

Viewing Change History of Design Patterns

BY

Anila

M.Sc. COMPUTER SCIENCE

2012-2014

DEPARTMENT OF COMPUTER SCIENCE

QUAID-I-AZAM UNIVERSITY

ISLAMABAD

A dissertation submitted to the

Department of Computer Science,

Quaid-i-Azam University, Islamabad

As a partial fulfillment of the requirements

For the award of the degree of

Master in Computer Science

DEDICATION

My every good deed firstly dedicated to ALLAH Almighty for making me capable of doing

this, my loving parents specially my mother who put her trust in me.

DECLARATION

I hereby declare that this report is my own work and effort and that it has not been

submitted anywhere for any award. Where other source of information has
been used, they have been acknowledged.

Anila

ACKNOWLEDGEMENT

Thanks to Almighty Allah for giving me knowledge, power and strength to complete this

project. I have learned a lot during this project and this will certainly help me in my upcoming life. I

really thankful to the help and support of Dr. Onaiza Maqbool who is my project supervisor in this

project. She helped me in all phases of this project. Her supervision helped me a lot during the time

of difficulties. In the end i would like to thank my teachers, parents and specially Bhai and Bhabhi g

because without their love and affection during studies, this project was not achievable.

Anila

ABSTRACT

The project is related to development of a unified environment/tool that extracts Patterns
information from different successive versions of a software, and provides support for visual display in
the form of diagrams based on extracted information of any software system. The tool shows the
version to version growth of Patterns in the system in statistical form and also shows the trends in
architecture. These trends help users to predict the growth of patterns in the software.

Contents

 Chapter # 1 ... 9

Introduction ... 9

 1.1 Introduction .. 10

 1.1 Design patterns overview ... 10

 1.1.1 Introduction to Design Patterns ... 10

 1.1.2 Origin ... 10

 1.1.3 Role of Design Patterns in Software Design ... 10

 1.2 Problem Definition ... 11

 1.3 System Definition ... 11

 1.3 Scope .. 11

 1.3.1 Input .. 11

 1.3.2 Output ... 11

 1.4 Catalog of Design Pattern ... 11

 1.4.1 Creational patterns ... 11

 1.4.2 Structural patterns .. 12

 1.4.3 Behavioral patterns ... 12

 1.5 Benefits of design Patterns ... 13

 Chapter # 2 ... 14

 Requirements Specification .. 14

 2. System Requirements Specification .. 15

 2.1 Stakeholder & Interest ... 15

 2.2 User Goals ... 15

 2.3 Usecase diagram .. 16

 2.4 Use case description .. 16

 2.5 Domain Model ... 22

 Chapter # 3 ... 23

 System Design ... 23

 3. System Design ... 24

 3.1 System Architecture ... 24

 3.1.2 Architecture Diagram .. 25

 3.1.2 Architecture Overview ... 25

 3.2 System Flow Diagram ... 26

 3.3 Detailed Design .. 26

 3.3.1 Sequence Diagram .. 26

 3.2.2 Class Diagram ... 29

 Chapter # 4 ... 30

 System Implementation ... 30

 4. System Implementation ... 31
 4.1 Methodology ... 31

 4.2 Framework Selection ... 31

 4.3 Language Selection .. 31

 4.4 Detection Tool ... 31

 4.5 Libraries Used .. 31
 4.6 Limitation of system ... 31

 Chapter # 5 ... 33

 Testing and Conclusions ... 33

 5.1 Testing .. 34

 5.1.2 Psychology of Testing .. 34

 5.1.2 Acceptance Testing ... 34

 5.1.3 Test Cases ... 34

 5.2. Conclusion and Future Enhancements .. 38

 5.2.1 Conclusion .. 38

 5.2.2 Future Enhancements: .. 38

References ... 39

Appendix ... 40

Chapter # 1

Introduction

1.1 Introduction

This chapter provides an overview of design patterns and project objective and scope.

1.1 Design patterns overview

It is essential to understand design patterns concepts in order to understand the objectives of this project.

1.1.1 Introduction to Design Patterns

A design pattern is a repeatable solution to a software engineering problem. Design patterns are widely used
by software developers because patterns give software designers the ability to design a robust solution rapidly
by using proven techniques [1]

1.1.2 Origin

The term “Pattern" was first used by an architect Christopher Alexander in the late 1970's. In [2] the
concept of the pattern is described as

“Each pattern describes a problem which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use this solution a billion times
over, without ever doing it the same way twice."

