi-
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larity relations between qROFzSs based on CrBnRs. Additionally, we introduce the concept

of roughness and accuracy for q-Rung Orthopair MmDgs with respect to FrS and AfSs. An

algorithm for decision-making using qROFzSs is presented, along with a practical example

illustrating its efficacy in decision-making contexts.

In the fourth chapter, we extend the approach outlined by Kanwal and Shabir [31] and Bilal

et al. [9, 10] to the realm of qROFzS utilizing SfBnRs on dual universes, following Yager’s

pioneering idea. The chapter explores the properties of lower and upper approximations of
qROFzSs based on SfBnRs concerning FrS and AfSs. We discuss various types of q-Rung

Orthopair Fuzzy Topologies (qROFzTps) constructed using soft Reflexive Relations (SfRfR)

and introduce similarity relations between qROFzSs based on SfBnRs. Moreover, we present

a graphical solution for decision-making problems using qROFzSs, accompanied by an illus-

trative example to demonstrate its application.

The fifth chapter delves into the approximation of PyFzSs in terms of SfRfRs. We discuss

approximations of PyFzSs by FrS and AfSs, resulting in upper and lower PyFzSfSs. Fur-

thermore, we explore the approximation of PyFz subSmGs (SbSmGs), Pythaorean Fuzzy Left

Ideals (PyFzLfIds), Pythagorean Fuzzy Right Ideals (PyFzRiIds), Pythagorean Fuzzy Inte-

rior Ideals (PyFzItIds), and Pythagorean Fuzzy Bi-Ideals (PyFzBiIds) of SmGs, accompanied

by illustrative examples.

In the sixth chapter, we extend our discussion to the approximation of qROFzSs in terms

of SfRfRs. Similar to the previous chapter, we explore approximations of qROFzSs sets by

FrS and AfSs, yielding upper and lower qROFzSfSs. Additionally, we delve into the approx-

imation of qROFzSbSmGs, qROFz left (right) Ideals, qROFzItIds, and qROFzBiIds of SmGs,

complemented by relevant examples.
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Chapter 1

Basic Concepts

This chapter lays the foundation with fundamental concepts related to Fuzzy Set (FzS),

Intuitionistic Fuzzy Set (ItFzS), Pythagorean Fuzzy Set (PyFzS) and its properties, q-Rung

Orthopair Fuzzy Set (qROFzS) and its properties, Crisp Binary Relation (CrBnR), Rough

Set (RfS), Rough Pythagorean Fuzzy Set (RfPyFzS, Soft Set (SfS), Soft Binary Relation

(SfBnR), Pythagorean Fuzzy Soft Set (PyFzSfS), SmG (SmG), and Pythagorean Fuzzy Ideals

(PyFzIds), which are indispensable for subsequent chapters.

Throughout our discussion, ξ, ξ1 and ξ2 denote non-empty finite sets unless otherwise

specified.

1.1 Fuzzy sets and their generalizations

Fuzzy Set (FzS) theory, introduced by Zadeh [70], offers a powerful approach to handling

vagueness and uncertainty in various systems. Fuzzy Set (FzS) has become a valuable tool

in both scientific and mathematical domains, especially for describing complex or ambiguous

systems.

Definition 1.1.1. [70] A FzS U in ξ is a map U : ξ → [0, 1]. A FzS is non-empty if

U(¨) ̸= 0, for some ¨ ∈ ξ.

10



Here, U(¨) represents the MmDg of the object ¨ in the Fuzzy set, and the mapping U is

termed the membership function (Mmfn) on ξ.

The families of all FzSs in ξ are denoted by Fz(ξ).

In addition to considering MmDgs in FzSs, situations in real life often necessitate the con-

sideration of NnMmDgs. To address this need, Atanassov [1] introduced the concept of Intu-

itionistic Fuzzy Set (ItFzS).

Definition 1.1.2. [1] An Intuitionistic Fuzzy Set (ItFzS) U in ξ takes the form:

U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ}

Here, UY : ξ → [0, 1] and UN : ξ → [0, 1], satisfying the constraint UY (¨) + UN(¨) ≤ 1. Each

(UY (¨), UN(¨)) pair, for any ¨ ∈ ξ, is termed an Intuitionistic Fuzzy Number.

Definition 1.1.3. [61] A Pythagorean Fuzzy Set (PyFzS) U in the universe ξ takes the form

U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ}

where UY : ξ → [0, 1] and UN : ξ → [0, 1] which satisfy the Pythagorean condition U2
Y (¨) +

U2
N(¨) = r2(¨) for all ¨ ∈ ξ, where r : ξ → [0, 1]. Here, the MmDg of ¨ is represented by

UY (¨), UN(¨) represents the NnMmDg of ¨, and r(¨) denotes the strength of commitment at

point ¨ ∈ ξ. The pair (UY (¨), UN(¨)) for any ¨ ∈ ξ is termed a Pythagorean Fuzzy Number.

Definition 1.1.4. [61] Let (r(¨), θ(¨)) denotes polar coordinates of the Pythagorean Fuzzy

Number (UY (¨), UN(¨)), such that

UY (¨) = r(¨) cos(θ(¨)) and UN(¨) = r(¨) sin(θ(¨))

for ¨ ∈ ξ. Then, the function d : ξ → [0, 1] defined by d(¨) = (1 − 2θ(¨)
π

) corresponds to the

direction of commitment at ¨.
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If θ(¨) = π
2
, then UY (¨) = 0, UN(¨) = r(¨), indicating d(¨) = 0. Conversely, if θ(¨) = 0, then

UY (¨) = r(¨), UN(¨) = 0, resulting in d(¨) = 1.

Here, πU(¨) =
√

1− U2
Y (¨)− U2

N(¨) represents the indeterminacy of an object ¨ ∈ ξ.

It is evident that PyFzS generalizes both ItFzS and FzS. In decision-making problems, the

PyFzS provides a larger membership space than the ItFzS. Therefore, a PyFzS exhibits

greater capability than an ItFzS in modeling vagueness in real-life decision-making problems.

All Pythagorean Fuzzy Sets in ξ are denoted as PyFzS(ξ).

Definition 1.1.5. Consider U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ} and V = {⟨¨, VY (¨), VN(¨)⟩ : ¨ ∈

ξ} be two PyFzSfSs in ξ. The basic operations on PyFzS(ξ), defined by Yager[61], are as

follows:

i) U ∪ V = {⟨¨, UY (¨) ∨ VY (¨), UN(¨) ∧ VN(¨)⟩ : ¨ ∈ ξ}

ii) U ∩ V = {⟨¨, UY (¨) ∧ VY (¨), UY (¨) ∨ VN(¨)⟩ : ¨ ∈ ξ}

iii) U ⊆ V if and only if UN(¨) ≥ VN(¨) and UY (¨) ≤ VY (¨), for all ¨ ∈ ξ

iv) U = V if and only if UY (¨) = VY (¨) and UN(¨) = VN(¨), for all ¨ ∈ ξ

v) U c = {⟨¨, UN(¨), UY (¨)⟩ : ¨ ∈ ξ}.

The PyFzS 1U = ⟨1, 0⟩ and PyFzS 0U = ⟨0, 1⟩, where 1(¨) = 1 and 0(¨) = 0, for all ¨ ∈ ξ.

In [61], Yager introduced a scoring function for comparing and ranking two PyFzNs based

on their scores.

Definition 1.1.6. Let (UY (¨), UN(¨)) represent a PyFzN for ¨ ∈ ξ. Yager[61] defined the

scoring function f of PyFzN as:

f(rU(¨), θU(¨)) =
1

2
+ rU(¨)

(
1

2
− 2θU(¨)

π

)

where r2U(¨) = U2
Y (¨) + U2

N(¨) and cos(θU(¨)) =
UY (¨)
rU (¨)

.
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Definition 1.1.7. [61] Let U(¨) and V (¨) for ¨ ∈ ξ be two PyFzNs, and f(rU(¨), θU(¨)) and

f(rV (¨), θV (¨)) be the scores of U(¨) and V (¨) respectively. Then

i) U > V if f(rU(¨), θU(¨)) > f(rV (¨), θV (¨))

ii) U < V if f(rU(¨), θU(¨)) < f(rV (¨), θV (¨))

iii) U = V if f(rU(¨), θU(¨)) = f(rV (¨), θV (¨)).

Yager [62] proposed q-Rung Orthopair Fuzzy Set (qROFzS), which enlarges the range of

membership functions. In the following, a brief introduction of qROFzSs is given.

Definition 1.1.8. [62] A q-Rung Orthopair Fuzzy Set (qROFzS) U in ξ is defined by:

U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ, q ≥ 1}

where UY : ξ → [0, 1] and UN : ξ → [0, 1] satisfy U q
Y (¨) + U q

N(¨) ≤ 1, for all ¨ ∈ ξ. Here, the

MmDg of ¨ is denoted by

UY (¨), while UN(¨) indicates the NnMmDg of ¨. The indeterminacy or hesitancy of ¨ ∈ ξ is

given by πU(¨) = 1 − (U q
Y + U q

N)
1
q . The pair (UY (¨), UN(¨)) for any ¨ ∈ ξ is referred to as a

q-Rung Orthopair Fuzzy Number (qROFzN).

qROFz(ξ) denotes all qROFzSs in ξ.

It’s worth noting that for q = 1, (UY (¨), UN(¨)) represents an ItFzN , and for q = 2, it

corresponds to a PyFzN . From Figure 1.1, it’s apparent that qROFzSs cover a wide range of

membership and NnMmDgs, making them more versatile than PyFzSs and ItFzSs.

The qROFzS 1U = ⟨1, 0⟩ and qROFzS 0U = ⟨0, 1⟩, where 1(¨) = 1 and 0(¨) = 0, for all ¨ ∈ ξ.

Definition 1.1.9. [35] Let U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ, q ≥ 1} and V = {⟨¨, VY (¨), VN(¨)⟩ :

¨ ∈ ξ, q ≥ 1} be two qROFzSs in ξ. Lie and Wang [35] defined the basic operations on
qROFzS(ξ) as follows:
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Figure 1.1

i) U ∪ V = {⟨¨, UY (¨) ∨ VY (¨), UN(¨) ∧ VN(¨)⟩ : ¨ ∈ ξ, q ≥ 1}

ii) U ∩ V = {⟨¨, UY (¨) ∧ VY (¨), VY (¨) ∨ VN(¨)⟩ : ¨ ∈ ξ, q ≥ 1}

iii) U ⊆ V if and only if UN(¨) ≥ VN(¨) and UY (¨) ≤ VY (¨), for all ¨ ∈ ξ

iv) U = V if and only if UY (¨) = VY (¨) and UN(¨) = VN(¨), for all ¨ ∈ ξ

v) U c = {⟨¨, UN(¨), UY (¨)⟩ : ¨ ∈ ξ}.

vi) U ⊕ V = {⟨¨, [U q
Y (¨) + V q

Y (¨)− UY (¨).VY (¨)]
1
q , UN(¨).VN(¨)⟩ : ¨ ∈ ξ, q ≥ 1}

vii) U ⊗ V = {⟨¨, UY (¨).VY (¨), [U
q
N(¨) + V q

N(¨)− UN(¨).VN(¨)]
1
q ⟩ : ¨ ∈ ξ, q ≥ 1}

viii) U t = {⟨¨, U t
Y (¨), (1− (1− U q

N(¨))
t)

1
q ⟩ : ¨ ∈ ξ, q ≥ 1, t ≥ 0}

ix) tU = {⟨¨, (1− (1− U q
Y (¨))

t)
1
q , U t

N(¨)⟩ : ¨ ∈ ξ, q ≥ 1, t ≥ 0}.

Definition 1.1.10. [57] For any qROFzS U = (UY (¨), UN(¨)), ¨ ∈ ξ, we define the score

function as

S(U) =
1

2
(1 + U q

Y (¨)− U q
N(¨)),

where q ≥ 1. A higher score value indicates a better Orthopair.
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1.2 Rough sets: Definitions and examples

Here, we present a couple of ideas linked with Rough Set (RfS) theory. Moreover, some

examples are added to demonstrate these concepts.

Definition 1.2.1. A Crisp Binary Relation (CrBnR) J from ξ1 to ξ2 is a subset of ξ1 × ξ2

and a Binary Relation (BnR) on ξ1 is a subset of ξ1 × ξ1.

If J is a BnR on ξ1, then:

1) J is Reflexive if (¨, ¨) ∈ J for all ¨ ∈ ξ1.

2) J is symmetric if (¨1, ¨2) ∈ J implies (¨2, ¨1) ∈ J for all ¨1, ¨2 ∈ ξ1.

3) J is transitive if (¨1, ¨2), (¨2, ¨3) ∈ J implies (¨1, ¨3) ∈ J for all ¨1, ¨2, ¨3 ∈ ξ1.

If J satisfies the above three conditions, then it is called an equivalence relation (EqR).

In Pawlak’s work [46], the theory of RfS was originally introduced to manage imprecision

and incompleteness within data frameworks.

If ξ ̸= ∅ represents a finite set and J serves as an EqR on ξ, then (ξ, J) is denoted as an

approximation space (ApS). A subset U ⊆ ξ, which is composed of a combination of some

equivalence classes of ξ, is defined as definable. On the contrary, if U is not definable, it

cannot be expressed as a union of equivalence classes.

When U is not definable, it can be estimated using the upper approximation (UpAp) and lower

approximation (LoAp). These approximations are two definable subsets of ξ and are defined

as follows:

J(U) = ∪{[¨] : [¨]J ⊆ U} and J(U) = ∪{[¨]J : [¨]J ∩ U ̸= ∅}. The pair (J(U), J(U))

constitutes a RfS. The set H = J(U) − J(U) represents the boundary region. If J(U) is

equal to J(U), then U is definable, and J(U)− J(U) results in the empty set.

Definition 1.2.2. [46] A subset U of ξ represents a Crisp Set if J(U) = J(U).
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The set ξ can be divided into three separate parts using the LoAp and UpAp of a subset

U ⊆ ξ.

Theorem 1.2.3. [46] Consider J be EqR defined on a set ξ. If ξ has subsets U and V , then:

i) J(U) ⊆ U ⊆ J(U)

ii) U ⊆ V implies J(U) ⊆ J(V )

iii) U ⊆ V implies J(U) ⊇ J(V )

iv) J(U ∩ V ) = J(U) ∩ J(V )

v) J(U) ∪ J(V ) ⊆ J(U ∪ V )

vi) J(U ∪ V ) = J(U) ∪ J(V )

vii) J(U ∩ V ) ⊆ J(U) ∩ J(V ).

Example 1.2.4. Let (ξ, J) be an approximation space (ApS), where ξ = {¨1, ¨2, ¨3, ¨4, ¨5}

and J is an EqR. Consider the following equivalence classes:

[¨1] = {¨1, ¨2, ¨3},

[¨3] = {¨4, ¨5}.

Let U = {¨1, ¨3} and V = {¨2, ¨4}. Then J(U) = {¨1, ¨3} and J(U) = {¨1, ¨2, ¨3}, J(V ) =

{¨2, ¨4} and J(V ) = {¨1, ¨2, ¨3, ¨4}.

So J(U) = ({¨1, ¨3}, {¨1, ¨2, ¨3}) is a RfS and J(V ) = ({¨2, ¨4}, {¨1, ¨2, ¨3, ¨4}) is a Crisp Set.

1.3 Soft Sets and Soft Substructures

Molodtsov [40] introduced the theory of Soft Sets (SfS) as a fundamental notion for handling

uncertainty. SfSs offer various operations that are useful in dealing with different types of
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situations. This theory suggests that every collection of objects in the universe ξ can be

associated with a subset E of attributes (characteristics or parameters) for ξ.

P (ξ) denotes the set of all Crisp subsets of ξ. When D is a subset of E, with E being the

universal set of parameters, we explore fundamental definitions associated with SfSs.

Definition 1.3.1. Consider S : D → P (ξ). Then (S , D) is termed as a Soft Set over ξ.

Molodtsov provided several concrete examples to illustrate Soft Sets. One such example

is presented below.

Example 1.3.2. Suppose we have a universe ξ consisting of eight cars: ¨1, ¨2, ¨3, ¨4, ¨5, ¨6, ¨7,

and ¨8. We want to evaluate these cars based on certain attributes to determine their suitability

for a potential buyer. Let D be the set of attributes describing these cars:

D = {e1 = luxury, e2 = fuel-efficient, e3 = spacious, e4 = reliable, e5 = affordable}

Now, let’s define a SfS (S , D) representing the preferences of the buyer:

S (e1) = {¨1, ¨2, ¨5}

S (e2) = {¨2, ¨3, ¨4, ¨7}

S (e3) = {¨4, ¨6, ¨8}

S (e4) = {¨1, ¨4, ¨6}

S (e5) = {¨3, ¨5, ¨7, ¨8}

This SfS indicates which cars are preferred based on each attribute. For example, S (e1)

represents the subset of luxury cars, including ¨1, ¨2, and ¨5. Similarly, S (e2) represents the

subset of fuel-efficient cars, and so on. The representation of SfS is shown in the Table below:
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Table 1.1: SfS (S , D)

(S , D) e1 e2 e3 e4 e5

¨1 1 0 0 1 0

¨2 1 1 0 0 0

¨3 0 1 0 0 1

¨4 0 1 1 1 0

¨5 1 0 0 0 1

¨6 0 0 1 1 0

¨7 0 1 0 0 1

¨8 0 0 1 0 1

Each row corresponds to a car and each column corresponds to an attribute. The entries

in the table indicate whether a particular car possesses the corresponding attribute (1) or not

(0).

Example 1.3.2 demonstrates how a SfS can be used to evaluate objects based on multiple

attributes, providing flexibility in decision-making processes. Now, let’s discuss some essential

operations of SfSs.

Definition 1.3.3. A SfBnR (S , D) can be defined as a SfS from ξ1 to ξ2, denoted as

S : D → P (ξ1 × ξ2).

The aforementioned definition suggests that (S , D) denotes a set of BnRs from ξ1 to ξ2

that are parameterized. Each parameter e in D corresponds to a Binary Relation S (e) from

ξ1 to ξ2.

Maji et al. [41] combined the structures of SfS and FzS and introduced the novel concept of

the Fuzzy Soft Set (FzSfS), which provides a parameterized collection of FzSs on ξ. Peng et

al. [47] proposed the idea of a Pythagorean Fuzzy Soft Set (PyFzSfS).

Definition 1.3.4. [47] A pair (S , D) is termed as a Pythagorean Fuzzy Soft Set (PyFzSfS)

over ξ if S : D → PyFzS(ξ) such that S (e) is a PyFzS in ξ for each e ∈ D. Therefore, a
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Pythagorean Soft Set (PyFzSfS) over ξ is a parameterized collection of PyFzSs in ξ.

Definition 1.3.5. [47] The subset relationship between two PyFzSfSs (S1, D1) and (S2, D2)

over a finite set ξ is defined as follows: (S1, D1) is a PyFzSf subset of (S2, D2) if D1 ⊆ D2

and S1(e) ⊆ S2(e) for all e ∈ D1.

Two PyFzSfSs (S2, D2) and (S1, D1) are considered to be equal if (S1, D1) ⊆ (S2, D2) and

(S2, D2) ⊆ (S1, D1).

Definition 1.3.6. [47] The union and intersection of PyFzSfSs (S1, D), (S2, D) over the

common universal set ξ are the PyFzSfSs (S3, D) and (S4, D), respectively, where S3(e) =

S1(e) ∪ S2(e) and S4(e) = S1(e) ∩ S2(e) for all e ∈ D.

Molodtsov’s idea of an SfS has been expanded and combined with different frameworks.

The concept of q-Rung Orthopair Fuzzy Soft Set (qROFzSfS) and a q-Rung Orthopair Soft

Topology (qROFzSfT ) was introduced by Hamid et al. [27], together with an MCGDM

approach.

Definition 1.3.7. [27] Let D denote a subset of set of parameters, and ξ a finite universe.

If S : D → qROFzS(ξ) is defined such that S (e) ∈ qROFzS(ξ) for each e ∈ D, then the

pair (S , D) is referred to as qROFzSfS over ξ. Consequently, a qROFzSfS in ξ provides a

parameterization of qROFzSs in ξ.

Definition 1.3.8. [27] For two qROFzSfSs (S1, D1), (S2, D2) over a common universal set

ξ, we define (S1, D1) as a qROFzSf subset of (S2, D2) if D1 ⊆ D2 and S1(e) ⊆ S2(e) for all

e ∈ D1. Additionally, two qROFzSfSs (S1, D1), (S2, D2) are considered qROFzSfS equal if

(S1, D1) ⊆ (S2, D2) and (S2, D2) ⊆ (S1, D1).
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Finally, let’s define some substructures of Soft Sets with respect to a SmG M .

1.4 Semigroups: Definitions and Examples

In this section, we delve into the intricacies of SmGs, presenting definitions and examples.

Definition 1.4.1. A SmG is defined as a non-empty set M with a binary operation ·, where

the operation satisfies the associative property. Here are some key concepts related to SmGs:

1) The product UV of two subsets U and V of SmG M consists of all products mn, where

m ∈ U and n ∈ V .

2) The SmGs M and V can be combined to form a new SmG M × V through the Cartesian

product. In this new SmG, the operation is defined as (m,n)(m′, n′) = (mm′, nn′) for

all n, n′ ∈ V and m,m′ ∈ M .

3) A subsemigroup (SbSmG) of a SmG M is a non-empty subset U such that for all m,n ∈ U ,

the product mn ∈ U .

4) If a non-empty subset U ⊆ M is such that MU ⊆ U (UM ⊆ U), then it is referred to as

a Left (Right) Ideal of the SmG M .

5) The set U ⊆ M that is non-empty and satisfies MUM ⊆ U is called an Interior Ideal

(ItId) of M .

6) Every ItId is an Ideal, but it is not necessarily the case that every Ideal is an ItId.

7) If UMU ⊆ U , then a SbSmG U of a SmG M is called a Bi-Ideal (BiId) of M .

8) Every BiId is not necessarily a one-sided Ideal, although every one-sided Ideal is a BiId.

In this thesis, we represent a subsemigroup, Right Ideal, Left Ideal, Bi-Ideal, and Interior

Ideal as SbSmG, RiId, LfId, BiId, and ItId, respectively.
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Definition 1.4.2. [26]

• A PyFzS V = {⟨m,VY (m), VN(m)⟩ : m ∈ M} in M is a PyFz SbSmG of the SmG M if it

satisfies the following:

VY (mn) ≥ VY (m) ∧ VY (n) and VN(mn) ≤ VN(m) ∨ VN(n), for all m,n ∈ M .

• A Pythagorean Fuzzy Left Ideal (PyFzLfId) is denoted as V and is characterized by the

conditions, VY (mn) ≥ VY (n) and VN(mn) ≤ VY (n), for all m,n ∈ M .

• A Pythagorean Fuzzy RiId (PyFzRiId) of M is represented by V and is defined by the criteria,

VY (mn) ≥ VY (m) and VN(mn) ≤ VY (m), for all m,n ∈ M .

• If a set V satisfies both the conditions of being a PyFzLfId and a PyFzRiId, then it is termed

as a Pythagorean Fuzzy Ideal (PyFzId).

• A subset V of a SmG M , which is a Pythagorean Fuzzy SbSmG (PyFzSbSmG), is considered

a Pythagorean Fuzzy ItId (PyFzItId) of M if it fulfills the condition, for all a,m, n ∈ M :

VY (nam) ≥ VY (a) and VN(nam) ≤ VN(a).

• A subset V of a SmG M , which is a Pythagorean Fuzzy SbSmG (PyFzSbSmG), is termed as a

Pythagorean Fuzzy BiId (PyFzBiId) of M if it meets the following criteria, for all a,m, n ∈ M :

VY (nam) ≥ VY (n) ∧ VY (m) and VN(nam) ≤ VN(n) ∨ VN(m).

Definition 1.4.3. Consider a SfS (S , D) over a SmG M .

1) If for every element e ∈ D with S (e) ̸= ∅, S (e) forms a SbSmG in M , then (S , D) is a

Soft SbSmG (SfSbSmG) over M .

2) For every element e ∈ D with S (e) ̸= ∅, if S (e) is an Ideal of M , then (S , D) over M

is considered to be a Soft Id (SfId) over M .

3) If for all e ∈ D with S (e) ̸= ∅, S (e) is a BiId of M , then the pair (S , D) is a Soft BiId

(SfBiId) over M .
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4) For every element e in D such that S (e) is not empty, if S (e) is an Interior Ideal of M ,

then (S , D) is a Soft Interior Ideal (SfItId) over M .

Definition 1.4.4. A SfBnR (S , D) from a SmG M1 to a SmG M2 is considered as a soft

compatible (SfCm) if, for any i, k ∈ M1 and j, l ∈ M2,

(i, j), (k, l) ∈ S (e) implies (ij, kl) ∈ S (e).

The relation (S , D) is a soft compatible relation (SfCmRl) over M if iS (e) · jS (e) ⊆

(ij)S (e). When m ∈ iS (e) and n ∈ jS (e), it implies that (i,m) ∈ S (e) and (j, n) ∈ S (e)

in accordance with the compatibility of (S , D).

From this compatibility, we can conclude that (ij,mn) ∈ S (e), which indicates that mn ∈

(ij)S (e). Furthermore, S (e)i · S (e)j ⊆ S (e)(ij).

Definition 1.4.5. A soft compatible relation (SfCmRl) (S , D) from a SmG M1 to a SmG

M2 is referred to as being soft complete relation (SfCmpRl) if, for any elements m,n ∈ M1

and e ∈ D, it holds that mS (e) · nS (e) = mnS (e). In the same way, it is termed as a

SfCmpRl if, for all m′, n′ ∈ M2 and e ∈ D, the equation = S (e)m′n′ = S (e)m′ · S (e)n′ is

satisfied.

In this chapter, the foundational concepts essential to this research were discussed in detail,

including Fuzzy Sets, Rough Sets, and their extensions such as Pythagorean Fuzzy Sets and

q-Rung Orthopair Fuzzy Sets. The mathematical frameworks and notations introduced here

form the basis for the methods and algorithms developed in subsequent chapters. By estab-

lishing a clear understanding of these fundamental ideas, this chapter provides the groundwork

for exploring advanced topics in approximation theory and decision-making applications in

the later parts of this thesis.
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Chapter 2

Approximations of Pythagorean Fuzzy

Sets over dual universes by Soft Binary

Relations

In this chapter, Section 2.1 explores the lower approximation (LoAp) and upper approximation

(UpAp) of Pythagorean Fuzzy Sets (RfPyFzS) using SfBnRs in the context of foresets (FrS)

and aftersets (AfSs), along with a presentation of their properties. Section 2.2 introduces

two kinds of Pythagorean Fuzzy Topological Spaces (qROFzTpSs) derived from SfBnRs.

Following this, Section 2.3 discusses similarity relations among PyFzSs based on SfBnRs. In

Section 2.4, the concepts of roughness degree (RfNsDg) and accuracy degree (AcRcDg) for

Pythagorean MmDgs with respect to FrS and AfSs are presented. Finally, Section 2.5 outlines

an algorithm designed for addressing decision-making problems using PyFzSs, accompanied

by an illustrative example demonstrating its application in practical scenarios.
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2.1 Approximating Pythagorean Fuzzy Sets with Soft Bi-

nary Relations

In this section, we explore the utilization of SfBnRs from ξ1 to ξ2 to approximate a PyFzS

over U by employing FrS, resulting in two Pythagorean Fuzzy Soft Sets (PyFzSfSs) over

ξ2. Similarly, we approximate a PyFzS over ξ2 using AfSs, leading to two PyFzSfSs over ξ1.

Furthermore, we discuss some of their properties.

Definition 2.1.1. Let (S , D) be a SfBnR from ξ1 to ξ2 and U = {⟨º, UY (º), UN(º)⟩ : º ∈ ξ2}

be a PyFzS in ξ2. Then we define the lower approximation (LoAp) S U = (S UY ,S UN ) and

the upper approximation (UpAp) S
U
= (S

UY
,S

UN
) of U = {⟨º, UY (º), UN(º)⟩ : º ∈ ξ2} with

respect to AfSs as follows:

S U(e)(¨) =


(∧

º∈¨S (e) UY (º),
∨

º∈¨S (e) UN(º)
)

if ¨S (e) ̸= ∅;

(1, 0) otherwise.

and

S
U
(e)(¨) =


(∨

º∈¨S (e) UY (º),
∧

º∈¨S (e) UN(º)
)

if ¨S (e) ̸= ∅;

(0, 1) otherwise.

where ¨S (e) = {º ∈ ξ2 : (¨, º) ∈ S (e)}, which is referred to as the AfS of ¨ for all ¨ ∈ ξ1

and e ∈ D.

1) S UY (e)(¨) indicates the degree to which ¨ definitely possesses the property e.

2) S UN (e)(¨) indicates the degree to which ¨ probably does not possess the property e.

3) S
UY

(e)(¨) indicates the degree to which ¨ probably possesses the property e.

4) S
UN

(e)(¨) indicates the degree to which ¨ definitely does not possess the property e.
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Definition 2.1.2. Let (S , D) be a SfBnR from ξ1 to ξ2 and U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ1}

be a PyFzS in ξ1. Then we define LoAp
US = (UY S ,UN S ) and UpAp

US = (UY S ,UN S )

of U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ1} with respect to FrS as follows:

US (e)(º) =


(∧

¨∈S (e)º UY (¨),
∨

¨∈S (e)º UN(¨)
)

if S (e)º ̸= ∅;

(1, 0) otherwise.

and

US (e)(º) =


(∨

¨∈S (e)º UY (¨),
∧

¨∈S (e)º UN(¨)
)

if S (e)º ̸= ∅;

(0, 1) otherwise.

where S (e)º = {¨ ∈ ξ1 : (¨, º) ∈ S (e)}, which is referred to as the FrS of º for all º ∈ ξ2 and

e ∈ D.

1) S UY (e)(º) represents the degree to which º definitely possesses the property e.

2) S UN (e)(º) represents the degree to which º probably does not possess the property e.

3) S
UY

(e)(º) represents the degree to which º probably possesses the property e.

4) S
UN

(e)(º) represents the degree to which º definitely does not possess the property e.

Here, we have S U : D → PyFzS(ξ1), S
U
: D → PyFzS(ξ1), US : D → PyFzS(ξ2) and

US : D → PyFzS(ξ2).

The example below demonstrates these concepts.

Example 2.1.3. Suppose a student wants to buy new shoes.

Let ξ1 = {the set of available shoe designs} = {¨1, ¨2, ¨3, ¨4}, ξ2 = {the colors of all designs} =

{º1, º2, º3, º4}, and let the set of attributes be D = {the set of stores near his house} = {e1, e2}.

Take a SfBnR S : D → P (ξ1 × ξ2) by
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S (e1) =



¨1 ¨2 ¨3 ¨4

º1 1 0 1 0

º2 1 0 1 0

º3 0 1 0 1

º4 0 0 1 1

, S (e2) =



¨1 ¨2 ¨3 ¨4

º1 0 1 0 0

º2 0 1 0 0

º3 1 1 1 0

º4 1 1 0 0


represent the relation between colors and designs available at stores e1, e2, respectively.

Now let two PyFzSs U and V on ξ2 and ξ1, respectively, where U represents the preference of

the colors and V represents the preference of the designs given by the student and defined by:

U = {⟨º1, 0.9, 0⟩, ⟨º2, 0.8, 0.3⟩, ⟨º3, 0.4, 0.7⟩, ⟨º4, 0, 1⟩},

V = {⟨¨1, 1, 0⟩ , ⟨¨2, 0.7, 0.2⟩ , ⟨¨3, 0.5, 0.6⟩ , ⟨¨4, 0.1, 0.8⟩} .

Table 2.1 shows that LoAp and UpAp S U , S
U

of PyFzS U with respect to AfSs ¨iS (ej) are

two PyFzSs on ξ1.

Table 2.1: ApS of PyFzS with respect to AfSs

S
U
(e1)(¨i) S U(e1)(¨i) S

U
(e2)(¨i) S U(e2)(¨i)

¨1 (0.9, 0) (0.8, 0.3) (0.4, 0.7) (0, 1)

¨2 (0.4, 0.7) (0.4, 0.7) (0.9, 0) (0, 1)

¨3 (0.9, 0) (0, 1) (0.4, 0.7) (0.4, 0.7)

¨4 (0.4, 0.7) (0, 1) (0, 1) (1, 0)

26



Similarly Table 2.2 shows that LoAp and UpAps V S , V S of PyFzS V with respect to FrS

S (ej)ºi are two PyFzSs on ξ2, where j = 1, 2 and i = 1, 2, 3, 4.

Table 2.2: Approximations of PyFzS with respect to FrS

VS (e1)(ºi)
VS (e1)(ºi)

VS (e2)(ºi)
VS (e2)(ºi)

º1 (1, 0) (0.5, 0.6) (0.7, 0.2) (0.7, 0.2)

º2 (1, 0) (0.5, 0.6) (0.7, 0.2) (0.7, 0.2)

º3 (0.7, 0.2) (0.1, 0.8) (1, 0) (0.5, 0.6)

º4 (0.5, 0.6) (0.1, 0.8) (1, 0) (0.7, 0.2)

Theorem 2.1.4. Let (S , D) be a SfBnR from ξ1 to ξ2, that is, S : D → P (ξ1 × ξ2). For

any three PyFzSs U = {⟨º, UY (º), UN(º)⟩ : º ∈ ξ2}, U1 = {⟨º, U1Y (º), U1N (º)⟩ : º ∈ ξ2}, and

U2 = {⟨º, U2Y (º), U2N (º)⟩ : º ∈ ξ2} of ξ2, we have the following:

i) U1 ⊆ U2 implies S U1 ⊆ S U2

ii) U1 ⊆ U2 implies S
U1 ⊆ S

U2

iii) S U1∩U2 = S U1 ∩ S U2

iv) S
U1∩U2 ⊆ S

U1 ∩ S
U2

v) S U1 ∪ S U2 ⊆ S U1∪U2

vi) S
U1 ∪ S

U2
= S

U1∪U2

vii) S
1ξ2 = S 1ξ2 = 1ξ1, if ¨S (e) ̸= ∅

viii) S U = (S
Uc

)c and S
U
= (S Uc

)c, if ¨S (e) ̸= ∅

ix) S 0ξ2 = 0ξ1 = S
0ξ2 .
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Proof.

i) Let U1 ⊆ U2, that is, for all º ∈ ξ2, U1Y (º) ≤ U2Y (º), and U1N (º) ≥ U2N (º).

If ¨S (e) = ∅, then S U1 = (1, 0) = S U2 .

If ¨S (e) ̸= ∅, then

S U1Y (e)(¨) =
∧

º∈¨S (e) U1Y (º) ≤
∧

º∈¨S (e) U2Y (º) = S U2Y (e)(¨)

and S U1N (e)(¨) =
∨

º∈¨S (e) U1N (º) ≥
∨

º∈¨S (e) U2N (º) = S U2N (e)(¨).

Thus, S U1Y (e)(¨) ≤ S U2Y (e)(¨) and S U1N (e)(¨) ≥ S U2N (e)(¨). Hence, S U1 ⊆ S U2 .

ii) Let U1 ⊆ U2, that is, for all º ∈ ξ2, U1Y (º) ≤ U2Y (º), and U1N (º) ≥ U2N (º).

If ¨S (e) = ∅, then S
U1

= (0, 1) = S
U2
.

If ¨S (e) ̸= ∅, then

S
U1Y (e)(¨) =

∨
º∈¨S (e) U1Y (º) ≤

∨
º∈¨S (e) U2Y (º) = S

U2Y (e)(¨)

and S
U1N (e)(¨) =

∧
º∈¨S (e) U1N (º) ≥

∧
º∈¨S (e) U2N (º) = S

U2N (e)(¨).

Thus, S
U1Y (e)(¨) ≤ S

U2Y (e)(¨) and S
U1N (e)(¨) ≥ S

U2N (e)(¨). Hence, S
U1 ⊆ S

U2
.

iii) Consider (S U1Y ∩ S U2Y )(e)(¨) = S U1Y (e)(¨) ∧ S U2Y (e)(¨) = (
∧

º∈¨S (e) U1Y (º)) ∧

(
∧

º∈¨S (e) U2Y (º)) =
∧

º∈¨S (e)(U1Y (º) ∧ U2Y (º)) = S U1∩U2(e)(¨), and

(S U1N∪S U2N )(e)(¨) = S U1N (e)(¨)∨S U2N (e)(¨) = (
∨

º∈¨S (e) U1N (º))∨(
∨

º∈¨S (e) U2N (º))

=
∨

º∈¨S (e)(U1N (º) ∨ U2N (º)) = S U1∪U2(e)(¨). Thus, S U1∩U2 = S U1 ∩ S U2 .

iv) Given that U1∩U2 ⊆ U1 and U1∩U2 ⊆ U2, it follows from part (ii) that S
U1∩U2 ⊆ S

U1

and S
U1∩U2 ⊆ S

U2 . Therefore, we conclude that S
U1∩U2 ⊆ S

U1 ∩ S
U2 .

v) Given that U1 ⊆ U1 ∪U2 and U2 ⊆ U1 ∪U2, it follows from part (i) that S U1 ⊆ S U1∪U2

and S U2 ⊆ S U1∪U2 . Therefore, we conclude that S U1 ∪ S U2 ⊆ S U1∪U2 .

vi) Consider (S
U1Y ∪ S

U2Y )(e)(¨) = S
U1Y (e)(¨) ∨ S

U2Y (e)(¨) = (
∨

º∈¨S (e) U1Y (º)) ∨

(
∨

º∈¨S (e) U2Y (º)) =
∨

º∈¨S (e)(U1Y (º) ∨ U2Y (º)) = S
U1∪U2

(e)(¨) and

(S
U1N∩S

U2N )(e)(¨) = S
U1N (e)(¨)∧S

U2N (e)(¨) = (
∧

º∈¨S (e) U1N (º))∧(
∧

º∈¨S (e) U2N (º))

=
∧

º∈¨S (e)(U1N (º) ∧ U2N (º)) = S
U1∩U2

(e)(¨). Thus, S
U1∪U2

= S
U1 ∪ S

U2
.
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vii) Since S 1ξ2 (e)(¨) =
∧

º∈¨S (e) 1(º) =
∧

º∈¨S (e) 1 = 1 and S 0(e)(¨) =
∧

º∈¨S (e) 0(º) =∧
º∈¨S (e) 0 = 0. Thus, S 1ξ2 = 1ξ1 .

