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Preface 
In view of the substantial practical applications in industrial and manufacturing fields, a lot of work has 
been done on boundary layer flow over a stretching surface. The interminable list of its engineering 
applications comprise extrusion of polymer sheet, paper production, manufacturing of metal wires and 
plastic sheets, annealing and tinning of copper wires, cooling of metallic plate inside a cooling reservoir 
and so forth. Sakiadis [1] propounded the idea of the boundary layer flow over a continuous stretched 
surface and devised the boundary layer equations for two-dimensional flows. Tsou et al. [2] extended 
the idea of the effects of heat transfer on boundary layer flow over a stretching surface. Gupta et al. [3] 
incorporated mass transfer analysis over stretching sheet by considering suction or blowing. Later many 
researchers have further probed into boundary layer flows over stretching surfaces [4-5]. 

 In the contemporary period, boundary layer flow over an exponentially stretching sheet is gaining much 
importance due to its vast applications. For instance; in the process of drawing and tinning of copper 
wires, the rate of heat transfer past a continuously stretching surface which has exponential 
modifications in its stretching velocity and temperature, influences the form of the final product. In this 
regard, Magyari and Keller [6] forwarded the comparison of numerical and analytical solutions. Nadeem 
et al. [7] discussed the heat transfer analysis of nanofluid over an exponentially stretching sheet. 
Ibrahim et al. [8] considered the MHD effects on nanofluid over an exponentially stretching sheet. 

At the same time, the study of heat transfer gained momentum due to its importance in the industry for 
maintaining the quality of final product which significantly depends on the rate of cooling. Grubka and 
Bobba [9] presented the analysis of heat transfer over a linearly stretching surface with power law 
variations of surface temperature. Char [10] extended this work by considering the effects of suction or 
blowing. Elbashbeshy [11] presented the heat transfer analysis over an unsteady stretching surface. 
Lately Malvandi [12] analyzed the heat transfer of nanofluid over a permeable stretching sheet. Later 
on, researchers embarked on the effects of viscous dissipation in different fluids. Partha et al. [13] 
contemplated these effects on mixed convection heat transfer. Currently, investigation is being sought 
on the influence of viscous dissipation on nanofluids by different researchers [14-15]. Along with viscous 
dissipation, heat generation/absorption results on nanofluid have also been explored by Pal et al. [16]. 
Awais et al. [17] evaluated the heat generation/absorption effects on third grade nanofluid.  

A substantial research has been done on thermal radiation and heat transfer due to its ample 
significance in electrical power generation, solar energy, space vehicles, astrophysical flows, cooling of 
nuclear reactors and industrial sector. Moreover, thermal radiation is the pivot around which the 
polymer industry moves. Initially radiation effects were studied by Hayat et al. [18] and Biliana et al. 
[19]. Nowadays the impact of thermal radiation on nanofluid is vastly being investigated. Prominent 
work has been done by Hayat et al. [20] and Sheikholeslami et al. [21]. 

Fluids which allow electrical conduction are frequently used in power generators, in the pattern of heat 
exchanges, MHD accelerators and electrostatic filters. This factor is of vital importance especially in 
metallurgical procedures for example, the process of cooling of filaments and strips being pulled out 



from an inert fluid and exclusion of non-metallic materials from molten metals. The filaments are being 
drawn through an electrically conducting fluid exposed to a magnetic field; this helps in controlling the 
cooling rate. Therefore, MHD fluid flows are of great importance, which were analyzed by Andersson 
[22] in 1992, after that by Damseh et al. [23] in 2006 and then by Ishak [24] in 2011. Currently research 
is being sought on MHD flows over exponentially stretching sheets [25-26].  

It is worth mentioning that unsteady flow conditions are also encountered in case when flow becomes 
time dependent due to unusual change in temperature or stretching of the sheet or heat flux of the 
sheet. Elbashbeshy [27] discussed the thermal radiation and magnetic field effects on unsteady flow. 
Mansur et al. [28] discussed the unsteady boundary layer flow over a stretching sheet. 

Fluid particle suspension or dusty fluid deals with the motion of liquid or gas comprising inert, 
immiscible solid particles such as dust in gas cooling systems, blood flow in arteries etc. Their immense 
application is traced in cement process and steel manufacturing industry, fluidized bed, magneto 
hydrodynamic generators (MHG), gas purification, sedimentation pipe flows and bio fluids. The foremost 
task of formulating the governing equations for the flow of dusty fluids was undertaken by Saffman [29] 
who also brought into consideration the stability of the laminar flow of dusty fluid with uniformly 
distributed dust particles. Vajravelu et al. [30] carried out investigation on hydro magnetic flow of dusty 
fluid and highlighted the outcome of fluid particle interaction and suction on fluid properties. Extensive 
research has been done on fluid with dust particles by Gireesha et al. [31-33], on various aspects such as 
for nanofluids, convective boundary conditions, unsteady flow over an exponentially stretching sheet, 
and MHD flow with heat transfer analysis. 

It was the need of the hour to enhance the thermal conductivity of some important conventional heat 
transfer fluids such as water, mineral oil and ethylene glycol which possess poor heat transfer 
characteristics. A novel solution was found by introducing small metallic solid particles in the fluid; this 
revolutionized the realm of technology and industry. These nanoparticles elevate the thermal 
conductivity of fluids improving the heat transfer properties. The fluids so obtained were termed as 
nanofluids. Therefore, nanofluids are characterized as a solid-fluid mixture with base fluid of low 
conductivity and nano-meter sized particles with high thermal conductivity. This fluid was first 
introduced by Choi [34] in 1995. A comprehensive study of convective transport within nanofluid was 
done by Buongiorno [35].  Boundary layer flow over an exponentially stretching sheet of nanofluid was 
initially investigated by Nadeem et al. [36].  Bachok et al. [37] examined the unsteady boundary layer 
flow of nanofluid. Nanoparticles with their low volume fraction, stability and remarkable useful 
applications in optical, biomedical and electronic fields have opened up new horizons of research 
recently. Naramgari et al. [38] conducted the research on dual solutions of MHD nanofluid flow on an 
exponentially stretching sheet. Nadeem et al. [39-40] investigated nanofluid model in different 
geometries with pertinent physical properties of fluid. Gireesha et al. [41] put forward the solution for 
MHD flow and heat transfer of a dusty nanofluid over a stretching sheet. 

HAM is a frequently used approach among scientists to find explicit analytical solutions of non-linear 
problems. The optimal HAM (OHAM) is a modified and advanced version of HAM. OHAM uses the 
technique of minimizing the squared residual error through which the optimal values of the 



convergence control parameters are obtained. Yubashita et al. [42] were the first to propose the 
optimization method for finding convergence control parameters. Then, it was Liao [43] who suggested 
that by minimized squared residual error one can acquire the optimized value of convergence control 
parameters. 

In the vast field of literature, there is hardly any research conducted on the effects of nanoparticles on 
an unsteady flow of dusty fluid over an exponentially stretching sheet. In the present thesis, effect of 
dust particles on an unsteady boundary layer flow and heat transfer characteristics of a viscous 
nanofluid over an exponentially stretching sheet have been critically examined. Moreover, thermal 
radiation, viscous dissipation and internal heat generation absorption effects are also brought into 
consideration. For heat transfer analysis, two heating processes (i) Variable Exponential order Surface 
Temperature (VEST) case and (ii) Variable Exponential order Heat Flux (VEHF) case have been profoundly 
studied. Similarity transformations are defined to reduce governing equations to coupled non-linear 
Ordinary Differential Equations. Solution of the resulting ODE’s is computed by OHAM. The Optimal 
Convergence Control parameters are acquired. Finally, non-dimensional velocities, temperature and 
concentration profiles and the effects of various physical parameters on them are exhibited by plotting 
graphs and are also presented in tabular form.  
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Chapter 1

Introduction

1.1 Preliminaries

This chapter comprises some fundamental definitions and pertinent governing equations with

thorough mathematical algorithms related to the subsequent chapters.

1.2 Basic definitions

1.2.1 Fluid

An amorphous matter, in the state of a liquid or gas, that has the ability to flow and the

tendency to change its shape continuously under an applied shear stress is known as a fluid.

1.2.2 Flow

It is a continuous phenomenon which tends to move the constituent components smoothly and

steadily deforming their shape.

1.2.3 Fluid mechanics

Fluid mechanics deals with the profound study of fluids, both in dynamic and static form and

also pertains to the application of the laws of force and motion to fluids.
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1.3 Some physical properties of fluids

1.3.1 Density

Mass () per unit volume ( ) of a fluid at a given temperature and pressure or stress conditions,

is called density. Mathematically, the density  at a point may be defined as

 = lim
→0




 (1.1)

Dimension of density is
£
−3

¤
and unit is kg/m3

1.3.2 Viscosity

It is the measure of a fluid’s ability to resist gradual deformation, subjected to the action of

applied shear stresses. Mathematically, it is defined as

Viscosity =  =
shear stress

rate of shear strain
 (1.2)

where  represents the coefficient of viscosity or dynamic viscosity or simply viscosity having

dimension
£
−1−1

¤
.

1.3.3 Kinematic viscosity

The ratio of dynamic viscosity to the density of a fluid is known as kinematic viscosity and is

denoted by . Mathematically

 =



 (1.3)

where density of the fluid is defined by  and dimension of kinematic viscosity is
£
2−1

¤


1.4 Classification of fluids

1.4.1 Ideal / Inviscid fluids

Ideal or inviscid fluids are those which offer no resistance to external forces due to vanishing

viscosity. Gases are usually treated as ideal fluids for engineering purposes.
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1.4.2 Real fluids

All the fluids in reality have some viscosity (  0) and hence are called real fluids. These

fluids can either be compressible or incompressible, depending upon the relationship between

the shear stress and the rate of shear strain.

