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Preface 
Boundary layer flow induced by the stretching surface frequently appear in the 
industrial and engineering applications. Examples of such practical applications are 
extrusion of plastic sheets, cooling of a metallic plate in a cooling bath, drawing of 
plastic films, paper production, hot rolling, wire drawing, glass fiber etc. A variety 
of flow problems having quiet relevance to the polymer extrusion is the flow 
generated by a stretching surface. A metal spinning process is the best example of 
such phenomenon. Another example is annealing and thinning of copper wires in 
which the final product depends on the stretching rate of the sheet with exponential 
variation of stretching velocity and temperature distributions. Some recent studies 
in this direction are [1-7]. Further the flow of an electrically conducting fluid with 
heat and mass transfer is important in many geothermal and industrial applications. 
Such fluids are useful in MHD accelerators, high temperature plasmas, power 
generators, cooling of nuclear reactors, MHD pumps and flow meters, in 
metallurgical process and many others (see [8-12]). 

    The analysis of non-Newtonian fluids is a hot topic of research due to its several 
industrial and engineering applications. In particular, these fluids are encountered 
in material processing, bioengineering, chemical and nuclear industries, polymeric 
liquids and foodstuffs. Several fluids like shampoos, paints, ketchup, mud, apple 
sauce, soaps, certain oils and polymer solutions are the example of non-Newtonian 
fluids. The characteristics of all the non-Newtonian fluids cannot be explained 
through one constitutive relationship. Thus various models of non-Newtonian 
fluids have been proposed in the past. The non-Newtonian fluids are further 
divided into three categories namely differential, rate and integral types. Second 
grade fluid model is a subclass of differential type fluids which describes the 
normal stress effects. One and two dimensional flows of second grade fluid are 
analyzed in the past. For instance helical flows of second grade fluid between two 
infinite coaxial cylinders were investigated by Jamil et al. [13]. Electrically 
conducting flow of second grade fluid over a permeable stretching sheet with 
arbitrary velocity and appropriate wall transpiration was examined by Ahmad and 
Asghar [14]. The perturbation solutions for modified second grade fluid flow past a 
porous plate is examined by Pakdemirli et al. [15]. Differential transform analysis 
of flow of second grade fluid past a stretching or shrinking surface was reported by 



Rashidi et al. [16]. Hayat et al. [17] discussed the unsteady MHD flow of second 
grade fluid between two parallel disks. Jamil et al. [18] investigated the flow of 
fractional second grade fluid using finite Hankel and Laplace transforms method. 
Here the flow is induced due to the torsional and longitudinal oscillations of 
cylinder. Turkyilmazogolu [19] provided the multiple solutions of an electrically 
conducting second grade fluid flow past a shrinking surface with slip conditions. 
He computed the exponential type solutions and noticed that these are unique or 
multiple with slip conditions. Hayat et al. [20] developed the series solutions for 
boundary layer flow of second grade fluid with power law heat flux and heat 
generation/absorption. 

    When heat and mass transfer occurs simultaneously in a moving fluid then the 
relations between the fluxes and the driving potentials are of more intricate nature. 
It has been observed that an energy flux can be generated not only due to 
temperature gradients but also by concentration gradients. The heat transfer due to 
concentration gradient is known as the diffusion-thermo (Dufour) effect. On the 
other hand the mass transfer due to temperature gradient is known as thermal-
diffusion (Soret) effect. Generally the Soret and Dufour effects are of smaller order 
of magnitude than the effects described by Fourier's and Fick's laws and are often 
neglected in heat and mass transfer processes. Such effects are important in 
hydrology, nuclear waste disposal, petrology, geothermal energy etc. Soret effect 
has great involvement in process of isotope separation and in mixture between 
gases with very smaller molecular weight (H₂, He) and of medium molecular 
weight (N₂, air). Dufour effect was found to be of order of considerable magnitude 
such that it cannot be ignored [21]. Partial slip effects in MHD convective flow 
induced by a rotating disk with thermal-diffusion and diffusion-thermo effects was 
reported by Rashidi et al. [22]. Hayat et al. [23] discussed the Soret and Dufour 
effects in magnetohydrodynamic flow of Casson fluid over a stretching surface. 
Turkyilmazoglu and Pop [24] investigated the Soret effect in unsteady natural 
convection flow with heat generation and radiation. They considered the flow 
induced due to impulsive motion of vertical plate. Pal and Mondal [25 ] explored 
the characteristics of Soret and Dufour in MHD buoyancy-driven heat and mass 
transfer flow over a stretching sheet. 



     This dissertation is organized as follows. Some definitions, concepts and related 
equations are presented in chapter one. Chapter two investigates the two-
dimensional mixed convection flow by an exponentially stretching sheet with Soret 
and Dufour effects. Governing nonlinear problem is solved by homotopy analysis 
method. Convergence is discussed for the derived solutions. Graphs are displayed 
to describe the physical significance of the involved parameters. The comparative 
study with already existing data is presented. The results are found in very good 
agreement. Chapter three explores the characteristics of Soret and Dufour effects in 
magnetohydrodynamic (MHD) three-dimensional flow of second grade fluid 
induced by an exponentially stretching surface with thermal radiation. 
Mathematical formulation is carried out under the boundary layer and Rosseland's 
approximations. The resulting nonlinear system is analyzed through homotopy 
analysis method (HAM) [26-30]. Results for physical quantities of interest are 
obtained. Impact reflecting the influences of pertinent variables is pointed out in 
detail. Main findings are listed in last section. 
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Chapter 1

Elementary concept and definitions

This chapter comprises some standard definitions and fundamental equations related to fluid

flow characteristics which are presented for better understanding of next two chapters.

1.1 Fluid

Fluid is define as a material that moving continuously and deforming when external force is

applied. No matter how small external force may be. Gases and liquid are both regarded as

fluids.

1.2 Fluid mechanics

The branch of engineering that deals with the movement of fluids and the forces which acts

upon them. Fluid mechanics can be classified in two broad categories.

1.2.1 Fluid statics

The branch of engineering which exhibit the flow characteristics of stationary fluids.

1.2.2 Fluid dynamics

In fluid dynamics, fluid at motion are considered. There is relative motion between adjacent

fluid particles.
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1.3 Stress

An average force acting per unite of the surface area within the governable body is defined as

the stress. Mathematically we have

 =



(1.1)

Stress in SI system has unit −2 or −1−2 and dimension is
£
−1−2

¤
. Further stress

are classified into following two components.

1.3.1 Shear stress

That type of stress in which force is acting parallel to the surface of unit area .

1.3.2 Normal stress

Stress is characterized as normal stress when force acts normally on surface unit area.

1.4 Strain

Strain is a quantity that determined the relative deformation of the material when forces applied

to it.

1.5 Viscosity

An inherent characteristic of fluid that quantify the fluid resistance against any moderate de-

formation is called viscosity. The two ways of expressing the viscosity are:

1.5.1 Dynamic viscosity ()

Absolute or dynamic viscosity is the shear stress to gradient of velocity ratio. It measure the

resistance of fluid against any deformation when a force is applied on it. Mathematical relation

of dynamic viscosity is

viscosity () =
shear stress

gradient of velocity
 (1.2)
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The SI unit of absolute viscosity is −2 and has dimension
£
−1−1

¤
.

1.5.2 Kinematic viscosity ()

The ratio that represents the absolute viscosity () to density () is term as kinematic viscosity.

It mathematical form is given by

 =



 (1.3)

In SI system, kinematic viscosity has unit 2 with dimension
£
2−1

¤


1.6 Newton’s law of viscosity

This law demonstrate that the shear stress and gradient of velocity directly proportional but

in linear way. Mathematical relation is given by

 ∝ 


 (1.4)

or

 = 

µ




¶
 (1.5)

in which  designates the shear force applied on the element of fluid. The index  shows

the shear stress direction while  denotes the direction of fluid velocity i.e. . Where  is

proportionality constant known as dynamic viscosity of the fluid.

1.6.1 Newtonian fluid

The flow of fluid followed by Newton’s law of viscosity are categorized as Newtonian or viscous

fluid. In these fluids the value of  is constant at a given temperature and pressure. Also such

type of fluids have linear relationship between shear and deformation rates Fluids like water,

sugar solution, glycerine, air, thin motor oil, salt water etc. are all examples that reveal viscous

behavior.
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1.6.2 Non-Newtonian fluids

Those fluid which deviate Newtonian law of viscosity as term as non-Newtonian fluids. For

such fluid a non-linear relationship exists between shear stress and strain rate Furthermore,

notice that the viscosity of these fluids not remain constant. Mathematically it is stated as

τ  ∝
µ




¶

  6= 1 (1.6)

or

τ  = 



  = 

µ




¶−1
 (1.7)

where  represents apparent viscosity,  denotes index of flow behavior and  specify consistency

index. For  = 1 the above expression reduces to Newton’s law of viscosity. Custard, paint,

blood, shampoo, ketchup, flour drug, polymer solution and honey are some examples of non-

Newtonian fluid. These fluids are classified mainly into three types i.e. () differential type ()

integral type () rate type. In this thesis we only considered subclass of differential type fluid

known as second grade fluid. This fluid model exhibits the effects of normal stress.