In [3], the concept of pattern is modified as:
“Each pattern is a three part rule, which expresses a relation between a context, a problem and a

solution."

1.1.3 Role of Design Patterns in Software Design

A software design pattern is a general solution to a common problem in software design. It is a
description or template for how to solve a problem that can be used in different situations. A design pattern
typically shows relationship and interaction between classes or objects, without specifying final application
classes or objects that are involved. Patterns identify and specify abstractions that are above the level of
single classes and instances [1]

1.2 Problem Definition

Design patterns have been used in software systems to incorporate quality. They make our code easy to
understand and debug. This leads to faster development and new members of team understand the system
easily. Design patterns generally change and improve over time as software is updated.

Manually checking these changes in different versions is a difficult task and we cannot determine what
and where changes occur in different versions of software.

1.3 System Definition

The proposed system, is an application that will read details about the detected design patterns and
then present them in a meaningful manner for comparison between versions and among various software
systems. So researchers or architects/designers can predict the growth of patterns systems and do corrective
effort on architecture/design.

1.3 Scope

System will provide the following functionality to the user

 System will allow the user to select different versions of a software
 System will automatically detect design patterns from different categories
 System will show statistical and trend analysis for comparison
 System will allow user to view change history in different ways
 System will allow user to apply search

1.3.1 Input

 Versions of software

1.3.2 Output

 Statistical and graphical form of software design pattern history

I have used 12 design patterns in this project. Their detail is provided below

1.4 Catalog of Design Pattern

The design pattern catalog by Gamma et al. [1] Contains different Design Patterns from which I chose 12
design patterns from the Creational, structural and behavioral categories.

1.4.1 Creational patterns

These design patterns are about class instantiation. These patterns can be further divided into class-
creation patterns and object-creational patterns. While class-creation patterns use inheritance effectively in
the instantiation process, object-creation patterns use delegation effectively to get the job done.

- Factory Method
Define an interface for creating an object, but let subclasses decide which class to instantiate. Factory Method
lets a class defer instantiation to subclasses.

- Prototype
Specify the kinds of objects to create using a prototypical instance, and create new objects by copying
this prototype.

- Singleton
Ensure a class only has one instance, and provide a global point of access to it.

1.4.2 Structural patterns

These design patterns are about Class and Object composition. Structural class-creation patterns use inheritance
to compose interfaces. Structural object-patterns define ways to compose objects to obtain new functionality.

- Command
Encapsulate a request as an object, thereby letting one to parameterize clients with different requests, queue
or log requests, and support undoable operations.

- Composite
Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects uniformly.

- Decorator
Attach additional responsibilities to an object dynamically. Decorators provide a flexible alternative to
sub classing for extending functionality.

1.4.3 Behavioral patterns

These design patterns are about Class's objects communication. Behavioral patterns are those patterns that are
most specifically concerned with communication between objects.

- Observer
Define a one-to-many dependency between objects so that when one object changes state, all its
dependents are notified and updated automatically.

- State
Allow an object to alter its behavior when it’s internal state changes. The object will appear to change its class.

- Strategy
Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the
algorithm vary independently from clients that use it.

- Template Method
Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template Method
lets subclasses redefine certain steps of an algorithm without changing the algorithm's structure.

- Visitor
Represent an operation to be performed on the elements of an object structure. Visitor lets you define a new
operation without changing the classes of the elements on which it operates.

1.5 Benefits of design Patterns

Below are listed some benefits of design patterns [4]

1. Enhances code readability

Design patterns help to speed up software development by providing tested development techniques.

Software design involves considering small issues that might become visible later during the implementation

process. Reusable design patterns help to correct problems and enhance code readability.

2. Robust

Using design patterns promotes reusability that leads to more robust and highly maintainable code.

3. Solutions to specific problems

They give the developer a selection of tried and tested solutions to work with.

4. Simplify the coding process

If user have knowledge about basic design patterns.it will be easier to divide a task into pieces, each with
its own specific responsibilities.

5. Enhances software development

Design patterns helps to enhance software reusability and development. In other words, a design

pattern is the main component in software development. Better understanding of how design patterns relate to

each other will help enhance software development

Chapter # 2

Requirements Specification

2. System Requirements Specification

Software requirement specification is the process of analyzing the requirement of the system. It includes
all the requirements of the stakeholders. This chapter describes the user’s specification and use cases and
Domain model.