1.4.3 Newtonian fluids

Fluids in which shear stress has a linear relationship with the local strain rate (the rate of

change of its deformation over time) are called Newtonian fluids. These fluids observe the

Newton’s law of viscosity, which is given by

 = 



 (1.4)

where  is the shear stress acting on a plane which is normal to −axis,  is the velocity in
−direction,  is the shear rate and  is the constant of proportionality which is called the
dynamic viscosity. Water and gasoline are common examples of Newtonian fluids.

1.4.4 Non-Newtonian fluids

Non-Newtonian fluids are those for which the shear stress is not directly proportional to the

rate of deformation. These fluids obey power law model, which is given by

 = 

µ




¶

  6= 1 (1.5)

where  is the consistency index and  is the flow behavior index.

For  = 1 with  =  the above equation reduces to the Newton’s law of viscosity. Examples

of non-Newtonian fluids include ketchup, tooth paste, blood, paints, biological fluids and so on.
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1.5 Types of flows

1.5.1 Laminar flow

A flow in which particles move in a particular framework of their own and do not cross one

another is known as laminar flow.

1.5.2 Turbulent flow

A flow in which particles do not move in a particular framework of their own and can cross one

another is called turbulent flow. In this case particles move randomly.

1.5.3 Steady flow

A flow in which fluid properties at each point in a flow field do not change with time. For such

a flow, we can write




= 0 (1.6)

where  represents any fluid property that may be velocity, density etc.

1.5.4 Unsteady flow

A flow in which fluid properties at each point in a flow field differ with time is called unsteady

flow. For such a flow, we can write




6= 0 (1.7)

1.5.5 Incompressible flow

It is a flow in which the density of the flowing fluid is uniform and remains constant throughout

the flow. Therefore, when the flow is incompressible, the volume of every part of fluid remains

unchanged during the course of its motion.

Mathematically, in an incompressible flow, the density  of a fluid particle remains constant

throughout the flow field, i.e.,

 6=  (   ) or  = constant (1.8)
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or




= 0 (1.9)

where  is the total derivative, which is equal to the sum of local and convective derivatives.

All the liquids generally exhibit incompressible flow.

1.5.6 Compressible Flow

A flow in which the density is not uniform and does not remain constant during the flow, i.e.,

 =  (   )  (1.10)

1.6 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a branch of fluid dynamics that undertakes the study of

magnetic characteristics of electrically conducting fluids. Liquid metals, plasmas and salt waters

are examples of such fluids. Maxwell equations have an important role in MHD studies.

1.6.1 The Maxwell equations

James Clerk Maxwell derived a set of equations describing the behavior of both magnetic and

electric fields known as Maxwell equations. In electromagnetism, Maxwell equations enlist four

partial differential equations describing the salient features of electrical and magnetic fields.

These equations are independently termed as Gauss’s law, Gauss’s law for magnetism, Faraday’s

law and Ampere’s law. These equations are

∇ ·E =

 (Gauss’s law) (1.11)

∇ ·B = 0 (Gauss’s law for magnetism) (1.12)

∇×E = −B


 (Faraday’s law of induction) (1.13)

∇×B = J+
E


 (Ampere’s law with Maxwell correction) (1.14)
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where E is the electric field, B is the total magnetic field, J is the total current density,  is

the charge density,  is the permittivity of the free space and  is the magnetic permeability.

1.6.2 The generalized Ohm’s law

For an electrically conducting fluid the generalized Ohm’s law is

J = (E+V×B)  (1.15)

where  is the electric conductivity and V is the velocity vector.

1.7 Governing laws

1.7.1 Law of conservation of mass

According to the conservation of mass law, which is also termed as continuity equation, mass

can neither be created nor destroyed in any system. In the vector form, it can be written as

follows




+∇ · (V) = 0 (1.16)

where

∇ =

µ












¶
 (1.17)

is a three dimensional differential operator,  is the density of the fluid,  is the time and V

denotes the velocity of the fluid. For an incompressible fluid, the density is constant and thus

Eq. (116) becomes

∇ ·V = 0 (1.18)

1.7.2 Law of conservation of momentum

Every particle of fluid, either at rest or in steady state or accelerated motion obeys Newton’s

second law of motion according to which, the total sum of all external forces acting upon a

system is equivalent to the rate of variation of linear momentum of that particular system. In
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vector form, it can be written as


V


= div τ+b (1.19)

where  is material time derivative, b is the body force per unit mass and τ is the Cauchy

stress tensor.

1.7.3 Law of conservation of energy

Law of conservation of energy is essential to study the heat transfer phenomenon in fluid

dynamics problems. It states that in a secluded system, energy can change its form but cannot

be created or destroyed and the overall energy of the system is conserved. Mathematically





= ∇2 + τ · L (1.20)

where  is specific heat at constant pressure,τ · L is viscous dissipation term and  is the

thermal conductivity which describes that how fast a particular material conducts heat.

1.7.4 Law of conservation of concentration

Fick’s Law

In 1855, Adolf Engen Fick, a German physiologist developed Fick’s law of diffusion, which gov-

erns the diffusion of a gas across a fluid membrane. It relates the diffusive flux to concentration.

It states that the flux of diffusion goes from higher concentration region to low concentration.

In Mathematical form, we have

J∗ = − ∇ (1.21)

Fick’s 2 law governs how diffusion causes the concentration to change with time,




=  ∇2 (1.22)

where  the concentration, J∗ the diffusion flux,  is the diffusivity, which gives the rate of

diffusion, how slow or fast an object diffuses.
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1.8 Heat transfer

It is the branch of thermal science that deals with the production, conversion, utilization and

exchange of thermal energy and heat between physical processes.

1.8.1 Conduction

The transfer of energy between objects that are in physical contact is called conduction.

1.8.2 Convection

The transfer of energy between an object and its environment due to fluid motion is called

convection. It occurs in gas molecules.

1.8.3 Viscous Dissipation

Viscous dissipation refers to the work done by the fluid due to the action of viscous forces on

adjacent layers resulting in the irreversible change of mechanical energy into thermal energy.

1.8.4 Thermal Radiation

Thermal radiation is the outcome of the thermal movement of the charged particles in matter.

In this process electromagnetic radiation is generated from a heated surface in all directions.

1.9 Mass transfer

It is the gross movement of mass from one location to another as a side effect of physically

moving an object containing that mass.

1.10 Boundary layer

Ludwig Prandtl a German astronomer discovered the idea of boundary layer, in 1904, in his

paper which he presented in mathematical congress. It is a layer that fluid forms close to the

solid boundary, where the viscosity effects are dominant in determining the flow field. The

viscous effects are considered which have significant role on fluid motion. Thus a fluid flow
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is upheld in the vicinity of the wall and a finite slow moving boundary layer is formed. The

thickness of the boundary layer is taken to be the distance from the wall to the point at which

the velocity is equivalent to 99% of the free-stream velocity. As the solution of the Navier-Stokes

equation is expensive, so this technique helps us to reduce equations.

1.11 Dimensionless numbers

1.11.1 Reynolds number

Having no dimensions this number represents the relationship between inertial forces ( ) and

viscous forces (

). Mathematically

Re =



 (1.23)

where  is characteristic length,  is the free stream velocity. Laminar flow exists at low

Reynolds number, where viscous forces are influential, while turbulent flow exists at high

Reynolds number and it is dominated by inertial forces.

1.11.2 Skin friction

The amount of friction produced by a fluid when it passes through a surface is known as skin

friction. It arises between the fluid and the surface, which tends to stress-free the fluid’s motion.

The skin friction coefficient is mathematically written as

 =


2
(1.24)

where  is the shear stress at the wall,  is the density and  is free-stream velocity.

1.11.3 Nusselt number

It is a non-dimensional number, used in heat transfer, it is the fraction between convective heat

transfer and conductive heat transfer which is normal to the boundary introduced by German

mathematician Nusselt. In Mathematical form, we one can write

 =



 (1.25)
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where  is coefficient of convective heat transfer and  is the thermal conductivity of the fluid.

1.11.4 Sherwood number

It is a dimensionless number, used in mass transfer analysis which gives the measure of the

ratio of convective to diffusive mass transport. Mathematically

 =



 (1.26)

where  is component diffusion coefficient and  is convective mass transfer coefficient.

1.11.5 Prandtl number

It is a number having no dimension exhibiting the relationship between momentum diffusivity

and thermal diffusivity. It governs the respective thickness of momentum and thermal boundary

layer. In Mathematical form, we have

Pr =
viscous diffusion rate

thermal diffusion rate
=




=




=




 (1.27)

1.11.6 Schmidt number

It is the ratio of rate of momentum diffusivity to mass diffusivity. It is a dimensionless number,

used to characterize fluid flows in which there are simultaneous momentum and mass diffusion

convection process. Mathematically we have

 =
rate of viscous diffusion

rate of molecular diffusion
=




 (1.28)

1.11.7 Eckert Number

It is a number having no dimension illustrating the ratio of kinetic energy to enthalpy. Mathe-

matically

 =
2

∆
 (1.29)

where  is the local velocity,  is the specific heat and ∆ is the difference between tem-

perature.
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1.11.8 Brownian motion

Brownian motion in nanofluid is the random motion of the nanoparticles in the base fluid due

to the collision of nanoparticles with the particles of base fluid. In Mathematical form, we have

 =
()( − ∞)




In the above equation, () is the heat capacity of nanoparticles,  denotes the fluid

heat capacity,  symbolizes Brownian diffusion coefficient,  and ∞ are the wall and fluid

concentration and  is the kinematic viscosity.

