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Preface 

Cryptography plays a fundamental role in the security of data transmission. After the 

early stages of cryptography i.e. in the Egyptians times, four thousand years before till the 2nd 

world war, cryptography played a prominent role in the 20th century. Nevertheless, post-World 

War II, the development of a variety of crypto analysis techniques weakened cryptography of 

the earlier stages. Accordingly, these techniques break the codes and different algorithms that 

were secure in the early stages. In 1970’s Horst Feistel created a cipher at IBM called the Feistel 

Cipher and then in 1997 the US National Bureau of Standards (NBS) published a cipher named 

Data Encryption Standard (DES) [3]. This Cipher was considered to be the best secure 

algorithm till 1997. It uses a key of length 56-bit which was very small as shown by recent 

distributed key search exercise [14]. When DES was nearing its end, the US National Institute 

of Science and Technology (NIST) issued a call for an algorithm which was highly secure, 

simple and fast called the “Advanced Encryption Standard (AES)”. The NIST shortlisted five 

algorithms, out of which Rijndael algorithm [18] was chosen as an AES. It is a 128-bit block 

cipher that accepts keys of length 128-bit, 192-bit and 256-bit. This was designed to overcome 

the issues of secure communication especially on platforms like ATM networks, High 

Definition Television (HDTV) and Integrated Services Digital Network (ISDN) (see [21]). 

Among shortlisted algorithms proposed for Advanced Encryption Standard (AES), the 

Serpent Algorithm [1] is also included. For Serpent Algorithm, initially S-boxes are taken from 

DES that resulted in Serpent-0 [13], a more secure Algorithm than triple-DES [13] having a 

key size of length 192 or 256 bits, presented at the 5th international workshop on Fast Software 

Encryption [4]. After this, Serpent-1 [1] was designed which used new and stronger S-boxes 

(taken from DES S-boxes) with a different key schedule in order to resist different attacks like 

differential [4] and linear [2]. Like Rijndael, Serpent Algorithm was also designed to encrypt 

a 128-bit block by using keys of length 128-bit, 192-bit or 256-bit. It was especially designed 

for intel-based chips. Nowadays it is used in folder locks like “Folder Lock Professional”, 

Dropbox file security [23] etc.  

There are different ways to modify these algorithms e.g. using Substitution boxes (S-

boxes) of good quality depending on their nonlinearity. Furthermore, it also depends on the 

number of rounds and key schedule. 
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On the lines of AES S-box, different S-boxes were constructed over finite Galois fields 

𝐹2𝑚 , 𝑚 = 2, 3, 4, 5, 6, 7, 8, such as residue prime S-box [12], perfect nonlinear S-box [16], 

Gray S-box [22], APA S-box and S8 AES S-box [11]. In our proposed Algorithm (Modified 

Serpent Algorithm), unlike the Serpent-0 and Serpent-1, we used 4 × 4 S-boxes constructed 

from a commutative chain ring whose each entry is a byte [19]. Splitting the given key into just 

two vectors, we calculated approximately half of the pre-keys as compared to Serpent 

Algorithm [1]. Moreover, the pre-keys calculated in our proposed algorithm are different from 

those calculated in Serpent Algorithm. For the proposed Modified Serpent Cipher in this study 

use the same ideas for bit slice implementation of cipher [3] like Serpent-1. Furthermore, unlike 

the DES that gains extra speed by encrypting 64 different blocks in parallel, each single block 

of the Serpent Algorithm in this study is efficiently encrypted by bit slicing and hence there is 

no need of changes for gaining extra speed. The Serpent Algorithm S-boxes are limited to 

hexadecimal numbers (i.e. both the domain and range are confined to 16 numbers) while in our 

modified procedure the 4 × 4 S-box has the property that it take elements from commutative 

chain ring 𝑅8 =
ℤ2[𝑥]

<𝑥8>
= 𝔽2 + 𝑥𝔽2 + 𝑥2𝔽2 + 𝑥3𝔽2 + 𝑥4𝔽2 + 𝑥5𝔽2 + 𝑥6𝔽2 + 𝑥7𝔽2 having 

512 elements, and results again in 𝑅8. This property extends the security of Modified Serpent 

Algorithm. Using less number of rounds and dealing with 64-bits at a time make the algorithm 

fast, whereas the main drawback of the Serpent algorithm is its less speed as compared to 

Rijndael. Consequently, a moderate complexity level is automatically developed.   
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CHAPTER 1 

HISTORY OF CRYPTO-ALGORITHMS 

1.1. Ancient Egyptians 

The beginning of cryptography occurs from an Egyptian town known as Menet Khufu 

approximately 4000 years ago. In this age an Egyptian named Khnumhotep use unusual 

symbols to present usual symbols, which is a type of substitution cipher. They call this 

substitution as the hieroglyphic substitution. This cipher was helpful for the scribe of those 

days who want to represent their writing in a formal way. But this method was not secure 

enough because one who can read and write could easily understand what they have been 

written. 

1.2. Greeks 

A device call scytale was developed by Spartans is shown in Fig. 1 below. This is a cylinder 

shape device which was wounded with a narrow strip made up of parchment. The plaintext was 

written on the parchment length-wise when the parchment was unwounded the alphabets take 

the shape of a ciphertext. Nowadays we call these ciphers the transposition ciphers because 

here only the position of alphabets have been changed. Cipher like this is easily hacked 

nowadays but in its early ages, it was difficult to decrypt a message without having the same 

scytale through which it was encrypted.  

 

Fig. 1 Scytale 

1.3. Romans 

One of the major problem that a nation have to face is the security of their military 

information and communication. It was the Romans who give cryptography an importance on 

the military level 2000 year ago. The commander of army Caesar initiates the secure 

communication between their troops by developing a new technique of cryptography. Caesar 

for the first time introduces the method of substitution call the Caesar cipher. In this cipher, he 

replaces one known alphabet by another known alphabet. This cipher gives an advantage to 
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Roman forces in the war. In this cipher, the concept of a secret key was introduced. The main 

theme of this cipher was to rotate the English alphabets by a specific number. This number is 

actually the cipher key. Caesar cipher is shown in the Fig. 2. 

 

Fig. 2 Caeser Cipher Wheel 

1.4. Alberti-Vigenere Cipher 

Slowly and steadily the cryptographic algorithms were blooming on. After the Romans 

in 14th century mid "Alberti" (Italian) gives the concept of a polyalphabetic cipher. He uses a 

mechanical device consisting of many disks which allowed to many different substitution 

methods. 

In the 15th century, Blaise De Vigenere introduces a cipher called Vigenere Cipher. The 

main idea uses by Vigenere was the same like Alberti cipher. The only difference from Caesar 

cipher is that of the key. Throughout the encryption and decryption process, the key has been 

changed by the Vigenere in order that the cipher became more secure. He uses the following 

table to secure the data:  

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A 

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B 

C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D 

E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E 

F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F 

G H I J K L M N O P Q R S T U V W X Y Z A B C D E F G 

H I J K L M N O P Q R S T U V W X Y Z A B C D E F G H 

I J K L M N O P Q R S T U V W X Y Z A B C D E F G H I 

J K L M N O P Q R S T U V W X Y Z A B C D E F G H I J 

K L M N O P Q R S T U V W X Y Z A B C D E F G H I J K 

L M N O P Q R S T U V W X Y Z A B C D E F G H I J K L 

M N O P Q R S T U V W X Y Z A B C D E F G H I J K L M 

N O P Q R S T U V W X Y Z A B C D E F G H I J K L M N 
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O P Q R S T U V W X Y Z A B C D E F G H I J K L M N O 

P Q R S T U V W X Y Z A B C D E F G H I J K L M N O P 

Q R S T U V W X Y Z A B C D E F G H I J K L M N O P Q 

R S T U V W X Y Z A B C D E F G H I J K L M N O P Q R 

S T U V W X Y Z A B C D E F G H I J K L M N O P Q R S 

T U V W X Y Z A B C D E F G H I J K L M N O P Q R S T 

U V W X Y Z A B C D E F G H I J K L M N O P Q R S T U 

V W X Y Z A B C D E F G H I J K L M N O P Q R S T U V 

W X Y Z A B C D E F G H I J K L M N O P Q R S T U V W 

X Y Z A B C D E F G H I J K L M N O P Q R S T U V W X 

Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Y 

Z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Vigenere Table 

The substitution under the cipher occurs in a simple way. The first column represents 

alphabets of plaintext while the first row is that of the given key. While their intersection gives 

the ciphertext. The key is used repeatedly again and again until all the plaintext alphabets are 

encrypted for example: 

Plaintext: PAKISTAN 

Key: KPK 

Ciphertext: AQVTIEKD 

1.5. Jefferson Wheel Cipher 

In between 1700’s and 1800’s Jefferson modified the Vigenere cipher by inventing a 26 

wheel instrument having randomly scattered alphabet on each wheel. While the role of a key 

is played by the numbers given to each wheel. In encryption process, the plaintext lined up on the 

wheels to obtain a cipher text. The ciphertext lies in a row above or below the plaintext for example: 

 

Fig. 3 Jefferson Cipher Wheel 
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In 19th century army of the United States reinvented the cipher without any previous knowledge 

because the Jefferson doesn't develop his cryptographic system.  The American army uses this system 

for his data security from 1923 to 1942.  