1.7 Magnetohydrodynamics

It is the branch of engineering which describe the dynamic of electrically conducting fluid under

the pressure of magnetic field. It gives the interaction of magnetic field with moving conducting

fluid like strong electrolytes, ionized gases and liquid metals.

1.8 Mechanism of heat flow

When two objects have distinct temperature then the transfer of heat occurs from the higher

temperature object to the lower ones. More precisely heat transfer is a process by which

internal energy from one substance transfer to another substance of different temperature.

This mechanism of heat taking place in the following three methods.
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1.8.1 Conduction

Conduction is the process of heat transfer from one object to another object due to only direct

collision between molecules and atoms. Touching a metal spoon that is placed in a pot of

boiling water is the example of conduction.

1.8.2 Convection

In convection the heat arise due to relative particles motion or particles transport. The simplest

example of convection is streaming beverage.

Force convection

The mechanism of heat flow in which the fluid flow is caused by an external source. Fan, air

conditioner and pump are examples of force convection. By increasing the rate of heat exchange,

forced convection is typically used.

Natural/free convection

Such phenomenon of heat transfer (convection) in which heat flow occurs as a result of density

variations in the fluid due to gradient of temperature. Free or natural convection can only

occur, when there is a gravitational field. The smoke arise from a fire is the common example

of free convection.

Mixed convection

This is the utmost general mode of convection arises when natural and free convection contribute

together in heat transfer. This phenomena occur when both the buoyancy and external forces

interact with each other.

1.8.3 Radiation

Radiation is the mode of heat transfer that required no medium for propagation and occurs due

to emission of electromagnetic waves. Radiation and convection play a crucial role when heat

8



transfer is considered in the liquids and gases but for solid materials conduction is responsible

to transfer heat. Heat radiating from a fire is the common example of radiation.

1.9 Thermal conductivity ()

The intrinsic behavior of material that measure its heat transfer ability. Thermal conductivity

is define as the amount of heat () transmitted through thickness () in the normal direction

to the surface of area (), per unit temperature difference (∆ ) and per unit area (). It can

be stated as follows:

 =


∆
(1.8)

where  stands for thermal conductivity,  represents quantity of heat,  designates cross

sectional area and ∆ is the temperature change along a distance . Its unit is 3

and its dimension is [
 3
]

1.10 Thermal diffusivity ()

It is the relation between the thermal conductivity () and product of density () into spe-

cific heat capacity () This value demonstrate that how fastly a material reacts to alter in

temperature. In other words, it describes the thermal inertia of the material. On may express

mathematically as follows:

 =



 (1.9)

In above expression,  denote the thermal diffusivity,  denotes density and  represents the

capacity of heat. Thermal diffusivity () unit in SI system is 2−1 and having dimension

[2−1]

1.11 Specific heat ()

The amount of heat energy needed to enhance the temperature of one  of any substance by

one degree Celesius. The relation between heat and temperature change is usually expressed in
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the form of specific heat capacity as follows:

 =
1



∆

∆
 (1.10)

In above expression∆ denotes amount of heat added to bring up the temperature by∆ when

mass of substance is . The two factor on which specific heat depends are heat at constant

volume  and heat at constant pressure 

1.12 Mass transfer

The transport of energy by physical displacement of hot or cold objects is referred as mass

transfer. The subject of mass transfer explore the relative motion of some chemical species

with respect to other (i.e. mixing and separation process), driven by concentration gradient.

1.13 Non-dimensionlize parameters

1.13.1 Reynolds number ()

It represents by inertial over viscous forces. It characterize the transition between turbulent

and laminar (or streamline) flow and is implemented in momentum, heat and mass transfer to

find out dynamic similarities. Note that laminar flow corresponds to low Reynolds number ()

where viscous forces are dominant, while flow is turbulent when Reynolds number has higher

value and internal forces is dominated in this situation. Mathematically one may expressed it

as

Re =
inertial forces

viscous forces
 (1.11)

Re =
2

2
=




 (1.12)

Where  the velocity of fluid,  denotes the characteristic length and  stands for kinematic

viscosity.
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1.13.2 Prandtl number (Pr)

It is a non-dimensional quantity which is correlation between viscous diffusivity to thermal

diffusivity. Mathematically we have

Pr =
viscous diffusion rate

thermal diffusion rate
= Pr =




=






in which  represents the dynamic viscosity,  denotes the specific heat and  stands for

thermal conductivity. For Pr  1 momentum diffusivity dominates over the thermal diffusivity

and vice versa. In case of small Prandtl number heat diffuses more rapidly then the momentum.

Prandtl number has great significant in controlling and measuring the comparative thickness

of momentum to thermal boundary layers.

1.13.3 Hartman number ()

It is the magnetic body force into the viscous force ratio. Mathematical expression of Hartman

number is stated as

2 =
magnetic forces

viscous forces
=

20


 (1.15)

in above expression 0 is the applied magnetic field,  the length scale,  indicates the electrical

conductivity,  stands for the fluid density and  denotes the velocity.

1.13.4 Grashof number ()

This number provide a relationship between buoyancy force and viscous force applying on the

fluid. Mathematically it can be defined as

 = ( − ∞)
3

2
 (1.16)

in which  show the coefficient of thermal expansion,  represents gravitational acceleration, 

denotes characteristic length,  the kinematics viscosity,  and ∞ are the surface and ambient

temperature respectively. Note that for   1 turbulent flow occur since the viscous forces

are negligible and buoyancy forces supremum.

11



1.13.5 Mixed convection parameter ()

It is a non-dimensional quantity defined by the ratio of buoyancy forces to the inertial forces.

Mathematically it is given by

 =


Re2
 (1.17)

where  designate Grashof number.

1.13.6 Schmidt number ()

Schmidt number describes as the momentum diffusion and mass diffusion ratio. Mathematically

we have

 =
viscous diffusion rate

molecular (mass) diffusion rate
=




=




 (1.18)

here  denotes the coefficient of mass diffusivity.

1.13.7 Soret number

It is the ratio of thermal diffusion to the mean temperature of the fluid. It describe a mass flux

due to temperature gradient. Mathematically it can be expressed by the relation

 =
 ( − ∞)
( − ∞)

 (1.19)

In which  depicts mass diffusivity,  the thermal diffusion ratio,  denotes the mean

temperature of the fluid,  and ∞ are the wall and ambient temperature while  and ∞

are the surface and surrounding concentration respectively.

1.13.8 Dufour number

This is heat flux due to concentration gradient. The Dufour number is the ratio of an increase

in enthalpy of a unit mass during isothermal mass transfer to the enthalpy of a unit mass of

mixture. Such relation can be written as

 =
 ( − ∞)
( − ∞)

 (1.20)
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where  stands for concentration susceptibility and  represent specific heat whereas other

parameters are same as in Soret number.

1.13.9 Skin friction coefficient

Friction is known as skin friction when the fluid and surface of the solid object are in relative

motion. One may write mathematically as

 =

1
2
2

 (1.21)

in which  stands for wall shear stress,  stands for density and  represents the velocity.

The viscous stress at the boundary produces drag force which leads to reduce the fluid motion.

The effect of skin friction for laminar flow is less as compared to turbulent flow. In fact, the

boundary layer is thinner for laminar flow situation. To reduce skin friction, it is necessary to

convert turbulent flow into laminar (streamline) flow.

1.13.10 Nusselt number

The non-dimensional heat transfer coefficient which measure the ratio of convective to conduc-

tive heat flow. Mathematically it has the following form

 =
∆

∆
=




 (1.22)

where  stands for convective heat transfer,  the length scale and  denotes thermal conductivity

1.13.11 Sherwood number

The non-dimensional mass transfer rate at the wall is define by Sherwood number. Its mathe-

matical expression is stated as follow

 =



 (1.23)

in which   and  denotes convective mass transfer, characteristic length and diffusion

coefficient respectively.
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1.14 Homotopic solutions

Homotopy analysis method (HAM) is accomplish for the series solutions of nonlinear problems.