1.11.9 Thermophoresis parameter

For cold and hot surface this parameter is positive and negative respectively. In the process of

thermophoresis, for hot surface, the nanoparticle concentration boundary layer flow is moved

away from the wall. Resulting in the formation of particle free layer at the boundary. Mathe-

matically

 =
() ( − ∞)

∞


where  symbolizes thermophoretic diffusion coefficient,  and ∞ are the wall and fluid

temperature.

14



Chapter 2

Unsteady Boundary Layer Flow and

Heat Transfer of a Fluid Particle

Suspension over an Exponentially

Stretching Surface

2.1 Introduction

In this chapter we have discussed the analytical solution of the unsteady boundary layer flow

and heat transfer of a fluid with dust particles suspended in it. An external magnetic field is

employed transverse to the plate. Heat generation or absorption, viscous dissipation and ther-

mal radiation effects are also considered. First of all, by employing similarity transformations,

modelled partial differential equations are converted to ordinary differential equations by using

similarity transformations for the following cases of boundary conditions (i) Variable exponen-

tial order surface temperature (VEST) (ii) Variable exponential order heat flux (VEHF) and

then by using OHAM (Optimal Homotopy Analysis Method) the series solutions are calculated.

At the end, the impact of the relevant parameters over velocity and temperature distributions

are examined in detail. The physical idea of this work was solved numerically by Pavithra and

Gireesha [31]  However, its analytical solutions through OHAM have been computed by us.
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2.2 Problem formulation

For the above considered problem the equation of continuity, equation of conservation of linear

momentum and equation of conservation of energy for the fluid respectively are,

div V = 0 (2.1)



∙
V



¸
=∇ · τ+ [V −V] + J×B (2.2)



∙




¸
=  (∇ ·∇ ) + 


( −  ) +




(V −V) · (V −V) (2.3)

−


+ τ · L+( − ∞)

Similarly the equation of continuity, equation of conservation of linear momentum and equation

of conservation of energy for dust particle phase are,

div V = 0 (2.4)



∙
V



¸
=




[V −V ]  (2.5)



∙




¸
= −


(− )  (2.6)

For an electrically conducting fluid, the Maxwell equations are

∇ ·B = 0 ∇×B = J ∇×E = 0 (2.7)

J =  (E+V×B)  (2.8)

where  is the magnetic permeability,  denotes the electrical conductivity and E is the total

electric field, which is neglected. Further the Hall effects and electric magnetic fields induced

by the fluid motion are also ignored. So that the Lorentz force in Eq. (22) becomes

J×B =  (V ×B)×B (2.9)
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We consider the velocity and the magnetic fields of the form

V = [( ( )   ( )  0)]  (2.10)

B =[0  0]  (2.11)

Now

V×B=

⎡⎢⎢⎢⎣
̂ ̂ ̂

  0

0  0

⎤⎥⎥⎥⎦  (2.12)

V ×B=̂ (2.13)

Then we have

(V×B)×B=

⎡⎢⎢⎢⎣
̂ ̂ ̂

0 0 

0  0

⎤⎥⎥⎥⎦  (2.14)

Using Eq. (214) in Eq. (29)  we have

J×B = £−2 0 0¤  (2.15)

The Cauchy stress tensor τ for the Newtonian fluid is defined as

τ = −I+A1 (2.16)

where  represents the pressure, I symbolizes the identity tensor and A1 is the first Rivlin-

Erickson tensor, that gives us the rate of strain, which is defined as

A1= L+ L
1  (2.17)

where

L =gradV (2.18)
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L =

⎡⎢⎢⎢⎣






0







0

0 0 0

⎤⎥⎥⎥⎦  (2.19)

and

L1 =

⎡⎢⎢⎢⎣






0







0

0 0 0

⎤⎥⎥⎥⎦  (2.20)

with 1 represents as the transpose. After substituting Eqs. (219) and (220) in Eq. (217) 

the first Rivlin-Erickson tensor is

A1 =

⎡⎢⎢⎢⎣
2




+ 


0



+ 


2


0

0 0 0

⎤⎥⎥⎥⎦  (2.21)

Invoking Eq. (221) into Eq. (216)  we obtain

τ =

⎡⎢⎢⎢⎣
−+ 2



³


+ 



´
0


³


+ 



´
−+ 2


0

0 0 −

⎤⎥⎥⎥⎦  (2.22)

The first term on the R.H.S of Eq. (22) can be attained by taking the divergence of Eq.(222)

and is given as

∇ · τ =
∙
−1


+ 

µ
2
2

2
+

2

2
+

2



¶
−1


+ 

µ
2
2

2
+

2

2
+

2



¶
 0

¸
 (2.23)

Using continuity equation, we get

∇ · τ =
∙
−1


+ 

µ
2

2
+

2

2

¶
−1


+ 

µ
2

2
+

2

2

¶
 0

¸
 (2.24)
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Making use of Eqs. (210)  (215) and (224) in the continuity and momentum equations in

component form, we have




+




= 0 (2.25)




+ 




+ 




= −1






+ 

µ
2

2
+

2

2

¶
− 


2+ ( − )  (2.26)




+ 




+ 




= −1






+ 

µ
2

2
+

2

2

¶
+ ( − )  (2.27)

Similarly the velocity vector for dust particles is defined as

V = [( ( )   ( )  0)]  (2.28)

Substituting the above equation into Eqs.(24) and (25) we get equation of continuity and

equation of momentum for dust particles in component form, as follows




+




= 0 (2.29)




+ 




+ 




=




(− )  (2.30)




+ 




+ 




=




( − )  (2.31)

Using the boundary layer assumptions by considering   and  be  (1) while   be  () and

 being 
¡
2
¢
 where  is the boundary layer thickness, Eqs. (225− 227) and (229− 231)

reduce to




+




= 0 (2.32)




+ 




+ 




= 

2

2
− 


2+ ( − )  (2.33)




+




= 0 (2.34)




+ 




+ 




=




(− )  (2.35)
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The corresponding boundary conditions are

 =  ( )   = − ( )  at  = 0 (2.36)

 → 0  → 0  →  as  →∞

where  ( ) =


(1−)

 denotes the velocity of the sheet,  ( ) = −

q


2(1−)

2

represents the suction velocity,  illustrates the reference velocity,  is the reference length

and   0 is a suction parameter.

Introducing the following similarity transformations

 =

s


2 (1− )



2   =



(1− )


  0()

 = −
s



2 (1− )



2

£
 () +  0()

¤
  =



(1− )


 0() (2.37)

 = −
s



2 (1− )



2

£
 () +  0()

¤
  =

p
(1− )



2 

Making use of Eq. (237), equations of continuity are identically satisfied and Eqs. (233 and

235) take the following form

 000 () +  ()  00 ()− 2 0 ()2 + 2 £ 0 ()−  0()
¤−

£
2 0() +  00()

¤− 0 = 0 (2.38)

 () 00()− 2 0()2 + 2[ 0()−  0()]−[ 00() + 2 0()] = 0 (2.39)

where prime signifies the differentiation with respect to  and  = N

represents the mass

concentration,  = 


(1− ) −

 represents the fluid-particle interaction parameter for

velocity, where τ  =


is the relaxation time of dust phase,  = 




is the unsteady parameter

which determines the unsteadiness and  =
22


is the magnetic parameter.

Making use of the similarity transformations on boundary conditions they will reduce to

 0() = 1 () =  at  = 0 (2.40)

 0() = 0  0() = 0  () = () +  0()−  0() as  →∞
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The Expression for the skin friction coefficient is

 =
τ

2
 (2.41)

where the skin friction τ is given by,

τ = 

µ




¶
=0

 (2.42)

Employing the non-dimensional variables on Eq.(241), one obtains,

√
2Re =  00(0) (2.43)

where Re = 0

is the Reynolds number.

2.3 Heat Transfer Analysis

Energy equation for fluid



µ




¶
= (∇∇ ) + 


( −  ) +




(V −V) · (V −V) (2.44)

−


+ τ · L+( − ∞)

5th term of R.H.S can be calculated using  , the Cauchy stress tensor.

τ = 

⎡⎢⎢⎢⎣
  0

  0

0 0 0

⎤⎥⎥⎥⎦  (2.45)

L = gradV (2.46)

τ · L =

⎡⎢⎢⎢⎣
  0

  0

0 0 0

⎤⎥⎥⎥⎦ 
⎡⎢⎢⎢⎣






0







0

0 0 0

⎤⎥⎥⎥⎦  (2.47)
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τ · L = 2
Ãµ





¶2
+

µ




¶2!
+ 

µ




¶2
+ 

µ




¶2
+ 2

µ








¶
 (2.48)

Using the above values and under the boundary layer assumptions, energy equation for fluid

phase takes the form



µ



+ 




+ 





¶
= 

2

2
+




( −  ) +




( − )2 (2.49)

−


+ 

µ




¶2
+( − ∞)

Similarly for dust particles, we get the equation



µ



+ 




+ 





¶
= −


( −  )  (2.50)

Involving Rosseland approximation for thermal radiation, heat flux is simplified to

 = −4
∗

3∗
 4


 (2.51)

where ∗ symbolizes the Stefan-Boltzmann constant and ∗ represents the mean absorption

coefficient.  4 can be written in terms of a linear function of temperature by using Taylor

series expansion about ∞

 4 = 4 3∞ − 3 4∞ (2.52)

Substituting Eq.(251) in Eq.(249), we get



µ



+ 




+ 





¶
=

µ
 +

16∗ 3∞
3∗

¶
2

2
+

2

2
+




( −  ) (2.53)

+



( − )2 + 

µ




¶2
+( − ∞)

The phenomenon of heat transfer is discussed for two different types of heating procedures, i.e.,

Case 1: Variable exponential order surface temperature (VEST).