1.6. World War 1 

Cryptography played an important role in the World War 1 (WW1) when the British army 

caught the telegram of Germans. This telegram was encoded by Zimmerman. The British hack 

and decode the message which results the USA’s to be with the British. The encrypted and 

decrypted telegram of Zimmerman is shown in the Fig. 4. 

 

Fig. 4 Zimmerman Encrypted and Decrypted Telegram 

War Driven Cryptography: 

1.7. Enigma Machine 

In 𝑡ℎ𝑒 19𝑡ℎ century Arthur Scherbius a German engineer invented the enigma machine 

for the encryption and decryption purposes of data. The encryption of enigma was strong 

enough because the enigma allows 10114 possible configurations. This machine gives enough 

strength to Germany during World War2. But the over confidence of Germans on Enigma 

Machine fall them in a result of lose of the WW2. Many encryptions made by Germans through 

enigma was deciphered by the allied forces resulting in the victory of the Allied Forces. Enigma 

machine is shown in the Fig. 5 below: 
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Fig. 5 Enigma Machine 

1.8. One-Time Paid 

Modern encryption begins in early 1900’s when the One-time Pad algorithm was 

invented. This was the early age of playing with bits in an algorithm. The One-time Pad 

algorithm was proven to be unbreakable in the beginning. Later on the probabilistic approach 

decrypt this algorithm. In this algorithm, a plaintext is considered and a key is XORed 

(Exclusive-or) with it to obtain a ciphertext. In the reverse process, the same key is XORed 

with the ciphertext to obtain the plaintext. Example is given below: 

Let plaintext = 11101110 and the given key is 10001000 then the ciphertext becomes: 

1110111010001000 = 01100110 

After passing through these stages cryptography arrived at Symmetric and Asymmetric key 

cryptography which is briefly discussed in the 2𝑛𝑑 chapter. 
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CHAPTER 2 

ELEMENTARY CONCEPTS OF ALGEBRAIC STRUCTURES AND 

CRYPTO-ALGORITHMS 

This chapter includes some of the basic concepts of algebra and cryptography. This chapter 

has been divided into two main section. The first section contains some of the basic concepts 

of algebra mainly related to algorithms especially in the key part of the algorithm so call 

Substitution box and the second one contain some basic ideas about cryptography and the 

cryptographic algorithm.  

2.1. Algebraic Structures Basics: 

In this section, we present some definition with examples like a ring, field, Galois field, 

Galois ring, chain ring and some other preliminaries which help us to understand the algorithms 

properly. 

Binary operation: 

A binary operation is a mapping  ∗ ∶ 𝐴 × 𝐴 → 𝐴, where A is a non-empty set, defined 

by: 

∗ (𝑎, 𝑏) = 𝑎 ∗ 𝑏 ∈ 𝐴 for all 𝑎, 𝑏 ∈ 𝐴 

Groupied: 

It is a closed non-empty set i.e. if A is a non-empty set with the property that 𝑎 ∗ 𝑏 ∈ 𝐴 

for all 𝑎, 𝑏 ∈ 𝐴 then 𝐴 is closed and hence called a groupied. For example: 

The binary operation ∗ on the set of rational numbers Q defined by 𝑎 ∗ 𝑏 =
𝑎−𝑏

2
 for all 𝑎, 𝑏 ∈

𝑄. 

Semigroup: 

A closed non-empty set 𝐴 that holds Associative property w.r.t a given Binary operation 

is given the name of Semigroup e.g. the set containing elements of the form 2n where n belongs 

to the set of natural numbers. 

Monoid: 
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A closed set containing identity (e is the identity of 𝐴 if 𝑒 ∗ 𝑥 = 𝑥 ∗ 𝑒 = 𝑥 for all 𝑥 ∈ 𝐴 

) w.r.t to the operation ∗ and satisfying the associative law under the same binary operation ∗ 

is given the name of monoid e.g. the set of natural number form a monoid. 

Group: 

A monoid with an additional property that it's each element has inverse i.e. 𝑥 ∗ 𝑥−1 =

𝑥−1 ∗ 𝑥 = 𝑒 (e is the identity w.r.t ∗) is called a group. Examples of group are: 

The set of real numbers with the operation ∗= + (the usual addition), the set of rational 

numbers w.r.t +, the set of integer’s w.r.t. + etc. form a group. The set of all 𝑛 × 𝑛 invertible 

matrices 𝐺𝐿(𝑛, 𝑅) form a group under the binary operation ∗ = ·, the usual multiplication. This 

group is called General Linear Group. 

Subgroup: 

Any non-empty subset of a group which itself form a group under the same binary 

operation define on that group is given the name of a subgroup. For example: 

(𝑄\0,·) is a subgroup of (𝑅\0.·). 

Ring: 

A non-empty set R with two binary operations + and · is called a ring if: 

i) (𝑅, +) is a group with the property that 𝑎𝑏 = 𝑏𝑎, for all 𝑎, 𝑏 ∈ 𝑅 

ii) (𝑅,∙) is a semi group. 

In addition with this R satisfies the right and left distributive law of multiplication over 

addition. 

Field: 

A non-empty set 𝐹 with two binary operations + and ∙ is called a field if (𝐹, +) form a 

group and (𝐹\0,∙) form a group, also it satisfies distributive law e.g. set of real numbers.  

Commutative Ring: 

If 𝑅 has the property that 𝑥 ∙ 𝑦 = 𝑦 ∙ 𝑥 ∀ 𝑥, 𝑦 ∈ 𝑅 then it is commutative. 
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Unit element: 

An element 𝑥 ∈ 𝑅, where 𝑅 is a commutative ring with identity, is said to be a unit 

element if there exists an element 𝑦 ∈ 𝑅 such that 𝑥𝑦 = 𝑦𝑥 = 1. The set unit elements of 𝑅 is 

represented by 𝑈(𝑅). 

Ideal: 

A non-empty subset S of R is termed to be an ideal if it satisfies the following properties: 

i) 𝑎 − 𝑏 ∈ 𝑆 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝑆 

ii) 𝑟𝑠 ∈ 𝑆, 𝑠𝑟 ∈ 𝑆 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ∈ 𝑅 & 𝑠 ∈ 𝑆 

For example, ℤ 9ℤ⁄ ≅ ℤ9 has an ideal 3ℤ 9ℤ⁄  

Irreducible polynomial: 

Polynomial who’s splitting up is not possible. 

Finite ring: 

A ring R is finite if it has a finite number of elements for example ℤ9. 

Finite Local Ring: 

Consider a finite Ring R (R is commutative) with identity. We call R a local finite ring 

if its subset of all the non-invertible elements is closed under addition for example: 

ℤ4 

Chain Ring: 

A finite local ring 𝑅 whose radical 𝑀 form a principal ideal is called a chain ring for 

example 
ℤ2[𝑥]

<𝑥3>
= 𝔽2 + 𝑥𝔽2 + 𝑥2𝔽2 and 

𝐺𝐹(𝑞)[𝑥]

<𝑥𝑘>
= ∑ 𝑥𝑖𝐺𝐹(𝑞)𝑘−1

𝑖=0  Where 𝑞 = 𝑝𝑟, 𝑝 is a prime 

number and r is any positive integer. The polynomial 𝑥𝑘 ∈ 𝐺𝐹(𝑞)[𝑥]. 

Galois Ring: 

A finite polynomial ring 𝑅 with coefficients from ℤ𝑝𝑘 when factored by an ideal 

generated by an  irreducible polynomial 𝑓(𝑥) in ℤ𝑝𝑘[𝑥] is said to be Galois ring for example: 

ℤ22[𝑥]

< 𝑥2 + 𝑥 + 1 >
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Galois Field: 

A finite polynomial field with coefficients from ℤ𝑝, p is a prime, when factored by an 

ideal generated by irreducible polynomial f(x) in ℤ𝑝[𝑥] is called Galois field for example: 

ℤ2[𝑥]

< 𝑥2 + 𝑥 + 1 >
 

2.2. Cryptography 

Cryptology 

The science of encryption and decryption of algorithms and their analysis is given the 

name of cryptology. Here the first part forms Cryptography while the second Cryptanalysis. 

