
i

In the name Of Allah, the most beneficent, the eternally

merciful

ii

On Advanced Encryption Standard and S-boxes

By

Tanveer ul Haq

Department of Mathematics

Quaid-i-Azam University

Islamabad, Pakistan

2016

iii

On Advanced Encryption Standard and S-boxes

By

Tanveer ul Haq

Supervised By

Prof. Dr. Tariq Shah

Department of Mathematics

Quaid-i-Azam University

Islamabad, Pakistan

2016

iv

On Advanced Encryption Standard and S-boxes

By

Tanveer ul Haq

A thesis submitted in the partial fulfillment of the requirement for the degree of

MASTER OF PHILOSOPHY

in

Mathematics

Supervised By

Prof. Dr. Tariq Shah

Department of Mathematics

Quaid-i-Azam University

Islamabad, Pakistan

2016

v

Dedicated to

My

Beloved

Parents

vi

 Acknowledgement

 I am heartily thankful to Dr. Tariq Shah, Professor in the department of Mathematics,

Quaid-i-Azam University, Islamabad, for giving me the opportunity to work under his grand

supervision.

o I would also like to convey my sincere gratitude to Dr. Ghazanfr Farooq, Assistant

Professor in Computer Science department, Quaid-i-Azam University, Islamabad and

Professor Dr. Tasawar Hayat, Chairman of the department of mathematics, Quaid-i-

Azam University, Islamabad.

o I also like to thanks my brother Ijaz ul Haq, my friend Wahid Ullah, Taimoor Abdullah

Khan, Zeeshan Afzal Satti, Atta Ullah and Yasir Naseer for the necessary cooperation

in the accomplishment of my thesis.

Last but not the least, I would like to thank my family, who have been a source of

encouragement and motivation throughout the duration of the study.

Tanveer ul Haq

vii

Preface

Cryptography plays a fundamental role in the security of data transmission. After the

early stages of cryptography i.e. in the Egyptians times, four thousand years before till the 2nd

world war, cryptography played a prominent role in the 20th century. Nevertheless, post-World

War II, the development of a variety of crypto analysis techniques weakened cryptography of

the earlier stages. Accordingly, these techniques break the codes and different algorithms that

were secure in the early stages. In 1970’s Horst Feistel created a cipher at IBM called the Feistel

Cipher and then in 1997 the US National Bureau of Standards (NBS) published a cipher named

Data Encryption Standard (DES) [3]. This Cipher was considered to be the best secure

algorithm till 1997. It uses a key of length 56-bit which was very small as shown by recent

distributed key search exercise [14]. When DES was nearing its end, the US National Institute

of Science and Technology (NIST) issued a call for an algorithm which was highly secure,

simple and fast called the “Advanced Encryption Standard (AES)”. The NIST shortlisted five

algorithms, out of which Rijndael algorithm [18] was chosen as an AES. It is a 128-bit block

cipher that accepts keys of length 128-bit, 192-bit and 256-bit. This was designed to overcome

the issues of secure communication especially on platforms like ATM networks, High

Definition Television (HDTV) and Integrated Services Digital Network (ISDN) (see [21]).

Among shortlisted algorithms proposed for Advanced Encryption Standard (AES), the

Serpent Algorithm [1] is also included. For Serpent Algorithm, initially S-boxes are taken from

DES that resulted in Serpent-0 [13], a more secure Algorithm than triple-DES [13] having a

key size of length 192 or 256 bits, presented at the 5th international workshop on Fast Software

Encryption [4]. After this, Serpent-1 [1] was designed which used new and stronger S-boxes

(taken from DES S-boxes) with a different key schedule in order to resist different attacks like

differential [4] and linear [2]. Like Rijndael, Serpent Algorithm was also designed to encrypt

a 128-bit block by using keys of length 128-bit, 192-bit or 256-bit. It was especially designed

for intel-based chips. Nowadays it is used in folder locks like “Folder Lock Professional”,

Dropbox file security [23] etc.

There are different ways to modify these algorithms e.g. using Substitution boxes (S-

boxes) of good quality depending on their nonlinearity. Furthermore, it also depends on the

number of rounds and key schedule.

viii

On the lines of AES S-box, different S-boxes were constructed over finite Galois fields

𝐹2𝑚 , 𝑚 = 2, 3, 4, 5, 6, 7, 8, such as residue prime S-box [12], perfect nonlinear S-box [16],

Gray S-box [22], APA S-box and S8 AES S-box [11]. In our proposed Algorithm (Modified

Serpent Algorithm), unlike the Serpent-0 and Serpent-1, we used 4 × 4 S-boxes constructed

from a commutative chain ring whose each entry is a byte [19]. Splitting the given key into just

two vectors, we calculated approximately half of the pre-keys as compared to Serpent

Algorithm [1]. Moreover, the pre-keys calculated in our proposed algorithm are different from

those calculated in Serpent Algorithm. For the proposed Modified Serpent Cipher in this study

use the same ideas for bit slice implementation of cipher [3] like Serpent-1. Furthermore, unlike

the DES that gains extra speed by encrypting 64 different blocks in parallel, each single block

of the Serpent Algorithm in this study is efficiently encrypted by bit slicing and hence there is

no need of changes for gaining extra speed. The Serpent Algorithm S-boxes are limited to

hexadecimal numbers (i.e. both the domain and range are confined to 16 numbers) while in our

modified procedure the 4 × 4 S-box has the property that it take elements from commutative

chain ring 𝑅8 =
ℤ2[𝑥]

<𝑥8>
= 𝔽2 + 𝑥𝔽2 + 𝑥2𝔽2 + 𝑥3𝔽2 + 𝑥4𝔽2 + 𝑥5𝔽2 + 𝑥6𝔽2 + 𝑥7𝔽2 having

512 elements, and results again in 𝑅8. This property extends the security of Modified Serpent

Algorithm. Using less number of rounds and dealing with 64-bits at a time make the algorithm

fast, whereas the main drawback of the Serpent algorithm is its less speed as compared to

Rijndael. Consequently, a moderate complexity level is automatically developed.

ix

Contents
CHAPTER 1 .. 1

HISTORY OF CRYPTO-ALGORITHMS .. 1

1.1. Ancient Egyptians .. 1

1.2. Greeks ... 1

1.3. Romans ... 1

1.4. Alberti-Vigenere Cipher .. 2

1.5. Jefferson Wheel Cipher ... 3

1.6. World War 1 .. 4

1.7. Enigma Machine .. 4

1.8. One-Time Paid ... 5

CHAPTER 2 .. 6

ELEMENTARY CONCEPTS OF ALGEBRAIC STRUCTURES AND CRYPTO-ALGORITHMS 6

2.1. Algebraic Structures Basics: .. 6

2.2. Cryptography .. 9

2.3. Notions used in Crypto-Algorithms ... 9

2.4. Crypto-Algorithms (Description of DES and AES proposed Algorithms) 11

2.4.1. Rijndael Algorithm .. 12

2.4.2. TwoFish Algorithm .. 14

2.4.3. RC6 Algorithm ... 16

2.4.4. Serpent Algorithm ... 18

2.4.5. Mars Algorithm ... 18

CHAPTER 3 .. 20

SERPENT ALGORITHM ... 20

3.1. Construction of the Serpent Algorithm .. 20

3.1.1. Initial and Final Permutation ... 21

3.1.2. Round Function ... 22

3.1.3. Elementary Transformations .. 22

3.1.3.1. The Key Schedule .. 23

3.1.3.2. Substitution box .. 23

3.1.3.3. Linear Transformation ... 24

3.1.3.4. Inverse Linear Transformation .. 25

3.2. Decryption ... 25

CHAPTER 4 .. 26

MODIFIED SERPENT ALGORITHM ... 26

4.1. The Cipher ... 26

x

4.2. Elementary Transformations in proposed Cipher ... 27

4.2.1. S-boxes under consideration .. 28

4.2.2. Implementation of S-box .. 29

4.2.3. Key under consideration ... 30

4.2.4. Linear Transformation: ... 30

4.3. Decryption ... 30

4.4. Pseudo Code ... 30

4.5. Complexity and Speed Analysis .. 36

CHAPTER 5 .. 39

CONCLUSION ... 39

REFERENCES .. 40

Table of Figures:

Fig. 1 Scytale.. 1

Fig. 2 Caeser Cipher Wheel ... 2

Fig. 3 Jefferson Cipher Wheel ... 3

Fig. 4 Zimmerman Encrypted and Decrypted Telegram ... 4

Fig. 5 Enigma Machine .. 5

Fig. 6 Advanced Encryption Standard Algorithm flow chart .. 13

Fig. 7 TwoFish Algorithm flow chart .. 15

Fig. 8 Internal structure of S-box of TwoFish Algorithm .. 16

Fig. 9 RC-6 Algorithm flow chart .. 17

Fig. 10 Mars Algorithm flow chart ... 18

Fig. 11 Serpent Algorithm flow chart .. 21

Fig. 12 Modified Serpent Algorithm flow chart .. 26

1

CHAPTER 1

HISTORY OF CRYPTO-ALGORITHMS

1.1. Ancient Egyptians

The beginning of cryptography occurs from an Egyptian town known as Menet Khufu

approximately 4000 years ago. In this age an Egyptian named Khnumhotep use unusual

symbols to present usual symbols, which is a type of substitution cipher. They call this

substitution as the hieroglyphic substitution. This cipher was helpful for the scribe of those

days who want to represent their writing in a formal way. But this method was not secure

enough because one who can read and write could easily understand what they have been

written.