Case 2: Variable exponential order heat flux (VEHF).

22



2.3.1 Case 1: Variable exponential order surface temperature (VEST):

In this case the boundary conditions employed, are defined as

 =  ( ) at  = 0 (2.54)

 → ∞  → ∞ as  →∞

where  = ∞+ T

(1−)2 
1

2 is the temperature of stretching surface, 1 is a constant and 0 is

a reference temperature. Introducing the dimensionless variables for the fluid temperature  ()

and dust particles temperature (),

 () =
 − ∞
 − ∞

  () =
 − ∞
 − ∞

 (2.55)

where −∞ = 0
(1−)2 

1

2  (). Using the similarity variable () and Eq. (255) into Eqs.(250)

and (253)  the following set of equations is achieved

µ
1 +

4

3

¶
00 () + Pr

£
 () 0 ()− 1

0 ()  ()
¤
+ 2Pr  () + Pr

£
 0 ()

¤2
(2.56)

+2



 Pr [ ()−  ()] + 2




 Pr

£
 0 ()−  0 ()

¤2 −Pr
£
0 () + 4 ()

¤
= 0

1
0 ()  ()−  () 0 () + 2 [ ()−  ()] +[0 () + 4 ()] = 0 (2.57)

where Pr =


portrays the Prandtl number,  =

4∗ 3∞
∗ is the parameter for radiation,

 =


is the specific heat ratio,  =

20 
2


0
1
2

is the Eckert number,  = 

0


is the unsteady

parameter,  = 

0


(1− ) and  =



0


(1− ) are the fluid and particle interaction

parameters for velocity and heat transfer respectively,  = 2

 Re
denotes the dimensionless

heat source/sink parameter where Re = 0



(1−) is the Reynolds number.

Subsequent thermal boundary conditions become

() = 1 at  = 0 (2.58)

() → 0 ()→ 0 as  →∞
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2.3.2 Case 2: Variable exponential order heat flux (VEHF):

For this thermal procedure, the boundary conditions considered are defined as




= −( )


at  = 0 (2.59)

 → ∞  → ∞ as  →∞

where  = ∞ + 


³
2


´ 1
2
,  =

1

(1−) 52

(1+1)

2 and 1 is the reference temperature. Now

by using the similarity variable () and Eq. (255) we get the same system of equations with

 =
2
1

q
0
2

 which is different from the VEST case, all the other parameters are same as

in VEST.

The boundary conditions for above case take the following form,

0() = −1 at  = 0 (2.60)

() → 0 ()→ 0 as  →∞

The Nusselt number is defined as,

 =


( − ∞)
 (2.61)

where  is the heat transfer from the sheet, which is given by

 = −
µ




¶
=0

 (2.62)

Making use of non-dimensional variables, one obtains,

√
2Re

= − 

2
0(0) (VEST Case), (2.63)

and.

√
2Re

=


2

1

(0)
(VEHF Case). (2.64)
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2.4 Solutions by Optimal Homotopy Analysis Method (OHAM)

The coupled nonlinear ordinary differential equations for VEST and VEHF cases are analytically

solved by the method commonly known as Optimal Homotopy Analysis Method (OHAM).

According to the procedure, we express the set of basic functions  (),  (),  () and  ()

by n
 exp (−) |  ≥ 0  ≥ 0

o
 (2.65)

in the form

 () =

∞X
=0

∞X
=0

  exp (−)  (2.66)

 () =

∞X
=0

∞X
=0

  exp (−)  (2.67)

 () =

∞X
=0

∞X
=0

  exp (−)  (2.68)

 () =

∞X
=0

∞X
=0

  exp (−)  (2.69)

in which , 

 


 and  are coefficients. Taking up the rule of solution expressions

and utilizing the given boundary conditions, the initial guesses 0 0 0 0 can be chosen as

follows

0 () = (1 + )− exp (−)  (2.70)

0 () = (1 + )− exp (−)  (2.71)

0 () = exp (−)  (2.72)

0 () = exp (−)  (2.73)

The auxiliary linear operators are

L = 3

3
− 


 (2.74)

L = 2

2
− 


 (2.75)
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L = 2

2
− 1 (2.76)

L =



− 1 (2.77)

which satisfy

L [1 + 2 exp () + 3 exp (−)] = 0 (2.78)

L [4 + 5 exp ()] = 0 (2.79)

L [6 exp () + 7 exp (−)] = 0 (2.80)

L [8 exp ()] = 0 (2.81)

where  ( = 1− 8) are arbitrary constants.
If the embedding parameter is defined by  ∈ [0 1] and the non-zero auxiliary parameters

are indicated by ~ ~  ~ and ~ , then following are the zeroth order deformation problems

(1− )L
h b(; )− b0()i = ~

h b(; ), b (; )i  (2.82)

(1− )L
h b (; )− b0()i = ~

h b(; ), b (; )i  (2.83)

(1− )L
hb(; )− b0()i = ~

h b(; ), b (; ), b(; ), b(; ) i  (2.84)

(1− )L
h b(; )− b0()i = ~

h b (; ), b(; ), b(; ) i  (2.85)

with boundary conditions as

CASE 1: b 0(0; ) = 1 = b(0; ) , b(0; ) =  (2.86)

b 0(∞; ) = 0 = b 0(∞; ) = b(∞; ) = b(∞; ) , (2.87)

b (∞; ) = b(∞; ) +  b 0(∞; )−  b 0(∞; )¯̄̄
=∞

CASE 2: b 0(0; ) = 1, b(0; ) = , b0(0; ) = −1 (2.88)
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b 0(∞; ) = 0 = b 0(∞; ) = b(∞; ) = b(∞; ) , (2.89)

b (∞; ) = b(∞; ) +  b 0(∞; )−  b 0(∞; )¯̄̄
=∞

 (2.90)

in which



h b(; ) b (; )i =
3 b(; )

3
+ b(; )2 b(; )

2
− 2

Ã
 b(; )



!2

+2

"
 b (; )


−  b(; )



#
−

Ã
 b(; )



!
(2.91)

−
"
2

Ã
 b(; )



!
+ 

Ã
2 b(; )

2

!#




h b (; ) b(; )i = b (; )2 b (; )
2

− 2
Ã
 b (; )



!2

+2

"
 b(; )


−  b (; )



#
(2.92)

−
"


Ã
2 b (; )

2

!
+ 2

Ã
 b (; )



!#




hb(; ) b(; ) b (; )b(; )i =

µ
1 +

4

3

¶
2b(; )

2
+Pr

"
2 b(; )

2

#2

+Pr

" b(; )b(; )


− 1
 b(; )


b(; )#

+2



 Pr

h b(; )− b(; )i (2.93)

+2



 Pr

"
 b (; )


−  b(; )



#2

−Pr
"

b(; )


+ 4b(; )#+ 2Prb(; )
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

hb(; )b(; ) b (; )i = 1
 b (; )


b(; )− b (; )b(; )



+2

h b(; )− b(; )i (2.94)

+

"

 b(; )


+ 4 b(; )# 

For  = 0 and  = 1 we have,

b(; 0) = 0 ()  b(; 1) =  ()  (2.95)

b (; 0) = 0 () , b (; 1) =  ()  (2.96)

b(; 0) = 0 () , b(; 1) =  ()  (2.97)

b(; 0) = 0 () ,
b(; 1) =  ()  (2.98)

By Taylor theorem b(; 0) = 0() +

∞X
=1

()
 (2.99)

b (; 0) = 0() +

∞X
=1

()
 (2.100)

b(; 0) = 0() +

∞X
=1

()
 (2.101)

b(; 0) = 0() +

∞X
=1

()
 (2.102)

() =
1

!

 b(; )


¯̄̄̄
¯
=0

 () =
1

!

 b (; )


¯̄̄̄
¯
=0

 (2.103)

() =
1

!

b(; )


¯̄̄̄
¯
=0

 () =
1

!

 b(; )


¯̄̄̄
¯
=0

 (2.104)

and

 () = 0() +

∞X
=1

() (2.105)
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 () = 0() +

∞X
=1

() (2.106)

 () = 0() +

∞X
=1

() (2.107)

 () = 0() +

∞X
=1

() (2.108)

The mth-order deformation problems are defined as

L[()− −1()] = ~

() (2.109)

L[()− −1()] = ~

() (2.110)

L[()− −1()] = ~

() (2.111)

L[()− −1()] = ~

() (2.112)

CASE 1:

(0) =  0(0) = (0) = 0 (2.113)

 0(∞) =  0(∞) = (∞) = (∞) = 0, (2.114)

(∞)− (∞) +  0(∞)−  0(∞)
¯̄
=∞ = 0 (2.115)

CASE 2:

(0) =  0(0) = 0(0) = 0 (2.116)

 0(∞) =  0(∞) = (∞) = (∞) = 0, (2.117)

(∞)−  0(∞) +  0(∞)−  0(∞)
¯̄
=∞ = 0 (2.118)

where


() =  000−1 +

−1X
=0

 0
00
−1− − 2

−1X
=0

 0
0
−1− + 2[

0
−1 −  0−1] (2.119)