Furthermore, cryptography is divided into two main branches depending on the key schedule 

routine named Symmetric key cryptography and Asymmetric key cryptography. 

Symmetric and Asymmetric key cryptography 

On some occasions we use a single key to encrypt a message and the same key is used 

for its decryption process while in other cases a different key is used for its decryption 

procedure we call it as Symmetric and Asymmetric key cryptography. 

2.3. Notions used in Crypto-Algorithms 

The following ideas are used in algorithms: 

Bit 

Every binary representation of a number is a combination of two distinct digits 0 and 1 

known as bit. Whereas the collection of four digits form a nibble and that of eight form a 

byte. e.g. 0110 is a nibble and 10011001 is a byte.  

Bit Rotation 

Bit rotation or circular shift is the rearrangement of bits in a way that the last bit takes 

the position of first bit while all the other bits are moved to their next position, this type of bit 

rotation is called right circular shift while if the first bit is moved to the last position and all 

the other bits are moved to their previous position then this types of bit rotation is called left 

circular shift. >>> and <<< represents the right and left circular shift respectively e.g.:  

10011001 <<< 1 = 00110011 and 10011001 >>> 1 = 11001100 
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Most Significant and least significant Bit 

In a collection of numbers there are some bits which start that combination while 

other ends up it, these bits are called least significant and most significant bits respectively 

e.g.: 

10000000010 has 0 as its least significant bit while 1 as its most significant bit. 

This thesis mainly includes algorithms. Some of the basic concepts for an algorithm are: 

a) Plaintext: the original message given to cipher is called plaintext. 

b) Ciphertext: The text received after passing the plaintext through the cipher is known 

as cipher text. 

c) Encryption: The process by which a plaintext is converted into a ciphertext is called 

encryption. 

d) Decryption: the process of converting ciphertext to plaintext is called deciphering or 

decryption. 

e) Cipher: A Cipher is a particular system of Encryption. The figure shows plaintext, 

cipher, and ciphertext. 

 

f) Stream Cipher: In some ciphers, we treats single bit at a time and processed it this 

type of cipher is called Stream cipher. 

g) Block Cipher: Dealing with a combination of bits in a cipher instead of a single bit at 

a time is given the name of Block cipher. 

h) Algorithm: A step-by-step operation followed in a cipher is called an algorithm. 

Examples of algorithms are RC6 algorithm [17], Rijndael algorithm [18] and MC6 

algorithm. 

i) Cipher Key: In an algorithm, there is a given key known as cipher Key. This key is 

used to generate subkeys used in an algorithm. 

j) Subkeys: Keys obtained from the given cipher key by using a key expansion routine. 

k) Avalanche effect: Some time whenever we perform an operation on an array of bytes 

the resultant obtained is totally different this effect of a large change in output due to a 

small change in input is called avalanche effect. 
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l) Diffusion: The property of changing a single character in plaintext or ciphertext 

resulting a large change in the characters of ciphertext or plaintext respectively. 

m) Confusion: It is a process in which each character of ciphertext depends on a number 

of parts of the key. 

2.4. Crypto-Algorithms (Description of DES and AES proposed Algorithms) 

Most of the time we need to send a message secretly which is possible only when it is 

shared in between limited and trusty persons. The person who send a text secretly is called the 

sender while the other one who receive it is called the receiver. This art of secret message 

transferring is given the name of cryptography. Nowadays this communication is frequently 

made on computers. In the beginning (i.e. in 1960's) of cryptography, the secret communication 

was limited to government. In 1970's horst Feistel (German Cryptographer) created a cipher at 

IBM called the Feistel cipher. This was the first commercially seen cipher of the cryptographic 

history seen in 1973. The U.S National Bureau of Standards (NBS), now call the National 

Institute of Standards and Technology (NIST), published symmetric cipher in 1977 based on 

the Feistel cipher called the Data Encryption Standard (DES). It was considered to be highly 

secure and as a standard up to the end of 20𝑡ℎ century. 

The Data encryption standard also called the data encryption algorithm was a Federal 

Information Processing Standards (FIPS). As we know that Cryptography has two main types 

“Symmetric key cryptography” and “Asymmetric key cryptography” and DES has just a single 

Key there for it lie in the first type. It was designed for the National Bureau of Standards (NBS) 

by International Business Machines (IBM) in 1976 and was considered one of the best 

algorithm until 𝑡ℎ𝑒 20𝑡ℎ century. In this algorithm a 64-bit string is encrypted with the help of 

a secret key which is of 56-bit to obtain a cipher text of length 64-bit. In this algorithm, an 

Initial permutation is applied to the plaintext to split it to two words i.e. 𝐿0𝑅0. 16 subkeys each 

of length 48-bit are computed as a function of the given key K and with the help of these subkey 

𝐿16𝑅16 are find out and then apply the inverse linear permutation on their swapped result to get 

the cipher text. The main deficiency of this algorithm was its small key length which gives help 

for the cryptanalysts decrypt any secret message which was encrypted by the DES. In the 

Electronic Frontier Foundation and distributed.net DES secret Key were break within 22 hours 

and 15 minutes which is one the big achievement for the cryptanalysts in 1999. 
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In 1997 NIST (National Institute of Standards and Technology) call for ciphers, because 

of the theoretical and exhaustive key search attacks on DES. In June 1998 fifteen candidates 

were accepted and after shortlisting in aug-1999, five were chosen. The shortlist include: 

o Rijndael represented by Joan Daemen and Vincient Rijmen from RSA (lab) [8]. 

o RC6 [17] was presented by Rivest et al. (USA) 

o Serpent [1] was presented from Euro by Lars Knudsen, Ross Aderson and Eli Biham. 

o MARS [5] was presented by IBM Corporation. 

o TwoFish [18] was published in 1998 by Jhon Kelay, David Wazner, Niels Furguson, 

Bruce Schneier, Chris Hall and Doug Whiting. 

Rijndael, a fast symmetric cryptosystem, was chosen as an AES algorithm in 𝑜𝑐𝑡 −

2000. 

Requirements of AES: 

 A Block cipher that encrypts 128 − 𝑏𝑖𝑡 block of a plaintext. 

 Applicable for a key of length 128, 192 and 256 − 𝑏𝑖𝑡. 

 Highly secure, Fast and of less complexity. 

 Strong immunity to all well-known attacks. 

 Efficiency in hardware and software.  

 The active life of minimum 20 years. 

The proposed algorithms for AES are discussed as under: 

2.4.1. Rijndael Algorithm 

This algorithm satisfies all the requirements of AES. It encrypts a 128-bit block. In this 

case, the plain text and cipher text are each of length 128-bit. In this algorithm firstly we convert 

any secret message into bytes with the help of ASCII system. The plain text of 16 bytes is 

written in state and Exclusive-Ored (XOR) it with the supposed key which also consists of 16 

bytes. The resultant is passed from round 1. In this algorithm, the number of rounds depends 

on the Key size. For 128 − 𝑏𝑖𝑡, 192 − 𝑏𝑖𝑡 and 256 − 𝑏𝑖𝑡 10, 12 and 14 rounds are performed 

respectively. Each round consists of the following stages: 

i. Sub bytes: the S-box convert each byte to another byte. 

ii. Shift Row: A permutation process. 

iii. Mix column: A substitution using 𝐺𝐹(28). 

iv. Add round key: XOR of round key and Mix column. 
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v. The detailed structure of Rijndael algorithm [18] is given below: 

 

Fig. 6 Advanced Encryption Standard Algorithm flow chart [14] 

Stage-i (Sub Byte): 

In this stage, each given byte is replaced by another byte taken from an 8 × 8 

substitution box given by Rijndael [18] which is calculated from the transformation 𝐵′ =

𝐴𝑋−1 + 𝐵. Where A is a fix 8 × 8 Matrix having entries in bits, 𝑋−1 is the inverse of a byte X 

which represents a column vector whereas B is a fix column matrix. This transformation occurs 

in the form that the first nibble of each byte represents the x-axis while the 2𝑛𝑑 nibble represents 

the y-axis and the intersection value of these nibbles gives the sub-byte.  

Stage-ii (Shift Row): 

SHIFT ROW TRANSFORMATION: 

In this process 1𝑠𝑡 row is unaltered. 1𝑠𝑡 element of 2𝑛𝑑 row goes to the extreme and the 

remaining 3 bytes shifts to left. Similarly, in 3𝑟𝑑 row 3-bytes goes to the extreme and the 

remaining 2-bytes and 1-byte respectively shift to the left. Consider the example: 

 

 

7𝐶 77 7𝐵 𝐹2
6𝐵 6𝐹 𝐶5 30
62 91 95 𝐸4
𝐸𝐴 65 7𝐴 𝐴𝐸

 

 

7𝐶 77 7𝐵 𝐹2
6𝐹 𝐶5 30 6𝐵
95 𝐸4 62 91
𝐴𝐸 𝐸𝐴 65 7𝐴
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Stage-iii (Mix column): 

In the Mix column operation, each row value after transformation mapped to a new 

value which is the combination of all entries in that column. Each column is multiplied with a 

fixed matrix (given below) to get a combinatory entry of that column.  