Similarly, we can prove that S
1ξ2 = 1ξ1 .

viii) Consider

S
Uc
Y (e)(¨) =

∨
º∈¨S (e) U

c
Y (º) =

∨
º∈¨S (e) UN(º) = S UN (e)(¨) = (S UY (e)(¨))c and

S
Uc
N (e)(¨) =

∧
º∈¨S (e) U

c
N(º) =

∧
º∈¨S (e) UY (º) = S UY (e)(¨) = (S UN (e)(¨))c.

Thus, S
Uc

= (S
Uc
Y , S

Uc
N ) = ((S UY )c, (S UN )c) = (S UY ,S UN )c = (S U)c. Which

gives that (S
Uc

)c = S U . Similarly, S
U
= (S Uc

)c.

ix) The proof is straightforward.

Theorem 2.1.5. Let (S , D) be a SfBnR from ξ1 to ξ2, that is, S : D → P (ξ1 × ξ2). For

any three PyFzSs U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ1}, U1 = {⟨¨, U1Y (¨), U1N (¨)⟩ : ¨ ∈ ξ1}, and

U2 = {⟨¨, U2Y (¨), U2N (¨)⟩ : ¨ ∈ ξ1} of ξ1, we have the following:

i) U1 ⊆ U2 implies U1S ⊆ U2S

ii) U1 ⊆ U2 implies U1S ⊆ U2S

iii) U1∩U2S = U1S ∩ U2S

iv) U1∩U2S ⊆ U1S ∩ U2S

v) U1S ∪ U2S ⊆ U1∪U2S

vi) U1S ∪ U2S = U1∪U2S

vii) 1ξ1S = 1ξ1S = 1ξ2, if S (e)º ̸= ∅

viii) US = (U
c
S )c, and US = (U

c
S )c if S (e)º ̸= ∅

ix) 0ξ1S = 0ξ2 =
0ξ1S .
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Proof.

The proof follows a similar approach to the proof of Theorem 2.1.4.

The following example demonstrates that equality does not hold in parts (iv) and (v) of

Theorem 2.1.4.

Example 2.1.6. Utilizing the information given in Example 2.1.3, define two PyFzSs U1, U2

on ξ2 by:

U1 = {⟨º1, 0.3, 0.7⟩, ⟨º2, 0.2, 0.9⟩, ⟨º3, 0.9, 0.4⟩, ⟨º4, 0.6, 0.5⟩},

U2 = {⟨º1, 0.4, 0.6⟩, ⟨º2, 0.4, 0.5⟩, ⟨º3, 0.3, 0.8⟩, ⟨º4, 0.1, 0.9⟩}.

Then, U1 ∩ U2 = {⟨º1, 0.3, 0.7⟩, ⟨º2, 0.2, 0.9⟩, ⟨º3, 0.3, 0.8⟩, ⟨º4, 0.1, 0.9⟩}, and

U1 ∪ U2 = {⟨º1, 0.4, 0.6⟩, ⟨º2, 0.4, 0.5⟩, ⟨º3, 0.9, 0.4⟩, ⟨º4, 0.6, 0.5⟩}.

Table 2.3: Union of LoAps and LoAps of union of two PyFzSs

(S U1 ∪ S U2)(e1)(¨i) (S U1 ∪ S U2)(e2)(¨i) S U1∪U2(e1)(¨i) S U1∪U2(e2)(¨i)

¨1 (0.4, 0.6) (0.6, 0.5) (0.4, 0.6) (0.6, 0.5)

¨2 (0.9, 0.4) (0.2, 0.9) (0.9, 0.4) (0.4, 0.6)

¨3 (0.2, 0.9) (0.9, 0.4) (0.4, 0.6) (0.9, 0.4)

¨4 (0.6, 0.5) (1, 0) (0.6, 0.5) (1, 0)

Table 2.4: Intersection of UpAps and UpAps of intersection of two PyFzSs

(S
U1 ∩ S

U2
)(e1)(¨i) (S

U1 ∩ S
U2
)(e2)(¨i) S

U1∩U2
(e1)(¨i) S

U1∩U2
(e2)(¨i)

¨1 (0.3, 0.7) (0.3, 0.8) (0.3, 0.7) (0.3, 0.8)

¨2 (0.3, 0.8) (0.4, 0.5) (0.3, 0.8) (0.3, 0.7)

¨3 (0.4, 0.5) (0.3, 0.8) (0.3, 0.7) (0.3, 0.8)

¨4 (0.3, 0.8) (0, 1) (0.3, 0.8) (0, 1)
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Now observing Table 2.3, we can easily see that S U1∪U2(e1)(¨3) ̸= (S U1 ∪ S U2)(e1)(¨3) and

(S U1 ∪ S U2)(e2)(¨2) ̸= S U1∪U2(e2)(¨2). Thus, union of LoAps of two PyFzSs is not equal to

the LoAp of the union of two PyFzSs, that is, S U1 ∪ S U2 ̸= S U1∪U2 .

Similarly, according to Table 2.4, the intersection of UpAps of two PyFzSs is not equal to

the UpAp of the intersection of two PyFzSs, specifically, S
U1 ∩ S

U2 ̸= S
U1∩U2. Therefore,

equality does not hold in parts (iv) and (v) of Theorem 2.1.4.

Theorem 2.1.7. Let (S1, D) and (S2, D) be two SfBnRs from ξ1 to ξ2 such that (S1, D) ⊆

(S2, D), that is, S1(e) ⊆ S2(e), for all e ∈ D. Then, for any U ∈ PyFzS(ξ2), S U
2 ⊆ S U

1

and S1
U ⊆ S2

U
.

Proof.

If ¨S1(e) = ∅, then S UY
2 (e)(¨) ≤ 1 = S UY

1 (e)(¨), and S UN
1 (e)(¨) = 0 ≤ S UN

2 (e)(¨). This

implies that S U
2 ⊆ S U

1 .

If ¨S1(e) ̸= ∅, then S UY
1 (e)(¨) =

∧
º∈¨S1(e)

UY (º) ≥
∧

º∈¨S2(e)
UY (º) = S UY

2 (e)(¨), and

S UN
1 (e)(¨) =

∨
º∈¨S1(e)

UN(º) ≤
∨

º∈¨S2(e)
UN(º) = S UN

2 (e)(¨). Thus, S U
2 ⊆ S U

1 . Similarly,

S1
U ⊆ S2

U
.

Theorem 2.1.8. Let (S1, D) and (S2, D) be two SfBnRs from ξ1 to ξ2 such that (S1, D) ⊆

(S2, D), that is, S1(e) ⊆ S2(e), for all e ∈ D. Then, for any U ∈ PyFzS(ξ1), US 2 ⊆ US 1

and US1 ⊆ US2.

Proof.

The proof can be derived using the same approach as in Theorem. 2.1.7.

Theorem 2.1.9. Let (S1, D) and (S2, D) be two SfBnRs from ξ1 to ξ2. Then, for any

U ∈ PyFzS(ξ2), the following are true:

i) S U
1 ⊆ (S1 ∩ S2)

U and S U
2 ⊆ (S1 ∩ S2)

U .

ii) (S1 ∩ S2)
U
⊆ S1

U
and (S1 ∩ S2)

U
⊆ S2

U
.
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Proof.

The proof is a direct consequence of Theorem 2.1.7.

Similarly, we have the following.

Theorem 2.1.10. Let (S1, D) and (S2, D) be two SfBnRs from ξ1 to ξ2. Then, for any

U ∈ PyFzS(ξ1), the following are true:

i) US 1 ⊆ U(S1 ∩ S2), and US2 ⊆ U(S1 ∩ S2).

ii) U(S1 ∩ S2) ⊆ US1 and U(S1 ∩ S2) ⊆ US2.

Theorem 2.1.11. Let (S , D) be a SfBnR from ξ1 to ξ2 and {Ui : i ∈ I} be a family of

PyFzSs defined on ξ2. Then the following hold:

i) S (
⋂

i∈I Ui) =
⋂

i∈I S Ui

ii)
⋃

i∈I S Ui ⊆ S (
⋃

i∈I Ui)

iii) S
(
⋃

i∈I Ui)
=
⋃

i∈I S
Ui

iv) S
(
⋂

i∈I Ui) ⊆
⋂

i∈I S
Ui.

Proof.

i) Let Ui ∈ PyFzS(ξ2), for i ∈ I. Then

S (
⋂

i∈I UiY
)(e)(¨) =

∧
º∈¨S (e)(∧i∈IUiY (º)) =

∧
i∈I(∧º∈¨S (e)UiY (º)) =

⋂
i∈I S UiY (e)(¨)

and

S (
⋃

i∈I UiN
)(e)(¨) =

∨
º∈¨S (e)(∨i∈IUiN (º)) =

∨
i∈I(∨º∈¨S (e)UiN (º)) =

⋃
i∈I S UiN (e)(¨).

Thus, S (
⋂

i∈I Ui) =
⋂

i∈I S Ui .

ii) Given that Ui ⊆
⋃

i∈I Ui for each i ∈ I, it follows that S Ui ⊆ S (
⋃

i∈I Ui). Consequently,⋃
i∈I S Ui ⊆ S (

⋃
i∈I Ui).

iii) The proof follows in a similar manner to part (i).
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iv) The proof follows in a similar manner to part (ii).

Theorem 2.1.12. Let (S , D) be an SfBnR from ξ1 to ξ2, and let {Ui : i ∈ I} be a family of

PyFzSs defined on ξ1. The following properties hold:

i) (
⋂

i∈I Ui)S =
⋂

i∈I
UiS

ii)
⋃

i∈I
UiS ⊆ (

⋃
i∈I Ui)S

iii) (
⋃

i∈I Ui)S =
⋃

i∈I
UiS

iv) (
⋂

i∈I Ui)S ⊆
⋂

i∈I
UiS

Proof.

The proof can be derived using the same approach as in the Theorem 2.1.11.

Theorem 2.1.13. Let (S , D) be a soft Reflexive Relation (SfRlR) over ξ. For any U ∈

PyFzS(ξ), the following properties hold for LoAp and UpAp with respect to AfS:

i) For all e ∈ D, S U(e) ≤ U ≤ S
U
(e)

ii) For all e ∈ D, it holds that S U(e) ≤ S
U
(e).

Proof.

For ¨ ∈ ξ

i) Consider S UY (e)(¨) =
∧

º∈¨S (e) UY (º) ≤ UY (¨), since ¨ ∈ ¨S (e), and S UN (e)(¨) =∨
º∈¨S (e) UN(º) ≥ UN(¨), since ¨ ∈ ¨S (e). Thus, S U(e) ≤ U.

Also, S
UY

(e)(¨) =
∨

º∈¨S (e) UY (º) ≥ UY (¨), since ¨ ∈ ¨S (e), and S
UN

(e)(¨) =∧
º∈¨S (e) UN(º) ≤ UN(¨), since ¨ ∈ ¨S (e). Thus, S

U
(e) ≥ U.

ii) From part (i) we get that S U(e) ≤ U ≤ S
U
(e) which implies that S U(e) ≤ S

U
(e).
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Theorem 2.1.14. Let (S , D) be a SfRfR over ξ. For any U ∈ PyFzS(ξ), the following

properties for LoAp and UpAps with respect to FrS hold, for all e ∈ D:

i) US (e) ≤ U ≤ US (e).

ii) US (e) ≤ US (e) .

Proof.

The proof can be derived using the same approach as in Theorem. 2.1.13.

2.2 Pythagorean Fuzzy Topologies induced by Soft Binary

Reflexive Relations

Cheng [17] introduced the concept of a Fuzzy Topological Space and extended several funda-

mental notions of Topology. Olgun [45] developed the concept of Pythagorean Fuzzy Topo-

logical Spaces (PyFzTpS) and examined the continuity between two PyFzTpS spaces.

In this context, we propose two types of Pythagorean Fuzzy Topologies that are derived from

a soft Reflexive Relation (SfRlR).

Definition 2.2.1. [45] A family A ⊆ PyFzS(ξ) of PyFzSs on ξ is termed a Pythagorean

Fuzzy Topology (PyFzTp) on ξ if it meets the following:

1) 0, 1 ∈ A

2) U1 ∩ U2 ∈ A, for all U1, U2 ∈ A

3)
⋃

i∈I Ui ∈ A, for all Ui ∈ A, i ∈ I.

If A is a PyFzTp on ξ, then the pair (ξ,A) is called a Pythagorean Fuzzy Topological Space

(PyFzTpS). The elements of A are referred to as PyFz open sets.
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Theorem 2.2.2. If (S , D) is a SfRfR on ξ, then

Te = {U ∈ PyFzS(ξ) : S U(e) = U}

is a PyFzTp on ξ for each e ∈ D.

Proof.

1) According to Theorem 2.1.4, for each e ∈ D, we have S 0(e) = 0 and S 1(e) = 1, which

implies that 0, 1 ∈ Te.

2) U1, U2 ∈ Te implies S U1(e) = U1 and S U2(e) = U2. According to the Theorem 2.1.4,

S U1∩U2(e) = (S U1 ∩ S U2)(e) = U1 ∩ U2.

This implies that U1 ∩ U2 ∈ Te.

3) If Ui ∈ Te, then S Ui = Ui for each i ∈ I. Since the relation is soft Reflexive, Theorem

2.1.13 gives us:

S (
⋃

i∈I Ui)(e) ≤
⋃
i∈I

Ui. (2.2.1)

Also, because Ui ≤
⋃

i∈I Ui, we have S Ui(e) ≤ S (
⋃

i∈I Ui)(e). This implies:

⋃
i∈I

S Ui(e) ≤ S (
⋃

i∈I Ui)(e). (2.2.2)

Thus: ⋃
i∈I

Ui ≤ S (
⋃

i∈I Ui)(e). (2.2.3)

From Equations (2.2.1) and (2.2.3), we get S (
⋃

i∈I Ui)(e) =
⋃

i∈I Ui.

Therefore, Te is a PyFzTp on ξ.

Theorem 2.2.3. If (S , D) is a SfRfR on ξ, then

T
′

e = {U ∈ PyFzS(ξ) :
US (e) = U}
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is a PyFzTp on ξ for each e ∈ D.

Proof.

The proof can be derived using the same approach as in Theorem. 2.1.14.

2.3 Similarity Relations Associated with Soft Binary Re-

lations

Here, we discuss rough approximations based BnRs between PyFzSs and associated properties.

Definition 2.3.1. Let (S , D) be a SfRfR over ξ. For U1, U2 ∈ PyFzS(ξ), we define

U1R̃U2 if and only if S
U1

= S
U2

U1RU2 if and only if S U1 = S U2

U1RU2 if and only if S U1 = S U2 and S
U1

= S
U2
.

Definition 2.3.2. Let (S , D) be a SfRfR over ξ. For U1, U2 ∈ PyFzS(ξ), we define

U1r̃U2 if and only if U1S =U2 S

U1rU2 if and only if U1S =U2 S

U1rU2 if and only if U1S =U2 S and U1S =U2 S .

The aforementioned Binary Relations can be denoted as follows: the lower Pythagorean

Fuzzy Similarity relation (LoPyFzSmR), the upper Pythagorean Fuzzy Similarity relation

(UpPyFzSmR), and the Pythagorean Fuzzy Similarity relation (PyFzSmR).

Proposition 2.3.3. The Binary Relations R, R̃, R are EqRs on PyFzS(ξ).

Proof.

The proof is straightforward.
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Proposition 2.3.4. The Binary Relations r, r̃, r are EqRs on PyFzS(ξ).

Proof.

The proof is straightforward.

Theorem 2.3.5. Let (S , D) be a SfRfR on ξ and U1, U2, U3, U4 ∈ PyFzS(ξ). Then:

i) U1R̃U2 if and only if U1R̃(U1 ∪ U2)R̃U2

ii) If U1R̃U2 and U3R̃U4, then (U1 ∪ U3)R̃(U2 ∪ U4)

iii) If U1 ≤ U2 and U2R̃0, then U1R̃0

iv) (U1 ∪ U2)R̃0 if and only if U1R̃0 and U2R̃0

v) If U1 ≤ U2 and U1R̃1, then U2R̃1

vi) If (U1 ∩ U2)R̃1, then U1R̃1 and U2R̃1.

Proof.

i) If U1R̃U2, then S
U1

= S
U2 . According to the Theorem 2.1.4, S

U2
= S

U1
= S

U1 ∪

S
U2

= S
U1∪U2

, so we have U1R̃(U1 ∪ U2)R̃U2.

Conversely, if U1R̃(U1 ∪ U2)R̃U2, then U1R̃(U1 ∪ U2) and (U1 ∪ U2)R̃U2. Which implies

that S
U1

= S
U1∪U2 and S

U1∪U2
= S

U2
. Thus, S

U1
= S

U2
. Hence, U1R̃U2.

ii) If U1R̃U2 and U3R̃U4, which implies that S
U1

= S
U2 and S

U3
= S

U4
. Now according

to the Theorem 2.1.4, S
U1∪U3

= S
U1 ∪ S

U3
= S

U2 ∪ S
U4

= S
U2∪U4 . Thus, (U1 ∪

U3)R̃(U2 ∪ U4).

iii) Let U1 ≤ U2 and U2R̃0. Then S
U2

= S
0
. Also, since U1 ≤ U2, so we have S

U1 ⊆

S
U2

= S
0
. But S

0 ⊆ S
U1 , so S

U1
= S

0
. Hence, U1R̃0.
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iv) If (U1 ∪ U2)R̃0, then S
U1 ∪ S

U2
= S

U1∪U2
= S

0
. Since S

U1 ⊆ S
U1 ∪ S

U2
= S

0
, so

we have S
U1

= S
0
. Similarly, S

U2
= S

0
. Hence, U1R̃0 and U1R̃0.

Conversely, if U1R̃0 and U2R̃0, then S
U1

= S
0

and S
U2

= S
0
. According to the

Theorem 2.1.4, S
(U1∪U2)

= S
U1 ∪ S

U2
= S

0 ∪ S
0
= S

0
. Hence, (U1 ∪ U2R̃)0.

v) If U1R̃1, then S
U1

= S
1
. Since U1 ≤ U2, so S

1
= S

U1 ⊆ S
U2
. But S

U2 ⊆ S
1

so,

S
1
= S

U1 . Hence, U2R̃1.

vi) If U1∩U2R̃1, then S
U1∩U2

= S
1
. According to the Theorem 2.1.4, we have S

U1∩S
U2 ⊇

S
U1∩U2

= S
1
. Thus, S

1
= S

U1 and S
1
= S

U2 .

Hence, U1R̃1 and U2R̃1.

Theorem 2.3.6. Let (S , D) be a SfRfR on ξ and U1, U2, U3, U4 ∈ PyFzS(ξ). Then:

i) U1r̃U2 if and only if U1r̃(U1 ∪ U2)r̃U2

ii) If U1r̃U2 and U3r̃U4, then (U1 ∪ U3)r̃(U2 ∪ U4)

iii) If U1 ≤ U2 and U2r̃0, then U1r̃0

iv) (U1 ∪ U2)r̃0 if and only if U1r̃0 and U2r̃0

v) If U1 ≤ U2 and U1r̃1, then U2r̃1

vi) If (U1 ∩ U2)r̃1, then U1r̃1 and U2r̃1.

Proof.

The proof can be derived using the same approach as in Theorem. 2.3.5

Theorem 2.3.7. Let (S , D) be a SfRfR on ξ and U1, U2, U3, U4 ∈ PyFzS(ξ). Then:

i) U1RU2 if and only if U1R(U1 ∩ U2)RU2
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ii) If U1RU2 and U3RU4, then (U1 ∩ U3)R(U2 ∩ U4)

iii) If U1 ≤ U2 and U2R0, then U1R0

iv) (U1 ∪ U2)R0 if and only if U1R0 and U2R0

v) If U1 ≤ U2 and U1R1, then U2R1

vi) If (U1 ∩ U2)R1, then U1R1 and U2R1.

Proof.

The proof is straightforward.

Theorem 2.3.8. Let (S , D) be a SfRfR on ξ and U1, U2, U3, U4 ∈ PyFzS(ξ). Then:

i) U1rU2 if and only if U1r(U1 ∩ U2)rU2

ii) If U1rU2 and U3rU4, then (U1 ∩ U3)r(U2 ∩ U4)

iii) If U1 ≤ U2 and U2r0, then U1r0

iv) (U1 ∪ U2)r0 if and only if U1r0 and U2r0

v) If U1 ≤ U2 and U1r1, then U2r1

vi) If (U1 ∩ U2)r1, then U1r1 and U2r1.

Proof.

The proof is straightforward.

Theorem 2.3.9. Let (S , D) be a SfRfR on ξ and U1, U2 ∈ PyFzS(ξ). Then:

i) U1RU2 if and only if U1R̃(U1 ∪ U2)R̃U2 and U1R(U1 ∩ U2)RU2

ii) If U1 ≤ U2 and U2R0, then U1R0

iii) (U1 ∪ U2)R0 if and only if U1R0 and U2R0
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iv) If (U1 ∩ U2)R1, then U1R1 and U2R1.

v) If U1 ≤ U2 and U1R1, then U2R1

Proof.

Theorems 2.3.5 and 2.3.7 directly lead to this conclusion.

Theorem 2.3.10. Let (S , D) be a SfRfR on ξ and U1, U2 ∈ PyFzS(ξ). Then:

i) U1rU2 if and only if U1r̃(U1 ∪ U2)r̃U2 and U1r(U1 ∩ U2)rU2

ii) If U1 ≤ U2 and U2r0, then U1r0

iii) (U1 ∪ U2)r0 if and only if U1r0 and U2r0

iv) If (U1 ∩ U2)r1, then U1r1 and U2r1.

v) If U1 ≤ U2 and U1r1, then U2r1

Proof.

Theorems 2.3.6 and 2.3.8 directly lead to this conclusion.

2.4 Accuracy Measure

The approximation of PyFzSs provides a novel method to evaluate the precision of MmDgs

that describe objects. Hussain et al. [28] introduced the concept of the (A ,B)-level cut set

of a PyFzS and explored its properties.

In this section, we introduce the notions of the roughness degree (RfNsDg) and AcRcDg

concerning AfSs and FrS with respect to MmDgs of PyFzS.

Definition 2.4.1. [28] Let U ∈ PyFzS(ξ) and let A ,B ∈ [0, 1] satisfy A 2 + B2 ≤ 1. The

(A ,B)-level cut set of U is defined as:

UB
A = {¨ ∈ ξ : UY (¨) ≥ A and UN(¨) ≤ B}.
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Hussain et al. [28] discussed several important properties of the (A ,B)-level cut set of

U ∈ PyFzS(ξ).

Lemma 2.4.2. [28] Let U, V ∈ PyFzS(ξ). Let A1,A2,B1,B2 ∈ [0, 1] be such that A 2
1 +B2

1 ≤

1 and A 2
2 + B2

2 ≤ 1. Then the following hold:

1) U ⊆ V implies UB1

A1
⊆ V B1

A1

2) If A1 ≥ A2 and B1 ≤ B2, then UB1

A1
⊆ UB2

A2
.

Note that if (S , D) is an SfBnR over ξ, then S UB
A represents the lower approximation

LoAp of the Crisp Set UB
A , and (S U(e))BA denotes the (A ,B)-level cut of S U(e) with respect

to the AfSs. Therefore, for all e ∈ D,

(S U(e))BA = {¨ ∈ ξ : S UY (e)(¨) ≥ A and S UN (e)(¨) ≤ B}

= {¨ ∈ ξ : ∧º∈¨S (e)UY (º) ≥ A and ∨º∈¨S (e) UN(º) ≤ B}

and

(S
U
(e))BA = {¨ ∈ ξ : S

UY
(e)(¨) ≥ A and S

UN
(e)(¨) ≤ B}

= {¨ ∈ ξ : ∨º∈¨S (e)UY (º) ≥ A and ∧º∈¨S (e) UN(º) ≤ B}.

Similarly, for all e ∈ D,

(US (e))BA = {º ∈ ξ : UY S (e)(º) ≥ A and
UNS (e)(º) ≤ B}

= {º ∈ ξ : ∧¨∈S (e)ºUY (¨) ≥ A and ∨¨∈S (e)º UN(¨) ≤ B}

and

(US (e))BA = {º ∈ ξ : UY S (e)(º) ≥ A and
UNS (e)(º) ≤ B}

= {º ∈ ξ : ∨¨∈S (e)ºUY (¨) ≥ A and ∧¨∈S (e)º UN(¨) ≤ B}
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with respect to FrS.

Lemma 2.4.3. Let (S , D) be a SfRfR on a non-empty set ξ and U ∈ PyFzS(ξ). Let

A ,B ∈ [0, 1] be such that A 2 + B2 ≤ 1. Then, for all e ∈ D,

S
UB

A (e) = (S
U
(e))BA and S UB

A (e) = (S U(e))BA .

Proof.

Let A ,B ∈ [0, 1] be such that A 2 + B2 ≤ 1. Then

(S U(e))BA = {¨ ∈ ξ : S UY (e)(¨) ≥ A and S UN (e)(¨) ≤ B}

= {¨ ∈ ξ : ∧º∈¨S (e)UY (º) ≥ A and ∨º∈¨S (e) UN(º) ≤ B}

= {¨ ∈ ξ : UY (º) ≥ A and UN(º) ≤ B, for all º ∈ ¨S (e)}

= {¨ ∈ ξ : ¨S (e) ⊆ UB
A }

= S UB
A (e)(¨).

Similarly, we can easily show that S
UB

A (e) = (S
U
(e))BA .

Lemma 2.4.4. Let (S , D) be a SfRfR on a non-empty set ξ and U ∈ PyFzS(ξ). Let

A ,B ∈ [0, 1] be such that A 2 + B2 ≤ 1. Then, for all e ∈ D,

UB
A S (e) = (US (e))BA and UB

A S (e) = (US (e))BA .

Proof.

The proof can be derived using the same approach as in Lemma 2.4.3.

The AcRcDg and RfNsDg of a PyFzS is defined below.

Definition 2.4.5. Let (S , D) be a SfRlR over a non-empty set ξ. The AcRcDg for the

membership of U ∈ PyFzS(ξ), with respect to parameters A ,B,G , θ ∈ [0, 1] satisfying A ≤
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G , B ≥ θ, A 2 + B2 ≤ 1, and G 2 + θ2 ≤ 1, and with respect to AfS, is defined as:

δ
(G ,θ)
(A ,B)(S

U)(e) =
|S Uθ

G (e)|

|S UB
A (e)|

for all e ∈ D. The RfNsDg for the membership of U ∈ PyFzS(ξ) is defined as:

η
(G ,θ)
(A ,B)(S

U)(e) = 1− δ
(G ,θ)
(A ,B)(S

U)(e)

for all e ∈ D. Similarly, the AcRcDg for the membership of U ∈ PyFzS(ξ) with respect to

FrS is defined as:

δ
(G ,θ)
(A ,B)(

UF )(e) =
| Uθ

G S (e)|
| UB

A S (e)|

for all e ∈ D. The RfNsDg for the membership of U ∈ PyFzS(ξ) with respect to FrS is

defined as:

η
(G ,θ)
(A ,B)(

UF )(e) = 1− δ
(G ,θ)
(A ,B)(

UF )(e)

for all e ∈ D.

In the context of a Soft EqR (SfEqR), the concepts of FrS and AfS coincide. Specifically,

S Uθ
G (e) contains elements of ξ with G as the minimal definite MmDg and θ as the maximal

definite NnMmDg in U . Conversely, S
UB

A (e) includes elements with A as the minimal possible

MmDg and B as the maximal possible NnMmDg in U , for all e ∈ D.

In simpler terms, S Uθ
G (e) represents the union of soft equivalence classes in U ’s LoAp, where

G signifies the lowest definite MmDg and θ represents the highest definite NnMmDg. On the

other hand, S
UB

A (e) represents the union in U ’s UpAp, where A denotes the lowest possible

MmDg and B denotes the highest possible NnMmDg.

Therefore, (G , θ) and (A ,B) act as thresholds defining the levels of certainty regarding the

membership status of elements u in U . Consequently, δ(G ,θ)
(A ,B)(S

U)(e) can be interpreted as

the AcRcDg of U ’s membership with respect to the specified thresholds (G , θ) and (A ,B).
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These concepts are further illustrated in the following example.

Example 2.4.6. Let ξ = {¨1, ¨2, ¨3, ¨4, ¨5, ¨6, ¨7, ¨8, ¨9, ¨10, ¨11} be a collection of houses and

D = {Green Surroundings,Wooden House,Cheap, costly} = {e1, e2, e3, e4} be a parameters

set.

Define a SfEqR S : D → PyFzS(ξ × ξ) by the following soft equivalence classes:

For S (e1), the soft equivalence classes ¨iS (e1) are {¨1, ¨9}, {¨2, ¨4, ¨6, ¨7}, {¨3, ¨5, ¨8, ¨10}, {¨11}.

For S (e2), the soft equivalence classes ¨iS (e2) are {¨1}, {¨2, ¨3, ¨5, ¨9}, {¨4, ¨7}, {¨8, ¨11}, {¨6, ¨10}.

For S (e3), the soft equivalence classes ¨iS (e3) are {¨1}, {¨2}, {¨3, ¨4, ¨5, ¨7, ¨8, ¨9, ¨10}, {¨6}, {¨11}.

For S (e4), the soft equivalence classes ¨iS (e4) are {¨1, ¨2, ¨3, ¨4, ¨5, ¨6, ¨8, ¨11}, {¨9}, {¨7}{¨10}.

Define a PyFzS

U : ξ → [0, 1] by U = {⟨¨1, 0.9, 0.3⟩, ⟨¨2, 0.6, 0.7⟩, ⟨¨3, 0.3, 0.8⟩, ⟨¨4, 0, 0.9⟩, ⟨¨5, 0.2, 0.91⟩, ⟨¨6, 0.4, 0.8⟩,

⟨¨7, 0.6, 0.5⟩, ⟨¨8, 0.8, 0.1⟩, ⟨¨9, 1, 0⟩, ⟨¨10, 0, 0.8⟩, ⟨¨11, 0.99, 0.01⟩}.

Take (G , θ) = (0.7, 0.4) and (A ,B) = (0.5, 0.6) then (G , θ)−level and (A ,B)−level cuts

U0.4
0.7 and U0.6

0.5 are, UB
A = U0.6

0.5 = {¨ : UY (¨) ≥ 0.5, UN(¨) ≤ 0.6} = {¨1, ¨7, ¨8, ¨9, ¨11},

U θ
G = U0.4

0.7 = {¨1, ¨8, ¨9, ¨11}. Then

S Uθ
G (e1) = S U0.4

0.7 (e1) = {¨ ∈ ξ : ¨S (e1) ⊆ U θ
G } = {¨1, ¨9, ¨11}, S U0.4

0.7 (e2) = {¨1, ¨8, ¨11},

S U0.4
0.7 (e3) = {¨1, ¨11}, S U0.4

0.7 (e4) = {¨9}, and

S
UB

A (e1) = S
U0.6
0.5 (e1) = {¨ ∈ ξ : ¨S (e1)∩U0.6

0.5 ̸= ∅}, = {¨1, ¨2, ¨3, ¨4, ¨5, ¨6, ¨7, ¨8, ¨9, ¨10, ¨11},

S
U0.6
0.5 (e2) = {¨1, ¨2, ¨3, ¨4, ¨5, ¨7, ¨8, ¨9, ¨11}, S

U0.6
0.5 (e3) = {¨1, ¨3, ¨4, ¨5, ¨7, ¨8, ¨9, ¨10, ¨11},

S
U0.6
0.5 (e4) = {¨1, ¨2, ¨3, ¨4, ¨5, ¨6, ¨7, ¨8, ¨9, ¨11}.

Thus δ(G ,θ)
(A ,B)S

U(e1) =
|S U0.4

0.7 (e1)|

|S U0.6
0.5 (e1)|

= 3
11

, δ(G ,θ)
(A ,B)(S

U)(e2) =
1
3
, δ(G ,θ)

(A ,B)(S
U)(e3) =

2
9
, δ(G ,θ)

(A ,B)(S
U)(e4) =

1
10
.

Theorem 2.4.7. Let (S , D) be a soft Reflexive Relation (SfRlR) defined on a non-empty

set ξ, U ∈ PyFzS(ξ), and let A ,B,G , θ ∈ [0, 1] satisfy A ≤ G , B ≥ θ, A 2 + B2 ≤ 1, and

G 2 + θ2 ≤ 1. Then for all e ∈ D, with respect to AfS, the AcRcDg of U ’s membership is

bounded as follows:

0 ≤ δ
(G ,θ)
(A ,B)(S

U)(e) ≤ 1.
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Proof.

Let U ∈ PyFzS(ξ) and let A ,B,G , θ ∈ [0, 1] be such that A ≤ G , B ≥ θ, A 2 + B2 ≤ 1,

and G 2 + θ2 ≤ 1. According to Lemma 2.4.2, we have U θ
G ⊆ UB

A . According to the Theorem

2.1.4, it follows that S Uθ
G (e) ⊆ S

Uθ
G (e) ⊆ S

UB
A (e), which implies | S Uθ

G (e) |≤| S
UB

A (e) |.

Thus, |S Uθ
G (e)|

|S UB
A (e)|

≤ 1. Consequently, 0 ≤ δ
(G ,θ)
(A ,B)(S

U)(e) ≤ 1 for e ∈ D.

Corollary 2.4.8. Let (S , D) be a SfRlR on ξ, U ∈ PyFzS(ξ), and let A ,B,G , θ ∈ [0, 1] be

such that A ≤ G , B ≥ θ, A 2 + B2 ≤ 1, and G 2 + θ2 ≤ 1. Then 0 ≤ η
(G ,θ)
(A ,B)(S

U)(e) ≤ 1 for

e ∈ D with respect to the AfSs.

Proof.

Definition 2.4.5 and Theorem 2.4.7 directly lead to this conclusion.

Theorem 2.4.9. Let (S , D) be a SfRlR on ξ, U, V ∈ PyFzS(ξ), and A ,B,G , θ ∈ [0, 1] be

such that A ≤ G , B ≥ θ, A 2 + B2 ≤ 1, and G 2 + θ2 ≤ 1. If U ≤ V , then the following

assertions hold, for all e ∈ D:

i) δ
(G ,θ)
(A ,B)(S

U)(e) ≤ δ
(G ,θ)
(A ,B)(S

V )(e), whenever S
UB

A (e) = S
V B

A (e)

ii) δ
(G ,θ)
(A ,B)(S

U)(e) ≥ δ
(G ,θ)
(A ,B)(S

V )(e) whenever S UB
A (e) = S V B

A (e).

Proof.

i) Let A ,B,G , θ ∈ [0, 1] be such that A ≤ G , B ≥ θ, and A 2 + B2 ≤ 1, G 2 + θ2 ≤ 1.

Let U, V ∈ PyFzS(ξ) be such that U ≤ V which implies U θ
G ⊆ V θ

G . Then According to

the Theorem 2.1.4, S Uθ
G (e) ≤ S V θ

G (e), this implies that |S Uθ
G (e)|

|S UB
A (e)|

≤ |S V θ
G (e)|

|S V θ
G (e)|

,

whenever S
UB

A (e) = S
V B

A (e). Thus, δ(G ,θ)
(A ,B)(S

U)(e) ≤ δ
(G ,θ)
(A ,B)(S

V )(e).

ii) The proof can be derived using the same approach as in part (i).
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Corollary 2.4.10. Let (S , D) denote a SfRfR defined on a non-empty set ξ. Suppose

U, V ∈ PyFzS(ξ) and let A ,B,G , θ ∈ [0, 1] satisfy A ≤ G , B ≥ θ, A 2 + B2 ≤ 1, and

G 2 + θ2 ≤ 1. If U ≤ V , then the following assertions hold for all e ∈ D, with respect to the

AfSs:

i) η
(G ,θ)
(A ,B)(S

U)(e) ≤ η
(G ,θ)
(A ,B)(S

V )(e), whenever S
UB

A (e) = S
V B

A (e)

ii) η
(G ,θ)
(A ,B)(S

U)(e) ≥ η
(G ,θ)
(A ,B)(S

V )(e), whenever S UB
A (e) = S V B

A (e).

Proof.

The proof can be directly inferred from Theorem 2.4.9.

Theorem 2.4.11. Let (S , D) be a SfRfR on a non-empty set ξ, U ∈ PyFzS(ξ), and

A ,B,G , θ ∈ [0, 1] such that A ≤ G , B ≥ θ, and A 2 + B2 ≤ 1, G 2 + θ2 ≤ 1. Suppose

(S1, D) is a SfEqR on ξ such that S (e) ⊆ S1(e) for all e ∈ D. Then with respect to the

AfSs, we have:

δ
(G ,θ)
(A ,B)(S

U)(e) ≥ δ
(G ,θ)
(A ,B)(S1

V )(e)

for all e ∈ D.

Proof.

Let U ∈ PyFzS(ξ) and consider (S , D) and (S1, D) as two SfEqRs on ξ such that S (e) ⊆

S1(e) for all e ∈ D. According to Theorem 2.1.4, we have S U(e) ≥ S1
U(e) and S

U
(e) ≤

S1
U
(e). Using Lemma 2.4.2, it follows that S Uθ

G (e) ⊇ S1
Uθ

G (e) and S
UB

A (e) ⊆ S1
UB

A (e),

which implies |S Uθ
G (e)| ≥ |S1

Uθ
G (e)| and |S UB

A (e)| ≤ |S1
UB

A (e)|. Dividing these inequalities,

we obtain |S Uθ
G (e)|

|S UB
A (e)|

≥ |S1
Uθ

G (e)|

|S1
UB

A (e)|
.

Therefore, δ(G ,θ)
(A ,B)(S

U)(e) ≥ δ
(G ,θ)
(A ,B)(S1

U)(e), for all e ∈ D.

Corollary 2.4.12. Let (S , D) be a SfRfR on a non-empty set ξ, U ∈ PyFzS(ξ), and

A ,B,G , θ ∈ [0, 1] such that A ≤ G , B ≥ θ, and A 2 + B2 ≤ 1, G 2 + θ2 ≤ 1. Suppose

(S1, D) is a SfEqR on ξ such that S (e) ⊆ S1(e) for all e ∈ D. Then η
(G ,θ)
(A ,B)(S

U)(e) ≥

η
(G ,θ)
(A ,B)(S1

U)(e) with respect to the AfSs.
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Proof.

The proof can be derived using the same approach as in Theorem 2.4.11.

2.5 Application of proposed approach in Decision-Making

In decision-making problems, different experts have produced different evaluation results.