1.2. Greeks

A device call scytale was developed by Spartans is shown in Fig. 1 below. This is a cylinder

shape device which was wounded with a narrow strip made up of parchment. The plaintext was

written on the parchment length-wise when the parchment was unwounded the alphabets take

the shape of a ciphertext. Nowadays we call these ciphers the transposition ciphers because

here only the position of alphabets have been changed. Cipher like this is easily hacked

nowadays but in its early ages, it was difficult to decrypt a message without having the same

scytale through which it was encrypted.

Fig. 1 Scytale

1.3. Romans

One of the major problem that a nation have to face is the security of their military

information and communication. It was the Romans who give cryptography an importance on

the military level 2000 year ago. The commander of army Caesar initiates the secure

communication between their troops by developing a new technique of cryptography. Caesar

for the first time introduces the method of substitution call the Caesar cipher. In this cipher, he

replaces one known alphabet by another known alphabet. This cipher gives an advantage to

2

Roman forces in the war. In this cipher, the concept of a secret key was introduced. The main

theme of this cipher was to rotate the English alphabets by a specific number. This number is

actually the cipher key. Caesar cipher is shown in the Fig. 2.

Fig. 2 Caeser Cipher Wheel

1.4. Alberti-Vigenere Cipher

Slowly and steadily the cryptographic algorithms were blooming on. After the Romans

in 14th century mid "Alberti" (Italian) gives the concept of a polyalphabetic cipher. He uses a

mechanical device consisting of many disks which allowed to many different substitution

methods.

In the 15th century, Blaise De Vigenere introduces a cipher called Vigenere Cipher. The

main idea uses by Vigenere was the same like Alberti cipher. The only difference from Caesar

cipher is that of the key. Throughout the encryption and decryption process, the key has been

changed by the Vigenere in order that the cipher became more secure. He uses the following

table to secure the data:

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

G H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

H I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

I J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

J K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

K L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

L M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

M N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

3

O P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

Q R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

R S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

S T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

T U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

U V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

V W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

W X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

X Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Vigenere Table

The substitution under the cipher occurs in a simple way. The first column represents

alphabets of plaintext while the first row is that of the given key. While their intersection gives

the ciphertext. The key is used repeatedly again and again until all the plaintext alphabets are

encrypted for example:

Plaintext: PAKISTAN

Key: KPK

Ciphertext: AQVTIEKD

1.5. Jefferson Wheel Cipher

In between 1700’s and 1800’s Jefferson modified the Vigenere cipher by inventing a 26

wheel instrument having randomly scattered alphabet on each wheel. While the role of a key

is played by the numbers given to each wheel. In encryption process, the plaintext lined up on the

wheels to obtain a cipher text. The ciphertext lies in a row above or below the plaintext for example:

Fig. 3 Jefferson Cipher Wheel

4

In 19th century army of the United States reinvented the cipher without any previous knowledge

because the Jefferson doesn't develop his cryptographic system. The American army uses this system

for his data security from 1923 to 1942.

1.6. World War 1

Cryptography played an important role in the World War 1 (WW1) when the British army

caught the telegram of Germans. This telegram was encoded by Zimmerman. The British hack

and decode the message which results the USA’s to be with the British. The encrypted and

decrypted telegram of Zimmerman is shown in the Fig. 4.

Fig. 4 Zimmerman Encrypted and Decrypted Telegram

War Driven Cryptography:

1.7. Enigma Machine

In 𝑡ℎ𝑒 19𝑡ℎ century Arthur Scherbius a German engineer invented the enigma machine

for the encryption and decryption purposes of data. The encryption of enigma was strong

enough because the enigma allows 10114 possible configurations. This machine gives enough

strength to Germany during World War2. But the over confidence of Germans on Enigma

Machine fall them in a result of lose of the WW2. Many encryptions made by Germans through

enigma was deciphered by the allied forces resulting in the victory of the Allied Forces. Enigma

machine is shown in the Fig. 5 below:

5

Fig. 5 Enigma Machine

1.8. One-Time Paid

Modern encryption begins in early 1900’s when the One-time Pad algorithm was

invented. This was the early age of playing with bits in an algorithm. The One-time Pad

algorithm was proven to be unbreakable in the beginning. Later on the probabilistic approach

decrypt this algorithm. In this algorithm, a plaintext is considered and a key is XORed

(Exclusive-or) with it to obtain a ciphertext. In the reverse process, the same key is XORed

with the ciphertext to obtain the plaintext. Example is given below:

Let plaintext = 11101110 and the given key is 10001000 then the ciphertext becomes:

1110111010001000 = 01100110

After passing through these stages cryptography arrived at Symmetric and Asymmetric key

cryptography which is briefly discussed in the 2𝑛𝑑 chapter.

6

CHAPTER 2

ELEMENTARY CONCEPTS OF ALGEBRAIC STRUCTURES AND

CRYPTO-ALGORITHMS

This chapter includes some of the basic concepts of algebra and cryptography. This chapter

has been divided into two main section. The first section contains some of the basic concepts

of algebra mainly related to algorithms especially in the key part of the algorithm so call

Substitution box and the second one contain some basic ideas about cryptography and the

cryptographic algorithm.

2.1. Algebraic Structures Basics:

In this section, we present some definition with examples like a ring, field, Galois field,

Galois ring, chain ring and some other preliminaries which help us to understand the algorithms

properly.

Binary operation:

A binary operation is a mapping ∗ ∶ 𝐴 × 𝐴 → 𝐴, where A is a non-empty set, defined

by:

∗ (𝑎, 𝑏) = 𝑎 ∗ 𝑏 ∈ 𝐴 for all 𝑎, 𝑏 ∈ 𝐴

Groupied:

It is a closed non-empty set i.e. if A is a non-empty set with the property that 𝑎 ∗ 𝑏 ∈ 𝐴

for all 𝑎, 𝑏 ∈ 𝐴 then 𝐴 is closed and hence called a groupied. For example:

The binary operation ∗ on the set of rational numbers Q defined by 𝑎 ∗ 𝑏 =
𝑎−𝑏

2
 for all 𝑎, 𝑏 ∈

𝑄.

Semigroup:

A closed non-empty set 𝐴 that holds Associative property w.r.t a given Binary operation

is given the name of Semigroup e.g. the set containing elements of the form 2n where n belongs

to the set of natural numbers.

Monoid:

7

A closed set containing identity (e is the identity of 𝐴 if 𝑒 ∗ 𝑥 = 𝑥 ∗ 𝑒 = 𝑥 for all 𝑥 ∈ 𝐴

) w.r.t to the operation ∗ and satisfying the associative law under the same binary operation ∗

is given the name of monoid e.g. the set of natural number form a monoid.

Group:

A monoid with an additional property that it's each element has inverse i.e. 𝑥 ∗ 𝑥−1 =

𝑥−1 ∗ 𝑥 = 𝑒 (e is the identity w.r.t ∗) is called a group. Examples of group are:

The set of real numbers with the operation ∗= + (the usual addition), the set of rational

numbers w.r.t +, the set of integer’s w.r.t. + etc. form a group. The set of all 𝑛 × 𝑛 invertible

matrices 𝐺𝐿(𝑛, 𝑅) form a group under the binary operation ∗ = ·, the usual multiplication. This

group is called General Linear Group.

Subgroup:

Any non-empty subset of a group which itself form a group under the same binary

operation define on that group is given the name of a subgroup. For example:

(𝑄\0,·) is a subgroup of (𝑅\0.·).

Ring:

A non-empty set R with two binary operations + and · is called a ring if:

i) (𝑅, +) is a group with the property that 𝑎𝑏 = 𝑏𝑎, for all 𝑎, 𝑏 ∈ 𝑅

ii) (𝑅,∙) is a semi group.

In addition with this R satisfies the right and left distributive law of multiplication over

addition.

Field:

A non-empty set 𝐹 with two binary operations + and ∙ is called a field if (𝐹, +) form a

group and (𝐹\0,∙) form a group, also it satisfies distributive law e.g. set of real numbers.

Commutative Ring:

If 𝑅 has the property that 𝑥 ∙ 𝑦 = 𝑦 ∙ 𝑥 ∀ 𝑥, 𝑦 ∈ 𝑅 then it is commutative.

8

Unit element:

An element 𝑥 ∈ 𝑅, where 𝑅 is a commutative ring with identity, is said to be a unit

element if there exists an element 𝑦 ∈ 𝑅 such that 𝑥𝑦 = 𝑦𝑥 = 1. The set unit elements of 𝑅 is

represented by 𝑈(𝑅).

Ideal:

A non-empty subset S of R is termed to be an ideal if it satisfies the following properties:

i) 𝑎 − 𝑏 ∈ 𝑆 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝑆

ii) 𝑟𝑠 ∈ 𝑆, 𝑠𝑟 ∈ 𝑆 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ∈ 𝑅 & 𝑠 ∈ 𝑆

For example, ℤ 9ℤ⁄ ≅ ℤ9 has an ideal 3ℤ 9ℤ⁄

Irreducible polynomial:

Polynomial who’s splitting up is not possible.

Finite ring:

A ring R is finite if it has a finite number of elements for example ℤ9.