This technique was firstly introduced by Liao in (1992). To explore this method, assume a

differential equation

N [ ()] = 0 (1.24)

where N stands for non-linear operator,  () for unknown function while  represents the

independent variable. The zeroth-order equation is expressed as:

¡
1− Þ̌¢L £̃ ¡; Þ̌¢− 0 ()

¤
= Þ̌~N £

̃
¡
; Þ̌

¢¤
 (1.25)

here 0 () stands for the initial approximation, L is the auxiliary linear operator, Þ̌ ∈ [0 1]
represents an embedding parameter, ~ for nonzero auxiliary parameter and ̃

¡
; Þ̌

¢
denotes the

unknown function of  and Þ. For Þ̌ = 0 and Þ̌ = 1 we have

̃ (; 0) = 0 () and ̃ (; 1) =  ()  (1.26)

The solution ̃
¡
; Þ̌

¢
change from initial solution 0 () to the final result  () when Þ̌ changes

from 0 to 1. Using Taylor series expansion we have

̃
¡
; Þ̌

¢
= 0 () +

∞X
=1

 () Þ̌

  () =

1

!

̃
¡
; Þ̌

¢
Þ̌



¯̄̄̄
¯
Þ̌=0

 (1.27)

For Þ̌ = 1 we get

 () = 0 () +

∞X
=1

 ()  (1.28)

After  times differentiating Eq. (125) with respect to Þ̌, then divided by ! and at last putting

Þ̌ = 0 we get the th order equation written as follow

L [ ()− −1 ()] = ~R ()  (1.29)

R () =
1

(− 1)!
N £

̃
¡
; Þ̌

¢¤
Þ̌



¯̄̄̄
¯
Þ̌=0

 (1.30)
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where

 =

⎧⎨⎩ 0  ≤ 1
1   1

 (1.31)
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Chapter 2

Soret and Dufour effects in mixed

convection flow past an

exponentially stretching surface

Mixed convection boundary layer flow of viscous fluid over a stretching surface is explored

in this chapter. The effects of Soret and Dufour in heat and mass transfer are considered.

Mathematical formulation is established by utilizing the boundary layer approach. The relevant

boundary layer equations are reduced into the coupled nonlinear ordinary differential equations

by introducing suitable transformations. Solution computations of resultant highly non-linear

equations are developed. A detail study is accomplished to access the influence of interesting

parameters on non-dimensional velocity, temperature and concentration distributions. These

results are sketched and discussed qualitatively. The coefficient of skin friction, local Nusselt and

local Sherwood numbers are computed numerically. Comparative investigation with the already

published article is computed to guarantee the correctness of present results. A comprehensive

review of research article presented by Srinivasacharya and Reddy [31] is carried out in this

chapter.
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2.1 Problems development

We investigate the boundary layer flow of an incompressible viscous fluid over a impermeable

sheet which is stretched exponentially. Flow analysis is accessed through consideration of mixed

convection and Soret and Dufour effects. System of Cartesian coordinate is employed in such a

manner that the −axis is along vertically upward and −direction is taken perpendicular to
the sheet. Stretching velocity  wall temperature  and wall concentration  are taken to

have some exponential function forms. The flow physical model is presented in Fig. 1

Fig. 21. Flow configuration and coordinate system.

The velocity field V for present flow situation is

V = [( ) ( ) 0] (2.1)

The conservation laws of mass and linear momentum for incompressible fluid are

∇V = 0 (2.2)


V


= ∇τ− (2.3)
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The Cauchy stress tensor is

τ = − + A1 (2.4)

where

A1 = L+ L
̃  (2.5)

and

L = gradV =

⎡⎢⎢⎢⎣






0







0

0 0 0

⎤⎥⎥⎥⎦  L = (gradV)̃ =
⎡⎢⎢⎢⎣







0







0

0 0 0

⎤⎥⎥⎥⎦  (2.6)

The energy equation comprising Dufour effect is





= τ L−divq+


∇2 (2.7)

with

q = − grad (2.8)

Concentration equation including Soret effect is




= ∇2 + 


∇2 (2.9)

In above expressions V represents the velocity field,  designates density, τ the Cauchy stress

tensor,  the acceleration due to gravity,  the specific heat,  the temperature,  designates

thermal-diffusion ratio,  denotes diffusion coefficient,  the concentration susceptibility, q the

heat flux,  the thermal conductivity,  the concentration,  the fluid mean temperature, 

the pressure,  the identity tensor,  the dynamic viscosity and A1 the first Rivilin -Ericksen

tensor. By inserting the Eqs. (24)− (26) and (28) the governing equations take the form




+




= 0 (2.10)



µ




+ 





¶
= −


+ 

µ
2
2

2
+

2

2
+

2



¶
−  (2.11)
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

µ




+ 





¶
= −


+ 

µ
2

2
+

2

2
+

2



¶
−  (2.12)



µ




+ 





¶
= 

µ
2

2
+

2

2

¶
+





µ
2

2
+

2

2

¶
 (2.13)





+ 




= 

µ
2

2
+

2

2

¶
+





µ


2
+

2

2

¶
 (2.14)

With the help of boundary layer approach, the equations govern the flow reduce to



µ




+ 





¶
= −


+ 

2

2
−  (2.15)



µ




+ 





¶
= 

2

2
+





2

2
 (2.16)





+ 




= 

2

2
+





2

2
 (2.17)

Imposed boundary conditions are

 = 0

   = 0  = ∞ + 0


2   = 0 + 0


2 at  = 0 (2.18)

→ 0  → ∞  → ∞ as  →∞ (2.19)

where 0 0 and 0 are the constant,  the reference length,  stands for the temperature ex-

ponent,  denotes the concentration exponent, ∞ and ∞ represent the ambient temperature

and concentration respectively. Inserting the boundary condition → 0 as  →∞ Eq. (215)

yields

−


= ∞ (2.20)

Invoking Eq. (220) in Eq. (215) we have





+ 




=
1



µ

2

2
+ (∞ − )

¶
 (2.21)
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Expansion of Taylor’s series about ∞ yield

() = ∞ +



( − ∞) +




( −∞)

+
1

2

⎛⎜⎜⎜⎝
2
 2
( − ∞)2

+ 2


( − ∞)( − ∞)

+ 2
2

( − ∞)2

⎞⎟⎟⎟⎠+  (2.22)

Omitting square and high power terms, we get

(− ∞) =  ( − ∞) + ( − ∞) (2.23)

with

 = −
1






and  = −

1






 (2.24)

Replacing Eq. (221) with Eq. (223) gives





+ 




= 

2

2
+  ( ( − ∞) + ( − ∞)) (2.25)

Introducing the following transformations

 = 0

  0()  = −

³0
2

´12



2

¡
 () +  0 ()

¢


 = ∞ + 0

2 ()  = ∞ + 0


2 ()  =

³ 0

2

´12



2  (2.26)

Eq. (210) is satisfied automatically while Eqs.(215)− (225) take the form

 000 +  00 − 2 02 + 2( +) = 0 (2.27)

00 +Pr
¡
0 − 0 +

00¢ = 0 (2.28)

00 +
¡
0 − 0+ 00

¢
= 0 (2.29)

 = 0  0 = 1  = 1  = 1 at  = 0 (2.30)

 0 → 0  → 0 → 0 as  →∞ (2.31)
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in which  denotes mixed convection parameter,  designates the Grashof number, Pr the

Prandtl number,  the buoyancy ratio parameter,  the solutal expansion coefficient,  the

thermal expansion coefficient,  denotes Dufour number,  stands for Schmidt number and

 represents Soret number. These parameters are defined by

 =


Re2
  =

 ( − ∞)3

2
 Pr =




  =

( − ∞)
 ( − ∞)



 =




( − ∞)
( − ∞)

  =



  =





( − ∞)
( − ∞)

 (2.32)

The coefficient of skin friction ( ), local Nusselt number () and local Sherwood number

() are defined as follows:

 =


122
=  =



 ( − ∞)
 and  =



 ( −∞)
 (2.33)

where the shear stresses , heat flux  and mass flux  at the wall are

 = 

µ




¶
=0

  = −
µ




¶
=0

  = −
µ




¶
=0

 (2.34)

The dimensionless form of Eq. (233) gives



sµ
Re

2

¶
=  00(0)  = −



µ
Re

2

¶12
0(0)  = −



µ
Re

2

¶12
0(0) (2.35)

in which Re =  denotes the Reynolds number

2.2 Homotopic solutions

The suitable initial approximations and the auxiliary linear operators are

0() = 1− exp (−)  0() = exp (−)  0() = exp (−)  (2.36)

L = 3

3
− 


 L = 2

2
−  L = 2

2
−  (2.37)
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with

L [1 +2exp () +3exp (−)] = 0 L [4exp () +5exp (−)] = 0

L [6exp () +7exp (−)] = 0 (2.38)

where  ( = 1− 7) represents the arbitrary constants.