Yager [61] introduced the PyFzS and described some of its operations. So far, many re-

searchers have accomplished numerous works in PyFzS Theory and many applications have

appeared in different aspects. Peng et al. [47] presented the idea of a PyFzSfS, basic opera-

tions, and provided its application. Kanwal and Shabir [31] introduced the concepts of LoAp

and UpAp of a FzS in a SmG using SfBnRs (SfBnR), applying them to practical problems.

Hussain et al. [25] extended this framework by introducing PyFzSfRfS and SfRfPyFzS,

offering decision-making methods based on SfBnR.

In SfBnR theory, parameterized families of BnRs on a universe are versatile for decision-

making approaches, extending beyond traditional Binary Relations on sets. Rough approx-

imations in the context of SfBnRs can handle diverse BnRs, whereas Pawlak’s RfS theory

deals with single BnR.

We propose an alternative approach for decision-making problems using PyFzSfRfS theory

with SfBnRs, building upon the methodologies of Kanwal and Shabir [31] and Hussain et

al. [25]. This approach utilizes only the information inherent in the decision problem data,

avoiding the need for additional subjective inputs from decision-makers or other sources. Con-

sequently, it minimizes the impact of subjective information on decision outcomes, ensuring

greater objectivity and reducing the possibility of contradictory results arising from different

experts tackling the same decision problem.

The rough LoAp and UpAp approximations are crucial as they closely estimate the set of the

universe. Therefore, we derive the nearest values S U(e)(¨i) and S
U
(e)(¨i) with respect to

the AfSs for each decision alternative ¨i ∈ ξ of the universe ξ, using the PyFzS’s LoAp and
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UpAp approximations of U . So, we define the choice-value δi for the decision alternative ¨i on

the universe ξ with respect to the AfSs as follows:

δi = Σn
j=1f(r

U(ej)(¨i), θ
U(ej)(¨i)) + Σn

j=1f(r
U(ej)(¨i), θ

U
(ej)(¨i))

where

f(rU(ej)(¨i), θ
U(ej)(¨i)) =

1

2
+ rU(ej)(¨i)

(
1

2
− 2θU(ej)(¨i)

π

)
cos(θU(ej)(¨i)) =

S UY (ej)(¨i)

rU(ej)(¨i)

(rU(ej)(¨i))
2 = (S UY (ej)(¨i))

2 + (S UN (ej)(¨i))
2

and f(rU(ej)(¨i), θ
U
(ej)(¨i)) =

1

2
+ rU(ej)(¨i)

(
1

2
− 2θ

U
(ej)(¨i)

π

)

cos(θ
U
(ej)(¨i)) =

S
UY

(ej)(¨i)

rU(ej)(¨i)

(rU(ej)(¨i))
2 = (S

UY
(ej)(¨i))

2 + (S
UN

(ej)(¨i))
2

The object ¨i ∈ ξ with the maximum choice-value δi is considered the optimal decision for

the given decision-making problem, while the object ¨i ∈ ξ with the minimum value of δi is

regarded as the worst decision. If there are multiple objects ¨i ∈ ξ with the same maximum

(or minimum) choice-value δi, one of them is chosen randomly as the optimal (or worst)

decision for the problem at hand.
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Algorithm 1

1: Compute the upper PyFzSfS approximation S
U

and lower PyFzSfS approximation S U

of a PyFzS U with respect to the AfSs.
2: Compute lower score function f(rU(ej)(¨i), θ

U(ej)(¨i)) and upper score function
f(rU(ej)(¨i), θ

U
(ej)(¨i)).

3: Compute the choice value

δi = Σ
|D|
j=1f(r

U(ej)(¨i), θ
U(ej)(¨i)) + Σ

|D|
j=1f(r

U(ej)(¨i), θ
U
(ej)(¨i))

4: The best decision is ¨m ∈ ξ if δm = maxiδi, i = 1, 2, 3, ... | ξ |.
5: The bad decision is ¨m ∈ ξ if δm = miniδi, i = 1, 2, 3, ... | ξ |.
6: If m has multiple values, select any ¨m as the optimal or least favorable alternative.

Algorithm 2

1: Compute the upper PyFzSfS approximation US and lower PyFzSfS approximation US
of a PyFzS U with respect to the FrS.

2: Compute lower score function f(Ur(ej)(ºi),
Uθ(ej)(ºi)) and upper score function

f(Ur(ej)(ºi),
Uθ(ej)(ºi)).

3: Compute the choice value

δi = Σ
|D|
j=1f(

Ur(ej)(ºi),
U θ(ej)(ºi)) + Σ

|D|
j=1f(

Ur(ej)(ºi),
U θ(ej)(ºi))

4: The best decision is ºm ∈ ξ if δm = maxiδi, i = 1, 2, 3, ... | ξ |.
5: The bad decision is ºm ∈ ξ if δm = miniδi, i = 1, 2, 3, ... | ξ |.
6: If m has multiple values, select any ¨m as the optimal or least favorable alternative.
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2.5.1 An Application of the Decision-Making Approach:

Here, we demonstrate the steps of the decision-making methodology using an example to

choose a car.

Example 2.5.1. Ministry of Foreign Affairs, Pakistan needs to purchase a car for the re-

ception of international guests. Foreign Minister is being provided with the following list of

models and colors of cars available in three different showrooms in Islamabad, Pakistan.

Let ξ1 = {the set of available car models} = {¨1, ¨2, ¨3, ¨4, ¨5, ¨6}, ξ2 = {the set of available colors of car} =

{º1, º2, º3, º4}, and let the set of parameters D = {showrooms} = {e1, e2, e3}.

Define a SfBnR S : D → P (ξ1 × ξ2) by

S (e1) =



¨1 ¨2 ¨3 ¨4 ¨5 ¨6

º1 1 0 1 0 0 0

º2 1 1 0 0 0 1

º3 1 0 0 1 1 0

º4 0 1 0 1 0 0

, S (e2) =



¨1 ¨2 ¨3 ¨4 ¨5 ¨6

º1 0 0 0 0 1 0

º2 0 0 0 0 0 1

º3 1 1 0 0 0 1

º4 0 0 1 1 0 0



and S (e3) =



¨1 ¨2 ¨3 ¨4 ¨5 ¨6

º1 0 0 1 0 0 0

º2 1 0 0 1 0 1

º3 0 0 1 0 1 0

º4 0 1 0 1 1 1


represent the relation between models and colors available at showrooms e1, e2, e3, respectively.

Minister gives preference for the models and colours in the form of two PyFzSs.

Let U and V be two PyFzSs in ξ2 and ξ1, respectively, where U represents the preference of

colors and V represents the preference of models by the respected Minister, such that:

U = {⟨º1, 0.9, 0.2⟩, ⟨º2, 0.8, 0.65⟩, ⟨º3, 0.4, 0.7⟩, ⟨º4, 0.42, 0.78⟩} ,

V = {⟨¨1, 0.74, 0.32⟩, ⟨¨2, 0.7, 0.4⟩, ⟨¨3, 0.5, 0.6⟩, ⟨¨4, 0.2, 0.7⟩, ⟨¨5, 0.31, 0.45⟩, ⟨¨6, 0.4, 0.3⟩} .
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Table 2.5: Approximations of PyFzS U with respect to AfSs

S
U
(e1)(¨i) S U(e1)(¨i) S

U
(e2)(¨i) S U(e2)(¨i) S

U
(e3)(¨i) S U(e3)(¨i)

¨1 (0.9, 0.2) (0.4, 0.7) (0.4, 0.7) (0.4, 0.7) (0.8, 0.65) (0.8, 0.65)

¨2 (0.8, 0.65) (0.42, 0.78) (0.4, 0.7) (0.4, 0.7) (0.42, 0.78) (0.42, 0.78)

¨3 (0.9, 0.2) (0.9, 0.2) (0.42, 0.78) (0.42, 0.78) (0.9, 0.2) (0.4, 0.7)

¨4 (0.8, 0.65) (0.4, 0.78) (0.9, 0.2) (0.9, 0.2) (0.8, 0.65) (0.8, 0.65)

¨5 (0.42, 0.7) (0.4, 0.78) (0.9, 0.2) (0.9, 0.2) (0.42, 0.7) (0.4, 0.78)

¨6 (0.8, 0.65) (0.8, 0.65) (0.8, 0.65) (0.4, 0.7) (0.8, 0.65) (0.8, 0.65)

Table 2.6: Approximations of PyFzS V with respect to FrS

VS (e1)(ºi)
VS (e1)(ºi)

VS (e2)(ºi)
VS (e2)(ºi)

VS (e3)(ºi)
VS (e3)(ºi)

º1 (0.74, 0.32) (0.5, 0.6) (0.31, 0.45) (0.2, 0.7) (0.5, 0.6) (0.5, 0.6)

º2 (0.74, 0.3) (0.2, 0.7) (0.4, 0.3) (0.4, 0.3) (0.74, 0.3) (0.2, 0.7)

º3 (0.74, 0.32) (0.2, 0.7) (0.74, 0.3) (0.4, 0.4) (0.5, 0.45) (0.31, 0.6)

º4 (0.7, 0.4) (0.2, 0.7) (0.5, 0.6) (0.5, 0.6) (0.7, 0.4) (0.31, 0.45)
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Table 2.7: Choice-values with respect to AfSs

¨1 ¨2 ¨3 ¨4 ¨5 ¨6

f(rU(e1)(¨i), θ
U
(e1)(¨i)) 0.83 0.57 0.83 0.57 0.37 0.57

f(rU(e1)(¨i), θ
U(e1)(¨i)) 0.36 0.34 0.83 0.33 0.33 0.57

f(rU(e2)(¨i), θ
U
(e2)(¨i)) 0.36 0.36 0.34 0.83 0.83 0.57

f(rU(e2)(¨i), θ
U(e2)(¨i)) 0.36 0.36 0.34 0.83 0.83 0.36

f(rU(e3)(¨i), θ
U
(e3)(¨i)) 0.57 0.34 0.83 0.57 0.37 0.57

f(rU(e3)(¨i), θ
U(e3)(¨i)) 0.57 0.34 0.36 0.57 0.33 0.57

δi 3.05 2.31 3.53 3.7 3.06 3.21

Table 2.8: Choice-values with respect to FrS

º1 º2 º3 º4

f(Vr(e1)(ºi),
V θ(e1)(ºi)) 0.69 0.7 0.69 0.64

f(Vr(e1)(ºi),
V θ(e1)(ºi)) 0.46 0.27 0.27 0.27

f(Vr(e2)(ºi),
V θ(e2)(ºi)) 0.43 0.55 0.7 0.46

f(Vr(e2)(ºi),
V θ(e2)(ºi)) 0.27 0.55 0.5 0.46

f(Vr(e3)(ºi),
V θ(e3)(ºi)) 0.46 0.7 0.52 0.64

f(Vr(e3)(ºi),
V θ(e3)(ºi)) 0.46 0.26 0.38 0.44

δ
′

i 2.77 3.03 3.06 2.91

Table 2.5 and Table 2.6 present the approximations of PyFzSs U and V with respect to AfSs

and FrS, respectively. Moving on to step 3 of Algorithms 1 and 2, we compute choice-values

δ and δ
′ as shown in Table 2.7 and Table 2.8.
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From Table 2.7, it is evident that the maximum value of δ4 = 3.7, achieved by model ¨4,

indicating a decision in favor of model ¨4. Similarly, in Table 2.8, the maximum value of

δ
′
3 = 3.06, attained by color º3, leading to a decision favoring color º3.

Therefore, the optimal choices are model ¨4 and color º3, which the Foreign Minister will

select. Consequently, the preferred showroom is e1.

In this chapter, we introduced the use of Soft Binary Relations to define the lower and

upper approximations of Pythagorean Fuzzy Sets. The proposed methods were demonstrated

through algorithms and examples, highlighting their utility in solving decision-making prob-

lems. The results showcased the flexibility and effectiveness of these approximations in com-

putational intelligence. These methods extend the theoretical framework of Pythagorean

Fuzzy Sets and pave the way for practical applications in decision support systems and future

research in related fields.
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Chapter 3

Rough q-Rung Orthopair Fuzzy Sets and

their applications in decision-making

This chapter is structured as follows:

In Section 3.1, we explore the lower approximation (LoAp) and upper approximation (UpAp)

of q-Rung Orthopair Fuzzy sets (qROFzSs) using Crisp Binary Relations (CrBnRs) in rela-

tion to FrS and AfSs, along with a proof of their properties.

Section 3.2 introduces two types of q-Rung Orthopair Topological Spaces (qROFzTpSs) in-

duced by CrBnRs.

In Section ??, we delve into similarity relations between qROFzSs based on Binary Relations.

Next, Section 3.4 introduces the concepts of roughness and AcRcDgs for q-Rung Orthopair

MmDgs with respect to FrS and AfSs.

Section 3.5 presents an algorithm designed for solving decision-making problems using qROFzSs,

followed by an illustrative example demonstrating the proposed method and its application

in decision-making problems.
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3.1 Rough q-Rung Orthopair Fuzzy Sets

In this section, we apply a Crisp Binary Relation from ξ1 to ξ2 to approximate a qROFzS

across ξ1 using FrS, resulting in two qROFzSs over ξ2. Similarly, we approximate a qROFzS

over ξ2 using AfSs, leading to two qROFzSs over ξ1. Additionally, we discuss several of their

properties.

Definition 3.1.1. Let J be a Crisp Binary Relation (CrBnR) from ξ1 to ξ2 and U =

{⟨º, UY (º), UN(º)⟩ : º ∈ ξ2} be a qROFzS in ξ2. Then we define LoAp JU = (JUY , JUN )

and UpAp J
U
= (J

UY
, J

UN
) of U = {⟨º, UY (º), UN(º)⟩ : º ∈ ξ2} with respect to AfSs as follows:

JU(¨) =


(∧

º∈¨J UY (º),
∨

º∈¨J UN(º)
)

if ¨J ̸= ∅;

(1, 0) if ¨J = ∅.

and

J
UY

(¨) =


(∨

º∈¨J UY (º),
∧

º∈¨J UN(º)
)

if ¨J ̸= ∅;

(0, 1) if ¨J = ∅.

where ¨J = {º ∈ ξ2 : (¨, º) ∈ J}, and is called the AfS of ¨ for all ¨ ∈ ξ1.

It can be easily verified that JU , JU are qROFz subsets of ξ1. And JU , JU
: qROFzS(ξ2) →

qROFzS(ξ1) are Lo and Up rough qROFz approximation operators, respectively, and the pair

(JU , J
U
) is called the rough qROFzS with respect to AfSs.

Definition 3.1.2. Let J be a CrBnR from ξ1 to ξ2 and U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ1}

be a qROFzS in ξ1. Then we define LoAp
UJ = (UY J,UN J) and UpAp

UJ = (UY J,UN J) of

U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ1} with respect to FrS as follows:

UJ(º) =


(∧

¨∈Jº
UY (¨),

∨
¨∈Jº

UN(¨)
)

if Jº ̸= ∅;

(1, 0) if Jº = ∅.
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and

UJ(º) =


(∨

¨∈Jº
UY (¨),

∧
¨∈Jº

UN(¨)
)

if Jº ̸= ∅;

(0, 1) if Jº = ∅.

where Jº = {¨ ∈ ξ1 : (¨, º) ∈ J}, and is called the FrS of º for all º ∈ ξ2.

It can be easily verified that UJ , UJ are qROFz subsets of ξ2. And UJ , UJ : qROFzS(ξ1) →
qROFzS(ξ2) are Lo and Up rough qROFz approximation operators, respectively, and the pair

(UJ,U J) is called the rough qROFzS with respect to FrS. The example below demonstrates

these concepts.

Example 3.1.3. Suppose a student is considering buying a new laptop.

Consider ξ1 = {the set of available models} = {¨1, ¨2, ¨3, ¨4} and ξ2 = {the colors of laptops} =

{º1, º2, º3}. Let J ⊆ ξ1 × ξ2 be defined as: J =


¨1 ¨2 ¨3 ¨4

º1 1 1 1 0

º2 1 0 1 0

º3 0 1 1 1


representing the relation between laptop models and available colors at the shop.

Now consider for q ≥ 5, U ∈ qROFzS(ξ2) and V ∈ qROFzS(ξ1) , where U represents the

preference for colors and V represents the preference for models as specified by the student.

They are defined as:

U = {⟨º1, 0.9, 0.8⟩, ⟨º2, 0.8, 0.6⟩, ⟨º3, 0.6, 0.7⟩},

V = {⟨¨1, 0.9, 0.5⟩, ⟨¨2, 0.7, 0.5⟩, ⟨¨3, 0.7, 0.6⟩, ⟨¨4, 0.4, 0.8⟩}.

Then LoAp and UpAps of qROFzS U with respect to AfSs ¨iJ are two qROFzSs on ξ1, given

by;

JU = {⟨¨1, 0.8, 0.8⟩, ⟨¨2, 0.6, 0.8⟩, ⟨¨3, 0.6, 0.8⟩, ⟨¨4, 0.6, 0.7⟩},

J
U
= {⟨¨1, 0.9, 0.6⟩, ⟨¨2, 0.9, 0.7⟩, ⟨¨3, 0.9, 0.6⟩, ⟨¨4, 0.8, 0.6⟩}.

Thus, (JU , J
U
) is a rough qROFzS with respect to AfSs.

Similarly, the LoAp and UpAps of qROFzS V with respect to FrS Jºi are two qROFzSs on ξ2,
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given by;
V J = {⟨º1, 0.7, 0.6⟩, ⟨º2, 0.4, 0.8⟩, ⟨º3, 0.4, 0.8⟩}, V J = {⟨º1, 0.9, 0.5⟩, ⟨º2, 0.9, 0.5⟩, ⟨º3, 0.7, 0.5⟩}.

Thus, (V J,V J) is a rough qROFzS with respect to FrS.

Theorem 3.1.4. Let J be a CrBnR from ξ1 to ξ2, that is, J ∈ P (ξ1 × ξ2). For any three
qROFzSs U = {⟨º, UY (º), UN(º)⟩ : º ∈ ξ2}, U1 = {⟨º, U1Y (º), U1N (º)⟩ : º ∈ ξ2}, and U2 =

{⟨º, U2Y (º), U2N (º)⟩ : º ∈ ξ2} of ξ2, we have the following:

i) U1 ⊆ U2 implies JU1 ⊆ JU2

ii) U1 ⊆ U2 implies J
U1 ⊆ J

U2

iii) JU1∩U2 = JU1 ∩ JU2

iv) J
U1∩U2 ⊆ J

U1 ∩ J
U2

v) JU1 ∪ JU2 ⊆ JU1∪U2

vi) J
U1 ∪ J

U2
= J

U1∪U2

vii) J
1ξ2 = J1ξ2 = 1ξ1, if ¨J ̸= ∅

viii) JU = (J
Uc

)c and J
U
= (JUc

)c, if ¨J ̸= ∅

ix) J0ξ2 = 0ξ1 = J
0ξ2 .

Proof.

i) Let U1 ⊆ U2, that is, for all º ∈ ξ2, U1Y (º) ≤ U2Y (º), and U1N (º) ≥ U2N (º).

If ¨J = ∅, then JU1 = (1, 0) = JU2 .

If ¨J ̸= ∅, then JU1Y (¨) =
∧

º∈¨J U1Y (º) ≤
∧

º∈¨J U2Y (º) = JU2Y (¨) and

JU1N (¨) =
∨

º∈¨J U1N (º) ≥
∨

º∈¨J U2N (º) = JU2N (¨).

Thus, JU1Y (¨) ≤ JU2Y (¨) and JU1N (¨) ≥ JU2N (¨). Hence, JU1 ⊆ JU2 .
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ii) Let U1 ⊆ U2, that is, for all º ∈ ξ2, U1Y (º) ≤ U2Y (º), and U1N (º) ≥ U2N (º).

If ¨J = ∅, then J
U1

= (0, 1) = J
U2
.

If ¨J ̸= ∅, then J
U1Y (¨) =

∨
º∈¨J U1Y (º) ≤

∨
º∈¨J U2Y (º) = J

U2Y (¨) and

J
U1N (¨) =

∧
º∈¨J U1N (º) ≥

∧
º∈¨J U2N (º) = J

U2N (¨).

Thus, JU1Y (¨) ≤ J
U2Y (¨) and J

U1N (¨) ≥ J
U2N (¨). Hence, JU1 ⊆ J

U2
.

iii) Consider (JU1Y ∩ JU2Y )(¨) = JU1Y (¨) ∧ JU2Y (¨) = (
∧

º∈¨J U1Y (º)) ∧ (
∧

º∈¨J U2Y (º))

=
∧

º∈¨J(U1Y (º) ∧ U2Y (º)) = JU1∩U2(¨), and

(JU1N∪JU2N )(¨) = JU1N (¨)∨JU2N (¨) = (
∨

º∈¨J U1N (º))∨(
∨

º∈¨J U2N (º)) =
∨

º∈¨J(U1N (º)∨

U2N (º)) = JU1∪U2(¨).

Thus, JU1∩U2 = JU1 ∩ JU2 .

iv) Given that U1 ∩ U2 ⊆ U1 and U1 ∩ U2 ⊆ U2, it follows from part (ii) that J
U1∩U2 ⊆ J

U1

and J
U1∩U2 ⊆ J

U2 . Therefore, we conclude that J
U1∩U2 ⊆ J

U1 ∩ J
U2 .

v) Since U1 ⊆ U1 ∪ U2 and U2 ⊆ U1 ∪ U2, it follows from part (i) that JU1 ⊆ JU1∪U2 and

JU2 ⊆ JU1∪U2 . Therefore, we conclude that JU1 ∪ JU2 ⊆ JU1∪U2 .

vi) Consider

(J
U1Y ∪ J

U2Y )(¨) = J
U1Y (¨) ∨ J

U2Y (¨) = (
∨

º∈¨J U1Y (º)) ∨ (
∨

º∈¨J U2Y (º))

=
∨

º∈¨J(U1Y (º) ∨ U2Y (º)) = J
U1∪U2

(¨) and

(J
U1N∩RU2N )(¨) = J

U1N (¨)∧JU2N (¨) = (
∧

º∈¨J U1N (º))∧(
∧

º∈¨J U2N (º)) =
∧

º∈¨J(U1N (º)∧

U2N (º)) = J
U1∩U2

(¨).

Thus, JU1∪U2
= J

U1 ∪ J
U2
.

vii) Since J1ξ2 (¨) =
∧

º∈¨J 1(w) =
∧

º∈¨J 1 = 1 and J0(¨) =
∧

º∈¨J 0(w) =
∧

º∈¨J 0 = 0.

Thus, J1ξ2 = 1ξ1 . Similarly, we can prove that J
1ξ2 = 1ξ1 .

viii) Consider

J
Uc
Y (¨) =

∨
º∈¨J U

c
Y (º) =

∨
º∈¨J UN(º) = JUN (¨) = (JUY (¨))c and

J
Uc
N (¨) =

∧
º∈¨J U

c
N(º) =

∧
º∈¨J UY (º) = JUY (¨) = (JUN (¨))c.
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Thus, JUc

= (J
Uc
Y , JUc

N ) = ((JUY )c, (JUN )c) = (JUY , JUN )c = (JU)c. Which gives that

(J
Uc

)c = JU . Similarly, JU
= (JUc

)c.

ix) The proof is straightforward.

Theorem 3.1.5. Let J be a CrBnR from ξ1 to ξ2, that is, J ∈ P (ξ1 × ξ2). For any three
qROFzSs U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ1}, U1 = {⟨¨, U1Y (¨), U1N (¨)⟩ : ¨ ∈ ξ1}, and U2 =

{⟨¨, U2Y (¨), U2N (¨)⟩ : ¨ ∈ ξ1} of ξ1, we have the following:

i) U1 ⊆ U2 implies U1J ⊆ U2J

ii) U1 ⊆ U2 implies U1J ⊆ U2J

iii) U1J ∩ U2J = U1∩U2J

iv) U1∩U2J ⊆ U1J ∩ U2J

v) U1∪U2J ⊇ U1J ∪ U2J

vi) U1J ∪ U2J = U1∪U2J

vii) 1ξ1J = 1ξ2 =
1ξ1J , if Jº ̸= ∅

viii) UJ = (U
c
J)c, and UJ = (U

c
J)c if Jº ̸= ∅

ix) 0ξ1J = 0ξ2 =
0ξ1J.

Proof.

The proof can be derived using the same approach as in Theorem. 3.1.4.

The subsequent example shows that the equality fails in parts (iv) and (v) of Theorem 3.1.4.
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Example 3.1.6. Utilizing the information given in Example 3.1.3, define two qROFzSs U1,

U2 on ξ2 by:

U1 = {⟨º1, 0.8, 0.6⟩, ⟨º2, 0.1, 0.9⟩, ⟨º3, 0.4, 0.7⟩}, U2 = {⟨º1, 0.35, 0.65⟩, ⟨º2, 0.65, 0.95⟩, ⟨º3, 0.6, 0.87⟩}

for q = 5. Then

U1 ∩ U2 = {⟨º1, 0.35, 0.65⟩, ⟨º2, 0.1, 0.95⟩, ⟨º3, 0.4, 0.87⟩}, and

U1 ∪ U2 = {⟨º1, 0.8, 0.6⟩, ⟨º2, 0.65, 0.9⟩, ⟨º3, 0.6, 0.7⟩} .

Table 3.1: Union of LoAps and LoAps of union of two qROFzSs

JU1(¨i) JU2(¨i) (JU1 ∪ JU2)(¨i) JU1∪U2(¨i)

¨1 (0.1, 0.9) (0.35, 0.95) (0.35, 0.9) (0.65, 0.9)

¨2 (0.4, 0.7) (0.35, 0.87) (0.4, 0.7) (0.6, 0.7)

¨3 (0.1, 0.9) (0.35, 0.95) (0.35, 0.9) (0.6, 0.9)

¨4 (0.1, 0.9) (0.6, 0.95) (0.6, 0.9) (0.6, 0.9)

Table 3.2: Intersection of UpAps and UpAps of intersection of two qROFzSs

J
U1
(¨i) J

U2
(¨i) (J

U1 ∩ J
U2
)(¨i) J

U1∩U2
(¨i)

¨1 (0.8, 0.6) (0.65, 0.65) (0.65, 0.65) (0.35, 0.65)

¨2 (0.8, 0.6) (0.6, 0.65) (0.6, 0.65) (0.4, 0.65)

¨3 (0.8, 0.6) (0.65, 0.65) (0.65, 0.65) (0.4, 0.65)

¨4 (0.4, 0.7) (0.65, 0.87) (0.4, 0.87) (0.4, 0.87)

Now, observing Table 3.1, we can easily see that (JU1∪JU2)(¨1) ̸= JU1∪U2(¨1), (JU1∪JU2)(¨2) ̸=

JU1∪U2(¨2), and (JU1 ∪ JU2)(¨3) ̸= JU1∪U2(¨3). Thus, the union of LoAps of two qROFzSs is

not equal to the LoAp of the union of two qROFzSs, that is, JU1 ∪ JU2 ̸= JU1∪U2.

Similarly, from Table 3.2, we can see that the intersection of UpAps of two qROFzSs is not

60



equal to the UpAp of the intersection of two qROFzSs, that is, JU1 ∩ J
U2 ̸= J

U1∩U2.

Hence, equality does not hold in parts (iv) and (v) of Theorem 3.1.4.

Theorem 3.1.7. Let J1 and J2 be two CrBnRs from ξ1 to ξ2 such that J1 ⊆ J2. Then, for

any U ∈ qROFzS(ξ2), JU
2 ⊆ JU

1 and J1
U ⊆ J2

U .

Proof.

Since J1 ⊆ J2, we have ¨J1 ⊆ ¨J2.

Now if ¨J1 = ∅, then JUY
2 (¨) ≤ 1 = JUY

1 (¨), and JUN
1 (¨) = 0 ≤ JUN

2 (¨). This implies that

JU
2 ⊆ JU

1 .

If ¨J1 ̸= ∅, then JUY
1 (¨) =

∧
º∈¨J1 UY (º) ≥

∧
º∈¨J2 UY (º) = JUY

2 (¨), since ¨J1 ⊆ ¨J2 and

JUN
1 (¨) =

∨
º∈¨J1 UN(º) ≤

∨
º∈¨J2 UN(º) = JUN

2 (¨), since ¨J1 ⊆ ¨J2. Thus, JU
2 ⊆ JU

1 .

Similarly, J1
U ⊆ J2

U .

Theorem 3.1.8. Let J1 and J2 be two CrBnRs from ξ1 to ξ2 such that J1 ⊆ J2. Then, for

any U ∈ qROFzS(ξ1), UJ2 ⊆ UJ1 and UJ1 ⊆ UJ2.

Proof.

The proof can be derived using the same approach as in Theorem. 3.1.7.

Theorem 3.1.9. Let J1 and J2 be two CrBnRs from ξ1 to ξ2. Then, for any U ∈ qROFzS(ξ2),

the following are true:

i) JU
1 ⊆ (J1 ∩ J2)

U and JU
2 ⊆ (J1 ∩ J2)

U .

ii) (J1 ∩ J2)
U
⊆ J1

U and (J1 ∩ J2)
U
⊆ J2

U .

Proof.

Theorem 3.1.7 directly lead to this conclusion.
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Similarly, we have the following.

Theorem 3.1.10. Let J1 and J2 be two CrBnRs from ξ1 to ξ2. Then, for any U ∈ qROFzS(ξ1):

i) UJ1 ⊆ U(J1 ∩ J2), and UJ2 ⊆ U(J1 ∩ J2).

ii) U(J1 ∩ J2) ⊆ UJ1, and U(J1 ∩ J2) ⊆ UJ2.

Theorem 3.1.11. Let J be a CrBnR from ξ1 to ξ2 and let {Ui : i ∈ I} be a family of qROFzSs

defined on ξ2. Then the following properties hold:

i) J (
⋂

i∈I Ui) =
⋂

i∈I J
Ui

ii)
⋃

i∈I J
Ui ⊆ J (

⋃
i∈I Ui)

iii) J
(
⋃

i∈I Ui)
=
⋃

i∈I J
Ui

iv) J
(
⋂

i∈I Ui) ⊆
⋂

i∈I J
Ui

Proof.

i) Let Ui ∈ qROFzS(ξ2), for i ∈ I. Then

J (
⋂

i∈I UiY
)(¨) =

∧
º∈¨J(∧i∈IUiY (º)) =

∧
i∈I(∧º∈¨JUiY (º)) =

⋂
i∈I J

UiY (¨) and

J (
⋃

i∈I UiN
)(¨) =

∨
º∈¨J(∨i∈IUiN (º)) =

∨
i∈I(∨º∈¨JUiN (º)) =

⋃
i∈I J

UiN (¨).

Thus, J (
⋂

i∈I Ui) =
⋂

i∈I J
Ui .

ii) Since Ui ⊆
⋃

i∈I Ui for each i ∈ I. Then JUi ⊆ J (
⋃

i∈I Ui). Which implies that
⋃

i∈I J
Ui ⊆

J (
⋃

i∈I Ui).

iii) The proof can be derived using the same approach as in part (i).

iv) The proof can be derived using the same approach as in part (ii).
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Theorem 3.1.12. Let J be a CrBnR from ξ1 to ξ2 and {Ui : i ∈ I} be a family of qROFzSs

defined on ξ1. Then:

i) (
⋂

i∈I Ui)J =
⋂

i∈I
UiJ

ii)
⋃

i∈I
UiJ ⊆ (

⋃
i∈I Ui)J

iii) (
⋃

i∈I Ui)J =
⋃

i∈I
UiJ

iv) (
⋂

i∈I Ui)J ⊆
⋂

i∈I
UiJ .

Proof.

The proof can be derived using the same approach as in Theorem. 3.1.11.

Theorem 3.1.13. Let J be a Reflexive Binary Relation (RfBnR) over ξ. For any U ∈
qROFzS(ξ), we have:

i) JU ≤ U ≤ J
U

ii) JU ≤ J
U .

Proof.

For ¨ ∈ ξ,

i) Consider JUY (¨) =
∧

º∈¨J UY (º) ≤ UY (¨), since ¨ ∈ ¨J , and JUN (¨) =
∨

º∈¨J UN(º) ≥

UN(¨), since ¨ ∈ ¨J. Thus, JU ≤ U.

Also, J
UY

(¨) =
∨

º∈¨J UY (º) ≥ UY (¨), since ¨ ∈ ¨J , and J
UN

(¨) =
∧

º∈¨J UN(º) ≤

UN(¨), since ¨ ∈ ¨J. Thus, JU ≥ U.

ii) From part (i) we get that JU ≤ U ≤ J
U which implies that JU ≤ J

U .

Theorem 3.1.14. Let J be a RfBnR over ξ. For any U ∈ qROFzS(ξ), the following prop-

erties for LoAp and UpAps with respect to FrS hold:
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i) UJ ≤ U ≤ UJ

ii) UJ ≤ UJ .

Proof.

The proof can be derived using the same approach as in Theorem. 3.1.13.

3.2 q-Rung Orthopair Fuzzy Topologies induced by Re-

flexive Binary relations

The transition from rough approximations to q-Rung Orthopair Fuzzy Topological Spaces

allows for a deeper analysis of uncertainty and relationships within data. Rough approxi-

mations provide a framework to define the lower and upper bounds of a q-Rung Orthopair

Fuzzy Set, capturing the boundary regions of uncertainty. By introducing Fuzzy Topological

Spaces, these boundaries are further analyzed through Topological properties such as interior,

closure, and neighborhood. This transition enriches the theoretical framework, enabling the

study of spatial relationships and structural patterns within Fuzzy data, which are critical for

applications in decision-making and pattern recognition.

Cheng [17] introduced the concept of a Fuzzy Topological Space and generalized some fun-

damental notions of Topology. Türkarslan et al. [56] presented the idea of q-Rung Orthopair

Fuzzy Topological Spaces (qROFzTpSs) and explored continuity between two qROFzTpSs.

In this section, we introduce two types of qROFz Topologies induced by an RlBnR.

Definition 3.2.1. [56] A family A ⊆ qROFzS(ξ) of qROFzSs on ξ is called a qROFz Topology

on ξ if:

1) 0, 1 ∈ A

2) U1 ∩ U2 ∈ A, for all U1, U2 ∈ A

3)
⋃

i∈I Ui ∈ A, for all Ui ∈ A, i ∈ I.
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If A is a qROFz Topology on ξ, then (ξ,A) is called a qROFzTpSp. The elements of A are

referred to as qROFz open sets.

Theorem 3.2.2. If J is a RfBnR on ξ, then

T = {U ∈ qROFzS(ξ) : J
U = U}

is a qROFz Topology on ξ.

Proof.

1) From Theorem 3.1.4, we have J0 = 0 and J1 = 1, which gives that 0, 1 ∈ T.

2) If U1, U2 ∈ T, then JU1 = U1 and JU2 = U2. From Theorem 3.1.4, JU1∩U2 = (JU1 ∩ JU2) =

(U1 ∩ U2). This implies that U1 ∩ U2 ∈ T.

(3) If Ui ∈ T, then JUi = Ui, for each i ∈ I. Since the relation is Reflexive, so according to

the Theorem 3.1.13, we have

J (
⋃

i∈I Ui) ≤
⋃
i∈I

Ui. (3.2.1)

Also, because Ui ≤
⋃

i∈I Ui, so JUi ≤ J (
⋃

i∈ Ui). This implies that
⋃

i∈I J
Ui ≤ J (

⋃
i∈I Ui). Thus,

⋃
i∈I

Ui ≤ J (
⋃

i∈I Ui). (3.2.2)

Thus from Equations (3.2.1) and (3.2.2), we get
⋃

i∈I Ui = J (
⋃

i∈I Ui).

Hence, T is a qROFz Topology on ξ.

Theorem 3.2.3. If J is a RfBnR on ξ, then

T
′
= {U ∈ qROFzS(ξ) :

UJ = U}

is a qROFz Topology on ξ.

65



Proof.

The proof can be derived using the same approach as in Theorem. 3.2.2.

3.3 Similarity relations associated with Binary Relations

labelsec10 Here, we explore rough approximation based similarity relations among qROFzSs

and investigate their properties.

Definition 3.3.1. Let J be a CrBnR over ξ. For U1, U2 ∈ qROFzS(ξ), the similarity relations

R, R̃ and R on ξ are:

U1R̃U2 if and only if JU1
= J

U2

U1RU2 if and only if JU1 = JU2

U1RU2 if and only if JU1 = JU2 and J
U1

= J
U2
.

Definition 3.3.2. Let J be a CrBnR over ξ. For U1, U2 ∈ qROFzS(ξ), the similarity relations

r, r̃ and r on ξ are:

U1r̃U2 if and only if U1J =U2 J

U1rU2 if and only if U1J =U2 J

U1rU2 if and only if U1J =U2 J and U1J =U2 J.

The aforementioned Binary Relations can be referred to as the lower qROFz similarity

relation, upper qROFz similarity relation, and qROFz similarity relation, respectively.

Proposition 3.3.3. The Binary Relations R, R̃, R are EqRs on qROFzS(ξ).

Proof.

The proof is straightforward.
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Proposition 3.3.4. The Binary Relations r, r̃, r are EqRs on qROFzS(ξ).

Proof.

The proof is straightforward.

Theorem 3.3.5. Let J be a CrBnR over ξ and U1, U2, U3, U4 ∈ qROFzS(ξ). Then:

i) U1R̃U2 if and only if U1R̃(U1 ∪ U2)R̃U2

ii) If U1R̃U2 and U3R̃U4, then (U1 ∪ U3)R̃(U2 ∪ U4)

iii) If U1 ⊆ U2 and U2R̃0, then U1R̃0

iv) (U1 ∪ U2)R̃0 if and only if U1R̃0 and U2R̃0

v) If U1 ⊆ U2 and U1R̃1, then U2R̃1

vi) If (U1 ∩ U2)R̃1, then U1R̃1 and U2R̃1.

Proof.

i) If U1R̃U2, then J
U1

= J
U2 . According to the Theorem 3.1.4, J

U1∪U2
= J

U1 ∪ J
U2

=

J
U1

= J
U2
, so we have, U1R̃(U1 ∪ U2)R̃U2.