2.1 Stakeholder & Interest

 Stakeholder Researchers

Interests

Researchers want to extract Design patterns and

see the changes in any software system in visual

 format (Diagrams) for the maintenance and

 understanding of design of open source systems.

 They want to predict the growth in design patterns

 of open source systems.

 Stakeholder Architects/Designers

Interests

Architects/Designers also want to see trend

analysis of any open source system. They also want

 to predict the growth in design of open source

 systems to make corrective effort on architecture.

 Stakeholder Open source community developers

Interests

Open source community developer also wants to

 see the design changes between different versions

 in open source system.

2.2 User Goals

Researchers Extract Patterns.

Designers View Trend Analysis.

Open source community developers Visualize Difference in versions.

2.3 Usecase diagram

Fig 2.3 Use Case Diagram

Use case description

Use Case UC1: Detect Patterns

Primary actor: user

Stakeholder and interest: Researchers /Architects/Designers/ Open source community developers: Detect
the Design patterns of many successive versions of the software.

Success Guarantee:

 Patterns of all the versions detected successfully.
 All required reports are successfully generated or exported in specific directory.

Basic Flow (Main Flow of Events)

User Request System Response

 1-This use case begins when user wishes to detect

 patterns in successive versions of any open source

 software.

 2-The user indicates to the system that he/she

 wants to detect the patterns in different version

 of software. 3- System asks the user to browse the path of the

 software.

 4- User browses the path of the software.

 5- System validates the path of the software.

 6- System asks the user to start the detection.

 7- User starts detection. 8- System starts the patterns detection on different

 versions.

 9- System detects the patterns information.

 10- System detects the instance under each pattern.

 11- System detects the roles under each instance.

 Step 8-11 repeat until design information of all successive versions of the given software detect.

 12- System define a directory and saves the detected

 results in it.

 13-System start extraction (System Function Extract

 Data)

 14- System shows the patterns detection

 confirmation.

Extension:

 a*.Any time while detection when error occurs:

˗ System Stop the detection process and shows or display a message to user, indicating that the browse

software contain some incorrect file.

b*. User browses invalid directory structure software:

˗ System prompts the user to browse the defined directory structure software.

Special Requirement:

 Successive versions of the software should be present in specific directory.
 Successive versions files of the software should be in java source code form.
 Successive versions files of the software should be present in specific structure like that

o Software
 Version_1

 Version_2

 Version_3

 User must select the root directory i.e. software.

Use Case UC2: Trend Analysis

Primary actor: user

Stakeholder and interest:

Researchers /Architects/Designers/ Open source community developers: They want to see
trend analysis and predict the growth in design of open source systems to make corrective effort on
design.

Pre-condition:

 Design patterns of all the successive versions of the software must

be extracted successfully.

Success Guarantee:

 All type of trend analysis shown successfully.
 Different views of trend (line and dot view or bar chart view)

Basic Flow (Main Flow of Events):

User Request System Response

1-This use case begins when user wishes to see trend

analysis on extracted design of versions of open

source software.

2-The user indicates to the system that he/she Wants

to see trend analysis on extracted design of the

successive versions of open source software.
3- Using extracted results system displays trend

 analysis graphically.

4-User view the environment.

 5-System allows the user to see the trend analysis on

 pattern and instances

6- User view the trend on instances and patterns.

 7- System allows the user to see different view of

 trend analysis (dot and line or bar chart view)

8-User selects the trend analysis view.

 9- System displays the trend analysis view.

Use Case UC3: Statistical Analysis

Primary actor and interest: System allows the user to see the extracted data in statistical form.

Pre-condition:

 Design elements of all the successive versions of the software must
be extracted successfully.

Success Guarantee:

 System will show statistical view successfully.

Basic Flow (Main Flow of Events):

User Request System Response

1-This use case begins when user wishes to see
Statistical analysis on extracted design of versions
of open source software.

2-The user indicates to the system that he/she wants
to see Statistical analysis on extracted design of the
successive versions of open source software.

3-System will show statistical data.

4-user see the Statistical view.

Use Case UC4: Search data

Primary actor and interest: system allow user to apply search on different version of a software.

Pre-condition:

 System will show statistical view.

Success Guarantee:

 System will show search statistical successfully.

Basic Flow (Main Flow of Events):

User Request System Response

1-This use case begins when user wishes to see apply

search on extracted design of versions of open source

software.

2-The user indicates to the system that he/she Wants

to apply search on extracted design of the successive

versions of open source software.
3-System will show search environment allow user to

 make query.