2.2.1 Zeroth-order problems

(1− Þ̌)L
h
̃( Þ̌)− 0()

i
= Þ̌~N [̃( Þ̌) ̃( Þ̌) ̃( Þ̌] (2.39)

(1− Þ̌)L
h
̃( Þ̌)− 0()

i
= Þ̌~N[̃( Þ̌) ̃( Þ̌) ̃( Þ̌] (2.40)

(1− Þ̌)L
h
̃( Þ̌)− 0()

i
= Þ̌~N[̃( Þ̌) ̃( Þ̌) ̃( Þ̌)] (2.41)

̃(0 Þ̌) = 0 ̃ 0(0 Þ̌) = 1 ̃ 0(∞ Þ̌) = 0 (2.42)

̃(0 Þ̌) = 1 ̃(∞ Þ̌) = 0 ̃(0 Þ̌) = 1 ̃(∞ Þ̌) = 0 (2.43)

Here the embedding parameter is represented by Þ̌ ∈ [0 1], ~  ~ and ~ represents the non-zero
auxiliary parameters and N  N and N denote nonlinear operators. We define

N

h
̂(; Þ̌) ̂(; Þ̌ ̂( Þ̌) ̂( Þ̌) )

i
=

3̂

3
+ ̂

2̂

2
− 2

Ã
̂



!2
+ 2(̂ +̂) (2.44)

N

h
̂( Þ̌) ̂( Þ̌) ̂(; Þ̌) ̂(; Þ̌)

i
=

2̂

2
+Pr ̂

̂


− Pr̂̂


+Pr

2̂

2
 (2.45)

N[̂( Þ̌) ̂( Þ̌) ̂(; Þ̌) ̂(; Þ̌)] =
2̂

2
+ ̂

̂


− ̂

̂


+ 

2̂

2
 (2.46)

2.2.2 th-order problems

L [()− −1()] = ~Ř
 () (2.47)

L [()− −1()] = ~Ř
 () (2.48)

L
£
()− −1()

¤
= ~Ř

() (2.49)
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(0) =  0(0) =  0(∞) = 0 (2.50)

(0) = (∞) = 0 (0) = (∞) = 0 (2.51)

Ř
 () =  000−1() +

−1X
=0

−1− 00 − 2
−1X
=0

 0−1−
0
 + 2(̂ +̂) (2.52)

Ř
 () = 00−1() + Pr

−1X
=0

−1−0 − Pr
−1X
=0

−1− 0 +Pr00−1() (2.53)

Ř
() = 00−1() + 

−1X
=0

−1−0 −

−1X
=0

−1−
0
 + 00−1() (2.54)

χ=

⎧⎨⎩ 0  ≤ 1
1   1

(2.55)

For Þ = 0 and Þ = 1 we get

̃(; 0) = 0() ̃(; 1) = () (2.56)

̃( 0) = 0() ̃( 1) = () (2.57)

̃( 0) = 0() ̃( 1) = () (2.58)

When Þ̌ increases from 0 to 1 then ̃(;Þ̌) ̃(Þ̌) and ̃(Þ̌) vary from initial results 0()

0() and 0() to the final results () () and () respectively. Using Taylor’s series

expansion we get

̃(; Þ̌) = 0() +

∞X
=1

()Þ̌

 () =

1

!

̃( Þ̌)

Þ̌


¯̄̄̄
¯
Þ̌=0

 (2.59)

̃( Þ̌) = 0() +

∞X
=1

()Þ̌

 () =

1

!

̃( Þ̌)

Þ̌


¯̄̄̄
¯
Þ̌=0

 (2.60)

̃( Þ̌) = 0() +

∞X
=1

()Þ̌

 () =

1

!

̃( Þ̌)

Þ̌


¯̄̄̄
¯
Þ̌=0

 (2.61)
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The choice for the values of non-zero auxiliary parameters are made in such a manner that the

series (259− 261) converge at Þ̌ = 1 then one has

() = 0() +

∞X
=1

() (2.62)

() = 0() +

∞X
=1

() (2.63)

() = 0() +

∞X
=1

() (2.64)

Solving the associated th order deformation problems we get

() = ∗() +1 +2exp () +3exp (−)  (2.65)

() = ∗() +4exp () +5exp (−)  (2.66)

() = ∗() +6exp () +7exp (−)  (2.67)

where ∗() 
∗
() and ∗() represents the special solutions. The values of constants 

( = 1− 7) by using Eqs. (250) and (251) are

2 = 4 = 6 = 0 3 =
∗()


¯̄̄
=0



1 = −3 − ∗(0) 5 = −∗(0) 7 = −∗(0)

⎫⎪⎬⎪⎭ (2.68)

2.2.3 Convergence analysis

Obviously the series solutions (262) − (264) enclose the auxiliary parameters ~  ~ and ~
These parameters provide an easy way to find out the convergence region and rate of resultant

series solutions. In order to get the allowable values of ~  ~ and ~, we sketch the ~-curves

at 23-order of deformations. Figs. (22)− (24) clearly depict that the admissible ranges are
−090 ≤ ~ ≤ −030 −090 ≤ ~ ≤ −035 and −090 ≤ ~ ≤ −030 Furthermore the series
solutions are convergent in whole zone of  when ~ = −06 = ~ = ~ Table 21 demonstrates
that the 20th order of approximations are enough for good agreement regarding convergence
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Fig. 22. ~−curve for the function ()
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Fig. 24. ~−curve for the function ()

Table 2.1: Convergence of homotopic solutions at various order of deformations when  =

05 = ,  = 02 =   = 01 Pr = 12  = 10  = 01 and ~ = ~ = ~ = −07

Order of approximations − 00(0) −0(0) 
0
(0)

1 109067 088800 081333

5 108902 085626 070654

10 109013 086025 069972

15 108998 086009 069963

20 109001 086011 069972

25 109001 086011 069972

30 109001 086011 069972

35 109001 086011 069972

40 109001 086011 069972
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2.3 Discussion

The main focus of this portion is to explore the variation of some pertinent parameters like mixed

convection parameter  buoyancy ratio parameter () Prandtl number (Pr) Soret number

() Dufour number () and Schmidt number () on the velocity  0(), temperature ()

and concentration () distributions. Figs. (25)−(217) are sketched to illustrate the results of
different parameters. Fig. 25 is presented to check the influence of mixed convection parameter

on the velocity field  0() It is lucid that the velocity field enhances when the mixed convection

parameter rises. This is because of the fact that  increases the kinetic energy of the fluid

molecules which assists fluid velocity to enhances. Fig. 26 displays the effect of buoyancy ratio

parameter  on the velocity profile  0(). Here enhancement in buoyancy ratio parameter 

causes to enhance the velocity distribution and thickness of boundary layer. Fig. 27 is plotted

to see the effect of Prandtl number Pr on the velocity field. It is clear from this Fig. that

an increase in Pr causes a reduction in the velocity distribution. In fact the fluid viscosity

enhances with the increase in Pr  Therefore velocity profile decreases. Influence of mixed

convection parameter on temperature profile is demonstrated in Fig. 28. Temperature ()

and associated thickness of boundary layer are dominate with enhancing values of . Higher

values of buoyancy ratio parameter  reduce the temperature and corresponding boundary

layer thickness (see Fig. 29). Fig. 210 elucidates that an increment in Pr gives a reduction in

temperature and its related thickness of boundary layer. Physically, the higher Pr means that

the thermal diffusivity is lower then the momentum diffusivity. Therefore decrease in thermal

diffusivity caused a reduction in temperature. It is found from Fig. 211 that the temperature

field () has decreasing behavior when we increase the values of Soret number . On the

other hand, Dufour number  shows reverse for higher values of  (see Fig. 212). Fig. 213

demonstrates the significance of mixed convection parameter  on the concentration profile

() An enhancment of  has a reducing effects on the concentration field. Fig. 214 presents

the variation of buoyancy ratio parameter  on the concentration field. This Fig. point out

that an increment in  brings a decrease in concentration profile (). Impact of Schmidt

number  on the concentration distribution () is examined in Fig. 215 It is revealed that

both concentration () and related boundary layer thickness are reduced for greater values of

 Because Schmidt number posses inverse relation with the diffusion coefficient. Fig. 216 is
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drawn to see the influence of Soret number  on concentration profile () It is observe that

the concentration and similarly boundary layer thickness are higher for larger values of Soret

number. Fig. 217 depicts the change in concentration profile for increasing values of Dufour

number  . Here large values of  causes a reduction in concentration distribution.