−[2 0−1 +  00−1]− 0−1
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
() =

−1X
=0

 0
00
−1− − 2

−1X
=0

 0
0
−1− + 2[

0
−1 −  0−1] (2.120)

−[2 0−1 +  00−1]


() =

µ
1 +

4

3

¶
00−1 +Pr

"
−1X
=0


0
−1− − 1

−1X
=0


0
−1−

#

+2



 Pr

£
−1 − −1

¤−Pr
£
0−1 + 4−1

¤
(2.121)

+2



 Pr

"
−1X
=0

 0
0
−1− −

−1X
=0

 0
0
−1− +

−1X
=0

 0
0
−1−

#

+2Pr −1 +Pr

"
−1X
=0

 00 
00
−1−

#




 () = 1

−1X
=0


0
−1− −

−1X
=0


0
−1− + 2

£
−1 − −1

¤
(2.122)

+
h
0−1 + 4−1

i


 =

⎧⎨⎩ 0;  ≤ 1
1;   1

(2.123)

The general solutions of equations can be expressed as

() = ∗ () + 1 + 2 exp () + 3 exp (−)  (2.124)

() =  ∗ () + 4 + 5 exp ()  (2.125)

() = ∗ () + 6 exp () + 7 exp (−)  (2.126)

() = ∗ () + 8 exp ()  (2.127)

where ∗ ()   ∗ ()  
∗
 ()  and ∗ () are the special solutions.
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2.5 Optimal convergence-control parameters

Homotopy analysis solutions comprise the non-zero auxiliary parameters 

0  


0  


0 and 


0 ,

which act as a helping tool in determining the area of convergence and rate of the homotopy

series solution. In order to obtain the optimal values of 

0  


0  


0 and 


0 we need to find

the so-called average residual error [43]. Tables (21) and (22) present the values for several

optimal convergence control parameters for the VEST and VEHF cases respectively. These

tables reveal that the total averaged squared residual errors decrease as we increase the order

of approximation, which proves that the solution is convergent at higher order approximations.

Hence, Optimal Homotopy Analysis Method provides us a proper way to select any family of

local convergence control parameters to attain the convergent solutions.

→
↓ 


0 0 0 


0  CPU time []

2 −0689 −0483 −0506 0455 9704× 10−3 1112

4 −0702 −0569 −0601 0459 2246× 10−4 4919

6 −0682 −0610 −0713 0451 2721× 10−5 4290

8 −0648 −0605 −0791 0510 6608× 10−6 33593

21 Total averaged squared residual errors using BVPh2.0. (VEST Case)

→
↓ 


0 0 0 


0  CPU time []

2 −0724 −0482 −0514 0389 7295× 10−3 1155

4 −0646 −0560 −0694 0419 8059× 10−4 8133

6 −0697 −0573 −0752 0420 6685× 10−5 59084

8 −0615 −0563 −0865 0451 5510× 10−6 616165

22. Total averaged squared residual errors using BVPh2.0. (VEHF Case)

where  is the total squared residual error.

31



Table.(23) and Fig.(21) exhibit that the individual averaged squared residual errors also

decrease as the order of approximation increases, proving that the solution is convergent.

→
↓ 


   


 CPU time []

4 6375× 10−5 1333× 10−4 1908× 10−4 4806× 10−4 730

8 1435× 10−6 8246× 10−6 2604× 10−5 2288× 10−5 5208

12 1263× 10−7 6647× 10−7 5104× 10−6 5517× 10−6 18453

16 1574× 10−8 6942× 10−8 1232× 10−6 1370× 10−6 47092

23 Individual averaged squared residual errors using optimal values at  = 2. (VEST Case)

Fig 2.1 Individual squared residual error when m=2
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2.6 Graphical results and discussion

The non-linear ordinary differential equations (238 239 256 and 257) along with the bound-

ary conditions (240 258 and 260) have been solved analytically by using the OHAM. The

influence of various important parameters on velocity and temperature fields are presented

graphically in 22 − 215 and in 24. The values of  = 06 1 = 1  = 1  = 14

and  = 01 are used in our calculations.

Fig 2.2 Influence of  on velocity profiles

Fig. 2.3 Influence of  on velocity profiles
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Fig 2.4 Influence of  on velocity profiles

Fig 2.5 Influence of  on velocity profiles
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Fig.2.6 Influence of  on temperature distribution for both VEST and VEHF cases.
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Fig.2.7 Influence of  on temperature distribution for both VEST and VEHF cases.
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Fig. 2.8 Influence of  on temperature distribution for both VEST and VEHF cases.
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Fig. 2.9 Influence of  on temperature distribution for both VEST and VEHF cases.
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Fig.2.10 Influence of  on temperature distribution for both VEST and VEHF cases.
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Fig 2.11 Influence of  on temperature distribution for both VEST and VEHF cases.
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Fig 2.12 Influence of Pr on temperature distribution for both VEST and VEHF cases.
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Fig 2.13 Influence of  on temperature distribution for both VEST and VEHF cases.
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Fig 2.14 Influence of  on temperature distribution for both VEST and VEHF cases.
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Fig 2.15 Influence of  and  on skin friction coefficient against .
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22 illustrates the nature of velocity profile with the variation of magnetic parameter

(). It shows that with an increase in  the velocity fields decrease. Reason being, the

magnetic field is applied transversely, so when  increases a drag force, known as Lorentz

force, is created increasing resistance to the flow. Boundary layer thickness increases with

every higher value of  . 23 depicts the behavior of velocity fields  0() and  0 () for

changing values of the unsteadiness parameter (). It is noticed that both fluid and dust

phase velocities decrease when we increase the unsteady parameter whereas the boundary layer

thickness increases with increasing values of . In 24 the velocity profiles are plotted for

different values of the fluid particle interaction parameter (). It is observed that the fluid

phase velocity profile decreases with increasing  while the dust phase velocity profile increases

with increasing values of . Momentum boundary layer increases with increase in .

25 exhibits the effects of suction parameter  on velocity fields. With increasing  both

of the velocity profiles decrease significantly and with this reduction in velocity fields boundary

layer thickness also decreases.

(26− 214) represent the effects of various parameters on temperature distribution of
fluid segment  () and dust segment  () phase for both VEST and VEHF cases. 26

shows us the effects of unsteadiness parameter () on temperature profiles  () and  (). As

 increases there is a decrease in both temperature profiles because when we increase  the

surface temperature gradient also increases resulting in higher rate of heat transfer. Thus for

larger values of  the rate of cooling is very fast.

In 27 the variation of temperature profiles due to the fluid-particle interaction parame-

ter () is demonstrated. It is found that with an increase in  temperature profiles decrease.

Next in 28 we analyze the impact on temperature distributions of Eckert number ()

which represents the viscous dissipation changes. The temperature increases when we increase

 as viscous dissipation plays the role of energy source because there is stored heat energy

in the fluid because of frictional heating. 29 displays the temperature distributions with

varying heat source/sink parameter (). We conclude from this graphical representation that

with an increase in  temperature increases because energy is produced at thermal boundary

layer in case of heat source. While the case is opposite for heat sink. 210 shows the

effect on temperature profiles due to the variation in magnetic parameter (). In both VEST
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and VEHF case the temperature profiles increase with increase in the value of  . It can also

be seen that fluid and dust particle temperature profiles are parallel to each other. Effect on

temperature distributions for variation in number density () is illustrated in 211. When

we increase  we notice a decrease in temperature profiles of both VEST and VEHF cases.

The influence of changing Prandtl number (Pr) on temperature profiles for fluid and particle

phase is depicted in 212. With increasing Pr decrease in temperature profiles is observed.

This is because when we increase (Pr) thermal diffusion decreases as both are inversely related

hence thermal boundary layer thickness reduces too. Now we discuss the effects of parameter

of radiation () on temperature distributions of fluid and dust particles shown in 213. In

both VEST and VEHF cases when we increase  there is an increase in both temperature

profiles and the thermal boundary layer thickness. 214 represents the impact of suction

parameter () on temperature profiles. From here we can observe that when  increases the

temperature profiles decrease and the boundary layer becomes thin. The nature of skin friction

coefficient against suction parameter () for varying values of magnetic parameter () and

fluid-particle interaction parameter () is displayed in 215. Skin friction decreases with

magnetic, suction and fluid-particle interaction parameters.

The thermal properties of fluid at the surface are investigated for skin friction coefficient,

temperature gradient 0 (0) in case of VEST and temperature  (0) in VEHF case, which are

presented in  24
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Table 2.4: Influence of various parameters on skin friction coefficient, temperature gradient

0 (0) for VEST Case and surface temperature  (0) for VEHF Case.

          00(0) 0(0)(  ) (0)(  )

02 −17832 −06820 13745

06 01 05 05 01 05 05 072 05 −17971 −06745 13836

1 −18060 −06718 13869

0 −17507 −05278 16721

06 01 05 05 01 05 05 072 05 −17971 −06745 13836

02 −18430 −07906 12174

05 −17971 −06745 13836

06 01 10 05 01 05 05 072 05 −19537 −06416 14302

15 −20964 −06131 14718

0 −15372 −05873 15674

06 01 10 05 01 05 05 072 05 −17971 −06745 13836

10 −20985 −07731 12305

−01 − −08070 11978

06 01 10 05 0 05 05 072 05 − −07442 12795

01 − −06745 13836

05 − −06745 13836

06 01 10 05 01 10 05 072 05 − −05546 16538

15 − −04832 18866

05 − −06745 13836

06 01 10 05 01 05 10 072 05 − −07922 12133

15 − −08954 10962

072 − −06745 13836

06 01 10 05 01 05 05 10 05 − −08231 11669

15 − −10574 09589

0 − −08482 11788

06 01 10 05 01 05 05 072 05 − −06745 13836

10 − −05009 15883
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2.7 Concluding Remarks

• The temperature of dust phase is lower as compared to the fluid phase temperature.