4-User selects different option for making query

 5-System show the searched results.

Use Case UC5: Show Radial View

Primary actor and interest: System allow user to see data in radial view.

Pre-condition:

 Intermediate results file must be present in specific directory.

Success Guarantee:

 System will show Radial view successfully.

Basic Flow (Main Flow of Events):

User Request System Response

1-This use case begins when user wishes to see visual

analysis on extracted design of versions of open

source software.

2-The user indicates to the system that he/she Wants

to see Radial view on extracted design of the

successive versions of open source software.
3-Using intermediate results system show the Radial

4-User can zoon in/zoom out the view.
view.

 5-System zoom in/zoom out the view.

6-User sees the Radial view.

Use Case UC6: View list of Software

Primary actor and interest: User wants to see the software list along with different versions on which
different operations will be performed.

Pre-condition:

 Different software and versions must be present in specific directory.

Success Guarantee:

 List of software and versions shown successfully.

Basic Flow (Main Flow of Events):

User Request System Response

1-This use case begins when user wishes to see the

list of software along versions.

2-The user indicates to the system that he/she

wants to see list of software.
3-System checks that default directory exists.

 4.System defines directory if not exist

 5.System displays list of software along with versions

6-User view list of software.

Extension:

3. a. Verification of path of defined directory:

˗ System prompts the user to set the path of define directory in which software present.

Special Requirement:

Software along version must be present in specific directory

Use Case UC7: Set theme

Primary actor: user

Stakeholder and interest: User wants to change the default environment and set different themes.

Success Guarantee: New theme applied successfully.

Basic Flow (Main Flow of Events):

User Request System Response

1-This use case begins when user wishes to
change the default theme.

2-The user indicates to the system that he/she
wants to set the theme.

3-System display the environment for
theme settings.

4-User will select different options.

5-System will apply changes and display the view.

6-User views the environment.

System Function: Extract data

Level: System goal

Primary actor: System extracts the data of many successive versions of the software.

Pre-condition:

 Detection results of successive versions of the software should be present in the
defined directory Structure.

Success Guarantee:

 Patterns, instances and roles of all the versions extracted successfully.
 Intermediate result file generated successfully.

System Function

1- After detection of the successive versions next step is to extract data from the detection files of

different version of any open source software.

2- System starts the patterns extraction on a version.

3- System extract the patterns information.

4- System extract the instance under each pattern.

5-System extract the roles under each instance.

Step 2-5 repeat until information of all successive versions of the given software extracted.

5- On the basis of theses extraction system generate an intermediate result file.

6- System saves the extraction results.

2.5 Domain Model

“A domain model in problem solving and software engineering is a conceptual model of all the
topics related to a specific problem. It describes the various entities, their attributes, roles, and
relationships, plus the constraints that govern the problem domain” [5]

Fig 2.5 Domain Model

http://en.wikipedia.org/wiki/Problem_solving
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Conceptual_model_(computer_science)
http://en.wikipedia.org/wiki/Problem_domain

Chapter # 3

System Design

3. System Design

Once requirements are gathered next phase of software engineering is to design the system.

Design is the first step in the development phase for any engineering product or system. It is the process

of applying different techniques and rules for defining the system details to clear it.

The design of the system is explained with the help of the following diagrams:

 System Architecture

 System Flow Diagram

 Detailed Design

o Sequence diagram

o Class diagram

3.1 System Architecture

System Architecture defines the infrastructure of system, that is, it tells that what elements

are related to one another in what manner. How the communication inside a system is being handled?

This system is developed on the “Three Layer Architecture”. Use of “Three Layer Architecture” make

the application more understandable and easy to maintain and easy to modify.

3.1.1 Three layers architecture:

Three layer Architecture indicates a physical separation of components. The system is divided

into three layers (parts); Backend Database System (or some directory in which software along

versions are present), Middle layer related to business logic layer and Front End Application.

3.1.2 Architecture Diagram

Fig 3.1.2 Architecture diagram

3.1.2 Architecture Overview

In three layer architecture, each layer runs independently of the others and performs a
specific role in the application.

The Presentation Layer is responsible for human interaction with the application. Its primary concern
is data visualization and searching.

The Business Logic Layer processes requests from the client to detect patterns and export detected
results in some directory. Extract data and to perform other functions.

The layer’s primary role is to shield direct access to the data from unwanted and invalid reads
and updates. This helps to ensure the long-term integrity and security of the data.