 

 

 

Where multiplication and addition are performed in 𝐺𝐹(28) e.g. if the entries 87, 6E, 46 and 

A6 are the entries of a column then its multiplication results in 47. 

Stage-iv (Add round key): 

In this stage we XORed the result coming from Mix column operation with the subkeys 

obtained from the given key and thus we got an output of the first round.  

This process (four stages) is repeated a total of 10 times called the rounds for 128-bit key. In 

the last round, Mixcolumn operation is skipped out and results in the shape of a cipher text.  

2.4.2. TwoFish Algorithm 

The carefully designed TwoFish algorithm [18] was also one the proposed and even the 

shortlisted AES algorithm. It takes a 128-bit block as an input and produces an output of length 

128-bit. All of the processes in this algorithm occurs in the little endian convention. Firstly 

128-bit is split into four words and then XORed with the subkeys generated from the given 

key. This step is called the input whitening. The whole process is illustrated in the Fig. 7 below: 

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02
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Fig. 7 TwoFish Algorithm flow chart [9] 

After the input whitening step, this algorithm uses a Feistel function F (bijective) in its rounds. 

A total of 12 or 16 or 20 rounds is performed depending on the key size.  The bijective function 

F further comprises of rotation of bits, g-function, Pseudo-Hadamard transform (PHT) and Key 

addition under modulo 232. The use of substitution boxes mainly occur in the g-function and 

also this function includes a Maximum Distance Separable (MDS) matrix. Entries of these 

look-up tables are in nibbles but the substitution occurs here in bytes. The responsible fact for 

this situation is Q-permutation. If x is a byte then the Q-permutations are given as: 

a0 = [x / 16] and b0 = x mod 16 

i.e. the byte is first split into two 4-bit nibbles, a0 and b0  

𝑎1 = 𝑎0  ⊕  𝑏0  

𝑏 1 =  𝑎0  ⊕  𝑅𝑂𝑅 (𝑏0, 1)  ⊕ (8𝑎0 𝑚𝑜𝑑 16)  

𝑎2  =  𝑡0 [𝑎1]     (𝑡𝑖 are the look-up tables)  

𝑏2  =  𝑡1 [𝑏1]  

𝑎3  =  𝑎2  ⊕  𝑏2  

𝑏3  =  𝑎2  ⊕  𝑅𝑂𝑅 (𝑏2, 1)  ⊕ (8𝑎2 𝑚𝑜𝑑 16)  

𝑎4  =  𝑡2 [𝑎3] 

𝑏4  =  𝑡3 [𝑏3]  

𝑦 =  16𝑏4  +  𝑎4 (Output of Q-permutation) 

The internal structure is of S-boxes are shown below: 
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Fig. 8 Internal structure of S-box of TwoFish Algorithm [9] 

As four look-up tables are used in a single round and for 128-bit key the number of rounds are 

twelve so a total of 48 look-up tables are used to encrypt a 128-bit block while in the case of 

Rijndael it was only 10 which makes Rijndael better than TwoFish in hardware 

implementation. 

2.4.3. RC6 Algorithm 

RC6 [17] is one of the proposed shortlisted algorithm having a unique structure from 

the other four because of the excludeness of any substitution box. This is the improved version 

of the RC5 algorithm. Like other proposed algorithms it also encrypts a 128-bit block by using 

a variable key of length up 2040 bits in 20 rounds. It uses a Feistel-cipher structure. Generally, 

this cipher is denoted by RC6-w/r/b [17] where w is a 32-bit word, r represent a number of 

rounds and b stand for number of bytes of the given key. The flow chart of RC6 is given Fig. 

9 below: 
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Fig. 9 RC-6 Algorithm flow chart [7] 

 

In this algorithm the plain text is split into four w-bit words A, B, C and D. S[0] and S[1] are 

added with B and D under modulo 2𝑤 respectively. Where 𝑆[0] =  𝑃𝑤 and 𝑆[𝑖] = 𝑆[𝑖 − 1] +

𝑄𝑤. And 𝑃𝑤  and 𝑄𝑤 are magic constant use to calculate key expansion algorithm in the 

following manner: 

𝑃𝑤 = 𝑜𝑑𝑑((𝑒 − 2)2𝑤)  e=2.7182818 (base of natural logarithm) 

𝑄𝑤 = 𝑜𝑑𝑑((ф − 1)2𝑤)  ф=1.618033988 (called golden ratio) 

𝐵 =  𝐵 +  𝑆 [0] 

𝐷 =  𝐷 +  𝑆 [1] 

𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑟 𝑑𝑜 

{ 

𝑡 =  (𝐵 ×  (2𝐵 +  1))  <<<  𝑙𝑔 𝑤 

𝑢 =  (𝐷 ×  (2𝐷 +  1))  <<<  𝑙𝑔 𝑤 

𝐴 =  ((𝐴 ⊕  𝑡)  <<<  𝑢)  +  𝑆 [2𝑖] 

𝐶 =  ((𝐶 ⊕  𝑢)  <<<  𝑡)  +  𝑆 [2𝑖 +  1] 

(𝐴, 𝐵, 𝐶, 𝐷)  =  (𝐵, 𝐶, 𝐷, 𝐴) 

} 

𝐴 =  𝐴 +  𝑆 [2𝑟 +  2] 

𝐶 =  𝐶 +  𝑆 [2𝑟 +  3] 
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These complex arithmetic operations takes long time as compared to the other algorithms 

therefore it was not suitable for hardware implementation and hence is not chosen as an AES. 

2.4.4. Serpent Algorithm 

  All the five algorithm have their own identification in the field of cryptography but serpent 

algorithm has a unique identification due to its high speed. Although it is faster than DES but performing 

32 number of rounds its speed become slow enough so that it fails to become an AES. An initial 

permutation is applied on a plain text to get the first round input. This input is XORed with a subkey, 

passed through an S-box and then applied a linear transformation to get the first round output. In the 

32nd round an extra subkey is added and after passing this through the final permutation we get the 

cipher text. This algorithm is briefly described in the second chapter. 

2.4.5. Mars Algorithm 

It was also a proposed symmetric key block cipher for AES. It performs the 

Encryption/Decryption process on a plaintext of 128-bit. Split it into four w-bit words and the operations 

are performed on 32-bit word. This is a 16 round Feistel network surrounding all the rounds by two 

layers, the forward and backward mixing. Both the layers consists of 8 rounds. 

 

Fig. 10  Mars Algorithm flow chart [5] 

It accepts a key of length varying between 4 and 14 words and expand the user supplied key 

to forty subkeys each of length 32-bit. Each of the input w-bit words are passed through the forward 

mixing step then through the 16 rounds and at last from the backward mixing step to produce the 

cipher text. MARS [5] uses a look-up table consisting of 512 w-bit words (Sometimes it is considered 

as two S-boxes 𝑆0 𝑎𝑛𝑑 𝑆1 each of length 16 × 16 to oppose different known attacks like linear [15] 
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and differential attack. The operation used in the three steps are: addition, subtraction and 

multiplication over modulo232, exclusive-or, fix and data dependent rotation. The encryption 

procedure of MARS algorithm [5] is as under: 

‘𝑭𝒐𝒓𝒘𝒂𝒓𝒅 𝑴𝒊𝒙𝒊𝒏𝒈 
(𝐴, 𝐵, 𝐶, 𝐷)  =  (𝐴, 𝐵, 𝐶, 𝐷)  +  (𝐾[0], 𝐾[1], 𝐾[2], 𝐾[3]) 
𝑭𝒐𝒓 𝒊 =  𝟎 𝒕𝒐 𝟕 𝒅𝒐 { 
𝐵 =  (𝐵 ⊕ 𝑆0[𝐴])  +  𝑆1[𝐴 >>> 8] 
𝐶 =  𝐶 + 𝑆0[𝐴 >>> 16] 
𝐷 =  𝐷 ⊕  𝑆1[𝐴 >>> 24] 
𝐴 =  (𝐴 >>> 24)  +  𝐵(𝑖𝑓 𝑖 = 1,5)  +  𝐷(𝑖𝑓 𝑖 = 0,4) 
(𝐴, 𝐵, 𝐶, 𝐷)  =  (𝐵, 𝐶, 𝐷, 𝐴) 
} 