The convergence analysis of homotopic solutions when  = 05 = ,  = 02 = 

 = 01 =  Pr = 12,  = 01 and ~ = −06 = ~ = ~ is presented in table 21 This

table reported that the homotopic solutions converge at 20th order of deformation for  00(0)

0(0) and 0(0) Table 22 is executed to see the behavior of skin friction coefficient for various

values of     Pr and  It is noticed that an increment in     and  shorten

the friction drag coefficient while larger values of  and Pr increases the skin friction. Table

23 is prepared for numerical values of local Nusselt number −0(0) and local Sherwood number
−0(0) corresponding to distinct values of   Pr    and . It is observed that the

local Nusselt number are higher for larger values of     and Pr while it decreases with

increasing values of  and  From the same table it is evident that the mass transfer rate

is larger for higher values of   Pr and  while lower for higher values of Pr and  The

limiting study (i.e.  =  =  =  =  = 0) is compared with Magyari and Keller [33]

given in table 24 From this table we found an excellent agreement.
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Fig. 25 Behavior of  on  0()
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Fig 26 Behavior of  on  0()
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Fig 27 Behavior of Pr on  0()
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Fig 28 Behavior of  on ()
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Fig 29 Behavior of  on ()
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Fig 210 Behavior of Pr on ()
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Sr = 0.0, 0.4, 0.8, 1.4
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Fig 211 Behavior of  on ()
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Fig 212 Behavior of  on ()
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Fig 213 Behavior of  on ()
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Fig 214 Behavior of  on ()
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Sc = 0.7, 0.9, 1.1, 1.3
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Fig 215 Behavior of  on ()
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Fig 216 Behavior of  on ()
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Df = 0.0, 0.4 , 0.8, 1.4
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Fig 217 Behavior of  on ()
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Table 2.2: Numerical data for the coefficient of skin friction for various values of   Pr

  and  when  = 05 = 

      − ¡Re
2

¢12


00 01 12 02 01 10 128181

02 109000

05 083228

02 00 12 02 01 10 110800

02 107216

06 100260

02 01 07 02 01 10 106227

09 108063

15 110128

02 01 12 00 01 10 109067

02 108998

05 108895

02 01 12 02 00 10 109550

04 107395

08 105302

02 01 12 02 01 05 108736

10 108998

15 109115
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Table 2.3: Analytical result for the local Nusselt number (−0(0)) and local Sherwood
number (−0(0)) for several values of     Pr and  when  = 05 = 

      −0(0) −0(0)
00 01 12 02 01 10 081396 065449

05 090555 074270

08 092928 076479

02 00 12 02 01 10 085595 069565

03 086791 070731

06 087864 071766

02 01 08 02 01 10 067499 074066

10 077125 071902

14 094314 068217

02 01 12 00 01 10 084968 081018

02 086010 069971

05 087638 052767

02 01 12 02 00 10 090651 068898

05 081215 071045

08 048632 077815

02 01 12 02 01 08 086857 060819

10 086011 069971

14 085229 078297
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Table 2.4: Comparative table of wall temperature gradient (−0(0)) when  = 10 =  and

 =  =  =  =  = 0.

Pr Magyari and Keller Present results

05 −059434 059438

07 075319

10 −095478 095479

15 123476

20 147146

25 168024

30 −186901 186977

2.4 Closing remarks

Mixed convection boundary layer flow of viscous fluid over an impermeable exponentially

stretching vertical surface has been investigated in this chapter. The analysis of heat and

mass transfer is accomplished in the existence of Soret and Dufour effects. The main finding of

this chapter are listed as follows:

• The velocity profile increases while both temperature and concentration fields are de-
creases when  in strength

• Both the velocity  0() and temperature profile are reduces for larger values of Pr 

• Soret and Dufour effects presents opposite behavior on concentration and temperature
profiles.

• Enhancment in buoyancy ratio parameter  create a reduction in temperature and con-

centration distributions.

• Friction drag coefficient is smaller for higher values of   and 

• Heat and mass transport rate at the wall are lower when  and  enhances
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Chapter 3

Radiative three-dimensional flow of

second grade fluid with combine

effect of MHD, Soret and Dufour

MHD three-dimensional flow of second grade fluid over an exponentially stretching sheet has been ex-

plore in this chapter. Energy equation is subjected with thermal radiation effects. Electrically conduct-

ing fluid is assume subject to uniform magnetic field. Appropriate transformations is applied to convert

the partial differential equations into nonlinear ordinary differential systems. Convergent solution of

the resulting nonlinear systems have been constructed for the velocity components, temperature and

concentration fields. Impact of emerging parameters are shown and interpreted through graph. Char-

acteristics of involved physical parameters on skin friction, local Nusselt and Sherwood numbers are

analyzed numerically.

3.1 Problems development

Consider an incompressible three-dimensional flow of second grade fluid by an exponentially

stretching surface. Uniform magnetic field of strength 0 is applied in the transverse direction

to the flow. The Hall and electric field effects are neglected and thermal radiation effect is

taken into account. A system of Cartesian coordinate is adopted in such a manner that −
and −axes are in the stretched direction of the sheet and −axis is transverse to the surface.
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The fluid motion is due to stretching of the sheet is the − and − directions (at  = 0) with
wall velocities  and  respectively. Heat and mass transport phenomena are discussed in

the existence of Soret and Dufour effects. The velocity field for present flow analysis is

Fig. 31 Physical model and coordinate system.

V = [(  ) (  ) (  )] (3.1)

The equations of continuity, momentum, energy and concentration with Soret and Dufour effects

are:

∇V = 0 (3.2)


V


= ∇τ + J×B (3.3)





= τ L−divq+


∇2 −∇ (3.4)




= ∇2 + 


∇2 (3.5)

q = − grad (3.6)
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where  stands for density, B denotes total magnetic field, J denotes electric current density,

 the temperature,  designates specific heat,  the coefficient of diffusion,  the thermal-

diffusion,  the concentration susceptibility, q designates heat flux,  represents thermal con-

ductivity,  denotes the fluid mean temperature and  the concentration.

The constitutive equation for the second grade fluid can be expressed as follows

τ = −I+ μA1 + 1A2 + 2A
2
1 (3.7)

In above expression  the unit tensor,  the adynamic viscosity and τ the Cauchy stress tensor,

 pressure, 1 and 2 denote the material constants. The first and second Riliven-Ericksen

tensors are denoted by A1 and A2 i.e.

A1 = (gradV) + (gradV)
T̆  (3.8)

A2 =
A1


+A1 (gradV) + (gradV)

T̆
A1 (3.9)

where the 

represents the material derivative. According to Dunn and Fosdick [32] if the fluid

is to be consistent with the thermodynamics in the sense that all motion satisfy the Clausius-

Duhem inequality then the specific Helmholtz free energy is minimum when the fluid is locally

at rest i.e.

1 ≥ 0  ≥ 0 1 + 2 = 0 (3.10)

and therefore Eq. (37) yields

τ = −I+ μA1 + 1(A2 −A21) (3.11)

Using Cartesian coordinates we have

gradV =

⎡⎢⎢⎢⎣



























⎤⎥⎥⎥⎦  (gradV)T̆ =
⎡⎢⎢⎢⎣




























⎤⎥⎥⎥⎦  (3.12)
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The Cauchy stress tensor in components form are given by

 = −+ 2

+ 1

⎛⎝ 2(2
2

+  2


+  2


) + 2

(

+ 


)

+2

(

+ 


)−

³


+ 



´2
− ¡


+ 



¢2
⎞⎠  (3.13)

 = −+ 2

+ 1

⎛⎝ 2( 2


+  

2
2

+  2


) + 2

(

+ 


)

+2

(

+ 


)−

³


+ 



´2
−
³


+ 



´2
⎞⎠  (3.14)

  = −+ 2


+ 1

⎛⎝ 2( 2


+  2


+  2
2
) + 2


(

+ 


)

+2

(

+ 


)− ¡


+ 



¢2 − ³

+ 



´2
⎞⎠  (3.15)

 =  = 

µ



+





¶
+ 1

⎛⎜⎜⎜⎝
( 

2
2

+ 2


) + ( 2


+ 2
2
) +( 2


+ 2


)

−

(

+ 


) + 


(

+ 


) + 2




+ 2





−

(

+ 


) + 


(

+ 


)− (


+ 


)(


+ 


)

⎞⎟⎟⎟⎠ 

(3.16)