The Data Access Layer is responsible for durable storage of the application layer.

3.2 System Flow Diagram

Flow diagram is a collective term for a diagram representing a flow or set of dynamic
relationships in a system. Flow diagrams are used to structure and order a complex system, or to
reveal the underlying structure of the elements and their interaction. [5]

Fig 3.2 System Flow Diagram

1. User first download software along versions.
2. Place all the software in specific directory and specific format as described above.
3. System will detect patterns from different versions and store results respectively.
4. Using these detected results system will show Statistical, Trend, and graph view.

5. Using these detected results system will also generate an intermediate file which can be further

used for radial analysis.

3.3 Detailed Design

In Detailed design, flow of the system is described using sequence diagrams. Also classes are
defined and their relationship is shown using class diagram.

3.3.1 Sequence Diagram

Sequence diagrams in the UML are primarily used to model the interactions between the actors and
the objects in a system and the interactions between the objects them-selves. As the name implies, a
sequence diagram shows the sequence of interactions that take place during a particular use case or use
case instance.

http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Complex_system

Detect Pattern

Fig 3.2.1

Trend Analysis

Fig 3.2.2

Search data

Fig 3.2.4

System Function:

Fig 3.2.7

Remaining sequence Diagrams are in Appendix.

3.2.2 Class Diagram

“Class diagram is a type of static structure diagram that describes the structure of a system by
showing the system's classes, their attributes, operations and the relationships among the
classes.” [6]

Fig 3.2.2 Class Diagram

Chapter # 4

System Implementation

4. System Implementation

After design phase there is an implementation phase. At this stage you create an executable
version of the software. Implementation may involve developing programs in high- or low-level
programming languages or tailoring and adapting generic, off-the-shelf systems to meet the
specific requirements of an organization.

4.1 Methodology
I applied following methodology to complete this system.

1. Design patterns were studied.
2. Tool for design pattern detection was searched.
3. Selecting one of those design pattern detection tool, as each of them had different

limitations.
4. The limitation of the selected tool was that user has to select one version of software at a

time and then select the pattern form a list and its results are then exported. The user has to
select the next version of the software again and do the same.

5. In proposed system, the user selects the whole directory having different versions of the
software and the design patterns detection are applied on all versions and results are saved.

6. XML parser is applied to extract data from these results one by one and that data is used for
analysis views.

7. The analysis views were generated by using many libraries.
8. A list of themes was provided for analysis views.

4.2 Framework Selection

This system is developed using Java with Net Beans IDE. It is a desktop based application created in
Java language and is very easy to use.

4.3 Language Selection

After the selection of framework the next step is to decide a suitable language for our project.
Suitable means that the language must be flexible enough to support design. Things that should be
taken care of while selecting a language is:

 Design is object oriented or structured
 System is Web based or Desktop based

For my project, the system is object oriented and Desktop-based.

Java
I use Java to implement my project because the detection tool that I used for detection of patterns is
in java language.

Java is an elegant language that enables a developer to build a variety of applications that
can run on any platform. It is platform independent means the code that runs on one machine does
not need to recompile to run on another.

4.4 Detection Tool

DPD

DPD is used to detect patterns from different versions of the software [7].
User must first select the root of the project package. Only class files (bytecode files) are necessary
for the project analysis. Designs patterns are detected using similarities basis and then detected
results are saved in xml format.

4.5 Libraries Used

As to increase functionality and decrease the development time of the application following libraries
are used in the system

Chart2D
Chart2d is the open source java library that is used for visualization of quantitative data. It provides
chart types: pie, line, bar, scatter plot (or dot), combination (dot and line). It supports setting of
maximum, minimum, and preferred sizes and colors, and auto-calculation of pref. size and color
of different categories.

Prefuse

Prefuse is a Java-based extensible software framework for creating interactive information
visualization applications. It can be used to build standalone applications. The intends to use Prefuse is
to simplify the processes of visualizing, handling and mapping of data, as well as user interaction.

Prefuse features:

 Graph, and tree data structures supporting arbitrary data attributes, data indexing,

and selection queries.

 Components for layout, color, size, and zooming.

Look And Feel

Libraries including elements such as colors, shapes, layout, and typefaces , as well as the behavior
of dynamic elements such as buttons, boxes, and menus are called look and feel libraries. Different
libraries are used for this purpose.