Finite Local Ring:

Consider a finite Ring R (R is commutative) with identity. We call R a local finite ring

if its subset of all the non-invertible elements is closed under addition for example:

ℤ4

Chain Ring:

A finite local ring 𝑅 whose radical 𝑀 form a principal ideal is called a chain ring for

example
ℤ2[𝑥]

<𝑥3>
= 𝔽2 + 𝑥𝔽2 + 𝑥2𝔽2 and

𝐺𝐹(𝑞)[𝑥]

<𝑥𝑘>
= ∑ 𝑥𝑖𝐺𝐹(𝑞)𝑘−1

𝑖=0 Where 𝑞 = 𝑝𝑟, 𝑝 is a prime

number and r is any positive integer. The polynomial 𝑥𝑘 ∈ 𝐺𝐹(𝑞)[𝑥].

Galois Ring:

A finite polynomial ring 𝑅 with coefficients from ℤ𝑝𝑘 when factored by an ideal

generated by an irreducible polynomial 𝑓(𝑥) in ℤ𝑝𝑘[𝑥] is said to be Galois ring for example:

ℤ22[𝑥]

< 𝑥2 + 𝑥 + 1 >

9

Galois Field:

A finite polynomial field with coefficients from ℤ𝑝, p is a prime, when factored by an

ideal generated by irreducible polynomial f(x) in ℤ𝑝[𝑥] is called Galois field for example:

ℤ2[𝑥]

< 𝑥2 + 𝑥 + 1 >

2.2. Cryptography

Cryptology

The science of encryption and decryption of algorithms and their analysis is given the

name of cryptology. Here the first part forms Cryptography while the second Cryptanalysis.

Furthermore, cryptography is divided into two main branches depending on the key schedule

routine named Symmetric key cryptography and Asymmetric key cryptography.

Symmetric and Asymmetric key cryptography

On some occasions we use a single key to encrypt a message and the same key is used

for its decryption process while in other cases a different key is used for its decryption

procedure we call it as Symmetric and Asymmetric key cryptography.

2.3. Notions used in Crypto-Algorithms

The following ideas are used in algorithms:

Bit

Every binary representation of a number is a combination of two distinct digits 0 and 1

known as bit. Whereas the collection of four digits form a nibble and that of eight form a

byte. e.g. 0110 is a nibble and 10011001 is a byte.

Bit Rotation

Bit rotation or circular shift is the rearrangement of bits in a way that the last bit takes

the position of first bit while all the other bits are moved to their next position, this type of bit

rotation is called right circular shift while if the first bit is moved to the last position and all

the other bits are moved to their previous position then this types of bit rotation is called left

circular shift. >>> and <<< represents the right and left circular shift respectively e.g.:

10011001 <<< 1 = 00110011 and 10011001 >>> 1 = 11001100

10

Most Significant and least significant Bit

In a collection of numbers there are some bits which start that combination while

other ends up it, these bits are called least significant and most significant bits respectively

e.g.:

10000000010 has 0 as its least significant bit while 1 as its most significant bit.

This thesis mainly includes algorithms. Some of the basic concepts for an algorithm are:

a) Plaintext: the original message given to cipher is called plaintext.

b) Ciphertext: The text received after passing the plaintext through the cipher is known

as cipher text.

c) Encryption: The process by which a plaintext is converted into a ciphertext is called

encryption.

d) Decryption: the process of converting ciphertext to plaintext is called deciphering or

decryption.

e) Cipher: A Cipher is a particular system of Encryption. The figure shows plaintext,

cipher, and ciphertext.

f) Stream Cipher: In some ciphers, we treats single bit at a time and processed it this

type of cipher is called Stream cipher.

g) Block Cipher: Dealing with a combination of bits in a cipher instead of a single bit at

a time is given the name of Block cipher.

h) Algorithm: A step-by-step operation followed in a cipher is called an algorithm.

Examples of algorithms are RC6 algorithm [17], Rijndael algorithm [18] and MC6

algorithm.

i) Cipher Key: In an algorithm, there is a given key known as cipher Key. This key is

used to generate subkeys used in an algorithm.

j) Subkeys: Keys obtained from the given cipher key by using a key expansion routine.

k) Avalanche effect: Some time whenever we perform an operation on an array of bytes

the resultant obtained is totally different this effect of a large change in output due to a

small change in input is called avalanche effect.

11

l) Diffusion: The property of changing a single character in plaintext or ciphertext

resulting a large change in the characters of ciphertext or plaintext respectively.

m) Confusion: It is a process in which each character of ciphertext depends on a number

of parts of the key.

2.4. Crypto-Algorithms (Description of DES and AES proposed Algorithms)

Most of the time we need to send a message secretly which is possible only when it is

shared in between limited and trusty persons. The person who send a text secretly is called the

sender while the other one who receive it is called the receiver. This art of secret message

transferring is given the name of cryptography. Nowadays this communication is frequently

made on computers. In the beginning (i.e. in 1960's) of cryptography, the secret communication

was limited to government. In 1970's horst Feistel (German Cryptographer) created a cipher at

IBM called the Feistel cipher. This was the first commercially seen cipher of the cryptographic

history seen in 1973. The U.S National Bureau of Standards (NBS), now call the National

Institute of Standards and Technology (NIST), published symmetric cipher in 1977 based on

the Feistel cipher called the Data Encryption Standard (DES). It was considered to be highly

secure and as a standard up to the end of 20𝑡ℎ century.

The Data encryption standard also called the data encryption algorithm was a Federal

Information Processing Standards (FIPS). As we know that Cryptography has two main types

“Symmetric key cryptography” and “Asymmetric key cryptography” and DES has just a single

Key there for it lie in the first type. It was designed for the National Bureau of Standards (NBS)

by International Business Machines (IBM) in 1976 and was considered one of the best

algorithm until 𝑡ℎ𝑒 20𝑡ℎ century. In this algorithm a 64-bit string is encrypted with the help of

a secret key which is of 56-bit to obtain a cipher text of length 64-bit. In this algorithm, an

Initial permutation is applied to the plaintext to split it to two words i.e. 𝐿0𝑅0. 16 subkeys each

of length 48-bit are computed as a function of the given key K and with the help of these subkey

𝐿16𝑅16 are find out and then apply the inverse linear permutation on their swapped result to get

the cipher text. The main deficiency of this algorithm was its small key length which gives help

for the cryptanalysts decrypt any secret message which was encrypted by the DES. In the

Electronic Frontier Foundation and distributed.net DES secret Key were break within 22 hours

and 15 minutes which is one the big achievement for the cryptanalysts in 1999.

12

In 1997 NIST (National Institute of Standards and Technology) call for ciphers, because

of the theoretical and exhaustive key search attacks on DES. In June 1998 fifteen candidates

were accepted and after shortlisting in aug-1999, five were chosen. The shortlist include:

o Rijndael represented by Joan Daemen and Vincient Rijmen from RSA (lab) [8].

o RC6 [17] was presented by Rivest et al. (USA)

o Serpent [1] was presented from Euro by Lars Knudsen, Ross Aderson and Eli Biham.

o MARS [5] was presented by IBM Corporation.

o TwoFish [18] was published in 1998 by Jhon Kelay, David Wazner, Niels Furguson,

Bruce Schneier, Chris Hall and Doug Whiting.

Rijndael, a fast symmetric cryptosystem, was chosen as an AES algorithm in 𝑜𝑐𝑡 −

2000.

Requirements of AES:

 A Block cipher that encrypts 128 − 𝑏𝑖𝑡 block of a plaintext.

 Applicable for a key of length 128, 192 and 256 − 𝑏𝑖𝑡.

 Highly secure, Fast and of less complexity.

 Strong immunity to all well-known attacks.

 Efficiency in hardware and software.

 The active life of minimum 20 years.

The proposed algorithms for AES are discussed as under:

2.4.1. Rijndael Algorithm

This algorithm satisfies all the requirements of AES. It encrypts a 128-bit block. In this

case, the plain text and cipher text are each of length 128-bit. In this algorithm firstly we convert

any secret message into bytes with the help of ASCII system. The plain text of 16 bytes is

written in state and Exclusive-Ored (XOR) it with the supposed key which also consists of 16

bytes. The resultant is passed from round 1. In this algorithm, the number of rounds depends

on the Key size. For 128 − 𝑏𝑖𝑡, 192 − 𝑏𝑖𝑡 and 256 − 𝑏𝑖𝑡 10, 12 and 14 rounds are performed

respectively. Each round consists of the following stages:

i. Sub bytes: the S-box convert each byte to another byte.

ii. Shift Row: A permutation process.

iii. Mix column: A substitution using 𝐺𝐹(28).

iv. Add round key: XOR of round key and Mix column.

13

v. The detailed structure of Rijndael algorithm [18] is given below:

Fig. 6 Advanced Encryption Standard Algorithm flow chart [14]

Stage-i (Sub Byte):

In this stage, each given byte is replaced by another byte taken from an 8 × 8

substitution box given by Rijndael [18] which is calculated from the transformation 𝐵′ =

𝐴𝑋−1 + 𝐵. Where A is a fix 8 × 8 Matrix having entries in bits, 𝑋−1 is the inverse of a byte X

which represents a column vector whereas B is a fix column matrix. This transformation occurs

in the form that the first nibble of each byte represents the x-axis while the 2𝑛𝑑 nibble represents

the y-axis and the intersection value of these nibbles gives the sub-byte.