 =   = 

µ



+





¶
+ 1

⎛⎜⎜⎜⎝
(

2
2

+ 2


) + ( 
2


+ 2


) + ( 

2


+ 2
2
)

−

(

+ 


) + 


(

+ 


) + 2




+ 2





−

(

+ 


)− ( 


+ 


)(


+ 


)

⎞⎟⎟⎟⎠ 

(3.17)

 =   = 

µ



+





¶
+ 1

⎛⎜⎜⎜⎝
( 

2


+ 2


) + (
2
2

+ 2


) + ( 
2


+ 2

2
)

−

(

+ 


)− 


(

+ 


) + 2




+ 2





+

(

+ 


)− 


(

+ 


)− (


+ 


)(


+ 


)

⎞⎟⎟⎟⎠ 

(3.18)

The magnetic force is

J =  (E+V×B)  (3.19)

B = [000]

when electric field E = 0 it reduces to

J =  (V ×B)  (3.20)

and thus Lorentz force is

J×B = −20V (3.21)
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With the help of Eq. (3.21) we can write



µ




+ 




+





¶
= −


+




+




+




− 20 (3.22)



µ




+ 




+ 





¶
= −


+




+




+




− 20 (3.24)



µ




+ 




+





¶
= −


+

 


+

 


+

 


− 20 (3.25)





+ 




+ 




=





µ
2

2
+

2

2
+

2

2

¶
+





µ
2

2
+

2

2
+

2

2

¶
 (3.26)





+ 




+ 




= 

µ
2

2
+

2

2
+

2

2

¶
+





µ


2
+

2

2
+

2

2

¶
 (3.27)

Invoking Eq. (313)− (318) into Eq. (322)− (327) and applying boundary layer analysis we
get:




+




+




= 0 (3.28)





+ 




+ 




= 

2

2
+ 0

⎛⎝  3
2

+  3
3
− 


2
2

−


2
2
− 2


2


− 2


2
2

⎞⎠− 20


 (2.29)





+ 




+ 




= 

2

2
+ 0

⎛⎝  3
2

+  3
3
− 


2
2

−


2
2
− 2


2


− 2


2
2

⎞⎠− 20


 (3.30)





+ 




+ 




= 

2

2
+





2

2
− 1






 (3.31)





+ 




+ 




= 

2

2
+





2

2
 (3.32)

The associated boundary conditions are given below:

 =   =   = 0  =   =  at  = 0 (3.33)

→ 0  → 0  → ∞  → ∞ as  →∞ (3.35)

Here ( , ) corresponds the velocity components in (, , ) directions respectively, 

represents kinematic viscosity, 0 = 1 the elastic parameter, 1 the normal stress moduli,
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 the electrical conductivity,  the thermal diffusivity,  the radiative heat flux,  and

∞ are the wall and ambient temperature and  and ∞ are the surface and surrounding

concentrations respectively. The subscript  denotes wall condition. This surface stretching

velocities, wall temperature and wall concentration are

 = 0
+
   = 0

+
   = ∞ + 0

(+)

2   = ∞ +0
(+)

2  (3.36)

Here 0 0 0 and 0 are the constants,  is the temperature exponent,  is the concentration

exponent and  is the reference length. The radiative heat flux  via Rosseland’s approximation

can be prescribed in the form

 = −41
3

( 4)


 (3.37)

in which 1 is the Stefan-Boltzman constant and  stand for absorption coefficient. Here it is

assumed that the difference in temperature inside the flow is such that  4 can be written as a

linear combination of temperature. By employing Taylor’s series and neglecting higher power

terms we get

 4 ∼= −3 4∞ + 4 3∞ (3.38)

Invoking Eq. (338) in Eq. (337) we get




= −161

3∞
3

2

2
 (3.39)

Using Eq. (339) in Eq. (331) we have





+ 




+ 




= 

2

2
+





2

2
+
161

3∞
3

2

2
 (3.40)

The dimensionless variables are taken in the form

 = 0
+
  0()  = 0

+
 0()  = −

µ
0

2

¶12

+
2

¡
 +  0 +  + 0

¢


 = ∞ + 0
(+)

2 ()  = ∞ +0
(+)

2 ()  =

µ
0

2

¶12

+
2  (3.41)
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Eq. (328) is now automatically satisfied while Eqs. (329)− (335) and Eq. (340) become

 000+(+) 00−2( 0+0) 0+

⎛⎝ 6 000 0 + (3
00 − 3 00 + 000) 00

+(40 + 200) 000 − ( +  + 0) 0000

⎞⎠−2 0 = 0 (3.42)

000 + ( + ) 00 − 2 ¡ 0 + 0
¢
0 +

⎛⎝ 60000 + (3
00 − 300 +  000)00

+(4 0 + 2 00)000 − ( +  +  0)0000

⎞⎠−20 = 0

(3.43)

(1 +) 00 +Pr(( + ) 0 −
¡
 0 + 0

¢
 +00) = 0 (3.44)

00 + (( + )0 −
¡
 0 + 0

¢
+ 00) = 0 (3.45)

 = 0  = 0  0 = 1 0 =   = 1  = 1 at  = 0 (3.46)

 0 → 0 0 → 0  → 0 → 0 as  →∞ (3.47)

In above expressions () denotes the magnetic parameter, () shows second grade parameter,

() represents ratio parameter, () the radiation parameter, (Pr) designates Prandtl number,

() the Dufour number, () stands for Schmidt number, () the Soret number and prime

denotes differentiation with respect to () The dimensionless parameters are defined by

 =
0

2
 2 =

220


  =

0

0
  =

161
3∞

3
 Pr =






 =




( − ∞)
( − ∞)

  =



  =





( − ∞)
( − ∞)

 (3.48)

The expression of skin friction coefficients along the  and  directions are

 =
 |=0
122

=

⎡⎣

+ 1

⎛⎝  2


+  2


+  2
2

+




+ 




− 





⎞⎠⎤⎦
=0

122
 (3.49)

 =
 |=0
122

=

⎡⎣

+ 1

⎛⎝  2


+  2


+  2
2

+




+ 




− 





⎞⎠⎤⎦
=0

122
 (3.50)
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Skin friction coefficients in dimensionless scale are

 =

µ
Re

2

¶−12 ¡
 00 +

¡− ( + )  000
¢
+ 5

¡
 0 + 0

¢
 00 + 2 0 00 + 2000

¢
=0

 (3.51)

 =

µ
Re

2

¶−12 ¡
00 +

¡− ( + ) 000
¢
+ 5

¡
 0 + 0

¢
00 + 2 0 00 + 2000

¢
=0

 (3.52)

The expression for local Nusselt and Sherwood numbers are given by

 =


 ( − ∞)
  =



 ( − ∞)
 (3.53)

where the surface heat flux  and the surface mass flux  are

 = −
 =0

+ ()  = −
µ




¶
=0

 (3.54)

The dimensionless form of Eq. (353) gives

µ
Re

2

¶−12
 = −


(1 +) 0(0) (3.55)

µ
Re

2

¶−12
 = −


0 (0)  (3.57)

where Re is the Reynolds number defined by Re = 

3.2 Development of series solutions

The appropriate initial guesses for the problem are

0() = 1− − 0() = (1− −) 0() = − 0() = − (3.58)

and the corresponding linear operators are

L =  000 −  0 L = 000 − 0 L = 00 −  L = 00 −  (3.59)
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with

L
£
1 +2

 +3
−¤ = 0 L

£
4 +5

 +6
−¤ = 0

L
£
7

 +8
−¤ = 0 L

£
9

 +10
−¤ = 0 (3.60)

in which  ( = 1− 10) depict the arbitrary constants.