Conversely, if U1R̃(U1 ∪ U2)R̃U2, then U1R̃(U1 ∪ U2) and (U1 ∪ U2)R̃U2. Which implies

that J
U1

= J
U1∪U2 and J

U1∪U2
= J

U2
. Thus, JU1

= J
U2
. Hence, U1R̃U2.

ii) If U1R̃U2 and U3R̃U4, then J
U1

= J
U2 and J

U3
= J

U4
. According to the Theorem 3.1.4,

J
U1∪U3

= J
U1 ∪ J

U3
= J

U2 ∪ J
U4

= J
U2∪U4 . Thus, (U1 ∪ U3)R̃(U2 ∪ U4).

iii) Let U1 ⊆ U2 and U2R̃0. Then J
U2

= R
0. Also, since U1 ⊆ U2, so we have J

U1 ⊆ J
U2

=

J
0. But J

0 ⊆ J
U1 , so J

U1
= J

0. Hence, U1R̃0.

iv) If (U1 ∪ U2)R̃0, then J
U1 ∪ J

U2
= J

U1∪U2
= J

0. Since J
U1 ⊆ J

U1 ∪ J
U2

= J
0, so we have

J
U1

= J
0. Similarly, JU2

= J
0. Hence, U1R̃0 and U2R̃0.

Conversely, if U1R̃0 and U2R̃0, then J
U1

= J
0 and J

U2
= J

0. According to the Theorem

3.1.4, J (U1∪U2)
= J

U1 ∪ J
U2

= J
0 ∪ J

0
= J

0
. Hence, U1 ∪ (U2R̃)0.
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v) If U1R̃1, then J
U1

= J
1
. Since U1 ⊆ U2, so J

1
= J

U1 ⊆ J
U2
. But JU2 ⊆ J

1 so, J1
= J

U1 .

Hence, U2R̃1.

vi) If U1 ∩ U2R̃1, then J
U1∩U2

= J
1. According to the Theorem 1.2.3, we have J

U1 ∩ J
U2 ⊇

J
U1∩U2

= J
1. Thus, J1

= J
U1 and J

1
= J

U2 . Hence, U1R̃1 and U2R̃1.

Theorem 3.3.6. Let J be a CrBnR over ξ and U1, U2, U3, U4 ∈ qROFzS(ξ). Then:

i) U1r̃U2 if and only if U1r̃(U1 ∪ U2)r̃U2

ii) If U1r̃U2 and U3r̃U4, then (U1 ∪ U3)r̃(U2 ∪ U4)

iii) If U1 ⊆ U2 and U2r̃0, then U1r̃0

iv) (U1 ∪ U2)r̃0 if and only if U1r̃0 and U2r̃0

v) If U1 ⊆ U2 and U1r̃1, then U2r̃1

vi) If (U1 ∩ U2)r̃1, then U1r̃1 and U2r̃1.

Proof.

The proof can be derived using the same approach as in Theorem. 3.3.5

Theorem 3.3.7. Let J be a CrBnR over ξ and U1, U2, U3, U4 ∈ qROFzS(ξ). Then:

i) U1RU2 if and only if U1R(U1 ∩ U2)RU2

ii) If U1RU2 and U3RU4, then (U1 ∩ U3)R(U2 ∩ U4)

iii) If U1 ⊆ U2 and U2R0, then U1R0

iv) (U1 ∪ U2)R0 if and only if U1R0 and U2R0

v) If U1 ⊆ U2 and U1R1, then U2R1
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vi) If (U1 ∩ U2)R1, then U1R1 and U2R1.

Proof.

The proof is straightforward.

Theorem 3.3.8. Let J be a CrBnR over ξ and U1, U2, U3, U4 ∈ qROFzS(ξ). Then:

i) U1rU2 if and only if U1r(U1 ∩ U2)rU2

ii) If U1rU2 and U3rU4, then (U1 ∩ U3)r(U2 ∩ U4)

iii) If U1 ⊆ U2 and U2r0, then U1r0

iv) (U1 ∪ U2)r0 if and only if U1r0 and U2r0

v) If U1 ⊆ U2 and U1r1, then U2r1

vi) If (U1 ∩ U2)r1, then U1r1 and U2r1.

Proof.

The proof is straightforward.

Theorem 3.3.9. Let J be a CrBnR over ξ and U1, U2 ∈ qROFzS(ξ). Then:

i) U1RU2 if and only if U1R̃(U1 ∪ U2)R̃U2 and U1R(U1 ∩ U2)RU2

ii) If U1 ⊆ U2 and U2R0, then U1R0

iii) (U1 ∪ U2)R0 if and only if U1R0 and U2R0

iv) If (U1 ∩ U2)R1, then U1R1 and U2R1.

v) If U1 ⊆ U2 and U1R1, then U2R1

Proof.

Theorems 3.3.5 and 3.3.7 directly lead to this conclusion.
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Theorem 3.3.10. Let J be a CrBnR over ξ and U1, U2 ∈ qROFzS(ξ). Then:

i) U1rU2 if and only if U1r̃(U1 ∪ U2)r̃U2 and U1r(U1 ∩ U2)rU2

ii) If U1 ⊆ U2 and U2r0, then U1r0

iii) (U1 ∪ U2)r0 if and only if U1r0 and U2r0

iv) If (U1 ∩ U2)r1, then U1r1 and U2r1.

v) If U1 ⊆ U2 and U1r1, then U2r1

Proof.

Theorems 3.3.6 and 3.3.8 directly lead to this conclusion.

3.4 Accuracy Measure

The approximation of qROFzSs introduces a novel approach for assessing the precision of

MmDgs associated with qROFzSs that characterize objects. This method allows us to deter-

mine how closely these sets describe the underlying entities. To begin, we define the (A ,B)-

level cut set of a qROFzS U .

Definition 3.4.1. Let U ∈ qROFzS(ξ) and consider A ,B ∈ [0, 1] be such that A q +Bq ≤ 1

for q ≥ 1. The (A ,B)-level cut set of qROFzS U is defined as

UB
A = {¨ ∈ ξ : UY (¨) ≥ A and UN(¨) ≤ B}.

For example, if we consider

U = {⟨¨1, 0.9, 0.4⟩, ⟨¨2, 0.95, 0.3⟩, ⟨¨3, 0.8, 0.5⟩, ⟨¨4, 0.9, 0.2⟩, ⟨¨5, 0.7, 0.65⟩, ⟨¨6, 0.94, 0.42⟩} and

(A ,B) = (0.7, 0.5) ∈ [0, 1]× [0, 1] such that A q + Bq ≤ 1 with q = 3, then

UB
A = {¨1, ¨2, ¨3, ¨4, ¨6}.
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The set UA = {¨ ∈ ξ : UY (¨) ≥ A } represents the membership set of the A -level cut of U ,

while U ˙A = {¨ ∈ ξ : UY (¨) > A } denotes the membership set of the strong A -level cut of U .

Similarly, UB = {¨ ∈ ξ : UN(¨) ≤ B} and U Ḃ = {¨ ∈ ξ : UN(¨) < B} are the membership

sets of the B-level and strong B-level cuts of U . Thus, the other cut sets of a qROFzS U can

be defined as follows:

UB
˙A
= {¨ ∈ ξ : UY (¨) > A and UN(¨) ≤ B},

which is referred to as the ( ˙A ,B)-level cut set of U ;

U Ḃ
A = {¨ ∈ ξ : UY (¨) ≥ A and UN(¨) < B},

which is referred to as the (A , Ḃ)-level cut set of U ;

U Ḃ
˙A
= {¨ ∈ ξ : UY (¨) > A and UN(¨) < B},

which is referred to as the ( ˙A , Ḃ)-level cut set of U .

Theorem 3.4.2. Let U, V ∈ qROFzS(ξ) and (A ,B) ∈ [0, 1]×[0, 1] be such that A q+Bq ≤ 1,

for q ≥ 1. Then:

i) UB
A = UA ∩ UB

ii) (U c)B = (UḂ)
c, (U c)A = (U

˙A )c

iii) U ⊆ V implies UB
A ⊆ V B

A

iv) (U ∩ V )A = UA ∩ VA , (U ∩ V )B = UB ∩ V B, (U ∩ V )BA = UA ∩ V B
A

v) (U ∪ V )A = UA ∪ VA , (U ∪ V )B = UB ∪ V B, UA ∩ V B
A ⊆ (U ∪ V )BA

vi) A1 ≥ A2 and B1 ≤ B2 implies UA1 ⊆ UA2, UB1 ⊆ UB2, UB1

A1
⊆ UB

A2
.
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Proof.

i) This follows directly from Definition 3.4.1.

ii) Let U, V ∈ qROFzS(ξ) where U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ}. The complement U c is

defined as U c = {⟨¨, UN(¨), UY (¨)⟩ : ¨ ∈ ξ}.

Hence, ¨ ∈ ((U c)A )c if and only if ¨ /∈ (U c)A = {¨ ∈ ξ : UN(¨) ≥ A }, which implies

UN(¨) < A , so ¨ ∈ U
˙A . Therefore, (U c)A = (U

˙A )c.

Similarly, (U c)B = (UḂ)
c.

iii) This property directly follows from Definition 3.4.1.

iv) Let k ∈ (U ∩ V )A . Then UY (¨)∧ VY (¨) ≥ A implies UY (¨) ≥ A and VY (¨) ≥ A , thus

¨ ∈ UA ∩ VA .

For ¨ ∈ (U ∩ V )B, we have UN(¨) ∨ VN(¨) ≤ B, which implies UN(¨) ≤ B and

VN(¨) ≤ B, hence ¨ ∈ UB ∩ V B.

Using property (i), we obtain:

(U ∩ V )BA = (U ∩ V )A ∩ (U ∩ V )B = (UA ∩ VA ) ∩ (UB ∩ V B) = UB
A ∩ V B

A .

v) Let ¨ ∈ (U ∪ V )A . Then UY (¨) ∨ VY (¨) ≥ A implies UY (¨) ≥ A or VY (¨) ≥ A , thus

¨ ∈ UA ∪ VA .

For ¨ ∈ (U∪V )B, we have UN(¨)∧VN(¨) ≤ B, which implies UN(¨) ≤ B or VN(¨) ≤ B,

hence ¨ ∈ UB ∪ V B.

Since U ⊆ U ∪ V and V ⊆ U ∪ V , it follows that UB
A ⊆ (U ∪ V )BA and V B

A ⊆ (U ∪ V )BA ,

which implies UB
A ∪ V B

A ⊆ (U ∪ V )BA .

vi) Suppose A1 ≥ A2 and B1 ≤ B2:

For ¨ ∈ UA1 , we have UY (¨) ≥ A1. Since A1 ≥ A2, it follows that UY (¨) ≥ A2, hence

¨ ∈ UA2 .

72



For ¨ ∈ UB1 , we have UN(¨) ≤ B1. Since B1 ≤ B2, it follows that UN(¨) ≤ B2, hence

¨ ∈ UB2 .

Therefore, UA1 ⊆ UA2 , UB1 ⊆ UB2 , and using property (i), we get UB1

A1
⊆ UB2

A2
.

If J is a CrBnR over ξ, then JUB
A represents the lower approximation (denoted LoAp) of the

Crisp Set UB
A . The expression (JU(e))BA denotes the (A ,B)-level cut of JU(e) with respect

to the AfSs. Hence,

(JU)BA = {¨ ∈ ξ : JUY (¨) ≥ A and JUN (¨) ≤ B}

= {¨ ∈ ξ : ∧º∈¨JUY (º) ≥ A and ∨º∈¨J UN(º) ≤ B}

and

(J
U
)BA = {¨ ∈ ξ : J

UY
(¨) ≥ A and J

UN
(¨) ≤ B}

= {¨ ∈ ξ : ∨º∈¨JUY (º) ≥ A and ∧º∈¨J UN(º) ≤ B}.

Similarly,

(UJ)BA = {º ∈ ξ : UY J(º) ≥ A and UNJ(º) ≤ B}

= {º ∈ ξ : ∧¨∈JºUY (¨) ≥ A and ∨¨∈Jº UN(¨) ≤ B}

and

(UJ)BA = {º ∈ ξ : UY J(º) ≥ A and UNJ(e)(º) ≤ B}

= {º ∈ ξ : ∨¨∈JºUY (¨) ≥ A and ∧¨∈Jº UN(¨) ≤ B}

with respect to FrS.
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Lemma 3.4.3. Let J be a RlBnR on a non-empty universe ξ, and let U ∈ qROFzS(ξ).

Consider A ,B ∈ [0, 1] be such that A q + Bq ≤ 1 for q ≥ 1. Then,

JUB
A = (JU)BA and J

UB
A = (J

U
)BA .

Proof. Let A ,B ∈ [0, 1] be such that A q + Bq ≤ 1, for q ≥ 1. Given u ∈ ¨J ,

(JU)BA = {¨ ∈ ξ : JUY (¨) ≥ A and JUN (¨) ≤ B}

= {¨ ∈ ξ : ∧º∈¨JUY (º) ≥ A and ∨º∈¨J UN(º) ≤ B}

= {¨ ∈ ξ : UY (º) ≥ A and UN(º) ≤ B, for all º ∈ ¨J}

= {¨ ∈ ξ : ¨J ⊆ UB
A }

= JUB
A (¨).

Similarly, we can prove that J
UB

A = (J
U
)BA .

Lemma 3.4.4. Consider J , a RlBnR defined over a non-empty set ξ, and let U ∈ qROFzS(ξ).

Suppose A ,B ∈ [0, 1] be such that A q + Bq ≤ 1 for q ≥ 1. Then,

UB
A J = (UJ)BA and UB

A J = (UJ)BA .

Proof.

The proof can be derived using the same approach as in Lemma 3.4.3.

The AcRcDg and RfNsDg of a qROFzS is defined below.

Definition 3.4.5. Let J be a RlBnR defined on a non-empty set ξ. then the AcRcDg for

the membership of U ∈ qROFzS(ξ), considering the parameters A ,B,G , θ ∈ [0, 1], is defined

under the conditions A ≤ G , B ≥ θ, A q +Bq ≤ 1, G q + θq ≤ 1, for q ≥ 1, and with respect
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to AfSs:

δ
(G ,θ)
(A ,B)(J

U) =
| JUθ

G |

| JUB
A |

The RfNsDg for the membership of U ∈ qROFzS(ξ) is defined as:

η
(G ,θ)
(A ,B)(J

U) = 1− δ
(G ,θ)
(A ,B)(J

U)

Similarly, the AcRcDg for the membership of U ∈ qROFzS(ξ) with respect to FrS can be

defined as:

δ
(G ,θ)
(A ,B)(

UJ) =
|Uθ

G J |
|UB

A J |

The RfNsDg for the membership of U ∈ qROFzS(ξ) with respect to FrS is defined as:

η
(G ,θ)
(A ,B)(

UJ) = 1− δ
(G ,θ)
(A ,B)(

UJ).

The concepts of FrS and AfS coincide when dealing with an EqR. Moreover, JUθ
G includes

elements from ξ that exhibit G as the as the minimal definite MmDg and θ as the maximal

definite NnMmDg in U . Conversely, J
UB

A comprises elements from ξ where A is the the

minimal possible MmDg and B is the maximal possible NnMmDg in U .

In simpler terms, JUθ
G represents the union of Eq classes in ξ characterized by G as lowest

definite MmDg and θ as the highest definite NnMmDg in the LoAp of U . Similarly, J
UB

A

denotes the union of Eq classes in ξ characterized by A as lowest possible MmDg and B as

the highest possible NnMmDg in the UpAp of U .

Therefore, (G , θ) and (A ,B) act as thresholds that determine the levels of definite and po-

tential fulfillment of the object u within U . Consequently, δ
(G ,θ)
(A ,B)(J

U) can be interpreted as

MmDg to which U is accurate, considering the threshold parameters (G , θ) and (A ,B).

These degrees are exemplified in the following example.

Example 3.4.6. Let ξ = {¨1, ¨2, ¨3, ¨4, ¨5, ¨6, ¨7, ¨8, ¨9, ¨10, ¨11} and J ∈ P (ξ × ξ) be such that
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the equivalence classes are given by: E1 = {¨1, ¨9}, E2 = {¨2, ¨4, ¨6, ¨7}, E3 = {¨3, ¨5, ¨8, ¨10},

E4 = {¨11}. Define a qROFzS U : ξ → [0, 1], for q = 4, by;

U = {⟨¨1, 0.8, 0.65⟩, ⟨¨2, 0.6, 0.9⟩, ⟨¨3, 0.64, 0.8⟩, ⟨¨4, 0.44, 0.94⟩, ⟨¨5, 0.65, 0.95⟩, ⟨¨6, 0.54, 0.85⟩,

⟨¨7, 0.64, 0.65⟩, ⟨¨8, 0.7, 0.86⟩, ⟨¨9, 1, 0⟩, ⟨¨10, 0.3, 0.89⟩, ⟨¨11, 0.4, 0.9⟩}. Take (G , θ) = (0.75, 0.76)

and (A ,B) = (0.45, 0.85) then (G , θ)−level and (A ,B)−level cuts U0.76
0.75 and U0.85

0.45 are, re-

spectively,

UB
A = U0.85

0.45 = {¨ : UY (¨) ≥ 0.45, UN(¨) ≤ 0.85} = {¨1, ¨3, ¨6, ¨7, ¨9},

U θ
G = U0.76

0.75 = {¨1, ¨9, ¨11}.

Then JUθ
G = {¨ ∈ ξ : ¨J ⊆ U θ

G } = {¨1, ¨9, ¨11} and J
UB

A = {¨ ∈ ξ : ¨J ∩ UB
A ̸= ∅}

= {¨1, ¨2, ¨3, ¨4, ¨5, ¨6, ¨7, ¨8, ¨9, ¨10}.

Thus δ
(G ,θ)
(A ,B)(J

U) = |JUθ
G |

|JUB
A |

= 3
10

.

Theorem 3.4.7. Let J be a RfBnR on ξ, U ∈ qROFzS(ξ), and A ,B,G , θ ∈ [0, 1] be such

that A ≤ G , B ≥ θ, and A q + Bq ≤ 1, G q + θq ≤ 1, for q ≥ 1. Then

0 ≤ δ
(G ,θ)
(A ,B)(J

U) ≤ 1

Proof.

Let U ∈ qROFzS(ξ) and A ,B,G , θ ∈ [0, 1] be such that A ≤ G , B ≥ θ and A q + Bq ≤ 1,

G q + θq ≤ 1, for q ≥ 1. Then U θ
G ⊆ UB

A According to the Theorem 3.4.2. Now According to

the Theorem 3.1.4, JUθ
G ⊆ J

Uθ
G ⊆ J

UB
A , so we have | JUθ

G |≤| JUB
A |. Thus, |JUθ

G |

|JUB
A |

≤ 1.

Hence, 0 ≤ δ
(G ,θ)
(A ,B)(J

U) ≤ 1.

Corollary 3.4.8. Let J be a RfBnR on ξ, U ∈ qROFzS(ξ), and A ,B,G , θ ∈ [0, 1] be such

that A ≤ G , B ≥ θ, and A q + Bq ≤ 1, G q + θq ≤ 1, for q ≥ 1. Then

0 ≤ η
(G ,θ)
(A ,B)(J

U) ≤ 1
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Proof.

Theorem 3.4.7 and Definition 3.2.1 directly lead to this conclusion. .

Theorem 3.4.9. Let J be a RlBnR on ξ, and let U, V ∈ qROFzS(ξ). Suppose A ,B,G , θ ∈

[0, 1] such that A ≤ G , B ≥ θ, and A q + Bq ≤ 1, G q + θq ≤ 1 for q ≥ 1. Then, if U ≤ V ,

the following assertions hold with respect to the AfSs:

i) δ
(G ,θ)
(A ,B)(J

U) ≤ δ
(G ,θ)
(A ,B)(J

V ), whenever J
UB

A = J
V B

A

ii) δ
(G ,θ)
(A ,B)(J

U) ≥ δ
(G ,θ)
(A ,B)(J

V ) whenever JUB
A = JV B

A .

Proof.

i) Let A ,B,G , θ ∈ [0, 1] be such that A ≤ G , B ≥ θ, and A q + Bq ≤ 1, G q + θq ≤ 1,

for q ≥ 1. Let U, V ∈ qROFzS(ξ) be such that U ≤ V which implies U θ
G ⊆ V θ

G . Then

According to the Theorem 1.2.3, JUθ
G ≤ JV θ

G , this implies that |JUθ
G |

|JUB
A |

≤ |JV θ
G |

|JV θ
G |

, whenever

J
UB

A = J
V B

A . Thus, δ(G ,θ)
(A ,B)(J

U) ≤ δ
(G ,θ)
(A ,B)(J

V ).

ii) The proof can be derived using the same approach as in part (i).

Corollary 3.4.10. Let J be a RlBnR on ξ, and let U, V ∈ qROFzS(ξ). Assume A ,B,G , θ ∈

[0, 1] such that A ≤ G , B ≥ θ, and A q + Bq ≤ 1, G q + θq ≤ 1 for q ≥ 1. If U ≤ V , the

following assertions hold with respect to the AfSs:

i) η
(G ,θ)
(A ,B)(J

U) ≤ η
(G ,θ)
(A ,B)(J

V ), whenever J
UB

A = J
V B

A

ii) η
(G ,θ)
(A ,B)(J

U) ≥ η
(G ,θ)
(A ,B)(J

V ), whenever JUB
A = JV B

A .

Proof.

Theorem 3.4.2 directly leads to this conclusion..
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Theorem 3.4.11. Let J1 be a RlBnR on ξ, U ∈ qROFzS(ξ), and let A ,B,G , θ ∈ [0, 1] be

such that A ≤ G , B ≥ θ, and A q + Bq ≤ 1, G q + θq ≤ 1 for q ≥ 1. Suppose J2 is another

RlBnR on ξ such that J1 ⊆ J2. Then, with respect to the AfSs, we have δ
(G ,θ)
(A ,B)(J

U
1 ) ≥

δ
(G ,θ)
(A ,B)(J

U
2 ).

Proof.

Let U ∈ qROFzS(ξ) and J1, J2 be two RlBnRs on ξ such that J1 ⊆ J2. According to Theorem

3.1.4, J1U ≥ J2
U and J1

U ≤ J2
U .

Applying Theorem 3.4.2, we find J2
Uθ

G ⊇ J2
Uθ

G and J1
UB

A ⊆ J2
UB

A , which implies |J1U
θ
G | ≥

|J2U
θ
G | and |J1

UB
A | ≤ |J2

UB
A |.

Dividing these inequalities gives us |J1U
θ
G |

|J1
UB

A |
≥ |J2U

θ
G |

|J2
UB

A |
. Hence, δ(G ,θ)

(A ,B)(J
U
1 ) ≥ δ

(G ,θ)
(A ,B)(J

U
2 ).

Corollary 3.4.12. Let J be a RlBnR on a non-empty set ξ, U ∈ qROFzS(ξ), and A ,B,G , θ ∈

[0, 1] such that A ≤ G , B ≥ θ, and A q + Bq ≤ 1, G q + θq ≤ 1. If J2 is another RlBnR on

ξ such that J1 ⊆ J2, then η
(G ,θ)
(A ,B)(J

U
1 ) ≥ η

(G ,θ)
(A ,B)(J

U
2 ).

Proof.

Theorem 3.4.11 directly leads to this conclusion.

3.5 Application of proposed approach in Decision Making

The RfS model by Pawlak is a qualitative framework that partitions a universe of objects

into three distinct regions based on a CrBnR over the universe. A notable concern regarding

Pawlak RfS approximations is their perceived rigidity, where classifications are either entirely

correct or definitive. FzS theory offers a promising avenue to mitigate this issue. It repre-

sents a significant and successful extension of quantitative RfS theory, particularly through

the definitions of LoAp and UpAp sets in probabilistic RfS. These sets are characterized by

threshold parameters (A ,B), where A > B, delineating three distinct regions for approxi-

mating subsets of the universe of objects [63].
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Among probabilistic RfS models, the Decision-Theoretic RfS model (DTRS) was introduced

in the early 1990s, drawing from established Bayesian decision procedures pioneered by Yao

et al. [64] and Yao and Wong [65]. The DTRS model employs Bayesian decision theory con-

cepts to compute probabilistic parameters that define rough regions. By integrating the notion

of expected loss (conditional risk), the model allows users to base classification decisions on

their specified cost considerations. It provides a systematic framework for determining these

parameters within a probabilistic RfS model.

In their work [54], Sun et al. proposed an approach for RfS over dual universes using Bayesian

decision-making techniques, further enriching the methodologies available for handling uncer-

tainty and imprecision in decision-making scenarios.

In the realm of decision-making problems, the qROFzS, introduced by Yager [62], has garnered

attention for its operational capabilities and applications. Researchers have made substantial

contributions to qROFzS theory, with its applications spanning various domains and yielding

numerous practical implementations.

In this chapter, we introduce an alternative approach to address decision-making problems

using Rf
qROFzS through CrBnRs, extending upon methodologies of Chapter 2, Kanwal and

Shabir [31], Sun et al. [54], and Hussain et al. [28]. This approach leverages only the

data provided by the decision-making problem itself. Consequently, it mitigates the impact

of subjective information on decision outcomes, fostering more objective results and averting

paradoxical outcomes that may arise due to variations in subjective factors among experts.

The rough LoAp and UpAp are closely associated with the approximation of the universe’s

subset. Accordingly, we derive the closest values JU(¨i) and J
U
(¨i) relative to the AfSs for

each decision alternative ¨i ∈ ξ within the universe ξ, using the qROFzLoAp and qROFzUpAp

of the qROFzS U . Hence, we define the choice-value λi for each decision alternative ¨i in ξ

with respect to the AfSs as follows:

λi = S(JU(¨i)⊕ J
U
(¨i))
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where S denotes the score function as defined in Definition 1.1.10. The decision alternative

¨i ∈ ξ with the maximum value of λi is selected as the optimal decision for the given decision-

making problem, and the one with the minimum value of λi is considered the worst decision.

If multiple objects ¨i ∈ ξ exhibit the same maximum (minimum) value of λi, one of them is

taken as the optimal decision.

Here, we present two algorithms for the proposed model, which consist of the following steps:

One can use ring product operation ⊗ to perform Algorithm 3 and 4.

Algorithm 3

1: Using Definition 3.1.1 compute the Lo
qROFzS approximation JU and Up

qROFzS approx-
imation J

U of a qROFzS U with respect to the AfSs.
2: Using the sum operation ⊕, compute the choice set as T = JU ⊕ J

U

3: Calculate the choice value using the score function defined in Definition 1.1.10:

λi = S(T (¨i))

4: The best decision is ¨m ∈ ξ if λm = maxiλi, i = 1, 2, 3, ... | ξ |.
5: The bad decision is ¨m ∈ ξ if λm = miniλi, i = 1, 2, 3, ... | ξ |.
6: If m has multiple values, select any ¨m as the preferred or least preferred alternative.

Algorithm 4

1: Using Definition 3.1.2 compute the Lo
qROFzS approximation UJ and Up

qROFzS approx-
imation UJ of a qROFzS U with respect to the FrS.

2: Using the sum operation ⊕, compute the choice set as T
′
= UJ ⊕ UJ .

3: Calculate the choice value using the score function defined in Definition 1.1.10:

λi = S(T
′
(ºi))

4: The best decision is ºm ∈ ξ if λm = maxiλi, i = 1, 2, 3, ... | ξ |.
5: The bad decision is ºm ∈ ξ if λm = miniλi, i = 1, 2, 3, ... | ξ |.
6: If m has multiple values, select any ºm as the preferred or least preferred alternative.
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3.5.1 An application of the decision-making approach

In this section, we explore emergency decision-making within the framework of rough qROFzS

over dual universes. Effective emergency preparedness plans are crucial for ensuring rapid

and efficient emergency responses while minimizing losses. Current research emphasizes qual-

itative evaluation criteria such as effectiveness, cost-efficiency, and adequacy of protection,

among others, and offers enhancements to these metrics.

This body of literature presents methodologies for assessing the relative importance of each

criterion and indicator, determining the weighting of expert opinions, aggregating group judg-

ments and opinions, and addressing related challenges. It also provides quantitative eval-

uations using established methods for emergency preparedness planning. Consequently, this

research serves as a practical guide for decision-makers in selecting optimal emergency plans.

3.5.2 Problem Statement

The essential characteristics of an emergency preparedness plan are essentially described by

the evaluation criteria and indicators for emergency decision-making. Consequently, expert

scoring or pairwise comparisons are not relied upon for evaluating these indicators. The

emergency preparedness plan encompasses attributes like specificity, comprehensiveness, and

promptness in emergency response, among other relevant aspects, which are collectively rep-

resented as a set or universe referred to as ξ2.

Here, ξ2 represents the entirety of characteristics defining the emergency preparedness plan,

formally expressed as

ξ2 = {strong pertinence(º1), soundness of personnel and resource allocation(º2),

e�ective inter-sectoral collaboration(º3), . . . , reasonable cost(ºn)}. Generally, ξ2 is finite be-

cause the indicators that describe the fundamental features of the plan are limited in number.

All emergency preparedness plans are organized into a particular grouping or category at the

same time, denoted by ξ1, where ξ1 = {¨1, ¨2, . . . , ¨m}, and each ¨i represents an individual
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emergency plan. The relationship between the set of emergency preparedness plans ξ1 and the

set of characteristics ξ2 is encapsulated in a subset J ⊆ ξ1 × ξ2. For any emergency plan

¨ ∈ ξ1, its basic characteristics are represented by the AfS ¨J .

The emergency decision-making process is structured as follows:

1. Initially, assume all emergency preparedness plans are characterized by a finite set of es-

sential traits.

2. The principal characteristics are presented to decision-makers U , denoted as a qROFz

subset of the universe ξ2 = {ºj : j = 1, 2, . . . , n}, associated with an effective emergency plan

are real-time information and online scenarios.

3. Subsequently, decision-makers select one of the plans ¨i ∈ ξ1 (where i = 1, 2, . . . ,m), the

optimal decision is determined by minimizing the risk of loss, and then carrying out that plan..

Example 3.5.1. Let ξ1 = {¨1, ¨2, . . . , ¨8} are eight plans for emergency preparedness that

are tailored for particular types of non-traditional emergency situations. These plans are

characterized by various essential attributes or evaluation indicators, represented by ξ2. The

set ξ2 includes the following basic characteristics:

ξ2 = {º1, º2, . . . , º15}

where º1: Risk identification comprehensiveness, º2: Prevention and warning completeness,

º3: Formation specifics, º4: Post-event disposal program completeness, º5: Scientific rescue

program, º6: Good traceability of emergency resources, º7: Strong pertinence, º8: Comprehen-

siveness of elements of plan, º9: Competent rescue team members, º10: Clear response level,

º11: Quick emergency handling, º12: Effective guarantee measures, º13: Reasonable rescue

steps, º14: Responsibility clear among agencies, º15: Median cost of emergency resources.

The relation J ⊆ ξ1× ξ2 defines the main characteristics of each emergency preparedness plan

¨ ∈ ξ1. Specifically, for each ¨i ∈ ξ1, the characteristics ¨iJ are specified based on the values

assigned to each indicator ºj ∈ ξ2.
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This setup allows for a comprehensive evaluation of each emergency preparedness plan based

on its specific attributes, ensuring that decision-makers can select the most suitable plan tai-

lored to the requirements of the emergency event in question.

J =



¨1 ¨2 ¨3 ¨4 ¨5 ¨6 ¨7 ¨8

º1 0 0 0 1 1 0 1 1

º2 0 1 1 0 0 1 0 0

º3 1 0 0 0 0 0 0 0

º4 1 0 0 0 0 0 1 0

º5 0 1 1 1 1 1 0 1

º6 0 0 0 0 1 1 0 0

º7 0 1 0 0 0 0 1 0

º8 1 0 1 1 0 0 0 1

º9 0 0 1 0 1 1 1 0

º10 1 1 0 1 0 0 0 1

º11 0 1 0 0 0 1 0 0

º12 1 0 0 1 0 0 1 0

º13 0 0 1 0 1 0 0 1

º14 0 0 1 1 1 0 0 1

º15 1 1 0 0 0 1 1 0


This matrix provides an objective description of the characteristics associated with eight emer-

gency preparedness plans designed for a specific type of emergency event. Similar to the pre-

vious analysis, no plan is strictly superior or inferior; the sole criterion for decision-making

is the suitability of the plan.

When choosing an emergency preparedness plan, various types of loss functions or risks may

be encountered during an unusual emergency event. Therefore, a team of experts expresses

their preference for specific plan characteristics using a qROFzS (q-Rung Orthopair Fuzzy

set), for q = 3;
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A = {⟨º1, 0.9, 0.45⟩, ⟨º2, 0.8, 0.45⟩, ⟨º3, 0.4, 0.7⟩, ⟨º4, 0.62, 0.78⟩, ⟨º5, 0.74, 0.32⟩, ⟨º6, 0.7, 0.4⟩,

⟨º7, 0.65, 0.46⟩, ⟨º8, 0.9, 0.1⟩, ⟨º9, 0.81, 0.65⟩, ⟨º10, 0.85, 0.31⟩, ⟨º11, 0.84, 0.3⟩, ⟨º12, 0.94, 0.23⟩,

⟨º13, 0.74, 0.31⟩, ⟨º14, 0.74, 0.13⟩, ⟨º15, 0.12, 0.83⟩}.

Given that º15 represents the cost characteristic, we will consider its complement to define

a new qROFzS. Therefore, the new qROFzS will focus on capturing the degree of cost-

effectiveness or economy associated with each emergency preparedness plan.

A = {⟨º1, 0.9, 0.45⟩, ⟨º2, 0.8, 0.45⟩, ⟨º3, 0.4, 0.7⟩, ⟨º4, 0.62, 0.78⟩, ⟨º5, 0.74, 0.32⟩, ⟨º6, 0.7, 0.4⟩,

⟨º7, 0.65, 0.46⟩, ⟨º8, 0.9, 0.1⟩, ⟨º9, 0.81, 0.65⟩, ⟨º10, 0.85, 0.31⟩, ⟨º11, 0.84, 0.3⟩, ⟨º12, 0.94, 0.23⟩,

⟨º13, 0.74, 0.31⟩, ⟨º14, 0.74, 0.13⟩, ⟨º15, 0.83, 0.12⟩}

Table 3.3: Approximations of qROFzS U with respect to AfSs

J
U
(¨i) JU(¨i) T(¨i) λi

¨1 (0.94, 0.1) (0.4, 0.78) (0.8, 0.08) 0.7587

¨2 (0.85, 0.12) (0.65, 0.46) (0.7, 0.06) 0.6677

¨3 (0.9, 0.1) (0.74, 0.65) (0.8, 0.07) 0.7344

¨4 (0.94, 0.1) (0.74, 0.45) (0.81, 0.05) 0.7696

¨5 (0.9, 0.13) (0.7, 0.65) (0.76, 0.09) 0.7209

¨6 (0.84, 0.12) (0.7, 0.65) (0.7, 0.08) 0.6735

¨7 (0.94, 0.12) (0.62, 0.78) (0.8, 0.09) 0.7424

¨8 (0.9, 0.1) (0.74, 0.45) (0.8, 0.05) 0.7345

In this context, we utilized the sum operation ⊕ to compute T , and λi was determined based

on Definition 1.1.10. All computations were performed using Python.

According to Table 3.3, it is evident that plan ¨4 emerges as the optimal decision, achieving

the highest score of 0.7696.

This chapter expanded the theoretical understanding of q-Rung Orthopair Fuzzy Sets by
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introducing rough approximations and exploring their applications in decision-making. The

proposed methods and algorithms were validated through illustrative examples and computa-

tional experiments. These contributions enrich the theory of Fuzzy Sets and provide practical

tools for addressing real-world problems in various domains.

85



Chapter 4

Graphical ranking technique for

Generalized Rough q-Rung Orthopair

Fuzzy Sets based on Soft Binary

Relations and corresponding

decision-making

We’ve structured this chapter as follows:

In Section 4.1, we provide an exposition on LoAp and UpAps of qROFzSs, employing SfBnRs

concerning FrS and AfSs, along with a demonstration of their properties. Section 4.2 is

dedicated to the introduction of two varieties of q-Rung Orthopair Fuzzy Topologies, established

through SfBnRs. Furthermore, Section 4.3 delves into the introduction of similarity relations

among qROFzSs, grounded on SfBnRs. Then, we introduce an algorithm specifically crafted

to address decision-making challenges using qROFzSs. Additionally, we present a practical

example to exemplify the utilization of this approach and to showcase its effectiveness in real-

world decision-making scenarios.
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4.1 Approximating a q-Rung Orthopair Fuzzy set by Soft

Binary Relation

In Chapter 3, we have introduced the concept of approximating a qROFzS using CrBnRs.

Here, we extend this idea by utilizing a SfBnR from a finite universe ξ1 to another finite

universe ξ2 to approximate a qROFzS in ξ2 through AfSs. Consequently, we derive two
qROFzSs on ξ1. Similarly, by approximating a qROFzS in ξ1 through FrS, we obtain two
qROFzSs on ξ2.

Definition 4.1.1. Let (S , D) represent a SfBnR from ξ1 to ξ2 and U = {⟨º, UY (º), UN(º)⟩ :

º ∈ ξ2} be a qROFzS in ξ2. Then, the LoAp S U and the UpAp S
U

of U = {⟨º, UY (º), UN(º)⟩ :

º ∈ ξ2} with respect to AfSs are defined as follows, for all ¨ ∈ ξ1:

S U(e)(¨) =

(
∧

º∈¨S (e) UY (º),
∨

º∈¨S (e) UN(º)) if ¨S (e) ̸= ∅;

(1, 0) if ¨S (e) = ∅.

and

S
U
(e)(¨) =

(
∨

º∈¨S (e) UY (º),
∧

º∈¨S (e) UN(º)) if ¨S (e) ̸= ∅;

(0, 1) if ¨S (e) = ∅.

Here, ¨S (e) = {º ∈ ξ2 | (¨, º) ∈ S (e)} is termed as the AfS of ¨ for all ¨ ∈ ξ1 and e ∈ D.

Definition 4.1.2. Let (S , D) be a SfBnR from ξ1 to ξ2 and U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ1}

be a qROFzS in ξ1. Then, the LoAp
US and the UpAp

US of U = {⟨¨, UY (¨), UN(¨)⟩ : ¨ ∈ ξ1}

with respect to FrS (FrSs) are defined as follows, for all º ∈ ξ2:

US (e)(º) =

(
∨

¨∈S (e)º UN(¨),
∧

¨∈S (e)º UN(¨)) if S (e)º ̸= ∅;

(0, 1) if S (e)º = ∅.
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and

US (e)(º) =

(
∧

¨∈S (e)º UY (¨),
∨

¨∈S (e)º UN(¨)) if S (e)º ̸= ∅;

(1, 0) if S (e)º = ∅.