• Increase in fluid particle interaction parameter increases the fluid segment velocity while
decreases the dust segment velocity.

• Increase in unsteady parameter decreases the momentum and thermal boundary layer

thickness.

• The effect of suction parameter is unfavorable in case of momentum boundary layer thick-
ness.

• As the magnetic field increases, its impact becomes more significant causing the fluid to
slow down.

• Viscous dissipation increases the temperature of the flow region.

• The thermal boundary layer becomes thinner for increasing Prandtl number.

• Increase in magnetic, unsteady, suction and fluid particle interaction parameter increases
the skin friction.

• The Nusselt number increases when we increase Prandtl number, unsteadiness parameter,
number density and suction parameter

• Thermal radiation, magnetic field, fluid particle interaction parameter, and heat genera-
tion absorption parameter decrease the Nusselt number
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Chapter 3

Unsteady flow and heat transfer of

nanofluid with dust particles

suspended over an exponentially

stretching surface

3.1 Introduction

In this chapter we have presented the analytical solution of the unsteady boundary layer flow

and heat transfer of nanofluid with dust particles suspended in it. The external magnetic

field is transverse to the plate. Considering the effects of heat generation or absorption, vis-

cous dissipation and thermal radiation, partial differential equations are modelled. Then they

are changed to ODE’s by employing similarity transformations for the following two cases of

boundary conditions (i) Variable exponential order surface temperature (VEST) (ii) Variable

exponential order heat flux (VEHF) and then the series solutions are calculated using OHAM.

At the end, the influence on the velocity, temperature and concentration profiles of various

important physical parameters are explored in detail with graphical illustrations and tables.
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3.2 Problem formulation

For the above considered problem the equation of continuity, equation of conservation of linear

momentum and equation of conservation of energy for the fluid respectively are,

div V = 0 (3.1)



∙
V



¸
= −∇p+∇2V+ [V −V] + J×B (3.2)



∙




¸
=  (∇ ·∇ ) + 


( −  ) +




(V −V) · (V −V) (3.3)

−


+ τ · L+( − ∞)− () j∇

τ is Cauchy stress tensor, L is gradV,  represents heat source where   0 and sink when

  0, () is the nanoparticles specific heat and j is the nanoparticles diffusion mass flux.

j (the sum of Brownian and thermophoresis diffusion) is defined as

j = j  + j  (3.4)

where

j  = −∇

where the Brownian diffusion coefficient  in view of Einstein equation is equal to

 =


3


where  represents the Boltzmann’s constant and  the diameter of nanoparticles.

Second term on RHS of Eq. (34) is defined as follows

j  = V  (3.5)

V = −
˜






∇



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in which V represents the thermophoretic velocity and
˜

 is the proportionality factor given

by
˜

 = 026


2 + 


where  and  are the fluid and nanoparticle material thermal conductivities respectively.

Hence the thermophoresis diffusion flux can be expressed as follows

j  = −
∇


 (3.6)

where

 =
˜







represents thermophoretic diffusion coefficient. Thus

j = −∇ − 
∇


 (3.7)

Final form of energy equation (33) for the above problem takes the form



∙




¸
=  (∇ ·∇ ) + 


( −  ) +




(V −V)(V −V) (3.8)

−


+ τ · L+( − ∞) + ()

µ
∇∇ +

∇∇
∞

¶


Now, from Fick’s law, the concentration equation for fluid phase is




+V∇ = −1


∇j (3.9)

in which  denotes the concentration,  is the mass density and j is the diffusion mass flux,

using value of j we have,




+V∇ = ∇

µ
∇ +

∇
∞

¶
 (3.10)
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Governing equations for dust particles are

∇V = 0 (3.11)

V


+ (V∇)V =




(V −V)  (3.12)



µ



+ (V∇)

¶
= −


( −  )  (3.13)




+ (V∇) = ∇2 (3.14)

where  represents the concentration of dust particles, and  denotes the coefficient of

mass diffusivity.

Continuity and momentum equations for fluid and dust particles phase can be written as




+




= 0 (3.15)




+ 




+ 




= 

2

2
− 


2+ ( − )  (3.16)




+




= 0 (3.17)




+ 




+ 




=




(− )  (3.18)

The corresponding boundary conditions are

 =  ( )   = − ( )  at  = 0 (3.19)

 → 0  → 0  →  as  →∞

where  ( ) =


(1−)

 is the velocity of the sheet and  ( ) = −

q


2(1−)

2 is the

suction velocity,  is the reference length,  is the reference velocity and   0 is a suction

parameter.

52



Similarity transformations are defined as

 =

s


2 (1− )



2   =



(1− )


  0()

 = −
s



2 (1− )



2

£
 () +  0()

¤
  =



(1− )


 0() (3.20)

 = −
s



2 (1− )



2

£
 () +  0()

¤
  =

p
(1− )



2

Making use of Eq. (320), Equations of continuity (315 and 317) are identically satisfied and

Eqs. (316) and (318) take the following form

 000 () +  ()  00 ()− 2 0 ()2 + 2 £ 0 ()−  0()
¤−

£
2 0() +  00()

¤− 0 = 0 (3.21)

 ()”()− 2 0()2 + 2[ 0()−  0()]−[ 00() + 2 0()] = 0 (3.22)

where prime signifies the differentiation with respect to  and  = N

represents the mass

concentration,  = 


(1− ) −

 represents the fluid-particle interaction parameter for

velocity, where τ  =


is the relaxation time of dust phase,  = 




is the unsteady

parameter which determines the unsteadiness and  =
22


is the magnetic parameter.

Employing the similarity transformations on boundary conditions presented in Eq.(319)  we

acquire

 0() = 1 () =  at  = 0 (3.23)

 0() = 0  0() = 0  () = () +  0()−  0() as  →∞

The expression for the skin friction coefficient is

 =
τ

2
 (3.24)

where the skin friction τ is given by,

τ = 

µ




¶
=0

 (3.25)
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Involving the non-dimensional variables, one obtains,

√
2Re =  00(0) (3.26)

3.3 Heat and Mass Transfer Analysis for Nanofluid

Energy equations for fluid phase and dust particles are



µ



+ 




+ 





¶
= 

2

2
+




( −  ) +




( − )2

+

µ




¶2
− 


+( − ∞) (3.27)

+()

Ã









+



∞

µ




¶2!




µ



+ 




+ 





¶
= −


( −  )  (3.28)

Using Rosseland approximation for thermal radiation, radiative heat flux becomes

 =
−4∗
3∗

 4


 (3.29)

where ∗ symbolizes the Stefan-Boltzmann constant and ∗ represents the mean absorption

coefficient.  4 is a function of temperature defined as

 4 = 4 3∞ − 3 4∞ (3.30)

Using Eq.(329) in energy equation (327)  we obtain



µ



+ 




+ 





¶
=

µ
 +

16∗ 3∞
3∗

¶
2

2
+




( −  )

+



( − )2 + 

µ




¶2
+ ( − ∞) (3.31)

+()

Ã









+



∞

µ




¶2!

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where  is the density of the base fluid. () is the effective heat capacity of nanoparticle

material.

Concentration equations of fluid phase and dust particles are




+ 




+ 




= 

2

2
+



∞

µ
2

2

¶
 (3.32)




+ 




+ 




= 

2

2
 (3.33)

where  is the coefficient of mass diffusivity  is the concentration of fluid and  denotes

concentration of dust particles.

We have discussed the heat and mass transfer phenomenon for two different types of heating

procedures, i.e.,

1. Variable exponential order surface temperature and surface concentration (VEST).

2. Variable exponential order heat flux and mass flux (VEHF).

3.3.1 Case 1: Variable exponential order surface temperature (VEST):

In this case the boundary conditions employed, are defined as

 =  ( ) at  = 0

 → ∞  → ∞ as  →∞ (3.34)

 =  ( ) at  = 0

 → ∞  → ∞ as  →∞

where  = ∞ + 
(1−)2 

1

2 ,  = ∞ + 
(1−)2 

1

2 is the temperature distribution and

concentration distribution respectively in the stretching surface, 1 is a constant, 0 is the

reference temperature and  is the corresponding reference concentration. The dimensionless

variables for the fluid temperature  () and concentration () and dust particles temperature
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() and concentration () are defined as

 () =
 − ∞
 − ∞

  () =
 − ∞
 − ∞

 (3.35)

 () =
 − ∞
 − ∞

  () =
 − ∞
 − ∞



where  − ∞ = 0
(1−)2 

1

2  () and  −∞ = 0
(1−)2 

1

2  (). Using the similarity variable

() and Eq. (335) into Eqs.(328) and (331− 333)  one can achieves the following system of

equations

µ
1 +

4

3

¶
00 ()+Pr

£
 () 0 ()− 1

0 ()  ()
¤
+2




 Pr [ ()−  ()]−Pr £0 () + 4 ()¤

+2



 Pr

£
 0 ()−  0 ()

¤2
+Pr

£
 0 ()

¤2
+2Pr  ()+Pr[ 

02+
00] = 0 (3.36)