3.2.1 Zeroth-order problems

Subjected zeroth-order mathematical problem are

(1− Þ̌)L
h
̂( Þ̌)− 0()

i
= Þ̌~N [̂( Þ̌) ̂( Þ̌)] (3.61)

(1− Þ̌)L
£
̂( Þ̌)− 0()

¤
= Þ̌~N[̂( Þ̌) ̂( Þ̌)] (3.62)

(1− Þ̌)L
h
̂( Þ̌)− 0()

i
= Þ̌~N[̂( Þ̌) ̂( Þ̌) ̂( Þ̌) ̂( Þ̌)] (3.63)

(1− Þ̌)L
h
̂( Þ̌)− 0()

i
= Þ̌~N[̂( Þ̌) ̂( Þ̌) ̂( Þ̌) ̂( Þ̌)] (3.64)

̂(0 Þ̌) = 0 ̂ 0(0 Þ̌) = 1 ̂ 0(∞ Þ̌) = 0 ̂(0 Þ̌) = 0 ̂0(0 Þ̌) =  (3.65)

̂0(∞ Þ̌) = 0 ̂(0 Þ̌) = 1 ̂(∞ Þ̌) = 0 ̂(0 Þ̌) = 1 ̂(∞ Þ̌) = 0 (3.66)

N

h
̂( Þ̌) ̂( Þ̌)

i
=

3̂

3
+
³
̂ + ̂

´ 2̂

2
− 2

Ã
̂


+

̂



!
̂


−2̂



+

⎛⎜⎜⎜⎜⎝
6̂


3̂
3

+
³
3

2̂
2
− 32̂

2
+  

3̂
3

´
2̂
2

+
³
4̂

+ 2 

2̂
2

´
3̂
3

−
³
̂ + ̂ +  ̂



´
4̂
4

⎞⎟⎟⎟⎟⎠  (3.67)
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N

h
̂( Þ̌) ̂( Þ̌)

i
=

3̂

3
+
³
̂ + ̂

´ 2̂

2
− 2

Ã
̂


+

̂



!
̂


−2 ̂



+

⎛⎜⎜⎜⎜⎝
6̂


3̂
3

+
³
3

2̂
2
− 32̂

2
+  

3̂
3

´
2̂
2

+
³
4̂

+ 2 

2̂
2

´
3̂
3

−
³
̂ + ̂ +  ̂



´
4̂
4

⎞⎟⎟⎟⎟⎠  (3.68)

N

h
̂( Þ̌) ̂( Þ̌) ̂( Þ̌) ̂( Þ̌)

i
= (1 +)

2̂

2
+Pr

³
̂ + ̂

´ ̂



+Pr
2

2
−Pr

Ã
̂


+

̂



!
̂ (3.69)

N[̂( Þ̌) ̂( Þ̌) ̂( Þ̌) ̂( Þ̌)] =
2̂

2
+ 

³
̂ + ̂

´ ̂



−
Ã
̂


+

̂



!
̂+ 

2

2
 (3.70)

where Þ̌ denotes embedding parameter, (~  ~ ~ ~) are the auxiliary parameters and (N 

N N, N) are the corresponding nonlinear operators. Setting Þ̌= 0 and Þ̌= 1 gives

̂( 0) = 0() ̂( 0) = 0() ̂( 0) = 0() ̂( 0) = 0() (3.71)

̂( 1) = () ̂( 1) = () ̂( 1) = () ̂( 1) = () (3.72)

If Þ̌ varies from 0 to 1 then (̂(Þ̌) ̂(Þ̌) ̂(Þ̌), ̂(Þ̌)) deform from the initial result

(0() 0() 0(), 0()) to the final results (() () (), ()) respectively. Expansion

of Taylor series gives

̂( Þ̌) = 0() +

∞X
=1

()Þ̌

 () =

1

!

̂( Þ̌)

Þ̌


¯̄̄̄
¯
Þ̌=0

 (3.73)

̂( Þ̌) = 0() +

∞X
=1

()Þ̌

 () =

1

!

̂( Þ̌)

Þ̌


¯̄̄̄
Þ̌=0

 (3.74)
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̂( Þ̌) = 0() +

∞X
=1

()Þ̌

 () =

1

!

̂( Þ̌)

Þ̌


¯̄̄̄
¯
Þ̌=0

 (3.75)

̂( Þ̌) = 0() +

∞X
=1

()Þ̌

 () =

1

!

̂( Þ̌)

Þ̌


¯̄̄̄
¯
Þ̌=0

 (3.76)

By selecting appropriate values of auxiliary parameters and Þ̌= 1 Eqs. (373)− (376) take the
form

() = 0() +

∞X
=1

() (3.77)

() = 0() +

∞X
=1

() (3.78)

() = 0() +

∞X
=1

() (3.79)

() = 0() +

∞X
=1

() (3.80)

3.2.2 nth-order deformations problems

L [()− −1()] = ~Ř
 () (3.81)

L [()− −1()] = ~Ř
 () (3.82)

L [()− −1()] = ~Ř
 () (3.83)

L
£
()− −1()

¤
= ~Ř

() (3.84)

(0) =  0(0) =  0(∞) = 0 (0) = 0(0) = 0(∞) = 0 (3.85)

(0) = (∞) = 0 (0) = (∞) = 0 (3.86)
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Ř
 () =  000−1() +

−1X
=0

¡
−1− 00 + −1− 00

¢− 2 −1X
=0

 0−1−
0
 − 2

−1X
=0

0−1−
0
 −2 0−1()

+

⎛⎜⎜⎜⎜⎜⎜⎝
6
−1P
=0

 0−1−
000
 + 3

−1P
=0

00−1−
00
 − 3

−1P
=0

 00−1−
00


+
−1P
=0

000−1−
00
 + 4

−1P
=0

0−1−
000
 + 2

−1P
=0

00−1−
000


−
−1P
=0

−1− 0000 −
−1P
=0

−1− 0000 −
−1P
=0

0−1−
0000


⎞⎟⎟⎟⎟⎟⎟⎠  (3.87)

Ř
 () = 000−1() +

−1X
=0

¡
−1−00 + −1−00

¢−−2 −1X
=0

0−1−
0
2

−1X
=0

0−1−
0
 −20−1()

+

⎛⎜⎜⎜⎜⎜⎜⎝
6
−1P
=0

0−1−
000
 + 3

−1P
=0

 00−1−
00
 − 3

−1P
=0

00−1−
00


+
−1P
=0

 000−1−
00
 + 4

−1P
=0

 0−1−
000
 + 2

−1P
=0

 00−1−
000


−
−1P
=0

−1−0000 −
−1P
=0

−1−0000 −
−1P
=0

 0−1−
0000


⎞⎟⎟⎟⎟⎟⎟⎠  (3.88)

Ř
 () = (1 +) 00−1() + Pr

−1X
=0

(−1−0 + −1−0)

−Pr
−1X
=0

¡
 0−1− + 0−1−

¢
+Pr00−1() (3.89)

Ř
() = 00−1() + 

−1X
=0

(−1−0 + −1−0)

−
−1X
=0

¡
 0−1− + 0−1−

¢
+ 00−1() (3.90)

χ=

⎧⎨⎩ 0  ≤ 1
1   1

(3.91)

The general solutions of Eqs. (381) − (384) in the form of special solutions (∗() ∗()

∗() 
∗
()) are

() = ∗() +1 +2
 +3

− (3.92)
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() = ∗() +4 + 5
 + 6

− (3.93)

() = ∗() +7
 +8

− (3.94)

() = ∗() +9
 +10

− (3.95)

where  ( = 1 − 10) are constants and from Eqs. (385) and (386) we have the following

values

2 = 5 = 7 = 9 = 0 3 =
∗()


¯̄̄̄
=0

 1 = −3 − ∗(0)

6 =
∗()


¯̄̄̄
=0

 4 = −6 − ∗(0) 8 = −∗(0) 10 =
∗()


¯̄̄̄
=0

 (3.96)

3.2.3 Convergence of homotopic solutions

The solutions (377) − (380) contain the auxiliary parameters ~  ~ ~ and ~ which are
significant in convergence analysis. The proper values of these auxiliary parameters are to

obtain convergent series solutions. Therefore ~−curves for the velocities, temperature and
concentration distributions are interpreted at 15th-order of deformations. Figs. (32) − (35)
clearly depict that the admissible ranges of these parameters are −08 ≤ ~ ≤ −015 −08 ≤
~ ≤ −01 −09 ≤ ~ ≤ −02 and −09 ≤ ~ ≤ −03 Furthermore, the presented homotopic
solutions are convergent in the whole domain of  (0   ∞) when ~ = −05 = ~ and

~ = −06 = ~ Table 31 depicts that the 20th-order of deformations are adequate for the

convergent series solutions.
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Table 3.1: Convergence of homotopic solutions when Pr = 12  = 03  = 03