Here, S (e)º = {¨ ∈ ξ1 | (¨, º) ∈ S (e)}, and is called the FrS of º for all º ∈ ξ2 and e ∈ D.

Here, we have S U : D → qROFzS(ξ1), S
U
: D → qROFzS(ξ1), US : D → qROFzS(ξ2)

and US : D → qROFzS(ξ2). The triplet (ξ1, ξ2,S ) will be termed as a Generalized Soft

Approximation Space (GSfApSp) based on qROFzSs. In the following example, we explain

the above concepts.

Example 4.1.3. Let ξ1 = {¨1, ¨2, ¨3, ¨4}, ξ2 = {º1, º2, º3, º4}, and the set of attributes D =

{e1, e2}. Define a mapping S : D → P (ξ1 × ξ2) by,

S (e1) =



¨1 ¨2 ¨3 ¨4

º1 1 0 0 0

º2 1 1 0 0

º3 0 1 0 1

º4 0 0 1 1

 and S (e2) =



¨1 ¨2 ¨3 ¨4

º1 0 1 0 0

º2 0 1 0 0

º3 1 1 1 0

º4 1 1 0 0


represent the SfBnRs from ξ1 to ξ2 for the attributes e1, e2, respectively. Now let U ∈
qROFzS(ξ2) and V ∈ qROFzS(ξ1), for q = 3, defined by:

U = {⟨º1, 0.685, 0.233⟩, ⟨º2, 0.785, 0.221⟩, ⟨º3, 0.765, 0.315⟩, ⟨º4, 0.686, 0.370⟩},

V = {⟨¨1, 0.52, 0.53⟩, ⟨¨2, 0.40, 0.45⟩, ⟨¨3, 0.51, 0.51⟩, ⟨¨4, 0.49, 0.52⟩}.

Table 4.1 shows that the LoAp S U and the UpAp S
U

of qROFzS U with respect to AfSs

¨iS (ej) are two qROFzSs on ξ1. Similarly Table 4.2 shows that LoAp
V S and the UpAp

V S

of qROFzS V with respect to FrSs S (ej)ºi are two qROFzSs on ξ2, where 1 ≤ i ≤ 4 and

1 ≤ j ≤ 2.
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Table 4.1: Approximating a qROFzS with respect to AfSs

S
U
(e1)(¨i) S U(e1)(¨i) S

U
(e2)(¨i) S U(e2)(¨i)

¨1 (0.785, 0.221) (0.685, 0.233) (0.765, 0.315) (0.686, 0.370)

¨2 (0.785, 0.221) (0.765, 0.315) (0.785, 0.221) (0.685, 0.370)

¨3 (0.785, 0.221) (0.685, 0.370) (0.765, 0.315) (0.765, 0.315)

¨4 (0.765, 0.315) (0.686, 0.370) (0, 1) (1, 0)

Table 4.2: Approximating a qROFzS with respect to FrSs

VS (e1)(ºi)
VS (e1)(ºi)

VS (e2)(ºi)
VS (e2)(ºi)

º1 (0.52, 0.51) (0.51, 0.53) (0.40, 0.45) (0.40, 0.45)

º2 (0.52, 0.45) (0.40, 0.53) (0.40, 0.45) (0.40, 0.45)

º3 (0.49, 0.45) (0.40, 0.52) (0.52, 0.45) (0.40, 0.53)

º4 (0.51, 0.51) (0.49, 0.52) (0.52, 0.45) (0.40, 0.53)

In the following theorem, we have presented some basic operations on this newly obtained

collection of qROFzSs on ξ2.

Theorem 4.1.4. Let (ξ1, ξ2,S ) be a GSfApSp. For any three qROFzSs, U = {⟨º, UY (º), UN(º)⟩ :

º ∈ ξ2}, U1 = {⟨º, U1Y (º), U1N (º)⟩ : º ∈ ξ2}, and U2 = {⟨º, U2Y (º), U2N (º)⟩ : º ∈ ξ2} of ξ2, we

have the following:

i) U1 ⊆ U2 implies S U1 ⊆ S U2

ii) U1 ⊆ U2 implies S
U1 ⊆ S

U2

iii) S U1∩U2 = S U1 ∩ S U2
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iv) S U1∪U2 ⊇ S U1 ∪ S U2

v) S
U1∩U2 ⊆ S

U1 ∩ S
U2

vi) S
U1∪U2

= S
U1 ∪ S

U2

vii) S 1ξ2 = 1ξ1 = S
1ξ2 , if ¨S (e) ̸= ∅

viii) S U = (S
Uc

)c and S
U
= (S Uc

)c, if ¨S (e) ̸= ∅

ix) S 0ξ2 = 0ξ1 = S
0ξ2 .

Proof.

i) Let U1 ⊆ U2, that is, for all º ∈ ξ2, U1Y (º) ≤ U2Y (º), and U1N (º) ≥ U2N (º).

If ¨S (e) = ∅, then S U1 = (1, 0) = S U2 .

If ¨S (e) ̸= ∅, then S U1Y (e)(¨) =
∧

º∈¨S (e) U1Y (º) ≤
∧

º∈¨S (e) U2Y (º) = S U2Y (e)(¨) and

S U1N (e)(¨) =
∨

º∈¨S (e) U1N (º) ≥
∨

º∈¨S (e) U2N (º) = S U2N (e)(¨).

Thus, S U1Y (e)(¨) ≤ S U2Y (e)(¨) and S U1N (e)(¨) ≥ S U2N (e)(¨). Hence, S U1 ⊆ S U2 .

ii) Let U1 ⊆ U2, that is, for all º ∈ ξ2, U1Y (º) ≤ U2Y (º), and U1N (º) ≥ U2N (º).

If ¨S (e) = ∅, then S
U1

= (0, 1) = S
U2
.

If ¨S (e) ̸= ∅, then S
U1Y (e)(¨) =

∨
º∈¨S (e) U1Y (º) ≤

∨
º∈¨S (e) U2Y (º) = S

U2Y (e)(¨) and

S
U1N (e)(¨) =

∧
º∈¨S (e) U1N (º) ≥

∧
º∈¨S (e) U2N (º) = S

U2N (e)(¨).

Thus, S
U1Y (e)(¨) ≤ S

U2Y (e)(¨) and S
U1N (e)(¨) ≥ S

U2N (e)(¨). Hence, S
U1 ⊆ S

U2
.

iii) Consider (S U1Y ∩ S U2Y )(e)(¨) = S U1Y (e)(¨) ∧ S U2Y (e)(¨) = (
∧

º∈¨S (e) U1Y (º)) ∧

(
∧

º∈¨S (e) U2Y (º)) =
∧

º∈¨S (e)(U1Y (º) ∧ U2Y (º)) = S U1∩U2(e)(¨), and

(S U1N∪S U2N )(e)(¨) = S U1N (e)(¨)∨S U2N (e)(¨) = (
∨

º∈¨S (e) U1N (º))∨(
∨

º∈¨S (e) U2N (º)) =∨
º∈¨S (e)(U1N (º) ∨ U2N (º)) = S U1∪U2(e)(¨).

Thus, S U1∩U2 = S U1 ∩ S U2 .
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iv) Given that U1 ⊆ U1 ∪U2 and U2 ⊆ U1 ∪U2, it follows from part (i) that S U1 ⊆ S U1∪U2

and S U2 ⊆ S U1∪U2 . Therefore, we conclude that S U1 ∪ S U2 ⊆ S U1∪U2 .

v) Given that U1∩U2 ⊆ U1 and U1∩U2 ⊆ U2, it follows from part (ii) that S
U1∩U2 ⊆ S

U1

and S
U1∩U2 ⊆ S

U2 . Therefore, we conclude that S
U1∩U2 ⊆ S

U1 ∩ S
U2 .

vi) Consider (S
U1Y ∪ S

U2Y )(e)(¨) = S
U1Y (e)(¨) ∨ S

U2Y (e)(¨) = (
∨

º∈¨S (e) U1Y (º)) ∨

(
∨

º∈¨S (e) U2Y (º)) =
∨

º∈¨S (e)(U1Y (º) ∨ U2Y (º)) = S
U1∪U2

(e)(¨) and

(S
U1N∩S

U2N )(e)(¨) = S
U1N (e)(¨)∧S

U2N (e)(¨) = (
∧

º∈¨S (e) U1N (º))∧(
∧

º∈¨S (e) U2N (º)) =∧
º∈¨S (e)(U1N (º) ∧ U2N (º)) = S

U1∩U2
(e)(¨). Thus, S

U1∪U2
= S

U1 ∪ S
U2
.

vii) Since S 1W (e)(¨) =
∧

º∈¨S (e) 1(w) =
∧

º∈¨S (e) 1 = 1 and S 0(e)(¨) =
∧

º∈¨S (e) 0(w) =∧
º∈¨S (e) 0 = 0. Thus, S 1ξ2 = 1ξ1 .

Similarly, we can prove that S
1ξ2 = 1ξ1 .

viii) Consider S
Uc
Y (e)(¨) =

∨
º∈¨S (e) U

c
Y (º) =

∨
º∈¨S (e) UN(º) = S UN (e)(¨) = (S UY (e)(¨))c

and S
Uc
N (e)(¨) =

∧
º∈¨S (e) U

c
N(º) =

∧
º∈¨S (e) UY (º) = S UY (e)(¨) = (S UN (e)(¨))c.

Thus, S
Uc

= (S
Uc
Y , S

Uc
N ) = ((S UY )c, (S UN )c) = (S UY ,S UN )c = (S U)c. Which

gives that (S
Uc

)c = S U .

Similarly, S
U
= (S Uc

)c.

ix) The proof is straightforward.

Theorem 4.1.5. Let (ξ1, ξ2,S ) be a GSfApSp. For any three qROFzSs, U , U1, and U2 of

ξ1, we have the following:

i) U1 ⊆ U2 implies U1S ⊆ U2S

ii) U1 ⊆ U2 implies U1S ⊆ U2S

iii) U1S ∩ U2S = U1∩U2S
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iv) U1∩U2S ⊆ U1S ∩ U2S

v) U1∪U2S ⊇ U1S ∪ U2S

vi) U1S ∪ U2S = U1∪U2S

vii) 1ξ1S = 1ξ2 =
1ξ1S , if S (e)º ̸= ∅

viii) US = (U
c
S )c, and US = (U

c
S )c if S (e)º ̸= ∅

ix) 0ξ1S = 0ξ2 =
0ξ1S .

Proof.

The proof can be derived using the same approach as in Theorem. 4.1.4.

In the following example, we demonstrate that U1∩U2S is not equal to U1S ∩U2S , and U1∪U2S

is not equal to U1S ∪ U2S as stated in Theorem 4.1.4.

Example 4.1.6. Utilizing the information given in Example 4.1.3, define two qROFzSs U1,

U2 on ξ2 by:

U1 = {⟨º1, 0.85, 0.65⟩, ⟨º2, 0.65, 0.95⟩, ⟨º3, 0.5, 0.9⟩, ⟨º4, 0.6, 0.9⟩},

U2 = {⟨º1, 0.7, 0.8⟩, ⟨º2, 0.79, 0.7⟩, ⟨º3, 0.6, 0.87⟩, ⟨º4, 0.5, 0.65⟩}.

Then, U1 ∪ U2 = {⟨º1, 0.85, 0.65⟩, ⟨º2, 0.79, 0.7⟩, ⟨º3, 0.6, 0.87⟩, ⟨º4, 0.6, 0.65⟩},

U1 ∩ U2 = {⟨º1, 0.7, 0.8⟩, ⟨º2, 0.65, 0.95⟩, ⟨º3, 0.5, 0.9⟩, ⟨º4, 0.5, 0.9⟩}.

Table 4.3: Union of LoAps and LoAp of union of two qROFzSs

(S U1 ∪ S U2)(e1)(¨i) (S U1 ∪ S U2)(e2)(¨i) S U1∪U2(e1)(¨i) S U1∪U2(e2)(¨i)

¨1 (0.7, 0.8) (0.5, 0.87) (0.79, 0.7) (0.6, 0.87)

¨2 (0.6, 0.87) (0.5, 0.87) (0.6, 0.87) (0.6, 0.87)

¨3 (0.6, 0.8) (0.6, 0.87) (0.6, 0.7) (0.6, 0.87)

¨4 (0.5, 0.87) (1, 0) (0.6, 0.87) (1, 0)
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Table 4.4: Intersection of UpAps and UpAp of intersection of two qROFzSs

(S
U1 ∩ S

U2
)(e1)(¨i) (S

U1 ∩ S
U2
)(e2)(¨i) S

U1∩U2
(e1)(¨i) S

U1∩U2
(e2)(¨i)

¨1 (0.79, 0.7) (0.6, 0.9) (0.7, 0.8) (0.5, 0.9)

¨2 (0.65, 0.9) (0.79, 0.65) (0.65, 0.9) (0.7, 0.8)

¨3 (0.79, 0.65) (0.5, 0.9) (0.7, 0.8) (0.5, 0.9)

¨4 (0.6, 0.9) (0, 1) (0.5, 0.9) (0, 1)

From Table 4.3, for e = e1, ¨ = ¨1, we have (S U1 ∪ S U2)(e)(¨) ̸= S U1∪U2(e)(¨) and for

e = e2, ¨ = ¨2, (S U1 ∪ S U2)(e)(¨) ̸= S U1∪U2(e)(¨). That is, S U1 ∪ S U2 ̸= S U1∪U2, in

general.

Similarly, from Table 4.4, we see that S
U1 ∩ S

U2 ̸= S
U1∩U2

.

Hence, equality does not hold in part (iv) and (v) of the Theorem 4.1.4.

Theorem 4.1.7. Let (ξ1, ξ2,S1) and (ξ1, ξ2,S2) be two GSfApSps such that (ξ1, ξ2,S1) ⊆

(ξ1, ξ2,S2), that is, for all e ∈ D, S1(e) ⊆ S2(e). Then, for any U ∈ qROFzS(ξ2), S U
2 ⊆ S U

1

and S1
U ⊆ S2

U
.

Proof.

If ¨S1(e) = ∅, then S UY
2 (e)(¨) ≤ 1 = S UY

1 (e)(¨), and S UN
1 (e)(¨) = 0 ≤ S UN

2 (e)(¨). This

implies that S U
2 ⊆ S U

1 .

If ¨S1(e) ̸= ∅, then S UY
1 (e)(¨) =

∧
º∈¨S1(e)

UY (º) ≥
∧

º∈¨S2(e)
UY (º) = S UY

2 (e)(¨), and

S UN
1 (e)(¨) =

∨
º∈¨S1(e)

UN(º) ≤
∨

º∈¨S2(e)
UN(º) = S UN

2 (e)(¨). Thus, S U
2 ⊆ S U

1 . Similarly,

S1
U ⊆ S2

U
.

Similarly, the dual of the Theorem 4.1.7 can be given, that is, the same result holds with

respect to FrSs.
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Theorem 4.1.8. Let (ξ1, ξ2,S1) and (ξ1, ξ2,S2) be two GSfApSps such that (ξ1, ξ2,S1) ⊆

(ξ1, ξ2,S2), that is, S1(e) ⊆ S2(e), for all e ∈ D. Then, for any U ∈ qROFzS(ξ1), US 2 ⊆
US 1 and US1 ⊆ US2.

Proof.

The proof can be derived using the same approach as in Theorem. 4.1.7.

Theorem 4.1.9. Let (ξ1, ξ2,S1) and (ξ1, ξ2,S2) be two GSfApSps. Then, for any U ∈
qROFzS(ξ2), the following are true:

i) S U
1 ⊆ (S1 ∩ S2)

U and S U
2 ⊆ (S1 ∩ S2)

U .

ii) (S1 ∩ S2)
U
⊆ S1

U
and (S1 ∩ S2)

U
⊆ S2

U
.

Proof.

The proof is a direct consequence of Theorem 4.1.7.

Similarly, we have the dual of the Theorem 4.1.9.

Theorem 4.1.10. Let (ξ1, ξ2,S1) and (ξ1, ξ2,S2) be two GSfApSps. Then, for any U ∈
qROFzS(ξ1), the following are true:

i) US 1 ⊆ U(S1 ∩ S2), and US2 ⊆ U(S1 ∩ S2).

ii) U(S1 ∩ S2) ⊆ US1 and U(S1 ∩ S2) ⊆ US2.

Theorem 4.1.11. Let (ξ1, ξ2,S ) be a GSfApSp and {Ui | i ∈ I} be a family of qROFzSs

defined on ξ2. Then the following hold with respect to AfSs:

i) S (
⋂

i∈I Ui) =
⋂

i∈I S Ui

ii)
⋃

i∈I S Ui ⊆ S (
⋃

i∈I Ui)

iii) S
(
⋃

i∈I Ui)
=
⋃

i∈I S
Ui

94



iv) S
(
⋂

i∈I Ui) ⊆
⋂

i∈I S
Ui.

Proof.

i) Let Ui ∈ qROFzS(ξ2), for i ∈ I. Then

S (
⋂

i∈I UiY
)(e)(¨) =

∧
º∈¨S (e)(∧i∈IUiY (º)) =

∧
i∈I(∧º∈¨S (e)UiY (º)) =

⋂
i∈I S UiY (e)(¨)

and S (
⋃

i∈I UiN
)(e)(¨) =

∨
º∈¨S (e)(∨i∈IUiN (º)) =

∨
i∈I(∨º∈¨S (e)UiN (º)) =

⋃
i∈I S UiN (e)(¨).

Thus, S (
⋂

i∈I Ui) =
⋂

i∈I S Ui .

ii) Given that Ui ⊆
⋃

i∈I Ui for each i ∈ I, it follows that S Ui ⊆ S (
⋃

i∈I Ui). Consequently,⋃
i∈I S Ui ⊆ S (

⋃
i∈I Ui).

iii) The proof can be derived using the same approach as in part (i).

iv) The proof can be derived using the same approach as in part (ii).

We can easily verify that the dual of the Theorem 4.1.11 also holds, that is, the axioms of the

Theorem 4.1.11 hold with respect to FrSs.

Theorem 4.1.12. Let (ξ1, ξ2,S ) be a GSfApSp and {Ui | i ∈ I} be a family of qROFzSs

defined on ξ1. Then the following hold with respect to FrSs:

i) (
⋂

i∈I Ui)S =
⋂

i∈I
UiS

ii)
⋃

i∈I
UiS ⊆ (

⋃
i∈I Ui)S

iii) (
⋃

i∈I Ui)S =
⋃

i∈I
UiS

iv) (
⋂

i∈I Ui)S ⊆
⋂

i∈I
UiS .

Proof.

The proof can be derived using the same approach as in Theorem. 4.1.11.
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Here, we give the relationship between a qROFzS and its approximations based on SfRfR.

In fact, a qROFzS is sandwiched between its LoAp and UpAp.

Theorem 4.1.13. Let (S , D) be a SfRfR over ξ. For any U ∈ qROFzS(ξ), the following

properties of the LoAp and the UpAp with respect to AfSs hold, for e ∈ D:

i) S U(e) ≤ U ≤ S
U
(e).

ii) S U(e) ≤ S
U
(e).

Proof.

For ¨ ∈ ξ,

i) Consider

S UY (e)(¨) =
∧

º∈¨S (e) UY (º) ≤ UY (¨), since ¨ ∈ ¨S (e), and S UN (e)(¨) =
∨

º∈¨S (e) UN(º) ≥

UN(¨), since ¨ ∈ ¨S (e). Thus, S U(e) ≤ U.

Also, S
UY

(e)(¨) =
∨

º∈¨S (e) UY (º) ≥ UY (¨), since ¨ ∈ ¨S (e), and S
UN

(e)(¨) =∧
º∈¨S (e) UN(º) ≤ UN(¨), since ¨ ∈ ¨S (e). Thus, S

U
(e) ≥ U.

ii) From part (i), we get that S U(e) ≤ U ≤ S
U
(e) which implies that S U(e) ≤ S

U
(e).

Theorem 4.1.14. Let (S , D) be an SfRfR (SfRfR) over ξ. For any U ∈ qROFzS(ξ), the

following properties of the LoAp and the UpAps with respect to FrSs hold, for e ∈ D:

i) US (e) ≤ U ≤ US (e)

ii) US (e) ≤ US (e).

Proof.

The proof can be derived using the same approach as in Theorem. 4.1.13.
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4.2 q-Rung Orthopair Fuzzy Topologies induced by Soft

Reflexive Relations

Cheng [17] introduced the idea of Fuzzy Topological spaces, which generalize fundamental

notions from Topology. Türkarslan [56] et al. extended this idea to qROFzTpSs and explored

the continuity between two qROFzTpSs. In Chapter 3 of this work, we developed qROFzTpSs

that are induced by RfBnRs.

In this chapter, we introduce and analyze two types of qROFzTpSs induced by a SfRfR.

Definition 4.2.1. [56] A collection τ of qROFzSs on ξ is called a q-Rung Orthopair Fuzzy

Topology (qROFzTp, for short) on ξ if it satisfies:

1) 0, 1 ∈ τ

2) U1 ∩ U2 ∈ τ , for all U1, U2 ∈ τ

3)
⋃

i∈I Ui ∈ τ , for all Ui ∈ τ , i ∈ I.

If τ is a qROFzTp on ξ, then the pair (ξ, τ) is called a qROFzTpS. The elements of τ are

called qROFz open sets.

Theorem 4.2.2. If (S , D) is a SfRfR on ξ, then

Ge = {U ∈ qROFzS(ξ) | S U(e) = U}

is a qROFzTp on ξ for each e ∈ D.

Proof.

i) From Theorem 4.1.4, for each e ∈ D, we have S 0(e) = 0 and S 1(e) = 1, which gives

that 0, 1 ∈ Ge.

ii) If U1, U2 ∈ Ge, then S U1(e) = U1 and S U2 = U2. According to the Theorem 4.1.4

(U1 ∩ U2) = (S U1 ∩ S U2)(e) = S U1∩U2(e). This implies that U1 ∩ U2 ∈ Ge.
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iii) If Ui ∈ Ge, then S Ui = Ui, for each i ∈ I. Since S is an SfRfR, so according to the

Theorem 4.1.13, we have

S (
⋃

i∈I Ui)(e) ⊆
⋃
i∈I

Ui. (4.2.1)

Also, because Ui ⊆
⋃

i∈I Ui, so S Ui(e) ⊆ S (
⋃

i∈I Ui)(e). Which implies that
⋃

i∈I S Ui(e) ⊆

S (
⋃

i∈I Ui)(e). Thus, ⋃
i∈I

Ui ⊆ S (
⋃

i∈I Ui)(e). (4.2.2)

Thus, from Equations (4.2.1) and (4.2.2), we get
⋃

i∈I Ui = S (
⋃

i∈I Ui)(e).

Hence, Ge is a qROFzTp on ξ.

Theorem 4.2.3. If (S , D) is an SfRfR on ξ, then

G
′

e = {U ∈ qROFzS(ξ) | US (e) = U}

is a qROFzTp on ξ for each e ∈ D.

Proof.

The proof can be derived using the same approach as in Theorem. 4.2.2.

4.3 Similarity Relations Associated with Soft Binary Re-

lations

Similarity relations (SmRs) play an important role for checking symmetry between objects. In

this section, we define SmR between two qROFzSs based on corresponding LoAp and UpAps.

Definition 4.3.1. Let (ξ,S ) be a SfApSp. For U1, U2 ∈ qROFzS(ξ), we define

U1RU2 if and only if S U1 = S U2
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U1R̃U2 if and only if S
U1

= S
U2

U1RU2 if and only if S U1 = S U2 and S
U1

= S
U2
.

Definition 4.3.2. Let (ξ,S ) be a SfApSp. For U1, U2 ∈ qROFzS(ξ), we define

U1rU2 if and only if U1S = U2S

U1r̃U2 if and only if U1S = U2S

U1rU2 if and only if U1S = U2S and U1S = U2S .

We call these Binary Relations as the lower qROFzSmR, upper qROFzSmR, and qROFzSmR,

respectively.

Proposition 4.3.3. The relations R, R̃, R are EqRs on qROFzS(ξ).

Proof.

The proof is straightforward.

Proposition 4.3.4. The relations r, r̃, r are EqRs on qROFzS(ξ).

Proof.

The proof is straightforward.

Theorem 4.3.5. Let (ξ,S ) be a SfApSp and U1, U2, U3, U4 ∈ qROFzS(ξ). Then:

i) U1R̃U2 if and only if U1R̃(U1 ∪ U2)R̃U2

ii) If U1R̃U2 and U3R̃U4, then (U1 ∪ U3)R̃(U2 ∪ U4)

iii) If U1 ⊆ U2 and U2R̃0, then U1R̃0

iv) (U1 ∪ U2)R̃0 if and only if U1R̃0 and U2R̃0

v) If U1 ⊆ U2 and U1R̃1, then U2R̃1
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vi) If (U1 ∩ U2)R̃1, then U1R̃1 and U2R̃1.

Proof.

i) If U1R̃U2, then S
U1

= S
U2 . According to the Theorem 4.1.4, = S

U1
= S

U2
=

S
U1 ∪ S

U2
= S

U1∪U2
, so we have U1R̃(U1 ∪ U2)R̃U2.

Conversely, if U1R̃(U1 ∪ U2)R̃U2, then U1R̃(U1 ∪ U2) and (U1 ∪ U2)R̃U2. This implies

that S
U1

= S
U1∪U2 and S

U2
= S

U1∪U2
. Thus, S

U1
= S

U2
. Hence, U1R̃U2.

ii) If U1R̃U2 and U3R̃U4, then S
U1

= S
U2 and S

U3
= S

U4
. According to the Theorem

4.1.4, S
U1∪U3

= S
U1 ∪ S

U3
= S

U2 ∪ S
U4

= S
U2∪U4 . Thus, (U1 ∪ U3)R̃(U2 ∪ U4).

iii) Let U1 ⊆ U2 and U2R̃0. Then S
U2

= S
0
. Also, since U1 ⊆ U2, so we have S

U1 ⊆

S
U2

= S
0
. But S

0 ⊆ S
U1 , so S

U1
= S

0
. Hence, U1R̃0.

iv) If (U1 ∪ U2)R̃0, then S
0
= S

U1∪U2
= S

U1 ∪ S
U2 . Since S

U1 ⊆ S
U1 ∪ S

U2
= S

0
, so

we have S
U1

= S
0
. Similarly, S

U2
= S

0
. Hence, U1R̃0 and U2R̃0.

Conversely, if U1R̃0 and U2R̃0, then S
U1

= S
0

and S
U2

= S
0
. According to the

Theorem 1.2.3, S
0
= S

0 ∪ S
0
= S

U1 ∪ S
U2

= S
(U1∪U2)

. Hence, (U1 ∪ U2)R̃0.

v) If U1R̃1, then S
U1

= S
1
. Since U1 ⊆ U2, so S

1
= S

U1 ⊆ S
U2
. But S

U2 ⊆ S
1

so,

S
1
= S

U1 . Hence, U2R̃1.

vi) If (U1 ∩ U2)R̃1, then S
U1∩U2

= S
1
. According to the Theorem 4.1.4, we have S

U1 ∩

S
U2 ⊇ S

U1∩U2
= S

1
. Thus, S

1
= S

U1 and S
1
= S

U2 . Hence, U1R̃1 and U2R̃1.

Theorem 4.3.6. Let (ξ,S ) be a SfApSp and U1, U2, U3, U4 ∈ qROFzS(ξ). Then:

i) U1r̃U2 if and only if U1r̃(U1 ∪ U2)r̃U2

ii) If U1r̃U2 and U3r̃U4, then (U1 ∪ U3)r̃(U2 ∪ U4)

100



iii) If U1 ⊆ U2 and U2r̃0, then U1r̃0

iv) (U1 ∪ U2)r̃0 if and only if U1r̃0 and U2r̃0

v) If U1 ⊆ U2 and U1r̃1, then U2r̃1

vi) If (U1 ∩ U2)r̃1, then U1r̃1 and U2r̃1.

Proof.

The proof can be derived using the same approach as in Theorem. 4.3.5

Theorem 4.3.7. Let (ξ,S ) be a SfApSp and U1, U2, U3, U4 ∈ qROFzS(ξ). Then:

i) U1RU2 if and only if U1R(U1 ∩ U2)RU2

ii) If U1RU2 and U3RU4, then (U1 ∩ U3)R(U2 ∩ U4)

iii) If U1 ⊆ U2 and U2R0, then U1R0

iv) (U1 ∪ U2)R0 if and only if U1R0 and U2R0

v) If U1 ⊆ U2 and U1R1, then U2R1

vi) If (U1 ∩ U2)R1, then U1R1 and U2R1.

Proof.

The proof is straightforward.

Theorem 4.3.8. Let (ξ,S ) be a SfApSp and U1, U2, U3, U4 ∈ qROFzS(ξ). Then:

i) U1rU2 if and only if U1r(U1 ∩ U2)rU2

ii) If U1rU2 and U3rU4, then (U1 ∩ U3)r(U2 ∩ U4)

iii) If U1 ⊆ U2 and U2r0, then U1r0

iv) (U1 ∪ U2)r0 if and only if U1r0 and U2r0
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v) If U1 ⊆ U2 and U1r1, then U2r1

vi) If (U1 ∩ U2)r1, then U1r1 and U2r1.

Proof.

The proof is straightforward.

Theorem 4.3.9. Let (ξ,S ) be a SfApSp and U1, U2 ∈ qROFzS(ξ). Then:

i) U1RU2 if and only if U1R(U1 ∩ U2)RU2 and U1R̃(U1 ∪ U2)R̃U2

ii) If U1 ⊆ U2 and U2R0, then U1R0

iii) (U1 ∪ U2)R0 if and only if U1R0 and U2R0

iv) If (U1 ∩ U2)R1, then U1R1 and U2R1.

v) If U1 ⊆ U2 and U1R1, then U2R1

Proof.

Theorems 4.3.5 and 4.3.7 directly lead to this conclusion.

Theorem 4.3.10. Let (ξ,S ) be a SfApSp and U1, U2 ∈ qROFzS(ξ). Then:

i) U1rU2 if and only if U1r(U1 ∩ U2)rU2 and U1r̃(U1 ∪ U2)r̃U2

ii) If U1 ⊆ U2 and U2r0, then U1r0

iii) (U1 ∪ U2)r0 if and only if U1r0 and U2r0

iv) If (U1 ∩ U2)r1, then U1r1 and U2r1.

v) If U1 ⊆ U2 and U1r1, then U2r1

Proof.

Theorems 4.3.6 and 4.3.8 directly lead to this conclusion.
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4.4 Application in Decision-Making

In decision-making problems (DMP s), different experts have produced different evaluation

results. Yager [62] introduced the qROFzS and described some of its operations. So far,

many researchers have accomplished numerous works in qROFzS theory and many applica-

tions have appeared in different aspects.

An SfBnR is a parameterized family of Binary Relations on a universe, offering significant

utility in decision-making problems (DMPs). This concept generalizes ordinary Binary Rela-

tions on a set. In rough set theory, traditional rough approximations address single Binary

Relations. However, rough approximations in the sense of SfBnRs can handle multiple Binary

Relations. Pawlak’s rough set theory can be considered a special case of soft rough sets due

to SfBnRs.

Peng et al. [47] introduced the concept of PyFzSfS, outlined basic operations, and demon-

strated its application in DMPs. Kanwal and Shabir [31] defined LoAp and UpAp of a FzS in

a SmG using SfBnR and applied it to a real-life problem. In Chapter 2, we defined approx-

imations of PyFzS over dual universes and presented an application of this new structure.

In Chapter 3, we introduced generalized rough qROFzSs and explored their applications in

DMPs.

The transition from rough approximations to graphical representation provides an intuitive

and visual approach to ranking alternatives. Graphical methods simplify the comparison

process by visually representing the relationships between alternatives, making them particu-

larly useful in handling complex uncertainties. By assigning weights to edges based on fuzzy

measures, this approach ensures a systematic and efficient analysis of alternatives, enhancing

decision-making processes.

In [33], Khan et al. developed a technique for ranking and selecting qROFzDgs, proposing a

graphical method to solve DMPs. Their method is based on the hesitancy index and entropy

of qROFzDgs and was validated through numerical examples. Khan et al. [33] also defined a

modified Hamming distance and entropy for qROFzDgs, further contributing to the field.

103



Definition 4.4.1. [33] For two qROFzDgs U = (UY (¨), UN(¨)), V = (VY (¨), VN(¨)), the

modified Hamming distance defined by Khan et al. [33] is:

DH(U, V ) =
1

2
(| U q

Y (¨)− V q
Y (¨) | + | U q

N(¨)− V q
N(¨) |)× (1− 1

2
| πq

U − πq
V |)

Definition 4.4.2. [33] For a qROFzDg U = (UY (¨), UN(¨)), the entropy measure (EU) de-

fined by Khan et al. [33] is:

EU(U) =
lU
ºU

where lU is the minimum of the Hamming distances of U from extreme qROFzDgs (0, 1),

(1, 0) and ºU is the maximum of the Hamming distances of U from extreme qROFzDgs (0, 1),

(1, 0).

We now propose a novel method to address decision-making problems (DMPs) based on
qROFzS theory using SfBnRs. This approach extends the existing methodologies presented

by Kanwal and Shabir [31], Hussain et al. [25], and in Chapters 2 and 3 of this work. The

proposed method relies solely on the data and information provided by the decision-maker,

without requiring any additional information from decision-makers or other sources. This

eliminates the influence of subjective information on the decision results, leading to more

objective outcomes and avoiding paradoxical results for the same DMPs.

The corresponding lower and upper approximations (LoAp and UpAp) are crucial in the

decision-making process as they are closest to the main set to be approximated. There-

fore, we derive two qROFzDgs, S U(e)(¨) and S
U
(e)(¨), with respect to the AfSs for

the decision alternative ¨ in the universe ξ. This refined approach enhances the decision-

making process by ensuring that the results are consistent, reliable, and devoid of subjec-

tive biases. Using ring sum operation ⊕ given in Definition 1.1.9, we calculate S U(ei)(¨)

by S U(ei)(¨) = S U(ei)(¨) ⊕ S
U
(ei)(¨) for each alternative u in ξ, for ei ∈ D. Then

we find S U(¨) = S U(e1)(¨) ⊗ S U(e2)(¨) ⊗ S U(e3)(¨)... ⊗ S U(en)(¨) for ¨ in ξ and for

e1, e2, e3, ..., en ∈ D.
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Then following the technique given by Khan et al. [33] we represent the qROFzDgs S U(¨) on

graph. Find the qROFzDgs which lie above, below or on the straight line S UY = S UN , (in

general the line y = x). To decide the best alternative, we calculate the HsD of the qROFzDg

S U(¨). So the qROFzDg lying below the straight line and having a lesser HsD is ranked as

the best alternative and the qROFzDg lying above the straight line and having higher HsD is

ranked as the best alternative. In case the HsD is same for two or more best alternatives then

the qROFzDg with a lesser EU value is ranked best. Similarly, for the qROFzDgs lying on or

above the straight line we decide accordingly. The detailed steps for the proposed approach

are given below.

Algorithm 5

1: Compute the LoAp S U and UpAp S
U

of a qROFzS U with respect to the AfSs and find
S U(ei)(¨) by S U(ei)(¨) = S U(ei)(¨)⊕ S

U
(ei)(¨).

2: Represent the qROFzDgs S U(¨) on the graph calculated using the ring product oper-
ation S U(¨) = S U(e1)(¨) ⊗ S U(e2)(¨) ⊗ S U(e3)(¨)... ⊗ S U(en)(¨) for ¨ in ξ and for
e1, e2, e3, ..., en ∈ E.

3: Rank ¨ as the best alternative if the S U(¨) lies below the straight line S UY = S UN

and has least HsD. Select ¨ with lesser EU value if HsD is same for two or more best
alternatives.

4: Rank ¨ as the best alternative if the S U(¨) lies on the straight line S UY = S UN and has
least HsD. Select ¨ with lesser EU value if HsD is same for two or more best alternatives.

5: Rank ¨ as the best alternative if the S U(¨) lies above the straight line S UY = S UN and
has highest HsD. Select ¨ with highest EU value if HsD is same for two or more best
alternatives.

6: Getting best alternatives from Steps (3) to (5), the alternative lying below the straight line
S UY = S UN is ranked higher than the alternative lying on the line and the alternative
lying on the straight line S UY = S UN is ranked higher than the alternative lying above
the line.
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Algorithm 6

1: Compute the LoAp S U and UpAp S
U

of a qROFzS U with respect to the FrSs and find
US (ei)(º) by UF (ei)(º) =

US (ei)(º)⊕ US (ei)(º).
2: Represent the qROFzDgs UF (º) on the graph calculated using the ring product operation

UF (º) = UF (e1)(º)⊗UF (e2)(º)⊗UF (e3)(º)...⊗UF (en)(º) for º in ξ and for e1, e2, e3, ..., en ∈
E.

3: Rank º as the best alternative if the US (º) lies below the straight line UY F = UNF and has
least HsD. Select º with lesser EU value if HsD is same for two or more best alternatives.

4: Rank º as the best alternative if the US (º) lies on the straight line UY F = UNF and has
least HsD. Select º with lesser EU value if HsD is same for two or more best alternatives.

5: Rank º as the best alternative if the US (º) lies above the straight line UY F = UNF and
has highest HsD. Select º with highest EU value if HsD is same for two or more best
alternatives.

6: Getting best alternatives from Steps (3) to (4), the alternative lying below the straight
line UY F = UNF is ranked higher than the alternative lying on the line and the alternative
lying on the straight line UY F = UNF is ranked higher than the alternative lying above
the line.

4.4.1 An Application of the Decision-Making Approach:

Recent research in decision-making focuses on selecting the best alternative from a set of com-

parable options. In this context, we present an example illustrating our proposed approach

for choosing a suitable candidate to appoint in a multinational company.

Our method leverages the advanced framework of qROFzS theory using SfBnRs to ensure an

objective and reliable selection process. Unlike traditional methods that might rely heavily

on subjective opinions or additional external information, our approach strictly utilizes the

data provided by the decision-maker. This not only eliminates bias but also enhances the

consistency and accuracy of the decision-making process.

For instance, when selecting a candidate for a position in a multinational company, various

criteria must be evaluated, such as educational qualifications, relevant experience, technical

skills, and cultural fit. By applying our proposed method, we can systematically evaluate

each candidate against these criteria using the qROFzS framework. This method allows us

to identify the candidate who most closely aligns with the desired qualifications and organi-
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zational needs, ensuring a fair and thorough selection process.