4.6 Limitation of system
1. System will only detect patterns from java based software.
2. System will only detect patterns from .java files present in the version’s folder.
3. System will detect patterns if software versions are placed in specific path.
4. System will only detect twelve design GOF patterns.

http://en.wikipedia.org/wiki/Java_(software_platform)
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Information_visualization
http://en.wikipedia.org/wiki/Information_visualization
http://en.wikipedia.org/wiki/Information_visualization
http://en.wikipedia.org/wiki/Graph_(data_structure)
http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Typeface

Chapter # 5

Testing and Conclusions

5.1 Testing

Testing is the process of detecting errors. Testing plays a critical role in assuring quality and
reliability of software. The results of testing are used later on during maintenance also.

5.1.2 Psychology of Testing

The basic purpose of testing phase is to detect the errors that may be present in the program.

5.1.2 Acceptance Testing

The last phase of software development process is User Acceptance Testing (UAT). Acceptance
Testing is done by real software users to test that the software meets its requirements. Different test
cases are made keeping in mind the use cases of the system and is assigned to a user to test it. User
runs the software according to the given instructions to see if the software fulfils its expected output.

5.1.3 Test Cases

The tests cases performed during the project development which are verified successfully are
as follows:

Test ID

T001

Use case Detect pattern

Description Verification of software path in detection of patterns, that user must select the

 root directory of a software.

Setup Directory contains:

 JhotDraw

 JhotDraw5.2

 JhotDraw7.3

 JhotDraw7.3.1

Pre-Requisite User must know the path of the software

Instruction No 1 Select Extract data from File

 Browse the path

 Select the root directory of the software i.e. JhotDraw

 Select open

Expected Result 1: System should start the Extraction process

Observed Result 1: System starts the Extraction process

Verdict PASS

Test ID

T002

Use case Trend Analysis

Description User want to see trend analysis on different patterns against successive versions

 of a software.

Pre-Requisite Design of the software must be extracted first.

Setup

Instructions Press Trend view from menu.

 Select pattern(e.g. Observer)

 Select view(e.g. Line and Dot)

 System will show result.

Expected Result Trend against different patterns should be shown.

Actual Result Trend against different patterns is show successfully.

Verdict PASS

Test ID

T003

Use case Search data

Description User selects different option for making query and get their required result

Pre-Requisite Design of the software must be extracted first.

Setup

Instructions Press search from menu.

 Select search in option (e.g. All Versions).

 Select option of search (e.g. highest).

 Select Instances from drop down menu

 Press Search.

Expected Result Statistics having greater number of instances should be show.

Actual Result Statistics having greater number of instances is show successfully.

Verdict PASS

Test ID

T004

Use case Apply theme

Description To verify that theme apply on software

Set up Default Theme

Instructions Press set Theme

 Select theme from list

Expected Result Interface should be changed according to selected theme.

Actual Result Interface is changed according to selected theme.

Verdict PASS

5.2. Conclusion and Future Enhancements

This chapter also summarizes the system regarding what functionality system is
currently providing and what should be future enhancements to make it more effective.

5.2.1 Conclusion

Design patterns are solutions to well-known design problems. They enable us to implement

tried and tested solutions to problems, thus saving time and effort during the implementation stage of

the software development lifecycle. By using well understood and documented solutions, the final
product will have a much higher degree of comprehension. If the solution is easier to comprehend, then,

it will also be easier to maintain.

As software evolves, solutions to new design problems are added or removed constantly. The

basic purpose of our project is to provide a platform for analysis of changing history of design patterns

that, which pattern is added more frequently and which are removed over time this helps to predict the
growth of patterns in open source projects. System clearly shows the version to version growth of

pattern in design of the system and also show analysis in different ways.

Software interface is kept simple and easily understandable for users.

5.2.2 Future Enhancements:

 Other GOF patterns can be detected.
 More analysis views can be added.

References

1. Erich Gamma (1995), Design Patterns Elements of Reusable Object-Oriented Software.
2. Alexander, C. (1979). The Timeless Way of Building, volume 1. Oxford University Press.

3. Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A Pattern Language: Towns,

Buildings, Construction, volume 2. Oxford University Press.
4. http://benefitof.net/benefits-of-design-patterns
5. http://en.wikipedia.org
6. Craig Larman, (2002) Applying UML and Patterns, Prentice Hall Professional.
7. http://java.uom.gr/~nikos/pattern-detection.html

http://en.wikipedia.org/

Appendix

Statistical Analysis

Fig 3.2.3

View list of software

Fig 3.2.5

Set Preference

Fig 3.2.6