Stage-ii (Shift Row):

SHIFT ROW TRANSFORMATION:

In this process 1𝑠𝑡 row is unaltered. 1𝑠𝑡 element of 2𝑛𝑑 row goes to the extreme and the

remaining 3 bytes shifts to left. Similarly, in 3𝑟𝑑 row 3-bytes goes to the extreme and the

remaining 2-bytes and 1-byte respectively shift to the left. Consider the example:

7𝐶 77 7𝐵 𝐹2
6𝐵 6𝐹 𝐶5 30
62 91 95 𝐸4
𝐸𝐴 65 7𝐴 𝐴𝐸

7𝐶 77 7𝐵 𝐹2
6𝐹 𝐶5 30 6𝐵
95 𝐸4 62 91
𝐴𝐸 𝐸𝐴 65 7𝐴

14

Stage-iii (Mix column):

In the Mix column operation, each row value after transformation mapped to a new

value which is the combination of all entries in that column. Each column is multiplied with a

fixed matrix (given below) to get a combinatory entry of that column.

Where multiplication and addition are performed in 𝐺𝐹(28) e.g. if the entries 87, 6E, 46 and

A6 are the entries of a column then its multiplication results in 47.

Stage-iv (Add round key):

In this stage we XORed the result coming from Mix column operation with the subkeys

obtained from the given key and thus we got an output of the first round.

This process (four stages) is repeated a total of 10 times called the rounds for 128-bit key. In

the last round, Mixcolumn operation is skipped out and results in the shape of a cipher text.

2.4.2. TwoFish Algorithm

The carefully designed TwoFish algorithm [18] was also one the proposed and even the

shortlisted AES algorithm. It takes a 128-bit block as an input and produces an output of length

128-bit. All of the processes in this algorithm occurs in the little endian convention. Firstly

128-bit is split into four words and then XORed with the subkeys generated from the given

key. This step is called the input whitening. The whole process is illustrated in the Fig. 7 below:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

15

Fig. 7 TwoFish Algorithm flow chart [9]

After the input whitening step, this algorithm uses a Feistel function F (bijective) in its rounds.

A total of 12 or 16 or 20 rounds is performed depending on the key size. The bijective function

F further comprises of rotation of bits, g-function, Pseudo-Hadamard transform (PHT) and Key

addition under modulo 232. The use of substitution boxes mainly occur in the g-function and

also this function includes a Maximum Distance Separable (MDS) matrix. Entries of these

look-up tables are in nibbles but the substitution occurs here in bytes. The responsible fact for

this situation is Q-permutation. If x is a byte then the Q-permutations are given as:

a0 = [x / 16] and b0 = x mod 16

i.e. the byte is first split into two 4-bit nibbles, a0 and b0

𝑎1 = 𝑎0 ⊕ 𝑏0

𝑏 1 = 𝑎0 ⊕ 𝑅𝑂𝑅 (𝑏0, 1) ⊕ (8𝑎0 𝑚𝑜𝑑 16)

𝑎2 = 𝑡0 [𝑎1] (𝑡𝑖 are the look-up tables)

𝑏2 = 𝑡1 [𝑏1]

𝑎3 = 𝑎2 ⊕ 𝑏2

𝑏3 = 𝑎2 ⊕ 𝑅𝑂𝑅 (𝑏2, 1) ⊕ (8𝑎2 𝑚𝑜𝑑 16)

𝑎4 = 𝑡2 [𝑎3]

𝑏4 = 𝑡3 [𝑏3]

𝑦 = 16𝑏4 + 𝑎4 (Output of Q-permutation)

The internal structure is of S-boxes are shown below:

16

Fig. 8 Internal structure of S-box of TwoFish Algorithm [9]

As four look-up tables are used in a single round and for 128-bit key the number of rounds are

twelve so a total of 48 look-up tables are used to encrypt a 128-bit block while in the case of

Rijndael it was only 10 which makes Rijndael better than TwoFish in hardware

implementation.

2.4.3. RC6 Algorithm

RC6 [17] is one of the proposed shortlisted algorithm having a unique structure from

the other four because of the excludeness of any substitution box. This is the improved version

of the RC5 algorithm. Like other proposed algorithms it also encrypts a 128-bit block by using

a variable key of length up 2040 bits in 20 rounds. It uses a Feistel-cipher structure. Generally,

this cipher is denoted by RC6-w/r/b [17] where w is a 32-bit word, r represent a number of

rounds and b stand for number of bytes of the given key. The flow chart of RC6 is given Fig.

9 below:

17

Fig. 9 RC-6 Algorithm flow chart [7]

In this algorithm the plain text is split into four w-bit words A, B, C and D. S[0] and S[1] are

added with B and D under modulo 2𝑤 respectively. Where 𝑆[0] = 𝑃𝑤 and 𝑆[𝑖] = 𝑆[𝑖 − 1] +

𝑄𝑤. And 𝑃𝑤 and 𝑄𝑤 are magic constant use to calculate key expansion algorithm in the

following manner:

𝑃𝑤 = 𝑜𝑑𝑑((𝑒 − 2)2𝑤) e=2.7182818 (base of natural logarithm)

𝑄𝑤 = 𝑜𝑑𝑑((ф − 1)2𝑤) ф=1.618033988 (called golden ratio)

𝐵 = 𝐵 + 𝑆 [0]

𝐷 = 𝐷 + 𝑆 [1]

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑟 𝑑𝑜

{

𝑡 = (𝐵 × (2𝐵 + 1)) <<< 𝑙𝑔 𝑤

𝑢 = (𝐷 × (2𝐷 + 1)) <<< 𝑙𝑔 𝑤

𝐴 = ((𝐴 ⊕ 𝑡) <<< 𝑢) + 𝑆 [2𝑖]

𝐶 = ((𝐶 ⊕ 𝑢) <<< 𝑡) + 𝑆 [2𝑖 + 1]

(𝐴, 𝐵, 𝐶, 𝐷) = (𝐵, 𝐶, 𝐷, 𝐴)

}

𝐴 = 𝐴 + 𝑆 [2𝑟 + 2]

𝐶 = 𝐶 + 𝑆 [2𝑟 + 3]

18

These complex arithmetic operations takes long time as compared to the other algorithms

therefore it was not suitable for hardware implementation and hence is not chosen as an AES.

2.4.4. Serpent Algorithm

 All the five algorithm have their own identification in the field of cryptography but serpent

algorithm has a unique identification due to its high speed. Although it is faster than DES but performing

32 number of rounds its speed become slow enough so that it fails to become an AES. An initial

permutation is applied on a plain text to get the first round input. This input is XORed with a subkey,

passed through an S-box and then applied a linear transformation to get the first round output. In the

32nd round an extra subkey is added and after passing this through the final permutation we get the

cipher text. This algorithm is briefly described in the second chapter.

2.4.5. Mars Algorithm

It was also a proposed symmetric key block cipher for AES. It performs the

Encryption/Decryption process on a plaintext of 128-bit. Split it into four w-bit words and the operations

are performed on 32-bit word. This is a 16 round Feistel network surrounding all the rounds by two

layers, the forward and backward mixing. Both the layers consists of 8 rounds.

Fig. 10 Mars Algorithm flow chart [5]

It accepts a key of length varying between 4 and 14 words and expand the user supplied key

to forty subkeys each of length 32-bit. Each of the input w-bit words are passed through the forward

mixing step then through the 16 rounds and at last from the backward mixing step to produce the

cipher text. MARS [5] uses a look-up table consisting of 512 w-bit words (Sometimes it is considered

as two S-boxes 𝑆0 𝑎𝑛𝑑 𝑆1 each of length 16 × 16 to oppose different known attacks like linear [15]

19

and differential attack. The operation used in the three steps are: addition, subtraction and

multiplication over modulo232, exclusive-or, fix and data dependent rotation. The encryption

procedure of MARS algorithm [5] is as under:

‘𝑭𝒐𝒓𝒘𝒂𝒓𝒅 𝑴𝒊𝒙𝒊𝒏𝒈
(𝐴, 𝐵, 𝐶, 𝐷) = (𝐴, 𝐵, 𝐶, 𝐷) + (𝐾[0], 𝐾[1], 𝐾[2], 𝐾[3])
𝑭𝒐𝒓 𝒊 = 𝟎 𝒕𝒐 𝟕 𝒅𝒐 {
𝐵 = (𝐵 ⊕ 𝑆0[𝐴]) + 𝑆1[𝐴 >>> 8]
𝐶 = 𝐶 + 𝑆0[𝐴 >>> 16]
𝐷 = 𝐷 ⊕ 𝑆1[𝐴 >>> 24]
𝐴 = (𝐴 >>> 24) + 𝐵(𝑖𝑓 𝑖 = 1,5) + 𝐷(𝑖𝑓 𝑖 = 0,4)
(𝐴, 𝐵, 𝐶, 𝐷) = (𝐵, 𝐶, 𝐷, 𝐴)
}