The effectiveness of this approach lies in its ability to objectively rank candidates by calculat-

ing lower and upper approximations (LoAp and UpAp) with respect to the decision alternatives.

These approximations provide a robust basis for making informed decisions, thus helping the

multinational company appoint the best possible candidate for the role.

Example 4.4.3. A multi-national company in Pakistan wants to hire an officer for a vacant

position of officer in the company. A list of 10 short listed candidates is given which are clas-

sified in two finite sets, named as platinum and diamond based on their qualification and expe-

rience. The sets ξ1 = {the platinum group} = {¨1, ¨2, ¨3, ¨4, ¨5, ¨6}, ξ2 = {the diamond group}

= {º1, º2, º3, º4}, and the set of parameters D = {e1, e2, e3}, where e1 =education, e2 =experience

and e3 =computer knowledge.

Panel of selection analyzes and compares the qualifications of the candidates and gives a re-

lationship between the two groups. Define a SfBnR S : D → P (ξ1 × ξ2) by

S (e1) =



¨1 ¨2 ¨3 ¨4 ¨5 ¨6

º1 1 0 1 0 0 0

º2 1 1 0 1 0 1

º3 1 0 0 0 1 0

º4 0 0 0 1 1 0

, S (e2) =



¨1 ¨2 ¨3 ¨4 ¨5 ¨6

º1 1 0 1 0 0 0

º2 1 1 0 1 0 1

º3 1 0 0 0 1 0

º4 0 0 0 1 1 0

, and

S (e3) =



¨1 ¨2 ¨3 ¨4 ¨5 ¨6

º1 0 0 1 0 0 0

º2 1 0 0 1 0 1

º3 0 0 1 0 1 0

º4 0 1 0 0 1 0


represent the relation between candidates of platinum group and diamond group with respect

to the parameters e1, e2, e3, respectively.

The company owner gives preferences for the candidates of the two groups in the form of two
qROFzSs, V and U , where
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V = {⟨º1, 0.7, 0.4⟩, ⟨º2, 0.8, 0.65⟩, ⟨º3, 0.95, 0.4⟩, ⟨º4, 0.4, 0.3⟩},

U = {⟨¨1, 0.5, 0.95⟩, ⟨¨2, 0.55, 0.87⟩, ⟨¨3, 0.98, 0.35⟩, ⟨¨4, 0.5, 0.95⟩, ⟨¨5, 0.93, 0.3⟩, ⟨¨6, 0.8, 0.65⟩}.

Table 4.5: Approximation sets of qROFzS V with respect to AfSs

S
V
(e1)(¨i) S V(e1)(¨i) S

V
(e2)(¨i) S V(e2)(¨i) S

V
(e3)(¨i) S V(e3)(¨i)

¨1 (0.95, 0.4) (0.7, 0.65) (0.95, 0.4) (0.95, 0.4) (0.8, 0.65) (0.8, 0.65)

¨2 (0.8, 0.3) (0.4, 0.65) (0.95, 0.4) (0.95, 0.4) (0.4, 0.3) (0.4, 0.3)

¨3 (0.7, 0.4) (0.7, 0.4) (0.4, 0.3) (0.4, 0.3) (0.95, 0.4) (0.7, 0.4)

¨4 (0.95, 0.3) (0.4, 0.65) (0.7, 0.4) (0.7, 0.4) (0.8, 0.65) (0.8, 0.65)

¨5 (0.95, 0.3) (0.4, 0.4) (0.7, 0.4) (0.7, 0.4) (0.95, 0.3) (0.4, 0.4)

¨6 (0.8, 0.65) (0.8, 0.65) (0.95, 0.4) (0.8, 0.65) (0.8, 0.65) (0.8, 0.65)

Table 4.6: Approximation sets of qROFzS U with respect to FrSs

US (e1)(ºi)
US (e1)(ºi)

US (e2)(ºi)
US (e2)(ºi)

US (e3)(ºi)
US (e3)(ºi)

º1 (0.98, 0.35) (0.5, 0.95) (0.93, 0.3) (0.5, 0.95) (0.98, 0.35) (0.98, 0.35)

º2 (0.8, 0.65) (0.5, 0.95) (0.8, 0.65) (0.8, 0.65) (0.8, 0.65) (0.5, 0.95)

º3 (0.93, 0.3) (0.5, 0.95) (0.8, 0.65) (0.5, 0.95) (0.98, 0.3) (0.93, 0.35)

º4 (0.93, 0.3) (0.5, 0.95) (0.98, 0.35) (0.98, 0.35) (0.93, 0.3) (0.55, 0.87)
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Table 4.7: Calculating the qROFzS S V with respect to AfSs

S V(e1)(¨i) S V(e2)(¨i) S V(e3)(¨i) S V(¨i) Hs(S V(¨i))

¨1 (0.968, 0.26) (0.993, 0.16) (0.913, 0.423) (0.836, 0.457) 0.684

¨2 (0.816, 0.195) (0.993, 0.16) (0.499, 0.09) (0.404, 0.231) 0.973

¨3 (0.828, 0.16) (0.499, 0.09) (0.968, 0.16) (0.4, 0.207) 0.975

¨4 (0.953, 0.195) (0.828, 0.16) (0.913, 0.423) (0.720, 0.422) 0.820

¨5 (0.953, 0.12) (0.828, 0.16) (0.953, 0.12) (0.752, 0.196) 0.828

¨6 (0.913, 0.423) (0.976, 0.26) (0.913, 0.423) (0.813, 0.543) 0.671

Table 4.8: Calculating the qROFzS
UF with respect to FrSs

US (e1)(ºi)
US (e2)(ºi)

US (e3)(ºi)
US (ºi) Hs(

UF(ºi))

º1 (0.928, 0.332) (0.939, 0.285) (0.999, 0.122) (0.922, 0.386) 0.541

º2 (0.831, 0.617) (0.913, 0.423) (0.831, 0.617) (0.631, 0.771) 0.662

º3 (0.939, 0.285) (0.831, 0.617) (0.996, 0.105) (0.777, 0.633) 0.652

º4 (0.939, 0.285) (0.999, 0.122) (0.942, 0.261) (0.884, 0.348) 0.644

Approximation sets of qROFzS V are given in the Table 4.5 with respect to AfSs based on

SfBnRs S (ei) and approximation sets of qROFzS U are given in the Table 4.6 with respect to

FrSs based on SfBnRs S (ei). Using Algorithm we can see the qROFzS S V and the qROFzS

UF calculated in the Tables 4.7 and 4.8, respectively.

From Figure 4.1, we can see that the qROFzDgs for º1, º3, º4 lie below the straight line UY = UN

and the relationship between their corresponding hesitancy degrees, from Table 4.8, is;

HsD(º1) < HsD(º4) < HsD(º3)
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Figure 4.1

Figure 4.2

Thus, º1 is the best choice. Hence, the company should go for the candidate º1.

Similarly, From Figure 4.2, we can see that the qROFzDgs for ¨1, ¨2, ¨3, ¨4, ¨5, ¨6 lie below the
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straight line VY = VN and the relationship between their corresponding hesitancy degrees, from

Table 4.7, is;

HsD(¨6) < HsD(¨1) < HsD(¨4) < HsD(¨5) < HsD(¨2) < HsD(¨4) < HsD(¨3)

Thus, ¨6 is the best choice. Hence, the company should go for the candidate ¨6.

This chapter presented a graphical ranking technique for generalized rough q-Rung Or-

thopair Fuzzy Sets, offering a visual and systematic approach to decision-making. The method

was demonstrated through examples, highlighting its ability to handle complex uncertainties.

This contribution not only enhances the theoretical understanding of Fuzzy Sets but also

provides a practical tool for ranking alternatives in real-world applications.
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Chapter 5

Approximation of Pythagorean Fuzzy

Ideals over dual universes based on Soft

Binary Relation

The concept of dual universes provides a comprehensive framework for representing Pythagorean

Fuzzy Ideals by considering two separate but related universes: one for the membership values

and another for the non-membership values. This dual representation enables a deeper anal-

ysis of the relationships between elements, capturing their uncertainty more effectively. To

facilitate the approximation process within this framework, soft binary relations are employed

to define the interactions between elements in the dual universes. These relations allow for the

systematic computation of lower and upper approximations, ensuring a structured and precise

analysis of Pythagorean Fuzzy Ideals. The chapter delves into the rough approximations of

various types of SbSmGs within a SmG, employing soft compatible relations. It explores up-

per and LoAps of Pythagorean Fuzzy SbSmGs (PyFzSbSmG), Pythagorean Fuzzy Left Ideals

(PyFzLfId), Pythagorean Fuzzy Right Ideals (PyFzRiId), Pythagorean Fuzzy Interior Ideals

(PyFzItI), and Pythagorean Fuzzy BiIds (PyFzBiId) in a SmG, considering both AfSs and

FrS.
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In particular, it demonstrates that the upper approximation (UpAp) of a Pythagorean Fuzzy

Soft SubSmG (PyFzSbSmG), Pythagorean Fuzzy Soft Left Ideal (PyFzLfId), Pythagorean

Fuzzy Soft Right Ideal (PyFzRiId), Pythagorean Fuzzy Soft Interior Ideal (PyFzItI), and

Pythagorean Fuzzy Soft Bi-Ideal (PyFzBiId) in a SmG indeed results in a Pythagorean

Fuzzy Soft SbSmG (Pythagorean Fuzzy Soft Left Ideal, Pythagorean Fuzzy Soft Right Ideal,

Pythagorean Fuzzy Soft Interior Ideal, or Pythagorean Fuzzy Soft Bi-Ideal, respectively).

Furthermore, the chapter provides concrete examples that illustrate scenarios where this as-

sertion does not hold true, offering a comprehensive view of the conditions under which the

upper approximation may fail to yield the expected Pythagorean Fuzzy Soft structures. This

critical analysis extends to the discussion of lower approximations (LoAp) as well, thereby

presenting a complete picture of the behavior and properties of these approximations within

the framework of Pythagorean Fuzzy Soft Sets in SmGs.

This chapter contributes to the comprehension of RfS-based methodologies in examining

SbSmGs, utilizing soft compatible relations (SfCmRl) as a framework.

5.1 Approximations of Pythagorean Fuzzy Ideals in SmGs

by Soft Binary Relation

Definition 5.1.1. A PyFzSfS (F,D) over a SmG M is referred to as a Pythagorean Fuzzy

Soft SbSmG (PyFzSfSbSmG) of M if it satisfies the conditions: SY (e)(mn) ≥ SY (e)(m) ∧

SY (e)(n) and SN(e)(mn) ≤ SN(e)(m) ∨ SN(e)(n), for all m,n ∈ M and e ∈ D.

Example 5.1.2. Let M = {º1, º2} be a SmG with the multiplication table given by:

Table 5.1: Multiplication table

· º1 º2

º1 º1 º2

º2 º2 º2
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Let D = {e1, e2} be a set of parameters. Define a PyFzSfS (F,D) over M as follows:

S (e1)(ºi) = {⟨º1, 0.8, 0.4⟩, ⟨º2, 0.5, 0.6⟩, ⟨º1º1, 0.8, 0.4⟩, ⟨º1º2, 0.5, 0.6⟩, ⟨º2º2, 0.5, 0.6⟩},

S (e2)(ºi) = {⟨º1, 0.7, 0.3⟩, ⟨º2, 0.6, 0.5⟩, ⟨º1º1, 0.7, 0.3⟩, ⟨º1º2, 0.6, 0.5⟩, ⟨º2º2, 0.6, 0.5⟩}

where ºi ∈ M . We need to verify that (S , D) satisfies the conditions of a PyFzSfSbSmG over

M :

For e1 ∈ D: SY (e1)(º1º2) = 0.5 ≥ SY (e1)(º1) ∧ SY (e1)(º2) = 0.8 ∧ 0.5 = 0.5, SN(e1)(º1º2) =

0.6 ≤ SN(e1)(º1) ∨ SN(e1)(º2) = 0.4 ∨ 0.6 = 0.6, SY (e1)(º2º2) = 0.5 ≥ SY (e1)(º2) ∧

SY (e1)(º2) = 0.5∧ 0.5 = 0.5, SN(e1)(º2º2) = 0.6 ≤ SN(e1)(º2)∨SN(e1)(º2) = 0.6∨ 0.6 = 0.6

For e2 ∈ D: SY (e2)(º1º2) = 0.6 ≥ SY (e2)(º1) ∧ SY (e2)(º2) = 0.7 ∧ 0.6 = 0.6, SN(e2)(º1º2) =

0.5 ≤ SN(e2)(º1) ∨ SN(e2)(º2) = 0.3 ∨ 0.5 = 0.5, SY (e2)(º2º2) = 0.6 ≥ SY (e2)(º2) ∧

SY (e2)(º2) = 0.6∧0.6 = 0.6, SN(e2)(º2º2) = 0.5 ≤ SN(e2)(º2)∨SN(e2)(º2) = 0.5∨0.5 = 0.5.

This example demonstrates that the given PyFzSfS satisfies the conditions for being a

PyFzSfSbSmG of the SmG M .

Definition 5.1.3. A PyFzSfS (S , D) over M is called

1) a Pythagorean Fuzzy Soft Left Ideal (PyFzSfLfId) if, for each e ∈ D, S (e) is a

PyFzLfId of M .

2) a Pythagorean Fuzzy Soft Right Ideal (PyFzSfRfId) if, for each e ∈ D, S (e) is a

PyFzRiId of M .

3) a Pythagorean Fuzzy Soft Interior Ideal (PyFzSfItId) if, for each e ∈ D, S (e) is a

PyFzItId of M .

4) a Pythagorean Fuzzy Soft Bi-Ideal (PyFzSfBiId) if, for each e ∈ D, S (e) is a PyFzBiId

of M .

Theorem 5.1.4. Let (S , D) be a SfCmRl from a SmG M1 to a SmG M2.
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1) If U2 is a PyFzSbSmG of M2, then (S
U2
, D) is a PyFzSfSbSmG of M1.

2) If U2 is a PyFzLfId of M2, then (S
U2
, D) is a PyFzSfLfId of M1.

3) If U2 is a PyFzRfId of M2, then (S
U2
, D) is a PyFzSfRiId of M1.

Proof.

1) We assume that U2 is a PyFzSbSmG of M2. Now for a, b ∈ M1,

S
U2Y (e)(a) ∧ S

U2Y (e)(b) =

(
∨m∈aS (e) U2Y (m)

)
∧
(
∨n∈bS (e) U2Y (n)

)
= ∨m∈aS (e) ∨n∈bS (e)

(
U2Y (m) ∧ U2Y (n)

)
≤ ∨m∈aS (e) ∨n∈bS (e)

(
U2Y (mn)

)
≤ ∨mn∈(ab)S (e)

(
U2Y (mn)

)
= ∨m′∈(ab)S (e)

(
U2Y (m

′)

)
= S

U2Y (e)(ab).

Similarly for a, b ∈ M1,

S
U2N (e)(a) ∨ S

U2N (e)(b) =

(
∧m∈aS (e) U2N (m)

)
∨
(
∧n∈bS (e) U2N (n)

)
= ∧m∈aS (e) ∧n∈bS (e)

(
U2N (m) ∨ U2N (n)

)
≥ ∧m∈aS (e) ∧n∈bS (e)

(
U2N (mn)

)
≥ ∧mn∈(ab)S (e)

(
U2N (mn)

)
= ∧m′∈(ab)S (e)

(
U2N (m

′)

)
= S

U2N (e)(ab).

Hence, S
U2
(e) is a PyFzSbSmG of M1 for all e ∈ D, so (S

U2
, D) is a PyFzSfSbSmG of

M1.
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2) Assume that U2 is a PyFzLfId of M2. Now for a, b ∈ M1,

S
U2Y (e)(b) =

(
∨n∈bS (e) U2Y (n)

)
≤ ∨m∈aS (e) ∨n∈bS (e) U2Y (mn)

≤ ∨mn∈(mn)S (e)

(
U2Y (mn)

)
= ∨m′∈(ab)S (e)

(
U2Y (m

′)

)
= S

U2Y (e)(ab).

Similarly for a, b ∈ M1,

S
U2N (e)(b) =

(
∧n∈bS (e) U2N (n)

)
≥ ∧m∈aS (e) ∧n∈bS (e) U2N (mn)

≥ ∧mn∈(ab)S (e)

(
U2N (mn)

)
= ∧n′∈(ab)S (e)

(
U2N (n

′)

)
= S

U2N (e)(ab).

Hence, S
U2
(e) is a PyFzLfId of M1 for all e ∈ D, so (S

U2
, D) is a PyFzSfLfId of M1.

3) The proof can be derived using the same approach as in part (2).

In Theorem 5.1.4 from part 1, SfCmRls from M1 to M2 are given, and U2 is a PyFzSbSmG in

M2. After combining them, we get generalized PyFzSfSbSmGs in M1. Similarly, if we take a

PyFzLfId or PyFzRiId U2 of M2, then we get generalized PyFzSfLfId or PyFzSfRiId of M1.

Theorem 5.1.5. Let (S , D) be a SfCmRl from a SmG M1 to a SmG M2:

1) If U1 is a PyFzSbSmG of M1, then (U1S , D) is a PyFzSfSbSmG of M2

2) If U1 is a PyFzLfId (PyFzRiId) of M1, then (U1S , D) is a PyFzSfLfId (PyFzSfRiId)

of M2, respectively.

Proof.

The proof can be derived using the same approach as in the Theorem 5.1.4.

In Theorem 5.1.5 from part 1, SfCmRls from M1 to M2 are given, and U1 is a PyFzSbSmG in

M1. After combining them, we get generalized PyFzSfSbSmGs in M2. Similarly, if we take a
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PyFzLfId or PyFzLfId U1 of M1, then we get generalized PyFzSfLfId or PyFzSfLfId of M2.

Now, we show that the converses of parts of the above Theorems 5.1.4 and 5.1.5 generally do

not hold.

Example 5.1.6. Let M1 = {¨1, ¨2, ¨3, ¨4, ¨5} and M2 = {º1, º2, º3, º4, º5} be two SmGs, where

the multiplication tables of M1 and M2 are presented in Tables 5.2 and 5.3, respectively.

Let D = {e1, e2}. Define a SfBnR S : D → P (M1 ×M2) by:

S (e1) =



¨1 ¨2 ¨3 ¨4 ¨5

º1 1 1 0 0 0

º2 0 1 0 0 0

º3 0 0 1 1 0

º4 0 0 0 1 0

º5 0 1 1 0 1


, S (e2) =



¨1 ¨2 ¨3 ¨4 ¨5

º1 1 1 0 0 0

º2 0 1 0 0 0

º3 0 1 1 1 0

º4 0 0 0 1 0

º5 0 1 1 1 1


Then, (S , D) is a SfCmRl from M1 to M2.

¨1S (e1) = {º1}, S (e1)º1 = {¨1, ¨2, ¨4},

¨2S (e1) = {º1, º2, º5}, S (e1)º2 = {¨2},

¨3S (e1) = {º3, º5}, S (e1)º3 = {¨3, ¨4},

¨4S (e1) = {º1, º3, º4, º5}, S (e1)º4 = {¨4},

¨5S (e1) = {º5}, S (e1)º5 = {¨2, ¨3, ¨4, ¨5},

¨1S (e2) = {º1}, S (e2)º1 = {¨1, ¨2, ¨4},

¨2S (e2) = {º1, º2, º3, º5}, S (e2)º2 = {¨2},

¨3S (e2) = {º3, º5}, S (e2)º3 = {¨2, ¨3, ¨4},

¨4S (e2) = {º1, º3, º4, º5}, S (e2)º4 = {¨4},

¨5S (e2) = {º5}, S (e2)º5 = {¨2, ¨3, ¨4, ¨5}.
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Table 5.2: Multiplication table for M1

. ¨1 ¨2 ¨3 ¨4 ¨5

¨1 ¨2 ¨2 ¨4 ¨4 ¨4

¨2 ¨2 ¨2 ¨4 ¨4 ¨4

¨3 ¨4 ¨4 ¨3 ¨4 ¨3

¨4 ¨4 ¨4 ¨4 ¨4 ¨4

¨5 ¨4 ¨4 ¨3 ¨4 ¨3

Table 5.3: Multiplication table for M2

. º1 º2 º3 º4 º5

º1 º1 º5 º3 º4 º5

º2 º1 º2 º3 º4 º5

º3 º1 º5 º3 º4 º5

º4 º1 º5 º3 º4 º5

º5 º1 º5 º3 º4 º5

1) Define a PyFzS U1 : M2 → [0, 1] by

U1 = {⟨º1, 0.5, 0.4⟩, ⟨º2, 0.4, 0.5⟩, ⟨º3, 0.3, 0.7⟩, ⟨º4, 1, 0⟩, ⟨º5, 0.1, 0.8⟩}.

Then, U1 is not a PyFzSbSmG of M2 because if we take a = º1, b = º2, then U1Y (º1º2) =

0.1 ≱ 0.4 = U1Y (º1)∧U1Y (º2) and U1N (º1º2) ≰ U1N (º1)∨U1N (º2). UpAp of U1 is given in

Table 5.4.

Table 5.4: UpAp of U1

S
U1Y (e1) S

U1N (e1) S
U1Y (e2) S

U1N (e2)

¨1 0.5 0.4 0.5 0.4

¨2 0.5 0.4 0.5 0.4

¨3 0.3 0.7 0.3 0.7

¨4 1 0 1 0

¨5 0.1 0.8 0.1 0.8
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Clearly, S
U1
(e1) and S

U1
(e2) are PyFzSbSmGs of M1, so (S

U1
, D) is a PyFzSfSbSmG

of M1.

2) Define a PyFzS U2 : M1 → [0, 1] by

U2 = {⟨¨1, 0.2, 0.7⟩, ⟨¨2, 0.7, 0.3⟩, ⟨¨3, 0.8, 0.2⟩, ⟨¨4, 0, 1⟩, ⟨¨5, 0.9, 0.1⟩}. Then, U2 is not

a PyFzSbSmG of M1 because if we take a = ¨2, b = ¨3, then U2Y (¨2¨3) = 0 ≱ 0.7 =

U2Y (¨2)∧U2Y (¨3) and U2N (¨2¨3) = 1 ≰ 0.8 = U2N (¨2)∨U2N (¨3). UpAp of U2 is given in

Table 5.5.

Table 5.5: UpAp of U2

U2Y S (e1)
U2N S (e1)

U2Y S (e2)
U2N S (e2)

º1 0.7 0.3 0.7 0.3

º2 0.7 0.3 0.7 0.3

º3 0.8 0.2 0.8 0.2

º4 0 1 0 1

º5 0.9 0.1 0.9 0.1

Clearly, S
U2
(e1) and S

U2
(e2) are PyFzSbSmGs of M2, so (S

U2
, D) is a PyFzSfSbSmG

of M2.

3) Define a PyFzSU3 : M2 → [0, 1] by

U3 = {⟨º1, 0.5, 0.4⟩, ⟨º2, 0.4, 0.6⟩, ⟨º3, 0.3, 0.6⟩, ⟨º4, 1, 0⟩, ⟨º5, 0.1, 0.8⟩}. Then, U3 is not a

PyFzLfId of M2 because if we take a = º1, b = º2, then U3Y (º1º2) = 0.1 ≱= 0.4 = U3Y (º2)

and U3N (º1º2) = 0.8 ≰ 0.6 = U3N (º2). UpAp of U3 is given in Table 5.6.
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Table 5.6: UpAp of U3

S
U3Y (e1) S

U3N (e1) S
U3Y (e2) S

U3N (e2)

¨1 0.5 0.4 0.5 0.4

¨2 0.5 0.4 0.5 0.4

¨3 0.3 0.6 0.3 0.6

¨4 1 0 1 0

¨5 0.1 0.8 0.1 0.8

Clearly, S
U3
(e1) and S

U3
(e2) are PyFzLfIds of M1, so (S

U3
, D) is a PyFzSfLfId of

M1.

4) Define a PyFzS U4 : M1 → [0, 1] by

U4 = {⟨¨1, 0.2, 0.7⟩, ⟨¨2, 0.7, 0.2⟩, ⟨¨3, 0.8, 0.1⟩, ⟨¨4, 0, 1⟩, ⟨¨5, 0.9, 0.1⟩}. Then, U4 is not a

PyFzLfId of M1 because if we take a = ¨1, b = ¨3 then U4Y (¨1¨3) = 0 ≱ 0.8 = U4Y (¨3)

and U4N (¨1¨3) = 1 ≰ 0.7 = U4N (¨3). UpAp of U4 is given in Table 5.7.

Table 5.7: UpAp of U4

U4Y S (e1)
U4N S (e1)

U4Y S (e2)
U4N S (e2)

º1 0.7 0.2 0.7 0.2

º2 0.7 0.2 0.7 0.2

º3 0.8 0.1 0.8 0.1

º4 0 1 0 1

º5 0.9 0.1 0.9 0.1

Clearly, U4S (e1) and U4S (e2) are PyFzLfIds of M2, so (U4S , D) is a PyFzSfLfId of

M2.

Example 5.1.7. Consider the SmGs and SfBnR from Example 5.1.6.

Define a PyFzS U : M2 → [0, 1] by

U = {⟨º1, 0.7, 0.2⟩, ⟨º2, 0.7, 0.3⟩, ⟨º3, 0.8, 0.1⟩, ⟨º4, 0, 1⟩, ⟨º5, 0.9, 0.1⟩}. Then, U is a PyFzLfId of
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M2 LoAp of U is given in Table 5.8. But S U(e1) is not a PyFzLfId of M1 because if we take

a = ¨1, b = ¨3 then UY (¨1¨3) = 0 ≱ 0.8 = UY (¨3) and UN(¨1¨3) = 1 ≰ 0.1 = UN(¨3).

Table 5.8: LoAp of U

S UY (e1) S UN (e1)

¨1 0.7 0.2

¨2 0.7 0.3

¨3 0.8 0.1

¨4 0 1

¨5 0.9 0.1

The aforementioned example demonstrates that if a soft relation is a CmRl, the LoAp of

a PyFzLfId is not necessarily a PyFzSfLfId. However, we have the following result.

Theorem 5.1.8. Consider (S , D) constitutes a SfCmpRl from a SmG M1 to a SmG M2.

1) If U2 is a PyFzSbSmG of M2, then (S U2 , D) is a PyFzSfSbSmG of M1

2) If U2 is a PyFzLfId (PyFzRiId) of M2, then (S U2 , D) is a PyFzSfLfId (PyFzSfRiId)

of M1.

Proof.

1) We assume that U2 is a PyFzSbSmG of M2. Now for a, b ∈ M1,

S U2Y (ab) = ∧m′∈(ab)S (e)U2Y

(
m′
)

= ∧m′∈(a)S (e).(b)S (e)U2Y

(
m′
)

= ∧m∈(a)S (e).n∈(b)S (e)U2Y (mn) ≥ ∧m∈(a)S (e) ∧n∈(b)S (e)

(
U2Y (m) ∧ U2Y (n)

)
≥
(
∧m∈aS (e) U2Y (m)

)
∧
(
∧n∈bS (e) U2Y (n)

)
= S U2Y (e)(a) ∧ S U2Y (e)(b).
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Similarly for a, b ∈ M1,

S U2N (e)(ab) = ∨m′∈(ab)S (e)U2N

(
m′
)

= ∨m′∈(a)S (e).(b)S (e)U2N

(
m′
)

= ∨m∈(a)S (e).n∈(b)S (e)U2N (mn) ≤ ∨m∈(a)S (e) ∨n∈(b)S (e)

(
U2N (m) ∨ U2N (n)

)
≤
(
∨m∈aS (e) U2N (m)

)
∨
(
∨n∈bS (e) U2N (n)

)
= S U2N (e)(a) ∨ S U2N (e)(b).

Hence, S U2(e) is a PyFzSbSmG of M1 for all e ∈ D, so (S U2 , D) is a PyFzSfSbSmG of

M1.

2) Assume that U2 is a PyFzLfId of M2. Now for a, b ∈ M1,

S U2Y (e)(ab) = ∧m′∈(ab)S (e)U2Y

(
m′
)

= ∧m′∈(a)S (e).(b)S (e)U2Y

(
m′
)

= ∧m∈(a)S (e).n∈(b)S (e)U2Y (mn) ≥ ∧n∈(b)S (e)U2Y (n)

= S U2Y (e)(b).

Similarly for a, b ∈ M1,

S U2N (e)(ab) = ∨m′∈(ab)S (e)U2N

(
m′
)

= ∨m′∈(a)S (e).(b)S (e)U2N

(
m′
)

= ∨m∈(a)S (e).n∈(b)S (e)U2N (mn) ≤ ∨n∈(b)S (e)U2N (n)

= S U2N (e)(b).

Hence, S U2(e) is a PyFzLfId of M1 for all e ∈ D, so (S U2 , D) is a PyFzSfLfId of M1.

Theorem 5.1.9. Suppose (S , D) constitutes a SfCmpRl from a SmG M1 to a SmG M2.

1) If U1 is a PyFzSbSmG of M1, then (U1S , D) is a PyFzSfSbSmG of M2
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2) If U1 is a PyFzLfId (PyFzRiId) of M1, then (U1S , D) is a PyFzSfLfId (PyFzSfRiId)

of M2.

Proof.

The proof can be derived using the same approach as in the Theorem 5.1.8.

Example 5.1.10. Consider two SmGs, M1 = {¨1, ¨2, ¨3, ¨4} and M2 = {º1, º2, º3, º4}, with

their respective multiplication tables presented in Tables 5.9 and 5.10. Let D = {e1, e2}.

Table 5.9: Multiplication table for M1

. ¨1 ¨2 ¨3 ¨4

¨1 ¨1 ¨1 ¨1 ¨4

¨2 ¨1 ¨2 ¨1 ¨4

¨3 ¨1 ¨1 ¨3 ¨4

¨4 ¨4 ¨4 ¨4 ¨4

Table 5.10: Multiplication table for M2

. º1 º2 º3 º4

º1 º1 º2 º3 º4

º2 º2 º2 º2 º2

º3 º3 º3 º3 º3

º4 º4 º3 º2 º1

Define a SfBnR S : D → P (M1 ×M2) by:

S (e1) =



¨1 ¨2 ¨3 ¨4

º1 0 0 0 0

º2 1 0 0 0

º3 1 0 0 0

º4 0 0 0 0

, S (e2) =



¨1 ¨2 ¨3 ¨4

º1 0 0 0 0

º2 1 1 1 1

º3 0 0 0 0

º4 0 0 0 0


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Then, (S , D) forms a SfCmpRl from M1 to M2.

¨1S (e1) = {º2, º3},

¨2S (e1) = {º2, º3},

¨3S (e1) = {º2, º3},

¨4S (e1) = {º2, º3},

¨1S (e2) = {º2},

¨2S (e2) = {º2},

¨3S (e2) = {º2},

¨4S (e2) = {º2}.

1) Define a PyFzS U2 : M2 → [0, 1] by

U2 = {⟨º1, 0.2, 0.7⟩, ⟨º2, 0.4, 0.5⟩, ⟨º3, 0.6, 0.2⟩, ⟨º4, 0.8, 0.1⟩}. Then, U2 is not a PyFzSbSmG

of M2 because if we take a = º4 and b = º4, we find U2Y (º4º4) = 0.2 ̸≥ 0.8 =

U2Y (º4) ∧ U2Y (º4) and U2N (º4º4) = 0.7 ̸≤ 0.1 = U2N (º4) ∨ U2N (º4). The LoAp of U2

is presented in Table 5.11.

Table 5.11: LoAp of U2

S U2Y (e1) S U2N (e1) S U2Y (e2) S U2N (e2)

¨1 0.2 0.5 0.4 0.5

¨2 0.2 0.5 0.4 0.5

¨3 0.2 0.5 0.4 0.5

¨4 0.2 0.5 0.4 0.5

Clearly, S U2(e1) and S U2(e2) are PyFzSbSmGs of M1, so (S U2 , D) is a PyFzSfSbSmG

of M1.

2) Define a PyFzS U2 : M2 → [0, 1] by
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U2 = {⟨º1, 0.2, 0.7⟩, ⟨º2, 0.4, 0.5⟩, ⟨º3, 0.6, 0.2⟩, ⟨º4, 0.8, 0.1⟩}. Then, U2 is not a PyFzLfId

of M2 because if we take a = º2, b = º3, then U2Y (º2º3) = 0.4 ≱ 0.6 = U2Y (º3) and

U2N (º2º3) = 0.5 ≰ 0.2 = U2N (º3). LoAp of U2 is presented in the Table 5.12.

Table 5.12: LoAp of U2

S U2Y (e1) S U2N (e1) S U2Y (e2) S U2N (e2)

¨1 0.4 0.5 0.4 0.5

¨2 0.4 0.5 0.4 0.5

¨3 0.4 0.5 0.4 0.5

¨4 0.4 0.5 0.4 0.5

Clearly, S U2(e1) and S U2(e2) are PyFzLfIds of M1, so (S U2 , D) is a PyFzSfLfId of

M1.

Now define S1 : D → P (M1 ×M2) by:

S1(e1) =



¨1 ¨2 ¨3 ¨4

º1 0 0 0 1

º2 0 0 0 1

º3 0 0 0 1

º4 0 0 0 1

, S1(e2) =



¨1 ¨2 ¨3 ¨4

º1 1 0 0 1

º2 1 0 0 1

º3 1 0 0 1

º4 1 0 0 1


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Then, (S1, D) is SfCmpRl from M1 to M2.

S1(e1)º1 = {¨4},

S1(e1)º2 = {¨4},

S1(e1)º3 = {¨4},

S1(e1)º4 = {¨4}

S1(e2)º1 = {¨1, ¨4}

S1(e2)º2 = {¨1, ¨4}

S1(e2)º3 = {¨1, ¨4}

S1(e2)º4 = {¨1, ¨4}.

1) Define a PyFzS U1 : M1 → [0, 1] by

U1 = {⟨¨1, 0.1, 0.9⟩, ⟨¨2, 0.3, 0.6⟩, ⟨¨3, 0.5, 0.4⟩, ⟨¨4, 0.7, 0.2⟩}. Then, U1 is not a PyFzSbSmG

of M1 because if we take a = ¨2, b = ¨3 then U1Y (¨2¨3) = 0.1 ≱ 0.3 = UY (¨2) ∧ U1Y (¨3)

and U1N (¨2¨3) = 0.9 ≰ 0.6 = U1N (¨2) ∨ U1N (¨3). LoAp of U1 is given in Table 5.13.

Table 5.13: LoAp of U1

U1Y S1(e1)
U1N S1(e1)

U1Y S1(e2)
U1N S1(e2)

º1 0.7 0.2 0.1 0.9

º2 0.7 0.2 0.1 0.9

º3 0.7 0.2 0.1 0.9

º4 0.7 0.2 0.1 0.9

Clearly, U1S1(e1) and U1S1(e2) are PyFzSbSmGs of M2, so (U1S1, D) is a PyFzSfSbSmG

of M2.

2) Define a PyFzS U1 : M1 → [0, 1] by

U1 = {⟨¨1, 0.1, 0.8⟩, ⟨¨2, 0.3, 0.6⟩, ⟨¨3, 0.5, 0.5⟩, ⟨¨4, 0.7, 0.2⟩}. Then, U1 is not a PyFzLfId
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of M1 because if we take a = ¨2, b = ¨3 then U1Y (¨2¨3) = 0.1 ≱ 0.5 = U1Y (¨3) and

U1N (¨2¨3) = 0.8 ≰ 0.5 = U1N (¨3). LoAp of U1 is given in Table 5.14.

Table 5.14: LoAp of U1

U1Y S1(e1)
U1N S1(e1)

U1Y S1(e2)
U1N S1(e2)

º1 0.7 0.2 0.1 0.8

º2 0.7 0.2 0.1 0.8

º3 0.7 0.2 0.1 0.8

º4 0.7 0.2 0.1 0.8

Clearly, U1S1(e1) and U1S (e2) are PyFzLfId of M2, so (US , D) is a PyFzSfLfId of

M2.

Theorem 5.1.11. Suppose (S , D) is a SfBnR from a SmG M1 to a SmG M2; that is,

S : D → P (M1 × M2). Then, for a PyFzRiId U1 = ⟨U1Y , U1N ⟩ and for a PyFzLfId U2 =

⟨U2Y , U2N ⟩ of M2, S
U1U2 ⊆ S

U1 ∩ S
U2.

Proof.

Since U1 is a PyFzRiId, so U1U2 ⊆ U1 and U2 is PyFzLiId of M2, so U1U2 ⊆ U2.

Thus U1U2 ⊆ U1 ∩ U2. It follows from Theorem 2.1.4, S
U1Y

U2Y (e) ⊆ S
U1Y

∩U2Y (e) ⊆

S
U1Y (e) ∩ S

U2Y (e).

Hence, S
U1Y

U2Y (e) ⊆ S
U1Y (e) ∩ S

U2Y (e).

Also, S
U1N (e) ∩ S

U2N (e) ⊆ S
U1N

∩U2N (e) ⊆ S
U1N

U2N (e).

Hence, S
U1N

U2N (e) ⊇ S
U1N (e) ∩ S

U2N (e)

Theorem 5.1.12. Suppose (S , D) is a SfBnR from a SmG M1 to a SmG M2; that is,

S : D → P (M1 × M2). Then, for a PyFzRiId U1 = ⟨U1Y , U1N ⟩ and for a PyFzLfId U2 =

⟨U2Y , U2N ⟩ of M1, U1U2S ⊆ U1S ∩ U2S .

Proof.

It follows from Theorem 5.1.11.
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Theorem 5.1.13. If (S , D) constitutes a SfCmRl from SmG M1 to SmG M2, and if U2

represents a PyFzItI in M2, then (S
U2
, D) forms a PyFzSfItI in M1.

Proof.

Suppose that U2 is a PyFzItI of M2. Thus, U2 is a PyFzSbSmG of M2, so according to the

Theorem 5.1.4, (S
U2
, D) is a PyFzSfSbSmG of M1. Now for a, b, c ∈ M1,

S
U2Y (e)(c) = ∨n∈cS (e)U2Y (n) ≤ ∨m∈aS (e) ∨n∈cS (e) ∨o∈bS (e)U2Y (mno)

≤ ∨(mno)∈(acb)S (e)U2Y (mno) = m′ ∈ acbS (e)U2Y (m
′)

= S
U2Y (e)(acb).