𝑪𝒓𝒚𝒑𝒕𝒐𝒈𝒓𝒂𝒑𝒉𝒊𝒄 𝑪𝒐𝒓𝒆 
𝑭𝒐𝒓 𝒊 =  𝟎 𝒕𝒐 𝟏𝟓 𝒅𝒐 { 
𝑅 =  ((𝐴 <<< 13)  ×  𝐾[2𝑖 + 5])  <<<  10 
𝑀 =  (𝐴 +  𝐾[2𝑖 + 4])  <<<  (𝑙𝑜𝑤 5 𝑏𝑖𝑡𝑠 𝑜𝑓 (𝑅 >>> 5)) 
𝐿 =  (𝑆[𝑀]  ⊕ (𝑅 >>> 5)  ⊕  𝑅)  <<<  (𝑙𝑜𝑤 5 𝑏𝑖𝑡𝑠 𝑜𝑓 𝑅) 
𝐵 =  𝐵 + 𝐿(𝑖𝑓 𝑖 < 8)  ⊕  𝑅(𝑖𝑓 𝑖 ≥ 8) 
𝐶 =  𝐶 +  𝑀 
𝐷 =  𝐷 ⊕  𝑅(𝑖𝑓 𝑖 < 8)  +  𝐿(𝑖𝑓 𝑖 ≥ 8) 
(𝐴, 𝐵, 𝐶, 𝐷)  =  (𝐵, 𝐶, 𝐷, 𝐴 <<< 13) 
} 

𝑩𝒂𝒄𝒌𝒘𝒂𝒓𝒅𝒔 𝑴𝒊𝒙𝒊𝒏𝒈 
𝑭𝒐𝒓 𝒊 =  𝟎 𝒕𝒐 𝟕 𝒅𝒐 { 
𝐴 =  𝐴 −  𝐵(𝑖𝑓 𝑖 = 3,7)  −  𝐷(𝑖𝑓 𝑖 = 2,6) 
𝐵 =  𝐵 ⊕  𝑆1[𝐴] 
𝐶 =  𝐶 − 𝑆0[𝐴 <<< 8] 
𝐷 =  (𝐷 −  𝑆1[𝐴 <<< 16])  ⊕ 𝑆0[𝐴 <<< 24] 
(𝐴, 𝐵, 𝐶, 𝐷)  =  (𝐵, 𝐶, 𝐷, 𝐴 <<< 24) 
} 
(𝐴, 𝐵, 𝐶, 𝐷)  =  (𝐴, 𝐵, 𝐶, 𝐷)  −  (𝐾[36], 𝐾[37], 𝐾[38], 𝐾[39])’ 

Because of the complex arithmetic operation, addition and Multiplication, it was not suitable 

for hardware implementation and hence is not selected as an AES. 
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CHAPTER 3 

SERPENT ALGORITHM 

Data Encryption Standard was used for many applications from 1970’s to 1997. Due to its 

small key length i.e. 56-bit key cryptanalysts break the key very quickly even with in a single 

day. Triple DES solve the key length problem but even then DES is used for many 

applications in hardware implementation due to its high speed. 

Keeping all the situation in mind, the US National institute of standards and Technology 

call for a cipher which in highly secure,  having high speed and less complex, given the name 

of Advanced Encryption Standard in 1997.  A total of fifteen algorithms was proposed for AES 

in June 1998. Since AES required a block cipher that encrypts a 128-bit block, accepting a 

varying key of length 128-bit, 192-bit and 256-bit, highly secure, fast and best implemented to 

hardware so NIST chooses five of those including Serpent algorithm. 

Our second chapter includes a review of Serpent algorithm, while the third chapter is 

responsible for some improvement in this algorithm. 

3.1. Construction of the Serpent Algorithm 

 Serpent [1], a symmetric block cipher, was designed for AES by Eli Biham (Technion 

Israeli Institute of Technology), Ross Anderson (University of Cambridge Computer 

Laboratory) and Lars Knudsen (University of Bergen, Norway). In this Algorithm, a 128-bit 

block is ciphered by using a key of length 256 bit in 32 different rounds. The first 31 rounds 

are identical, consisting of the same sequence of elementary operations while the last round 

differs only in the key schedule. Instead of mixing a single key like in the first 31 rounds, an 

additional key is mixed in the last round. Hence 33 round keys are required in the whole process 

that are generated from the external key. 

Fig. 11 represents the whole encryption process of Serpent Algorithm.  
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Fig. 11 Serpent Algorithm flow chart [1] 

Serpent Algorithm [1] is a block cipher encrypting a 128-bit block of a plaintext by using a key 

of length 256 bits. The Algorithm consists of three basic functions: 

 Initial permutation (𝐼𝑃) 

 Round function 

 Final permutation (𝐹𝑃) 

3.1.1. Initial and Final Permutation 

Basically, initial permutation is responsible for change in the position of bits. This 

change of position is performed by using a fixed table. This table is given as: 

 

Where the inverse permutation table is given by as follow: 
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This Permutation can also be performed by the formula [(𝑖 ∗ 32) 𝑚𝑜𝑑127] where 𝑖 represents 

the position of the bit we want to replace by using the table. The inverse permutation can also 

be performed algorithmically by using the formula [(𝑖 ∗ 4) 𝑚𝑜𝑑127]. We note from tables that 

the first and last bit stay fixed during the transformation. Applying 𝐼𝑃 to a plaintext, we get a 

data block 𝐵0 while applying 𝐹𝑃 on the result of the last round we get the cipher text.  

3.1.2. Round Function 

Many algorithms use a Substitution Permutation Network (SP-Network). These 

algorithms include the Serpent algorithm [1]. It operates on four w-bit vectors. These vectors 

combine to form a 128-bit block. Which we consider as an input to the round. There is a total 

of 32 rounds performed by serpent algorithm [1]. Firstly an initial permutation 𝐼𝑃 is applied to 

the plaintext which produces the data block 𝐵0. This data block plays the role of input in the 

1𝑠𝑡 round. Inside these rounds, each data block 𝐵𝑖 is mixed with a subkey Ki (i.e. taking XOR), 

then pass 𝐵𝑖 ⊕ 𝐾𝑖 through 𝑆(𝑖𝑚𝑜𝑑8) which is one of the eight S-boxes. After this a linear 

transformation 𝐿𝑇 is applied to 𝑆𝑖(𝐵𝑖 ⊕ 𝐾𝑖)  to get𝐵(𝑖+1), where 𝑖 = 0, 1, 2, 3, … , 30. In the 32𝑛𝑑 

round (last round) a 33𝑟𝑑 key is XORed instead of applying the linear transformation (𝐿𝑇) i.e. 

𝑆7(𝐵31 ⊕ 𝐾31) ⊕ 𝐾32 to get B32. Now the final permutation [(𝑖 ∗ 4) 𝑚𝑜𝑑127] is applied to get 

the ciphertext. The whole process is described shortly as:  

 𝐵0 = 𝐼𝑃 (𝑃) 

 𝐵𝑖+1 = 𝐿𝑇(𝑆 − 𝑏𝑜𝑥𝑖𝑚𝑜𝑑8(𝐵𝑖 ⊕ 𝐾𝑖))  Where “𝑖” is from 0 to 30 

 𝐵32 = 𝑆7 (𝐵31 ⊕ 𝐾31) ⊕ 𝐾32 

 𝐶 =  𝐹𝑃 (𝐵32) 

3.1.3. Elementary Transformations 

Key mixing, bit substitution and linear transformation are the basic elementary 

operations. Key mixing is just an exclusive-or (XOR) of subkey and a data block obtained from 

the plain text. Bit substitution is simply a substitution from eight different S-boxes while linear 

transformation consists of XOR, rotation and shift. 
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Unlike Rijndael [18], Serpent-1 [1] uses 8 different 4 × 4 S-boxes in which each entry 

is a nibble and each round uses a single replicated S-box in order to encrypt a 128-bit block. In 

Serpent-0, the S-boxes used were adopted from DES in order to ensure the high level of public 

confidence and then in Serpent-1 [1], the new and better S-boxes were generated which had 

stronger immunity to attacks. For maximal avalanche effect, the author used the XOR 

operation. Some complex operations (e.g. word addition) were dropped due to high cost in 

hardware and software implementation [4]. 