𝑪𝒓𝒚𝒑𝒕𝒐𝒈𝒓𝒂𝒑𝒉𝒊𝒄 𝑪𝒐𝒓𝒆
𝑭𝒐𝒓 𝒊 = 𝟎 𝒕𝒐 𝟏𝟓 𝒅𝒐 {
𝑅 = ((𝐴 <<< 13) × 𝐾[2𝑖 + 5]) <<< 10
𝑀 = (𝐴 + 𝐾[2𝑖 + 4]) <<< (𝑙𝑜𝑤 5 𝑏𝑖𝑡𝑠 𝑜𝑓 (𝑅 >>> 5))
𝐿 = (𝑆[𝑀] ⊕ (𝑅 >>> 5) ⊕ 𝑅) <<< (𝑙𝑜𝑤 5 𝑏𝑖𝑡𝑠 𝑜𝑓 𝑅)
𝐵 = 𝐵 + 𝐿(𝑖𝑓 𝑖 < 8) ⊕ 𝑅(𝑖𝑓 𝑖 ≥ 8)
𝐶 = 𝐶 + 𝑀
𝐷 = 𝐷 ⊕ 𝑅(𝑖𝑓 𝑖 < 8) + 𝐿(𝑖𝑓 𝑖 ≥ 8)
(𝐴, 𝐵, 𝐶, 𝐷) = (𝐵, 𝐶, 𝐷, 𝐴 <<< 13)
}

𝑩𝒂𝒄𝒌𝒘𝒂𝒓𝒅𝒔 𝑴𝒊𝒙𝒊𝒏𝒈
𝑭𝒐𝒓 𝒊 = 𝟎 𝒕𝒐 𝟕 𝒅𝒐 {
𝐴 = 𝐴 − 𝐵(𝑖𝑓 𝑖 = 3,7) − 𝐷(𝑖𝑓 𝑖 = 2,6)
𝐵 = 𝐵 ⊕ 𝑆1[𝐴]
𝐶 = 𝐶 − 𝑆0[𝐴 <<< 8]
𝐷 = (𝐷 − 𝑆1[𝐴 <<< 16]) ⊕ 𝑆0[𝐴 <<< 24]
(𝐴, 𝐵, 𝐶, 𝐷) = (𝐵, 𝐶, 𝐷, 𝐴 <<< 24)
}
(𝐴, 𝐵, 𝐶, 𝐷) = (𝐴, 𝐵, 𝐶, 𝐷) − (𝐾[36], 𝐾[37], 𝐾[38], 𝐾[39])’

Because of the complex arithmetic operation, addition and Multiplication, it was not suitable

for hardware implementation and hence is not selected as an AES.

20

CHAPTER 3

SERPENT ALGORITHM

Data Encryption Standard was used for many applications from 1970’s to 1997. Due to its

small key length i.e. 56-bit key cryptanalysts break the key very quickly even with in a single

day. Triple DES solve the key length problem but even then DES is used for many

applications in hardware implementation due to its high speed.

Keeping all the situation in mind, the US National institute of standards and Technology

call for a cipher which in highly secure, having high speed and less complex, given the name

of Advanced Encryption Standard in 1997. A total of fifteen algorithms was proposed for AES

in June 1998. Since AES required a block cipher that encrypts a 128-bit block, accepting a

varying key of length 128-bit, 192-bit and 256-bit, highly secure, fast and best implemented to

hardware so NIST chooses five of those including Serpent algorithm.

Our second chapter includes a review of Serpent algorithm, while the third chapter is

responsible for some improvement in this algorithm.

3.1. Construction of the Serpent Algorithm

 Serpent [1], a symmetric block cipher, was designed for AES by Eli Biham (Technion

Israeli Institute of Technology), Ross Anderson (University of Cambridge Computer

Laboratory) and Lars Knudsen (University of Bergen, Norway). In this Algorithm, a 128-bit

block is ciphered by using a key of length 256 bit in 32 different rounds. The first 31 rounds

are identical, consisting of the same sequence of elementary operations while the last round

differs only in the key schedule. Instead of mixing a single key like in the first 31 rounds, an

additional key is mixed in the last round. Hence 33 round keys are required in the whole process

that are generated from the external key.

Fig. 11 represents the whole encryption process of Serpent Algorithm.

21

Fig. 11 Serpent Algorithm flow chart [1]

Serpent Algorithm [1] is a block cipher encrypting a 128-bit block of a plaintext by using a key

of length 256 bits. The Algorithm consists of three basic functions:

 Initial permutation (𝐼𝑃)

 Round function

 Final permutation (𝐹𝑃)

3.1.1. Initial and Final Permutation

Basically, initial permutation is responsible for change in the position of bits. This

change of position is performed by using a fixed table. This table is given as:

Where the inverse permutation table is given by as follow:

22

This Permutation can also be performed by the formula [(𝑖 ∗ 32) 𝑚𝑜𝑑127] where 𝑖 represents

the position of the bit we want to replace by using the table. The inverse permutation can also

be performed algorithmically by using the formula [(𝑖 ∗ 4) 𝑚𝑜𝑑127]. We note from tables that

the first and last bit stay fixed during the transformation. Applying 𝐼𝑃 to a plaintext, we get a

data block 𝐵0 while applying 𝐹𝑃 on the result of the last round we get the cipher text.

3.1.2. Round Function

Many algorithms use a Substitution Permutation Network (SP-Network). These

algorithms include the Serpent algorithm [1]. It operates on four w-bit vectors. These vectors

combine to form a 128-bit block. Which we consider as an input to the round. There is a total

of 32 rounds performed by serpent algorithm [1]. Firstly an initial permutation 𝐼𝑃 is applied to

the plaintext which produces the data block 𝐵0. This data block plays the role of input in the

1𝑠𝑡 round. Inside these rounds, each data block 𝐵𝑖 is mixed with a subkey Ki (i.e. taking XOR),

then pass 𝐵𝑖 ⊕ 𝐾𝑖 through 𝑆(𝑖𝑚𝑜𝑑8) which is one of the eight S-boxes. After this a linear

transformation 𝐿𝑇 is applied to 𝑆𝑖(𝐵𝑖 ⊕ 𝐾𝑖) to get𝐵(𝑖+1), where 𝑖 = 0, 1, 2, 3, … , 30. In the 32𝑛𝑑

round (last round) a 33𝑟𝑑 key is XORed instead of applying the linear transformation (𝐿𝑇) i.e.

𝑆7(𝐵31 ⊕ 𝐾31) ⊕ 𝐾32 to get B32. Now the final permutation [(𝑖 ∗ 4) 𝑚𝑜𝑑127] is applied to get

the ciphertext. The whole process is described shortly as:

 𝐵0 = 𝐼𝑃 (𝑃)

 𝐵𝑖+1 = 𝐿𝑇(𝑆 − 𝑏𝑜𝑥𝑖𝑚𝑜𝑑8(𝐵𝑖 ⊕ 𝐾𝑖)) Where “𝑖” is from 0 to 30

 𝐵32 = 𝑆7 (𝐵31 ⊕ 𝐾31) ⊕ 𝐾32

 𝐶 = 𝐹𝑃 (𝐵32)

3.1.3. Elementary Transformations

Key mixing, bit substitution and linear transformation are the basic elementary

operations. Key mixing is just an exclusive-or (XOR) of subkey and a data block obtained from

the plain text. Bit substitution is simply a substitution from eight different S-boxes while linear

transformation consists of XOR, rotation and shift.

23

Unlike Rijndael [18], Serpent-1 [1] uses 8 different 4 × 4 S-boxes in which each entry

is a nibble and each round uses a single replicated S-box in order to encrypt a 128-bit block. In

Serpent-0, the S-boxes used were adopted from DES in order to ensure the high level of public

confidence and then in Serpent-1 [1], the new and better S-boxes were generated which had

stronger immunity to attacks. For maximal avalanche effect, the author used the XOR

operation. Some complex operations (e.g. word addition) were dropped due to high cost in

hardware and software implementation [4].

3.1.3.1. The Key Schedule

The Serpent algorithm [1] accepts a key of variable length. It takes a key of length up to

256 bit. If the supplied key is 256 bits, it is divided into eight 32-bit words named𝑤−8, 𝑤−7, …,

𝑤−1. From these words, we find the prekeys𝑊𝑖 , where 𝑖 = 0, 1, 2, … , 131, by using the following

affine recurrence:

𝑊𝑖 = (𝑤𝑖−8 ⊕ 𝑤𝑖−5 ⊕ 𝑤𝑖−3 ⊕ 𝑤𝑖−1 ⊕ ф ⊕ 𝑖) <<< 11

Where ф is the fractional part of golden ratio whose value is given in hexadecimal as 0 ×

9𝑒3779𝑏9 and “ <<< ” denotes left shift. From this we can calculate the subkeys, 𝐾𝑖 as:

𝐾𝑖 = 𝐼𝑃(𝑆(3−𝑖)𝑚𝑜𝑑8(𝑤4𝑖, 𝑤4𝑖+1, 𝑤4𝑖+2, 𝑤4𝑖+3)); 𝑖 = 0,1,2, … , 32.

If the key length is less than 256 bit, then it can be mapped to a 256-bit key by writing single

“1” at the MCB end proceeded by as many zeroes as required to obtain a 256-bit key [1].

3.1.3.2. Substitution box

In the initial stages i.e. when serpent algorithm [1] was first proposed for AES, the

substitution boxes was adapted from DES. The reason for this was that these S-boxes have

been studied very well and hence is understood clearly. This results serpent-0 which was as

fast as DES and secure as triple-DES. After this new S-boxes were defined which was stronger

than the older one. The procedure adapted to obtain these substitution boxes was as follow.