Similarly, for a, b, c ∈ M1,

S
U2N (e)(c) = ∧n∈cS (e)U2N (n) ≥ ∧m∈aS (e) ∧n∈cS (e) ∧o∈bS (e)U2N (mno)

≥ ∧(mno)∈(acb)S (e)U2Y (mno) = m′ ∈ acbS (e)U2N (m
′)

= S
U2N (e)(acb).

Hence, S
U2
(e) is a PyFzItI of M1 for all e ∈ D, so (S

U2
, D) is a PyFzSfItI of M1.

Consider the following example to illustrate that the converse of the preceding result is not

true, generally.

Example 5.1.14. Let M1 = {º1, º2, º3} and M2 = {¨1, ¨2, ¨3} denote two SmGs, with their

respective multiplication tables depicted in Tables 5.15 and 5.16.

Table 5.15: Multiplication table for M1

. º1 º2 º3

º1 º1 º2 º3

º2 º1 º2 º3

º3 º1 º2 º3
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Table 5.16: Multiplication table for M2

. ¨1 ¨2 ¨3

¨1 ¨1 ¨1 ¨3

¨2 ¨1 ¨2 ¨3

¨3 ¨1 ¨3 ¨3

Let D = {e1, e2}. Define a SfBnR S : D → P (M1 ×M2) by:

S (e1) =


¨1 ¨2 ¨3

º1 1 1 1

º2 1 1 0

º3 1 0 1

, S (e2) =


¨1 ¨2 ¨3

º1 1 1 1

º2 1 1 0

º3 0 0 1


In conclusion, (S , D) constitutes a SfCmRl mapping from M1 to M2.

º1S (e1) = {¨1, ¨2, ¨3},

º2S (e1) = {¨1, ¨2},

º3S (e1) = {¨1, ¨3},

º1S (e2) = {¨1, ¨2, ¨3},

º2S (e2) = {¨1, ¨2},

º3S (e2) = {¨3}.

Define a PyFzS U2 : M2 → [0, 1] by

U2 = {⟨¨1, 0, 0.9⟩, ⟨¨2, 0.1, 0.8⟩, ⟨¨3, 0.1, 0.9⟩}. Then, U2 is not a PyFzItI of M2 because if we

take a = ¨2, c = ¨3, b = ¨1, then U2Y (¨2¨3¨1) = 0 ≱ 0.1 = U2Y (¨3) and U2N (¨2¨3¨1) = 0.9 ≰

0.8 = U2N (¨3). UpAp of U2 is given in Table 5.17.
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Table 5.17: UpAp of U2

S
U2Y (e1) S

U2N (e1) S
U2Y (e2)

º1 0.1 0.8 0.1

º2 0.1 0.8 0.1

º3 0.1 0.9 0.1

Clearly, S
U2
(e1) and S

U2
(e2) are PyFzItIs of M1, so (S

U2
, D) is a PyFzSfItI of M1.

Theorem 5.1.15. Let (S , D) represent a SfCmRl from a SmG M1 to a SmG M2. If U1 is

a PyFzItI of M1, then (U1S , D) forms a PyFzSfItI over M2.

Proof.

It follows from Theorem 5.1.13.

Consider the following example to illustrate that the converse of the preceding result is not

true, generally.

Example 5.1.16. Consider the SmGs of Example 5.1.14 and let D = {e1, e2}. Define a

SfBnR S1 : D → P (M1 ×M2) by:

S1(e1) =


¨1 ¨2 ¨3

º1 1 1 1

º2 1 1 0

º3 1 0 1

, S1(e2) =


¨1 ¨2 ¨3

º1 1 1 1

º2 1 1 0

º3 0 1 0


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Then, (S1, D) is a SfCmpRl from M1 to M2.

S1(e1)¨1 = {º1, º2, º3},

S1(e1)¨2 = {º1, º2},

S1(e1)¨3 = {º1, º3},

S1(e2)¨1 = {º1, º2},

S1(e2)¨2 = {º2},

S1(e2)¨3 = {º2, º3}.

Define a PyFzS U1 : M1 → [0, 1] by

U1 = {⟨º1, 0, 0.9⟩, ⟨º2, 0.1, 0.8⟩, ⟨º3, 0.1, 0.9⟩}. Then, U1 is not a PyFzItI of M2 because if we

take a = º2, c = º3, b = º1, then U1Y (º2º3º1) = 0 ≱ 0.1 = U1Y (º3) and U1N (º2º3º1) = 0.9 ≰ 0.8 =

U1N (º3). UpAp of U1 is presented in Table 5.18.

Table 5.18: UpAp of U1

U1Y S1(e1)
U1N S1(e1)

U1Y S1(e2)

¨1 0.1 0.8 0.1

¨2 0.1 0.8 0.1

¨3 0.1 0.9 0.1

Clearly, U1S1(e1) and U1S1(e2) are PyFzItIs of M2, so (U1S1, D) is a PyFzSfItI of M2.

Theorem 5.1.17. Suppose (S , D) constitutes a SfCmpRl from a SmG M1 to a SmG M2. If

U2 is a PyFzItI of M2, then (S U2 , D) is a PyFzSfItI of M1.

Proof.

Suppose that U2 is a PyFzItI of M2, Thus, U2 is a PyFzSbSmG of M2, so according to the
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Theorem 5.1.5, (S U2 , D) is a PyFzSfSbSmG of M1. Now for a, c, b ∈ M1,

S U2Y (acb) = ∧m′∈(acb)S (e)U2Y

(
m′) = ∧m′∈aS (e).cS (e).bS (e)U2Y

(
m′)

= ∧m∈aS (e).n∈cS (e).c∈bS (e)U2Y

(
mno

)
≥ ∧n∈cS (e)U2Y

(
n
)

= S U2Y (e)(m).

Similarly, for a, b, c ∈ M1,

S U2N (acb) = ∨m′∈(acb)S (e)U2N

(
m′) = ∨m′∈aS (e).bS (e).cS (e)U2N

(
m′)

= ∨m∈aS (e).n∈cS (e).c∈bS (e)U2N

(
mno

)
≤ ∨n∈cS (e)U2N

(
n
)

= S U2N (e)(c).

Therefore, S U2(e) is a PyFzItI of M1 for all e ∈ D, so (S U2 , D) is a PyFzSfItI of M1.

In the following example, we demonstrate that the converse of the above theorem does not

hold true.

Example 5.1.18. Consider the SmGs of Example 5.1.10 and let D = {e1, e2}. Define a

SfBnR S : D → P (M1 ×M2) by:

S (e1) =



º1 º2 º3 º4

¨1 0 1 1 0

¨2 0 1 1 0

¨3 0 1 1 0

¨4 0 1 1 0

, S (e2) =



º1 º2 º3 º4

¨1 0 1 0 0

¨2 0 1 0 0

¨3 0 1 0 0

¨4 0 1 0 0


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Then, (S , D) constitutes a SfCmpRl from M1 to M2.

¨1S (e1) = {º2, º3},

¨2S (e1) = {º2, º3},

¨3S (e1) = {º2, º3},

¨4S (e1) = {º2, º3},

¨1S (e2) = {º2},

¨2S (e2) = {º2},

¨3S (e2) = {º2},

¨4S (e2) = {º2}.

Define a PyFzS U2 : M2 → [0, 1] by

U2 = {⟨º1, 0.4, 0.5⟩, ⟨º2, 0.6, 0.3⟩, ⟨º3, 0.8, 0.1⟩, ⟨º4, 0.1, 0⟩}. Then, U2 is not a PyFzItI of M2

because if we take a = º2, c = º3, b = º4, then U2Y (º2º3º4) = 0.6 ≱ 0.8 = U2Y (º3) and

U2N (º2º3º4) = 0.3 ≰ 0.1 = U2N (º3). LoAp of U2 is presented in Table 5.19.

Table 5.19: LoAp of U2

S U2Y (e1) S U2N (e1) S U2Y (e2)

¨1 0.6 0.3 0.6

¨2 0.6 0.3 0.6

¨3 0.6 0.3 0.6

¨4 0.6 0.3 0.6

It is clear from Table 5.19 that S U2(e1) and S U2(e2) are PyFzItIs of M1, so (S U2 , D) is

a PyFzSfItI of M1.

Theorem 5.1.19. Suppose (S , D) constitutes a SfCmpRl from a SmG M1 to a SmG M2. If

U1 is a PyFzItI of M1, then (U1S , D) is a PyFzSfItI of M2.
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Proof.

The proof can be derived using the same approach as in the Theorem 5.1.17.

Example 5.1.20. Consider the SmGs of Example 5.1.10. Then define S : D → P (M1×M2)

by:

S (e1) =



º1 º2 º3 º4

¨1 0 0 0 0

¨2 0 0 0 0

¨3 0 0 0 0

¨4 1 1 1 1

, S (e2) =



º1 º2 º3 º4

¨1 1 1 1 1

¨2 0 0 0 0

¨3 0 0 0 0

¨4 1 1 1 1


Then, (S , D) constitutes a SfCmpRl from M1 to M2.

S (e1)º1 = {¨4},

S (e1)º2 = {¨4},

S (e1)º3 = {¨4},

S (e1)º4 = {¨4},

S (e2)º1 = {¨1, ¨4},

S (e2)º2 = {¨1, ¨4},

S (e2)º3 = {¨1, ¨4},

S (e2)º4 = {¨1, ¨4}.

Define a PyFzS U1 : M1 → [0, 1] by

U1 = {⟨¨1, 0, 1⟩, ⟨¨2, 0.3, 0.7⟩, ⟨¨3, 0.5, 0.4⟩, ⟨¨4, 0.7, 0.2⟩}. Then, U1 is not a PyFzItI of M1

because if we take a = ¨3, c = ¨2, b = ¨1, then U1Y (¨3¨2¨1) = 0 ≱ 0.3 = U1Y (¨2) and

U1N (¨3¨2¨1) = 1 ≰ 0.7 = U1N (¨2). LoAp of U1 is given in Table 5.20.
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Table 5.20: LoAp of U1

U1Y S (e1)
U1N S (e1)

U1Y S (e2)
U1N S (e2)

º1 0.7 0.2 0 1

º2 0.7 0.2 0 1

º3 0.7 0.2 0 1

º4 0.7 0.2 0 1

Clearly, U1S (e1) and U1S (e2) are PyFzItIs of M2, so (U1S , D) is a PyFzSfItI of M2.

Now, we present properties for PyFzBiIds of a SmG.

Theorem 5.1.21. Suppose (S , D) constitutes a SfCmRl from a SmG M1 to a SmG M2. If

U2 is a PyFzBiId of M2 then (S
U2
, D) is a PyFzSfBiId of M1.

Proof.

Suppose that U2 is a PyFzBiId of M2. Thus, U2 is an PyFzSbSmG of M2, so according to the

Theorem 5.1.4, (S
U2
, D) is a PyFzSfSbSmG of M1. Now for a, b, c ∈ M1,

S
U2Y (e)(a) ∧ S

U2Y (e)(b) =

(
∨m∈aS (e) U2Y (m)

)
∧
(
∨o∈bS (e) U2Y (o)

)
= ∨m∈aS (e) ∨o∈bS (e)

(
U2Y (m) ∧ U2Y (o)

)
≤ ∨m∈aS (e) ∨n∈cS (e) ∨o∈bS (e)

(
U2Y (mno)

)
≤ ∨mno∈(acb)S (e)

(
U1Y (mno)

)
= ∨m′∈(acb)S (e)

(
U2Y (m

′)

)
= S

U2Y (e)(acb).
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Similarly for a, b, c ∈ M1,

S
U2N (e)(a) ∨ S

U2N (e)(b) =

(
∧m∈aS (e) U2N (m)

)
∨
(
∧o∈bS (e) U2N (o)

)
= ∧m∈aS (e) ∧o∈bS (e)

(
U2N (m) ∨ U2N (o)

)
≥ ∧m∈S (e) ∧n∈cS (e) ∧o∈aS (e)

(
U2N (mno)

)
≥ ∧mno∈(acb)S (e)

(
U2N (mno)

)
= ∧m′∈(acb)S (e)

(
U2N (m

′)

)
= S

U2N (e)(acb).

Hence, S
U2
(e) is a PyFzBiId of M1 for all e ∈ D, (S

U2
, D) is a PyFzSfBiId of M1.

Theorem 5.1.22. Suppose (S , D) is a SfCmRl from a SmG M1 to a SmG M2. If U1 is a

PyFzBiId of M1 then (U1S , D) is a PyFzSfBiId of M2.

Proof.

The proof can be derived using the same approach as in the Theorem 5.1.21.

Example 5.1.23. Consider the SmGs and soft relations from the Example 5.1.6.

Define a PyFzS U2 : M2 → [0, 1] by

U2 = {⟨º1, 1, 0⟩, ⟨º2, 0.5, 0.4⟩, ⟨º3, 0.7, 0.3⟩, ⟨º4, 0.9, 0.1⟩, ⟨º5, 0.2, 0.7⟩}. Then, U2 is not a PyFzBiId

of M2 because if we take a = º1, c = º3, b = º2, then U2Y (º1º3º2) = 0.2 ≱ 0.5 = U2Y (º1)∧U2Y (º2)

and U2N (º1º3º2) = 0.7 ≰ 0.4 = U2N (º1) ∨ U2N (º2). UpAp of U2 is presented in the Table 5.21.
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Table 5.21: UpAp of U2

S
U2Y (e1) S

U2N (e1) S
U2Y (e2) S

U2N (e2)

¨1 1 0 1 0

¨2 1 0 1 0

¨3 0.7 0.3 0.7 0.3

¨4 1 0 1 0

¨5 0.2 0.7 0.2 0.7

Clearly, S
U2
(e1) and S

U2
(e2) are PyFzBiIds of M1, so (S

U2
, D) is a PyFzSfBiId of M1.

Define a PyFzS U1 : M1 → [0, 1] by

U1 = {⟨¨1, 1, 0⟩, ⟨¨2, 0.5, 0.4⟩, ⟨¨3, 0.9, 0.1⟩, ⟨¨4, 0.7, 0.3⟩, ⟨¨5, 0.2, 0.7⟩}. Then, U1 is not a PyFzBiId

of M1 because if we take a = ¨1, c = ¨2, b = ¨3 then U1Y (¨1¨2¨3) = 0.7 ≱ 0.9 = U1Y (¨1) ∧

U1Y (¨3) and U1N (¨1¨2¨3) = 0.3 ≰ 0.1 = U1N (¨1)∨U1N (¨3). UpAp of U1 is given in Table 5.22.

Table 5.22: UpAp of U1

U1Y S (e1)
U1N S (e1)

U1Y S (e2)

º1 1 0 1

º2 0.5 0.4 0.5

º3 0.9 0.1 0.9

º4 0.7 0.7 0.7

º5 0.9 0.1 0.9

Clearly, US (e1) and US (e2) are PyFzBiIds of M2, so (US , D) is a PyFzSfBiId of M2.

Theorem 5.1.24. Let (S , D) constitutes a SfCmpRl from a SmG M1 to a SmG M2. If U2

is a PyFzBiId of M2, then (S U2 , D) is a PyFzSfBiId of M1.

Proof.

Suppose that U2 is a PyFzBiId of M2. Thus, U2 is a PyFzSbSmG of M2, so according to the
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Theorem 5.1.5, (S U2 , D) is a PyFzSfSbSmG of M1. Now for a, b, c ∈ M1,

S U2Y (acb) = ∧m′∈(acb)S (e)U2Y

(
m′) = ∧m′∈aS (e).cS (e).bS (e)U2Y

(
m′)

= ∧m∈aS (e).o∈cS (e).n∈bS (e)U2Y

(
mon

)
≥
(
∧m∈aS (e) U2Y (m)

)
∧
(
∧n∈bS (e) U1Y (n)

)
=
(
S U2Y (e)(a)

)
∧
(
S U2Y (e)(b)

)
.

Similarly, for a, b, c ∈ M1,

S U2N (acb) = ∨m′∈(acb)S (e)U2N

(
m′) = ∨m′∈aS (e).cS (e).bS (e)U2N

(
m′)

= ∨m∈aS (e).o∈cS (e).n∈aS (e)U2N

(
mon

)
≤
(
∨m∈aS (e) U2N (m)

)
∨
(
∨n∈bS (e) U2N (n)

)
=
(
S U2N (e)(a)

)
∨
(
S U2N (e)(b)

)
.

Hence, S U2(e) is a PyFzBiId of M1 for all e ∈ D, so (S U2 , D) is a PyFzSfBiId of M1.

Example 5.1.25. Consider the SmGs of Example 5.1.10. Define a SfBnR S : D → P (M1×

M2) by:

S (e1) =



º1 º2 º3 º4

¨1 0 1 1 0

¨2 0 1 1 0

¨3 0 1 1 0

¨4 0 1 1 0

, S (e2) =



º1 º2 º3 º4

¨1 0 1 0 0

¨2 0 1 0 0

¨3 0 1 0 0

¨4 0 1 0 0


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Then, (S , D) forms a SfCmpRl from M1 to M2.

¨1S (e1) = {º2, º3},

¨2S (e1) = {º2, º3},

¨3S (e1) = {º2, º3},

¨4S (e1) = {º2, º3},

¨1S (e2) = {º2},

¨2S (e2) = {º2},

¨3S (e2) = {º2},

¨4S (e2) = {º2}.

Define a PyFzS U2 : M2 → [0, 1] by U2 = {⟨º1, 0.7, 0.2⟩, ⟨º2, 0.2, 0.7⟩, ⟨º3, 0.1, 0.9⟩, ⟨º4, 0.4, 0.5⟩}.

Then, U2 is not a PyFzBiId of M2 because if we take a = º1, c = º4, b = º1, then U2Y (º1º4º1) =

0.4 ≱ 0.7 = U2Y (º1) ∧ U2Y (º1) and U2N (º1º4º1) = 0.4 ≰ 0.2 = U2N (º1) ∨ U2N (º1). LoAp of U2 is

presented in the Table 5.23.

Table 5.23: LoAp of U2

S U2Y (e1) S U2N (e1) S U2Y (e2) S U2N (e2)

¨1 0.1 0.9 0.2 0.7

¨2 0.1 0.9 0.2 0.7

¨3 0.1 0.9 0.2 0.7

¨4 0.1 0.9 0.2 0.7

Clearly, S U2(e1) and S U2(e2) are PyFzBiIds of M1, so (S U2 , D) is a PyFzSfBiId of M1.

Theorem 5.1.26. Let (S , D) constitutes a SfCmpRl from a SmG M1 to a SmG M2. If U1

is a PyFzBiId of M1 then (U2S , D) is a PyFzSfBiId of M2.

Proof.

It follows from Theorem 5.1.24.
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Example 5.1.27. Consider the SmGs from the Example 5.1.10. Define a SfBnR S : D →

P (M1 ×M2) by:

S (e1) =



º1 º2 º3 º4

¨1 0 0 0 0

¨2 0 0 0 0

¨3 0 0 0 0

¨4 1 1 1 1

, S (e2) =



º1 º2 º3 º4

¨1 1 1 1 1

¨2 0 0 0 0

¨3 0 0 0 0

¨4 1 1 1 1


Then, (S , D) forms a SfCmpRl from M1 to M2.

S (e1)º1 = {¨4},

S (e1)º2 = {¨4},

S (e1)º3 = {¨4},

S (e1)º4 = {¨4},

S (e2)º1 = {¨1, ¨4},

S (e2)º2 = {¨1, ¨4},

S (e2)º3 = {¨1, ¨4},

S (e2)º4 = {¨1, ¨4}.

Define a PyFzS U1 : M1 → [0, 1] by

U1 = {⟨¨1, 0.1, 0.9⟩, ⟨¨2, 0.8, 0.1⟩, ⟨¨3, 0.6, 0.3⟩, ⟨¨4, 0.7, 0.3⟩}. Then, U1 is not a PyFzBiId of

M1 because if we take a = ¨2, c = ¨1, b = ¨3, then U1Y (¨2¨1¨3) = 0.1 ≱ 0.6 = U1Y (¨2)∧U1Y (¨3)

and U1N (¨2¨1¨3) = 0.9 ≰ 0.3 = U1N (¨2) ∧ U1N (¨3). LoAp of U1 is given in Table 5.24.
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Table 5.24: LoAp of U1

U1Y S (e1)
U1N S (e1)

U1Y S (e2)
U1N S (e2)

º1 0.7 0.3 0.1 0.9

º2 0.7 0.3 0.1 0.9

º3 0.7 0.3 0.1 0.9

º4 0.7 0.3 0.1 0.9

Clearly, U1S (e1) and U1S (e2) are PyFzBiIds of M2, so (U1S , D) is a PyFzSfBiId of M2.

This chapter developed a framework for approximating Pythagorean Fuzzy Ideals over dual

universes using Soft Binary Relations. The proposed methods and algorithms provide valuable

tools for analyzing algebraic structures and solving complex decision-making problems. These

contributions extend the theoretical understanding of Fuzzy Ideals and demonstrate their

practical relevance in diverse applications.
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Chapter 6

Approximation of q-Rung Orthopair

Fuzzy Ideals over dual Universes based

on Soft Binary Relation

The transition from Pythagorean Fuzzy Ideals to q-Rung Orthopair Fuzzy Ideals represents a

significant generalization, enabling the handling of higher levels of uncertainty. This additional

flexibility allows q-Rung Orthopair Fuzzy Ideals to model situations with greater uncertainty

and hesitation more effectively. By accommodating a broader range of values for membership

and non-membership degrees, this framework extends the applicability of Fuzzy Ideals to

more complex and diverse decision-making scenarios.

In this chapter, we discuss the rough approximations of qROFzSbSmGs, qROFz left (right)

Ideals, qROFzItIds, and qROFzBiIds within a SmG concerning both AfSs and FrS, utilizing

a SfCmRl. We demonstrate that the UpAp of a qROFzSbSmG, qROFz left (right) Ideal,
qROFzItId, and qROFzBiId within a SmG constitutes a qROFzSfSbSmG, qROFz soft left

(right) Ideal, qROFzSfItId, and qROFzSfBiId, and provide examples illustrating that the

converse is not necessarily true. Furthermore, we establish similar results for LoAp.
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6.1 Approximations of q-Rung Orthopair Fuzzy Ideals in

SmGs by Soft Binary Relation

Definition 6.1.1. A qROFzS U = {⟨m,UY (m), UN(m)⟩ : m ∈ M} in M is called a qROFz

SbSmG of M if it satisfies the following:

1) UY (mn) ≥ UY (m) ∧ UY (n)

2) UN(mn) ≤ UN(m) ∨ UN(n)

for all m,n ∈ M .

• A qROFzS U in a SmG M is called a q-Rung Orthopair Fuzzy Left Ideal (qROFzLfId) of

M if it satisfies UY (mn) ≥ UY (n) and UN(mn) ≤ UY (n) for all m,n ∈ M .

• A qROFzS U in a SmG M is called a q-Rung Orthopair Fuzzy Right Ideal (qROFzLfId) of

M if it satisfies UY (mn) ≥ UY (m) and UN(mn) ≤ UY (m) for all m,n ∈ M .

• If U is both a qROFzLfId and a qROFzRiId then U is called a q-Rung Orthopair Fuzzy Ideal

(qROFzIds).

• A qROFzSbSmG U in M is called a q-Rung Orthopair Fuzzy Interior Ideal (qROFzItId of

M if it satisfies UY (nam) ≥ UY (a) and UN(nam) ≤ UN(a) all m,n, a ∈ M .

• A qROFzSbSmG U in M is called a q-Rung Orthopair Fuzzy BiId (qROFzBiId) of M if it

satisfies the following:

1) UY (nam) ≥ UY (n) ∧ UY (m)

2) UN(nam) ≤ UN(n) ∨ UN(m)

for all a,m, n ∈ M .

Definition 6.1.2. A qROFzSfS (S , D) over a SmG M is called a q-Rung Orthopair Fuzzy

Soft SbSmG (qROFzSfSbSmG) of M if it satisfies: SY (e)(mn) ≥ SY (e)(m) ∧ SY (e)(n) and

SN(e)(mn) ≤ SN(e)(m) ∨ SN(e)(n), for all m,n ∈ M and e ∈ D.

Example 6.1.3. Consider a SmG M = {¨1, ¨2, ¨3} with the binary operation defined in the

Table 6.1:
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· ¨1 ¨2 ¨3

¨1 ¨1 ¨2 ¨3

¨2 ¨2 ¨2 ¨3

¨3 ¨3 ¨3 ¨3

Table 6.1: Multiplication table

Let D = {e1} be a set with one parameter. Define a qROFzSfS as follows, for q = 3:

S (e1)(¨i) = {⟨¨1, 0.3, 0.7⟩, ⟨¨2, 0.5, 0.5⟩, ⟨¨3, 0.7, 0.3⟩}

for ¨i ∈ M . Now, let’s check if (S , D) is a qROFzSfSbSmG of M :

FY (e1)(¨1¨1) = FY (e1)(¨1) = 0.7 ≥FY (e1)(¨1) ∧ FY (e1)(¨1) = 0.7 ∧ 0.7 = 0.7,

FY (e1)(¨1¨2) = FY (e1)(¨2) = 0.5 ≥FY (e1)(¨1) ∧ FY (e1)(¨2) = 0.7 ∧ 0.5 = 0.5,

FY (e1)(¨1¨3) = FY (e1)(¨3) = 0.3 ≥FY (e1)(¨1) ∧ FY (e1)(¨3) = 0.7 ∧ 0.3 = 0.3,

FY (e1)(¨2¨2) = FY (e1)(¨2) = 0.5 ≥FY (e1)(¨2) ∧ FY (e1)(¨2) = 0.5 ∧ 0.5 = 0.5,

FY (e1)(¨2¨3) = FY (e1)(¨3) = 0.3 ≥FY (e1)(¨2) ∧ FY (e1)(¨3) = 0.5 ∧ 0.3 = 0.3,

FY (e1)(¨3¨3) = FY (e1)(¨3) = 0.3 ≥FY (e1)(¨3) ∧ FY (e1)(¨3) = 0.3 ∧ 0.3) = 0.3.

and

FN(e1)(¨1¨1) = FN(e1)(¨1) = 0.5 ≤FN(e1)(¨1) ∨ FN(e1)(¨1) = 0.5 ∨ 0.5 = 0.5,

FN(e1)(¨1¨2) = FN(e1)(¨2) = 0.5 ≤FN(e1)(¨1) ∨ FN(e1)(¨2) = 0.5 ∨ 0.5 = 0.5,

FN(e1)(¨1¨3) = FN(e1)(¨3) = 0.7 ≤FN(e1)(¨1) ∨ FN(e1)(¨3) = 0.5 ∨ 0.7 = 0.7,

FN(e1)(¨2¨2) = FN(e1)(¨2) = 0.5 ≤FN(e1)(¨2) ∨ FN(e1)(¨2) = 0.5 ∨ 0.5 = 0.5,

FN(e1)(¨2¨3) = FN(e1)(¨3) = 0.7 ≤FN(e1)(¨2) ∨ FN(e1)(¨3) = 0.5 ∨ 0.7 = 0.7,

FN(e1)(¨3¨3) = FN(e1)(¨3) = 0.7 ≤FN(e1)(¨3) ∨ FN(e1)(¨3) = 0.7 ∨ 0.7 = 0.7.
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Since both conditions are satisfied, (S , D) is a qROFzSfSbSmG of M .

Definition 6.1.4. A qROFzSfS (S , D) over M is called

i) a q-Rung Orthopair Fuzzy Soft Left Ideal (qROFzSfLfId) if, for each e ∈ D, S (e) is a
qROFzLfId of M .

ii) a q-Rung Orthopair Fuzzy Soft Right Ideal (qROFzSfRiId) if, for each e ∈ D, S (e) is

a qROFzRiId of M .

iii) a q-Rung Orthopair Fuzzy Soft Interior Ideal (qROFzSfItId) if, for each e ∈ D, S (e)

is a qROFzItId of M .

iv) a q-Rung Orthopair Fuzzy Soft Bi-Ideal (qROFzSfBiId) if, for each e ∈ D, S (e) is a
qROFzBiId of M .

Theorem 6.1.5. Let (S , D) be a SfCmRl from a SmG M1 to a SmG M2.

1) If U2 is a qROFzSbSmG of M2, then (S
U2
, D) is a qROFzSfSbSmG of M1.

2) If U2 is a qROFzLfId of M2, then (S
U2
, D) is a qROFzSfLfId of M1.

3) If U2 is a qROFzRfId of M2, then (S
U2
, D) is a qROFzSfRiId of M1.

Proof.

1) We assume that U2 is a qROFzSbSmG of M2. Now for a, b ∈ M1,

S
U2Y (e)(a) ∧ S

U2Y (e)(b) =

(
∨m∈aS (e) U2Y (m)

)
∧
(
∨n∈bS (e) U2Y (n)

)
= ∨m∈aS (e) ∨n∈bS (e)

(
U2Y (m) ∧ U2Y (n)

)
≤ ∨m∈aS (e) ∨n∈bS (e)

(
U2Y (mn)

)
≤ ∨mn∈(ab)S (e)

(
U2Y (mn)

)
= ∨m′∈(ab)S (e)

(
U2Y (m

′)

)
= S

U2Y (e)(ab).
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Similarly for a, b ∈ M1,

S
U2N (e)(a) ∨ S

U2N (e)(b) =

(
∧m∈aS (e) U2N (m)

)
∨
(
∧n∈bS (e) U2N (n)

)
= ∧m∈aS (e) ∧n∈bS (e)

(
U2N (m) ∨ U2N (n)

)
≥ ∧m∈aS (e) ∧n∈bS (e)

(
U2N (mn)

)
≥ ∧mn∈(ab)S (e)

(
U2N (mn)

)
= ∧m′∈(ab)S (e)

(
U2N (m

′)

)
= S

U2N (e)(ab).

Hence, S
U2
(e) is a qROFzSbSmG of M1 for all e ∈ D, so (S

U2
, D) is a qROFzSfSbSmG

of M1.

2) Assume that U2 is a qROFzLfId of M2. Now for a, b ∈ M1,

S
U2Y (e)(b) =

(
∨n∈bS (e) U2Y (n)

)
≤ ∨m∈aS (e) ∨n∈bS (e) U2Y (mn)

≤ ∨mn∈(mn)S (e)

(
U2Y (mn)

)
= ∨m′∈(ab)S (e)

(
U2Y (m

′)

)
= S

U2Y (e)(ab).

Similarly for a, b ∈ M1,

S
U2N (e)(b) =

(
∧n∈bS (e) U2N (n)

)
≥ ∧m∈aS (e) ∧n∈bS (e) U2N (mn)

≥ ∧mn∈(ab)S (e)

(
U2N (mn)

)
= ∧n′∈(ab)S (e)

(
U2N (n

′)

)
= S

U2N (e)(ba).

Hence, S
U2
(e) is a qROFzSbSmG of M1 for all e ∈ D, so (S

U2
, D) is a qROFzSfSbSmG

of M1.

3) The proof can be derived using the same approach as in part (2).
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In Theorem 6.1.5 from part 1, SfCmRls from M1 to M2 are given, and U2 is a qROFzSbSmG in

M2. After combining them, we get generalized qROFzSfSbSmGs in M1. Similarly, if we take a
qROFzLfId or qROFzLfId U2 of M2, then we get generalized qROFzSfLfId or qROFzSfLfId

of M1.

Theorem 6.1.6. Let (S , D) be a SfCmRl from a SmG M1 to a SmG M2:

1) If U1 is a qROFzSbSmG of M1, then (U1S , D) is a qROFzSfSbSmG of M2

2) If U1 is a qROFzLfId (qROFzRiId) of M1, then (U1S , D) is a qROFzSfLfId (qROFzSfRiId)

of M2.

Proof.

The proof is similar to the proof of Theorem 6.1.5.

In Theorem 6.1.6 from part 1, SfCmRls from M1 to M2 are given, and U1 is a qROFzSbSmG in

M1. After combining them, we get generalized qROFzSfSbSmGs in M2. Similarly, if we take a
qROFzLfId or qROFzRiId U1 of M1, then we get generalized qROFzSfLfId or qROFzSfRiId

of M2.

Now, we show that the converses of parts of Theorems 6.1.5 and 6.1.6 do not hold in general.

Example 6.1.7. Let M1 = {¨1, ¨2, ¨3, ¨4, ¨5} and M2 = {º1, º2, º3, º4, º5} represent two SmGs,

with their respective multiplication tables shown in Tables 6.2 and 6.3.

Table 6.2: Multiplication table for M1

. ¨1 ¨2 ¨3 ¨4 ¨5

¨1 ¨2 ¨2 ¨4 ¨4 ¨4

¨2 ¨2 ¨2 ¨4 ¨4 ¨4

¨3 ¨4 ¨4 ¨3 ¨4 ¨3

¨4 ¨4 ¨4 ¨4 ¨4 ¨4

¨5 ¨4 ¨4 ¨3 ¨4 ¨3
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Table 6.3: Multiplication table for M2

. º1 º2 º3 º4 º5

º1 º1 º5 º3 º4 º5

º2 º1 º2 º3 º4 º5

º3 º1 º5 º3 º4 º5

º4 º1 º5 º3 º4 º5

º5 º1 º5 º3 º4 º5

Let D = {e1, e2}. Define a SfBnR S : D → P (M1 ×M2) by:

S (e1) =



¨1 ¨2 ¨3 ¨4 ¨5

º1 1 1 0 0 0

º2 0 1 0 0 0

º3 0 0 1 1 0

º4 0 0 0 1 0

º5 0 1 1 0 1


, S (e2) =



¨1 ¨2 ¨3 ¨4 ¨5

º1 1 1 0 0 0

º2 0 1 0 0 0

º3 0 1 1 1 0

º4 0 0 0 1 0

º5 0 1 1 1 1


Then, (S , D) is a SfCmRl from M1 to M2.

¨1S (e1) = {º1}, S (e1)º1 = {¨1, ¨2, ¨4},

¨2S (e1) = {º1, º2, º5}, S (e1)º2 = {¨2},

¨3S (e1) = {º3, º5}, S (e1)º3 = {¨3, ¨4},

¨4S (e1) = {º1, º3, º4, º5}, S (e1)º4 = {¨4},

¨5S (e1) = {º5}, S (e1)º5 = {¨2, ¨3, ¨4, ¨5},

¨1S (e2) = {º1}, S (e2)º1 = {¨1, ¨2, ¨4},

¨2S (e2) = {º1, º2, º3, 5}, S (e2)º2 = {¨2},

¨3S (e2) = {º3, º5}, S (e2)º3 = {¨2, ¨3, ¨4},

¨4S (e2) = {º1, º3, º4, º5}, S (e2)º4 = {¨4},

¨5S (e2) = {º5}, S (e2)º5 = {¨2, ¨3, ¨4, ¨5}.
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1) Define a qROFzS U1 : M2 → [0, 1] by

U1 = {⟨º1, 0.5, 0.4⟩, ⟨º2, 0.6, 0.5⟩, ⟨º3, 0.4, 0.7⟩, ⟨º4, 0.8, 0.7⟩, ⟨º5, 0.1, 0.8⟩}. Then, U1 is not

a qROFzSbSmG of M2 because if we take a = º1, b = º2, then U1Y (º1º2) = 0.1 ≱ 0.5 =

U1Y (º1)∧U1Y (º2) and U1N (º1º2) = 0.8 ≰ 0.6 = U1N (º1)∨U1N (º2). UpAp of U1 is given in

Table 6.4.

Table 6.4: UpAp of U1

S
U1Y (e1) S

U1N (e1) S
U1Y (e2) S

U1N (e2)

¨1 0.5 0.4 0.5 0.4

¨2 0.6 0.4 0.6 0.4

¨3 0.4 0.7 0.4 0.7

¨4 0.8 0.4 0.8 0.4

¨5 0.1 0.7 0.1 0.8

Clearly, S
U1
(e1) and S

U1
(e2) are qROFzSbSmGs of M1, so (S

U1
, D) is a qROFzSfSbSmG

of M1.

2) Define a qROFzS U2 : M1 → [0, 1] by

U2 = {⟨¨1, 0.5, 0.9⟩, ⟨¨2, 0.7, 0.3⟩, ⟨¨3, 0.8, 0.2⟩, ⟨¨4, 0.5, 0.8⟩, ⟨¨5, 0.9, 0.1⟩}. Then, U2 is

not a qROFzSbSmG of M1 because if we take a = ¨2, b = ¨3, then U2Y (¨2¨3) = 0.5 ≱

0.7 = U2Y (¨2) ∧ U2Y (¨3) and U2N (¨2¨3) = 0.3 ≰ 0.8 = U2N (¨2) ∨ U2N (¨3). UpAp of U2 is

given in Table 6.5.

Table 6.5: UpAp of U2

U2Y S (e1)
U2N S (e1)

U2Y S (e2)
U2N S (e2)

º1 0.8 0.2 0.8 0.2

º2 0.7 0.3 0.7 0.3

º3 0.8 0.2 0.8 0.2

º4 0.5 0.8 0.5 0.8

º5 0.9 0.1 0.9 0.1
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Clearly, S
U2
(e1) and S

U2
(e2) are qROFzSbSmGs of M2, so (S

U2
, D) is a qROFzSfSbSmG

of M2.

3) Define a qROFzS U3 : M2 → [0, 1] by

U3 = {⟨º1, 0.5, 0.4⟩, ⟨º2, 0.6, 0.5⟩, ⟨º3, 0.4, 0.7⟩, ⟨º4, 0.8, 0.7⟩, ⟨º5, 0.1, 0.8⟩}. Then, U3 is not

a qROFzLfId of M2 because if we take a = º1, b = º2, then U3Y (º1º2) = 0.1 ≱ 0.6 =

U3Y (º2) and U3N (º1º2) = 0.8 ≰ 0.5 = U3N (º2). UpAp of U3 is given in Table 6.6.

Table 6.6: UpAp of U3

¨1 ¨2 ¨3 ¨4 ¨5

S
U3Y (e1) 0.5 0.6 0.4 0.8 0.1

S
U3N (e1) 0.4 0.4 0.7 0.4 0.7

S
U3Y (e2) 0.5 0.6 0.4 0.8 0.1

S
U3N (e2) 0.4 0.4 0.7 0.4 0.8

Clearly, S
U3
(e1) and S

U3
(e2) are qROFzLfIds of M1, so (S

U3
, D) is a qROFzSfLfId

of M1.