3.1.3.1. The Key Schedule 

The Serpent algorithm [1] accepts a key of variable length. It takes a key of length up to 

256 bit. If the supplied key is 256 bits, it is divided into eight 32-bit words named𝑤−8, 𝑤−7, …, 

𝑤−1. From these words, we find the prekeys𝑊𝑖 , where 𝑖 = 0, 1, 2, … , 131, by using the following 

affine recurrence: 

𝑊𝑖  =  (𝑤𝑖−8 ⊕ 𝑤𝑖−5 ⊕ 𝑤𝑖−3 ⊕ 𝑤𝑖−1 ⊕ ф ⊕ 𝑖) <<< 11 

Where ф is the fractional part of golden ratio whose value is given in hexadecimal as 0 ×

9𝑒3779𝑏9 and “ <<< ” denotes left shift. From this we can calculate the subkeys, 𝐾𝑖 as: 

𝐾𝑖 = 𝐼𝑃(𝑆(3−𝑖)𝑚𝑜𝑑8(𝑤4𝑖, 𝑤4𝑖+1, 𝑤4𝑖+2, 𝑤4𝑖+3));  𝑖 = 0,1,2, … , 32.  

If the key length is less than 256 bit, then it can be mapped to a 256-bit key by writing single 

“1” at the MCB end proceeded by as many zeroes as required to obtain a 256-bit key [1]. 

3.1.3.2. Substitution box 

In the initial stages i.e. when serpent algorithm [1] was first proposed for AES, the 

substitution boxes was adapted from DES. The reason for this was that these S-boxes have 

been studied very well and hence is understood clearly. This results serpent-0 which was as 

fast as DES and secure as triple-DES. After this new S-boxes were defined which was stronger 

than the older one. The procedure adapted to obtain these substitution boxes was as follow. 

A matrix of 32 arrays (DES S-boxes) was used to obtain these S-boxes, where each array was 

made up of 16 entries. These rows are transformed by exchanging entries in the 𝑖𝑡ℎ array 

depending on 𝑡ℎ𝑒 (𝑖 + 1) array and on an initial key in order that it satisfy the desired (linear 

and differential) properties. The repetition of this procedure ends up when 8 S-boxes have been 

produced. These S-boxes are given below: 
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The inverse S-boxes are given below: 

 

3.1.3.3. Linear Transformation 

The linear transformation takes an input of 32-bit and produces an input of 32-bit. It 

consists of Exclusive-or operation, rotation and shifting of bits. Any 32-bit input is first split 

into four bytes 𝑋0, 𝑋1, 𝑋2 and 𝑋3 and then apply the mentioned operations in the following 

manner: 

𝑋0, 𝑋1, 𝑋2, 𝑋3 ≔ 𝑆𝑖(𝐵𝑖  ⊕ 𝐾𝑖) 

𝑋1  ≔  𝑋0  <<<  13 

𝑋2 ≔  𝑋2  <<<  3 

𝑋1  ≔  𝑋1  ⊕ 𝑋0  ⊕ 𝑋2 

𝑋3  ≔  𝑋3  ⊕  𝑋2  ⊕ (𝑋0  <<  3) 

𝑋1 ≔  𝑋1 <<<  1 

𝑋3  ≔  𝑋3  <<<  7 

𝑋0  ≔  𝑋0  ⊕  𝑋1  ⊕ 𝑋3 

𝑋2  ≔  𝑋2  ⊕ 𝑋3  ⊕ (𝑋1  <<  7) 

𝑋0  ≔  𝑋0  <<<  5 

𝑋2  ≔  𝑋2  <<<  22 

𝐵𝑖+1  ≔  𝑋0, 𝑋1, 𝑋2, 𝑋3 

Where " ⊕ " denotes the exclusive-or, " <<< " denote left rotation of bits, " << " is used for 

left rotation of bits and "𝐵𝑖+1" is the (𝑖 + 1)𝑡ℎ data block. 
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3.1.3.4. Inverse Linear Transformation 

Instead of left shift and left rotation the inverse linear transformation consists of right shift 

and right rotation. It takes an input of 32-bits and produces an output of 32-bits. The inverse linear 

transformation is summarized in the below equations: 

𝑋0, 𝑋1, 𝑋2, 𝑋3 ≔ 

 𝑋2 ≔ 𝑋2 >>> 22; 

 𝑋0 ≔ 𝑋0 >>> 5; 

 𝑋2 ≔ 𝑋2 ⊕ 𝑋3 ⊕ (𝑋1 << 7) 

 𝑋0 ≔ 𝑋0 ⊕ 𝑋1 ⊕ 𝑋3; 

 𝑋3 ≔ 𝑋3 >>> 7; 

 𝑋1 ≔ 𝑋1 >>> 1; 

 𝑋3 ≔ 𝑋3 ⊕ 𝑋2 ⊕ 𝑋0 << 3; 

 𝑋1 ≔ 𝑋1 ⊕ 𝑋0 ⊕ 𝑋2; 

 𝑋2 ≔ 𝑋2 >>> 3; 

 𝑋0 ≔ 𝑋0 >>> 13; 

𝐵𝑖−1 ≔ 𝑋0, 𝑋1, 𝑋2, 𝑋3 

3.2. Decryption 

The inverse process of encryption is given the name of decryption. In some algorithm, it is 

same as the encryption process while in other it is different from its encryption process. In the 

case of Serpent algorithm [1], it is different from the process of encryption. Here the inverse 

S-boxes are used in the decryption process. Also, the inverse linear transformation and reverse 

order of subkeys are used [1]. 
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CHAPTER 4 

MODIFIED SERPENT ALGORITHM 

4.1. The Cipher 

We modify the Serpent-1 [1] algorithm by using different S-boxes from [19]. 

Like Serpent algorithm, this is also a block cipher that encrypts a 128-bit block using 

a key of 256 bit. This algorithm consist of three basic functions, all different in the 

structure by Serpent-1 [1]. The steps are: 

 

 Initial permutation (IP) (different from the previous algorithm) 

 Round function (R) (less number of rounds and in each round of this algorithm each 

step inspect different number of bit from Serpent-1) 

 Final Permutation (FP) (inverse of the initial permutation) 

The whole process of the algorithm under consideration is shown in the Fig. 12 below: 

 

Fig. 12 Modified Serpent Algorithm flows chart 

We take the initial permutation to be [(𝑖 ∗ 64) 𝑚𝑜𝑑127]. Applying this permutation to 

128 bits of a plaintext we get a block, B0 which is the input to the 1st round.  

 Unlike the Serpent algorithm [1], we use four 4 × 4 S-boxes taken from [19], consisting 

of entries in bytes which represent polynomials to perform the round functions, i.e., 22 rounds. 
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We reduced the number of rounds from 32 to 22 in order to decrease the complexity and make 

the algorithm fast. Moreover, we also observe that this change affect the security level, but not 

to the level that the algorithm becomes unsecured.  Inside these rounds we Mix 𝐵𝑖
′
  with 𝐾𝑖

′ and 

then pass through the S-box Simod4 and apply the linear transformation to get 𝐵𝑖+1
′ ; i = 0,1,2, …, 

20. In the 22nd round, instead of applying linear transformation we mix it with an additional 

pre-key 𝐾32
′ . Then the final permutation [(𝑖 ∗ 2) 𝑚𝑜𝑑127] (inverse of initial permutation) is 

applied to obtain the cipher text.  

The whole process is described as: 

 𝐵0
′ =IP (P) 

 𝐵𝑖+1
′ =LT(S-box imod4 (𝐵𝑖

′⊕𝐾𝑖
′));  

i is from 0 to 20 

 𝐵32
′ =S3 (𝐵21

′ ⊕𝐾21
′ )⊕𝐾22

′  

 C= FP (𝐵22
′ ) 

4.2. Elementary Transformations in proposed Cipher 

Key mixing, linear transformation, and bit substitution are the three operations used in 

Serpent Algorithm [1] under study. As it seems that all the operations are like Serpent 

Algorithm operations but in contrast to Serpent, we mix a key that is made up of two 2w-bit 

(w=32-bit) vectors and then we XORed it with a data block initially obtained from the plain 

text by applying the initial permutation. Furthermore, the bit substitution, in this case, is a 

substitution from four different S-boxes consisting of invertible elements obtained from a 

multiplicative subgroup of the group of units of finite chain ring 𝑅8 [19], whereas in the case 

of Serpent algorithm, these are obtained from DES. The linear transformation consists of XOR, 

rotation and shift. 

Unlike Serpent-1, in the modified Serpent-1 algorithm we use 4 different 4 × 4 S-boxes 

in which each entry is a byte and each round use a single genuine S-box in order to encrypt or 

decrypt a 128-bit block. In Serpent-0, for high level of public confidence the S-boxes used were 

those adopted from DES and then in Serpent-1 the new and better S-boxes were generated 

which had stronger immunity to attacks but in our case we use a new, more secure and more 

complicated S-boxes which might have stronger immunity to attacks than the previous ones.  