A matrix of 32 arrays (DES S-boxes) was used to obtain these S-boxes, where each array was

made up of 16 entries. These rows are transformed by exchanging entries in the 𝑖𝑡ℎ array

depending on 𝑡ℎ𝑒 (𝑖 + 1) array and on an initial key in order that it satisfy the desired (linear

and differential) properties. The repetition of this procedure ends up when 8 S-boxes have been

produced. These S-boxes are given below:

24

The inverse S-boxes are given below:

3.1.3.3. Linear Transformation

The linear transformation takes an input of 32-bit and produces an input of 32-bit. It

consists of Exclusive-or operation, rotation and shifting of bits. Any 32-bit input is first split

into four bytes 𝑋0, 𝑋1, 𝑋2 and 𝑋3 and then apply the mentioned operations in the following

manner:

𝑋0, 𝑋1, 𝑋2, 𝑋3 ≔ 𝑆𝑖(𝐵𝑖 ⊕ 𝐾𝑖)

𝑋1 ≔ 𝑋0 <<< 13

𝑋2 ≔ 𝑋2 <<< 3

𝑋1 ≔ 𝑋1 ⊕ 𝑋0 ⊕ 𝑋2

𝑋3 ≔ 𝑋3 ⊕ 𝑋2 ⊕ (𝑋0 << 3)

𝑋1 ≔ 𝑋1 <<< 1

𝑋3 ≔ 𝑋3 <<< 7

𝑋0 ≔ 𝑋0 ⊕ 𝑋1 ⊕ 𝑋3

𝑋2 ≔ 𝑋2 ⊕ 𝑋3 ⊕ (𝑋1 << 7)

𝑋0 ≔ 𝑋0 <<< 5

𝑋2 ≔ 𝑋2 <<< 22

𝐵𝑖+1 ≔ 𝑋0, 𝑋1, 𝑋2, 𝑋3

Where " ⊕ " denotes the exclusive-or, " <<< " denote left rotation of bits, " << " is used for

left rotation of bits and "𝐵𝑖+1" is the (𝑖 + 1)𝑡ℎ data block.

25

3.1.3.4. Inverse Linear Transformation

Instead of left shift and left rotation the inverse linear transformation consists of right shift

and right rotation. It takes an input of 32-bits and produces an output of 32-bits. The inverse linear

transformation is summarized in the below equations:

𝑋0, 𝑋1, 𝑋2, 𝑋3 ≔

 𝑋2 ≔ 𝑋2 >>> 22;

 𝑋0 ≔ 𝑋0 >>> 5;

 𝑋2 ≔ 𝑋2 ⊕ 𝑋3 ⊕ (𝑋1 << 7)

 𝑋0 ≔ 𝑋0 ⊕ 𝑋1 ⊕ 𝑋3;

 𝑋3 ≔ 𝑋3 >>> 7;

 𝑋1 ≔ 𝑋1 >>> 1;

 𝑋3 ≔ 𝑋3 ⊕ 𝑋2 ⊕ 𝑋0 << 3;

 𝑋1 ≔ 𝑋1 ⊕ 𝑋0 ⊕ 𝑋2;

 𝑋2 ≔ 𝑋2 >>> 3;

 𝑋0 ≔ 𝑋0 >>> 13;

𝐵𝑖−1 ≔ 𝑋0, 𝑋1, 𝑋2, 𝑋3

3.2. Decryption

The inverse process of encryption is given the name of decryption. In some algorithm, it is

same as the encryption process while in other it is different from its encryption process. In the

case of Serpent algorithm [1], it is different from the process of encryption. Here the inverse

S-boxes are used in the decryption process. Also, the inverse linear transformation and reverse

order of subkeys are used [1].

26

CHAPTER 4

MODIFIED SERPENT ALGORITHM

4.1. The Cipher

We modify the Serpent-1 [1] algorithm by using different S-boxes from [19].

Like Serpent algorithm, this is also a block cipher that encrypts a 128-bit block using

a key of 256 bit. This algorithm consist of three basic functions, all different in the

structure by Serpent-1 [1]. The steps are:

 Initial permutation (IP) (different from the previous algorithm)

 Round function (R) (less number of rounds and in each round of this algorithm each

step inspect different number of bit from Serpent-1)

 Final Permutation (FP) (inverse of the initial permutation)

The whole process of the algorithm under consideration is shown in the Fig. 12 below:

Fig. 12 Modified Serpent Algorithm flows chart

We take the initial permutation to be [(𝑖 ∗ 64) 𝑚𝑜𝑑127]. Applying this permutation to

128 bits of a plaintext we get a block, B0 which is the input to the 1st round.

 Unlike the Serpent algorithm [1], we use four 4 × 4 S-boxes taken from [19], consisting

of entries in bytes which represent polynomials to perform the round functions, i.e., 22 rounds.

27

We reduced the number of rounds from 32 to 22 in order to decrease the complexity and make

the algorithm fast. Moreover, we also observe that this change affect the security level, but not

to the level that the algorithm becomes unsecured. Inside these rounds we Mix 𝐵𝑖
′
 with 𝐾𝑖

′ and

then pass through the S-box Simod4 and apply the linear transformation to get 𝐵𝑖+1
′ ; i = 0,1,2, …,

20. In the 22nd round, instead of applying linear transformation we mix it with an additional

pre-key 𝐾32
′ . Then the final permutation [(𝑖 ∗ 2) 𝑚𝑜𝑑127] (inverse of initial permutation) is

applied to obtain the cipher text.

The whole process is described as:

 𝐵0
′ =IP (P)

 𝐵𝑖+1
′ =LT(S-box imod4 (𝐵𝑖

′⊕𝐾𝑖
′));

i is from 0 to 20

 𝐵32
′ =S3 (𝐵21

′ ⊕𝐾21
′)⊕𝐾22

′

 C= FP (𝐵22
′)

4.2. Elementary Transformations in proposed Cipher

Key mixing, linear transformation, and bit substitution are the three operations used in

Serpent Algorithm [1] under study. As it seems that all the operations are like Serpent

Algorithm operations but in contrast to Serpent, we mix a key that is made up of two 2w-bit

(w=32-bit) vectors and then we XORed it with a data block initially obtained from the plain

text by applying the initial permutation. Furthermore, the bit substitution, in this case, is a

substitution from four different S-boxes consisting of invertible elements obtained from a

multiplicative subgroup of the group of units of finite chain ring 𝑅8 [19], whereas in the case

of Serpent algorithm, these are obtained from DES. The linear transformation consists of XOR,

rotation and shift.

Unlike Serpent-1, in the modified Serpent-1 algorithm we use 4 different 4 × 4 S-boxes

in which each entry is a byte and each round use a single genuine S-box in order to encrypt or

decrypt a 128-bit block. In Serpent-0, for high level of public confidence the S-boxes used were

those adopted from DES and then in Serpent-1 the new and better S-boxes were generated

which had stronger immunity to attacks but in our case we use a new, more secure and more

complicated S-boxes which might have stronger immunity to attacks than the previous ones.

For maximum avalanche effect, we use the exclusive-OR operation.

28

4.2.1. S-boxes under consideration

Nowadays good quality of ciphers are available depending on the non-linearity of

substitution boxes and many other factors such as key schedule, number of rounds etc. (see

[10, 12]). Primarily, Shah et al. [20] constructed S-boxes by using maximal cyclic subgroups

𝐺3 and 𝐺15 of groups of units of the Galois rings GR(22,2) and GR(22,4), respectively.

Obviously, injective and surjective S-boxes are reversible [10]. In sequel [19], Shah et al.

constructed an S-box, which is a subgroup of multiplicative group of units of finite

commutative chain ring 𝑅8 =
ℤ2[𝑢]

<𝑥8>
= 𝔽2 + 𝑢𝔽2 + 𝑢2𝔽2 + 𝑢3𝔽2 + 𝑢4𝔽2 + 𝑢5𝔽2 + 𝑢6𝔽2 +

𝑢7𝔽2 consisting of 256 elements. Here, we follow the construction of S-box from [19] and

obtained 4 different S-boxes. The multiplicative group of units of the ring R8 is given as under

(see [19]):

{10000000, 11000000, 10100000, 10010000, 10001000, 10000100, 10000010, 10000001,

11100000, 11010000, 11001000, 11000100, 11000010, 11000001, 10110000, 10101000,

10100100, 10100010, 10100001, 10011000, 10010100, 10010010, 10010001, 10001101,

10001010, 10001001, 10000110, 10000110, 10000011, 11110000, 11101000, 11100100,

11100010, 11100001, 11011000, 11010100, 11010010, 11010001, 11001100, 11001010,

11001001, 11000110, 11000101, 11000011, 10111000, 10110100, 10110010, 10110001,

10101100, 10101010, 10101001, 10100110, 10100101, 10100011, 10011000, 10011010,

10011001, 10010110, 10010101, 10010011, 10001110, 10001101, 10001011, 10000111,

11111000, 11110100, 11110010, 11110001, 11101100, 11101010, 11101001, 11100110,

11100101, 11100011, 11011100, 11011010, 11011001, 11010110, 11010101, 11010011,

11001110, 11001101, 11001011, 11000111, 11011100, 11011010, 10111001, 10110110,

10110101, 10110011, 10101110, 10101101, 10101011, 10100111, 10011110, 10011101,

10011011, 10010111, 10001111, 11111100, 11111010, 11110110, 11101110, 11011110,

10111110, 11111001, 11110101, 11101101, 11011101, 10111101, 11110011, 11101011,

11011011, 10111011, 11100111, 11010111, 10110111, 11001111, 10101111, 10011111,

11111110, 11111101, 11111011, 11110111, 11101111, 11011111, 10111111, 11111111}

Clearly this group contains a total of 128 elements. With the property that:

Number of elements of order 8 = 64

Number of elements of order 4 = 48

Number of elements of order 2 = 15

Number of elements of order 1 = 01

29

This group has a subgroup of cardinality 16 which is < 1 + 𝑢3 + 𝑢6, 1 + 𝑢2 + 𝑢4 +

 𝑢5 + 𝑢7 >. Define 𝑓: 𝐻𝐺8
 𝐻𝐺8

 by 𝑓(𝑎) = 𝑎−1
 and 𝑔: 𝐻𝐺8

 𝐻𝐺8
 by g(a)=𝑎,a where

𝑎′= 1 + 𝑢4 + 𝑢6. Thus fog is the S-box 𝑆0
′ on the finite commutative chain ring (𝑅8) which

is as under:

10001010 10011001 10000010 10001000

10011011 10101111 10100101 10111010

10010010 10110001 10000000 10101101

10100111 10111000 10010000 10110011

Table 1: S-box on finite commutative chain ring 𝑅8

The second S-box 𝑆1
′ is obtained by rotating the rows of the 1𝑠𝑡 S-box. The first row remain

unchanged, 2𝑛𝑑 is rotated by one byte, 3𝑟𝑑 row is rotated by 2 bytes and the 4𝑡ℎ by 3 bytes.

The 3𝑟𝑑 S-box is obtained by repeating the same process on the 2𝑛𝑑 S-box and the 4𝑡ℎ one is

obtained by repeating the same process on the 3𝑟𝑑 one in order to maximize the avalanche

effect and for high-security purpose. Where in each round we use a single genuine S-box.

Inverse S-box: The inverse S-box is given by the table 2:

10001010 10011011 10000010 10001000

10011001 10100101 10101111 10110011

10010000 10111000 10000000 10100111

10101101 10110001 10010010 10111010

Table 2: Inverse S-box on finite commutative chain ring 𝑅8

4.2.2. Implementation of S-box

 Divide the 128-bit into 16 bytes, numbering the entries of S-box from 0 to 15. Multiply

the 1𝑠𝑡 byte of 128-bit with 1𝑠𝑡 entry of S-box, 2𝑛𝑑 byte with 2𝑛𝑑 entry of S-box and so on i.e.

𝑋𝑖𝑌𝑖; 0 ≤ 𝑖 ≤ 15, where 𝑋𝑖 represents byte of the state and 𝑌𝑖 represents byte of the S-box.

Note that the multiplication is carried out in the finite local ring ℤ28 and addition in binary field

𝔽28.

30

4.2.3. Key under consideration

If the supplied key is of length 256 bit we divide it into four 64 bit words named 𝑤−4
′ ,

𝑤−3
′ , 𝑤−2

′ and 𝑤−1
′ . From these vectors we find the pre-keys 𝑤𝑖

′; 𝑖 = 0,1,2, … ,46 by the

following affine recurrence:

𝑤𝑖
′ = (𝑤𝑖−4 ⊕ 𝑤𝑖−1 ⊕ ф, ф ⊕ 𝑖, 𝑖) <<< 5

Ф is the fractional part of the golden ratio (√5 + 1)/2 dentod by 0 × 9𝑒3779𝑏9 in hexadecimal

and “ <<< ” denotes left rotation of the bits. From this we can calculate the subkeys 𝐾𝑖
′ as:

𝐾0
′ = 𝐼𝑃(𝑆1 (𝑊0, 𝑊1))

𝐾1
′ = 𝐼𝑃(𝑆0 (𝑊2, 𝑊3))

𝐾2
′ = 𝐼𝑃(𝑆3 (𝑊4, 𝑊5))

𝐾3
′ = 𝐼𝑃(𝑆2 (𝑊6, 𝑊7))

 …

𝐾22
′ = 𝐼𝑃(𝑆3 (𝑊45, 𝑊46))

𝐾𝑖
′ = 𝐼𝑃(𝑆(1−𝑖) 𝑚𝑜𝑑4(𝑤2𝑖, 𝑤2𝑖+1)); 𝑖 = 0,1,2, … , 32.

Every key of length less than 256 bits can be mapped to a 256-bit key by writing one “1” at

the extreme left followed by as many zeros as required to become a 256 bit key.

4.2.4. Linear Transformation:

 We use the same linear transformation as used in Serpent-1.

4.3. Decryption

Since we are using the elements of an S-box obtained from a subgroup of the

multiplicative group of commutative chain ring (𝑅8). Therefore each entry must have an

inverse that forms the inverse S-box which we use in the reverse process. The inverse linear

transformation and reverse order of subkeys are used in order to achieve our goal, i.e., to

convert a ciphertext to plaintext.

4.4. Pseudo Code

//Main: start main function dataBlock

//input of 128 bits key

31

// input of a 256 bits, append 1 and make 256

S[4][16]

// initialization of S-boxes

makeWKeys (key);

for (i:021)

{//begin for

initialPermutaion(dataBlock);

dataBlock=dataBlock⊕getPrimeKey (i);

dataXORPrime(dataBlock, getPrimeKey(i), i);

if (i != 21) // “!” represent not.

linearTransformation (dataBlock);

}//end for

dataBlock=dataBlock⊕getPrimeKey(22);

finalPermutation(dataBlock);

// now dataBlock is contains encrypted form of input data

//end main function

// Used Funcitons:

__

Function makeWKeys (dataBlock)

//WKeys represent Prekeys

{//begin function

//making w-4 to w-1 : w0w3

for (i:031)

W[i]=dataBlock[i];

for (i:3263)

W[i-32]=dataBlock[i];

for (i:6495)

W[i-64]=dataBlock[i];

32

for (i:96128)

W[i-96]=dataBlock[i];

//making w0 to w65:w4w49

for (i:449)

W[i]= (wi-4⊕wi-1⊕ ф, ф⊕i,i)<<<5;

}//end function

__

Function initialPermutation(&dataBlock)

{//begin function

for (i:0127) {//begin for

if (i != 127)

index = (i*64)%127; // “%” is used for

modulo

else

index =127;

newBlock[i] = dataBlock [index];

}//end for

dataBlock= newBlock;

}//end function

__

Function getPrimeKey(index)

// prime-key represent subkey

{//begin function

primeBlock= w(2*index), w(2*index+1);

// the bits of the two are taken side by side.

polyMult(primeBlock, S(1-index)mod4);

33

initialPermutation(primeBlock);

return primeBlock;

}//end function

Function dataXORprime(&data, pkey, index) // pkey represent

subkey

{//begin function

t; //temporary byte

d[16]; //byte size array

k[16]; //byte size array

for (i: 015)

{//begin for

// now we split data and pkey into 16 bytes.

d[i] = data[i*8] to data[i*8+8];

k[i] = pkey[i*8] to pkey[i*8+8];

d[i] = d[i] ⊕ k[i]; //taking XOR

of bytes and storing

polyMult(t, s[index%4][i], d[i]);

d[i] = t;

}//end for

data = d[0] to d[15];

// combining all bytes

}//end function

__

Function linearTransformation(& input)

{//begin function

34

// split input into 4 of 32 bit variables.

X0 = input[0] to input[31]

X1 = input[32] to input[63]

X2 = input[64] to input[95]

X3 = input[96] to input[127]

//operations

X0=rotleft(X0,13);

X2=rotleft(X2,3);

X1=X1⊕X0⊕X2;

X3=X3⊕X2⊕(X0<<3);

X1=rotleft(X1,1);

X3=rotleft(X3,7);

X0=X0⊕X1⊕X3;

X2=X2⊕X3⊕(X1<<7);

X0=rotleft(X0,5);

X2=rotleft(X2,22);

// rejoining X0, X1, X2, X3 to replace input data

input= X0, X1, X2, X3 // their bits are taken

side by side.

}//end function

__

Function polyMult(&result, w, s)

{//begin function

35

// all inputs are byte sized

result=0; // Resetting all bits to 0

for (i:08)

{//begin outer for

if (w[i]==0) //if ith bit is zero

continue; // then jump to next iteration directly

for(j: 0 8)

{//begin inner for

If (s[j]==0)

Continue;

If (i+j>7)

Continue;

flipBit (result, i+j); //flip (i+j)th bit in result

// flipBit() isn’t implemented, an already built programming

construct is used

// to do it.

}//end inner for

}//end outer for

}//end function

__

Function finalPermutation (&dataBlock)

{//begin function

for (i:0127)

{//begin for

if (i!=127)

index=(i*2)%127;

else

36

index=127;

newBlock[i]=dataBlock[index];

}//end for

dataBlock=newBlock;

}//end function

4.5. Complexity and Speed Analysis

Complexity of the proposed Algorithm is taken in comparison with Serpent

Algorithm.

Conventions:

 The basic unit cost of an operation is taken as Constant (C).

 Bitwise Operations will have a cost of Constant(C). i.e. XOR operations, shifts and

rotation.