4) Define a qROFzS U4 : M1 → [0, 1] by

U4 = {⟨¨1, 0.5, 0.9⟩, ⟨¨2, 0.7, 0.3⟩, ⟨¨3, 0.8, 0.2⟩, ⟨¨4, 0.5, 0.8⟩, ⟨¨5, 0.9, 0.1⟩}. Then, U4 is

not a qROFzLfId of M1 because if we take a = ¨1, b = ¨3 then U4Y (¨1¨3) = 0.5 ≱ 0.8 =

U4Y (¨3) and U4N (¨1¨3) = 1 ≰ 0.7 = U4N (¨3). UpAp of U4 is given in Table 6.7.

Table 6.7: UpAp of U4

U4Y S (e1)
U4N S (e1)

U4Y S (e2)
U4N S (e2)

º1 0.8 0.2 0.8 0.2

º2 0.7 0.3 0.7 0.3

º3 0.8 0.2 0.8 0.2

º4 0.5 0.8 0.5 0.8

º5 0.9 0.1 0.9 0.1
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Clearly, U4S (e1) and U4S (e2) are qROFzLfIds of M2, so (U4S , D) is qROFzSfLfId of

M2.

Example 6.1.8. Consider the two SmGs and SfBnR of Example 6.1.7. Define a qROFzS

U : M2 → [0, 1] by

U = {⟨º1, 0.5, 0.4⟩, ⟨º2, 0.6, 0.5⟩, ⟨º3, 0.4, 0.7⟩, ⟨º4, 0.8, 0.7⟩, ⟨º5, 0.1, 0.8⟩}. Then, U is not a qROFzLfId

of M2. LoAp of U is given in Table 6.8. But S U(e1) is not a qROFzLfId of M1 because if we

take a = º1, b = º2, then UY (º1º2) = 0.1 ≱ 0.6 = UY (º2) and UN(º1º2) = 0.8 ≰ 0.5 = UN(º2).

Table 6.8: LoAp of U

S UY (e1) S UN (e1)

¨1 0.5 0.4

¨2 0.1 0.8

¨3 0.1 0.8

¨4 0.1 0.8

¨5 0.1 0.8

This example illustrates that if the soft relation is compatible, then the lower approxima-

tion of a generalized rough Fuzzy lower Ideal (qROFzLfId) is not necessarily a generalized

rough Fuzzy soft lower Ideal (qROFzSfLfId). However, the following theorem confirms the

validity of another result.

Theorem 6.1.9. Suppose (S , D) is a SfCmpRl from a SmG M1 to a SmG M2.

1) If U2 is a qROFzSbSmG of M2, then (S U2 , D) is a qROFzSfSbSmG of M1

2) If U2 is a qROFzLfId (qROFzRiId) of M2, then (S U2 , D) is a qROFzSfLfId (qROFzSfRiId)

of M1, respectively.
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Proof.

1) We assume that U2 is a qROFzSbSmG of M2. Now for a, b ∈ M1,

S U2Y (ab) = ∧m′∈(ab)S (e)U2Y

(
m′
)

= ∧m′∈(a)S (e).(b)S (e)U2Y

(
m′
)

= ∧m∈(a)S (e).n∈(b)S (e)U2Y (mn) ≥ ∧m∈(a)S (e) ∧n∈(b)S (e)

(
U2Y (m) ∧ U2Y (n)

)
≥
(
∧m∈aS (e) U2Y (m)

)
∧
(
∧n∈bS (e) U2Y (n)

)
= S U2Y (e)(a) ∧ S U2Y (e)(b).

Similarly for a, b ∈ M1,

S U2N (e)(ab) = ∨m′∈(ab)S (e)U2N

(
m′
)

= ∨m′∈(a)S (e).(b)S (e)U2N

(
m′
)

= ∨m∈(a)S (e).n∈(b)S (e)U2N (mn) ≤ ∨m∈(a)S (e) ∨n∈(b)S (e)

(
U2N (m) ∨ U2N (n)

)
≤
(
∨m∈aS (e) U2N (m)

)
∨
(
∨n∈bS (e) U2N (n)

)
= S U2N (e)(a) ∨ S U2N (e)(b).

Hence, S U2(e) is a qROFzSbSmG of M1 for all e ∈ D, so (S U2 , D) is a qROFzSfSbSmG

of M1.

2) Assume that U2 is a qROFzLfId of M2. Now for a, b ∈ M1,

S U2Y (e)(ab) = ∧m′∈(ab)S (e)U2Y

(
m′
)

= ∧m′∈(a)S (e).(b)S (e)U2Y

(
m′
)

= ∧m∈(a)S (e).n∈(b)S (e)U2Y (mn) ≥ ∧n∈(b)S (e)U2Y (n)

= S U2Y (e)(b).
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Similarly for a, b ∈ M1,

S U2N (e)(ab) = ∨m′∈(ab)S (e)U2N

(
m′
)

= ∨m′∈(a)S (e).(b)S (e)U2N

(
m′
)

= ∨m∈(a)S (e).n∈(b)S (e)U2N (mn) ≤ ∨n∈(b)S (e)U2N (n)

= S U2N (e)(b).

Hence, S U2(e) is a qROFzLfId of M1 for all e ∈ D, so (S U2 , D) is a qROFzSfLfId of

M1.

Theorem 6.1.10. Suppose (S , D) is a SfCmpRl from a SmG M1 to a SmG M2.

1) If U1 is a qROFzSbSmG of M1, then (U1S , D) is a qROFzSfSbSmG of M2

2) If U1 is a qROFzLfId (qROFzRiId) of M1, then (U1S , D) is a qROFzSfLfId (qROFzSfRiId)

of M2, respectively.

Proof.

The proof can be derived using the same approach as in the Theorem 6.1.9.

Example 6.1.11. Let M1 = {¨1, ¨2, ¨3, ¨4} and M2 = {º1, º2, º3, º4} represent two SmGs, with

their multiplication tables provided in Tables 6.9 and 6.10, respectively. Consider D = {e1, e2}.

Table 6.9: Multiplication table for M1

. ¨1 ¨2 ¨3 ¨4

¨1 ¨1 ¨1 ¨1 ¨4

¨2 ¨1 ¨2 ¨1 ¨4

¨3 ¨1 ¨1 ¨3 ¨4

¨4 ¨4 ¨4 ¨4 ¨4
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Table 6.10: Multiplication table for M2

. º1 º2 º3 º4

º1 º1 º2 º3 º4

º2 º2 º2 º2 º2

º3 º3 º3 º3 º3

º4 º4 º3 º2 º1

Define a SfBnR S : D → P (M1 ×M2) by

S (e1) =



¨1 ¨2 ¨3 ¨4

º1 0 0 0 0

º2 1 0 0 0

º3 1 0 0 0

º4 0 0 0 0

, S (e2) =



¨1 ¨2 ¨3 ¨4

º1 0 0 0 0

º2 1 1 1 1

º3 0 0 0 0

º4 0 0 0 0


Then, (S , D) forms a SfCmpRl from M1 to M2.

¨1S (e1) = {º2, º3},

¨2S (e1) = {º2, º3},

¨3S (e1) = {º2, º3},

¨4S (e1) = {º2, º3},

¨1S (e2) = {º2},

¨2S (e2) = {º2},

¨3S (e2) = {º2},

¨4S (e2) = {º2}.

1) Define a qROFzS U1 : M2 → [0, 1] by

U1 = {⟨º1, 0.9, 0.7⟩, ⟨º2, 0.6, 0.5⟩, ⟨º3, 0.7, 0.4⟩, ⟨º4, 0.8, 0.3⟩}. Then U1 is not a qROFzSbSmG

of M2 because if we take a = º4, b = º3, then U1Y (º4º3) = 0.6 ≱ 0.7 = U1Y (º4) ∧ U1Y (º3)
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and U1N (º4º3) = 0.5 ≰ 0.4 = U1N (º4) ∨ U1N (º3). LoAp of U1 is given in Table 6.11.

Table 6.11: LoAp of U1

S U1Y (e1) S U1N (e1) S U1Y (e2) S U1N (e2)

¨1 0.6 0.5 0.6 0.5

¨2 0.6 0.5 0.6 0.5

¨3 0.6 0.5 0.6 0.5

¨4 0.6 0.5 0.6 0.5

Clearly, S U1(e1) and S U1(e2) are qROFzSbSmGs of M1, so (S U1 , D) is a qROFzSfSbSmG

of M1.

2) Define a qROFzS U2 : M2 → [0, 1] by

U2 = {⟨º1, 0.5, 0.7⟩, ⟨º2, 0.5, 0.8⟩, ⟨º3, 0.6, 0.7⟩, ⟨º4, 0.8, 0.4⟩}. Then, U2 is not a qROFzLfId

of M2 because if we take a = º2, b = º3, then U2Y (º2º3) = 0.5 ≱ 0.6 = U2Y (º3) and

U2N (º2º3) = 0.8 ≰ 0.7 = U2N (º3). UpAp of U2 is given in Table 6.12.

Table 6.12: LoAp of U2

S U2Y (e1) S U2N (e1) S U2Y (e2) S U2N (e2)

¨1 0.5 0.8 0.5 0.8

¨2 0.5 0.8 0.5 0.8

¨3 0.5 0.8 0.5 0.8

¨4 0.5 0.8 0.5 0.8

Clearly, S U2(e1) and S U2(e2) are qROFzLfIds of M1, so (S U2 , D) is a qROFzSfLfId

of M1.

Now define S1 : D → P (M1 ×M2) by:
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S1(e1) =



¨1 ¨2 ¨3 ¨4

º1 0 0 0 1

º2 0 0 0 1

º3 0 0 0 1

º4 0 0 0 1

, S1(e2) =



¨1 ¨2 ¨3 ¨4

º1 1 0 0 1

º2 1 0 0 1

º3 1 0 0 1

º4 1 0 0 1


Then, (S1, D) forms a SfCmpRls from M1 to M2.

S1(e1)º1 = {¨4},

S1(e1)º2 = {¨4},

S1(e1)º3 = {¨4},

S1(e1)º4 = {¨4}

S1(e2)º1 = {¨1, ¨4}

S1(e2)º2 = {¨1, ¨4}

S1(e2)º3 = {¨1, ¨4}

S1(e2)º4 = {¨1, ¨4}.

1) Define a qROFzS U3 : M1 → [0, 1] by U3 = {⟨¨1, 0.5, 0.9⟩, ⟨¨2, 0.7, 0.6⟩, ⟨¨3, 0.6, 0.4⟩, ⟨¨4, 0.7, 0.2⟩}.

Then, U3 is not a qROFzSbSmG of M1 because if we take a = ¨2, b = ¨3 then U3Y (¨2¨3) =

0.5 ≱ 0.6 = U3Y (¨2) ∧ U3Y (¨3) and U3N (¨2¨3) = 0.9 ≰ 0.6 = U3N (¨2) ∨ U3N (¨3). LoAp of

U3 is given in Table 6.13.

Table 6.13: LoAp of U3

U3Y S1(e1)
U3N S1(e1)

U3Y S1(e2)
U3N S1(e2)

º1 0.7 0.2 0.5 0.9

º2 0.7 0.2 0.5 0.9

º3 0.7 0.2 0.5 0.9

º4 0.7 0.2 0.5 0.9
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Clearly, U3S1(e1) and U3S1(e2) are qROFzSbSmGs of M2, so (U3S1, D) is a qROFzSfSbSmG

of M2.

2) Define a qROFzS U4 : M1 → [0, 1] by

U4 = {⟨¨1, 0.1, 0.8⟩, ⟨¨2, 0.3, 0.6⟩, ⟨¨3, 0.5, 0.5⟩, ⟨¨4, 0.7, 0.2⟩}. Then, U4 is not a qROFzLfId

of M1 because if we take a = ¨2, b = ¨3 then U4Y (¨2¨3) = 0.1 ≱ 0.5 = U4Y (¨3) and

U4N (¨2¨3) = 0.8 ≰ 0.5 = U4N (¨3). LoAp of U4 is given in Table 6.14.

Table 6.14: LoAp of U4

U4Y S1(e1)
U4N S1(e1)

U4Y S1(e2)
U4N S1(e2)

º1 0.7 0.2 0.1 0.8

º2 0.7 0.2 0.1 0.8

º3 0.7 0.2 0.1 0.8

º4 0.7 0.2 0.1 0.8

Clearly, U4S1(e1) and U4S1(e2) are qROFzLfId of M2, so (U4S1, D) is a qROFzSfLfId

of M2.

Theorem 6.1.12. Suppose (S , D) is a SfBnR from a SmG M1 to a SmG M2; that is,

S : D → P (M1 × M2). Then, for a qROFzRiId U1 = ⟨U1Y , U1N ⟩ and for a qROFzLfId

U2 = ⟨U2Y , U2N ⟩ of M2, S
U1U2 ⊆ S

U1 ∩ S
U2.

Proof.

Since U1 is a qROFzSfRiId, so U1U2 ⊆ U1 and U2 is qROFzSfLfId of M2, so U1U2 ⊆ U2.

Thus U1U2 ⊆ U1 ∩ U2. It follows from Theorem 4.1.4, S
U1Y

U2Y (e) ⊆ S
U1Y

∩U2Y (e) ⊆

S
U1Y (e) ∩ S

U2Y (e).

Hence, S
U1Y

U2Y (e) ⊆ S
U1Y (e) ∩ S

U2Y (e).

Also, S
U1N (e) ∩ S

U2N (e) ⊆ S
U1N

∩U2N (e) ⊆ S
U1N

U2N (e).

Hence, S
U1N

U2N (e) ⊇ S
U1N (e) ∩ S

U2N (e).
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Theorem 6.1.13. Suppose (S , D) is a SfBnR from a SmG M1 to a SmG M2; that is,

S : D → P (M1 × M2). Then, for a qROFzRiId U1 = ⟨U1Y , U1N ⟩ and for a qROFzLfId

U2 = ⟨U2Y , U2N ⟩ of M1, U1U2S ⊆ U1S ∩ U2S .

Proof.

The proof can be derived using the same approach as in the Theorem 6.1.12.

Theorem 6.1.14. Let (S , D) be a SfCmRl from a SmG M1 to a SmG M2. If U2 is a
qROFzItI of M2, then (S

U2
, D) is a qROFzSfItI of M1.

Proof.

Suppose that U2 is a qROFzItI of M2. Thus, U2 is a qROFzSbSmG of M2, so according to

the Theorem 6.1.5, (S
U2
, D) is a qROFzSfSbSmG of M1. Now for a, b, c ∈ M1,

S
U2Y (e)(c) = ∨n∈cS (e)U2Y (n) ≤ ∨m∈aS (e) ∨n∈cS (e) ∨o∈bS (e)U2Y (mno)

≤ ∨(mno)∈(acb)S (e)U2Y (mno) = m′ ∈ acbS (e)U2Y (m
′)

= S
U2Y (e)(acb).

Similarly, for a, b, c ∈ M1,

S
U2N (e)(c) = ∧n∈cS (e)U2N (n) ≥ ∧m∈aS (e) ∧n∈cS (e) ∧o∈bS (e)U2N (mno)

≥ ∧(mno)∈(acb)S (e)U2Y (mno) = m′ ∈ acbS (e)U2N (m
′)

= S
U2N (e)(acb).

Hence, S
U2
(e) is a qROFzItI of M1 for all e ∈ D, so (S

U2
, D) is a qROFzSfItI of M1.

In the following example, we show that the converse of above theorem does not hold, in

general.

Example 6.1.15. Consider two SmGs, denoted by M1 = {º1, º2, º3} and M2 = {¨1, ¨2, ¨3},

with their multiplication operations specified as follows.
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Table 6.15: Multiplication table for M1

. º1 º2 º3

º1 º1 º2 º3

º2 º1 º2 º3

º3 º1 º2 º3

Table 6.16: Multiplication table for M2

. ¨1 ¨2 ¨3

¨1 ¨1 ¨1 ¨3

¨2 ¨1 ¨2 ¨3

¨3 ¨1 ¨3 ¨3

Let D = {e1, e2}: Define a SfBnR S : D → P (M1 ×M2) by:

S (e1) =


¨1 ¨2 ¨3

º1 1 1 1

º2 1 1 0

º3 1 0 1

, S (e2) =


¨1 ¨2 ¨3

º1 1 1 1

º2 1 1 0

º3 0 0 1


Then, (S , D) forms a SfCmpRl from M1 to M2.

º1S (e1) = {¨1, ¨2, ¨3},

º2S (e1) = {¨1, ¨2},

º3S (e1) = {¨1, ¨3},

º1S (e2) = {¨1, ¨2, ¨3},

º2S (e2) = {¨1, ¨2},

º3S (e2) = {¨3}.

Define a qROFzS U2 : M2 → [0, 1] by

U2 = {⟨¨1, 0.3, 0.8⟩, ⟨¨2, 0.5, 0.6⟩, ⟨¨3, 0.6, 0.7⟩}. Then, U2 is not a qROFzItId of M2 because if
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we take a = ¨2, c = ¨3, b = ¨1, then U2Y (¨2¨3¨1) = 0.3 ≱ 0.6 = U2Y (¨3) and U2N (¨2¨3¨1) =

0.8 ≰ 0.7 = U2N (¨3). UpAp of U2 is given in Table 6.17.

Table 6.17: UpAp of U2

S
U2Y (e1) S

U2N (e1) S
U2Y (e2) S

U2N (e2)

º1 0.6 0.6 0.6 0.6

º2 0.5 0.6 0.5 0.6

º3 0.6 0.7 0.6 0.7

Clearly, S (e1)
U2 and S

U2
(e2) are qROFzItIds of M1, so (S

U2
, D) is a qROFzSfItId of

M1.

Theorem 6.1.16. Let (S , D) be a SfCmRl from a SmG of M1 to a SmG M2. If U1 is a
qROzItI of M1, then (U1S , D) is a qROzSfItI of M2.

Proof.

The proof can be derived using the same approach as in the Theorem 6.1.14.

In the following example, we show that the converse of above theorem is not true, in general.

Example 6.1.17. Consider the SmGs of Example 6.1.15 and let D = {e1, e2}. Define a

SfBnR S1 : D → P (M1 ×M2) by:

S1(e1) =


¨1 ¨2 ¨3

º1 1 1 1

º2 1 1 0

º3 1 0 1

, S1(e2) =


¨1 ¨2 ¨3

º1 1 1 1

º2 1 1 0

º3 0 1 0


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Then, (S1, D) forms a SfCmRl from M1 to M2.

S1(e1)¨1 = {º1, º2, º3},

S1(e1)¨2 = {º1, º2},

S1(e1)¨3 = {º1, º3},

S1(e2)¨1 = {º1, º2},

S1(e2)¨2 = {º2},

S1(e2)¨3 = {º2, º3}.

Define a qROFzS U1 : M1 → [0, 1] by

U1 = {⟨º1, 0.4, 0.9⟩, ⟨º2, 0.5, 0.7⟩, ⟨º3, 0.6, 0.8⟩}. Then, U1 is not a qROFzItId of M2 because if

we take a = º2, c = º3, b = º1, then U1Y (º2º3º1) = 0.4 ≱ 0.6 = U1Y (º3) and U1N (º2º3º1) = 0.9 ≰

0.8 = U1N (º3). UpAp of U1 is given in Table 6.18.

Table 6.18: UpAp of U1

U1Y S1(e1)
U1N S1(e1)

U1Y S1(e2)
U1N S1(e2)

¨1 0.6 0.7 0.5 0.7

¨2 0.5 0.7 0.5 0.7

¨3 0.6 0.8 0.5 0.7

Clearly, U1S1(e1) and U1S1(e2) are qROFzItIds of M2, so (U1S1, D) is a qROFzSfItId of

M2.

Now, let’s discuss some results regarding the LoAps of a qROFzItId of a SmG.

Theorem 6.1.18. Suppose (S , D) constitutes a SfCmpRl from a SmG M1 to a SmG M2. If

U2 is a qROFzItI of M2, then (S U2 , D) is a qROFzSfItI of M1.

Proof.

Suppose that U2 is a qROFzItI of M2, Thus, U2 is a qROFzSbSmG of M2, so according to the
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Theorem 6.1.6, (S U2 , D) is a qROFzSfSbSmG of M1. Now for a, c, b ∈ M1,

S U2Y (acb) = ∧m′∈(acb)S (e)U2Y

(
m′) = ∧m′∈aS (e).cS (e).bS (e)U2Y

(
m′)

= ∧m∈aS (e).n∈cS (e).o∈bS (e)U2Y

(
mno

)
≥ ∧n∈cS (e)U2Y

(
n
)

= S U2Y (e)(m).

Similarly, for a, b, c ∈ M1,

S U2N (acb) = ∨m′∈(acb)S (e)U2N

(
m′) = ∨m′∈aS (e).bS (e).cS (e)U2N

(
m′)

= ∨m∈aS (e).n∈cS (e).c∈bS (e)U2N

(
mno

)
≤ ∨n∈cS (e)U2N

(
n
)

= S U2N (e)(c).

Hence, S U2(e) is a qROFzItI of M1 for all e ∈ D, so (S U2 , D) is a qROFzSfItI of M1.

In the Example 6.1.19, we show that the converse of above theorem which is not true.

Example 6.1.19. Consider the SmGs of Example 6.1.11.

Let D = {e1, e2}: Define a SfBnR S : D → P (M1 ×M2) by:

S (e1) =



º1 º2 º3 º4

¨1 0 1 1 0

¨2 0 1 1 0

¨3 0 1 1 0

¨4 0 1 1 0

, S (e2) =



º1 º2 º3 º4

¨1 0 1 0 0

¨2 0 1 0 0

¨3 0 1 0 0

¨4 0 1 0 0


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Then, (S , D) forms a SfCmpRl from M1 to M2.

¨1S (e1) = {º2, º3},

¨2S (e1) = {º2, º3},

¨3S (e1) = {º2, º3},

¨4S (e1) = {º2, º3},

¨1S (e2) = {º2},

¨2S (e2) = {º2},

¨3S (e2) = {º2},

¨4S (e2) = {º2}.

Define a qROFzS U2 : M2 → [0, 1] by

U2 = {⟨º1, 0.4, 0.8⟩, ⟨º2, 0.6, 0.7⟩, ⟨º3, 0.8, 0.3⟩, ⟨º4, 0.5, 0.6⟩}. Then, U2 is not a qROFzItId of

M2 because if we take a = º2, c = º3, b = º4, then U2Y (º2º3º4) = 0.6 ≱ 0.8 = U2Y (º3) and

U2N (º2º3º4) = 0.7 ≰ 0.3 = U2N (º3). LoAp of U2 is given in Table 6.19.

Table 6.19: LoAp of U2

S U2Y (e1) S U2N (e1) S U2Y (e2) S U2N (e2)

¨1 0.6 0.7 0.6 0.7

¨2 0.6 0.7 0.6 0.7

¨3 0.6 0.7 0.6 0.7

¨4 0.6 0.7 0.6 0.7

Clearly, S U2(e1) and S U2(e2) are qROFzItIds of M1, so (S U2 , D) is a qROFzSfItId of

M1.

Theorem 6.1.20. Suppose (S , D) is a SfCmpRl from a SmG M1 to a SmG M2. If U1 is a
qROFzItId of M1, then (U1S , D) is a qROFzSfItId of M2.

163



Proof.

The proof can be derived using the same approach as in the Theorem 6.1.18.

Example 6.1.21. Consider the SmGs from the Example 6.1.11.

Define a SfBnR S : D → P (M1 ×M2) by:

S (e1) =



º1 º2 º3 º4

¨1 0 0 0 0

¨2 0 0 0 0

¨3 0 0 0 0

¨4 1 1 1 1

, S (e2) =



º1 º2 º3 º4

¨1 1 1 1 1

¨2 0 0 0 0

¨3 0 0 0 0

¨4 1 1 1 1


Then, (S , D) forms a SfCmpRl from M1 to M2.

S (e1)º1 = {¨4},

S (e1)º2 = {¨4},

S (e1)º3 = {¨4},

S (e1)º4 = {¨4},

S (e2)º1 = {¨1, ¨4},

S (e2)º2 = {¨1, ¨4},

S (e2)º3 = {¨1, ¨4},

S (e2)º4 = {¨1, ¨4}.

Define a qROFzS U1 : M1 → [0, 1] by

U1 = {⟨¨1, 0.4, 0.9⟩, ⟨¨2, 0.8, 0.7⟩, ⟨¨3, 0.5, 0.4⟩, ⟨¨4, 0.7, 0.6⟩}. Then, U1 is not a qROFzItId of

M1 because if we take a = ¨3, c = ¨2, b = ¨1, then U1Y (¨3¨2¨1) = 0.4 ≱ 0.8 = U1Y (¨2) and

U1N (¨3¨2¨1) = 0.9 ≰ 0.7 = U1N (¨2). LoAp of U1 is given in Table 6.20.
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Table 6.20: LoAp of U1

U1Y S (e1)
U1N S (e1)

U1Y S (e2)
U1N S (e2)

º1 0.7 0.6 0.4 0.9

º2 0.7 0.6 0.4 0.9

º3 0.7 0.6 0.4 0.9

º4 0.7 0.6 0.4 0.9

Clearly, U1S (e1) and U1S (e2) are qROFzItIds of M2, so (U1S , D) is a qROFzSfItId of

M2.

Theorem 6.1.22. Suppose (S , D) constitutes a SfCmRl from a SmG M1 to a SmG M2. If

U2 is a qROFzBiId of M2 then (S
U2
, D) is a qROFzSfBiId of M1.

Proof.

Suppose that U2 is a qROFzBiId of M2. Thus, U2 is a qROFzSbSmG of M2, so according to

the Theorem 6.1.5, (S
U2
, D) is a qROFzSfSbSmG of M1. Now for a, b, c ∈ M1,

S
U2Y (e)(a) ∧ S

U2Y (e)(b) =

(
∨m∈aS (e) U2Y (m)

)
∧
(
∨c∈bS (e) U2Y (o)

)
= ∨m∈aS (e) ∨o∈bS (e)

(
U2Y (m) ∧ U2Y (o)

)
≤ ∨m∈aS (e) ∨n∈cS (e) ∨o∈bS (e)

(
U2Y (mno)

)
≤ ∨mno∈(acb)S (e)

(
U1Y (mno)

)
= ∨m′∈(acb)S (e)

(
U2Y (m

′)

)
= S

U2Y (e)(acb).
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Similarly for a, b, c ∈ M1,

S
U2N (e)(a) ∨ S

U2N (e)(b) =

(
∧m∈aS (e) U2N (m)

)
∨
(
∧o∈bS (e) U2N (o)

)
= ∧m∈aS (e) ∧o∈bS (e)

(
U2N (m) ∨ U2N (o)

)
≥ ∧m∈S (e) ∧n∈cS (e) ∧o∈aS (e)

(
U2N (mno)

)
≥ ∧mno∈(acb)S (e)

(
U2N (mno)

)
= ∧m′∈(acb)S (e)

(
U2N (m

′)

)
= S

U2N (e)(acb).

Hence, S
U2
(e) is a qROFzBiId of M1 for all e ∈ D, (S

U2
, D) is a qROFzSfBiId of M1.

Theorem 6.1.23. Suppose (S , D) is a SfCmRl from a SmG M1 to a SmG M2. If U1 is a
qROFzBiId of M1 then (U1S , D) is a qROFzSfBiId of M2.

Proof.

The proof can be derived using the same approach as in the Theorem 6.1.22.

Example 6.1.24. Consider the SmGs and soft relations illustrated in Example 6.1.7. Define a
qROFzS U2 : M2 → [0, 1] by U2 = {⟨º1, 0.8, 0.5⟩, ⟨º2, 0.6, 0.7⟩, ⟨º3, 0.7, 0.3⟩, ⟨º4, 0.9, 0.1⟩, ⟨º5, 0.4, 0.8⟩}.

Then, U2 is not a qROFzBiId of M2 because if we take a = º1, c = º3, b = º2, then U2Y (º1º3º2) =

0.4 ≱ 0.6 = U2Y (º1) ∧ U2Y (º2) and U2N (º1º3º2) = 0.8 ≰ 0.7 = U2N (º1) ∨ U2N (º2). UpAp of U2 is

given in Table 6.21.
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Table 6.21: UpAp of U2

S
U2Y (e1) S

U2N (e1) S
U2Y (e2) S

U2N (e2)

¨1 0.8 0.5 0.8 0.9

¨2 0.8 0.5 0.8 0.3

¨3 0.7 0.3 0.7 0.3

¨4 0.9 0.1 0.9 0.1

¨5 0.4 0.8 0.4 0.8

Clearly, S
U2
(e1) and S

U2
(e2) are qROFzBiIds of M1, so (S

U2
, D) is a qROFzSfBiId of

M1.

Define a qROFzS U1 : M1 → [0, 1] by

U1 = {⟨¨1, 0.8, 0.5⟩, ⟨¨2, 0.5, 0.4⟩, ⟨¨3, 0.9, 0.3⟩, ⟨¨4, 0.7, 0.6⟩, ⟨¨5, 0.4, 0.7⟩}. Then, U1 is not a
qROFzBiId of M1 because if we take a = ¨1, c = ¨2, b = ¨3 then U1Y (¨1¨2¨3) = 0.7 ≱ 0.8 =

U1Y (¨1) ∧ U1Y (¨3) and U1N (¨1¨2¨3) = 0.6 ≰ 0.5 = U1N (¨1) ∨ U1N (¨3). UpAp of U1 is given in

Table 6.22.

Table 6.22: UpAp of U1

U1Y S (e1)
U1N S (e1)

U1Y S (e2)
U1N S (e2)

º1 0.8 0.4 0.8 0.4

º2 0.5 0.4 0.5 0.4

º3 0.9 0.3 0.9 0.3

º4 0.7 0.6 0.7 0.6

º5 0.9 0.3 0.9 0.3

Clearly, U1S (e1) and U1S (e2) are qROFzBiIds of M2, so (U1S , D) is a qROFzSfBiId of

M2.

Theorem 6.1.25. Let (S , D) be a SfCmpRl from a SmG M1 to a SmG M2. If U2 is a
qROFzBiId of M2, then (S U2 , D) is a qROFzSfBiId of M1.
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Proof.

Suppose that U2 is a qROFzBiId of M2. Thus, U2 is a qROFzSbSmG of M2, so according to

the Theorem 6.1.6, (S U2 , D) is a qROFzSfSbSmG of M1. Now for a, b, c ∈ M1,

S U2Y (acb) = ∧m′∈(acb)S (e)U2Y

(
m′) = ∧m′∈aS (e).cS (e).bS (e)U2Y

(
m′)

= ∧m∈aS (e).o∈cS (e).n∈bS (e)U2Y

(
mon

)
≥
(
∧m∈aS (e) U2Y (m)

)
∧
(
∧n∈bS (e) U1Y (n)

)
=
(
S U2Y (e)(a)

)
∧
(
S U2Y (e)(b)

)
.

Similarly, for a, b, c ∈ M1,

S U2N (acb) = ∨m′∈(acb)S (e)U2N

(
m′) = ∨m′∈aS (e).cS (e).bS (e)U2N

(
m′)

= ∨m∈aS (e).o∈cS (e).n∈aS (e)U2N

(
mon

)
≤
(
∨m∈aS (e) U2N (m)

)
∨
(
∨n∈bS (e) U2N (n)

)
=
(
S U2N (e)(a)

)
∨
(
S U2N (e)(b)

)
.

Hence, S U2(e) is a qROFzBiId of M1 for all e ∈ D, so (S U2 , D) is a qROFzSfBiId of M1.

Example 6.1.26. Consider the SmGs of Example 6.1.11. Define a SfBnR S : D → P (M1×

M2) by:

S (e1) =



º1 º2 º3 º4

¨1 0 1 1 0

¨2 0 1 1 0

¨3 0 1 1 0

¨4 0 1 1 0

, S (e2) =



º1 º2 º3 º4

¨1 0 1 0 0

¨2 0 1 0 0

¨3 0 1 0 0

¨4 0 1 0 0


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Then, (S , D) forms a SfCmpRl from M1 to M2.

¨1S (e1) = {º2, º3},

¨2S (e1) = {º2, º3},

¨3S (e1) = {º2, º3},

¨4S (e1) = {º2, º3},

¨1S (e2) = {º2},

¨2S (e2) = {º2},

¨3S (e2) = {º2},

¨4S (e2) = {º2}.

Define a qROFzS U2 : M2 → [0, 1] by

U2 = {⟨º1, 0.7, 0.5⟩, ⟨º2, 0.4, 0.8⟩, ⟨º3, 0.3, 0.9⟩, ⟨º4, 0.6, 0.7⟩}. Then, U2 is not a qROFzBiId of

M2 because if we take a = º1, c = º4, b = º1, then U2Y (º1º4º1) = 0.6 ≱ 0.7 = U2Y (º1) ∧ U2Y (º1)

and U2N (º1º4º1) = 0.7 ≰ 0.5 = U2N (º1) ∨ U2N (º1). LoAp of U2 is given in Table 6.23.

Table 6.23: LoAp of U2

S U2Y (e1) S U2N (e1) S U2Y (e2) S U2N (e2)

¨1 0.3 0.9 0.4 0.8

¨2 0.3 0.9 0.4 0.8

¨3 0.3 0.9 0.4 0.8

¨4 0.3 0.9 0.4 0.8

Clearly, S U2(e1) and S U2(e2) are qROFzBiIds of M1, so (S U2 , D) is a qROFzSfBiId of

M1.

Theorem 6.1.27. Let (S , D) be a SfCmpRl from a SmG M1 to a SmG M2. If U1 is a
qROFzBiId of M1 then (U2S , D) is a qROFzSfBiId of M2.
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Proof.

The proof can be derived using the same approach as in the Theorem 6.1.25.

Example 6.1.28. Consider the SmGs from the Example 6.1.11. Define a SfBnR S : D →

P (M1 ×M2) by:

S (e1) =



º1 º2 º3 º4

¨1 0 0 0 0

¨2 0 0 0 0

¨3 0 0 0 0

¨4 1 1 1 1

, S (e2) =



º1 º2 º3 º4

¨1 1 1 1 1

¨2 0 0 0 0

¨3 0 0 0 0

¨4 1 1 1 1


Then, (S , D) forms a SfCmpRl from M1 to M2.

S (e1)º1 = {¨4},

S (e1)º2 = {¨4},

S (e1)º3 = {¨4},

S (e1)º4 = {¨4},

S (e2)º1 = {¨1, ¨4},

S (e2)º2 = {¨1, ¨4},

S (e2)º3 = {¨1, ¨4},

S (e2)º4 = {¨1, ¨4}.

Define a qROFzS U1 : M1 → [0, 1] by

U1 = {⟨¨1, 0.5, 0.8⟩, ⟨¨2, 0.8, 0.6⟩, ⟨¨3, 0.6, 0.7⟩, ⟨¨4, 0.7, 0.6⟩}. Then, U1 is not a qROFzBiId of

M1 because if we take a = ¨2, c = ¨1, b = ¨3, then U1Y (¨2¨1¨3) = 0.5 ≱ 0.6 = U1Y (¨2)∧U1Y (¨3)

and U1N (¨2¨1¨3) = 0.8 ≰ 0.7 = U1N (¨2¨3) ∧ U1N (¨3). LoAp of U1 is given in Table 6.24.
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Table 6.24: LoAp of U1

U1Y S (e1)
U1N S (e1)

U1Y S (e2)
U1N S (e2)

º1 0.7 0.6 0.5 0.8

º2 0.7 0.6 0.5 0.8

º3 0.7 0.6 0.5 0.8

º4 0.7 0.6 0.5 0.8

Clearly, U1S (e1) and U1S (e2) are qROFzBiIds of M2, so (U1S , D) is a qROFzSfBiId of

M2.

This chapter developed a framework for approximating q-Rung Orthopair Fuzzy Ideals over

dual universes using Soft Binary Relations. The methods and algorithms introduced here

extend the theoretical understanding of Fuzzy Ideals, enabling a more flexible and nuanced

analysis of uncertainty. Practical applications in decision-making scenarios validate the effec-

tiveness of these approximations, paving the way for further exploration in both theory and

practice.

Conclusion 6.2. The culmination of this thesis marks a significant advancement in the un-

derstanding and application of information systems, SmG theory, RfSs, Fuzzy sets, and their

extensions. Each chapter has contributed unique insights and theoretical frameworks that lay

the groundwork for further exploration and practical implementation in various domains.

Chapter 1 provided a comprehensive overview of foundational concepts, including Binary

Relations, rough sets, SmGs, Soft Sets, Fuzzy Soft Sets, Pythagorean Fuzzy sets, Pythagorean

Fuzzy Soft Sets, Pythagorean Fuzzy Ideals, and q-Rung Orthopair Fuzzy sets. This literature

review set the stage for subsequent chapters by establishing a solid theoretical foundation.

Building upon this foundation, Chapter 2 delved into the lower and upper approximations of

Pythagorean Fuzzy sets, leveraging soft Binary Relations and exploring their properties. The

proposed algorithm for decision-making problems using Pythagorean Fuzzy sets offers practi-

cal utility and opens avenues for further research in computational intelligence and decision
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support systems.

In Chapter 3, the exploration extended to q-Rung Orthopair Fuzzy Sets, where Crisp Binary

Relations were employed to examine their lower and upper approximations. The introduction

of q-Rung Orthopair Topological Spaces and similarity relations among q-Rung Orthopair

Fuzzy Sets expands the theoretical framework and prompts further investigation into their

applications in pattern recognition and classification.

Chapter 4 continued the investigation by exploring lower and upper approximations of

qROF sets using soft Binary Relations. The elucidation of q-Rung Orthopair Fuzzy Topologies

and similarity relations among q-Rung Orthopair Fuzzy sets contributes to the existing body

of literature on Fuzzy Topology and enhances our understanding of Fuzzy set theory.

Navigating through rough approximations in Chapter 5 shed light on the analysis of SbSmGs

within a SmG, employing soft compatible relations. The identification of upper and lower

approximations for various types of SbSmGs, along with illustrative examples, offers valuable

insights for researchers and practitioners in algebraic structures and mathematical modeling.

Looking ahead, future research directions could focus on expanding the theoretical frame-

works proposed in this thesis to address complex real-world problems in diverse domains.

Incorporating machine learning techniques, such as deep learning and reinforcement learn-

ing, could enhance the performance of decision-making algorithms in uncertain environments.

Additionally, exploring applications in fields such as data mining, image processing, and bioin-

formatics holds promise for advancing knowledge and technology.

In conclusion, the contributions of this thesis extend beyond the realms of theory, offering

practical solutions and inspiring further inquiry. By bridging the gap between theory and

practice, we pave the way for interdisciplinary collaboration and innovation, driving progress

in the ever-evolving landscape of information systems and computational intelligence.
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