1
0 ()  ()−  () 0 () + 2 [ ()−  ()] +[0 () + 4 ()] = 0 (3.37)

00 +



00 + [0 − 1

0]−[4+ 0] = 0 (3.38)

00 + [0 − 1
0]−[4 + 0] = 0 (3.39)

where Pr =


portrays the Prandtl number,  =

4∗ 3∞
∗ is the parameter for radiation,

 =


is the specific heat ratio,  =

20 
2


0
1
2

is the Eckert number,  = 

0


is the unsteady

parameter,  = 

0


(1− ) and  =



0


(1− ) are the fluid and particle interaction

parameters for velocity and heat transfer respectively,  = 2

 Re
denotes the dimensionless

heat source/sink parameter where Re = 0



(1−) is the Reynolds number,  =
() (−∞)

∞

represents the Thermophoresis parameter,  =
()(−∞)


denotes the Brownian motion

parameter and  = 


is the Schmidt number.
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Subsequent thermal and concentration boundary conditions become

() = 1 at  = 0

() → 0 ()→ 0 as  →∞

() = 1 at  = 0 (3.40)

() → 0 ()→ 0 as  →∞

3.3.2 Case 2: Variable exponential order heat flux (VEHF):

For this heat and mass transfer procedure, consider the following boundary conditions




= −( )


at  = 0

 → ∞  → ∞ as  →∞




= −( )


at  = 0 (3.41)

 → ∞  → ∞ as  →∞

where  =
1

(1−) 52

(1+1)

2 ,  = 1

(1−) 52

(1+1)

2 are heat and mass fluxes, 1 is the reference

temperature and 1is reference concentration. Now by using the similarity variable () and

Eq.(341)  we get the same system of equations, with  =
2
1

q
0
2

 which is different from

the VEST case, all the other parameters are same as in VEST.

The boundary conditions for above case transform to

0() = −1 at  = 0

() → 0 ()→ 0 as  →∞

0() = −1 at  = 0 (3.42)

() → 0 ()→ 0 as  →∞

The Nusselt number and Sherwood number are defined as,

 =


( − ∞)
 (3.43)
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 =


( − ∞)
 (3.44)

where  and  are the heat and mass transfer from the sheet respectively, which are given

by,

 = −
µ




¶
=0

 (3.45)

 = −

µ




¶
=0

 (3.46)

Making use of non-dimensional variables, one obtains,

√
2Re

= − 

2
0(0),

√
2Re

= − 

2
0(0) (VEST Case), (3.47)

and.

√
2Re

=


2

1

(0)

√
2Re

=


2

1

(0)
(VEHF Case)

3.4 The OHAM solutions

The nonlinear coupled ordinary differential equations for VEST and VEHF case are analyti-

cally solved by Optimal Homotopy Analysis Method (OHAM). According to the procedure, we

express the set of basic functions  (),  (),  () ,  () ,  () and  () by

n
 exp (−) |  ≥ 0  ≥ 0

o
 (3.48)

in the form

 () =

∞X
=0

∞X
=0

  exp (−)  (3.49)

 () =

∞X
=0

∞X
=0

  exp (−)  (3.50)

 () =

∞X
=0

∞X
=0

  exp (−)  (3.51)

 () =

∞X
=0

∞X
=0

  exp (−)  (3.52)
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 () =

∞X
=0

∞X
=0

  exp (−)  (3.53)

 () =

∞X
=0

∞X
=0

  exp (−)  (3.54)

in which , 

 


 


 


 and  symbolize the coefficients. Utilizing the rule of

solution expression and the given boundary conditions, the initial guesses 0 0 0 0  0 0

can be chosen as:

0 () = (1 + )− exp (−)  (3.55)

0 () = (1 + )− exp (−)  (3.56)

0 () = exp (−)  (3.57)

0 () = exp (−)  (3.58)

0 () = exp (−)  (3.59)

0 () = exp (−)  (3.60)

The auxiliary linear operators are

L = 3

3
− 


 (3.61)

L = 2

2
− 


 (3.62)

L = 2

2
− 1 (3.63)

L =



− 1 (3.64)

L = 2

2
− 1 (3.65)

L =
2

2
− 


 (3.66)

which satisfy

L [1 + 2 exp () + 3 exp (−)] = 0 (3.67)
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L [4 + 5 exp ()] = 0 (3.68)

L [6 exp () + 7 exp (−)] = 0 (3.69)

L [8 exp ()] = 0 (3.70)

L [9 exp () + 10 exp (−)] = 0 (3.71)

L [11 + 12 exp ()] = 0 (3.72)

where  ( = 1− 12) are arbitrary constants. If we define  ∈ [0 1] as an embedding parameter
and ~  ~  ~~~~ represent the non-zero auxiliary parameters, we can define the zeroth

order deformation problems as

(1− )L
h b(; )− b0()i = ~

h b(; ), b (; )i  (3.73)

(1− )L
h b (; )− b0()i = ~

h b(; ), b (; )i  (3.74)

(1− )L
hb(; )− b0()i = ~

h b(; ), b (; ), b(; ), b(; ) i  (3.75)

(1− )L
h b(; )− b0()i = ~

h b (; ), b(; ), b(; ) i  (3.76)

(1− )L
hb(; )− b0()i = ~

h b(; ), b(; ), b(; ) i  (3.77)

(1− )L
hc(; )−c0()i = ~

h b (; ), c(; ) i  (3.78)

CASE 1: b 0(0; ) = 1 = b(0; ) = b(0; ), b(0; ) =  (3.79)

b 0(∞; ) = b(∞; ) =c(∞; ) =c0(∞; ) = 0b 0(∞; ) = b(∞; ) = b(∞; ) = 0, (3.80)

b (∞; ) = b(∞; ) +  b 0(∞; )−  b 0(∞; )¯̄̄
=∞



CASE 2: b 0(0; ) = 1b(0; ) = b(0; ) = −1 b(0; ) = , (3.81)
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b 0(∞; ) = b(∞; ) =c(∞; ) =c0(∞; ) = 0b 0(∞; ) = b(∞; ) = b(∞; ) = 0, (3.82)

b (∞; ) = b(∞; ) +  b 0(∞; )−  b 0(∞; )¯̄̄
=∞



in which



h b(; ) b (; )i =
3 b(; )

3
+ b(; )2 b(; )

2
−

Ã
 b(; )



!

+2

"
 b (; )


−  b(; )



#
− 2

Ã
 b(; )



!2
(3.83)

−
"
2

Ã
 b(; )



!
+ 

Ã
2 b(; )

2

!#




h b(; ) b (; )i = b (; )2 b (; )
2

− 2
Ã
 b (; )



!2

+2

"
 b(; )


−  b (; )



#
(3.84)

−
"


Ã
2 b (; )

2

!
+ 2

Ã
 b (; )



!#




hb(; ) b(; ) b (; )b(; )i =

µ
1 +

4

3

¶
2b(; )

2
+ 2




 Pr

h b(; )− b(; )i
+Pr

" b(; )b(; )


− 1
 b(; )


b(; )#+ 2Prb(; )

+2



 Pr

"
 b (; )


−  b(; )



#2
(3.85)

−Pr
"

b(; )


+ 4b(; )#+Pr"2 b(; )

2

#2

+Pr

⎡⎣

Ã
b(; )



!2
+

b(; )


b(; )


⎤⎦ 
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

hb(; )b(; ) b (; )i = 1
 b (; )


b(; )−  (; )

b(; )


+2

h b(; )− b(; )i (3.86)

+

"

 b(; )


+ 4 b(; )# 



hb(; )b(; ) b(; )i =
2b(; )

2
+





2b(; )
2

−
"
4b(; ) + 

b(; )


#
(3.87)

+

" b(; )b(; )


− 1
 b(; )


b(; )# 



hc(; ) b (; )i =
2c(; )

2
−

"
4c(; ) + 

c(; )


#
(3.88)

+

" b (; )c(; )


− 1
 b (; )


c(; )

#


For  = 0 and  = 1 we have,

b(; 0) = 0 () , b(; 1) =  ()  (3.89)

b (; 0) = 0 () , b (; 1) =  ()  (3.90)

b(; 0) = 0 () , b(; 1) =  ()  (3.91)

b(; 0) = 0 () ,
b(; 1) =  ()  (3.92)

b(; 0) = 0 () ,
b(; 1) =  ()  (3.93)

c(; 0) = 0 () ,
c(; 1) =  ()  (3.94)

By Taylor theorem b(; ) = 0() +

∞X
=1

()
 (3.95)
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b (; ) = 0() +

∞X
=1

()
 (3.96)

b(; ) = 0() +

∞X
=1

()
 (3.97)

b(; ) = 0() +

∞X
=1

()
 (3.98)

b(; ) = 0() +

∞X
=1

()
 (3.99)

c(; ) = 0() +

∞X
=1

()
 (3.100)

() =
1

!

 b(; )


¯̄̄̄
¯
=0

 () =
1

!

 b (; )


¯̄̄̄
¯
=0

 (3.101)

() =
1

!

b(; )


¯̄̄̄
¯
=0

 () =
1

!

 b(; )


¯̄̄̄
¯
=0

 (3.102)

() =
1

!

b(; )


¯̄̄̄
¯
=0

 () =
1

!

c(; )


¯̄̄̄
¯
=0

 (3.103)

and

 () = 0() +

∞X
=1

() (3.104)

 () = 0() +

∞X
=1

() (3.105)

 () = 0() +

∞X
=1

() (3.106)

 () = 0() +

∞X
=1

() (3.107)

 () = 0() +

∞X
=1

() (3.108)