Analysis of Serpent algorithm:

We find the complexities of the individual parts of the algorithm first.

i. Initial Permutation: Total 128 bits are copied. Cost: 128C

ii. Making W₋₈ to W₋₁: Total 128 bits are copied. Cost: 128C

iii. Making W₀ to W₁₃₁: (5 XOR operations + 1 Shifts) = 6C, 132 times: 792C

iv. Making Round Key: Initial Permutation = 128C, Polynomial Multiplication of 128

bits

 =128*128 = 16384C, 16384+128 = 16512C (extreme worst Case)

v. Data Block XOR: 32 XOR operations: 32C

vi. Linear Transformation: 16 unit operations: 16C

vii. Final Permutation: Total 128 bits are copied: 128C

Sequential Algorithm Flow:

Now we follow the algorithm with the above costs to calculate overall cost.

37

Making W₋₈ to W₋₁ 128C

Making W₀ to W₁₃₁ 792C

for:i=0 to 31

{

Initial Permutation 128Cx32 = 4096C

Making Round Key 16512Cx32 = 528384C

Data Block XOR 32Cx32 = 1024C

if(i!=31)

Linear Transformation 16Cx31 = 496C

}

 Data Block XOR 32C

 Final Permutation 128C

 Total: 535080C

Analysis of Proposed Algorithm:

We find the complexities of the individual parts of the algorithm first.

i. Initial Permutation: Total 128 bits are copied. Cost: 128C

ii. Making W₋₄ to W₋₁: Total 128 bits are copied. Cost: 128C

iii. Making W₀ to W49: (3 XOR operations + 1 Shifts) = 4C, 49 times: 390C

iv. Making Round Key: Initial Permutation = 128C, Polynomial Multiplication of 128

bits = 128 ∗ 128 = 16384C,

16384+128 = 16512C (extreme worst Case)

v. Data Block XOR: 16 XOR operations: 16C

vi. Linear Transformation: 16 unit operations: 16C

vii. Final Permutation: Total 128 bits are copied: 128C

Sequential Algorithm Flow:

Now we follow the algorithm with these costs to calculate overall cost.

38

Making W₋₄ to W₋₁ 128C

Making W₀ to W₆₅ 390C

for i = 0 to 21

{

Initial Permutation: 128Cx22 = 2816C

Making Round Key: 16512Cx22 = 363264C

Data Block XOR: 16Cx22 = 352C

if(i!=21)

Linear Transformation: 16Cx21 = 336C

}

 Data Block XOR: 16C

 Final Permutation: 128C

 Total: 367430C

Performance:

Relation between the two can be taken from:

|535080 – 367430| / 535080 * 100

= 31%

The new algorithm is 31% better.

39

CHAPTER 5

CONCLUSION

Crypto-Algorithms play an important role in secure communication. For the purpose of

secure communication different algorithms like Rijndael algorithm, Serpent Algorithm, MARS

Algorithm, TwoFish Algorithm and RC6 Algorithm have been designed. The preference is

given to Rijndael Algorithm for AES because of its secureness, less complexity and fast speed.

We amended the Serpent Cipher and consequently it became 31% less complex and faster

than the original algorithm. Dealing with a vector of 64 bits instead 32 bits at a time in the

prekeys formation take a rule for speeding up the process of key formation and hence the whole

algorithm (Slowness, the main drawback of Serpent Algorithm). Instead of using the replicated

S-boxes obtained from DES as in the Serpent, we used genuine S-boxes that was obtained from

the commutative chain ring 𝑅8 =
ℤ2[𝑥]

<𝑥8>
= 𝔽2 + 𝑥𝔽2 + 𝑥2𝔽2 + 𝑥3𝔽2 + 𝑥4𝔽2 + 𝑥5𝔽2 +

𝑥6𝔽2 + 𝑥7𝔽2. The security of the proposed algorithm is hidden in the operation “addition” and

“multiplication” which we performed in different systems (i.e. in R8, addition coincide with the

field “𝔽28” and multiplication with the ring ℤ28)). In our modified algorithm when S-box is

applied on a byte, the result falls in a set of 512 elements which means that the range of our S-

box is the double time the range of Rijndael algorithm that gave strength to our algorithm. Also

we believe that by performing half of the rounds (i.e. 11 rounds), the algorithm was secure as

much as triple DES [13], the reason is that the best considered well known attack on AES and

Serpent “the Extended spares linearization (XSL) attack” [6] is applicable to the elements of a

Galois field, where there is an inverse for each element but in our case each element of the ring

did not have inverse. This algorithm is free in all aspects from DES and all other algorithms

especially in the case that how to apply the S-boxes. Also, in this case, we treated each element

as a polynomial where addition and multiplication occur in the finite commutative chain ring

R8. It also gave a high level of confidence due to excludeness of any trapdoor.

40

REFRENCES

[1] Anderson, R., Biham, E., and Knudsen, L.: (1998). Serpent: A proposal for the

advanced encryption standard. NIST AES Proposal, 174, 1-23.

[2] Barlow, R. H., and Evans, D. J.: (1982). Parallel algorithms for the iterative solution

to linear systems. COMPUT J, 25(1), 56-60.

[3] Biham, E.: (1997, January). A fast new DES implementation in software. In Fast

Software Encryption: (pp. 260-272). Springer Berlin Heidelberg.

[4] Biham, E., and Shamir, A.: (2012). Differential cryptanalysis of the data encryption

standard. Springer Science and Business Media.

[5] Burwick, C., Coppersmith, D., D’Avignon, E., Gennaro, R., Halevi, S., Jutla, C., and

Zunic, N.: (1998). MARS-a candidate cipher for AES. NIST AES Proposal, 268.

[6] Cid, C., and Leurent, G.: (2005). An analysis of the XSL algorithm. In Advances in

Cryptology-ASIACRYPT 2005: (pp. 333-352). Springer Berlin Heidelberg.

[7] Contini, S., Rivest, R. L., Robshaw, M. J. B., and Yin, Y. L.: (1998). The Security

of the RC6 TM Block Cipher. v1. 0. Available at http://www. rsa.

com/rsalabs/aes/security.pdf.

[8] Daemen, J., and Rijmen, V.: (1999). AES proposal: Rijndael.

[9] Gehlot, P., Biradar, S. R., and Singh, B. P.: (2013). Implementation of Modified

Twofish Algorithm using 128 and 192-bit keys on VHDL. IJCA, 70(13).

[10] Hussain, I., and Shah, T.: (2013). Literature survey on nonlinear components and

chaotic nonlinear components of block ciphers. NONLINEAR DYN, 74(4), 869-

904. DOI: DOI 10.1007/s11071-013-1011-8

[11] Hussain, I., Shah, T., and Mahmood, H.: (2010). A new algorithm to construct secure

keys for AES. INT. J. CONTEMP. MATH. SCIENCES, 5(26), 1263-1270.

[12] Hussain, I., Shah, T., Mahmood, H., Gondal, M. A., and Bhatti, U. Y.: (2011). Some

analysis of S-box based on residue of prime number. PROC PAK ACAD SCI, 48(2),

111-115.

[13] Kelsey, J., Schneier, B., and Wagner, D.: (1996, August). Key-schedule

cryptanalysis of idea, g-des, gost, safer, and triple-des. In ADVANCES IN

CRYPTOLOGY—CRYPTO’96: (pp. 237-251). Springer Berlin Heidelberg.

[14] Kahate, A.: (2013). Cryptography and network security. Tata McGraw-Hill

Education.

41

[15] Matsui, M.: (1993, May). Linear cryptanalysis method for DES cipher. In Advances

in Cryptology—EUROCRYPT’93: (pp. 386-397). Springer Berlin Heidelberg.

[16] Nyberg, K.: (1991, April). Perfect nonlinear S-boxes. In ADVANCES IN

CRYPTOLOGY—EUROCRYPT’91: (pp. 378-386). Springer Berlin Heidelberg.

[17] Rivest, R. L., Robshaw, M. J., and Yin, Y. L.: (2000, April). RC6 as the AES. In

AES Candidate Conference: (pp. 337-342).

[18] Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., and Ferguson, N.:

(1999). The Twofish encryption algorithm: a 128-bit block cipher. John Wiley and

Sons, Inc.

[19] Shah, T., Jahangir, S., and de Andrade, A. A.: Design of new 4 × 4 S-box from finite

commutative chain rings. COMPUT APPL MATH, 1-15. DOI 10.1007/s40314-015-

0265-9

[20] Shah, T., Qamar, A., and Hussain, I.: (2013). Substitution box on maximal cyclic

subgroup of units of a Galois ring. Z NATURFORSCH A, 68(8-9), 567-572.

[21] Stanger, J., Lane, P. T., and Crothers, T.: (2006). CIW Security Professional Study

Guide: Exam 1D0-470. John Wiley and Sons.

[22] Tran, M. T., Bui, D. K., and Duong, A. D.: (2008, December). Gray S-box for

advanced encryption standard. In Computational Intelligence and Security (ICCIS),

2008. CIS'08. International Conference on Computational Intelligence and Securtiy:

(Vol. 1, pp. 253-258). IEEE.

[23] Yulianto, A., Kom, S., and Prasetiyowati, M. I.: (2013, December). BoxLock:

Mobile-based Serpent cryptographic algorithm and One-Time Password mechanism

implementation for Dropbox files security. In Internet Technology and Secured

Transactions (ICITST), 2013, 8th International Conference for Internet Technology

and Secured Transaction (pp. 357-362). IEEE.