For maximum avalanche effect, we use the exclusive-OR operation.  
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4.2.1. S-boxes under consideration 

Nowadays good quality of ciphers are available depending on the non-linearity of 

substitution boxes and many other factors such as key schedule, number of rounds etc. (see 

[10, 12]).  Primarily, Shah et al. [20] constructed S-boxes by using maximal cyclic subgroups 

𝐺3 and 𝐺15 of groups of units of the Galois rings GR(22,2) and GR(22,4), respectively. 

Obviously, injective and surjective S-boxes are reversible [10]. In sequel [19], Shah et al. 

constructed an S-box, which is a subgroup of multiplicative group of units of finite 

commutative chain ring 𝑅8 =
ℤ2[𝑢]

<𝑥8>
= 𝔽2 + 𝑢𝔽2 + 𝑢2𝔽2 + 𝑢3𝔽2 + 𝑢4𝔽2 + 𝑢5𝔽2 + 𝑢6𝔽2 +

𝑢7𝔽2 consisting of 256 elements. Here, we follow the construction of S-box from [19] and 

obtained 4 different S-boxes. The multiplicative group of units of the ring R8 is given as under 

(see [19]): 

{10000000, 11000000, 10100000, 10010000, 10001000, 10000100, 10000010, 10000001, 

11100000, 11010000, 11001000, 11000100, 11000010, 11000001, 10110000, 10101000, 

10100100, 10100010, 10100001, 10011000, 10010100, 10010010, 10010001, 10001101, 

10001010, 10001001, 10000110, 10000110, 10000011, 11110000, 11101000, 11100100, 

11100010, 11100001, 11011000, 11010100, 11010010, 11010001, 11001100, 11001010, 

11001001, 11000110, 11000101, 11000011, 10111000, 10110100, 10110010, 10110001, 

10101100, 10101010, 10101001, 10100110, 10100101, 10100011, 10011000, 10011010, 

10011001, 10010110, 10010101, 10010011, 10001110, 10001101, 10001011, 10000111, 

11111000, 11110100, 11110010, 11110001, 11101100, 11101010, 11101001, 11100110, 

11100101, 11100011, 11011100, 11011010, 11011001, 11010110, 11010101, 11010011, 

11001110, 11001101, 11001011, 11000111, 11011100, 11011010, 10111001, 10110110, 

10110101, 10110011, 10101110, 10101101, 10101011, 10100111, 10011110, 10011101, 

10011011, 10010111, 10001111, 11111100, 11111010, 11110110, 11101110, 11011110, 

10111110, 11111001, 11110101, 11101101, 11011101, 10111101, 11110011, 11101011, 

11011011, 10111011, 11100111, 11010111, 10110111, 11001111, 10101111, 10011111, 

11111110, 11111101, 11111011, 11110111, 11101111, 11011111,   10111111,    11111111} 

Clearly this group contains a total of 128 elements. With the property that: 

Number of elements of order 8 =  64 

Number of elements of order 4 =  48 

Number of elements of order 2 =  15 

Number of elements of order 1 =  01 
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This group has a subgroup of cardinality 16 which is < 1 +  𝑢3  +  𝑢6, 1 +  𝑢2  + 𝑢4  +

 𝑢5  +  𝑢7 >. Define 𝑓: 𝐻𝐺8
          𝐻𝐺8

 by 𝑓(𝑎)  =  𝑎−1
 and 𝑔: 𝐻𝐺8

           𝐻𝐺8
 by g(a)=𝑎,a where 

𝑎′= 1 +  𝑢4  +  𝑢6. Thus fog is the S-box 𝑆0
′  on the finite commutative chain ring (𝑅8) which 

is as under: 

 

10001010 10011001 10000010 10001000 

10011011 10101111 10100101 10111010 

10010010 10110001 10000000 10101101 

10100111 10111000 10010000 10110011 

Table 1: S-box on finite commutative chain ring 𝑅8 

 

The second S-box 𝑆1
′ is obtained by rotating the rows of the 1𝑠𝑡 S-box. The first row remain 

unchanged, 2𝑛𝑑 is rotated by one byte, 3𝑟𝑑 row is rotated by 2 bytes and the 4𝑡ℎ by 3 bytes. 

The 3𝑟𝑑 S-box is obtained by repeating the same process on the 2𝑛𝑑 S-box and the 4𝑡ℎ one is 

obtained by repeating the same process on the 3𝑟𝑑 one in order to maximize the avalanche 

effect and for high-security purpose. Where in each round we use a single genuine S-box.  

Inverse S-box: The inverse S-box is given by the table 2: 

10001010 10011011 10000010 10001000 

10011001 10100101 10101111 10110011 

10010000 10111000 10000000 10100111 

10101101 10110001 10010010 10111010 

Table 2: Inverse S-box on finite commutative chain ring 𝑅8 

4.2.2. Implementation of S-box 

 Divide the 128-bit into 16 bytes, numbering the entries of S-box from 0 to 15. Multiply 

the 1𝑠𝑡 byte of 128-bit with 1𝑠𝑡 entry of S-box, 2𝑛𝑑 byte with 2𝑛𝑑 entry of S-box and so on i.e. 

𝑋𝑖𝑌𝑖;  0 ≤ 𝑖 ≤ 15, where 𝑋𝑖  represents byte of the state and 𝑌𝑖 represents byte of the S-box. 

Note that the multiplication is carried out in the finite local ring ℤ28 and addition in binary field 

𝔽28. 
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4.2.3. Key under consideration 

 

If the supplied key is of length 256 bit we divide it into four 64 bit words named 𝑤−4
′ , 

𝑤−3
′ , 𝑤−2

′  and 𝑤−1
′ . From these vectors we find the pre-keys 𝑤𝑖

′; 𝑖 = 0,1,2, … ,46  by the 

following affine recurrence: 

𝑤𝑖
′  =  (𝑤𝑖−4 ⊕ 𝑤𝑖−1 ⊕ ф, ф ⊕ 𝑖, 𝑖) <<< 5 

Ф is the fractional part of the golden ratio (√5 + 1)/2 dentod by 0 × 9𝑒3779𝑏9 in hexadecimal 

and “ <<< ” denotes left rotation of the bits. From this we can calculate the subkeys 𝐾𝑖
′ as: 

𝐾0
′ = 𝐼𝑃(𝑆1 (𝑊0, 𝑊1)) 

𝐾1
′ = 𝐼𝑃(𝑆0 (𝑊2, 𝑊3)) 

𝐾2
′ = 𝐼𝑃(𝑆3 (𝑊4, 𝑊5)) 

𝐾3
′ =  𝐼𝑃(𝑆2 (𝑊6, 𝑊7)) 

       … 

𝐾22
′ =  𝐼𝑃(𝑆3 (𝑊45, 𝑊46)) 

𝐾𝑖
′ = 𝐼𝑃(𝑆(1−𝑖) 𝑚𝑜𝑑4(𝑤2𝑖, 𝑤2𝑖+1));  𝑖 = 0,1,2, … , 32.  

Every key of  length less than 256 bits can be mapped to a 256-bit key by writing one “1” at 

the extreme left followed by as many zeros as required to become a 256 bit key. 

4.2.4. Linear Transformation: 

 We use the same linear transformation as used in Serpent-1. 

4.3. Decryption 

Since we are using the elements of an S-box obtained from a subgroup of the 

multiplicative group of commutative chain ring (𝑅8). Therefore each entry must have an 

inverse that forms the inverse S-box which we use in the reverse process. The inverse linear 

transformation and reverse order of subkeys are used in order to achieve our goal, i.e., to 

convert a ciphertext to plaintext. 