 () = 0() +

∞X
=1

() (3.109)
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The mth-order deformation problems are defined as

L[()− −1()] = ~

() (3.110)

L[()− −1()] = ~

() (3.111)

L[()− −1()] = ~

() (3.112)

L[()− −1()] = ~

() (3.113)

L[()− −1()] = ~

() (3.114)

L[()− −1()] = ~

 () (3.115)

CASE 1:

(0) =  0(0) = (0) = (0) = 0 (3.116)

 0(∞) =  0(∞) = (∞) = (∞) = (∞) = (∞) = 0(∞) = 0, (3.117)

(∞)− (∞) +  0(∞)−  0(∞)
¯̄
=∞ = 0 (3.118)

CASE 2:

(0) =  0(0) = 0(0) = 0(0) = 0 (3.119)

 0(∞) =  0(∞) = (∞) = (∞) = (∞) = (∞) = 0(∞) = 0, (3.120)

(∞)− (∞) +  0(∞)−  0(∞)
¯̄
=∞ = 0

where


() =  000−1 +

−1X
=0

 0
00
−1− − 2

−1X
=0

 0
0
−1− (3.121)

+2[ 0−1 −  0−1]−[2 0−1 +  00−1]− 0−1 (3.122)


() =

−1X
=0

 0
00
−1− − 2

−1X
=0

 0
0
−1− + 2[

0
−1 −  0−1]−[2 0−1 +  00−1] (3.123)
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
() =

µ
1 +

4

3

¶
00−1 +Pr

"
−1X
=0


0
−1− − 1

−1X
=0


0
−1−

#

+2



 Pr

£
−1 − −1

¤−Pr
£
0−1 + 4−1

¤
(3.124)

+2



 Pr

"
−1X
=0

 0
0
−1− −

−1X
=0

 0
0
−1− +

−1X
=0

 0
0
−1−

#

+2Pr −1 +Pr

"
−1X
=0

 00 
00
−1−

#




 () = 1

−1X
=0


0
−1− −

−1X
=0


0
−1− (3.125)

+2
£
−1 − −1

¤
+

h
0−1 + 4−1

i



() = 00−1 +




00−1 + 

"
−1X
=0


0
−1− − 1

−1X
=0


0
−1−

#
(3.126)

− £4−1 + 0−1
¤




 () = 00−1 + 

"
−1X
=0


0
−1− − 1

−1X
=0


0
−1−

#
(3.127)

−
h
4−1 + 0−1

i


 =

⎧⎨⎩ 0;  ≤ 1
1;   1

(3.128)

The general solutions of the given equations can be expressed as

() = ∗ () + 1 + 2 exp () + 3 exp (−)  (3.129)

() =  ∗ () + 4 + 5 exp ()  (3.130)

() = ∗ () + 6 exp () + 7 exp (−)  (3.131)
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() = ∗ () + 8 exp ()  (3.132)

() = ∗ () + 9 exp () + 10 exp (−)  (3.133)

() = ∗ () + 11 + 12 exp ()  (3.134)

where ∗ ()   ∗ ()  
∗
 ()  

∗
 ()  

∗
 () and ∗ () are the special solutions.

3.5 Optimal convergence-control parameters

Homotopy analysis solutions consists of the non-zero auxiliary parameters 

0  


0  


0, 


0 , 


0

and 

0 which act as helping tool in determining the region of convergence and rate of the

homotopy series solution. By finding the so-called average residual errors [43] we get the

optimal values of 

0  


0  


0, 


0 , 


0 and 


0 Tables (31) and (32) present the values for several

optimal convergence control parameters and reveals the fact that the total averaged squared

residual errors decrease as the order of approximation increases, which proves that the solution

is convergent at higher order approximations. Hence, Optimal Homotopy Analysis Method

provides us a proper way to select any set of local optimal convergence control parameters to

attain the convergent solutions.

→
↓ 


0 0 0 


0 


0 


0  CPU time []

2 −0558 −0490 −0467 0468 −0916 0791 2537× 10−2 1081

4 −0560 −0589 −0705 0470 −0635 732 1352× 10−3 13996

6 −0556 −0627 −0768 0499 −0565 0644 2072× 10−4 117721

8 −0567 −0542 −0894 0512 −0630 0504 1365× 10−4 106371

31 Total averaged squared residual errors using BVPh 2.0. (VEST Case)
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→
↓ 


0 0 0 


0 


0 


0  CPU time []

2 −0561 −0494 −0594 0399 −0639 0790 231× 10−2 1155

4 −0570 −0570 −0670 0486 −0674 0723 1835× 10−3 13983

6 −0565 −0560 −0793 0504 −0470 0630 3836× 10−4 202091

8 −0576 −0537 −0852 0503 −0455 0501 1869× 10−4 100327

32 Total averaged squared residual errors using BVPh 2.0. (VEHF Case)

where  is the total squared residual error.

Table (33) and Fig. (31) depict that the individual averaged squared residual errors also

decrease as the order of approximation increases, proving that the solution is convergent

 

   


 


 


 CPU time []

4 3416× 10−4 302× 10−4 2180× 10−4 1610× 10−4 869× 10−4 6236× 10−4 999

8 1029× 10−6 1466× 10−5 2809× 10−5 2901× 10−5 1955× 10−4 2863× 10−4 7337

12 7872× 10−9 1015× 10−6 5949× 10−6 6274× 10−6 7705× 10−5 3260× 10−5 26209

16 2772× 10−10 8601× 10−8 1578× 10−6 1577× 10−6 3447× 10−5 2701× 10−6 66955

33Individual averaged squared residual errors using optimal values at  = 2.(VEST Case)

Fig 3.1 Individual squared residual error when m=2
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3.6 Graphical results and discussion

The non-linear ordinary differential equations (321− 322 and 336− 339) along with the bound-
ary conditions (323), (340) and (342) have been solved analytically by using the OHAM. The

influence of various parameters on the temperature and concentration profiles are presented

graphically in 32 − 320. Different properties of fluid at the surface are investigated for
skin friction coefficient, temperature gradient 0 (0) and concentration gradient 0 (0) in case

of VEST and temperature  (0) and concentration  (0) in VEHF case, which are presented in

 34 35and 36 The values of  = 06 1 = 1  = 1  = 14 and  = 01 are used in our

calculations.

Fig. 3.2 Influence of  on temperature distribution for both VEST and VEHF cases.
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Fig.3.3 Influence of  on temperature distribution for both VEST and VEHF cases.
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Fig.3.4 Influence of  on temperature distribution for both VEST and VEHF cases.
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Fig.3.5 Influence of  on concentration profiles for both VEST and VEHF cases.
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Fig.3.6 Influence of  on concentration profiles for both VEST and VEHF cases.
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Fig 3.7 Influence of  on concentration profiles for both VEST and VEHF cases.
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Fig.3.8 Influence of  on concentration profiles for both VEST and VEHF cases.
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Fig. 3.9 Influence of  on concentration profiles for both VEST and VEHF cases
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Table 3.4: Effect of different parameters on heat and mass transfer coefficients 0(0) and

0 (0) in VEST case and  (0) and  (0) in VEHF case.

   0(0)(  ) (0)(  ) 0(0)(  ) (0)(  )

01 −10209 08634 −10411 09812

03 1 1 −08512 09408 −08721 14921

05 −06648 10323 −05628 20388

01 −10209 08634 −10411 09812

1 03 1 −09247 09208 −12817 08081

05 −08411 09801 −13320 07728

03 −09104 08721 −06353 22561

1 1 05 −09672 08694 −08425 16182

1 −10209 08634 −10411 09812

Effects of Schmidt number ()  Thermophoretic parameter ( ) and Brownian motion

parameter () on temperature fields of fluid and dust phase are analyzed in  (32− 34)
Increase in  and  increase the temperature distribution of fluid and dust phase as they

both increase the surface temperature. While increase in  decreases the temperature profiles

and thermal boundary layer thickness in both the cases. This is because increase in  reduces

the molecular diffusivity which lowers the temperature.

In . (35 − 39) the concentration profiles  () and  () are plotted for different

parameters involved in our study. When we increase the unsteady parameter () and suction

parameter () there is a decrease in the concentration profiles of both fluid and dust particles.

Through  (37− 39) it is observed that by increase in the values of , the thermophoretic

parameter, there is an increase in concentration profiles. Whereas increase in Schmidt number

() and Brownian motion parameter () decrease the concentration as the thickness of the

concentration boundary layer decreases. This is because that an increase in  implies a decrease

in the molecular diffusivity

34 represents the influence of Thermophoresis parameter, Brownian motion parame-

ter and Schmidt number on heat and mass transfer coefficients.
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3.7 Concluding Remarks

• Dust phase temperature and concentration is lower than that of fluid phase.

• Increase in unsteadiness parameter and suction parameter decreases the concentration of
nanofluid.

• While viscous dissipation, thermal radiation and the number density of dust particles
have no effect on the concentration.

• Nanofluid increases the rate of heat transfer.

• Thermophoresis parameter and Brownian motion parameter increase the temperature
profile while Schmidt number decreases temperature.

• Concentration increases with an increase in Thermophoresis parameter whereas it reduces
when we increase Brownian motion parameter and Schmidt number.

• The Nusselt number decreases with an increase in Thermophoresis parameter and Brown-
ian motion parameter whereas it increases with an increase in Prandtl number and

Schmidt number.

• Sherwood number decreases with an increase in Thermophoresis parameter while increases
with an increase in Brownian motion parameter and Schmidt number.
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