 = 02  = 01  =  = 05  = 02  = 10  = 01, ~ = −05 = ~ and

~ = −06 = ~

Order of approximations − 00(0) −00(0) −0(0) −0(0)
1 102167 008717 086800 086000

5 101292 008874 081094 076392

10 101260 008874 081062 075655

15 101259 008874 081179 075612

20 101259 008874 081179 075614

25 101259 008874 081179 075614

30 101259 008874 081179 075614

35 101259 008874 081179 075614

40 101259 008874 081179 075614

3.3 Discussion

In this portion we examine the impact of various influential parameters including second grade

parameter  ratio parameter  magnetic parameter  Prandtl number Pr radiation para-

meter  Schmidt number  Soret number  Dufour number  temperature exponent

 and concentration exponent  on the non-dimensional velocity  0() temperature  () and

concentration  () fields. Figs. (36) − (324) are drawn for such purpose. Influence of vis-
coelastic parameter  on the velocity field  0() is revealed in Fig. 36 Here the velocity  0()

and related thickness of boundary layer are enhanced for higher values of  From Fig. 37 we

observed that  0() decreases for larger values of ratio parameter . Further the momentum

boundary layer also reduces. In fact, with an increment in , the −components of velocity
reduces which create a decrease in velocity  0() and thickness of boundary layer. Fig. 38

depicts a reduction in velocity field  0() when we increase magnetic parameter  It is quite

obvious because with the increase in magnetic parameter corresponds the increment of Lorentz

forces thereby reducing the velocity field  0() Fig. 39 describes the variations of viscoelas-

tic parameter  on the velocity distribution 0(). It is observable that the velocity 0() is
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increasing function of  Variation of ratio parameter  on velocity field 0() is displayed in

Fig. 310 Larger values of ratio parameter  gives rise the velocity and their related thickness

of boundary layer. Comparative study with Fig. 37 explores that  0() reduces while 0()

enhances when  gets higher values. When  start to rise from zero then the lateral surface

begins to move in −direction and hence the velocity 0() enhances while the velocity  0()

reduces. From Fig. 311 we have seen that velocity profile 0() is enhanced for larger values of

magnetic parameter  Influence of second grade parameter on the temperature is displayed

in Fig. 312 It is clearly shown that the temperature  () and thickness of thermal boundary

layer are lower for greater values of second grade parameter. Larger values of second grade pa-

rameter increases the elasticity effects due to which the temperature and its related boundary

layer thickness are reduced. Impact of  on the temperature  () is drawn in Fig. 313 It is

noted that for higher values of ratio parameter  creates a demotion in temperature and thicker

boundary layer. Fig. 314 is interpreted to examine the effect of magnetic parameter  on

temperature profile Here we observed that the temperature  () and its related thickness of

boundary layer are enhanced for the increased values of  . An enhancment in  increase the

Lorentz force (resistive force) which has the characteristic to covert some energy into heat en-

ergy. Fig. 315 depicts that temperature is enhanced with the increment in radiation parameter

 Higher values of radiation parameter  added more heat to the working fluid that cause

to drop the temperature and thinner the boundary layer. Temperature  () and its associated

boundary layer thickness are decrease for higher Prandtl number (see Fig. 316). Prandtl num-

ber has inverse relation with thermal diffusivity. Higher  implies lower thermal diffusivity.

Such lower thermal diffusivity shows a decrease in the temperature. Fig. 317 elucidates that

an increase in Dufour number  implies to an enhancement in the temperature. Fig. 318

clearly indicates that higher values of temperature exponent  enhance the temperature profile

 ()  Influence of second grade parameter  on the concentration profile  () is presented in

Fig. 319 We observed from this Fig that the concentration profile is lower for the reduced

values of second grade parameter. Also noted that the effects of second grade parameter on the

concentration and temperature are similar. Lower concentration and corresponding boundary

layer thickness is seen for the larger values of ratio parameter (see Fig. 320). Significance of

 on the concentration profile is disclosed in Fig. 321 Here concentration distribution show
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an increment with rise in the values of  . Further for  = 0 represents the hydrodynamic

flow situation. Fig. 322 shows the change in concentration  () for different values of Schmidt

number Schmidt number has inverse relation with the diffusion coefficient. An increase in 

leads to decays diffusion coefficient. Influence of Soret number  on the concentration profile

 () is sketched in Fig. 323 Here the concentration increase and corresponding boundary

layer get thicker when we increase . Fig. 323 also shows that the concentration is weaker for

smaller Soret number and stronger for larger Soret number. Fig. 324 clearly shows that larger

values of concentration exponent  decay the concentration field. Table 31 is computed for

various order of approximations of − 00 (0)  −00 (0)  −0 (0) and −0 (0) when  = 03 = 

 = 02  = 01  = 05 =   = 02 Pr = 12  = 10  = 01 ~ = −05 = ~ and
~ = −06 = ~ This table depicts that the values of − 00 (0)  −00 (0)  −0 (0) and −0 (0)
converge at 20th order of deformations. Table 32 is drawn to view the characteristics of distinct

parameters on friction drag coefficients corresponds to and  directions The values of skin

friction coefficients are increases with the increment in  and . It is important to notice that

the values of − ¡Re
2

¢12
 are greater than the values of −

¡
Re
2

¢12
 Table 33 is interpreted

to understand the variation of Nusselt and Sherwood numbers corresponding to different values

of    Pr    and  when  = 05 =  It is interesting to seen that Nusselt

and Sherwood numbers are increased when  and  enhances. Nusselt and Sherwood numbers

has reverse effect for the larger values of  and  Table 34 is computed to validate the

present results with published results when  varies and  = 0 = . It is found that present

out comes stand in excellent match. This confirms the validity of (HAM) solutions.
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Fig. 36 Behavior of  on  0()
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Fig. 37 Behavior of  on  0()
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Fig. 310 Behavior of  on 0()
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Fig. 311 Behavior of  on 0()
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Fig. 313 Behavior of  on ()
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Fig. 314 Behavior of  on ()
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Fig. 315 Behavior of  on ()
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Fig. 316 Behavior of Pr on ()
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Fig. 317 Behavior of  on ()
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Fig. 318 Behavior of  on ()

K = 0.0, 0.3, 0.7, 1.4

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

h

f
h

M = 0.3 , a = 0.1 , Pr = 1.2 , Rd = 0.2 = Sr, Sc = 1.0, Df = 0.1, A = 0.5 = B

Fig. 319 Behavior of  on ()
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Fig. 320 Behavior of  on ()
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Fig. 321 Behavior of  on ()

64



Sc = 0.2, 0.4, 0.6, 0.9

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

h

f
h

K = 0.3 = M, a = 0.1, Pr = 1.2, Rd = 0.2 = Sr, Df = 0.1, A = 0.5 = B

Fig. 322 Behavior of  on ()
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Fig. 323 Behavior of  on ()
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Fig. 324 Behavior of  on ()

Table 3.2: Numerical executed values of skin friction coefficients for different values of 

 and 

   − ¡Re
2

¢12
 − ¡Re

2

¢12


00 03 01 137812 013781

03 329625 084804

05 379793 102565

03 00 01 321003 082606

05 344347 088559

03 10 01 405794 104259

02 350431 114936

05 419227 238358

03 03 08 499530 413596
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Table 3.3: Numerical solutions of local Nusselt number − (1 +) 0(0) and local Sherwood

number −0 (0) for various values of    Pr    and  when  = 05 = 

        − (1 +) 0(0) −0 (0)
00 03 01 12 02 10 01 02 074737 069292

02 079534 073992

05 083686 078109

03 00 01 12 02 10 01 02 081899 076337

05 079959 074394

10 074977 069440

03 03 02 12 02 10 01 02 085479 079656

05 097368 090838

08 108132 10096

03 03 01 08 02 10 01 02 06220 078391

10 072126 076959

15 093507 073730

03 03 01 12 00 10 01 02 080408 085902

02 081180 075616

05 082380 059685

03 03 01 12 02 08 01 02 081915 065535

10 081179 075612

15 079522 097161

03 03 01 12 02 10 00 02 085902 074913

02 076338 076338

05 061040 078640

03 03 01 12 02 10 01 00 091143 074097

02 081180 075612

05 070214 077237
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Table 3.4: Comparison of (− 00 (0)  −00 (0) and  (∞) +  (∞)) for distinct values of 
when  = 0 =

Liu et al. [5] Present study

 − 00 (0) −00 (0)  (∞) +  (∞) − 00 (0) −00 (0)  (∞) +  (∞)
00 128180856 0 090564383 128180857 0 090564

05 156988846 078494423 110918263 156988847 078494423 110918

10 181275105 181275105 128077378 181275381 181275381 128077

3.4 Concluding remarks

Soret and Dufour effects in magnetohydrodynamic (MHD) three-dimensional boundary layer

flow of second grade fluid caused by an exponentially stretching surface are studied analytically.

Influence of thermal radiation is encountered in energy equation. The main observations are

summarized as follows:

• An enhancement in second grade parameter shows a reduction in the temperature and
concentration fields

• Temperature  () and concentration  () fields have similar effects for magnetic para-

meter  .

• An increment in radiation parameter  shows an enhancement in the temperature and
thickness of thermal boundary layer.

• Temperature  () rises when the values of Dufour number  are increased.

• Concentration  () and its related boundary layer thickness are higher for larger values

of Soret number 

• Frictional drag coefficient are higher for larger values of  and 
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