4.4. Pseudo Code 

//Main: start main function dataBlock 

//input of 128 bits key 
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// input of a 256 bits, append 1 and make 256 

S[4][16] 

// initialization of S-boxes 

makeWKeys (key); 

for (i:021) 

{//begin for 

initialPermutaion(dataBlock); 

dataBlock=dataBlock⊕getPrimeKey (i); 

dataXORPrime(dataBlock, getPrimeKey(i), i); 

if (i != 21) // “!” represent not. 

linearTransformation (dataBlock); 

}//end for 

dataBlock=dataBlock⊕getPrimeKey(22); 

finalPermutation(dataBlock); 

// now dataBlock is contains encrypted form of    input data  

//end main function 

// Used Funcitons:  

______________________________________________________________ 

Function makeWKeys (dataBlock) 

//WKeys represent Prekeys 

{//begin function 

//making w-4 to w-1 : w0w3  

for (i:031) 

W[i]=dataBlock[i]; 

for (i:3263) 

W[i-32]=dataBlock[i]; 

for (i:6495) 

W[i-64]=dataBlock[i]; 
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for (i:96128) 

W[i-96]=dataBlock[i]; 

//making w0 to w65:w4w49 

for (i:449) 

W[i]= (wi-4⊕wi-1⊕ ф, ф⊕i,i)<<<5; 

}//end function 

______________________________________________________________ 

Function initialPermutation(&dataBlock)  

{//begin function 

for (i:0127) {//begin for 

if (i != 127) 

index = (i*64)%127;     // “%” is used for 

modulo 

else 

index =127; 

newBlock[i] = dataBlock [index]; 

}//end for 

dataBlock= newBlock; 

}//end function 

______________________________________________________________ 

Function getPrimeKey(index) 

// prime-key represent subkey 

{//begin function 

primeBlock= w(2*index), w(2*index+1); 

// the bits of the two are taken side by side. 

polyMult(primeBlock, S(1-index)mod4); 
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initialPermutation(primeBlock); 

return primeBlock; 

}//end function  

Function dataXORprime(&data, pkey, index) // pkey represent 

subkey 

{//begin function 

t;     //temporary byte 

d[16];           //byte size array 

k[16];           //byte size array 

for (i: 015 ) 

{//begin for 

// now we split data and pkey into 16 bytes. 

d[i] = data[i*8] to data[i*8+8]; 

k[i] = pkey[i*8] to pkey[i*8+8]; 

d[i] = d[i] ⊕ k[i];                 //taking XOR 

of bytes and storing  

polyMult(t, s[index%4][i], d[i]); 

d[i] = t; 

}//end for 

data = d[0] to d[15]; 

// combining all bytes 

}//end function 

______________________________________________________________ 

Function linearTransformation(& input) 

{//begin function 
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// split input into 4 of 32 bit variables. 

X0 = input[0] to input[31] 

X1 = input[32] to input[63] 

X2 = input[64] to input[95] 

X3 = input[96] to input[127] 

 

//operations 

X0=rotleft(X0,13); 

X2=rotleft(X2,3); 

X1=X1⊕X0⊕X2; 

X3=X3⊕X2⊕(X0<<3); 

X1=rotleft(X1,1); 

X3=rotleft(X3,7); 

X0=X0⊕X1⊕X3; 

X2=X2⊕X3⊕(X1<<7); 

X0=rotleft(X0,5); 

X2=rotleft(X2,22); 

 

// rejoining X0, X1, X2, X3 to replace input data 

input= X0, X1, X2, X3         // their bits are taken 

side by side. 

}//end function 

______________________________________________________________ 

Function polyMult(&result, w, s) 

{//begin function 
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// all inputs are byte sized 

result=0; // Resetting all bits to 0 

for (i:08) 

{//begin outer for 

if (w[i]==0)    //if ith bit is zero  

continue;     // then jump to next iteration directly 

for(j: 0 8) 

{//begin inner for 

If (s[j]==0) 

Continue;  

If (i+j>7) 

Continue; 

flipBit (result, i+j);     //flip (i+j)th bit in result 

// flipBit() isn’t implemented, an already built programming 

construct is used 

// to do it. 

}//end inner for 

}//end outer for 

}//end function 

______________________________________________________________ 

Function finalPermutation (&dataBlock) 

{//begin function 

for (i:0127) 

{//begin for 

if (i!=127) 

index=(i*2)%127; 

else 
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index=127; 

newBlock[i]=dataBlock[index]; 

}//end for 

dataBlock=newBlock; 

}//end function 

___________________________________________________________________________ 

4.5. Complexity and Speed Analysis 

Complexity of the proposed Algorithm is taken in comparison with Serpent 

Algorithm. 

Conventions: 

 The basic unit cost of an operation is taken as Constant (C). 

 Bitwise Operations will have a cost of Constant(C). i.e. XOR operations, shifts and 

rotation. 

Analysis of Serpent algorithm: 

We find the complexities of the individual parts of the algorithm first. 

i. Initial Permutation: Total 128 bits are copied. Cost: 128C 

ii. Making W₋₈ to W₋₁: Total 128 bits are copied. Cost: 128C 

iii. Making W₀ to W₁₃₁: (5 XOR operations + 1 Shifts) = 6C, 132 times: 792C 

iv. Making Round Key: Initial Permutation = 128C, Polynomial Multiplication of 128 

bits                                                                                                                   

 =128*128 = 16384C, 16384+128 = 16512C (extreme worst Case) 

v. Data Block XOR: 32 XOR operations: 32C 

vi. Linear Transformation: 16 unit operations: 16C 

vii. Final Permutation: Total 128 bits are copied: 128C 

Sequential Algorithm Flow: 

Now we follow the algorithm with the above costs to calculate overall cost. 
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Making W₋₈ to W₋₁      128C 

Making W₀ to W₁₃₁      792C 

for:i=0 to 31 

{ 

Initial Permutation   128Cx32        = 4096C 

Making Round Key   16512Cx32    = 528384C 

Data Block XOR   32Cx32           = 1024C 

if(i!=31) 

Linear Transformation   16Cx31          = 496C 

}         

 Data Block XOR      32C 

 Final Permutation         128C 

        ------------- 

       Total:  535080C 

Analysis of Proposed Algorithm: 

We find the complexities of the individual parts of the algorithm first. 

i. Initial Permutation: Total 128 bits are copied. Cost: 128C 

ii. Making W₋₄ to W₋₁: Total 128 bits are copied. Cost: 128C 

iii. Making W₀ to W49: (3 XOR operations + 1 Shifts) = 4C, 49 times: 390C 

iv. Making Round Key: Initial Permutation = 128C, Polynomial Multiplication of 128 

bits                                                                                          = 128 ∗ 128 = 16384C, 

16384+128 = 16512C (extreme worst Case)  

v. Data Block XOR: 16 XOR operations: 16C 

vi. Linear Transformation: 16 unit operations: 16C 

vii. Final Permutation: Total 128 bits are copied: 128C 

Sequential Algorithm Flow: 

Now we follow the algorithm with these costs to calculate overall cost. 
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Making W₋₄ to W₋₁      128C 

Making W₀ to W₆₅      390C 

for i = 0 to 21 

{ 

Initial Permutation:    128Cx22       = 2816C 

Making Round Key:    16512Cx22   = 363264C 

Data Block XOR:    16Cx22         = 352C 

if(i!=21) 

Linear Transformation:     16Cx21         = 336C 

}         

 Data Block XOR:       16C 

 Final Permutation:          128C 

        ------------- 

       Total:   367430C 

 

 

Performance: 

Relation between the two can be taken from: 

|535080 – 367430| / 535080 * 100 

= 31% 

The new algorithm is 31% better. 
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CHAPTER 5 

CONCLUSION 

Crypto-Algorithms play an important role in secure communication. For the purpose of 

secure communication different algorithms like Rijndael algorithm, Serpent Algorithm, MARS 

Algorithm, TwoFish Algorithm and RC6 Algorithm have been designed. The preference is 

given to Rijndael Algorithm for AES because of its secureness, less complexity and fast speed. 

We amended the Serpent Cipher and consequently it became 31% less complex and faster 

than the original algorithm. Dealing with a vector of 64 bits instead 32 bits at a time in the 

prekeys formation take a rule for speeding up the process of key formation and hence the whole 

algorithm (Slowness, the main drawback of Serpent Algorithm). Instead of using the replicated 

S-boxes obtained from DES as in the Serpent, we used genuine S-boxes that was obtained from 

the commutative chain ring 𝑅8 =
ℤ2[𝑥]

<𝑥8>
= 𝔽2 + 𝑥𝔽2 + 𝑥2𝔽2 + 𝑥3𝔽2 + 𝑥4𝔽2 + 𝑥5𝔽2 +

𝑥6𝔽2 + 𝑥7𝔽2. The security of the proposed algorithm is hidden in the operation “addition” and 

“multiplication” which we performed in different systems (i.e. in R8, addition coincide with the 

field “𝔽28” and multiplication with the ring ℤ28)). In our modified algorithm when S-box is 

applied on a byte, the result falls in a set of 512 elements which means that the range of our S-

box is the double time the range of Rijndael algorithm that gave strength to our algorithm. Also 

we believe that by performing half of the rounds (i.e. 11 rounds), the algorithm was secure as 

much as triple DES [13], the reason is that the best considered well known attack on AES and 

Serpent “the Extended spares linearization (XSL) attack” [6] is applicable to the elements of a 

Galois field, where there is an inverse for each element but in our case each element of the ring 

did not have inverse.  This algorithm is free in all aspects from DES and all other algorithms 

especially in the case that how to apply the S-boxes. Also, in this case, we treated each element 

as a polynomial where addition and multiplication occur in the finite commutative chain ring 

R8. It also gave a high level of confidence due to excludeness of any trapdoor. 
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